第四章 研究結果與討論

本研究試樣取自寶二水庫之鑽心試體和人造膠結不良砂岩,共做了 6 個單壓試驗及 22 個依據不同之應力路徑受剪之不排水三軸試驗 傳統壓密 不排水三軸試驗、波速量測及基本物性試驗,本章內容主要敘述及分析一 系列的試驗結果,藉以更了解軟岩的性質。並使用王慧蓉(2001)所發展之 軟岩漸進降伏模式,作模擬分析。

4.1 基本物性試驗結果

岩石材料一般因其組成及環境不同,而有不同之物理性質如:含水量、 孔隙率...等,此類性質可間接反應其力學特性,除了由力學上之觀點,亦 可由物理性質加以概括分類,以作為岩心分類及研判岩石特性之參考。本 研究物性試驗將包括含水量、孔隙率、單位重及比重等基本性質。茲描述 如下:

本研究試驗材料之自然物理性質整理如表 4-1、4-2、4-3 所示,其中 表 4-1、4-2 為三軸試體之物理性質,表 4-3 則為針對單壓試驗試體之物理 性質,茲描述如下:

表 4-1 及 4-2 所示, 寶二水庫之鑽心砂岩試體外觀為黃棕色,風化度高,結構極為鬆軟膠結差。由物性結果得知,砂岩濕單位重 "介於 1.9 2.01 g/cm³,自然含水量為 9.8% 13.4%,試驗前孔隙比分佈介於 0.48~0.52。人造飽和試體外觀亦為黃棕色砂岩,濕單位重 "介於 1.87 1.98 g/cm³,自然含水量為 1.7% 3.5%,試驗前孔隙比分佈介於 0.35~0.41。人造乾燥試體外觀亦為黃棕色砂岩,濕單位重 "介於 1.88 1.91 g/cm³,自然含水量為 1.6% 2.7%,試驗前孔隙比分佈介於 0.4~0.42。

由結果可看出寶二砂岩之單位重較人造試體大,孔隙率亦較高,但差 異不大,所以性質可視為相近,能提供後續試驗比較。

試體編號		比重	濕單位重	天然含水 乾單位重		乙酚比。	孔隙率	
		Gs	_m (g/cm ³)	量(%)	_d (g/cm ³)	ゴレゆスレし ピ	n(%)	
-	N1	2.61	1.97	11.7	1.66	0.49	32.6	
大	N2	2.61	1.92	11.3	1.73	0.51	33.8	
然	N3	2.64	2.01	12.8	1.79	0.48	32.4	
岩	N4	2.63	1.9	9.8	1.73	0.52	34.3	
樣	N5	2.62			1.72	0.52	34.3	
	N6	2.62	1.96	13.4	1.73	0.51	33.9	
	A1	2.62	1.87	2.1	1.83	0.43	30	
	A2	2.62	1.90	2.3	1.86	0.41	29	
	A3	2.62	1.96	3.1	1.89	0.38	27.6	
造	A4	2.62	1.98	3.5	1.91	0.37	27	
飽	A5	2.62	1.97	2.2	1.92	0.38	27.6	
和	A6	2.62	1.91	2.1	1.87	0.4	28.5	
岩	A7	2.62	1.89	2.0	1.85	0.41	29.2	
樣	A8	2.62	1.97	1.7	1.93	0.35	26.2	
	A9	2.62	1.89	1.8	1.86	0.41	29.1	
	A10	2.62	1.91	1.9	1.87	0.4	28.5	

表 4.1 三軸試體之自然物理性質一覽表

試體編號		比重 Gs	濕單位重 m(g/cm ³)	天然含水 量 (%)	乾單位重 d(g/cm ³)	孔隙比 e	孔隙率 n(%)
۲	AD1	2.62	1.91	2.7	1.86	0.41	29.0
造	AD2	2.6	1.90	2.6	1.86	0.4	28.6
乾	AD3	2.61	1.91	2.3	1.86	0.4	28.6
燥	AD4	2.6	1.88	1.6	1.85	0.41	29
岩	AD5	2.61	1.89	2.1	1.85	0.41	29.1
樣	AD6	2.62	1.89	2.1	1.84	0.42	29.6

表 4.2 單壓試體之自然物理性質一覽表

計體编號		比重	濕單位重	天然含水	乾單位重	刃隙 比で	孔隙率
	c Mying <i>Jay</i> C	Gs	$_{\rm m}({\rm g/cm}^3)$	(g/cm ³) 量 (%)			n(%)
人	N0.1	2.62	1.91	2.7	1.86	0.41	29.0
造	NO.2	2.6	1.90	2.6	1.86	0.4	28.6
乾	NO.3	2.61	1.91	2.3	1.86	0.4	28.6
燥	NO.4	2.6	1.88	1.6	1.85	0.41	29
岩	NO.5	2.61	1.89	2.1	1.85	0.41	29.1
樣	NO.6	2.62	1.89	2.1	1.84	0.42	29.6

4.2 單軸壓縮試驗

在單壓試驗方面,本研究針對人造砂岩試體來進行單軸壓縮試驗,實 驗儀器為 MTS810,試驗以 MTS458 進行應變控制,以每分鐘 0.4%應變速率 加載,試驗之目的在於求取完整岩心之單壓強度,藉由單壓試驗可求得試 體最大抗壓強度。從擷取系統擷取的資料中有軸向應變、橫向應變與軸向 應力,由以上資料,可畫出單壓試體的軸向及橫向應力-應變圖(見附錄 A),可推算出試體之柏松比,由尖峰應力可求得最大單壓強度,其試驗結 果如表 4-3 所示。試驗之全應力應變曲線及試體破壞情況見附錄 A

由圖 4-1 人造膠結不良砂岩單壓試驗曲線可以發現,隨著應力的增加時,單壓曲線為一接近線彈性壓縮狀態;而當軸向應力到達尖峰值,此時 試體將產生裂縫而破壞。由試體最後之破壞形態得知,人造膠結不良砂岩 試體大多為軸向劈裂之破壞形態(見附錄 A)。此因材料呈脆性,以及材料 在加載過程中,因為相對於試驗儀器的勁度很低,很快達到張裂的現象。

本批試體之破壞應力介於 1.87~2.31 MPa,破壞軸向應變介於 0.91~1.41%,彈性模數(E)取單壓尖峰強度 50%處之切線斜率,其值介於 145.7~186.2 MPa。從模型相似律中模數比(E/。)的值來比較,本研究之 模數比介於 76.8~86.4,根據 Deere(1967)對於模數比的分類,皆屬於低模 數比(小於 200),且小於本研究施作天然軟砂岩的模數比。

此試驗結果,可將其應力-應變行為加以比較。一般而言,岩石受到壓縮破壞時其過程符合 Goodman (1989)所定義的階段如圖 4-2:

- 1、裂縫密合階段:裂紋與一些紋微孔隙因圍壓作用,產生非彈性凹形向上
 的應力應變曲線。
- 2、線彈性階段:此階段依岩性之不同,而產生軸向應力與軸向應變及軸向
 應力與橫向應變的線性關係。
- 3. 裂縫穩定延伸階段:隨著應力的增加,舊的裂縫沿著軸向方向平行延伸, 而產生新的裂縫。
- 4、裂縫不穩定:裂縫向試體邊緣蔓延,而產生裂縫交互與彼此連接情形。 此時裂縫密度明顯增加而此時即一般所謂之尖峰強度(Peak strength)。
- 5、形成破裂面:此時細微裂縫逐漸連接成為較大的裂縫,進而產生主要的破壞面,即所謂的破裂面(fault)。鋸齒狀的破壞面,在受剪過程中因張力破裂而斷裂,形成一個不同形狀的新鋸齒滑動面。
- 6、破裂面滑移:為破裂面兩側材料相對滑移錯動的階段,也就是殘餘階段的開始。在此階段隨著軸向應變的增加強度並沒有太大的變化,原先的破裂鋸齒部份,則沿著新的破壞面移動,直至將其完全磨碎破裂,當破壞面間鋸齒完全磨平,代表已達殘餘狀態。

單壓試驗結果顯示,對於膠結較差之人造砂岩圖 4-2 有類似一般岩石 的行為,其應力-應變曲線約在軸應變量 0~0.5%前,有一明顯之裂紋閉合 現象,之後試體進入線性階段,隨軸應變量的增加,應力-應變則呈現線性 的行為,彈性模數達最大值。

試體 編號	直徑 D(mm)	長度 L(mm)	L/D	含水量 ω(%)	破壞應變 ε _f (%)	單壓強度 o _c (MPa)	E (MPa)	模數比 E/σ _c	柏松比
NO.1	52.4	141.2	2.69	2.7	1.3	1.98	166.5	84.1	0.24
NO.2	52.5	141.5	2.70	2.6	0.94	1.90	150.1	79	0.22
NO.3	52.6	141.7	2.69	2.3	1.11	2.11	182.3	86.4	0.26
NO.4	52.5	141.4	2.69	1.6	1.24	2.31	186.2	80.6	0.27
NO.5	52.4	141.5	2.70	2.1	1.41	2.25	172.8	76.8	0.25
NO.6	52.6	141.6	2.69	2.1	0.91	1.87	145.7	77.9	0.24

表 4.3 單壓強度試驗結果比較一覽表

圖 4-1 單壓應力應變曲線

圖 4-2 NO.5 單壓應力應變曲線

4.3 等向壓縮試驗

本試驗壓密速率以每分鐘 0.25MPa 應力加載,試驗結果如圖 4-3,有效圍壓由 0.1MPa 加壓到 3MPa,進行等向壓密,此人造軟 岩壓密前孔隙率 n = 28.74%,壓密後孔隙率 n = 23.7%,孔隙率減少 了 5%,體積在壓密過程中減少 7.5%。此試驗結果得知本研究試體 為高壓縮性材料。

圖 4-3 壓密曲線

4.4 三軸壓密不排水試驗

室內三軸壓密不排水為本研究主要之部分,對寶二水庫之鑽心試 體和人造膠結不良砂岩共進行了 22 組試驗,對此地區進行三軸壓密 不排水試驗。由文獻指出,軟岩遇水會有軟弱的現象,故室內試驗應 考慮軟岩此特性,進行試驗時應使用可飽和試體之試驗系統來模擬現 地的情況,本研究人造膠結不良砂岩來施作室內三軸試驗,於每一試 驗完成後再將所擷取到的資料透過繪圖軟體繪製,則可得應力與超額 孔隙水壓對應變關係圖、試體有效應力歷史圖,分別敘述這些試驗結 果如下:

本研究試體所受剪總應力路徑之編號展示於圖 4-4,此試驗路徑 依序編號為 1、2、3。編號 1 角度 71.6°為軸向壓縮(AC),是傳統 三軸試驗,代表的工程意義如基礎的加載之應力條件。編號 2 角度 90°,為受純剪的效應(PS),工程意義如邊坡的滑動面上之應力條 件。編號 3 角度 108.4°,為徑向伸張(LE),工程意義為深開挖造 成側向解壓之應力條件。由上述三個不同路徑代表著不同的應力狀況 進行試驗,繼而探討其力學行為的異同。

表 4-4、4-5、4-6 列舉這些試驗之結果。試體在裝入三軸室後, 用除氣水沖洗透水石然後以 0.98 MPa 之反水壓來飽和試體。由於人 造砂岩為乾燥試體,因此試體在反水壓施加 2~3 天才能得到表 4-4、

4-5、4-6 所示之 B 值,反應試體高度之飽和度,以下將針對三軸試 驗結果進行應力應變行為、孔隙水壓變化、應力軌跡變化、彈性模數 關係、強度準則分別進行討論:

圖 4-4 應力路徑編號

编號	岩樣	γ_d , g/cm^3	試驗前含水量,%	試驗後含水量,%	試驗 方法	B 值	$\sigma_{\scriptscriptstyle ho}^\prime$, MPa	受剪路徑	$\sigma_{\scriptscriptstyle hp}^\prime$, MPa	σ'_{vp} , MPa	$E_{ m max}/\sigma_{ho}'$		
	乾燥人造膠結不良砂岩												
AD1	乾燥人造膠結不良砂岩	1.86	2.1	2.1	CIU		0.1	1	0.1	2.72			
AD2	乾燥人造膠結不良砂岩	1.84	2.7	2.7	CIU		0.1	1	0.1	2.61			
AD3	乾燥人造膠結不良砂岩	1.85	2.1	2.1	CIU		0.2	1	0.2	3.52			
AD4	乾燥人造膠結不良砂岩	1.86	2.6	2.6	CIU		0.2	1	0.2	2.94			
AD5	乾燥人造膠結不良砂岩	1.85	1.6	1.6	CIU		0.39	1	0.39	4.46			
AD6	乾燥人造膠結不良砂岩	1.86	2.3	2.3	CIU		0.39	1	0.39	4.14			
A1	飽和人造膠結不良砂岩	1.83	2.1	19.7	CIU	0.81	0.2	1	0.3	1.51	1720.35		
A8	飽和人造膠結不良砂岩	1.93	1.7	17.1	CIU	0.82	0.98	1	0.87	3.42	630.8		
A5	飽和人造膠結不良砂岩	1.92	2.2	14.15	CIU	0.85	1.96	1	1.51	6.02	481.7		
A2	飽和人造膠結不良砂岩	1.86	2.3	16.12	CIU	0.86	2.94	1	1.63	6.17	595.76		

表 4-4 人造試體傳統之三軸試驗結果

 $arphi_d$ = 乾單位重 σ'_{ho} = 壓密完成時之有效橫向應力 σ'_{vp} = 最大軸差應力時之有效垂直應力 σ'_{hp} = 最大軸差應力時之有效橫向應力

E_{max}= 最大楊氏模數

表 4-5 天然試體傳統之三軸試驗結果

编號	取樣深度,m	γ_d , g/cm ³	試驗前含水量,%	試驗後含水量,%	試驗 方法	B 值	$\sigma_{\scriptscriptstyle ho}^\prime$, MPa	受剪路徑	$\sigma_{\scriptscriptstyle hp}^\prime$, MPa	$\sigma'_{\scriptscriptstyle vp}$, MPa	$E_{ m max}/\sigma_{ho}'$	
寶二水庫鑽心試體												
N1	11.5	1.66	18.9	19.5	CIU	0.91	0.2	1	0.77	3.29	2521.83	
N2	13.6	1.62	17.4	19.0	CIU	0.91	0.2	1	0.3	1.33	1504.32	
N3	2	1.69	13.2	18.7	CIU	0.95	0.2	1	0.51	2.02	1809.89	
N4	6	1.6	14.8	17.6	CIU	0.93	0.49	1	0.62	2.44	1087.33	
N5	26.6	1.6	16.7	18.9	CIU	0.95	1.47	1	1.44	5.23	1311.14	
N6	1.8	1.89	14.5	18.4	CIU	0.98	2.94	1	1.83	5.91	360.97	

 γ_d = 乾單位重 σ'_{ho} = 壓密完成時之有效橫向應力 σ'_{vp} = 最大軸差應力時之有效垂直應力 σ'_{hp} = 最大軸差應力時之有效橫向應力

E_{max}= 最大楊氏模數

编號	岩樣	γ_d , g/cm ³	試驗前含水量,%	試驗後含水量,%	試驗 方法	B 值	$\sigma_{\scriptscriptstyle ho}^\prime$, MPa	受剪路徑	$\sigma_{\scriptscriptstyle hp}^\prime$, MPa	$\sigma'_{\scriptscriptstyle vp}$, MPa	$E_{ m max}/\sigma_{ho}'$		
A2	人造膠結不良砂岩	1.86	2.3	16.1	CIU	0.86	2.94	1	1.63	6.17	595.76		
A3	人造膠結不良砂岩	1.89	3.1	17.3	CIU	0.82	2.94	2	2.89	7.19	266.3		
A4	人造膠結不良砂岩	1.91	3.5	15.6	CIU	0.83	2.94	3	0.59	3.63	273		
A5	人造膠結不良砂岩	1.92	2.2	14.2	CIU	0.85	1.96	1	1.51	6.02	481.7		
A6	人造膠結不良砂岩	1.87	2.1	15.8	CIU	0.9	1.96	2	2.39	5.98	671.7		
A7	人造膠結不良砂岩	1.85	2.0	16.4	CIU	0.83	1.96	3	2.67	5.19	466.3		
A8	人造膠結不良砂岩	1.93	1.7	14.7	CIU	0.82	0.98	1	0.87	3.42	630.8		
A9	人造膠結不良砂岩	1.86	1.8	17.5	CIU	0.86	0.98	2	0.83	3.28	932.6		
A10	人造膠結不良砂岩	1.87	1.9	13.9	CIU	0.83	0.98	3	1.5	3.39	941.4		

表 4-6 不同應力路徑之三軸試驗結果

 γ_d = 乾單位重 σ'_{ho} = 壓密完成時之有效橫向應力 σ'_{vp} = 最大軸差應力時之有效垂直應力 σ'_{hp} = 最大軸差應力時之有效橫向應力

E_{max}= 最大楊氏模數

4.4.1 應力應變行為及孔隙水壓變化

由各組三軸 CU 試驗結果,整理施加不同有效圍壓下之應力應變 關係圖(圖4-5~圖4-11)顯示有效圍壓越高,試體之剪力強度越高, 而剪應力對剪應變曲線也隨有效圍壓增加而逐漸上移。在孔隙水壓的 部分,試驗不允許試體體積變化,但是受剪過程中會有體積壓縮或膨 脹的趨勢,超額孔隙水壓會反應這樣的變化,若是體積有壓縮的趨勢 則會誘發正值超額孔隙水壓,若體積有膨脹的趨勢則會誘發負值超額 孔隙水壓,所以監測孔隙水壓的變化可以瞭解體積變化趨勢,而且可 探討孔隙水壓對剪力強度的影響。

1. 飽和天然試體:

由圖 4-5 可看出隨著有效圍壓的增加應力應變行為有明顯 的變化,軸差應力隨有效圍壓增加而變大,可得知強度跟有效圍 壓之間成正比關係,尖峰應變也有隨著有效圍壓增大而變大的趨 勢。試驗過程量測孔隙水壓變化,顯示受剪初期體積受壓縮,超 額孔隙水壓呈正值,且於應變量 0.5%~1.0%到達尖峰值,可看出 有效圍壓越大激發之超額孔隙水壓越大,之後體積受剪膨脹超額 孔隙水壓漸漸呈負值,尖峰應變也有隨著有效圍壓增大而變大的 趨勢。應力應變行為達穩定值後,超額孔隙水壓也會成一穩定 值,即表示試體達到體積不變,軸差應力不變的狀態。

此行為若以土壤的觀點來看與 Johnston(1993)所界定低圍 壓為過壓密土壤行為,高圍壓下為正常壓密土壤行為一致,且門 檻值為有效圍壓 3MPa。以岩石的觀點可看出,當有效圍壓增大, 由孔隙水壓的變化可以發現,應力應變行為由脆性逐漸轉變為延 展性,轉變應力在有效圍壓 3MPa,與 Goodman(1989)對硬岩進行 試驗,圍壓的增加岩石行為會由脆性行為轉至延展性行為 (brittle-ductile)一致的結果。

2. 飽和人造試體:

由圖 4-6 可看出此人造軟岩應力應變行為與天然試體趨勢 一致。當有效圍壓增大,由孔隙水壓的變化可以發現,應力應變 行為由脆性逐漸轉變為延性,轉變應力一樣是在有效圍壓 3MPa。 孔隙水壓變化,可看出有效圍壓越大激發之超額孔隙水壓越大, 之後體積受剪膨脹超額孔隙水壓漸漸呈負值,尖峰應變也有隨著 有效圍壓增大而變大的趨勢。

由應力應變行為與物性試驗的結果,可顯現出人造試體與天 然試體大致相同。由於人造試體相較天然試體為均勻變異性較 低,為了避免天然試體的異向性,造成試驗的變因,所以接下來 的不同應力路徑試驗,皆由人造試體來進行試驗。

圖 4-7 初始有效圍壓 3MPa, 軸差應力會隨受剪路徑角度變

大而逐漸減小,由此可知應力路徑會影響強度,而孔隙水壓亦有 此現象。圖 4-8 初始有效圍壓 2MPa,應力應變曲線受路徑控制, 其中路徑 3 在受剪的過程中,直接產生負的孔隙水壓,這表示試 體受剪過程中的行為受圍壓減少而直接影響。圖 4-9 初始有效圍 壓 1MPa,從應力應變行為來看,可看到其強度不受不同路徑的 影響,但其孔隙水壓變化依舊隨不同路徑在變化。

3. 乾燥人造試體:

圖 4-10 為乾燥三軸試驗,應力應變行為中,尖峰強度隨圍 壓增加而變大,其破壞行為就像脆性材料,為脆性破壞,破壞應 變量為 1.5~2.5%。圖 4-11 為乾燥與飽和試體的比較,由應力應 變曲線可明顯的看出,乾燥試體為脆性行為,飽和試體為延性行 為。乾燥試體尖峰強度為 3.3MPa,飽和試體尖峰強度為 1MPa, 含水量由 2.1 % 提高至 19.7 %,強度減少 30%,由此結果得知 軟岩遇水軟化,影響強度甚鉅。

大多數岩石,當有效圍壓增加時,岩體弱面逐漸閉合,且弱面的 正向應力也逐漸增加,使弱面對岩體強度折減之效應漸小,岩石的異 向性也會隨有效圍壓增加而降低,使得平均壓力達到使岩石由脆性變 成 性的轉換壓力,岩石的性質完全變成塑性,即應變-硬化 (strain-hardening)的性質。而人造軟岩隨著有效圍壓增加亦有延性之

趨勢。岩石之破壞可由於岩石材料本身或是由本身之弱面來控制,低 圍壓時,岩體的破壞模式可能為軸向劈裂、沿弱面滑動或剪脹鬆散破 壞;在高圍壓時,則常從岩材產生共軛破壞面,而本試驗之材料強度 低,並且其弱面發展並不發達,所以其大多是因為本身之材料強度不 夠而破壞。

圖 4-5 天然試體不同圍壓下應力及超額孔隙水壓與應變關係圖

圖 4-6 人造試體不同圍壓下應力及超額孔隙水壓與應變關係圖

圖 4-7 有效圍壓 3MPa 不同路徑下應力及超額孔隙水壓與應變關係圖

圖 4-8 有效圍壓 2MPa 不同路徑下應力及超額孔隙水壓與應變關係圖

圖 4-9 有效圍壓 1MPa 不同路徑下應力及超額孔隙水壓與應變關係圖

圖 4-10 乾燥試體應力與應變關係圖

圖 4-11 乾燥與飽和試體應力及超額孔隙水壓與應變關係圖

4.4.2 應力軌跡變化

圖 4-12 試驗之總應力軌跡,試驗過程皆按照不同的預定路徑進 行。圖 4-13 試驗之有效應力軌跡,配合本研究小應變及大應變的量 測結果,可有效的將軟岩行為分成四區,由微應變的結果可定出最大 線彈性點 Y1,應變量等於 10⁻²%,所以在 Y1 內為線彈性。由大應變 的量測所得到的應力應變曲線,其應力應變行為在彈性段的尖峰點可 定為初始降伏點 Y2;Y1 與 Y2 間為非線性彈性行為。應力應變行 為在彈塑性段進入塑性段的轉折處可定為尖峰降伏點 Y3;Y2 與 Y3 間為彈塑性行為,Y3 後為塑性行為。圖 4-14 初始有效圍壓 3MPa 下 之有效應力軌跡,圖 4-15 初始有效圍壓 2MPa 下之有效應力軌跡。 圖 4-16 初始有效圍壓 1MPa 下之有效應力軌跡。由此三個圖可得知, Y1、Y2、Y3 會隨有效圍壓增大而擴張變大。

圖 4-17 應力路徑 1 (AC)應力軌跡,以土壤的觀點來看,有效 圍壓 3MPa 行為,為正常壓密土壤,亦為鬆砂行為。有效圍壓 2MPa、 1MPa 行為,為過壓密土壤,亦為緊砂行為。圖 4-18 應力路徑 2 (PS) 應力軌跡,隨著有效圍壓的減少,為過壓密土壤行為更為明確。圖 4-19 應力路徑 3 (LE)應力軌跡。由此三個圖可以得知,隨應力路徑 角度增加,其受剪而膨脹的行為改變更為明顯。

圖 4-13 不同剪應力路徑下有效應力軌跡

圖 4-14 初始有效圍壓 3MPa 下有效應力軌跡

圖 4-15 初始有效圍壓 2MPa 下之有效應力軌跡

圖 4-16 初始有效圍壓 1MPa 下之有效應力軌跡

圖 4-17 應力路徑 1 應力軌跡

圖 4-18 應力路徑 2 應力軌跡

圖 4-19 應力路徑 3 應力軌跡

4.4.3 彈性模數

由文獻回顧得知軟岩在應變量小於 10⁻³%時,變形性是非常線 性、彈性、和應變速率無明顯關係(Burland, 1989),只與壓密應力有 關,此範圍內之試體楊氏模數 (Young's modulus) 稱為 E_{max},而對於 試驗所得不同應變量所對應之軸向應力差,所得之楊氏模數,我們可 定義為切線楊氏模數 E_{sec}(Secant Young's Modulus)。圖 4-20~圖 4-45 表示本系列三軸試驗中在應變量小於 10⁻³%時,試體進行應力調整時 所得之典型應力應變關係,其結果顯示出本研究之軟岩試體在微應變 下有線性之關係,本研究以此決定室內三軸試驗配合剪力波元件求得 E_{max(bender)},並彼此互相驗證以增加準確度。

試驗結果在應變量小於 10⁻³%時所得典型之應力應變關係, 顯示 出軟岩試體在微應變下有線性之關係, 而試驗剪力波元件量測求得 E_{max(bender)},與微應變結果 E_{max}相接近,所以確認楊氏模數的準確度。 本研究試體線彈性與非線性彈性之區隔, Y1 約為應變量等於 10⁻² %。

圖 4-20 為壓密過程中配合剪力波元件求得波速,繼而運算出 E_{max(bender)},圖 4-21 為加壓過程中楊氏模數會隨圍壓增加而增大,圖 4-22 楊氏模數會隨孔隙比變小而增大。圖 4-23 楊氏模數與圍壓對應 孔隙比之關係,由試驗回歸可的到不同孔隙比所對應的楊氏模數和圍 壓,回歸公式為 ln(Y) = 0.71* ln(X) + 6.66,其中 Y 是楊氏模數,X

是有效圍壓。本研究之三軸試驗得到的 Emax 介於 295 至 2000 MPa 之間,彈性模數的大小與施加之有效圍壓大小有關,當試體在壓密階 段試體之微裂縫已閉合得到之小應變彈性模數較高,且彈性模數與應 變關係圖會顯現出軟弱砂岩變形性是非線性,試驗結果得到 Emax/

c 值介於 266 至 2522 之間,數值零散,是因為施加圍壓大小的影響,所以要觀察軟岩之變形性行為應該從小圍壓至大圍壓(至少大於 3MPa)皆討論,特別要考慮試體應裂縫存在造成的影響,若要應用 於工程參數,則應消除裂縫的影響,即在能使試體微裂縫閉合之圍壓 下討論試體之變形性。

圖 4-20 A6 壓密過程中波速量測

圖 4-21 楊氏模數與孔隙比之關係

圖 4-22 楊氏模數與圍壓之關係

圖 4-23 楊氏模數與圍壓對應孔隙比之關係

圖 4-24 N2 小應變下軸差應力對軸應變圖

圖 4-25 N2 楊氏模數隨軸應變之衰減關係

圖 4-26 A1 小應變下軸差應力對軸應變圖

圖 4-27 A1 微應變及楊氏模數與軸應變之關係

圖 4-28 N4 小應變下軸差應力對軸應變圖

圖 4-29 N4 微應變及楊氏模數與軸應變之關係

圖 4-30 A8 小應變下軸差應力對軸應變圖

圖 4-31 A8 微應變及楊氏模數與軸應變之關係

圖 4-33 A9 微應變及楊氏模數與軸應變之關係

圖 4-35 A10 微應變及楊氏模數與軸應變之關係

圖 4-37 N5 微應變及楊氏模數與軸應變之關係

圖 4-38 N6 小應變下軸差應力對軸應變圖

圖 4-39 N6 微應變及楊氏模數與軸應變之關係

圖 4-40 A2 小應變下軸差應力對軸應變圖

圖 4-41 A2 微應變及楊氏模數與軸應變之關係

圖 4-42 A3 小應變下軸差應力對軸應變圖

圖 4-43 A3 微應變及楊氏模數與軸應變之關係

圖 4-44 A4 小應變下軸差應力對軸應變圖

圖 4-45 A4 微應變及楊氏模數與軸應變之關係

4.4.4 破壞強度準則

Mohr-Coulomb 破壞準則以摩擦阻抗觀念及參數 c'、 \u03c9' 來描述材料之破壞強度,在大地材料的應用上相當普遍,本研究三軸試驗進行中亦監測孔隙水壓變化,所以可同時得到總應力強度與有效應力強度,三軸試驗結果繪製有效應力莫耳圓如圖 4-46~圖 4-51 所示。

由圖 4-46 可知天然砂岩之強度參數為凝聚力 c'=0.11 MPa,有效 內摩擦角 \u0399'= 33.13° 圖 4-47 人造砂岩之強度參數為凝聚力 c'= 0.1 MPa,有效內摩擦角 \u0399'= 34.56°。由此結果得知人造試體與天然試體 在強度上非常吻合,所以用人造試體來模擬天然試體是可行的。

圖 4-48 人造乾燥砂岩之強度參數為凝聚力 c = 0.46 MPa,內摩擦 角 = 45.12°,可知軟岩遇水軟化強度影響大。凝聚力減少 0.36 MPa, 內摩擦角減少了 10.56°。

圖 4-49~圖 4-51 不同應力路徑配合不同圍壓之強度變化,由此 結果得知路徑 1(AC)凝聚力 c'=0.53 MPa,有效內摩擦角 ø'=22.47°, 路徑 2(PS)凝聚力 c'=0.62 MPa,有效內摩擦角 ø'=17.47°,路徑 3 (LE)凝聚力 c'=0.1MPa,有效內摩擦角 ø'=17.10°。此結果可清楚 的知道依工程性質的不同,所考慮的強度參數亦要隨之改變,否則容 易造成分析上的錯估。路徑 1 與路徑 2 明顯的差異為內摩擦角的減 少,路徑 2 與路徑 3 明顯的差異為 c'的減少。

圖 4-46 天然鑽心試體有效應力莫耳圓

圖 4-47 人造飽和試體有效應力莫耳圓

圖 4-48 乾燥試體莫耳圓

圖 4-49 應力路徑 1 人造飽和試體有效應力莫耳圓

圖 4-50 應力路徑 2 人造飽和試體有效應力莫耳圓

圖 4-51 應力路徑 3 人造飽和試體有效應力莫耳圓

4.5 軟弱岩石之屈服模式

本節之分析主要應用王慧蓉(2001)所發展之軟岩降伏模式,詳 細模式內容可參考其論文。其所採用之模式以漸進降伏面模式為架 構,假設軟岩的硬化行為為均向及運動硬化,而軟岩的降伏逐漸發 生,假設模式為非線性彈性,材料變形性E值直接隨著s(降伏比) 增大而減小,即E = f(s),另外,由於軟岩的特性介於土壤與岩石之 間,故岩石所特有的裂隙閉合段亦考慮至此兩模式中,利用此模式模 擬三軸試驗可考慮應力歷史效應之影響。

其所建立之模式,主要考量 E 值在非線性彈性模式中非為定值, 在其模式中,假設 E 隨著降伏比 s 增大而減小,變形模數需遵循以下 關係:

 $E = E_1 = E_v (1 - s^{\gamma_1}) [\beta_0 + (1 - \beta_o) s_2^{\gamma_2}]$

為進一步描述裂隙閉合段之應力應變行為,當假設當 $\sigma_{oct} < p_1$ 時, E_v 為平均正向應力之函數, p_c 為裂隙達到完全閉合之平均正向應力

$$E_v = E_A + (E_B - E_A) (\frac{\sigma_{oct}}{p_c})^{\gamma_3} \text{ for } \sigma_{oct} < p_c$$

以上模式結合一套二向度有限元素分析程式,進行三軸壓縮試驗 之模擬。對於材料參數之標定,本文採最佳化方法,將標定材料參數 視為一個逆問題,引用基因演算來處理求解。

三軸試驗所用之試體為 NX 尺寸, 試體長徑比大於 2。 在三軸實 驗之數值模擬中,將長 14 公分,直徑 5.2 公分之試體,依據軸對稱 切割,因為假設在三軸試驗中,試體內之應力與應變均為均勻分佈, 因此僅需用單一元素即足可模擬材料力學行為。圖 4-52 為模擬三軸 試驗有限元素模擬網格圖。點2與點4為滾支承,點3為鉸支承,以 此模擬三軸試驗試體之四分之一。由不同圍壓的三軸試驗結果可獲得 一組。與 @ 值, 但室內實驗所用的試樣可能為受擾動之土樣, 因此 亦可將其視為未知參數而與其他待定參數一起被率定。待定參數中, E4與 E4兩個參數用於描述加載初期裂隙閉合階段之應力-應變行為, 可由室內試驗結果之應力-應變曲線中的裂隙閉合段率定之。若應力-應變曲線中無裂縫閉合段,則無 E4、EB及 P6等三個參數:若不需描述 卸載-復載段之應力-應變行為,也不需用到兆與為兩個參數。 本研究所選用之三軸試驗數據沒有卸載-復載段,故待定參數中無描 述卸載-復載的相關參數,其數值模擬結果與室內試驗結果之相似性 相當高。圖 4-53 為有效圍壓 3MPa 下,不同剪應力路徑模擬之結果,

由結果得知,其相似性相當地高。圖 4-54 為有效圍壓 2MPa,圖 4-55 為有效圍壓 1MPa,亦可得知此彈塑性模式三軸試驗結果與模擬結果, 模擬結果使用基因演算之最佳化方法找出的一組最佳參數並用以推

算應力-應變曲線,並將其與室內實驗的應力-應變曲線相比較,試體 模擬結果大致與試驗結果相當。

圖 4-52 三軸試驗之有限元素模擬網格圖

圖 4-53 有效圍壓 3MPa 不同應力路徑下之有限元素模擬圖

圖 4-54 有效圍壓 2MPa 不同應力路徑下之有限元素模擬圖

圖 4-55 有效圍壓 1MPa 不同應力路徑下之有限元素模擬圖