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Abstract

In this thesis, single charge de-trapping-induced threshold voltage shift (4vy) and
single charge de-trapping time (z) are extracted to analyze the characteristic of the
threshold voltage (AVy,) dispersion in NBTI recovery.

Activation energy (Ej;) and trap energy (Et) distributions are investigated to
simulate de-trapping time (z) dispersion during negative bias temperature instability
(NBTI) recovery. Furthermore, single charge de-trapping induced Avy, dispersion is
investigated during NBTI recovery. A statistical model combining the trapped charge

emission model with the two dispersions is developed. According to the



characterization of the single charge phenomenon, we proposed a Monte Carlo

simulation to simulate the NBTI recovery threshold voltage dispersion. Our model

can fit the measured AVy, dispersion during NBTI recovery very well.
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Chapter 1

Introduction

For downscaling metal-oxide-semiconductor field-effect-transistor (MOSFET)
devices, thickness of gate dielectric is required to be smaller in the progressive
technology node. Below the physical thickness of 16 A, the gate leakage current
exceeds the specifications (1 A/cm) [1]. Recently, the high permittivity (high-k)
dielectrics have been proposed to solve this problem due to its higher physical
thickness while keeping the same EOT [2]. Although significant reductions in the gate
leakage have been achieved, two major issues remain for CMOS circuit applications:
1) the high threshold voltages [3] and 2) polysilicon (poly-Si) depletion. Consequently,
sub-45nm CMOS technology scaling will likely utilize high-ik/metal gate stacks. And
the SiO, interfacial layer offers better device performance and quality of the oxide/Si

interface than high-x dielectrics directly placed on the Si substrate.

A high-k/metal gate stack is required for scaled MOSFETS, but one of its most
serious problems is in Vg, control. The BTI degradation of high-i/metal gate devices
can be seen to be much more severe. NBTI is nowadays the most critical device
degradation mechanism and became a limiting factor in scaling of modern CMOS
technologies (Fig.1.1) [4]. PMOS Negative Bias Temperature Instability (NBTI)
degrades threshold voltage and drive current, raising an important concern for analog
and digital circuits. However, NBTI recovery is an important consideration
particularly for typical CMOS operation where applied gate bias switches between

“high” and “low” voltages repeatedly [5]. Trapped charge would emit when the



applied gate bias is “low” voltage which is known as the recovery mode. The NBTI
recovery phenomenon leads to a fast reduction of the stress induced electrical device
parameter degradation after end of stress. The NBTI recovery phenomenon endangers
proper lifetime estimation. In the past, many experimental and theoretical attempts
have been made in order to explain the logarithm time dependence of Vi, recovery
over many decades of time (Fig. 1.2). From these studies, two main NBTI

mechanisms have emerged [6]-[9].

In Chapter 2, stair-like drain current traces are observed in the small size devices
during NBTI Recovery [10]-[12]. In the recovery phase, the tapped charges emit from
the high-k layer by thermal assisted tunneling. Single charge de-trapping induced Avy,

amplitude and its de-trapping time are extracted from the measurement data.

In Chapter 3, it is found that the de-trapping time (z,) distributions are
Gaussian-like distributions. E distribution can be extracted from the de-trapping time
distributions. We assume that the trap energy distribution is uniform. Based on the
distributions of E, and Er, we simulate the de-trapping time distributions. The
de-trapping time distributions are related to the fluctuation of de-trapping hole
number. According to the probability distribution of Avy, each single charge
de-trapping induced Avy, amplitude is simulated. Consequently, staircase-like AVy,
trace during NBTI recovery can be demonstrated a by Monte Carlo simulation. The
mean and variance of AVy, are acquired during NBTI recovery. We also derive the

AV, distribution by closed form method. Finally, we give a conclusion in Chapter 4.
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Fig. 1.1 NBTI/PBTI induced Vi, drift versus stress time in high-k/metal gate

MOSFETs [4].
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Chapter 2
Single Charge Effect in NBTI Recovery

2.1 Preface

It is commonly accepted that mechanism of BTI is due to charge trapping in the
high-« layer [13]. BTI is characterized by stressing transistor at high temperature and
electric field, periodically interrupting the stress to monitor threshold voltage or drain
current (“SMS” technique). The other way to investigate BT effect is to measure

post-stress recovery behavior [14].

To identify the charge de-trapping mechanism, a direct measurement of single
charge effect is demonstrated, in which the stair-like threshold voltage trace is
measured. The Avy, probability distribution is found by extracting the threshold
voltage amplitude caused by single charge emission. We also extract single charge
de-trapping time, and it is found that the first three individual de-trapping time
distribution are Gaussian-like distributions. The occurrence of total de-trapping time
distribution is a uniform distribution. According to the tunneling front model, this

implies the trap is a uniform distribution in high-k layer spatially.

2.2 Device Details and Measurement setup

The device structure we used in this thesis is illustrated in Fig. 2.1. The devices
are pMOSFETSs with a metal gate (TiN) and a bi-layer gate dielectric stack consisting
of HfFON and interfacial SION layer (IL). The gate length and width are 30nm and

80nm respectively. Its equivalent oxide thickness (EOT) is 7.8 A .



The Measurement setup is shown in Fig. 2.2. A two channel Agilent B1500 pulse
generator connects to drain and gate electrode and it changes the gate bias and drain
bias simultaneously. The pulse waveform is shown in Fig. 2.3(a). First, we measure
the devices initial state to extract fresh Vi @14=500nA. Then, the devices are
subjected to a negative gate bias (Vg=-1.8V) stress during 100s, and recover at fresh
Vi during 1000s. In the recovery phase, the trapping holes will emit by thermally

assisted tunneling (TAT), as shown in Fig. 2.3(b).

2.3 Avy, Probability Distribution in NBT1 Recovery

The recovery AVy, exhibits a stair-like trace, as.shown in Fig. 2.4. Each jump in
Fig. 2.4 is believed due to a single trapped hole emission from the high-« layer. The
Avy, amplitude is extracted, as shown in Fig. 2.4. The probability distribution of Avy,

amplitude exhibits an exponential function.

1 AV
f(Avy) :gexpﬂ—fj Eq. (2.1)

The cumulative probability distribution, as illustrated in Fig. 2.5, can be

expressed below,

f (Avth)zexp[—%j Eq. (2.2)

The Avy, distribution is attributed to a current path percolation effect due to
random dopants in substrate (Fig. 2.6) [15]. According to the Eq. (2.2), the slope of
the distribution is -1/c, as shown in Fig. 2.5. The physical meaning of ¢ is the average
Avy, induced by single charge de-trapping. Average of each stair-like AVy, trace is

6



shown in Fig. 2.7. The AVy, versus recovery time follows logarithmic dependence [8],

[16]. This phenomenon is observed in bigger-size devices.

2.4 Single Charge De-trapping Time Distribution

We measure the emission times of the first de-trapping hole (z;1), the second
de-trapping hole (z;) and the third de-trapping hole (zz3), respectively (Fig. 2.4). The
first three individual de-trapping time distributions (z, %, and zg) are shown in Fig.
2.8. It is found that each de-trapping time distribution is a Gaussian-like distribution

and their z; and o; are shown in Table I.

] Eq. (2.3)

—(] N /)2
flog(e, ) = ——expl (10g(z.,) —14)

2
7o, 20,

The de-trapping time (z, ) distribution broadens with-an increasing the index i
The occurrence of total z distribution, as shown in Fig. 2.9, is a uniform distribution.
According to the tunneling front-model, the traps in the high-k are uniform

distribution in gate-to-substrate direction.

7, oc eXp(arX) Eq. (2.4)

2.5 AVy, versus Number of De-trapping Hole in NBTI

Recovery

AVy, distribution is measured at different recovery times. The total AVy, and

number of de-trapping hole is extracted. The measurement results at the recovery time



of 0.1(s), 10(s), and 1000(s) are shown in Fig. 2.10. Each data point represents a
device. The slope of straight line is the average of single hole de-trapping induced
AV, As shown in Fig. 2.10., distributions of the de-trapping hole number and AVy,

broaden with an increasing recovery time.
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Fig. 2.1 In this thesis, we characterize NBTI recovery in high-k/metal gate

PMOSFETSs with gate length of 30nm and gate width of 80nm.
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Chapter 3
Simulation of AV, Dispersion during NBTI
Recovery

3.1 Preface

Physical origins of AVy, distribution during NBTI recovery in pMOSFETSs are
explored and characterized. Two factors are found to affect a NBTI AVy, distribution.
One is the dispersion of single charge de-trapping induced Avg,. The other one is the
dispersion of de-trapping time. In the previous chapter, it is found that the first three
individual de-trapping time distributions are Gaussian-like distributions. We attribute
de-trapping time distribution to activation energy (Es) and trap energy (Et)
distribution in the trapped charge emission model [10]. A statistical model combining
the trapped charge emission model with the two dispersions is developed. Our
simulation result fits the measured AVy, dispersion-during NBTI recovery very well.
Furthermore, we derive the AVy, dispersion using closed form method, and its result

fit the measured data very well.

3.2 Extraction E, from z; Distributions

Single charge phenomenon is measured in the previous chapter. The individual
de-trapping time distribution is a Gaussian-like distribution. From the measured 7z
distributions, E, is extracted using trapped charge emission model. The formula of

trapped charge emission model is expressed below,

E
Tei =70 exp(ﬁ) exp(e, T, ) exp(a, X) Eq. (3.1)

20



where

7, =[N, @~ f,)oV, 1" Eq. (3.1-a)
2o q(E +4) . 2J2mqE
L= 7 . T Eqg. (3.1-b)

m; *=0.41mg [17] ; m* =0.18m, [18]

Eq. (3.1) reveals the nature of tunneling for trapped hole emission time, z ;. Ny is
the effective density-of-state in the Si valence band, and N,(1-f,) is the amount of
available states in Si substrate for out-tunneling holes from high-k traps. o, represents
the trap cross-section. Other variables have their usual definitions [10]. Energy band
diagram is shown in Fig..3.1. Our estimation is that the trap energy range is about
0.8eV by a 1-D Poisson simulation. Ey ranges between 0-and 0.8 eV from the Si
valence band. In the formula definition, Er ranges between 2.7 and 3.5 eV in our

devices.

The flow of E, extraction is shown in Fig. 3.2. First, we generate z; from the
measurement data randomly, and we also generate x; randomly. E1 is generated by a
uniform distribution. As a result, E, distributions can be calculated, as shown in Fig.
3.3. These Ej, distributions are almost the same, and its standard deviation of E, (c(Ea,))

is shown in Table Il. The extracted E, distributions are Gaussian-like distributions.

21



3.3 Monte Carlo Simulation of AV, Distribution

A Monte Carlo simulation employing the trapped charge emission model and
taking account the E, and Er distributions is developed to simulate a AVy, distribution
and its recovery time evolution. Simulation flow is shown in Fig. 3.4. First, we
assume Er is a uniform distribution, and Ea is extracted from z; distributions. A
statistical model combining the trapped charge emission model with the E, and Er
distribution is developed. For reproducing the de-trapping time distribution, we would
calculate its average (peak) value first. As illustrated in Fig. 2.8, the trap is a uniform
distribution in gate-to-substrate direction. z4 of each de-trapping time distribution is
shown in Table I. It is found that z,,;, — &, equal about 1. The mean value of Er («(Ey) )

equals to 3.1eV. As expressed in Eg. (3.2), we can get the (Xj+1-A4x;). Its value is about

3A.

T AR I o s Eq. (3.2)

Iog(TH-l/Ti) = In(10) 7

MC simulation result is illustrated in Fig. 3.5. Its value is shown in Table IlI.
Simulation result of total z distribution is shown in Fig. 3.6. They all fit the

experimental data well.

In our Monte Carlo simulation, an E, is randomly selected according to extracted
Ea and Er according to a uniform distribution. The single hole de-trapping induced
Avy, dispersion and its de-trapping time distribution are characterized. Consequently,
we can demonstrate the stair-like AVy, trace during NBTI recovery by MC simulation,
as shown in Fig. 3.7. The slope of the dash line corresponds to an average AV, caused

22



by a trapped hole emission. Fig. 3.8 shows probability distribution of NBTI recovery
induced AVy, at 0.1s, 10s, and 1000s from measurement and Monte Carlo simulation.
The AVy, distribution broadens with an increasing recovery time. The simulation
results fit the measurement date well, especially in distribution tail. We extract the
mean value and the variance of the AVy, distribution at different recovery times. The
mean value of the AVy, follows a logarithm dependence on recovery time in five
decades (Fig. 3.9). The variance of the AVy, distribution also increases with recovery
time (Fig. 3.10). We can’t simulate the AVy, distribution and its recovery time
evolution exactly when we use the fixed E; and Er (Percolation Effect). Taking
account the E, and Er distributions is essential to character the AVy, distribution

during NBTI recovery.

3.4 Closed Form Derivation

In this section, we use another method to derive the AVy, distribution during
NBTI recovery. Flow chart isshown.in Fig. 3.11. E, is a Gaussian distribution with

1=0.2(eV) and 6=0.08(eV). The probability of E, is expressed below,

(B, —p)°

1 _
ex
N2rno Pl 20

f(E,) = ] Eq. (3.4)

Er is a uniform distribution, and it ranges between 2.7 and 3.5 (eV).

f (E;) =const. Eg. (3.5)

Taking the probability of E; and Et into Eq. (3.6), we can get the probability
distribution of individual de-trapping time (z m).

23



z-e, m (Ea’ ET ! Xm) = TO eXp(kE—_F) eXp(OCILTIL) exp(ak Xm) Eq' (3'6)

With the SRH model, as expressed in Eq. (3.7), we derive the probability
distribution of individual de-trapping time (zm*).
*

(5, ) = ——eXp(-220) Eq. (3.7)

e,m e,m

Then, we would calculate the de-trapping probability of each z,* at different
recovery time. P(Ay) stands for de-trapping probability of m-th de-trapping hole at a

certain recovery time(t).

P(A) = [ f(z,%) dr* Eq. (3.8)

—00

P(Bm) stands for the absence of the m-th de-trapping hole, can be expressed below,

P(B.)=1-P(A ) Eq. (3.9)

The probability of total amount of m de-trapping holes at a recovery time (t) can

be expressed below,

P(Num.=0)=P, =P(B,) *P(B,) *P(B,) *...xP(B,) =P(ﬁ B,) Ea (310

m=1

24



P(Num.=1) = P, = P(AL)* P(B2) *P(B3)*---+ P(BL) * P(A2) * P(B3)*- -+ -

! P(ﬂB )
:iZl: P(B) *P(A) Eq. (3.11)
w P18
P(Num.=2)=P, = I;W*P(A)P(A) Eq. (3.12)
w P18
P(Num.=3) = ,Zk: S E)PEIPE] +P(A)P(A)P(A) Eq. (3.13)
(> j>i)
And so on.

M is the maximum de-trapping number of our measured devices.

As aforementioned, the trap number distribution is calculated and its average and
variance are shown in Table IV. ux and oa are 3.28 (mV). ua is the value we measure
in Fig. 2.5. Consequently, we can derive the mean and variance of AVy, at different

recovery time, as expressed below,

anxiz

o’ =i=;——y2 Eq. (3.14)
Xi2 Mo+
of TRyt D X7 =1, (07 +41) Eq. (3.15)
L i=ng+
No+Ny+Ny
Xi2 Ny -+ +n.
G;=i:“o+;_+1_ﬂ§ —) Zr)h 1xi2=nz(0§+u§) Eq. (3.16)
H i=ng+n +
And so on.
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N No+My No+Ny+Ny

> x? PR AR S A

Gtital = i:1N _:utital ==X Izlii — _lutital
N, (o2 +2)+n, (G2 +u2)+n, (o2 +u2)+...
— 1( 1 ﬂl) 2( 2N/U2) 3( 3 /13) _(Pllvﬁ"'Pzﬂz"'-""'PMﬂM)z
i 2,2 - 2
=) P(o +1) - () Pu)
i=1 .2_1: Eqg. (3.17)
M
Lo = Pty + oty + ..+ By iy :Z Py Eq. (3.18)
i-1

n;

where N=nj+n+n,+n,+--- Pi:W, i=0,1,2,3...

M is the maximum de-trapping number of our measured devices.

The closed form and Monte Carlo simulation result is shown in Fig. 3.12. The

mean and variance of AV, fit the results of Monte Carlo simulation very well.
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I T N T

cof E,(eV) 0.078 0084  0.082

Table Il o of extracted E; from .1, %2, and z 3.
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AN ETEECE
Experiment -1.019  0.036 1.064
MC Simulation  -0.982  0.029  1.035

R TEECEETE
Experiment 1.070 1.181 1.285
MC Simulation 1.098 1.146 1.196

Table Il ¢ and o of the first three de-trapping time distribution from measurement

and Monte Carlo simulation.
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Hi= Ha Po=2H, | Ma=3py | b= My
012= GA2 0_22 2= 30‘A2 ...... GMZZ MGA2
Pl """ PM

-trapping hole number.

Table IV 4,
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Chapter 4

Conclusion

Single charge emission from traps in the high-k gate dielectric is observed in
small-size devices. Physics of single charge de-trapping induced AVy, in NBTI
recovery is characterizing in this work. Two factors are found to affect a NBTI AVy,
distribution. One is the dispersion of single charge de-trapping induced Avy,. The other
one is the dispersion of de-trapping time. The cumulative probability distribution of
Avy, amplitude follows the exponential distribution. The individual de-trapping time
has Gaussian-like distribution. The occurrence distribution of total de-trapping time is
a uniform distribution, which implies the trap is a uniform distribution in high-x layer

spatially.

From the measured 7z distributions, E; is extracted using trapped charge
emission model. The extracted E, is a Gaussian-like distribution. According to the
Avy, amplitude distribution and the de-trapping time obtained from the experiment, a
Monte Carlo simulation employing the trapped charge emission model and taking
account the E, and Er distributions is developed to simulate a AVy, distribution and its
recovery time evolution. We extract the mean value and the variance of the AV
distribution at different recovery times. The mean value of the AVy follows a
logarithm dependence on recovery time. The AVy, distribution broadens with an
increasing recovery time. Furthermore, we also calculate the mean value and the
variance of the AVy, distribution at different recovery times using closed form method.

These two simulation results fit the experimental data well.
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