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The Random Trap Induced Fluctuations of Bulk Tri-gate
Devices by a New Trap Profiling Technique

Student : Han-Min Tsai Advisor : Dr. Steve S. Chung

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

As device channel length continues to scale beyond 100nm, we need to overcome many
problems such as short channel.effect, performance enhancement, and leakage current. So far,
the major challenges have been overcome by difference technologies. For example, the
short channel effect is solved by ultrathin junction depth and strained silicon device is used to
enhance the electrical performance. While the variation properties induced by the discrete
dopants and traps induce the fluctuation of electronics properties significantly in the channel

which lead to the mismatches of threshold voltage (V1) and driving current.

In this thesis, we proposed a new mechanism, called Random Trap Fluctuation (RTF),
which was considered to be another important issue for the device after the long term stress. It
varies with the device after the stress, e.g.,, Hot Carrier Stress (HC) or Negative Bias
Temperature Instability (NBTI). Also, it was observed that RTF is the major fluctuation
source after the stress. But, the understanding of the actual mechanisms and phenomena of
oxide (or interface) traps induced Vi, fluctuation has been very difficult and rare has been
reported so far. In this thesis, we developed a newly technique, called Random Trap

Profiling (RTP), to profile the stress-induced traps. Compared to the conventional lateral



profiling technique, Charge-pumping Profiling, RTP shows its advantages for applications to
single and very small devices and very suitable for ultra-scaled 3D devices, such as FInFET or

Trigate.

In this thesis, we used this new random trap profiling technique to identify the oxide
trap position after the stress for a 28nm single-fin bulk trigate device and examine the
physical mechanisms. As a consequence, several salient results can be drawn: (1) we
successfully separated the fluctuation source from the discrete dopant and the source from the
random traps after the stress. (2) Two stress schemes, HC and NBT]I, have been utilized to
examine the trigate nMOS devices and trigate pMOS devices respectively. For trigate nMOS
devices, the oxide traps are generated near the drain side after hot carrier (HC) stress; but for
triage pMOS devices, they are generated more inthe middle of the channel after the NBTI
stress. More importantly, (3) it has been found the reliability killer of advanced trigate devices
should be the surface roughness on the side-wall and corner effect induced random traps
either under the HC or NBTI stress, and the latter dominates the degradation of bulk trigate
devices. These results will be helpful.and valuable for. the design of the next generation bulk

trigate CMOS devices beyond 20nm generation.
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Chapter 1
Introduction

1.1 Background

As the scaling of bulk CMOS devices reaches the physical limit, multi-gate device, or
FinFET-like transistor structures, emerges as a promising candidate to extend its further
scaling owing to its superior integration, higher subthreshold slope, reduced leakage, and
immunity to the RDF (Random-Dopant Fluctuation) [1.1] by using the lightly-doped or
undoped silicon fin. For ultra-low-power applications such as portable devices, implanted
medical instruments, and wireless body sensing networks, operating at below threshold
voltage is an effective solution [1.2] to reduce both static and dynamic power consumptions.
Moreover, FINFET devices present the following advantages: (1) shallow trench isolation is
not needed and (2) the device DIBL or short channel effect can be effectively improved as a
result of the increasing gate controllability upon the channel region in the ultra-thin silicon
body of Si-fin.

In reported studies, several reliability issues for FINFET have been identified, e.g.,
threshold voltage instability [1.3], stress induced film degradation [1.4], and corner effects
[1.5]. Among them, threshold voltage instability is due to the dynamics of carriers
charging/discharging in oxide traps such as negative bias temperature instability (NBTI) in

pMOS devices or hot carrier effect (HCE) in nMOS devices.

1.2 The Motivation of This Work
Since CMOS technology has reached 20 nm node at this time, further scaling to below
20 nm and even beyond has been widely acknowledged as encountering many new challenges

and in particular with regard to Vy, variation issues. Recent study [1.6] revealed that random



dopant fluctuation (RDF) is the major source of Vy, variation in scaled bulk CMOS. To
improve the RDF, FDSOI or FinFET with undoped (lighter) channel [1.7-1.9], has been

proposed subsequently to reduce the variability effectively.

Also, recent developments [1.10] in CMOS technology have highlighted the need in
using the 3D technique as a method to extend the scaling of CMOS device for high speed and
low power logic applications. Several approaches among them, such as tri-gate devices,
double-gate devices, and FinFETSs, along with lightly-doped or undoped silicon fin technology,
have been utilized to improve the device performance. However, so far, the sources and the
mechanisms of Vy, variation have not been experimentally clarified on trigate devices. As a

consequence, we are interested in understanding the variability of trigate devices.

For the first time, in this thesis, we apply a new measurement method to observe the Vth
variation in various n-MOS devices and p-MOS devices employing different channel area
bulk trigate devices. The impact of the 3D device on the device reliability and variability will

be investigated and compared.

1.3 Organization of the Thesis

There are five parts in this thesis. Chapter 1 is the introduction. In Chapter 2, we describe
the experimental setup and the method of Methodology of Random Trap Profiling Technique
(RTP). In Chapter 3, the variability study based on the Vy, variation and the stress-induced
interface traps on n-MOS devices will be examined. On the other hand, using similar analysis,
we will discuss the variability of trigate p-MOS devices. In Chapter 4, we will discuss the
corner effect and sidewall surface roughness effect. Finally, the summary and conclusion will

be given in Chapter 5.



Chapter 2

Experimental Setup and Vy, Variation

2.1 Introduction

As devices are scaled to the nanoscale dimension, it is important to understand random
fluctuations. Since there are many possible microscopic causes, it is desirable to understand the
mechanism of variability. Therefore, electrical measurement of random fluctuations is a useful
technique to observe such microscopic effects. It is necessary to collect a lot of data of standard
deviation values for various kinds of transistors fabricated by different process conditions. If
such data is properly compared and analyzed, it may become possible to extract quantitative
information about random fluctuations. Based on this consideration, a simple normalization
method for comparing standard-deviation values of random threshold voltage fluctuations was
proposed. The method was used.to.compare devices with various origins and to analyze the

causes of random fluctuations [2.1].

This chapter is divided into two sections. First, we will illustrate the fundamental
experimental setup to characterize CMQOS devices. Second, the method of Random Trap
Profiling Technique (RTP) used in this thesis will be introduced, and its fundamental theory

will be described in detail.



2.2 Experimental Setup

The experimental setup for the current-voltage measurement of devices is illustrated in
Fig. 2.1. Based on the PC controlled instrument environment by HP-IB (GP-1B, IEEE-488
Standard) interface, the complicated and long-term characterization procedures during
analyzing the behaviors in MOS devices can be easily achieved. As shown in Fig. 2.1, the
equipment, including the semiconductor parameter analyzer (HP 4156C), low leakage switch
mainframe (HP E5250A), dual channel pulse generator (HP 8110A), cascade guarded thermal
probe station and a thermal controller, provides an adequate capability for measuring the device
characteristics. In addition, programs written by HT-Basic were used to execute the

measurement via HP-1B interface.

2.3 Methodology of Random:Trap Profiling Technique (RTP)

First of all, the amount of increased traps (AN;;).can be extracted by standard deviation of
Vi, We know that the interface trap is the principal cause of the Vg, shift if traps are

distributed discretely in the oxide,

q
= Vinfresh T Vinsnit = Vi fresn T Dyap 1)

C

V,

th, stress
ox

where Vinsress 1S the threshold voltage after the stress by hot carrier or negative bias
temperature instability test. Vinfresh and Vinshist are the virgin threshold voltage and the shift

threshold voltage, respectively. Dyqp is the interface trap density. Also,

thh,shift - \/GVZth,StreSS - c5V2th, fresh @)

the standard deviation of Vy, shift is obtained by the standard deviation of Vi stress (6Vih stress)



and the result can be presented as the summation of the delta function of the trap density from

the surface to the depletion region by a delta function, i.e.,

Wdep
q q J. Ntrap (X) dX
Ny st =0 (C_ox Dtrap) = C. ° LW (3)
fp AN trap (X)S(X - Xtrap)dx

=2 @)

C,. LW
— q Z:ANtrap (Xtrap)

Cox LeffW (5)
_ q ANtrap

Cox Leff l (6)

From the above equations, we can gbtain the interface trap density,

AN

trap

C
= Leg (% G\/th,shift)z (#/cm?). (7)

Since RTF above the channel-barrier peak dominates Vy, variation after stress, the delta
trap density can be profiled along the ‘channel as the peak shifted by varying the
source-to-drain bias, V. The principle of the measurement method is to locate the channel
barrier peak position by varying the drain bias based on a quasi-2D Vi, model (Fig. 2.2).
Because DIBL is proportional to the peak position which can be calculated by an analytic
form [2.2] (Fig. 2.3), the peak position can be determine ed by the measured DIBL while the

channel barrier was approximated as the second degree curve (Fig. 2.4), i.e.,

Yy~ Yo _ DIBL
(Ler —AD2 (Vi -V,

,max)

(8)

Here, L is the effective channel length, Vs maxis the barrier height of long channel, and Vy;is



the junction barrier of the source and channel. The subthreshold swing can be expressed as

SS. = (“(c:ﬂ) < 60mV/ [2.3] ©)

OoX

where C,y is the oxide capacitance, and Cyn, is the depletion-layer capacitance given by

— Qdep
Y/

Cq (10)

the depletion capacitance is proportional to the channel length, because Qgep=0nLW. Then, we

can derive the following:

L,-AL C, _ S.S.—60mV

LEff Cdm,O SSO - 60mV ’ (11)
from which the horizontal position along the channel is given by:
1 1 DIBL S.S.-60mV
Ypeak = [_ - X ] X Leff . (12)
2 2 (Vbi - Vs,max) SSO \ 60mV

In the measurement method, the parameters were extracted experimentally. Les can be
extracted by the charge pumping technique that our group developed in [2.4]. By applying
continuous incremental pulses at the gate, the charge pumping current (lcp) is induced, then
the Ic, will be proportional to the shape of the local V. Thus, the channel barrier height,
Vsmax, Can be found. Vy,; can be determined from Vy, by varying Vs, and the extrapolated

value as the gate length vanishes will determine the value of Vy;.



g88 o

o

Thermal-Controller

HP 8110A
Pulse Generator

7 B8R
—a , [=) [—1| Eﬁ
Cascade Guarded Thermal Switch Matrix  Parameter Analyzer
Probe Station HP 5250A HP 4156

Fig. 2.1 The experimental setup for the current-voltage measurement of MOS devices.
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Fig. 2.2 By varying the Vgp, the barrier peak can be found from the DIBL since as Vsp
increases, the barrier peak will be shifted toward the drain such that the delta trap

density can be profiled along the channel.
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Fig. 2.3 It was found that the DIBL shift is well matched with the position of channel

barrier peak calculated by the analytical model.



Fig. 2.4 Anew model is to approximate the channel barrier as a second degree curve, in which

the peak position can be determined by the DIBL.

10



Chapter 3

Spatial Distribution of Traps in Bulk Trigate Devices
After Long Term Stress

3.1 Introduction

Bulk trigate devices might be the mainstream CMOS architecture beyond 20nm owing to
good short channel effect and low Vy, variation [3.1]. But, the reliabilities are rarely discussed,
and the discussion on the mechanism of degradation of such devices after the stress was very
few. Doping and trap induce significant characteristic fluctuations [3.2] randomly in
nanometer scale metal-oxide-semiconductor field effect transistors (MOS devices). The oxide
trap spatial spectrum is the key to understand the -mechanisms of degradation. Due to the
ultra-scaled active region and multi-fin layout for trigate devices, we face the challenges to
identify the oxide trap positions after the stress by the matured techniques, such as charge
pumping technique [3.3], which is limited by small area devices. Since the order of the
measured Icp is close to the background leakage, a new method should be urgently required.
From reported results, it was found that V, variation is dominated by discrete dopants at the
channel barrier peak, known as random dopant fluctuation (RDF). Furthermore, if oxide traps
are present above the channel barrier peak, another effect, called random trap fluctuation
(RTF) [3.4], will be involved in the Vy, variation Fig. 3.1. Therefore, the main idea of random
trap profiling technique is to measure Vy, variation after the stress to identify the amount and
position of traps in bulk tri-gate devices which will then be extended to understand the

physical mechanism associated with the fin-height.

3.2 Device Preparation

Advanced poly-Si gate bulk planar and trigate CMOS devices, with SiON insulator, were
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fabricated [3.5]. The bulk CMOS process, using the front-end-of-line steps outlined in Fig.
3.2. After the conventional STI process, good formation, and V+t-adjust ion implantation, the
STI oxide was slightly recessed by various amounts on selected wafers prior to gate-stack
formation. The schematic cross section diagram of a trigate MOS device is shown in Fig. 3.3.
The width of trigate is 30nm and the height is different by recessed depth. Les= 25nm. Both
control and splits are made on the same wafer. To exclude and avoid the parasitic effects,
single-fin devices were prepared, Fig. 3.4. Devices with different areas were used to calculate

the Vy, variations.

3.3 Parameters of the Measurement Method

In the measurement method, the parameters were extracted experimentally (Fig. 3.5- 3.7),
Lesr can be extracted by the charge pumping technique on the control devices simultaneously
made on the same wafer. When the continuous increment pulses reached over the local
threshold voltage (Vi) and local flat band voltage (V#), the charge pumping current (Igp)
begins conduction, then the Ic, will be proportional to the shape of local V. Thus, the channel
barrier height can be found. Vy; can be determined from Vg, by varying Vi, and the

extrapolated value at the gate length vanishes will be a function of Vy;.

3.4 Variability of Trigate MOS Devices

First of all, bulk trigate devices improve Vth variation because stronger gate electrostatic
suppresses RDF, the factor A; [3.6] has a linear relation with channel area, which can help us
to understand the fluctuation of electrical characterizing in different channel areas, as shown
in Fig. 3.8. Here, the trigate devices shows obvious smaller slopes of A; than the control ones

because the stronger gate electrostatic for such devices to suppress the discrete dopant
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induced RDF. But, after the stress, Vy, degradation of trigate devices was much worse than

that of control due to RTF (Fig. 3.9).

3.5 Impact of Stress-induced Random traps

3.5.1 Introduction

A large number of variation effects have been reported, examples include: random dopant
fluctuation (RDF) [3.7], line-edge roughness (LER) [3.8-3.9], and local oxide thickness
variations [3.10]. In addition to these effects, recent study [3.11] has proved that
process-induced random traps fluctuation (RTF) is required for proper interpretation of Vy,
variation in CMOS technologies. However, so far,-none has been reported on the effect of
stress-induced random interface traps. Thus, in this section, we will discuss the device

variability after the HC stress.

3.5.2 Variability After the HC Stress

Since the positions and number of charges trapped at the SiO,/Si interface are randomly
distributed, it is possible for this variation to affect the V, variation [3.12]. Fig. 3.10 shows the
measured Vy, for studying the stress effect using the HC stress (Ves= Vps= Vggt+Via= 2V for
100 and 200sec) on planar n-MOS device. It is observed that standard deviation of the devie
after the stress is larger than that of the fresh device, because the standard deviation of stressed
device contains Random Dopant Fluctuation (RDF) and Random Trap Fluctuation (RTF) and

the fresh device has RDF only.

The local oV, profiling results by RTP of planar devices is shown in Fig. 3.10. It was
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found that the peaks are near the drain edge of the devices after the HC stress, but for the local
oV, profiling results of trigate devices, it was found that the peaks are not only near the drain

edge but also in the channel region after the HC stress. Fig. 3.11

This result indicates that stress-induced interface traps are the dominant source of the
enhanced Vy, variation after the HC stress, and the planar and trigate device contains different

factors inducing cVi.

3.5.3 Variability After the NBTI Stress

By applying a similar analysis, we apply the NBTI stress (Vs -Vin= -2V at 1257C) to
generated the interface traps of the pMOS device which would show more degraded Vi,
variation. To study the stress-induced degradation, Fig. 3.13 shows the measured the standard
deviation after the NBTI stress (Vs V= -2V for 100 and-200sec, at 125°C). The standard
deviation of trigate device is larger than that of the planar device. The result indicates that
trigate generates more interface traps at the SiO,/Si interface in comparison to the planar device.
Fig. 3.14 shows the local oV, profiling results by RTP for trigate devices. It was found that
many peaks are observed after NBTI stress in the channel region, originating from the sidewall

roughness. (Fig. 3.15) The trap densities of trigate devices are much larger than those of the

control.

The result is similar to that of n-MOS devices, in which we observed a higher standard

deviation in trigate device after the NBTI stress that is attributed to the more interface traps

generation.
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3.5.4 Discussion

To characterize the oxide trap spatial spectrum, random trap profiling was performed
after the hot carrier (HC) stress on the planar and trigate nMOS devices respectively. (Fig.
3.10~12) It was found that the local Vth variation fluctuated heavily near the drain edge after
the HC stress, showing where the traps were generated due to a high electric field. (Fig. 3.10)
But, for trigate devices after the HC stress(Fig. 3.11), not only the local Vth variation was
observed near drain edge but also on the sidewall, meaning that the sidewall is a critical
region in terms of trigate reliability. We suspect that the sidewall corner effect induced a high
electric field, consequently generating the traps. As a result, in trigate nMOS device, the trap
density calculated from Vi, was much higher than that of the planar after the HC stress. (Fig.

3.12)

NBTI stress was also appliedto examine the degradations of the planar and bulk trigate
pMOS devices. (Fig. 3.13~Fig. 3.15) An planar devices, local Vy, variation occurred around
the channel center. (Fig. 3.13) But, for trigate devices, unusual peaks of local Vi, variation
(blue lines) were observed in the channel region. (Fig. 3.14) We assume that these peaks came
from the traps caused by the surface roughness and corner effect of the sidewall. Because,
during NBTI stress, the profile of electric field intensity distributed across the sidewall, and
the closer to corner the field is, the stronger the intensity becomes. This high intensity field
led to the generation of traps. So the trap densities of trigate devices were much larger than

those of the control. (Fig. 3.15)

We conclude that NBTI stress dominates the degradation of trigate devices due to the
surface roughness and corner effects. (Table 1) However, by taking good care of the sidewall

process, the reliability of trigate devices might be improved. These results provide us a
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direction on a good control of the reliability in future 3D FIinFET devices.
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Fig. 3.1 Vg, variation is dominated by the discrete dopants in the channel, known as RDF;

however, after the stress, another effect, RTF caused by the traps, will also lead to

Vi variation.
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Fig. 3.2 Key process steps used to fabricate tri-gate bulk MOS devices in this work.
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Fig. 3.3 Transmission electron microscopy cross-section taken along a poly-Si gate for

30nm nominal STI-oxide recess depths.
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Fig. 3.4 (top) The 3D structure of bulk trigate formed by STI etching into the silicon
surface, to form the Fin-channel; (bottom) the cross sectional view with fin height

H. Drain current is perpendicular to this plane.
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Fig. 3.5 The L¢s in Table 2 can be extracted by the charge pumping measurement. Leg=
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dopant induced RDF.
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Fig. 3.10 The local oVth profiling results by RTP for planar devices. It was found that the

peaks are near the drain edge of the devices after the HC stress.
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Fig. 3.11 The local cVth profiling results by RTP for trigate devices. It was found that the

peaks are not only near the drain edge but also in the channel region after the HC

stress.
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Fig. 3.12 The comparison of Atrap densities for planar and trigate devices after the HC
stress, showing that the traps of trigate device are much larger than those of planar

device.

28



Poly Gate
oxide

= planar pMOS devices

ho
o

2.0 | Stress @Vyg =Vyq+Vy, =2V, 125°C
I stress 200s
........... stress 1005
- = =-Fresh

Local GVth(mV)

o
e

o
=

& 9
Position(nm)
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NBTI stress.
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Fig. 3.14 The local oVth profiling results by RTP for trigate devices. It was found that
many peaks are observed after NBTI stress in the channel region, coming from

the sidewall roughness.
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Average Increased Trap Density(cm?)

Splits
Stress Bulk Planar Bulk Trigate
Condition Devices Devices

HC stress@ v, .=v,.=
@ Ve 1x10%% ° 51,8 x 1012

V,4+Vy, 25°C, 200sec A% 18
NBTI stress@ 1:3-x-105" | 1.8 x 1011
V=V tV5,, 125°C,200seC | _2x13.8

Table 3.1 The comparison of the generated trap densities for trigate and planar devices after
HC or NBTI stress, showing that NBTI stress dominates the reliability of trigate

devices due to the surface roughness and corner effect of sidewall.

32



Chapter 4

Experimental Observation on the Trap Fluctuation of
Small Scale Trigate CMOS Devices

4.1 Introduction

Trigate is a promising structure for MOS transistors with gate lengths of 20 nm and
smaller. Several variants of the gate design in trigate device have been suggested [4.1]. In the
trigate case, the gate wraps around the rectangular silicon fin from three sides. The Trigate
device has a large effective channel width: Wes= 2*Trin + Wsin. S0, the use of the gate wrap
around design is attractive since a significantly higher drive current can be achieved for the

same minimum feature size.

In this chapter, we will demonstrate that Vy, variation can be suppressed by advanced 3D
technology meanwhile the performance of devices keeps improved for MOS devices.
Extensive comparisons between trigate and segmented trigate devices will be justified on
examining the effects of electrical field and sidewall height [4.2]. In addition, the impact of
corner effects on the device variability will also be verified [4.3]. The comer effect which is
known to make worse the electrical performance of the shallow trench isolated (STI) MOS
transistors [4.4-5]. In this chapter, we will examine the comer effect on the electrical

performance of trigate transistors with minimum feature size of 36 nm.

For trigate devices after the HC stress, not only the local V4, variation was observed near the
drain edge but also on the sidewall, meaning that the sidewall is a critical region in terms of
trigate reliability. We suspect that the sidewall corner effect induced a high electric field,

consequently generating the traps [4.6]. For the trigate devices, not only the electric field and
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impact-ionization at the corner of the sidewall but also the surface roughness at the sidewall need
to be taken care of. Therefore, this study will investigate the effect of varying sidewall height in

the trigate devices.

4.2 Device Preparation

Advanced poly-Si gate bulk trigate devices, with SiON insulator, were fabricated. After
the conventional STI process, well formation, and Vt-adjust ion implantation, the STI oxide
was slightly recessed by various amounts (10nm, 15nm, or 30nm) on selected wafers just
prior to gate-stack formation. The schematic cross section diagram of trigate MOS device
splits are shown in Figs. 4.1-4.2. Also, the electrical characteristics are given in Fig. 4.3,
where the driving current of low.S/D resistance trigate device is larger than the low Ry ones.
The width of trigate is 45nm_and the height is different by recessed depth. The effective
channel length, Les= 25nm for n type and Leg=24nm for p type devices. Both control and
split are made on the same wafer. To exclude and avoid the parasitic effects, single-fin devices

were prepared. Devices with different areas were used to calculate the Vy, variations.

4.3 Factors Affecting the Reliability in Trigate nMOSFET

4.3.1 Stress voltage bias dependence

To characterize the oxide trap spatial distribution, random trap profiling was performed
after hot carrier (HC) stressing the trigate nMOS devices. (Figs. 4.4-4.5) By changing the
vertical electric field, it was found that the density of trap becomes larger near the drain edge

after the stress, and the position of the most serious damage was not changed by the vertical
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electric field. On the other hand, by changing the lateral electric field, it was found that the
region of the distribution of trap, and the density of trap was not increased more heavily by

the stress. We suspect that the electric field was controlled by the bias voltage.

4.3.2 S/D Resistance dependence

In this part, we will investigate the threshold voltage degradation characteristics of the
fabricated high and low S/D resistances, Fig. 4.2, respectively. Gate length (Lg) for device is
36 nm, and effective channel length (L) is 25 nm. Owing to the surrounding-gate structures,
healthy switching characteristics are obtained even at low S/D resistance device [4.7-8]. An
increment of S/D series resistance gives rise to-a decrease in the effective drain voltage (V’p
=Vp — 2*Ip*(Rsip + Rext) as well as the-lateral channel field for a given external drain bias
(Fig. 4.6). Under the hot carrier stress, the degradation of Vy, is largely increased for low
resistance device, because the_device contain larger electric field; on the other hand, the
electric field of high resistance device was smaller, because there is a voltage drop across the
source/drain series resistance. Therefore, the surface roughness effect for low S/D resistance
device is much worse than the high S/D resistance device. The results are shown in Fig. 4.7

and Fig. 4.8.

4.3.3 Corner effect

In general, the corner effect is good for the device performance [4.3], because the
stronger electric field will increase an additional edge current, but the higher electric field is
harmful to the device seriously. The local Vy, variation was observed near the drain edge but

also on the sidewall, meaning that the sidewall creates another effect. The illustration (Fig. 4.9)
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of the high electric field at the trigate corner in Fig. 4.9 will induce the RTF for devices after
the HC stress. It can be seen that the current flow is pushed toward the corners in the case of
trigate MOS device (2-corner effect). The issue causes slightly higher local standard deviation

of threshold voltage which is produced by interface traps.

First, we measured hot carrier degradation in bulk trigate devices under the bias
condition of Vgs= Vps= 1.7 volt and 2.2 volt, because the worst stress condition at operating
voltage is Vgs= Vps. In low electric field case, it shows that the degradation is dominated by
corner effect, Fig. 4.10, because the local Vy, variations near the drain edge and middle of
channel are similar. On the other hand, we suspect that the sidewall corner effect induced a
high electric field and generated the. traps, but in Fig. 4.11 it shows that the degradation is
dominated by the hot carrier. So, it was found that the dominated effect was different in
varying electric field, especially deserved to be mentioned, the corner effect was found no

matter whether the stress condition is.

4.3.4 Fin Height dependence under HC stress

As the stress bias is increased, the degradation of Vy is accelerated due to the
incremental change in the electric field. Larger degradation is observed at the shorter fin
height rather than at the higher fin height under the same stress condition [4.9]. Due to the low
fin height device, it will induce a higher electric field for devices after the HC stress, Fig. 4.12.
The ANy profiling for different Fin-height trigate devices after HC stress is show in Fig.

4.13. More traps are observed for lower Fin-height device as a result of larger electric field.
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4.4 Factors Affecting the Reliability in Trigate p MOSFET

4.4.1 Surface roughness

To enhance the driving current of the trigate MOS devices, the higher sidewall was
evaluated. Fig. 4.14 is the change of driving current of the same trigate devices (equivalent
effective length and gate width) when the sidewall depth increases up to 30 nm. To examine
the sidewall effects, devices with three different sidewall heights have been compared, Fig.
4.15, in which the higher the sidewall is, the more device degradation becomes as a result of
the sidewall roughness and a high electric field on the sidewall corner. As expected, the drive
current of devices increase as the recess depth increases from 10 nm, 15 nm, and to 30 nm.
Unfortunately, the variation of the trigate devices is larger when the height of the sidewall
increased by process (Fig. 4.16). And, the threshold voltage was degraded in higher sidewall
device. This means that the trigate MOS ‘devices will suffer-from serious variability problem
without tight control of sidewall height. One way-to handle this problem will be to use more

controllable process.

4.4.2 The Shallow Trench Isolation effect

NBTI stress was also applied to examine the degradations of the trigate pMOS devices.
To further identify the local Vi, variation caused by the STI effect, we measured the fresh
devices for three different fin spacing devices as shown in Fig. 4.17. According to the results
of the distributions of dopant densities (DDP) measurement in this figure, obviously, the
variation of the local Vy, is larger for narrow fin spacing devices. In addition to DDP

measurement, the distribution of traps was observed by RTP measurement, too, Fig. 4.18. The
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region of FET near the STI beak has been suffered from the stress of the beak and induced the
traps in the region. For narrow fin spacing devices that exhibit a sharp beak, Fig. 4.19, it

induces higher electric field under the stress.

4.5 Discussion

As a result, in bulk trigate nMOS devices, the trap density was much higher than that of
the convention trigate after the HC stress. Because the high electric field was induced by
corner structure, so the damage becomes more serious for trigate devices. In addition, the
influence of corner effect under varying electric field is summarized in Table 2. According to
the measured data, we know that the average increased trap density near the drain edge was
2.18 times as large as the average increased trap density in the middle channel for low electric
field case. On the other hand, the average increased trap'density near the drain edge was 3.35
times as large as the average increased trap density in the middle channel for high electric
field case, so the corner effect will dominate-the reliability of segmented trigate devices for

low voltage operation.

To examine the sidewall effects, devices with three different sidewall heights have been
compared, Table 3, in which the higher the sidewall is, the more device degradation becomes

as a result of the sidewall roughness and a high electric field at the sidewall corner.

In Fig. 4.20, the interface state density of Fin structure was measured by fabricating

trigate devices with RTP method, from Fin height dependency, ANtrap of 3.1x10% (# - cm™)

of top surface was obtained, meaning that NBTI stress dominates the reliability of trigate

devices due to the sidewall surface roughness, and the 10-year lifetime prediction for trigate
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pMOS devices after the NBTI stress. It shows that the higher the fin is, the device shows

poorer lifetime, Fig. 4.21.

39



-

|

Silicon surface oxide

[2uueyd

(b)

Fig. 4.1 The 3D structure of bulk Trigate (a) and split of Fin height (b), to form the

Fin-channel the cross sectional view with fin height H. Drain current is

perpendicular to this plane.
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Fig. 4.2 Illustration of the comparison between (a) high Re (b) low Ry, the total length of
the high device is 36nm (gate length) + 200nm (S/D); on the other hand, the total

length of the low device is 36nm (gate length) + 60nm (S/D).
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Fig. 4.4 ANy profiling by different stress condition, different gate voltage bias, showing

that the trap distribution is affected by the stress bias.
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that the trap distribution is affected by the stress bias.
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Fig. 4.7 The threshold voltage degradation in (a) low electrical field and (b) high electrical

field, which show obvious serious Vi, degradation in Trigate devices.
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Fig. 4.9 llustration of the high electric field distribution at the corner and drain edge for

trigate which will induce the RTF for devices after the HC stress.
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Fig. 4.10 ANy profiling results by RTP for low electric field condition. It was found that
the peaks are not only near the drain edge but also in the channel region after the

HC stress.
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Fig. 4.11 ANy, profiling results by RTP for high electric field condition. It was found that
the peaks are not only near the drain edge but also in the channel region after the

HC stress.
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Fig. 4.12 Illustration of the high electric field at the low fin height device which will induce

the higher electric field for devices by the HC stress.
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Fig. 4.13 ANy profiling for different Fin-height trigate devices after the HC stress. More

traps are observed for lower Fin-height device as a result of larger electric field.
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Fig. 4.15 To study the sidewall effects on the degradation of stressed trigate devices, three

different sidewall devices were measured.
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Fig. 4.16 ANy, profiling for different Fin-height Trigate devices after the NBTI stress. More
traps are observed for larger Fin-height device as a result of sidewall roughness

effect.
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Fig. 4.17 Different fin spacing affects the variation of fresh devices.
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Fig. 4.18 To study the Fin spacing effect on the degradation of stressed trigate devices, three

different spacing devices were measured.
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Fig. 4.19 Illustration of the STI spacing induced the sharper corner, such that higher electric

field at the corner was induced.
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Fig. 4.21 10-year lifetime predictions of trigate pMOS devices after the NBTI stress,

showing the higher fin device shows poorer lifetime.
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The average Average increased

trap density@ trap density (cm)
Stress Time =
200s

Channel Drain Channel middle

middle Edge /
Drain Edge(%)
E=5.7MVicm 1 1 0
Voo migy) | 20T 35310 46%
E=8.2MVicm 1 1 0
o | 3130 | 10540 30%

Table 4.1 The comparison of the generated trap densities for middle of channel and near
drain edge after HC stress, showing that the damages near drain edge dominates

the reliability of trigate devices in high electric field.

61



The average trap density®  Average increased trap density (cm?)

Stress Time =200s

Fin Height | Fin Height | Fin Height
10 nm 15nm 30nm

trigate devices Ledo® | 2300t | a0t

Table 4.2 The comparison of the generated trap densities for different Fin height devices after
NBTI stress, showing that Fin height dominates the reliability of trigate devices due

to the surface roughness.
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Chapter 5
Summary and Conclusion

In order to find the positions of oxide traps in the channel under the stress experimentally,
the random trap profiling technique (RTP) has been proposed to characterize the distributions
of random trap densities in the channel of a small dimensional bulk-trigate device. Trigate
devices show better RDF variability but poorer reliability than the conventional planar
devices. The HC stress and NBTI stress have been also conducted to study the mechanisms of
random-traps-fluctuation (RTF) which induced the Vy, aggravation for both trigate nMOS and
pMOS devices. We conclude that NBTI stress dominates the degradation of trigate pMOS
devices due to the surface roughness on the stdewall with reference to the HC stress on trigate
nMOS devices. However, by taking good-care of the sidewall process, the reliability of trigate
devices might be improved. These results provide us a direction on a good control of the

reliability for future 3D trigate devices.

Moreover, the variability of different Fin-height trigate devices with high and low series
resistances are investigated in this thesis. Several salient features can be drawn: (1) For HC
stress with low electric-field, since the corner effect plays a more important role in the
degradation of trigate devices, an alternative approach is provided to alleviate the corner
effect by increasing the S/D resistance of trigate devices to achieve an acceptable reliability.
(2) For nMOS devices, devices with shorter fin-height shows more serious Vy, degradation
after the HC stress than those with taller ones; on the contrary, for pMOS devices, devices
with taller fin-height exhibit more serious Vy, degradation after NBTI stress than those with
shorter ones. (3) We have found that the major source of reliability degradation for pMOS

devices after NBTI stress is the sidewall roughness of fin-height not the surface roughness of
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the fin-width.

These results provide us a good understanding of the random traps fluctuation (RTF) of

trigate devices and a guideline to achieve a high performance and good reliability of bulk

trigate CMOS devices beyond 28nm generation.
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