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$ Electrophysics Department, National Chiao Tung University, Hsinchu, Taiwan, 
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Received 24 May 1983 

Abstract. Multiple non-Landau-damped acoustic plasma modes are shown to exist for 
electrons in a slender wire. These slender acoustic plasmons (SAP) arise as a result of the 
collective, longitudinal oscillations of the electrons grouped in one of the discrete 
transverse-motion levels against those grouped in neighbouringlevels. We present numerical 
examples of these (SAP) modes in GaAs, showing that they should be observable with the 
present techniques of thin semiconductor wire fabrication. In addition, another mode arising 
from the screened ion oscillations as modified by the slenderness of the wire is analysed. 

It is well known that plasma oscillations can arise in metals and semiconductors (Platz- 
man and Wolff 1973). The familiar optical branch of plasma waves consists of electrons 
and ions (or holes) vibrating out of phase with each other. In three dimensions this 
branch has a high characteristic frequency due to the strong Coulomb force between the 
spatially separated positive and negative charges in the wave. This frequency does not 
reduce to zero in the limit of long wavelengths because the restoring Coulomb force 
between the surface polarisation charges on the two end faces perpendicular to the 
wavevector q is independent of the distance between them. These optical plasmons also 
have phase velocities larger than the Fermi velocity U F  of the system. 

Less familiar, perhaps, is the acoustic branch of plasma oscillations. In this case, two 
different types of charge carriers, differing in effective mass, with the carriers of lesser 
mass screening the Coulomb interaction between those of greater mass, vibrate in phase 
with each other. The carriers may be electrons and ions, or s and d electrons with 
effective mass md % m, (Ruvalds 1981). More recently, the possibility of acoustic plas- 
mons in thin films meeting certain special conditions such as spatial separation of the 
carriers has been suggested (Takada 1977, Das Sarma and Madhukar 1981). 

In this Letter we study the multiple branches of acoustic plasma oscillations in a new 
physical situation, namely, in a slender structure such as a quasi-one-dimensional wire. 
The physics that gives rise to these collective longitudinal electronic oscillations with 
phase velocities less than UF is unique to such a system, although an analogy can be 
traced to the acoustic modes that were predicted for a bulk metal in the presence of a 
quantising magnetic field (Ginzburg eta1 1968, Konstantinov and Perel 1968, Chock and 
Lee 1970). 

@ 1983 The Institute of Physics L995 
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These slender acoustic plasmons (SAPS) can first be explained qualitatively as follows. 
The smallness of the transverse dimension of the slender wire gives rise to widely 
separated transverse single-particle levels. An electron in a particular transverse energy 
level n will have a corresponding maximum longitudinal velocity U,,, with the total energy 
limited by E F ,  the Fermi energy; i.e. U, is the effective longitudinal Fermi velocity. Let 
us temporarily ignore the Coulomb interaction among the electrons. A longitudinal 
disturbance of wavevector q will transfer a momentum hq to each electron. Only those 
electrons within an hq neighbourhood of the one-dimensional Fermi surfaces charac- 
terised by the U,, are allowed by the Pauli principle to have a real transition, with each of 
them gaining an energy between hqu; and hqu,' , where U,' = U, *hq/2m . In the limit 
of hq/m Q Au,, where Au, = U, + 1 - U,, if the disturbance has a frequency w - qu, (or a 
phase velocity s = o.(q - U,,), all these electrons within the hq neighbourhood of the 
effective one-dimensional Fermi surface labelled by n will be resonantly excited, result- 
ing in a macroscopically large number of particles participating in such a mode. If we 
denote the polarisability of the system by x(')(q, w) which relates the polarisation to the 
perturbing fields, the resonance means x(')(q, w) = +CO as w =quX . Correspondingly 
the ratio of the induced charge density pi(q, w) to the perturbing external potential 
&x(q, w) is the coefficient d')(q, w) = -q2x(')(q, w). If we now turn on the Coulomb 
interactions, the particles will be coupled with each other and the single-particle states 
will cease to be eigenstates. However, it is well known that, due to the Coulomb 
screening effect, the effective or total perturbing potential is &,tal(q, w) = 
&(q, w)/E(q, o), where E(q, w) = 1 + 4nx(')(q, w) is the dielectric constant. The 
induced charged density is then modified to become 

which is no longer divergent at w =qu,' , reflecting a shift of the resonances from the 
transition frequencies associated with the free, single-particle levels. The positions of 
the resonances will now be determined by the zeros of E ( q ,  w) = 1 + 4nx(')(q, U). Yet, 
since x(')(q, w) changes from - to + 03 as ovaries fromqu,' to qui+ 1, E ( q ,  o) must go 
through zero in this n-interval of w. Thus, every such interval contains a resonance 
mode. The mode in the nth interval is obviously dominated by the interplay of the 
transverse levels n and n + 1. With qu,' <w < qui+ 1 the effective perturbing field will 
cause a parallel polarisation in the longitudinally oscillating particles with a higher 
characteristic frequency qui+ 1 at the (n + 1)-Fermi surface but antiparallel polarisation 
in those with a lower characteristic frequency qu,' at the n-Fermi surface?. Thus, the 
oscillating particles in levels n and n + 1 will vibrate against each other in the nth 
resonance mode. Since the numbers of particles associated with the characteristic fre- 
quencies q u i ,  qui+ are macroscopic, the resonant w oscillation is also collective in 
nature, which is closely related to its vanishing damping rate. Furthermore, the disper- 
sion relation is of the acoustic type since the phase velocity s = w/q of the nth collective 
mode is trapped between U,' and U;+ 1, whose values are independent of q. 

The same physical argument cannot be used to deduce acoustic modes in a thin film. 
A longitudinal disturbance of wavevector q will cause free electron transitions in the 
hq neighbourhood of the effective two-dimensional Fermi surfaces. However, since the 
effective Fermi velocity is now a vector U,, the corresponding single-particle transition 

t This is like a forced harmonic oscillator. The displacement will be in phase with the driving force if the 
driving frequency is below the characteristic frequency of the oscillator; they will be opposite in phase if the 
reverse is true. 
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frequencies are given by w - q U,,  which are all different for particles with U,, of 
different directions on the nth Fermi surface. Thus, a perturbation of frequency 
w - q U,, can only excite selectively few particles rather than all of them in the neigh- 
bourhood of the nth Fermi surface. Although Coulomb interaction will again cause 
particles at one Fermi surface to vibrate against those at the other, only a few particles 
will be involved in each vibration mode-a fact that spells the demise of these modes. 
Except under special conditions (Takada 1977 and Das Sarma and Madhukar 1981), 
generally there are no multiple branches of acoustic plasmons in a thin film geometry. 

In order to study quantitatively the response of the electron gas in a thin wire to 
longitudinal electric fields of wavevector q = qi and frequency w, we use the self- 
consistent field method (Ehrenreich and Cohen 1959). Consider a thin wire along the 
z-axis and, for simplicity, with a square cross section of side a or area A = a2. A Fourier 
component of the perturbed charge per unit length inside the wire is A,,,, = Ap,,,,, where 
p,, is the perturbed (oscillating) charge density. Correspondingly the potential is given 
as 

V ( r ,  z ,  t )  = Vq,T,w exp(iqz) exp(-iwt) (1) 

1 exp (iqz”) dz” 
A I ( r - r ’ )  +iz”l‘ C l ( q )  = - 1 d2r 

Here r is a two-dimensional vector in the xy plane. In the limit of a thin wire or qa Q 1, 
we formally let I r - r’ I approach zero in the denominator of equation (2) but simulta- 
neously introduce a cut-off at small 1 z” I - a to restore the main effect of I r - r’ I on the 
integral with respect to z”. Thus 

where Ci(x) is the cosine integral. 
Since the contribution from the region of small z to the integral of equation (2a) 

vanes as -ln(qa), we expect any error introduced by the approximate cut-off value -a 
to be insignificant as long as aq 4 1. In the extreme limit of a wire of vanishing cross 
section we should still have a cut-off imposed by quantum mechanics that two charges 
of opposite signs cannot get much closer than the Bohr radius a0 (Lee eta1 1968). Then 
in this case we expect Cl(q) = -2Ci(qao). 

We should mention that the small-q limit 

is a physically reasonable behaviour also obtained by other workers using a different 
model (Friesen and Bergersen 1980). 

The self-consistent-field method applied to this restricted three-dimensional system 
gives the following expression for the dielectric function E ( q ,  U): 

where L is the length of the wire, %k = h2k2/2m is the unperturbed electron energy, k is 
a three-dimensional wavevector and f(&) is the equilibrium Fermi-Dirac distribution 
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function for the electron system. Notice that due to the finite thickness of the wire, the 
two-dimensional momentum k2 = k - tk, of the electron has a discrete spectrum with 
well separated values while the k, component assumes quasi-continuous values due to 
the large L. 

In general, we should also include the effect of retardation due to the finiteness of 
the light velocity c. This effect can be shown to change the expression for C l ( q )  to 

Cl(q ,  0) = -Ci(aq + w / c )  - Ci(aq - w / c )  

+ in/2[sgn(q + w/c) - sgn(q - w/c)] ( 5 )  

and the corresponding dielectric function to 

where nl is the number of electrons per unit length. From equation ( 5 )  we see that as 
long as cq > I w 1, C1 (q ,  w )  is real and positive while if cq < I w 1 ,  C1 (4, w) has an imaginary 
part that implies damping of the oscillation due to electromagnetic radiation into the 
wire’s surroundings. We recover the previous result, equations (2a) and (4), if we let 
q S I wl/c. We will consider this limit in what follows since we are dealing with small 
phase velocity modes. 

If we now evaluate equation (4) at zero temperature, we obtain 

with 

and 

where s = w/q is the phase velocity of the wave, a0 = h2/me2 is the Bohr radius, p is a 
two-dimensional wavevector 

(9a) 

(9b) 

u * = u  + h  P P - 4/2m 

up = [2(gF - %p)/m]uz 

CeF = h2k$/2m is the Fermi energy and A, = 1 if 1s I lies between up’ and I up I or A, = 0 
otherwise. 

We notice that E ( q . 2 ,  w )  of equation (7)  has divergences at the / U ;  1 = I s /  values, 
corresponding to the divergences one expects in the polarisability x(O)(q, w)  whenever 
we approach the unperturbed transition frequencies. 

The imaginary part of E ,  €2, accounts for the Landau damping of the wave. In fact, 
in order to find the collective excitations of the system, we must solve the dispersion 
relation (Platzman and Wolff 1973): 
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together with 

&2(@,  w )  = 0 (lob) 

if no damping is to occur. 
A schematic plot of el is given in figure 1, where we notice the existence of several 

zeros within the damping regions, indicating that they are damped modes. We also 
notice the presence of zeros of ~1 outside the damping regions and these solutions to (10) 
are precisely the longitudinal SAP modes. Notice also the outermost zero in corre- 
sponding to the usual high-frequency optical plasma mode, with phase velocity s > uF. 

From equations (sa) and (8b) we can see that each damping region has a width of 
hq/m. As q becomes sufficiently large, the damping regions overlap each other and all 
the acoustic modes with such a q will be damped. Thus, the SAP modes owe their existence 
mathematically to the condition hq/m Q up. Physically, this condition means that the 
transverse levels must be sufficiently widely separated such that each level can house a 
macroscopic number of electrons with different k,,  leading to the collective nature of 
the SAP modes. 

One can try to obtain analytic expressions for the SAP modes by assuming that the 
zero of is close to one of its divergences. Then the most dominant terms for the 
determination of that particular zero arise from the two closest asymptotes, say u1 and 
u2. Considering only these two terms and expanding the log for small q Q 2m 1s - up //ti 
we obtain 

I 
. .  

U; uf UT UT U 0  u t  

Figure 1. Schematic plot of EI and EZ of equation (S), showing the damped modes (x) ,  
the SAP modes (0) and the usual plasma mode U+,. 
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After some algebra we can solve for d as 

where fi is the degeneracy for the ith transverse energy level. 
Expression (11) shows that the dispersion relation is linear or sound-like only in 

first approximation. However, we cannot completely believe this treatment since, in 
the case when the zero is not so close to either one of the asymptotes, the other terms 
in the summation are of similar importance. It will turn out numerically that the 
dispersion relation is indeed of the acoustic type for a large range of q. 

The SAP modes are very similar to the Ginzburg-Konstantinov-Perel (1968) or 
Chock-Lee (1970) modes (Konstantinov and Perel 1968). The GKP-CL modes arise 
when a one-component plasma such as an electron gas is under a magnetic field. The 
electrons are then grouped into the discrete Landau levels pertaining to the transverse 
motion. The different groups oscillate against each other, producing a longitudinal 
acoustic type of oscillation like the SAP modes. Despite the similarities, the dispersion 
relations for the SAP and the GKP-CL modes are different, mostly because the 
Coulomb potential is the purely three-dimensional 4 d / q 2  in the latter case but the 
one-dimensional A2Cl(q) in the former case. 

We should also mention that other workers on 1D systems such as Friesen and 
Bergersen (1980) did not find these SAP modes mainly because they considered only 
a single transverse level and, in that sense, their system was purely one-dimensional. 

In quasi-two dimensional systems, it turns out that the Landau damping extends 

Figure 2. SAP modes for a narrow semiconductor heterojunction. The three modes shown 
are all the modes present in this case. The usual plasmon o, is also shown as reference. 
Strip width = 200 A. n, = 2.0 X 10” cm-2. 
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over a larger domain of the variable s = o/q. It follows that acoustic modes in a thin 
slab are not possible unless one can achieve spatial separation of the different 
transverse-motion levels larger than a critical distance. This separation can be accom- 
plished via either a MIS inversion layer structure (Takada 1977) or a superlattice, 
semiconductor heterojunction (Das Sarma and Madhukar 1981). 

Let us consider some specific numerical examples. Our examples will be a metallic 
wire and a thin strip of semiconductor inversion layer or heterojunction. 

The number of SAP modes present in a given system is exactly one less than the 
number of possible values for the transverse energies. On the other hand, the number 
of these transverse levels depends on the width a of the wire or the strip as well as 
the Fermi wavevector of the system k F .  In fact, the number of levels allowed inside 
the Fermi sphere is characterised by ( k ~ a ) ’  which increases with both a and kF. 

In the case of the metallic wire, assume a = 508, and kF = 1.35 X lo8 cm-’ 
(%F = 7.3 eV, appropriate for the Au40Pda alloy). These extremely thin wires are 
presently attainable experimentally using a very remarkable technique (Chaudhari 
and Habermeier 1980). The number of SAP modes with these parameters is 50, 
resulting in mode frequencies too close to each other to be resolved experimentally 
because of thermal broadening. 

A very interesting case is that of a narrow strip of inversion layer or heterojunction. 
Consider typical parameters for GaAs: effective mass 0.068 me and average dielectric 
constant of the structure 6.95. Since the number of SAP modes is controlled by (kFa)’ 
we have chosen two examples of such parameters, one with kF = 1.12 x lo7 cm-’ 
(n, = 2.0 x 1013 cm-2) and a = 200 8, as shown in figure 2 and another with kF = 5.61 
x lo6 cm-’ (n, = 5.0 x lo’* cm-2) and a = 500 8, as shown in figure 3. Narrow strips 

1 I I I 

0 2 4 6 8 10 
Wavenumber I IO4 cm-‘ I 

Figure 3. SAP modes for a narrow semiconductor heterojunction. Here the system has 
four SAP modes. Strip width = 500 A. n, = 5.0 x lo’* cm-2. 
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with widths of this order have been obtained using recent advances in microfabrication 
technology (Skocpol et a1 1982 and Wheeler er a1 1982). 

Comparing the numerically obtained results expressed in figures 2 and 3 with those 
for the metallic wire, we observe that because of the smaller value of kF, the SAP 
modes in the inversion layer structures are more widely spaced than those in the wire. 
Also, since in metals the kF values are invariably of the order of 1O8cm-l, a very 
small width is needed in order to get a few widely spaced SAP modes. However, in 
inversion layers one can control the electron density or the Fermi momentum over 
a wide range. This versatility allows for larger widths which are easily attainable 
experimentally. 

We notice in figures 2 and 3 that the energy spacing between modes is of the order 
of several kelvins, which is larger than the thermal broadening at liquid helium 
temperatures. At these temperatures, typical collision times (Ando et a1 1982) z in 
semiconductor inversion layers are s,  so that ut > 1 for our SAP modes with 
larger q values. Therefore, by working at low temperatures and with smaller wave- 
lengths one should be able to observe these modes. 

Finally, in a real solid there are also collective oscillations of the ions that give rise 
to phonons. Since the electrons are coupled to the ions, the phonon frequencies 
depend on the screening by the electrons. For long-wavelength longitudinal oscilla- 
tions, the dispersion relation is given by (Chock and Lee 1970) 

where 52, is the plasma frequency of the ions when the electrons are treated as a fixed 
negative background. 

Figure 4. Sketch of function g(q ,  U )  of equation (13). Notice the SAP modes, indicated 
by a heavy dot, as well as the usual plasma mode, and most importantly, the new ion 
mode at the lowest frequency. 
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Using equations (8) and (12) we obtain the dispersion relation for the longitudinal 
modes of the electron-phonon system in the zero temperature limit as 

This equation now replaces equation (loa). If we schematically plot the function g 
of equation (13), we obtain figure 4, in which we observe the SAP modes slightly 
modified by the ion-electron interaction. We also notice the emergence of a new 
mode which does not exist in figure 1. It has the lowest phase velocity of all modes 
and is due entirely to ion dynamics, although appropriately screened by the electrons 
in all the transverse levels (Chock and Lee 1970). 

In conclusion, we remark that although the SAP modes are similar to the GKP-CL 
modes in nature, the SAP modes are much more easily observable. For example, to 
obtain Landau levels of spacings comparable to those of the transverse levels in the 
examples discussed here, one needs to apply magnetic fields of the order of 103-104 T, 
obviously not easily attainable. 

S E Ulloa would like to acknowledge financial support of a fellowship from the 
Universidad Nacional Autonoma de Mexico. 
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