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Single-Image 3-D Depth Estimation
for Urban Scenes

Student : Hsin-Min Cheng  Advisor : Prof. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics
National Chiao Tung University

Abstract

In this thesis, we focus on recovering a depth map from a single image. Given an
image of urban scenes, we extract linear perspective informationto establish the 3-D
scene model. Unlike these approaches which use occlusion relationship between
objects to estimate the relative depth of the image, we further combine the perspective
geometry information with .the occlusion relationship between objects. In our
approach, we construct depth gradient maps for both vertical and horizontal directions
to represent the depth variation trend for the image. To accomplish this, the image is
first partitioned into components, which are classified into three geometric classes:
vertical plane, ground plane, and sky. By extracting the vanishing point of the image
content, we generate initial depth gradient maps based on the relative position between
the vanishing point and the classified components. After that, we use the main
directions of vanishing lines and non-occlusion boundaries to revise the initial depth
gradient maps by using a CRF (conditional random field) model. A refined solution
for depth gradient maps is generated by finding the optimal solution. The depth map
can be generated by integrating depth gradient maps. We demonstrate that this

approach can produce pleasant depth maps for images of urban scenes.
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Chapter 1 Introduction

Recovering 3-D depth from images is an important issue in computer vision and
has many applications, such as navigation, robotic surveillance or image editing. Up
to now, many works have been explored for vision-based systems. Most works focus
on binocular knowledge and require multiple images of the same scene. Nevertheless,
when we only have a single image, we are lack of stereoscopic knowledge.

Even through humans can easily grasp the overall 3-D structure of a single scene,
it is still a challenging task for computers. In the past, researchers had proposed
several algorithms to estimate depth from a single image. Some researchers
investigated monocular cues, such as shape from shading[1], shape from texture[2],
occlusion[3], linear perspective[4],-etc., to extract the 3D information in very specific
scenes. Recently, researchers tend to solve the depth estimation problem based on the
overall view of the scene by using machine learning techniques [5-12]. These
methods are more generic and/may work better in 3-D scene reconstruction.

In this thesis, the major concept of our approach isrelated to that of [5-7]. As
perspective geometry may reveal many cues about 3-D scene model, we use it for
depth estimation as in [5]. However, in [5], the authors do not deal with the occlusion
problem and their method may fail in clustered images. In [6, 7], the authors
recovered the occlusion relationship between objects but ignore the constraints of
perspective geometry. In our work, we aim to take into account the perspective
geometry information to deal with the occlusion relationship between objects and to
estimate the 3-D depth of the scene.

Here, we propose an algorithm to infer the relative depth of a 3-D scene with
perspective information. In our approach, we construct depth gradient maps for both

vertical and horizontal directions. With these maps, we get rough knowledge of the



depth variation trend. In this approach, the challenge is how to extract useful cues that
can help in assigning appropriate depth gradient information for the image.

In our algorithm, we consider only those images containing structured urban
scenes. Given an image, we first partition it into regions and classify them into three
geometric classes: vertical plane, ground plane, and sky. After that, the vanishing point
is detected. With the estimated vanishing point, we generate the initial depth gradient
maps which label the possible depth variation direction for each pixel based on the
component type and the relative position with respect to the vanishing point. Three
main directions of vanishing lines are_then detected to provide information about the
component’s orientations.. ‘Moreover, we use“an  occlusion boundary detection
algorithm to merge non-occlusion boundaries. To assign appropriate labels for each
pixel, we take the information provided ‘by vanishing.lines and-occlusion boundary
detection, together with the initial depth gradient:maps. We further refine the depth
gradient maps by using a CRF (conditional random field) model, . which is capable of
utilizing various kinds of information based on-a set of pixels:in a global manner.
Finally, with the refined depth.gradient maps, we integrate the depth gradient maps to
estimate the orientation and position for each componentand to reconstruct a 3-D depth
model for the whole image.

This thesis is organized as follows. We will first discuss some related works in
Chapter 2. In Chapter 3, we describe the proposed method that estimates the 3-D
depth for a single image in urban scenes. Some experimental results are shown in

Chapter 4 and we give brief conclusions in Chapter 5.



Chapter 2 Backgrounds

Many depth estimation algorithms have been proposed in the past few years. In
this chapter, we will introduce some related works about single-image depth estimation
in vision-based systems. These algorithms can be roughly classified into two groups
depending on the type of estimation method and the information being used [8]: depth
perception models and geometric models. For geometric models, the authors estimated
the 3-D depth of a single image by considering the 3D scene geometry. In contrast,
depth perception models made no assumptions about the scene structure and infer the
depth value from the monocular features in the image..In Section 2.1 and Section 2.2,
some relevant works about depth perception models and geometric models will be

introduced, respectively.

2.1 Depth Estimation using Depth Perception Models

In [9], Saxena et al. presented an algorithm, which /learned the relationship
between image regions.-and depth of regions given its image features. They use a
superpixel segmentation algorithm-to divide the image into small uniform regions. In
each superpixel, they collect cues about texture variation, texture gradient, and color.
Figure 2-1 shows the filters used for texture energies and gradients. Since local image
features are insufficient to estimate the depth, they appended local features to
multi-scale features and combine features from neighboring superpixels to form more

global properties (See Figure 2-2).

Figure 2-1The convolutional filters used by Saxena[9].
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Figure 2-2 Multiple scale structure of features in [9]. (2) An illustration of neighboring location with

multi scale features. (b) Actual neighborhood of the superpixel S3C. (c) Collected features for superpixel
S3C.

With texture features, they infer both the 3-D location and orientation of the 3-d
surface for each superpixel in the image using an MRF model. By supervised learning,
they model the relationship between image features of each superpixel and infer both
the 3-D location and orientation of the 3-D surface for each:superpixel. Moreover, the
MRF model also considers the relationship. between adjacent regions, such as
connected structure, co-planar structure, and co-linearity. For co-planarity and
connectivity, neighboering regions are more likely to belong to the.same plane if they
have similar features. Except in the case-of occlusion; neighboring planes are more
likely to be connected to each other. For co-linearity, long straight lines in the image
represent straight lines in 3-D, such-as.edges of-buildings. Their results are shown in

Figure 2-3.

Near - N e

Figure 2-3 (Top row) Original images, (Bottom row) depth maps (shown in log scale)
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In [8], Liu performed a semantic segmentation of the scene and use the semantic
labels to guide 3D reconstruction. They indicate that estimating depth directly from
image features is difficult since the relationship between appearance properties and
depth in each object is different. For instance, sky and water region have similar
appearance features, but the property of their depth variation are different. The
inclusion of semantic information allowed them to model appearance and geometry
constraints in a more precise way. In [8], the authors proposed a two-phase approach.
In the first phase, they roughly classify an image into some semantic classes and train
the parameters in each class. When they get an image, the semantic class for each pixel
is inferred. In the second phase, they use the predicted semantic class label to establish
the depth model by the learned depth estimator for each semantic class. Some results of

their algorithm are shown in Figure 2-4.

=N B

(a) (b) (¢) (d)
Wisky [Mtree  [road [Porass [Jwater [Jbidg  lmntn  [lfg obj.
o O

Figure 2-4 Result of Liu et al. in [8] (a) Original images. (b) Prediction of semantic labels. (c) Ground

truth depth measurements. (d) Predicted depth.



In these aforementioned methods, depth can be roughly estimated using
appearance features. Nevertheless, even though by classifying image using semantic
labels may help in depth estimation, there still exists a large diversity of depth in each

semantic class.

2.2 Depth Estimation using Geometric Models

In contrast to algorithms which attempt to get the absolute depth value by using
depth perception models, some authors have developed methods that infer relative
depth information and only build rough modelsof the scene geometry.

In [5], Jung et al. used.object classification prior to depth value extraction. In their
method, image segmentation is performed before object classification. Objects in a
single-view image sare ‘classified into four types: sky, ground; cubic, and plane.
According to the ‘inferred type, relative depth values are assigned to each type to
generate a 3D model. The Ground can be regard as a horizontal plane. Its depth value
increases as getting closer to the position of thevanishing point. The Ground depth
acts as the base depth map from which the depth of other types can be inferred. Figure
2-5 illustrates the depth assignment for.the cubic type and plane type. For plane-type
objects, such as cars, they have a constant depth depending on where the bottom
position of the object is. For cubic objects, such as buildings, the depth value varies
with the distance from the vanishing point. One result of their algorithm is shown in

Figure 2-6.

PLANE CUBIC

Figure 2-5 Depth assignment for type PLANE and CUBIC
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(@) (b)

Figure 2-6 Experimental result of Jung et al. in [5]. (a) Input image. (b) Depth map.

In [10], Barinova et al. focus on the attachment of ground plane and vertical
objects. They assume that the urban scene is composed of a flat ground plane with
some vertical buildings, whose ground-vertical boundary forms a polyline. Figure 2-7

shows their 3-D model structure.

Vertical walls polygons =~

Transparent areas afler

tilt correction
Horizon —,

Ground-vertical boundary \

Grourd plane
" polygon

=~

Figure 2-7 3-D model structure of Barinova et al.[10].

Furthermore, they assume a man-made environment has regular structures that
provide scene geometric information, such as camera calibration, horizon detection and
vanishing point estimation. After estimation of vanishing point and horizon detection,
they use a Conditional Random Field (CRF) model to estimate the ground-vertical
boundary parameters to infer the orientation of vertical walls for urban scenes. One

example of their results is shown in Figure 2-8:



(a) (b) (©) (d)

Figure 2-8 Experimental result of Barinova et al. in [10]. (a) Input image. (b) Camera calibration,

horizon detection and vanishing point estimation. (c) Positions of ground-vertical border along

the vertical axis. (d) 3-D model.

In [6, 7], Hoiem argued that people can perceive the depth of a scene if they get the
whole structure of the scene:They usethe phenomenon of occlusion - in an image, an
object which blocks the view of another: object is considered to be closer. By
recovering the occlusion relationship between objects, relative depth ordering is
determined. Their work can be divided into two parts. To understand the geometry of
an image, they label the image into geometric classes to form the surface layout of a
scene [11]. With those geometric labels, they-use the classification results to learn the
occlusion boundaries in an.image [6, 7]. In the following, we will introduce a few
algorithms proposed by Hoiem.

In [11], Hoiem proposed a method to recover the rough surface layout of an
outdoor image. To get the 3-D structure of the scene, they classify the given image into
geometric labels. Each pixel belongs to ground plane, vertical surface or sky. The
vertical surfaces are further subdivided into subclasses, such as planar surface facing
left, right, or center and non-planar surface which are solid or porous. Figure 2-9 shows
a classification result. Different colors mean different main classes (ground, vertical,

sky). The marks represent different subclass labels of vertical regions.



Figure 2-9 Geometric labels of Hoiem’s system[11]

In their approach, they used features such as location cues, color cues, texture cues
and perspective cues (See Figure 2-10). For perspective cues, they used vanishing lines
to infer the geometric structure. They found the long_lines in the image, and the
intersections of long lines are possible vanishing points. in the image. The vanishing
points are classified into vertical-vanishing points and horizontal vanishing points. If
more pixels in a region contribute to vertical (or harizon) vanishing points, the region is

more likely to be a.vertical (or support) surface.

SURFACE CUES

Location and Shape

L1. Location: normalized x and y, mean

L2. Location: nermalized x and y, 10t" and 00t% petl

L3. Location: normalized y wrt estimated horizon, 104%, 90%* peil

L4. Location: whether segment is above. below, or straddles estimated horizon
L5. Shape: number of superpixels in segment

L6. Shape: normalized area m image

Color

C1. RGB values: mean

C2. HSV values: C1 11 HSV space

C3. Hue: lustogram (5 bins)

C4. Saturation: histogram (3 bins)

Texture

T1. LM filters: mean absolute response (15 filters)

T2. LM filters: histogram of maximum responses (15 bins)

Perspective

P1. Long Lines: (number of line pixels)/sqrt(area)

P2. Long Lines: percent of nearly parallel paurs of lines

P3. Line Intersections: histogram over 8 orientations, entropy

P4. Line Intersections: percent right of umage center

P5. Line Intersections: percent above image center

P6. Line Intersections: percent far from image center at 8 orientations

P7. Line Intersections: percent very far from image center at 8 orientations

P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10. Vanishing Points: percent of total line pixels with vertical VP membership
P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)
P12. Vanishing Pomts: y-pos of mghest/lowest vertical VP wrt segment center
P13. Vanishing Points: segment bounds wrt horizontal VP

P14 Gradient: x. y center of mass of gradient magnitude wrt segment center

Figure 2-10 The surface cues used in Hoiem’s surface system [11]



Like some other works, algorithms based on over-segmentation are usually used
which assume that the pixel labels within a segmentation region are the same. After
over-segmentation, they extract features within each superpixel, together with and
some features between adjacent superpixels. When considering the relationship
between nearby regions, instead of using MRF model, they merge regions which are
most likely to have the same label. The advantage of merging regions iteratively is that
they can use different cues in different merging steps depending on the region size.
For example, perspective information is effective only when a larger region is

considered.

Since it may happen that regions of two different labels get merged together,
Hoiem et al. also use multiple segmentations to avoid commitment to any particular
segmentation process.  After -multiple segmentations, they use the pre-trained
parameters to predict the label likelihood of each segment. The result is calculated by
combining the superpixel label likeltheod of multiple segmentations. Their surface

label and likelihood estimation result are shown in Figure 2-11.

m-

L 1belc %upport

Input Vertical
Left Center Right Porous Solid

Figure 2-11 The result of Hoiem’s surface layout estimation [11]

With the help of surface layout estimation, Hoiem proposed an algorithm to
recover the occlusion boundaries and depth ordering of an image. Based on occlusion

boundary, figure/ground relationship between nearby objects can be determined.
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Using the vertical/ground structure, Hoiem at al. estimate objects depth by
detecting the attachment of ground and vertical objects. For some regions which are
occluded by other regions, the occlusion relationship is used to estimate the max/min
depth of those regions. One of their results is shown in Figure 2-12. In the left picture,

the region to the left of an arrow is in front of the region to the right of the arrow.

@ (b)

Figure 2-12 Result of Hoiem’s occlusion boundary algorithm [6, 7]. (a) Occlusion

boundary result: (b) (Top row) Estimated-max depth. (Down row) Estimated min depth.

To identify occlusion. boundary, they learnt a classifier which classifies
boundaries to three different types: non-occlusion, occluded and occlusion. Their
algorithm starts with an over-segmentation algorithm, which assumed most boundaries
are preserved in the edges between these segmented regions. Usually there are
thousands of regions at the beginning and then the algorithm gradually removes these

unlikely edges to get the final boundaries.

In their work, they use many cues to recognize the boundaries. The cues can be
classified as boundary cues, region cues, surface layout cues, and depth-based cues. The
detail cues are listed in Figure 2-13. Surface layout cues use the result of the surface

layout algorithm which is very useful for detecting occlusion boundaries since most

11



edges between different surface labels are occlusion boundaries. Geometric labels of
surface layout can also reveal figure/ground information. For example, solid regions are

more likely to be in front of planar surfaces.

Occlusion Cue Descriptions ‘ Num ‘

Boundary 7
B1. Strength: average Pb value 1
B2. Length: length / (perimeter of smaller side) 1
B3. Smoothness: length / (L1 endpoint distance) 1
B4. Orientation: directed orientation 1
B5. Continuity: minimum diff angle at each junction 2
B6. Long-Range: number of chained boundaries 1
Region 18
R1. Color: distance in L¥a*b* space

R2. Color: difference of L*a*b* histogram entropy
R3. Area: area of region on each side

o — —

R4. Position: differences of bounding box coordinates 10
RS5. Alignment: extent overlap (x.y,overall.at boundary) 4
3D Cues 34
S1. GeomContext: average confidence, each side 10
S2. GeomContext: signed difference of S1 between sides 5
S3. GeomContext: sum absolute S2 1
S4. GeomContext: most likely main class. both sides 1
S5. GeomTJuncts: two kinds foreach junctien 4
$6. GeomTluncts:if both junctions are GeomTJuncts 2
S7. Depth: three estimates (log scale), each side 6
S8. Depth: diffs of S7, abs diff of first estimate 4
S9. Depth: diff of min overestimale; max underestimage 1

Figure 2-13 The occlusioncues used in Hoiem’s boundary system [6, 7].

Hoiem et al. use the cues listed above to predict the likelihood of being a boundary
for each edge. Moreover, a CRF (Conditional Random Field) model is used to enforce
boundary continuity and consistency in the merging process. More precisely, the
boundary likelihoods of connected edges are related. Hoiem et al. consider all possible
labels of the image, instead of estimating each boundary confidence alone. For example,
in a junction where three edges are connected, there are 27 combinations of junctions

but only 5 of them are possible. The valid types are shown in Figure 2-14.

Figure 2-14 Illustration of five valid junctions [6, 7]

12



Many cues need a larger spatial support. Hence, Hoiem at el. use a hierarchical
segmentation process. At each time, the boundary likelihood of each edge is
re-calculated and the most unlikely edges are removed until the boundary likelihood of
all the remaining edges are above a given threshold. As regions grow larger and edges
become larger, they refine the boundary prediction and remove unlikely boundaries
again. This process works iteratively until no new region forms. The flow chart of their

system is shown in Figure 2-15.

Initial chlfrncnmi:ion Occlusion Cues Soft Boundary Map Next Segmentation

Figure 2-15 Illustration of Hoiem’s algorithm [6, 7]
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Chapter 3 Proposed Method

The goal of our work is to generate the 3-D depth map of a single image. Similar
to the work in [5], we aim to use perspective geometry as a main cue for depth
estimation. We consider images taken in urban scene in which we usually can find
some structural geometric information, such as road and buildings, in the scene.

Our system starts from decomposing an image into several components. By
classifying the components into different types, together with the estimated vanishing
point, we generate initial depth gradient maps in both vertical and horizontal
directions to reveal the spatial orientation for.each component. After that, more
information, such as wanishing lines and rocclusion boundary will be integrated
together to form refined depth gradient maps by using.a CRF model. Finally, with the
refined depth gradient' maps, we integrate the depth gradient maps to estimate the
orientation and position for each component and reconstruct the 3-D depth model for
the whole image. In Figure 3-1, we show the flow chart of our system. In this chapter,

the details of our model will be introduced.

Image Depth Gradient CRF Model Depth Map
Image - LA L ! Depth
Decomposition Initialization Optimization Reconstruction

Figure 3-1 Flowchart of our algorithm

3.1 Image Decomposition

In the aforementioned works [5-8, 12], either semantic labeling or geometric

labeling can guide people to recover a depth map from a single image, relying on the
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property of each label. In [11], the authors classify each region in the image into three
geometric classes: ‘support’, “vertical’ and ‘sky’. We use the work in [11] by taking
the advantage that these types have very different properties when assigning the depth
value. The process starts from decomposing an image into several components and
then classifies those components into three geometric types.

However, in [11], the authors use over-segmentation techniques and perform
grouping recursively. The reason they use small regions is to prevent incorrect
segmentation results and to collect useful cues, such as colors, textures, to reduce the
probability of incorrect segmentation. .In- contrast, we apply the spectral matting
method in [13, 14] to acquire image decomposition with larger spatial support. In our
experiments, we found that ten to fifteen components are usually sufficient for the
subsequent analyses:

In Section 3:3.1, we will briefly introduce the spectral matting method. In
Section 3.3.2, we will introduce how we modify the spectral matting algorithm and

show the matting results.

3.1.1 Image Matting with the Matting Laplacian

Spectral matting is introduced by Levin et al. in [13]. In their work, they
generalize the compositing Equation (3.1) by assuming that each pixel i is a convex
combination of K components F%, ..., F¥:

K K
I, =Y aF* where > af =1and a >0, Vi. (3.1)
k=1

k=1

The vectors ¢ are the matting components of the image, which represent the
fractional contribution of each layer. They then find the smallest eigenvectors which
correspond to the smallest eigenvalues of the Matting Laplacian matrix and utilize the
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fact that to find the matting components is the same as to find a linear transform of

these smallest eigenvectors. One example is shown in Figure 3-2.

Figure 3-2 Example given by Levin et al.[13].(a) Input Image. (b) Matting Components.

The Matting Laplacian is an-affinity matrix specially designed for image matting.

The key assumption of-this.approach is the color line model:. the foreground and the

background colors within a local image window..@; around Pixel i lie on asingle line

in the RGB color space. Under this assumption, « value can be expressed as a linear
transformation in the window @, . The description is written as:
"R +a%1%+a%1.P+ b (3.2)

View o =a

Here, i is index of the pixel, 1.X,1.°,and 1.°

: .~ are values of the RGB channel, and a R'
a © a®and b as constants in the window.

Based on Equation (3.2), a cost function J(«,a,b) over all image windows can be

defined as
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I ab)=3 3 (-3 -2 1 - a°1°~ b)) +efa,|.  (33)

gel iew,

A quadratic cost function of a is then denoted as

J(a)=a'La. (3.4)

In Equation (3.4), L is called the matting Laplacian, which is a sparse
symmetric positive semi-definite N x N matrix, and a isa N x1 vector, where N
is the number of image pixels.. The -matrixL. is defined as the subtraction of a

degree matrix D by anaffinity matrix A; thatis, L = D— A< Here, D is a diagonal

matrix, whose elements are defined as D(i,i):ZLA(i, j). A is the sum of the
matrices A, with;the entriesof A, representing the affinities among pixels inside a

local window , . That s, A:Zqu and

A, )=
-1
1 ..
m 1+(Ii_uq)T[Zq+®UJ (Ij_uq) (I’J)Ea)q (35)
0 otherwise.

In Equation (3.5), I; and I, are the color values of the input image I at Pixels i and j,

n, isthe 3x1 mean color vector of the image data in the window «,, X, isa 3x3

covariance matrix in the same window, ‘a)q‘ is the number of pixels within the window,

and U is the 3x3 identity matrix [13].

Note that we can also view Matting Laplacian as the connectivity between pixels
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in the image. This good property also provides global information for the whole
image which will be used in later sections. Here, we provide an example of getting
matting components by constructing the Matting Laplacian matrix via the method
proposed by spectral matting. We take an image as input and set the matting

component number as 10. (See Figure 3-3)

(b)
Figure 3-3 Result of Spectral Matting [13]«(a) Input-image. (b) Matting Components.

However, as we can see the results obtained by exploiting only color information
are easily influenced by illumination. We use Figure 3-3 as an example to demonstrate
the effect of incorrect area merging. In the left part of the original image, some cars
and pedestrians are in front of a building. We expect they should be in different
components, but the matting component result shows some parts are mixed. To make
the image decomposition results more consistent, we make some modifications over

the spectral matting algorithm.
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3.1.2 Modification of Spectral Matting

The main idea of modification on spectral matting is to get additional channels
besides RGB color channels when constructing the matting Laplacian matrix so we
may get a more suitable decomposition. For example, though the road and the
building are similar in color, they may be very different in texture. An intuitive choice
of the additional channels is to choose appropriate texture features. In this thesis, we
use Law’s filter mentioned in [15] to get the texture features. The measures are
computed by filtering the image with small kernels and performing a moving-window
to sum up the absolute values of the filter responses around each pixel.

We search for those. texture filters that can be used to.group pixels with similar
properties. In [15], Law designed-a set of filters to extract textures for the purpose of
image segmentation. Law’s filter-is-composed-of small convolution kernels, typically
5x5, which are generated from a set of 5x1-1-D convolution Kkernels. These 1-D

convolution kernels stand for Level, Edge, Spot, and Ripple, as shown in Figure 3-4.

Ly (Level) =[ 1 4 6741 ]
E. (Edge) =[-1.-2°0 2 1]
S; (Spot) =[-1 0 2 0 1]
R, (Ripple)=[ 1 -4 6 -4 1]

Figure 3-4 1-D kernels of Law’s filter.

Each convolution kernel has different property. Ls is a center-weighted local
average, Esdetects edges, Ssdetects spots, and Rs detects ripples. By combining the
1-D features, those kernels can achieve rotational invariance. To generate 2-D
convolution kernels, we take one vertical 1-D kernel convolving with one horizontal
1-D kernel. For example, EsSs kernel is produced by convolving a vertical Es kernel

with a horizontal Ss kernel. All the 5x5 masks are shown in Figure 3-5. Because of the
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property of each channel, all convolution kernels used are zero-mean with the

exception of the LsLs kernel.

LEVEL

EDGE

RIPPLE

Figure 3-5 2-D masks of Law’s filter.

Those texture filters are applied to 'the test image to create 16 filtered images
from which texture features are computed. After that, texture energies are computed
by summing the absolute value of filtering results.in each window. The 16 energy
maps can be further reduced by combing similar filter pairs to produce 9 energy maps.
For instance, EsLs detects horizontal edges while LsEs detects vertical edges. By
averaging EsLs and LsEs, rotational invariance is achieved. We apply Laws’ filters on

our test image and Figure 3-6 shows the texture responses.

LsEs EsLs LsRs/ RsLs  EsSs/ Ssks
( #k‘:g Ss8s RsRs LsSs/ SsLs
RN ESE; E:Rs RsEs  SsRs/ RsSs

Figure 3-6 Image texture responses of Laws’ filter
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The resulting texture energy maps are treated as additional channels besides
color channels. Now the terms in matting Laplacian matrix are extended as in

Equation (3.6).

AL ()=

1[1+ (I‘i _"Iq)T [Elq+g UIJ (Ilj_l’-|q)J (i) € o, (36)

0 otherwise.

Since there 9 texture channels added, we rewrite Equation (3.5) as Equation (3.6) in

order to show the difference in-some terms. Forl,1';and p. , we only need to

extend the original 3x1 vector which indicate RGB color channels into a 12x1 vector

which cascades texture channels-after color channels. ' is now a 12x12 covariance

matrix in the same'window, and U' Is the 12x12 identity matrix.

The result of image decomposition after applying:-some madifications on spectral

matting is shown in Figure 3-7.

Figure 3-7 Modified spectral matting with additional texture channels.

3.2 Initialization of Depth Gradient Maps

Though there are still some depth variations in each component, we assume they
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have the same trend in depth variation. We take each matting component as a planar
surface. In this section we intend to infer the depth variation trend by classifying each
component based on its geometric property and by detecting the position of vanishing
point. Instead of assigning the depth value directly, we care about the depth variation
between pixels which is called the depth gradient. In this section, the proposed
method for the construction of depth gradient maps consists of three major steps: 1.
matting component classification, 2. vanishing point detection, and 3. depth gradient

map initialization. We will introduce each of them in the following subsections.

3.2.1 Matting component classification

To assign depth“values according to object type, we classify each object into
three geometric classes: ‘support’;-“vertical’, and ‘sky’. Like otherlabeling works, we
need some cues to-estimate the geometric labels. In this step, we compute the
appearance features in each matting component and find their' geometric class. Here
we use the surface layout approach [11] mentioned in Section 2.2. In their algorithm,
there are 7 surface labels, including subclasses of ‘vertical’ class. The resulting maps
present the likelihood of 7 possible classes. For “convenience, all the maps are
normalized to sum up as one. Though we plan to estimate the plane orientation for
each component, we discard the use of subclasses maps. The likelihood for subclasses
gives some confidence about the orientation of vertical classes. However, like other
semantic labeling tasks, when classifying the image into more labels, classification
accuracy in each subclass would be decreased. Hence, we only focus on the three main

classes and Figure 3-8 shows the result.
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(@) (b) (© (d)
Figure 3-8 Result of Surface layouts. (a) Input Image. (b) Ground likelihood. (c) Vertical likelihood. (d)
Sky likelihood.

For each region, we compute the average value of likelihood for each class, and
find the maximum value among three classes which correspond to the most possible
class. To illustrate the classification result; we use the matting components in Figure

3-7 as an example and its classification result is shown in Figure 3-9.

(ground)  0.06 0.26 0.03 0.01 0.01
(vertical) [ 0.94 0.74 0.29 0.93 0.99
(sky) 0.00 0.00 0.69 0.06 0.00
(ground) 0.82 0.00 0.20 0.07 0.22
(vertical)  0.18 0.96 0.80 0.92 0.78
(sky) 0.00 0.04 0.00 0.01 0.00

Figure 3-9 Geometric classification for the matting components in Figure 3-7.

3.2.2 Vanishing point detection

There are numerous research works that detect the vanishing point. However, it
is not the main purpose of this thesis to go deep into this topic. We simply state the
need of our problem and find an appropriate vanishing point detection method that fits
our need.

We aim to find a vanishing point associated with the direction of the main road
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of the urban image. Moreover, the algorithm should also work for clustered scenes to
some extent. Many vanishing point detection algorithms use edge-based methods.
They detect long lines in the image and find the intersections of lines to vote for the
vanishing points. However, these algorithms are usually sensitive to spurious edges in
the scene.

Kong et al. [16, 17] proposed a similar model but used texture orientation rather
than the explicit line detection. In their approach, they first compute texture
orientations for each pixel by using Gabor filters of different orientations. The texture
orientation is chosen as the filter orientation.which gives the maximum average
complex response at each pixel, as-shown in Figure 3-10 (b). They then determine the
confidence of the orientation at each position.  In Figure 3-10 (c), bighter pixels
correspond to higher. confidence in orientation estimation. A-locally adaptive soft
voting scheme is applied to find the most probable vanishing point in the image. In
their algorithm, points around the upper part of the image are less favorable since
vanishing point is less likely to appear there. We" use-the work proposed by Kong to
obtain a more accurate vanishing point while pay more ‘time to compute it. We show

an example of their algorithm in Figure.3-10 (d).

(@) (b) (©) (d)
Figure 3-10 Illustration of Kong’s algorithm [16, 17]:

(@) Input image. (b) Texture orientation. (c) Confidence map. (d) Detected vanishing point.
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3.2.3 Depth gradient maps initialization

After the detection of vanishing point, we attempt to blend the geometric
information of vanishing point detection with these geometrically classified
components to build up an initial 3-D geometric model. Here, we use a CRF model,
which will be discussed in Section 3.3.

Up to now, though we still lack the absolute depth value for each pixel, we can
estimate the rough orientation of each matting component based on the position of
vanishing point. In this thesis, the depth gradients along the horizontal and vertical
directions are modeled independently.

Here, we focus on components which are classified as vertical planes. Assuming
there are no floating ‘objects, all-the ‘vertical” components stand on the ground and
their depth values are unchanged-in the vertical direction. In.contrast, the depth
gradient along the horizontal direction Is to be determined. Here, the horizon position
of the vanishing point provides ‘'us the‘evidence about whether a vertical object is
facing to the left or to the right of the viewer.-More clearly, those components with
their center on the left side of the vanishing point are'likely to face right with respect
to the viewer and those components on the right side of the vanishing point are likely

to face left. Figure 3-11 illustrates this idea.

Figure 3-11 Geometric information provided by vanishing point for “vertical’ regions.

Unlike the case for “vertical’ components, the ground region can be regarded as a
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planner surface, which is almost parallel to the horizon of our view in the world
coordinates. As we move closer to the position of vanishing point the depth value
increases, as shown in Figure 3-12. For the sky region, since it is always the farthest
in an image, we ignore its depth gradient and simply assign zero values for this

region.

Figure 3-12 Geometric information provided by vanishing point for ‘ground’ regions.

Now, we explain the definition-of labeling rule for the depth gradient maps in the
horizontal and vertical directions. For horizontal depth gradient map, we consider the
direction of depth gradient to' be from"left to right. Here, 'we use discrete labels,
instead of computing real-value. depth gradient values, ‘in. order to make the
assignment fast and simple: We only consider the possible trends of depth gradient by
classifying all possible values into five groups. Components with its orientation facing
to the right means their depth increases as getting closer to the vanishing point. Since
we get positive depth gradients for these components, this type is named as ‘increase
continuously’. In the same way, for components whose depth decrease in the
horizontal direction are named as ‘decrease continuously’. Besides, zero depth
gradient components are named as ‘unchanged’.

Additionally, until now we have discussed those cases with gradual changes in
depth and the case with zero depth gradients. However, there are some boundaries

between different components at which we expect the depth value will change
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abruptly. Hence, we define two additional labels, named as ’increase abruptly’ and
‘decrease abruptly’.

Now we consider the labels for the depth gradient map in the vertical direction.
In the vertical direction, “vertical’ components are labeled as ‘unchanged’ since they
stand on the ground and have a constant depth value. For the ground region, it is a
planar surface and its depth increases as getting closer to the vanishing point. Hence,
we label the ground region as ‘increase continuously’. In fact, the depth ordering of
the objects with respect to the camera viewpoint will be consistent with the projected
components in the image. Those compoenents at lower positions in the image often
occlude those at higher positions.-With this assumption,-all the boundaries will be
assigned the ‘increase abruptly’ label. In Figure 3-13, we illustrate the labeling result

of the initial depth gradient maps in different gray-levels.

- (Decrease abruptly)
- (Decrease continuously)

. (Unchanged)

(@)
(b) (c)

Figure 3-13 Initial labeling of depth gradient maps. (a) Input Image. (b) Depth gradient map in the

horizontal direction. (c) Depth gradient map in the vertical direction.

3.3 CRF Model Optimization

Up to now, we have obtained the initial depth gradient maps by using the

geometric classification results of surface layout geometric classification and the
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geometric cues constrained by the vanishing point. This can be regarded as the initial
geometric model of the image. However, there are some other issues that we have not

considered yet.

One concern is about the occlusion boundaries. Occlusion boundary refers to the
boundary where a scene occlusion occurs. That is, the occluding object blocks the
views of the occluded objects behind it. In Section 3.1.2, we have handled the
problem that at matting boundaries the result may be blended with adjacent
components through adding texture channels. However, it is still not enough to
distinguish occlusion boundaries "that are between different objects from those
boundaries that are actually not between two different objects. Figure 3-14 gives an

example.

Figure 3-14 An example of non-occlusion boundaries.

Another concern is the orientation of ‘vertical’ components. In the previous step,
we simply assign their labels with one of two possible situations: either facing-left or
facing-right. Nevertheless, it is also possible for a “vertical” component to face right in
front of the camera, like the building and the cars in the orange rectangles in Figure

3-15. Here, we attempt to take this case into consideration.
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Figure 3-15 Examples of facing-front “vertical’ components.

In the following sections, we will handle the issues mentioned above which
employ extra geometric constraints on orientation estimation and boundary detection.
Moreover, we want to use a graphical model to-obtain a global solution for depth
gradient reasoning based on the extra information provided by geometric constraints
and boundary detection algorithm. This model is a conditional-random field (CRF)
model which will“be introduced in later sections. In Section 3.3.1, the occlusion
boundary algorithm.is introduced. In Section 3.3.2, we detect vanishing lines in three
main directions which will be used as geometric constraints for object orientation
estimation. In Section 3:3.3 and Section 3.3.4, we will-describe the adopted CRF

model and state how we formulate our problem by using the CRF model.

In this section, we will first demonstrate the result we want to obtain. The
example in
Figure 3-16 illustrates how a CRF model can improve the global consistency of the
depth gradient map labeling.

29



Il (Decrease abruptly)
[l (Deerease continuously)
- (Unchanged)

[ ] (Increase continuously)
[ I{Increase abruptly)

Figure 3-16 Horizontal direction: (a) Initial depth gradient map. (b) Refined depth gradient map.
Vertical direction: (c) Initial depth gradient map. (d) Refined depth gradient map.

3.3.1 Occlusion boundary

Our work for finding occlusion-boundaries is mainly inspired by Hoiem’s works
in [6, 7]. Since the‘appearance of objects may beinhomogeneous and may consist of
different color/texture regions, it Is not so straightforward to distinguish occlusion
boundaries from non-occlusion _boundaries. In Hoiem’s work, they estimate depth
from image segmentation and perform figure/ground assignment using machine
learning techniques. In our case, some modifications will be made over their approach
to deal with images of urban scenes.

Here, we make a briefly review of Hoiem’s work. Their algorithm starts from
over-segment the image first and then recursively remove those unlikely edges to get
the final boundaries. Depending on the region size, their classification algorithm
consists of three stages to learn different classifiers with different features. In the third
stage, they use features which measures over a larger spatial support besides local
features. The algorithm does the merging process iteratively in the third stage by
setting a threshold over the occlusion boundary likelihood value until no more

components can be merged.
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In our work, the number of matting component is typically ten to fifteen whose
region is large enough to obtain valuable spatial information. We consider eliminating
the first and second stages in their occlusion boundary algorithm and use the third
stage classifier only. We take the matting components as the input and measure
occlusion cues within each matting component. Through this process, we get the
measures of boundary information while maintaining the boundaries generated by
matting. After that, we use the occlusion boundary classifier in the third stage of
Hoiem’s work and get the result of occlusion boundaries. Figure 3-17 shows an
example of the detected boundaries. In-the left figure, the white lines typified the
original boundary map. In_the rightfigure, we show the result of occlusion boundary
in which some non-occlusion boundaries are removed. In the image, the component to

the left of an arrow is.in front of the.component to the right of the-arrow.

(@ (b)
Figure 3-17 (a) Original boundary map (b) The result of using occlusion boundary algorithm [6, 7].

3.3.2 Vanishing line detection

Though Hoiem used vanishing line cues to obtain the surface layout, they mainly
use the vanishing line information to detect vertical/support surface. In this thesis, our
goal is to find the vanishing lines which can be classified into three main groups:
vertical, horizontal and lean. Besides, since we have detected the vanishing point

associated with the main road as mentioned in Section 3.2.2, the detected vanishing
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lines can help to construct the depth gradient maps in both horizontal and vertical
directions.

In our approach, we use the conventional edge-based method to detect vanishing
lines. This method is a part of the work proposed by Tardif et al. in [18]. In Tardif et
al.’s method, they use the canny edge detector to extract pixel edges and then use
Hough transform to detect straight lines. In Figure 3-18, we use random colors to
denote different orientations of vanishing lines. In the example shown in Figure 3-18,
blue color lines are vertical vanishing lines, green color lines are lean vanishing lines

and orange color lines are horizontal vanishing lines.

Figure 3-18 Three main groups of vanishing lines.

3.3.3 CRF Model Introduction

We aim to use a model to enable joint inference over initial depth gradient labels,
occlusion boundary likelihood, and geometric constraint to enforce a more reasonable
and consistent depth map.

A solution to this problem is to directly model the conditional distribution
p(y|x), which can be used to classify each pixel by the most likely depth gradient
label. In [19], John et al. first introduced the CRF(conditional random fields) model. A
conditional random field model is simply a conditional distribution p(y|X) with an
associated graphical structure.

John et al. [19] model the problem for the joint probability of the entire sequence
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of labels given an observation sequence. This model can be characterized by the
energy functions with two terms: unary and pairwise term, which are written as:

E(X):ZV/i(Xi|D)+ ZV/ij(Xi’Xj|D) (3.7)

ieV (i,j)e&

In Equation (3.7), D denotes the observation sequence, v corresponds to the set

of all image pixels, and € is the set of connecting edges of pixels, withi, jev.
Sometimes, the notation D will be ignored to simplify the formulation. The random

variable x; denotes the labeling of pixel i on the image. Any possible assignment
of labels is denoted as X | which takes values from the labeling setL . The first term in
E(X) is the unary term which models the negative log of the likelihood of a label

being assigned to the pixeli’ Pairwise term y .. takes. @ contrast sensitive Potts
model in which the cost is nonzero if neighboring pixel i and pixel j takes

different labels, asiexpressed in-Equation (3.8). -g(i,J) can be-any function which

measures the difference between neighboring pixels.

0 X =X

V/ij(xi’xj):{ (3.8)

g(i, J)- -, otherwise

For the CRF model, each™ X, € X “is-associated with a pixel iev and will take

an optimal assignment from the labeling setL. The corresponding solution can be
solved by finding the minimum energy of the CRF model. This is actually a maximum

a posteriori (MAP) estimation problem which can be denoted as
x" =argmax Px(x | D) =argmin E(x) (3.9)

The CRF model proposed by John et al. relates neighboring pixels only.

However, since this model lacks long range interaction, researchers recently proposed
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methods to extend the model to enables consistency in a region. In [20], Kohli et al.
proposed a method which allows the integration of multiple region-based CRF’s with
a low-level pixel-based CRF and eliminate those inconsistent regions. Equation (3.10)

shows their model:

E(X):Zl//i(xi|D)+ ZV/ij(Xi’Xj|D)+ZS:lr//c(Xc) (3.10)

ieV (i,j)e

The first two terms are the same as the original CRF model proposed by Lafferty
et al., while the third term, called the region consistency potential term, allows the
CRF model to be more flexible. The region consistency potential favors the case when

all pixels of a component take the-same label. In the third term of Equation (3.10), S

is a set of all possible image segmentations.and the term y " the corresponding

higher order potential defined on those segmentations. /. is also called the higher

order potential term.

More formulation details:about the CRF model will be explained in Section 3.3.4.
We use an example here to show one-of Kohli’s results which applied the CRF model
to object segmentation and recognition problem. In Figure 3-19, (a) is an image for
testing and (b) to (d) shows multiple segmentations of the image by using different
thresholds. Figure 3-19 (h) is a hand-labeled result used as ground truth. Figure 3-19
(e), (P, (d) show the result of using unary potentials only, using pair-wise CRF model ,
and using the higher order CRF model, respectively, for comparison. Figure 3-19 (e)
is the labeling result by using the unary likelihood potentials from textures. This often
gets broken result. By using the pair-wise CRF model, it enforces label consistency of
adjacent pixels. However, the result assigns the bird’s leg to the ‘water’ label. Figure

3-19 (g) shows the solution of the higher order CRF. In Figure 3-19 (b) and (c), the
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segmentation result only contains the leg of bird. Since it is surrounded by water
region, it is likely to be labeled as ‘water’. However, with multiple-segmentations, it
will get a higher cost for the third term when the two different labels ‘water’ and
‘birds’” are assigned to the pixels of the bird. This causes the leg of the bird to be

properly reserved.

Figure 3-19 Object segmentation and-recognition.using the'CRF higher order Model.

3.3.4 Formulation of CRF-Model

In this section ' we will describe how to formulate ourproblem into a CRF model.
As mentioned above; the higher order model-is able to achieve label consistency in a
region. In our case,swe aim to do a pixel-wised labelling problem while maintaining
the consistency of region label. Hence, the higher order'model is suitable for us to
take it as a part of the prototype of-system. In the following, we will show how we
integrate all the information to help the assignment of depth gradient maps.

First of all, we formulate the model with a set of nodes, which correspond to the

total number of pixels of the input image, and a labeling set L ={l,.1,.1,.1,.1.} which

corresponds to the five possible depth gradient values.
Unary potential term

The unary potential is often defined as the negative log of the likelihood of a
label being assigned to a pixel. In our model, we get an initial depth gradient map
which assigns the most likely label for each pixel. Moreover, we can also propagate

the likelihood term from the most likely label to other labels through a reasonable
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guess.

We first interpret how we define the cost based on the relationship between
possible labels. For Pixel i with the label ‘decrease abruptly’, it may be on a
non-occluded/occlusion boundary in real situation. Hence, it comes out to have two
other possible labels: ‘unchanged’ and ‘decrease continuously’ whereas there is little
chance for Pixel i to have an increasing depth since this case often appears on the
other side of image. So the cost of being labeled as ‘increase continuously’ and
‘increase abruptly’ is large. The same idea also applied on pixel i with label
‘increase abruptly’ which only differs: from the previous case in the changing
direction.

Another case is Pixel 'i with label ‘decrease continually’. It may be the case
that actually there is.a planar surface facing the front, so ‘unchanged’ could be a
second choice. We set all other labels with same cost value. The same manner also
applied for “increase continually’ label:

The possible situations, for “unchanged’, “is :for those pixels on horizontal
vanishing lines. For this case;, we force those pixels.to have ‘unchanged’ label by
giving high costs for other labels:

After that, we construct the cost plane which defines the penalty of assigning

label 1, to pixel i which is initialized as label | . The dimension of the cost plane

will be (number of possible labels) x (number of image pixels). The unary potential

term then consists of the sum over all pixels i of the cost plane, this can be written
as wi(%)=p0 el |xe Ik)_
The definition of p(X; €l |x €1,) is in Figure 3-20 Here we use a table to

illustrate the relationship of assigning label 1, to label I for each Pixeli. w, w,
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and w, are the weighting costs which we set w, as 0.5, w, as5,and w, as 10in

this thesis.

Ly oW, W W, W
I, W, 0 W, W, W
A W, W, 0 W, W
I, W, W, W, 0 W
I W, W, W, W, 0

[;: decreasing abruptly: [ : decreasing continuously; [ : unchanged;
[, : increasing continuously; [ : increasing abruptly.

Figure 3-20 Label cost in the label set based on the initial labeling guess.

Pairwise term

The pairwise terms. y/;, of the CRE.is typically defined as an edge feature based

on the color difference of a 4-neighborhood or 8-neighborhaod pixel pair. Instead of
using the conventional definition, we define it by using the Matting Laplacian matrix,
which has been used.to generate Matting components. The Matting Laplacian matrix
describes the connectivity between adjacent pixels in an image. The use of Matting
Laplacian matrix provides the.global information of the whole image and there is no
need to compute the pairwise term again. Here, we show the definition of matting

Laplacian again in Equation (3.11):

0 VX = X

vy (%, %;) ={g(i, i) ZZqu , otherwise

1 . ; N
where A, = wq[l+(li —p.q) (Zq +;U} (Ij —pq)] (1)) € o,

(3.11)

@

0 otherwise.

Region-based consistency potential

We now define the region based consistency potential term that takes the same
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form mentioned in Kohli’s work. This potential term is expressed in Equation (3.12)

1 s
V(%)= N‘(X°)5 ¥ max if Ni(x,)<Q, (3.12)

¥ max otherwise.

The behavior of Equation (3.12) is shown in Figure 3-21.

™

T /max — /_
Ve(Xe) 0

Figure 3-21 Behavior of the region based consistency potential term.

In Equation (3.12),ceS, where S is the set-of all the possible segments of an
image. N, (x.) denotes the number of variables in the segment ¢. that which are not

taking the dominant label and. Q controls “the rigidity .of the region-based
consistency potential term. In other words, the definition allows pixels within a
segment to have different labels if the amount of pixels which taking other labels than
the dominant one is greater than Q. ... here is a predefined threshold, whose value
depends on each label.

We use an example to illustrate the role of the region-based consistency potential.
In our model, one set of segments is the matting components got from spectral
matting, and the other set of segments is the result of Hoiem’s occlusion boundary
algorithm using matting components as the input. We show one example in Figure
3-22 which show the two sets of possible segments in our experiment. The main

difference between these two segmentations is over the building region in the right
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part of the image. Originally, the building was divided into three components by using
the spectral matting algorithm. After removing occlusion boundaries, the three

components are merged into one single component.

(a) (b) (©)
Figure 3-22 Set of possible segmentation..(a) Input Image. (b) Matting components. (c) Result

after using occlusion boundary-algorithm in.[6,.7] (Use different colors to represent different

segments for visualization)

Since the boundaries on -the-initial depth gradient maps.corresponds to the
boundaries for theregions in Figure 3-22(b), the maps may only deal with a few
points in a region 'which take different labels other than the major labels. In Figure
3-23, for the region in the orange box, the-majority of labeling is ‘decrease

continuously’. There are some points which are originally labeled as ‘decrease

abruptly’ to represent for boundary. * They will be considered as N, (x.) in Equation

(3.12). In the definition of Equation (3.12), these points labels as’ decrease abruptly’

will contribute some cost.

[
:

Bl (Decrease abruptly)
- {Decrease continuously)

{Unchanged)

| [_] (Increase continuously)
I:] {Increase abruptly)

Figure 3-23 Example of how region consistency works to remove non-occlusion boundary. (a)

Segmentation map. (b) Initial depth gradient map in the horizontal direction.
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As all the energy functions are defined for our CRF model, a graph cut based
expansion and swap-move algorithm can be used to lower the energy recursively to
get the final optimal solution. By using Kohli’s optimization algorithm, we get the

optimized depth gradient maps. (See Figure 3-24)

- {Decrease abruptly )
- {Decrease continuously)
(Unchanged)

[:I (Increase continuously)
T - [ |{Increase abruptly)

(@ (b) ()
Figure 3-24 Refined depth gradient maps. (a) Original Image. (b) Horizontal direction. (c) Vertical

direction.

3.4 Reconstruction of Depth Map

Until now, werhave built up the depth gradient-maps by using the CRF model
and also the estimated orientation for every component in the image. It means we are
ready to construct the 3-D depth. At the last stage, we attempt to reconstruct the
depth map image through the optimized depth ‘gradient maps in both horizontal and
vertical directions. We will first go through the camera model which helps us to better
understand the image plane and its relationship with the world coordinates. After that,
we introduce how to estimate the depth values for each component based on the depth

gradient maps.

3.4.1 Camera Model

In [6, 7], Hoiem et al. propose a zero-skew, unit aspect ratio, perspective model.

Here we use the same camera model to estimate 3D object locations. By assuming
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that all objects rest on the ground, given the horizontal lines in image and the camera
height we can estimate the 3D distance of the object with respect to the camera center.
The derivation of object location equations is mentioned in [21].

We first define some notations as follows: pixel coordinates (u,v) in animage is
normalized, with(0,0)at the top-left and(1,1)is at the bottom-right. (u.v.)is the

camera center in the image, and the horizon position of the vanishing point is named

asv,. In the world coordinates, we use the notation(x,y,z) where Z refers to the
depth and y is the object height. The camera center is defined as the origin of the
world coordinates. The ground.plane hasy = 0. The camera height isy_. Besides, f

is the focal length and @, is the tilt angle of the camera.
With the assumptions of zero-skew and unit aspect ratio, the transformation from

the world coordinates to the image coordinates can be written as

u f O ufl -0 0 ol
Vv =% 0 f v |[0 cos@,; =sinb y, Z (3.13)
1 00 0 sing, coséd, 0O L

By solving the equation above, we have

y = z(V—v, cOS Oy+f sin Gx)—fYC, and (3.14)

f cos O,+v,sin G,

o WUy sinf9x+z c0s 0x) (3.15)

Denote the bottom position of an object as (u,,v, ) .Since we have the assumption that
the object is on the ground, we have Yy =0. By plugging Equation (3.15) with u=u,

andy =0 , into Equation (3.14), Z issolved as
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7= fYe (3.16)

V=V COS Oy +f sin O,

Furthermore, we assume for all test images there must have the horizon position

within image. This means the camera tilt 6, is small and we can have the
approximation sin 6, ~ 6, and cos 6, ~ 1, with 8, =~ Vc;fvo Hence, Equation (3.16)

becomes

7z =1 (3.17)

Vp—Vo

The derived Equation’(3:17) will-be-used in Section 3.4.2 for depth estimation.

3.4.2 Depth Estimation

First of all, we can get ‘the ‘ground’ depth-easily through Equation (3.17), in
which its depth values.depend on the value of v only. The “Ground’ is regarded as a
horizontal planar surface, where the. depth value is constant along the row and
gradually increases toward the horizon line along the vertical direction of the image.
The depth of the ‘ground’ components is taken as the reference for other components
in the image.

Since Equation (3.17) comes from the settingy =0, it reveals the relationship
between the horizontal position of the vanishing point and the horizontal position for
objects on the ground. In other words, we need to estimate the distance in image
coordinates from the bottom position to the horizon position of the vanishing point.
As the bottom of an object gets closer, the depth value increases. In this chapter, we

simply named the horizontal position of the vanishing point as the horizon line.
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However, this is valid only when objects are not occluded by other objects. For
occluded objects, their bottom position seen in the image is not the real position of
their attachment on the ground. The estimated value is actually higher than the true
one.

With the depth estimation for the ‘ground’ component, we can infer the depth
values for those non-occluded vertical objects. We attempt to find the ground-vertical
boundaries which are indeed the bottom position for each object. We estimate the
ground-vertical boundary by using a canny edge detector over ground and non-ground
regions. Figure 3-25 shows the detected .ground-vertical boundaries which are

represented in red color.

Figure 3-25 Ground-vertical boundary.(shown in red color).

We denote the detected ground-vertical boundary pixels u,,v,. Here u,,v,

are vectors corresponding to pixel coordinates. Once we have found the boundary
pixels, the depth for vertical components can be obtained by assigning the same value
for each column. However, since the boundary pixels are actually not a straight line
there are some variations in the estimated depth value. To solve this problem, a
line-fitting model is used to fit all pixels on the ground-vertical boundary for
components which allows us to estimate the corresponding V¢ value. Here we use

the notation V° to differentiate from the notation vV which indicates the coordinates.
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By using a line-fitting model, we find both the slope m and the bias term b and

thus write this as Equation (3.18). Equation (3.18) states the relationship between u

and Vv value for each component on the ground. V° is the corresponding

ground-vertical boundary pixel computed by the line-fitting model at pixel (u,Vv)
The depth value at pixel (u,V) is then estimated as in Equation (3.19). We assign

the depth value column by column until all pixels in a region are checked.

ve=m#u+b (3.18)
_ Iy
z= (3.19)

We show an example of depth-assignment in Figure 3-26. The left figure is the
original image at which we focus on the region in blue box. The right figure shows
the corresponding depth map in the blue box region by using brighter orange color for
larger depth valuesvand the white line for the-fitting line’ of the ground-vertical
boundary. Recall that the origin of the image coordinates is at the top-left corner, the
slope of the line is smaller than 1. This-means-as U increases, the V° value increases
in a slower pace. This phenomenon can be observed clearly in the color variation of

the right figure.

vertical

Figure 3-26 Depth assignment at ground-vertical boundary.
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In addition, the position of vanishing point and the horizontal depth gradient map
also helps slope estimation. First, the vanishing point is taken when doing line-fitting
for the ground-vertical boundary of each component. In linear perspective geometry,
vanishing lines in the image converge at the vanishing point. If we use the vanishing
point as a guide, the estimated slope will converge at the vanishing point to satisfy the
geometric model of the scene.

Second, we utilize the orientation of components provided by the horizontal
depth gradient maps. For each vertical component, the orientation can be classified
into three groups: facing-left, facing-right-and facing-front. This information is very
useful to constrain our slope estimation result. For example, if we know the
component is facing right, the slope is supposed to have positive values. We collect
the maximum and minimum values of the'coordinates .\/. on the ground which lies at
the boundary between the ground and the component. The slope value is then
re-estimated by using the maximum.and-minimum values of the coordinates Vv to
impose correct orientation for each component:

For other ‘vertical’> components occluded by other components, the actual
attachments on the ground are occluded. For.this case, we can use the information
provided by non-occluded components to help generating a reasonable depth by

considering the occlusion relationship in the vertical direction.

@ (b)

Figure 3-27 An example of occlusion relationship between objects.
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For example, in the orange box in Figure 3-27(a) we show an image with cars
parked in front of the building. When the cars are projected into the image, they locate
at a lower position of the building. By checking their orientation in the horizontal
depth gradient map in Figure 3-27(b), both cars and building are facing-left planes.
We make an assumption that it is likely that the two components have the same slope.
Hence, we use the estimated slope and position of the non-occluded component (cars)
to estimate the slope and position of the occluded components (building). Hence, we
assign the same slope to the occluded component (building) while make a shift of
position so that the occluded component.is-deeper than the non-occluded component.

However, in the case that the occluded component has different orientation from
the non-occluded component, we simply estimate the slope and shift the bottom
position to a lower position.

Up to now, ‘we have considered the occlusion relationship in the vertical
direction. We also.need to consider the adjacent components. in the horizontal
direction. In Figure 3-28, though the slope direction of each component is right, but
some contradiction appears -when combining all the  components together. To
overcome this problem, we check the. v values at two sides of each component’s
boundary. Figure 3-28 (b) shows the original depth result with contradictory at the
boundary of buildings which changed abruptly from far to near. By checking the
assignment of boundary depth, we do some adjustment by reassigning the constant

term in the line equation and get the repaired depth as shown in Figure 3-28 (c).

(a) (b) (©)
Figure 3-28 An example of depth adjustment for neighboring objects.
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Chapter 4 Experimental Results

In this chapter, we will show some results of the proposed single-image depth
estimation algorithm. We collect some urban scenes that include a main road direction.
Since we aim to recover relative depth information, we do not take any calibration for
inputs images. To evaluate the performance our method, we also did some
experiments for Hoiem’s recovering occlusion boundary algorithm by taking the same
scaling factor for comparison. In the following, all the results are shown in log scale
using quantized color map for visualization. The color map ranges from blue to red
and passes through cyan, yellow, orange. In our depth.map, red indicates the closest
while blue indicates the farthest. Figure 4-1 shows. our depth estimation result
corresponding to vanishing lines-direction..The buildings with many horizontal
vanishing lines on it-are assigned a constant depth value. Besides, the building at the

right side of the image has an increased depth value toward the vanishing point.

Figure 4-1 Demonstration of depth map corresponding to vanishing line information. (a) Input image.

(b) Vanishing lines. (c) Depth estimation result.
We show more examples in Figure 4-2 with the vanishing point in the middle of

the image. Other examples have the vanishing point at either the left side or the right
side.
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(@) Input Image (b) Hoiem’s result. (c) Our result.

Figure 4-2 Result with the vanishing points in the middle of the image.
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(a) Input Image (b) Hoiem’s result. (c) Our result.
Figure 4-3 Result with vanishing points at the left/right side of the image.

Compared with Hoiem’s algorithm, our algorithm performs better in many
aspects. First, we are able to predict the orientation of components more accurately. In
Hoiem’s algorithm, they recovered the figure/ground relationship for images and do a

similar process as ours when assigning the depth value for each component based on
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their geometric classes. However, their method often infers incorrect depth values that
do not have geometric scene. For example, some buildings which should have an
increasing depth toward the vanishing point are assigned constant depth values in
Hoiem’s algorithm. Moreover, since we have taken the vanishing line as the
guidance in the line-fitting process mentioned in Section 3.4.2, we tend to have more
consistent depth value for the ground and vertical components especially at the
vertical-ground boundary. This can also be shown in the aforementioned results.

There are some limitations in our algorithm. Since one of our geometric
information comes from vanishing points detection, the vanishing point detection for
urban scene must be accurate to extract the correct.geometric information. Second, in
our segmentation process we use image matting technigue to segment the image.
Sometimes the segmentation result is not-correct when.adjacent-abjects are similar in
color or texture. This incorrect segmentation result will affect the estimation of depth.
For example, if some parts of a vertical region are mixed with the ground region, we
cannot find the correct ground-vertical boundary pixels and the accuracy of depth
estimation is reduced. Mareover, our results are also influenced by Hoiem’s occlusion
boundary detection. Sometimes, some unexpected region merging may occur.

Our algorithm is implemented in Matlab on an Intel Core i5-3470 3.2 GHz CPU
with 4GB memory. The computation time varies since the CRF model may take
different steps to achieve the optimal solution. Typically, it takes about 60 seconds to

process a 240x400 image.
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Chapter 5 Conclusion

This thesis focuses on the depth recovery from a single urban-scene image based
on combing linear perspective cues and the occlusion relationship in the image. We
segment the image into large components and construct initial depth gradient maps in
the vertical and horizontal directions based on linear perspective and geometric class
of the components. Besides, main directions of vanishing lines and non-occlusion
boundaries are used to revise the initial depth gradient maps based on a CRF model.
Our approach generates the depth map by integrating depth gradient maps.
Experimental results have demonstrated that the proposed method can deal occluded
objects in a clustered scene, and can better estimate the orientation of each component.
Our algorithm can generate more-accurate depth map if comparing with the method

proposed in [7].
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