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適用於 HEVC之 270MHz 4Kx2K@60fps整數像素移動估測設計 

 

 

研究生: 張珊榕                                  指導教授: 張添烜 博士 

 

國立交通大學電子研究所碩士班 

 

摘  要 

 

在視訊編碼過程中，整數移動估測(ME)是最複雜的，並且也是即時影像編碼

的瓶頸，尤其在最新的影像編碼標準 HEVC 中，因為遞迴式的編碼結構，更大

的預測單位大小(PU)，和高等移動向量預測方法(AMVP) ，使ME具有相當高的

複雜度和大量的記憶體頻寬。  

為了要符合即時編碼的需求，本篇論文將會展示一個有效率的整數移動估測

積體電路設計。我們的設計首先會省略任何大於16×16非正方形的PU的AMVP，

並且採用一個針對 PU 大小為 16×16，16×8，8×16，和 8×8 的五搜尋步驟的預測

性強化區域搜尋法(EPZS)，這兩個方法可以大幅降低搜尋點數數量達 78.1%並且

維持一定的編碼效果。而硬體架構上則使用交錯不同 PU 大小的 AMVP 和預測

性 EPZS 排程，而大於 16×16 的 AMVP 結果則由 16×16 為計算單位組成，這些

方法可以提高硬體使用效率並且解決的資料相依性的問題。而為了提高快速演算

法的資料重複利用和硬體的簡單性，我們使用兩組 8-way集合連結快取記憶體特

性的暫存器，分別用於 AMVP 和 PEPZS，且使用較小的 tag位置標示。 

從結果可以得到我們提出的演算法與 HEVC 的 HM 6.0 對照的 BDrate 表現，

在 YUV成分分別有 1.3%，1.4%，及 1.6%的降低。我們設計的硬體以 TSMC 90nm

的技術合成，需要 279K 邏輯閘數目量及 8K 位元組的晶片內建記憶體，在工作

頻率為 270MHz 的情況下，以處理畫面大小為 4Kx2K，每秒 60 張畫面的影片。 
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A 270MHz 4Kx2K@60fps Integer Pel Motion Estimation 

Design for High Efficiency Video Coding 

 

Student: Shan-Jung Chang                        Advisor: Tian-Sheuan Chang 

 

Institute of Electronics 

National Chiao Tung University 

 

Abstract 

 

Motion estimation (ME) processing is the most complex part and the bottle neck 

of a real time video encoder due to its heavy complexity, and large memory 

bandwidth, especially for the latest video coding standard, High Efficient Video 

Coding (HEVC), due to its recursive coding structure, larger prediction unit (PU) size, 

and advanced motion vector predictors (AMVP).  

To meet real time demands, this thesis presents an efficient VLSI ME 

implementation. This design first skips non-square size AMVP for PU size larger than 

16×16 and then adopts a 5-step predictive EPZS (Enhanced Predictive Zonal Search) 

algorithm only for PU size 16×16, 16×8, 8×16, and 8×8 to reduce the search points 

significantly by 78.1% while maintain the coding performance. The architecture 

design uses interlaced AMVP and predictive EPZS scheduling for different PU size 

and the 16×16 PU based partial AMVP computation for PU size larger than 16×16 to 

maximize hardware utilization and overcome the data dependency problem. To 

maximize data reuse while keep design simple for such fast algorithm, the proposed 

design uses separated 8-way set associative cache based search buffers for AMVP and 

predictive EPZS with reduced tag address indexing.  

The simulation result illustrates the BDrate performance drop by 1.3%, 1.4%, and 

1.6% for Y, U, and V component separately, when compared to HEVC reference 
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software HM 6.0. The presented design with 90 nm CMOS process costs 279K logic 

gates and 8K bytes of on-chip memory and is capable of processing 4Kx2K 60fps 

video when running at 270 MHz.  
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Chapter 1. Introduction 

1.1. Motivation 

The growing digital media technology such as digital television, mobile phone, 

internet video streaming, and home entertainment equipment has become an 

important role in our daily life. Most of us get the information all around the world 

through these media and devices. However, the multimedia data is too large to 

transmit or record without compression. The video codec is targeted to compress or 

decompress digital video effectively; an encoder converts video into a compressed 

format and a decoder converts compressed video back into an uncompressed format. 

With the video codec and compression, the multimedia information could be 

transmitted and stored as digital signal. In order to keep the good quality of the video 

for the users, the video encoder should effectively compress the data. It is quite 

complex to keep the video quality the quantity of the video data needed to represent. 

Because the multimedia data is transmitted or stored under various constraints such as 

storage size, real time encoding, and power consumption. Therefore, the video 

compression process needs to exploit the redundancy within or between each frame to 

reduce the bitrate with minimum video quality loss.  

The encoder exploits the subjective, spatial, temporal, and statistical redundancy 

of the video. Because moving videos contain significant temporal redundancy, for 

example, successive frames are very similar, it is useful for compression. The amount 

of data to be coded can be reduced significantly if the previous frame is subtracted 

from the current frame, and that is why motion estimation and compensation are 

widely applied to video compression. It is very useful and efficient; however, it 
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occupies very high computational complexity and energy consumption in the 

encoding process. Many technologies have emerged to get the balance between the 

coding efficiency and the complexity consumption. 

H.264/ AVC has been widely used for the application from the media broadcasting 

to the personal consumer electronics product nowadays. However, with the 

development technology of shooting and the economic growth, the demand for higher 

resolution video becomes larger and larger. High Efficiency Video Coding (HEVC) is 

a new Standard under the development by the ISO and ITU-T, and it is expected to be 

more efficient than its predecessor, H.264/ AVC. As well as its improved compression 

performance, HEVC has greater computational complex and needs longer coding time. 

Consequently, this becomes a crucial problem in the encoder development and is what 

we are going to discuss. 

Prediction Transform Encode

Reconstruct
Inverse 

Transform
Decode

Transmit or Store

Video Source

Video Output

Video Decoder

Video Encoder

 

Figure 1-1: Video codec flow 

1.2. Thesis Organization  

The organization of this thesis is as follows: in chapter 2, we introduce the new 

video codec standard – HEVC. In chapter 3, we first review some related works and 

then we will propose a fast hardware-friendly algorithm for our IME architecture. In 

chapter 4, we propose our architecture of the proposed fast algorithm. Then, in 

chapter 5, we list the final simulation results to demonstrate our proposed algorithm 
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and some encoded sequence comparison. Hardware implementation results of our 

motion estimation are also listed in chapter5. In the end, a conclusion is given in 

chapter 6. 
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Chapter 2. Overview of HEVC Standards 

2.1 Overview of HEVC 

High efficiency Video Coding (HEVC) is a new standard by the Joint 

Collaborative Team on Video Coding (JCT-VC). HEVC has the similar individual 

building blocks of the hybrid coding to H.264/ AVC, however, the flexibility of the 

block partitioning for prediction and transform coding is much higher. HEVC 

improves the coding efficiency compared to H.264/ AVC but it also increases the 

computational complexity and memory usage because of encoding high resolution 

video. HEVC is viewed as next-generation video coding standard for HDTV. It 

provides a bit rate savings for equal PSNR of about 39% for random access 

applications, 44% for low-delay use, and 25% for all-intra use [1][2]. 

Transform Quantization

Inverse Transform

Inverse Quantization

Deblocking FilterIntra Prediction

Motion Compensation

Motion Estimation

CABAC

LCUs of input image

Residuals

Prediction information

Transformed 

coefficients

Quantized 

coefficients

HEVC 

bitstream

C
u

rr
e

n
t 
P

U

Intra/Inter

Reconstructed image

SAO

ALF

Reconstructed 

Frame Buffer

 

Figure 2-1: HEVC encoding flow. 

2.2 Features in HEVC 

The video codec concept of HEVC is very similar to the H.264/ AVC, it can be 

viewed as a generalization of H.264/ AVC. Even though, HEVC has some different 

characters in this new video coding standard. It has larger prediction and transform 
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blocks and flexible partitioning in those blocks. The spatial intra prediction has much 

more direction mode. The inter prediction has a new motion vector prediction method 

for better IME performance and the FME also has two new interpolation filters. 

HEVC also has a new concept of adaptive loop filter for reconstruction signal after 

the SAO process [3]. All the improvement in the HEVC helps it gain high coding 

efficiency and low bit-rate for high resolution video coding application. 

2.3 Coding Structure in HEVC 

The HEVC standard uses block-based hybrid coding scheme that relies on 

motion-compensated prediction. Pictures to be encoded will be partitioned into largest 

coding units (LCUs). The LCU concept is like the macroblock in the standard H.264/ 

AVC. The maximum allowed size of LCU in HEVC is 64×64. 

A LCU consists of different sizes coding units. The Coding Unit (CU) is the basic 

unit of region splitting used for inter/intra coding. It is square and it may take a size 

from 8×8 up to the size of the LCU.  
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0
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0

CU1

1
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No Split Flag
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…
…

…
…

 

Figure 2-2: Coding Unit recursive partitioning 

The CU is recursive split into four equally sized blocks, starting from the LCU. A 

2N×2N LCU will be split into 4 N×N CUs with the split flag, and the process goes 

further to the next depth. This will build up a quad-tree structure of CU blocks. The 

CUs are sized from LCU to 8×8, and the depth is from 0 to 3.   

 
Figure 2-3: Example of Coding Unit structure [3] 
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The Prediction Unit (PU) is the basic unit used for prediction processes. The PU 

carries needed information for the prediction and brings the information from top to 

bottom depth through the prediction flow. The PU is not restricted to being square in 

shape. A CU could have one or more PUs, and the size for each PU could be as large 

as CU or as small as 8×4 or 4×8. 

 
Figure 2-4: Different PU partitions. [3] 

The Transform Unit (TU) is the basic unit used for the transform and quantization 

processes. TU shape depends on PU partitioning mode. TU will be square as PU is 

square, and it sized from 4×4 up to 32×32. TU is non-square when PU has non-square 

shape, it may be sized as 32x8, 8x32, 16x4, and 4x16. The TU size is as shown in 

Figure 2-5. Each CU may contain one or more TUs depend on the PU size, transform 

and quantization results. 

2N

0.5N

Square Non-Square

 

Figure 2-5: TU shape in HEVC 

 

2Nx2N Nx2N 2NxN NxN
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2.4 Advanced Motion Vector Prediction in HEVC 

The AMVP is a technique to find the best MVP by the spatio-temporal correlation 

of motion vector with neighboring PUs. AMVP builds its own motion vector 

candidate list by firstly checking availability of left, top, and temporal PU positions. It 

starts checking with A0, A1, B0, B1, B2 (as shown in Figure 2-6), and then the 

temporary PU. It will remove redundant candidates if it already gets enough 

candidates for the calculation. The encoder will choose the best predictor from the 

candidate list by the calculation and then sends the corresponding index of the chosen 

candidate. 

B2 B1 B0

A1

A0

 

Figure 2-6: Motion vector candidates [3] 

2.5 High Efficiency and Low Complexity in HEVC 

HEVC encoder supports two encoder configurations, which are High Efficiency 

(HE) and Low Complexity (LC). HE coding is designed to obtain high compression 

performance. It supports a bit depth increase up to 10 bit (Internal Bit Depth Increase, 

IBDI), full capability of loop-filtering process including ALF and CABAC as entropy 
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coder. LC is designed to obtain as high compression performance as it could while 

keeping the complexity to be low. It will not support IBDI and adaptive loop filtering. 

2.6 Challenges in HEVC Implementation 

To implement HEVC encoder is a huge challenge. HEVC for HDTV application 

results in complex video coding. To implement HEVC in hardware, however, will 

leads to high computational complexity, a large external memory bandwidth, and 

large size on-chip memory consumption. The computational complexity and memory 

usage will be our main design challenge if we want to implement HEVC on hardware. 

The following sections will develop an algorithm and architecture based on the 

concern of complexity and bandwidth cost.  
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Chapter 3. Proposed Integer Motion 

Estimation Fast Algorithm 

3.1 Related Works 

Block-based motion estimation is adopted by the HEVC. In block-based motion 

estimation, a block-matching algorithm searches for the best matching block for the 

current block. During the encoding process, motion estimation is the most important 

part. The integer motion estimation contributes a lot for the encoding performance but 

also dominates the complexity and bandwidth consumption because it uses 

block-matching strategy. To get the good performance while keep the balance with 

complexity and bandwidth consumption, many motion estimation algorithms have be 

proposed. Those algorithms focus on reducing computational complexity, and 

memory bandwidth loading, and that is quite an important issue for the 

hardware-friendly design. In this section, we will review some related motion 

estimation algorithms. 

3.1.1 Full search algorithm 

The well-known full search algorithm (FSA) is the most accurate and simplest 

method to find the best motion vector. It searches all search points within the search 

range. However, this approach gets it good performance by its heavy computational 

complexity since it will calculate every SAD result of all possible search points.  

As the full search algorithm searches all the possible point to find the best motion 

vector in a regular search flow, it is friendly for hardware design. The data within the 

search range could be fully reused, this decrease the huge memory access amount that 
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motion estimation usually faced. 

Because FSS needs to calculate all the SAD results of every search point in the 

search area, there are some other algorithms have been proposed to decide the 

checking point to reduce the computation amount. 

3.1.2 Three-step search and new three-step search 

first step

second step

third step

16

4

2

1

 

Figure 3-1: TSS search pattern 

Three-step search (TSS) [4] is a very popular fast search algorithm because its 

simplicity and good performance. As the initial step size is picked, 8 search points at a 

distance of the step size from the center are picked for calculation. The second step 

center will be moved to the point with the minimum distortion. And the step size for 

2
nd

 step and 3
rd

 step is halved and further. From the Figure 3-1, we can see the search 

points needed for TSS is 25 per macroblock, which is much less than FSS needs. 

However, the distribution of the global minimum points in real-world video 

sequences is centered at the position of zero motion (i.e., search window center) [5], 

the center-biased new three-step search algorithm (NTSS) has been proposed. It is an 

improved version of TSS; it adds 8 checking point at the first step, and targeted to 

achieve better performance with fewer number of search points on average. While it 

improves the search performance compared to TSS, it somehow loses the simplicity 
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and regularity of TSS [5] [6]. 

3.1.3 Diamond search 

first step

second step

third step

LDSP -> LDSP LDSP -> SDSP
 

Figure 3-2: DS search pattern 

The diamond search algorithm assumes most of motions have a center-biased 

motion vector distribution [6] [7]. This search algorithm begins with the center. It 

picks 9 checking points, one is at the center and the other eight one surrounded to 

compose a diamond shape, to calculate the difference. The diamond search pattern 

center will be moved to the point with the minimum distortion, which is known as 

LDSR to LDSR. If the minimum distortion point is at the center, the search pattern 

will turn into SDSP to check the neighboring four search points. The diamond search 

step is shown as Figure 3-2.  

Diamond search reduces the number of checking point efficiently. The average 

search point for diamond search algorithm is about 12 to 19. However, the reduced 

checking points affect considerably the encoding video [8][9]. And sometimes, DS 

has unrestricted number of steps when it is trapped by local minimum [10]. 

 

3.2 EPZS in HM 

The HM adopts the EPZS method for the default IME fast search algorithm. This 
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algorithm will check different searching points at each step [9] [11]. The distance 

between each searching point is doubled when the search is going to next step. For 

example, the distance between each search point in 1
st
 step is 1, whereas it is 2 and 4 

in 2
nd

 and 3
rd

 step separately. The default searching range in HM for the motion 

estimation is +/- 64 so the search steps for EPZS is seven.  

Dist

 

Dist

1 2 3

4 0 5

6 7 8

Square

 

Dist

 

1

2

3

4 0 5

6

7

8

Diamond

 

Dist/2

 

Figure 3-3: The original search point for EPZS square search and diamond search. 

There are two different EPZS search algorithm in the HM, one is square and the 

other is diamond. These two search algorithm have the same search points from 1
st
 

step to 4
th

 step, the search point position is like the square search shown in Figure 3-3. 

While when the step number becomes larger than 4, the search point position is a little 

bit different for these two search method. The diamond search method still keeps 9 

search points while the distance for top-left, top-right, bottom-left, and bottom-right is 

only half distance which it should be in corresponding step. These two different 

search methods both have good performance but different data bandwidth. The 

diamond search method has smaller data bandwidth because it will have more data 

reuse rate according to the search point position. We adopt diamond search method in 

EPZS for our later IME fast algorithm development. 
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3.3 Predictive EPZS in Proposed IME Fast 

Algorithm 

The HM adopts EPZS as its motion estimation algorithm. It has good performance; 

however, the good performance comes from the dispersive search point. Even though 

the search points needed for EPZS is less than full search, the total EPZS search point 

for all PU size is still a large number.  

The HM will do EPZS for each PU size, which means that it has to do 57 search 

point calculation for each PU sized 2N×2N, 2N×N, N×2N, and N×N at each depth. 

The total number of search point is 23800 for one CU_64×64. This will lead to large 

computational complexity. 

In order to make the motion estimation faster, we need to cut down the number of 

search points as many as possible. There are many factors that dominate the number 

of search points. The first one is the search direction. The second one is number of 

search steps. And the last one is the different PU size do its own search separately. 

The later sub sections will talk about the analysis of EPZS search point and its 

relation with the three factors mentioned above. And we will follow those analyses to 

develop our fast motion estimation algorithm. 

3.3.1 Relationship of direction between each step 

The good performance of EPZS comes from the 8 different searching directions at 

each step. The 8 diverse searching directions results in high computational complexity; 

however, it can be reduced if we can predict the next direction. In order to predict the 

next direction, we need to find the relation between two consecutive steps. The 

relation may be traced by the content of the PU in the test sequence; the final 
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searching point decision at each step would possibly follow the similar direction or 

route. It is important for us to find the direction difference between the two 

continuously steps. 

From the two following plot, Figure 3-4 and Figure 3-5, it has higher probability 

to change the direction before step3; this means that the direction at later steps will 

follow the direction which has been chosen at previous step. This behavior concludes 

that the search at first 3 steps is much more important than the later ones because the 

searching direction in the first 3 steps may change more than the later ones, whereas 

the later ones has higher probability to follow the same direction as the one at 

previous step.  

 

Figure 3-4: Results for Different direction relation with step for 

RaceHorses_416x240. 
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Figure 3-5: Results for Different direction relation with step for 

BasketballDrive_1920x1080. 

 

3.3.2 Selection of search direction 

There are 8 searching points each step for EPZS algorithm, which means that for 

each PU size, the total searching points will be 8 SPs × 7 steps = 56 searching points. 

With 56 searching points for each PU sizes, the computational complexity will be 

very large. To reduce the number of search points and the computational complexity, 

the decision of search direction for EPZS at each step would be very important. 

The simulation results reveal the relationshidip of direction between the previous 

step and the current one, as shown in Figure 3-6 and Figure 3-7. There are 8 searching 

points each step so the degree between the previous and current step would be 0⁰, +/- 

45⁰, +/- 90⁰, or +/- 135⁰. The probability for EPZS to choose the same direction as the 

previous step is very high whereas is very close to zero when the degree difference is 

more than 45⁰.  
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Figure 3-6: Probability of different direction at next step for RaceHorses_416x240. 

Table 3-1: Probability of different direction at next step for RaceHorses_416x240 

 0⁰ +/-45⁰ +/-90⁰ +/-135⁰ +/-180⁰ 

Average 0.865065 0.100924 0.012062 0.003022 0.004166 

 

Figure 3-7: Probability of different direction at next step for 

BasketballDrive_1920x1080. 
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Table 3-2: Probability of different direction at next step for 

BasketballDrive_1920x1080 

 0⁰ +/-45⁰ +/-90⁰ +/-135⁰ +/-180⁰ 

Average 0.860406 0.096112 0.008742 0.007685 0.004454 

As shown in Figure 3-6 and Figure 3-7, the two difference sequence results, one is 

Class B with high motion (BasketballDrive_1920x1080) and the other one is Class D 

with high motion (RaceHorses_416x240). Both of these two sequences have the same 

behavior that the probability for direction degree of 0⁰ or 45⁰ is much higher than 

other degree. According to their behavior, EPZS may only need to check the same 

direction as the previous step or the two neighboring directions. This predictive EPZS 

(PEPZS) is shown in Figure 3-8. 

 

Figure 3-8: Modified searching point at next step. 

With the modification mentioned above, we can get the simulation results as 

shown in Table 3-3. For low and high QP, the bitrate will increase at most 1.02% and 

the vaule of PSNR decreasing will under 0.03. 

Table 3-3: Results for PEPZS. 

 
 

Original Modified Difference 

QP Bitrate PSNR Bitrate PSNR Bitrate % PSNR 

BasketballPass 

416x240 

22 1511.172 39.5281 1526.602 39.523 1.02% -0.0051 

37 148.8864 28.7357 149.3064 28.7121 0.28% -0.0236 
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BlowingBubbles 

416x240 

22 1858.804 38.1771 1862.908 38.1744 0.22% -0.0027 

37 163.208 28.2231 163.656 28.2281 0.27% 0.005 

BasketballDrive 

1920x1080 

22 26190.18 39.3694 26256.25 39.3699 0.25% 0.0004 

37 4230.6 35.425 4245.1 35.4284 0.34% 0.0034 

 

3.3.3 EPZS search steps and bandwidth analysis 

There is an early termination condition for EPZS. The early termination is on 

when the EPZS have the same SAD results for 3 steps in a row. It will stop the further 

EPZS and use the result at the current step.  

With the early termination, the computational complexity and bandwidth would be 

reduced a lot. In the Figure 3-9, the original consumption of memory bandwidth is 

very high to the modified EPZS in Figure 3-8. As the step goes larger, the increasing 

amount of memory bandwidth consumption grows quickly for the original EPZS, 

while it increases not that much for the EPZS modification. 

 

 

Figure 3-9: The memory bandwidth reduction with early termination. 
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Table 3-4: The memory bandwidth reduction at each step and with early termination. 

Step 

Count 

Step 3 Step 4 Step 5 Step 6 Step 7 

Original 1.55 KB 2.21 KB 3.21 KB 5.21 KB 7.21 KB 

Modified 1.42 KB 1.83 KB 2.08 KB 2.58 KB 3.08 KB 

From the simulation results in Figure 3-10 and in Table 3-5, we can find that most 

of the searching will be ended at step.3 if it meets the early termination condition, the 

next searching SAD calculation will be cut off and the system do not to need to load 

any more for next searching point.  

 

 

Figure 3-10: Early termination probability at each step. 

 

Table 3-5: Early termination probability for each PU size at every step for RaceHorses_416x240. 

  step 3 step 4 step 5 step 6 step 7 

PU_64×64 0.188005 0.310596 0.298128 0.152905 0.050368 

PU_64×32 0.04785 0.209133 0.247056 0.320096 0.175864 

PU_32×64 0.044018 0.174289 0.218883 0.331507 0.231303 

PU_32×32 0.196024 0.324827 0.282737 0.139079 0.057333 

PU_32×16 0.068425 0.219711 0.2431 0.264324 0.20444 

PU_16×32 0.060552 0.210402 0.233748 0.281853 0.213445 
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PU_16×16 0.257562 0.334026 0.242902 0.11147 0.054039 

PU_16×8 0.297505 0.338639 0.218877 0.095603 0.049376 

PU_8×16 0.298328 0.337522 0.217305 0.096868 0.049977 

PU_8×8 0.347569 0.34672 0.189285 0.07547 0.040957 

PU_8×4 0.393838 0.35341 0.16489 0.056984 0.030878 

PU_4×8 0.392855 0.352398 0.164719 0.057835 0.032193 

The result in Table 3-6 shows the different probability at 4 different QP 

simulations. From the average value, the probability to early terminate at step 3 is up 

to 35% to 73%, and more than 50% that EPZS will be terminated at or before step 4. 

This could help us to decide how to add an early termination constraint on our design 

if the EPZS can not be finished in specific time. 

Table 3-6: Probability of early termination at each step 

   Step 3 Step 4 Step 5 Step 6 Step 7 

RaceHorses 

416x240 

22 24.2501 17.3408 21.4232 21.0376 15.9484 

27 39.4271 13.7942 17.2538 16.8337 12.6912 

32 56.6103 9.5758 12.1253 12.2618 9.4268 

37 69.9798 7.1739 7.6239 8.538 6.6844 

RaceHorsesC 

832x480 

  

22 32.3331 12.68 18.8522 19.0209 17.1137 

27 48.4898 10.4471 14.2276 14.0963 12.7392 

32 63.053 8.701 9.7851 9.5555 8.9055 

37 74.6346 7.2277 6.1866 6.0817 5.8694 

BasketballPass 

416x240 

22 46.079 17.3307 15.057 12.3487 9.1845 

27 56.8994 13.6769 11.8859 9.9168 7.621 

32 67.0048 10.4172 8.9616 7.6673 5.9492 

37 76.3703 7.2471 6.4241 5.5786 4.3798 

Average  

22 34.2207 15.7838 18.4441 17.469 14.0822 

27 48.2721 12.6394 14.4557 13.6156 11.0171 

32 62.2227 9.5646 10.2906 9.8282 8.0938 

37 73.6615 7.2162 6.7448 6.7327 5.6445 

With the result and the consideration of the limit working cycle for our hardware 

design, the performance of early termination should be acceptable if we cut off EPZS 

after step 5 even after step 3. 
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3.3.4 Bandwidth reduction by PEPZS 

For the EPZS part, the original calculation complexity for each CU_16×16 is very 

high, and the total data needed to be loaded is 20.75K bytes. From the above 

experiment results, we can reduced the searching points number from 56 to 29 for 

each PU size, what is more, with the early termination condition, the search points 

number will be reduced further. And with the reduced number of the searching points, 

the pixels needed to be loaded from the off-chip memory will be much lower than the 

original EPZS algorithm needs. The comparison result is as shown in Table 3-7. 

Table 3-7: Memory comparison between different ME algorithm. PU size is 16×16. 

 Full Search Original 

EPZS 

Square 

Original 

EPZS 

Diamond 

PEPZS 

Memory 

Access/PU 

20.75 Kbytes 7.25 Kbytes 6 Kbytes 2.35 Kbytes 

Memory 

loaded 

from 

MVP blocks + 

(W+2SR)(H+2SR) 

MVP blocks +  

SP blocks 

MVP blocks +  

SP blocks 

MVP blocks + 

reduced SP 

blocks 

 

3.3.5 PEPZS base PU selection for search direction 

Because of the design specification (will be described in Chapter4) we need to 

finish the overall IME process in 2220 cycles. Part of high computational complexity 

comes from the AMVP decision and others come from the PEPZS calculation; for this 

reason, we try to find a method to cost down the number of SAD calculations in 

PEPZS.  

In order to reduce the computational complexity, we need to lower the search 

points in the overall PEPZS flow. The original EPZS flow tests all search points for 

every sized PU; obviously, this will dominate the number of SAD calculation. If we 
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can only check the search points for specific sizes PU, the complexity will be reduced 

a lot. Therefore, we have to find the specific size unit as the base PU and use the 

direction of the base PU for the PEPZS. Table 3-8 shows the candidate for the base 

PU that we tested. 

Table 3-8: Tested cases for base PU selection 

  Description  

Case 1 Use CU_16×16 as base PU for PU size is smaller than 16×16. 

Case 2 Use CU_16×16 as base PU for PU size is 16×16, 16×8, or 8×16. 

Use CU_8×8 as base PU for PU size is 8×8, 8×4, or 4×8. 

Case 3 Do its own PEPZS when PU size is smaller or equal to 16×16. 

Others use CU_64×64 as base PU. 

Case 4 Do its own PEPZS when PU size is larger or equal to 16×16. 

Others use CU_16×16 as base PU. 

 

First, we only use the CU_16×16 as the base PU, and PU size smaller than 16×16 

will do the PEPZS with the same direction as CU_16×16. (both reference and 

modified HMs’ AMVP decisions follows the CU_64×64) 

Table 3-9: Use only the CU_16×16 as the base PU for search direction (AMVP_64×64) 

 Case 1 QP kbps Y psnr U psnr V psnr   

RaceHorses 

22 1518.09 39.99 41.36 42.4 13.00% 

27 725.8 35.75 38.42 39.56   

32 333.31 32.01 36.36 37.46   

37 157.99 29.15 34.88 35.9   

RaceHorses 

22 6343.38 40.1 41.62 42.93 13.20% 

27 2606.95 36.22 38.9 40.45   

32 1139.65 32.86 36.94 38.61   

37 513.67 29.92 35.6 37.27   

BasketballPass 

22 1845.84 41.07 43.76 43.18 5.50% 

27 922.17 37.06 40.85 39.88   

32 446.51 33.49 38.72 37.46   

37 224.6 30.51 37.25 35.74   
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In the second case, we use the CU_16×16 and CU_8×8 as the base PU, and PU 

size between CU_16×16 and CU_8×8 will do the PEPZS with the same direction as 

CU_16×16, other PU size smaller than CU_8×8 will follow the direction of CU_8×8. 

(both reference and modified HMs’ AMVP decisions follows the CU_64×64) 

Table 3-10: Use CU_16×16 and CU_8×8 as base PU for search direction (AMVP_64×64) 

 Case 2 QP kbps Y psnr U psnr V psnr BDrate 

RaceHorses 

22 1462.7 40.01 41.37 42.4 9.10% 

27 701.15 35.79 38.45 39.58   

32 327.29 32.06 36.36 37.46   

37 156.59 29.17 34.89 35.94   

RaceHorses 

22 6231.95 40.09 41.62 42.93 10.70% 

27 2548.61 36.23 38.9 40.47   

32 1120.69 32.89 36.96 38.63   

37 509.02 29.94 35.61 37.26   

BasketballPass 

22 1807.63 41.08 43.77 43.2 3.60% 

27 903.28 37.08 40.86 39.91   

32 442.1 33.5 38.75 37.5   

37 223.03 30.52 37.27 35.77   

 

From the above two tables, we can find that the performance with base PU does 

not reach the requirement, we try the third case: do PEPZS when PU size is smaller 

than CU_16×16. The results is better than the previous two cases, it means that the 

direction for each PU should been chosen by its own PEPZS but not by the base PU.  

Table 3-11: Use its own search direction when PU size is smaller or equal to CU_16×16 

(AMVP_64×64) 

 Case 3 QP kbps Y psnr U psnr V psnr BDrate 

RaceHorses 

22 1428.31 40.02 41.39 42.42 6.10% 

27 683.97 35.81 38.47 39.62   

32 321.11 32.1 36.41 37.5   

37 155.15 29.2 34.93 35.99   

RaceHorses 

22 6144.21 40.09 41.63 42.94 8.70% 

27 2500.58 36.24 38.93 40.49   

32 1102.82 32.92 36.99 38.66   
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37 504.16 29.97 35.63 37.3   

BasketballPass 

22 1788.14 41.08 43.78 43.21 2.20% 

27 893.05 37.09 40.9 39.91   

32 437.41 33.52 38.8 37.52   

37 222.2 30.54 37.3 35.8   

BasketballDrill 

22 3754.03 40.37 43.01 43.66 2.70% 

27 1788.61 37.12 40.42 40.76   

32 863.75 34.26 38.3 38.45   

37 438.91 31.82 36.41 36.27   

 

Below shows the Table 3-12, the BDrate result of all modification for the base PU 

chosen and PEPZS. (Both reference and modified HMs’ AMVP decisions follow the 

best candidate of CU_64×64) 

Table 3-12: Results of 3 different cases modification for PU chosen, with AMVP_64×64 

Modification 
Original 

EPZS 
PEPZS 

CU_16×16 

As base PU 

CU_16×16,CU_8×8 

As base PU 

PEPZS 

>=CU_16×16 

PEPZS 

<=CU_16×16 

RaceHorses 

416x240 
2.70% 5.50% 13.00% 9.10% 6.80% 6.10% 

RaceHorses 

832x480 
3.00% 4.70% 13.20% 10.70% 6.80% 8.70% 

BasketballPass 

416x240  
1.60% 5.50% 3.60% 2.80% 2.20% 

The two cases, doing PEPZS for PU sizes larger than CU_16×16 and doing 

PEPZS for PU sizes smaller than CU_16×16, give us very similar BDrate 

performance. In the concern of processing period for IME, the modification doing 

PEPZS for PU sizes smaller than CU_16×16 is much more appropriate for the 

hardware design. 

From the Table 3-11 we can find the BD-rate performance is not very good, the 

BD-rate is up to 8.7%, which is too high for the video codec. The modification in 

Table 3-9 to Table 3-11 is combining the modification of PEPZS and uses the AMVP 

result of CU_64×64 for each PU. We can see that the performance is too low when it 

only with one AMVP for every PU. Table 3-13 shows the result of PEPZS with the 
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original AMVP process, and the BD-rate performance is very good for the two test 

sequence. This shows the importance of the AMVP process, and that is what we are 

going to discuss in section 3.3. 

Table 3-13: Result of original AMVP and PEPZS. 

 HM_6.0 
Original AMVP + Do all PEPZS under CU_16×16 BDrate 

kbps Y psnr U psnr V psnr Y U V 

BasketballPass 22 1757.49 41.11 43.82 43.22 0.30% 1.20% 0.50% 

  27 874.24 37.13 40.94 39.95 
  

  

  32 428.01 33.6 38.83 37.59 
  

  

  37 218.07 30.65 37.38 35.88       

RaceHorses 22 1364.76 40.07 41.43 42.45 0.80% 1.10% 1.60% 

  27 652.12 35.93 38.51 39.67 
  

  

  32 307.77 32.26 36.45 37.56 
  

  

  37 149.56 29.37 35.01 36.04       

 

3.4 Modified AMVP in Proposed IME Fast 

Algorithm 

AMVP is a new concept in HEVC and this brings the good performance for 

HEVC encoding. The AMVP is very important as it is one process that will results in 

large computational complexity and cost a high memory bandwidth.  

The HM does the AMVP for each PU to get the best MVP. This help HM gain the 

good performance. However, the AMVP calculation for every PU leads to high 

complexity. What is more, the data for the calculation of MVP candidates are usually 

very diverse from the other. All these conditions are important issues that we need to 

concern when we develop the IME fast algorithm. The later sub sections will show 

the AMVP analysis and our result of modified AMVP. 
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3.4.1 CU_64×64 as AMVP base PU for LCU_64×64 

In HM 6.0, the original IME would do AMVP calculation for each PU size; each 

AMVP processes two candidates SAD calculations. There are total 401 PUs in each 

CU_64×64 and this leads to high computational complexity and cost much data 

bandwidth. For the hardware design, we need to concern the complexity and 

bandwidth and that is why we want to reduce the calculation of AMVP. What is more, 

AMVP will decide which searching point is the starting point for PEPZS so the 

AMVP is very important for the both IME and PEPZS performance.  

The simplest way to reduce the AMVP complexity is use the same MVP candidate 

for every PU in a CU_64×64. After the AMVP of CU_64×64, the candidate will be 

transmitted to the next depth and all of the rest sized PUs will use the same candidate 

as their PEPZS starting searching point. This could definitely reduce the complexity a 

lot; however, as shown in Table 3-14, the BD-rate compared to the original HM which 

allows every PU to choose its own best MVP is very bad. The BD-rate is 6.6% for 

luma component; this is not a good performance if we want to apply this on the high 

resolution video encoding. 

 

Table 3-14: Result of AMVP_64×64 and original EPZS. 

 HM_6.0 
AMVP_64×64 + Original EPZS BD-rate 

kbps Y psnr U psnr V psnr Y U V 

RaceHorses 

 416x240 

  

  

22 1386.83  39.80  41.07  42.12  6.60% 5.80% 5.30% 

27 665.54  35.68  38.17  39.34    
 

  

32 311.84  32.04  36.15  37.30    
 

  

37 149.67  29.17  34.69  35.79        
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3.4.2 Different AMVP base PU analysis and results  

Because the experience from the section 3.3.1, we can find that the performance 

will not match requirement if HEVC only supports only one best MVP for every PU 

in a LCU sized as 64×64. Here we try some combination of PEPZS and AMVP 

modification, as shown in Table 3-15, to find the best method for the PUs’ AMVP 

chosen. These combinations are being considered because of the importance of the 

AMVP size that tested. 

Table 3-15: Tested cases for AMVP base PU selection. 

  Description  

Case 1 Only do AMVP for PU_64×64 and PU_8×8.  

Do PEPZS for PU size smaller than PU_16×16. 

Case 2 Do AMVP for PU_64×64 and PU size smaller than PU_8×8. 

Do PEPZS for PU size smaller than PU_16×16. 

Case 3 Only do AMVP for PU_64×64 and PU_16×16.  

Do PEPZS for PU size smaller than PU_16×16. 

Case 4 Do AMVP for PU_64×64 and PU size smaller than PU_16×16. 

Do PEPZS for PU size smaller than PU_16×16. 

Because the small size plays an important role in the motion estimation if the 

sequence content has too complex texture, Case 1 tries to support one more AMVP 

than the test in 3.4.1 for the motion estimation. This one more AMVP should be 

supported for the smallest LCU size, CU_8×8, to improve the performance. As shown 

in Table 3-16, the performance is a little bit better than that in Table 3-14. This one 

more AMVP shows how the starting point is important for the small sized PUs. 

Table 3-16: Result of case1 AMVP base PU selection. 

Case 1 
AMVP_64×64 + AMVP 8×8 

PEPZS under16×16 
BDrate 

  QPISlice kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 6051.97 40.0894 41.5927 42.917 6.10% 6.60% 7.10% 

  27 2387.09 36.2596 38.9254 40.4929 
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  32 1049.2 33.0326 37.0085 38.6836 
  

  

  37 482.197 30.1269 35.6694 37.3525       

RaceHorses 22 1389.13 40.0117 41.3806 42.4057 3.40% 3.60% 4.50% 

  27 660.031 35.8699 38.4712 39.6141 
  

  

  32 312.311 32.2093 36.4489 37.5347 
  

  

  37 152.09 29.3088 34.9522 36.0048       

According to the results in Case 1, it may be improved by adding more AMVP to 

the rest small sized PUs. Case 2 supports more AMVP to the motion estimations, for 

PUs which sized smaller than 8×8 will choose its own best MVP for the PEPZS 

calculation. As shown in Table 3-17, the BD-rate is improved by about 1% for Class C 

sequence, RaceHorses_832x480, and about 0.4% for Class D. 

Table 3-17: Result of case2 AMVP base PU selection. 

Case 2 
AMVP_64×64+AMVP<=8×8 

PEPZS<=16×16 
BDrate 

  QPISlice kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5966.92 40.0816 41.6326 42.943 5.10% 4.90% 4.80% 

  27 2378.21 36.2768 38.947 40.5182 
  

  

  32 1040.7 33.025 37.0202 38.7193 
  

  

  37 472.734 30.1327 35.6867 37.3919       

RaceHorses 22 1404.12 40.0003 41.3657 42.3959 3.80% 3.80% 4.60% 

  27 664.011 35.8531 38.4745 39.6267 
  

  

  32 311.26 32.2085 36.4509 37.5436 
  

  

  37 150.973 29.321 34.9704 35.9981       

Because HEVC is targeted for high resolution video codec, such as 3840x2160, 

the small sized PUs for complex texture block matching may be larger than 8×8. Case 

3 tries to support only one more AMVP for CU_16×16 to find which the second best 

AMVP base is from AMVP by CU_64×64. 

As shown in Table 3-18, the result in Case 3 is not as good as Case 1. If AMVP is 

only supported for the CU_16×16, the performance will not be good enough for our 

needs. 
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Table 3-18: Result of case3 AMVP base PU selection. 

Case 3 
AMVP_64×64+AMVP_16×16 

PEPZS<=16×16 
BDrate 

  QPISlice kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5989.69 40.0781 41.6304 42.9481 7.00% 6.80% 7.60% 

  27 2406.9 36.2769 38.942 40.4997 
  

  

  32 1060.58 33.008 36.9997 38.6722 
  

  

  37 487.302 30.092 35.6705 37.3545       

RaceHorses 22 1405.53 40.0317 41.3919 42.4173 5.60% 5.00% 5.80% 

  27 671.524 35.8416 38.4912 39.6498 
  

  

  32 315.717 32.1471 36.4235 37.5117 
  

  

  37 152.565 29.2599 34.9383 35.9536       

Case 4 tries to improve the performance in Case 2, which allows PUs to get its 

own best MVP through AMVP if it sized smaller than 8×8. Case 4 supports more 

MVP chosen opportunity for PUs; it allows PUs to choose its starting point for motion 

estimation if it takes size smaller than 16×16. Every PU which is smaller than 16×16 

can do AMVP to get the best MVP. It performs much better than the Case 2 does, the 

results is in Table 3-19, the BD-rate is now under 3.0% for both Class C and Class D 

sequence. 

Table 3-19: Result of case4 AMVP base PU selection. 

Case 4 
AMVP_64×64+AMVP<=16×16 

EPZS<=16×16 
BDrate 

  QPISlice kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5839.1 40.0797 41.6419 42.9618 2.40% 2.60% 3.00% 

  27 2324.09 36.3227 38.9606 40.5236 
  

  

  32 1031.34 33.093 37.0314 38.7121 
  

  

  37 479.434 30.1706 35.7055 37.3935       

RaceHorses 22 1366.98 40.0673 41.4097 42.455 1.50% 1.50% 2.40% 

  27 653.342 35.9128 38.5038 39.654 
  

  

  32 309.836 32.2465 36.4663 37.5515 
  

  

  37 151.425 29.347 34.9973 36.0134       
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3.5 Combination of PEPZS and AMVP Modification 

for Proposed IME Fast Algorithm 

In section 3.3 and section 0, we have different modification for PEPZS and AMVP 

separately. IME is composed of MV prediction and motion estimation. Both of them 

are important that we cannot ignore neither MVP nor ME calculation. We will try to 

combine the modification is section 3.3 and section 0 to get the best performance as 

the method for the IME in our algorithm.  

3.5.1 Different combination of modified fast algorithm 

Because of the limited working cycles (will be described in section 4.1), it is 

important for the modification to concern the number of SAD calculations at each PU 

size and steps. The following combinations will be based on those we have done in 

section 3.2 and 3.3. We can get the importance of AMVP and PEPZS for each PU size 

as we have the performance from the combinations as shown in Table 3-20. Each 

combination is targeted to decide the best PU size for AMVP and PEPZS calculation. 

Table 3-20: Tested combinations for fast algorithm. 

  Description  

Combination 1 Do AMVP for PU_64×64. 

Do AMVP and PEPZS for PU sized 16×16, 16×8, 8×16, and 8×8. 

Combination 2 Do AMVP for PU_64×64 and PU size smaller than 16×16. 

Do PEPZS for PU sized 16×16, 16×8, 8×16, and 8×8. 

Combination 3 Do AMVP and PEPZS 1
st
 step for PU_64×64, 32×32, and PU 

smaller than 16×16. 

Do rest PEPZS steps for PU sized 16×16, 16×8, 8×16, and 8×8. 

Combination 4 Do AMVP and PEPZS 1
st
 step for PU_64×64, 32×32, 8×4, 4×8. 

Do AMVP and PEPZS for PU 16×16 to 8×8. 

Search range for PU larger than 8×8 is +/-16, for 8×8 is +/-4 
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The Combination 1 tries to reduce the number of SAD calculation in the IME so it 

cuts off the AMVP and PEPZS if the PU size is smaller than 8×8. As shown in Table 

3-21, the results is not as good as Table 3-19. It may because the PUs smaller than 

8×8 do important block matching when the content is complex in a sequence.  

Table 3-21: Result of tested combination 1. 

 Combination 1 
amvp_64×64+amvp_pepzs_under16×16 

8×8 cut off pepzs+amvp 
BDrate 

  QP kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5902.06 40.0788 41.6368 42.9501 4.30% 4.50% 5.10% 

  27 2363.48 36.3117 38.9552 40.5176 
  

  

  32 1044.01 33.0624 37.0171 38.6952 
  

  

  37 485.198 30.1442 35.6776 37.3617       

RaceHorses 22 1394.57 40.0492 41.4011 42.4278 4.40% 4.50% 4.90% 

  27 666.513 35.8795 38.4684 39.6412 
  

  

  32 313.367 32.2005 36.4206 37.5233 
  

  

  37 152.914 29.306 34.9797 35.9801       

The Combination 2, in the other way, tries to get the balance between reducing the 

SAD calculations and BD-rate performance. It cuts off the PEPZS calculation if the 

PU size is smaller 8×8. The result is shown in Table 3-22, which is a little bit better 

than Combination 1. 

Table 3-22: Result of tested combination 2. 

 Combination 2 
amvp_64×64+amvp_pepzs_under16×16 

8×8 cut off pepzs 
BDrate 

  QP kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5853.14 40.0816 41.6377 42.9605 3.10% 3.10% 3.90% 

  27 2337.44 36.3224 38.9604 40.5221 
  

  

  32 1038.32 33.0876 37.0381 38.6949 
  

  

  37 483.408 30.1545 35.7019 37.388       

RaceHorses 22 1370.32 40.0569 41.4147 42.455 2.30% 2.10% 2.70% 

  27 656.953 35.9102 38.5077 39.6552 
  

  

  32 311.706 32.2306 36.4583 37.5614 
  

  

  37 152.117 29.3197 34.9968 36.0259       
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The Combination 3 is based on the Combination 2 and is targeted to improve the 

BD-rate performance. It adds one more AMVP for CU_32×32 in the IME, the AMVP 

in Combination 3 now are AMVP_64×64, AMVP_32×32, and AMVP_under_16×16, 

which is also viewed as skip the non-square AMVP if the PU size is larger than 16×16. 

With one more AMVP, the BD-rate performs about 0.4% to 0.6% better, as shown in 

Table 3-23. 

Table 3-23: Result of tested combination 3. 

 Combination 3 
amvp_64×64+32×32+under16×16 

pepzs_16×16~8×8 
BDrate 

  QP kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5844.38 40.0807 41.6372 42.9601 2.50% 2.80% 3.70% 

  27 2330.64 36.3274 38.9604 40.5174 
  

  

  32 1033.79 33.1003 37.0287 38.6958 
  

  

  37 479.079 30.1745 35.7103 37.3734       

RaceHorses 22 1370.15 40.0697 41.4221 42.4593 1.90% 2.00% 3.00% 

  27 655.322 35.9086 38.4947 39.6426 
  

  

  32 310.88 32.2454 36.4603 37.5382 
  

  

  37 151.412 29.3324 35.0007 36.0151       

 

Targeted for HDTV application, our algorithm needs be further modified to get a 

better BD-rate performance than the Combination 3. The Combination 4 adds part of 

PEPZS for the PU size is smaller than 8×8. If the PU size is 8×8, it will have 3 steps 

PEPZS calculation with the searching range by +/- 4. The BD-rate performances of Y, 

U, and V are now all under 3.0%, as shown in Table 3-24, and for Class D 

RaceHorses, it could be about 1.5% for Y-component, which is much better than the 

Combination 1, 2, and 3. 
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Table 3-24: Result of tested combination 4. 

 Combination 4 

amvp_64×64+32×32+<=16×16 

pepzs_16×16~8×8 

16×16_SR16+8×8_SR4 

BDrate 

  QP kbps Y psnr U psnr V psnr Y U V 

RaceHorses 22 5840.6 40.0794 41.6383 42.9657 2.50% 2.40% 3.00% 

  27 2328.48 36.3223 38.9677 40.528 
  

  

  32 1032.2 33.0943 37.0388 38.7151 
  

  

  37 480.134 30.1744 35.7191 37.3948       

RaceHorses 22 1366.82 40.0642 41.4066 42.4396 1.50% 1.90% 3.00% 

  27 653.495 35.9148 38.5 39.6446 
  

  

  32 309.956 32.2452 36.4439 37.5333 
  

  

  37 151.334 29.3448 34.9888 35.9594       

From the above combinations, it is obvious that AVMP and PEPZS are as 

important as each other. While finding the balance between the computational 

complexity and bandwidth, it is also important to find the balance number of AMVP 

and PEPZS calculation. Each AMVP and PEPZS for PU should be chosen carefully in 

IME. 

3.5.2 Bandwidth and complexity reduction  

The Combination 4 is designed to reduce the high computational complexity and 

memory bandwidth that the original IME needs. The Table 3-25 shows the memory 

bandwidth cost comparison between different IME supported by the original HM and 

our modification, Combination 4. We can see the memory access amount for 

combination 4 is much smaller than the original HM needs but it still keeps a good 

video compression performance. What is more, it needs at most 20 search points per 

CU, which has much lower complexity compared to other search method. In the Table 

3-26, we can find the memory access amount is reduced by 60.6% and the search 

point number is decreased by 78.1% compared with HM which adopts original AMVP 

and diamond EPZS. 
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Table 3-25: Memory bandwidth and search point number comparison. CU size is 64×64. 

 Original AMVP 

Full Search 

Original 

AMVP 

 EPZS 

Square 

Original 

AMVP 

EPZS 

Diamond 

Combination 4 

Memory 

Access/CU 

375 Kbytes About 218 

Kbytes 

About 188 

Kbytes 

About 74 Kbytes 

Memory 

loaded for 

MVP blocks + 

(W+2SR)(H+2SR) 

MVP blocks 

+ SP blocks 

MVP blocks 

+ SP blocks 

Reduced MVP 

blocks + Reduced 

SP blocks 

SP #/ 

CU_16×16 

16384 57 57 20 

 

Table 3-26: Memory access and complexity comparison per CU_64×64. 

 Original AMVP 

EPZS Diamond 

Proposed 

(Combination 4) 

Saving % 

Memory Access About 188 Kbytes About 74 Kbytes 60.6% 

SP # for AMVP 850 810 4.7% 

SP # for search 23800 4584 80.7% 

Total SP# 24650 5394 78.1% 

 

3.5.3 Final decision of fast IME algorithm 

The Combination 4 in section 3.5.1 has the good BD-rate performance and a large 

amount of decreased computational complexity and memory bandwidth usage. It 

should be a hardware friendly motion estimation algorithm and is also the final fast 

algorithm for our IME architecture design. The IME fast algorithm we proposed is 

shown as Figure 3-11. The encoding flow for one CU_64×64 starts from PU_64×64. 

It will first do the AMVP of PU_64×64 and PU_32×32. Then, the flow goes into 

further depth and does AMVP for PU_16×16, PU_16×8, and PU_8×16. It is followed 

by the corresponding PEPZS with search range +/- 16. After finishing AMVP and 

PEPZS at this depth, it continues to do AMVP for PU_8×8, PU_8×4, and PU_4×8. At 
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this depth, the encoder will only do the PEPZS for PU_8×8 with search range +/-8. 

AMVP

PU_64X64

PEPZS_1
st
 step

PU_32X32

AMVP

PU size <= 8x8 ?

PEPZS, SR = 16

AMVP

PEPZS, SR = 4

NO

YES

Depth = 0

Depth = 1

Depth = 2

Depth = 3

PEPZS_1
st
 step

PU_64X64

AMVP

PU_32X32

 
Figure 3-11: Proposed fast IME algorithm. 
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Chapter 4. Hardware Architecture Design 

4.1 Design Specification 

The desired system specification is described as follows: an HEVC encoder works 

under 270 MHz operating frequency with frame size 4kx2k (3840x2160) and frame 

rate 60fps. According to the specification mentioned above, we can get the needed 

time as calculated below: 

3840 × 2160 ÷ (64 × 64) = 2025 𝐿𝐶𝑈𝑠  (Equation 4-1) 

 

With the frame rate 60 fps and the operating frequency 270 MHz, the cycles for 

encoding a LCU sized 64×64 will be: 

270𝑀 𝐻𝑧 ÷ (2025 × 60) = 2222 𝑐𝑦𝑐𝑙𝑒𝑠 (Equation 4-2) 
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Figure 4-1: The pipelined architecture of HEVC encoder. 

In order to make the hardware work as efficiently as possible, we need to figure 

out how many search points should be calculated at one cycle. From the algorithm 

proposed in Chapter 3, we can get the total pixels that needed to be computed for the 

SAD calculation, which will dominate the processing element (PE) number. There are 

total 425984 pixels needed to be calculated during IME for one CU_64×64. 

64 × 64 × 8(𝑃𝑈 𝑠𝑖𝑧𝑒𝑠) × 2 + 64 × 64 × 8 × 2(𝑃𝑈64×64, 𝑃𝑈32×32) + 64 ×
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64 × 20(𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑜𝑖𝑛𝑡) × 4(𝑃𝑈 𝑠𝑖𝑧𝑒𝑠) = 425984 𝑝𝑖𝑥𝑒𝑙𝑠    

(Equation 4-3) 

Since the overall calculation should be finished in 2222 cycles, we can find that 

the hardware should at least get the 192 pixels SAD results per cycle. In short, if the 

hardware calculates SAD every cycle, it only needs a SAD PE for 192 pixels, which 

could be covered by a PE sized 16×16. 

425984 ÷ 2222 𝑐𝑦𝑐𝑙𝑒𝑠 = 192
𝑝𝑖𝑥𝑒𝑙𝑠

𝑐𝑦𝑐𝑙𝑒
    

(Equation 4-4) 

To consider the time for the data loading in the hardware, we need to get more 

SAD results per cycle. Because the data dependency caused by the algorithm, the 

SAD calculation will be followed by data loading, which means that it needs a larger 

size PE. To solve the problem of data dependency, the data loading and SAD 

calculation will not be in the same cycle, it will need at least 2 cycles for data loading 

and SAD calculation.  Based on the PE size from (Equation 4-4, our hardware 

should have a twice larger sized PE. The hardware will have two PE_16×16 for the 

overall SAD calculation. 
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4.2 Search Scheduling and Architecture 

4.2.1 Overview of IME architecture design 

From the section 3.1 we can see there are many block matching algorithms 

(BMAs) have been proposed. And numerous VLSI architectures have been introduced 

for motion estimation, such as typical works in [12] and [13]. In [12], Chao proposed 

an architecture that implements a specific set of BMAs for fast FS and DS. In [13], Li 

presented an architecture with 9 PEs for PMVFAST and EPZS. These architectures 

support more than one BMA in the hardware design. And as the video resolution 

becomes higher recently, there are many efficient works for ME architecture design 

have been developed, shown in [14] - [25].  

From the section 4.1, it is necessary to have 2 processing element so that we can 

encode a CU_64×64 in 2222 cycles. There will be two PE_16×16 in the EPZS 

module and work simultaneously according to the scheduling. Every reference pixel 

needed by PEPZS module will be prepared by the Cache and current unit pixels are 

kept in PEPZS module. The PEPZS module calculates SAD of AMVP and decides the 

best candidate for motion estimation to start. It also calculates SAD for EPZS from 

each PU and keeps the results for the motion estimation to decide what the best 

partition is for a CU_64×64. The address generator is the most important part of this 

hardware design; it gets the decision from the PEPZS module and searches the cache 

module to find the required pixels. The generator also asks for data from the off-chip 

memory if the needed data is not in the cache. The overall architecture is shown as 

Figure 4-2. 
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Figure 4-2: Architecture of IME 

4.2.2 Searching flow of IME hardware 

In the original HEVC flow, the encoding begins at LCU 2N×2N and then the 

smaller partitions. Because of the dependency of the AMVP calculation, we need to 

finish the motion estimation from top and left, so that the current PU can get its own 

AMVP candidates. 
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In our hardware design, we start from the top-left corner to the bottom-right one. 

Begin with the first 16×16 unit, process simultaneously with top-left part of 

CU_32×32 and CU_64×64 and then finally finish all PUs in a CU_64×64. Because 

the processing element size is 16×16 so the CU size larger than 16×16 (such as 

CU_64×64 and CU_32×32) would be processed by the flow of CU_16×16, as shown 

in Figure 4-3. Whenever we do motion estimation for CU_16×16, the AMVP for 

corresponding blocks of CU_64×64 and CU_32×32 would be finished. When the 

MVPs of CU_64×64 and CU_32×32 are finally decided, the first step of PEPZS 

would be calculated and then find the best partition size of IME. 

32x32_1

block0

32x32_1

block1

32x32_1

block2

32x32_1

block3

64x64

32x32_0

16x16_0

32x32_1

16x16_1

 
Figure 4-3: Search flow in one CU_32×32 and in CU_64×64. 

 

The CU_64×64 has 16 sets of 16×16 blocks, and CU_32×32 has 4 sets. According 

to the scheduling, AMVP of CU_64×64 and CU_32×32 would be finished after all 

CU_16×16s finish their motion estimation. After motion estimation of smaller PUs 

are finished, the 8 searching points SAD of first step PEPZS for CU_64×64 and 

CU_32×32 will start. The overall flow for each sized PU is as shown in Figure 4-4. 
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Figure 4-4 Flow of hardware encoder process 

4.2.3 Interlaced Scheduling of IME hardware 

The target encoding time for each CU_64×64 is 2222 cycles. For this limited time, 
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we pipeline the loading data and SAD calculation. Based on the flow in section 4.2.2 

and Figure 4-4, we can have an interlaced scheduling shown as Figure 4-5 and we will 

schedule our hardware work by process separately. 

Interlaced 

AMVP_64X64_block0,AMVP_32X32_block0

AMVP_16X16, 16X8, 8X16

PEPZS_16X16, 16X8, 8X16

Interlaced 

AMVP_8X8, 8X4, 4X8

PEPZS_8X8, 8X4, 4X8

PEPZS_1
st
 step

64X64, 32X32

2056 cycles

1
st
 Process 2

nd
 Process 3

rd
 Process

78 cycles 10 cycles 168 cycles

1
st
 Process

2
nd

 Process

x3

 

Figure 4-5: Overall encoding interlaced scheduling for proposed fast IME algorithm. 

Because of the dependency, sometimes the SAD of searching points needed be 

calculated first and then the system can get the desired data to do the next step. This is 

very important in first and second process. For this reason, we process different sizes 

PU simultaneously, such as PU_16×16, PU_16×8, and PU_8×16 at the same time, 

when processing elements are working on the PU_16×16, the system can load the 

desired data for PU_16×8 and PU_8×16, as shown in Figure 4-6. 

Load SP

PU_16x8, 8x16
Load SP

PU_16x16

1SP 16x16

1SP 16x16

Load SP

PU_16x16

1SP 16x8 8x16

1SP 16x8 8x16

1SP 16x8 8x16

1SP 16x8 8x16
 

Figure 4-6: Interlace loading data and calculating SAD for PU_16×16, PU_16×8, and PU_8×16. 

The system loads data from cache by 64 pixels/cycles, so it needs 4 cycles to load 

a PU_16×16 candidate, 256 bytes, for AMVP. As a result, the loading time for AMVP 

in the first process is 32 cycles for each PU_16×16. And because there are two 

process units 16×16, the SAD calculation time for PEPZS step 0 with 8 searching 

points is 8 cycles and for the rest steps is 3 cycles with 3 different searching direction 

points. 
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AMVP 

CU_64x64_block0

AMVP 

CU_32x32_block0

AMVP 

16x16_0, 

16x8_0, 8x16_0

EPZS_step0 

16x16_0, 

16x8_0, 8x16_0

EPZS_step1 

16x16_0, 

16x8_0, 8x16_0

AMVP 

16x8_1, 8x16_1

EPZS_step0 

16x8_1, 8x16_1

EPZS_step1 

16x8_1, 8x16_1

32 cycles 8 cycles 3 cycles

14 cycles 3 cycles

x3

9 cycles

x3

9 cycles  

Figure 4-7: The encoding time for 1
st
 process each CU_16×16.  

In Figure 4-7, we can find that for the first process, it needs 78 cycles for each 

CU_16×16. For the overall 1
st
 process, it costs 1248 cycles in total to finish a 

CU_64×64. 

(32 + 8 + 3 ∗ 4 + 14 + 3 ∗ 4) × 16 = 1248 𝑐𝑦𝑐𝑙𝑒𝑠 

For the second process, because the CU_8×8 need to do 5 steps PEPZS but the 

CU_8×4 and CU_4×8 only need to do the first step with 8 different searching point 

SADs, the encoding time is shorter than first process needs. It costs 10 cycles for 

CU_8×8, CU_8×4, and CU_4×8 in second process.  

AMVP 

8x8_0, 8x4_0, 4x8_0

AMVP 

8x4_1, 4x8_1

PEPZS

8x8_0, 8x4_0, 4x8_0

PEPZS

8x8_0, 8x4_1, 4x8_1

4 cycles 3 cycles 1 cycles 2 cycles  

Figure 4-8: The encoding time for 2
nd

 process each CU_8×8 

There are total 64 sets of CU_8×8 in a LCU sized 64×64, therefore, the total time 

for the 2
nd

 process encoding is 640 cycles. 

 10 × 64 = 640 𝑐𝑦𝑐𝑙𝑒𝑠 

The third process only deals with the first step of PEPZS for CU_64×64 and 

CU_32×32; the encoding time for this process is 168 cycles, as shown in Figure 4-9. 

Load CU_64x64

Block 0

16x16 SAD

Load CU_32x32

Block 0

6 cycle 6 cycle

16x16 SAD

4 cycle

Load CU_64x64

Block 1

16x16 SAD

Load CU_32x32

Block 1

5 cycle 5 cycle

16x16 SAD

4 cycle

16x16 SAD

16x16 SAD

4 cycle  

Figure 4-9: The encoding time for 3
rd

 process for CU_64×64. 

From the above calculation of encoding cycles for each process, the overall 
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encoding time for this interlaced scheduling design is 2056 cycles for each CU_64×64. 

The overall interlaced scheduling for those 3 different processes in the hardware is 

shown as Figure 4-5.This is faster than the one without interlaced idea, shown as 

Figure 4-10. If the hardware follows the scheduling shown in Figure 4-10, it needs 

130 cycles for 1
st
 process, shown as Figure 4-11. The comparison is shown as Table 

4-1.  

4 cycles

Load AMVP

PU_16x16
AMVP_16X16

Load AMVP

PU_16x16
AMVP_16X16

Load AMVP

PU_16x8, 8X16
AMVP_16X8, 8X16

1 cycle 4 cycles 1 cycle 4 cycles 1 cycle  

Figure 4-10: Non-interlaced scheduling for AMVP_16×16, 16×8, and 8×16. 

 

AMVP 

CU_64x64_block0

AMVP 

CU_32x32_block0

AMVP 

16x16_0, 

16x8_0, 8x16_0

EPZS_step0 

16x16_0, 

16x8_0, 8x16_0

EPZS_step1 

16x16_0, 

16x8_0, 8x16_0

AMVP 

16x8_1, 8x16_1

EPZS_step0 

16x8_1, 8x16_1

EPZS_step1 

16x8_1, 8x16_1

40 cycles 16 cycles 6 cycles

26 cycles 6 cycles

x3

18 

cycles

x3

18 

cycles

130 cycles  

Figure 4-11: Non-interlaced scheduling for 1
st
 process. 

 

Table 4-1: Working cycles needed for IME for two different scheduling. 

 Without interlaced 

(cycles) 

Interlaced 

(cycles) 

Saving 

1
st
 Process 130 78 40.0 % 

2
nd

 Process 18 10 44.4 % 

3
rd

 Process 296 168 43.2 % 

Total scheduling 3528 2056 41.7 % 
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4.3 Architecture of PEPZS 

4.3.1 Overview of PEPZS architecture design 

The most computational part is the PEPZS part, in our hardware design, it 

includes processing elements PE_16×16, so it can deal with both the AMVP and 

PEPZS calculations. The PEPZS module is communicated with the IME controller, 

address controller, and the cache. The control signal comes from the IME controller 

and address controller whereas the needed data all comes from the cache. 

The IME controller sends crucial information for the calculation, such as begin 

signal, AMVP signal, PEPZS signal, and PU size signal, into the module. After the 

SAD calculations, it sends the SAD results and best MVP candidate for AMVP or 

three searching points for next PEPZS step. The architecture of PEPZS module is 

shown in Figure 4-12. 

Current CU

Ref. CU

SAD Result
SAD

PE_16x16

PE_16x16

Next Step 

Decision

Or

Early Terminate

Processing Engine

1 KByte

256 Byte

CU_2Nx2N

CU_2NxN

CU_Nx2N

Next 3 SP Address
SAD_Result

Begin Signal CU #

 
Figure 4-12: Overall architecture of PEPZS module 

The PEPZS module keeps the current CU and some reference pixels for the 

PE_16×16 inside the module, the registers could be updated if the current CU is 

changed or the new reference pixels come. According to the encoding flow, the 
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decision of best MVP candidate is made after the SAD calculation in AMVP process, 

what is more, the SAD result will be kept as the (0,0) searching points result for the 

PEPZS first step in order to reduce the computational number. When the system is 

processing PEPZS calculation, it will send the next step decision or early termination 

signal to IME controller, PE_16×16, and data registers to stop the calculation. The 

early termination will stop the data loading from the cache and also stop asking data 

from the off-chip memory. When the motion estimation is finished for one PU, the 

results are kept inside the module and the system will decide the best partition size 

through these kept SAD results. 

SAD

SAD

Curr0  4

Ref0 4 Ref1  4

SAD

SAD

Ref3  4

Reference 

selection

module

RefB  4RefA  4

ADD

Curr1  4

Curr2  4

Curr3  4

reg

Ref2  4

PE_4x4 modile
 

Figure 4-13: PE_4×4 

The crucial part in the PEPZS module is the processing element. The processing 

element we use in our design is sized as 16×16, which can calculate SAD of unit 
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16×16 . The PE_16×16 is composed by 16 sets of PE_4×4 and the outputs are 16 

results of PE_4×4. The system sums these SAD results according to the PU size and 

uses the summation to make the decision. The PE_16×16 and PE_4×4 can select the 

reference data by the system desire. 

PE_4x4 PE_4x4 PE_4x4 PE_4x4

PE_4x4 PE_4x4 PE_4x4 PE_4x4

PE_4x4 PE_4x4 PE_4x4 PE_4x4

PE_4x4 PE_4x4 PE_4x4 PE_4x4

Ref0~3

Ref4~7

Ref8~11

Ref12~15

Curr0~3 Curr4~7 Curr8~11 Curr12~15

PE_16x16 module

SAD0~3

SAD4~7

SAD8~11

SAD12~15

 

Figure 4-14: PE_16×16 

In the PEPZS module, the outputs from PE_16×16 are kept in the register 

temporally, after the comparison and decision, the results will be updated into the 

SAD Result register, as shown in Figure 4-15.  
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CUR REF CUR REF

SAD Result
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EPZS
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1616

Comp 

AMVP

1616

Best SP Best Cand

Next Dir MVP

 

Figure 4-15: PEPZS comparison and updating of SAD results 

For the calculation, the PEPZS system controls the PE_16×16 to work or not, as 

shown in Figure 4-16. According to section 4.2.2, each process stage includes 

processing of 2N×2N, N×2N, and 2N×N, so the system need to figure out which PU 

size is under the calculation, and with the PU size information, the system can get the 

SAD results from the register and do the comparison for AMVP and PEPZS. These 

comparisons can choose the best MVP candidate, best searching point for next step, or 

early termination. 
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Figure 4-16: PEPZS controller and calculation 

4.3.2 PEPZS hardware flow 

The calculation flow is following the scheduling in section 4.2. When the IME 

controller sends the begin signal, the PEPZS system starts the AMVP of PU_2N×2N, 

PU_N×2N, and PU_2N×N. After finishing AMVP, the PEPZS calculation is in 

progress then. It can decide whether to do the next searching points or have an early 

termination. After 5 steps PEPZS or early termination for one PU_2N×2N, the system 

then continues to do AMVP and PEPZS for the rest PU_N×2N and PU_2N×N. The 

overall flow is shown as Figure 4-17. 
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Figure 4-17: PEPZS hardware progress flow 

4.4 Cache Based Buffer Design 

As same as the huge computational complexity by AMVP and PEPZS, the amount 

of pixels needed for the SAD calculation is also very large. For those data needed for 

calculation, the easiest way is loading the pixels whenever the system requests; 

obviously, this would leads to a large data access bandwidth consumption and costs a 

long time to load data from the off-chip memory. For the hardware architecture, the 

data reuse should be an important issue and taken carefully.  

Many works are proposed to reduce the memory access. It is efficient to use Level 

C data reuse algorithm when implementing FS in ME hardware. As for fast ME 
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algorithm, there may be some redundant SR memory access. To get better data reuse 

rate, many cache-based architectures have been presented [26]-[30]. Some 

architecture supports multilevel data reuse [26] ; it makes local buffer and cache 

working simultaneously.  

A simple way to do the data reuse is to keep the data in the temporary register by 

the size according to the PU under operating. If the current PU is 16×16, the pixels 

would be partitioned into 16 sets of 4×4 blocks and kept in the temporary register, as 

shown in Figure 4-18, it is very like the cache implementation in [27]. When the 

system requests the data, it can get the pixels according to its PE size. Most of the 

previous cache works adopts this kind of word block to store data in cache [26]-[30]. 

This is good for the hardware design whose motion estimation uses the same MVP for 

every different sized blocks or units, but not for our proposed motion estimation fast 

algorithm. Because the MVP for each different PU is not the same, the pixels needed 

by different PUs may not be the same, even the data could be reused, keeping data in 

4×4 blocks is not an easy way for data fetching.  

                   16x16

16 byte

16 byte

16 byte
16 byte 16 byte

16 byte 16 byte 16 byte

16 byte 16 byte

16 byte 16 byte

16 byte 16 byte 16 byte

16 byte 16 byte 16 byte

64-byte

Ready data

16 byte

16 byte

16 byte

 
Figure 4-18: Simple data reuse with register 

4.4.1 Load all needed blocks into cache based buffer 

To design good hardware architecture, we prefer to use the cache to improve the 

rate of reuse rather than use registers. The first key point to use cache is to figure out 
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which size to load our needed data can benefit most. For the AMVP, we can find the 

suitable loading size by the MVD value, which is the final MV difference from MVP. 

 

 

Figure 4-19 MVD distribution of X-axis and Y-axis 

From the MVD distribution analysis, as shown in Figure 4-19, most MVD is 

within +/- 4, which means that for different PU, the MVP candidates have high 

probability be overlapped with others within distance +/- 4. With the high probability, 

it is appropriate to load a bigger block. What is more, PEPZS will do at least 3 
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searching steps in our algorithm, so if we preload a bigger block in AMVP calculation, 

the data could also be used for 3-step search in PEPZS. For example, if the current PU 

is 16×16, the system will load a 24×24 block per MVP candidate into the cache buffer 

for both the AMPV and PEPZS calculation, as shown in Figure 4-20. 
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Figure 4-20 The Cache loaded blocks. It will load two candidates blocks and PEPZS block separately. 

To keep the data in the cache based buffer, the system employs a cache design 

with a number of memory rows. Each memory row consists of eight words, which is 

64 bits and contains 8 pixels data, as shown in Figure 4-21. However, this storage 

method does not perform well if it does not have a good searching and comparing 

function and updating mechanism. The following sub-sections will discuss some 

cache mechanisms and architectures. 
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Figure 4-21 One memory row contains 8 words, each word is 8 bytes.  

4.4.2 Fully associative cache based buffer 

For the cache based buffer design, we first try the fully associative cache idea. 

When the buffer is empty, the data would be loaded in directly. Every time the system 

checks the buffer to see if the data needed is valid or not, when there is a miss, the 

cache will be updated. 

For this design, the updating mechanism is loading data inside when the buffer 

still has empty space for new data. The new data will be added next to the data if they 

share the same Y position in a frame, otherwise, it will be added randomly if there is 

an empty space. When the cache is full, the data which is not be used recently will be 

replaced with the new data. The mechanism is as shown in Figure 4-22. 
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Figure 4-22: Fully associative cache updating mechanism. 

 

4.4.3 Cache based buffer size analysis 

The cache based buffer performance depends on the hit rate and miss rate, and 

these depend on the updating mechanism and cache based buffer size. The size could 

affect the hit rate a lot, larger size makes the hit rate could be higher. With the fully 

associative cache method mentioned in 4.4.2, we try some different buffer sizes to 

find an appropriate one for our cache based buffer design. 

The sizes tested are 24×64 bytes to 96×64 bytes. The determinants of cache based 

buffer size are the value of maximum reloaded byte, average reloaded byte, and hit 

rate. The maximum value is the number of reloaded bytes per CU_64×64, the average 

one is the average number of reloaded bytes per CU_64×64 in a test sequence, and the 

hit rate is percentage of finding data successfully in the cache based buffer. 

As shown in Figure 4-23, the maximum value is very large when the size is too 

small, such as 24×64 bytes, and it becomes lower when the size is bigger than 64×64 
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bytes. The hit rate behavior is, however, contrast to the max reloaded value. The 

average reloaded value, however, keeps almost the same for every cache based buffer 

size. From the results of maximum value, average value, and hit rate, it is obvious that 

the maximum value is much more related to the size. The maximum reloaded value is 

what we want to reduce by the cache mechanism. Between the size 64×64 and 96×64, 

concerning the cache size and the cache performance, the cache based buffer size 

64×64 is a better for our design. 

 

Figure 4-23 Cache based buffer size relationship with the maximum and average reload byte and hit 

rate. 

4.4.4 N-way associative cache based buffer 

Because we want to improve the cache performance, we try N-way associative 

cache mechanism to replace fully-associative cache. There will be two cases, 4-way 

and 8-way, and different cache based buffer sizes to find the best N-way associative 

cache based buffer and corresponding size. 

When starting to encode a new CU_64×64, the buffer could be refreshed or not, 
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and this decision will results in different data loading value. The first case shows the 

results that system loads (W+8)×(H+8) bytes in buffer per MVP candidate and 

refreshes whenever another CU_64×64 starts to encode. As shown in Table 4-2, the 

8-way associative cache based buffer both performs better in the hit rate and 

maximum reloaded value. 

 

Table 4-2: N-way cache based buffer, Load 24x24 each MVP. Refresh buffer if a new CU_64×64 starts 

4-way  Hit Rate (%) Max load (byte) Average load (byte) 

64×64 87.8233 12176 6957.214352 

32×64 87.6364 12256 6979.570924 

24x64 87.1571 12560 7182.692694 

 

8-way  Hit Rate (%) Max load (byte) Average load (byte) 

64×64 94.5497 9048 5545.914110 

32×64 93.5684 10888 6855.1733080 

24x64 87.153 11536 7300.229782 

 

The second case, the cache based buffer will not refresh when the next CU_64×64 

starts to encode. From the Table 4-3, 8-way associative cache based buffer is still 

better than 4-way one, and the cache buffer in second case performs better than in first 

case slightly. 

Table 4-3: N-way cache based buffer, Load 24x24 each MVP. Do not refresh buffer if a new 

CU_64×64 starts 

4-way  Hit Rate (%) Max load (byte) Average load (byte) 

64×64 87.8896 13120 7021.131065 

32×64 87.701 13224 7233.610708 

24x64 83.1832 13328 7471.692136 
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8-way  Hit Rate (%) Max load (byte) Average load (byte) 

64×64 95.1466 8832 6322.919502 

32×64 93.8596 9264 7027.929355 

24x64 87.2431 9640 7325.913367 

 

Because the maximum value from the above two cases is still a little bit high for 

the hardware design, the system needs to try different load mechanism for the cache 

based buffer. In third case, the system loads W×H bytes in cache buffer per MVP 

candidate and loads the rest needed data later when the MVP is decided. And the 

buffer refreshes whenever the next CU_64×64 starts encoding. As shown in Table 4-4, 

the performance is better than both first and second cases, the third case is a good for 

our hardware design. 

Table 4-4: N-way cache based buffer, Load 16×16 each MVP. Load rest 320 byte if MVP is found. 

Refresh buffer if a new CU_64×64 starts. 

4-way  Hit Rate (%) Max load (byte) Average load (byte) 

64×64 88.9422 6656 4385.88664 

32×64 88.8228 8768 6307.480201 

24x64 86.096 8824 6485.419595 

 

8-way  Hit Rate (%) Max load (byte) Average load (byte) 

64×64 93.2805 5720 4215.33544 

32×64 90.859 7856 6294.738799 

24x64 88.3407 9368 6587.254136 

 

The third case performs well than other two cases. With the third cache design, we 

can compute the reloaded byte for each PU size. There are two N-way associative 

cache based buffer, 4-way and 8-way, and the PU sizes are 16×16, 16×8, 8×16, 8×8, 
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8×4, and 4×8. As shown in Table 4-5, the average load and maximum load value are 

about 2000 to 5000. If we load data into cache for every size PU separately, the 

overall value of loaded byte will be very high.  

Table 4-5: Memory load for each PU separately by 4-way (left) and 8-way (right) cache based buffer. 
 

4-way Average Load Max Load 

PU_16×16 4385.88664 6656 

PU_16×8 2793.71864 5040 

PU_8×16 2626.979372 5208 

PU_8×8 4361.483739 6208 

PU_8×4 2883.073035 4672 

PU_4×8 4786.360899 8928 

 

8-way Average Load Max Load 

PU_16×16 4215.33544 5720 

PU_16×8 2683.651366 3960 

PU_8×16 2582.611411 4224 

PU_8×8 4099.505668 5136 

PU_8×4 2712.346404 4016 

PU_4×8 4182.862665 5952 

From the scheduling, our design will process PU_16×16, PU_16×8, and PU_8×16 

simultaneously and encodes PU_8×8, PU_8×4, and PU_4×8 together in other process. 

This means that the loaded data for PU_16×16 may be shared with PU_16×8 and 

PU_8×16, and PU_8×8 could share data with PU_8×4 and PU_4×8. As shown in 

Table 4-6, the value for average load and maximum load are much lower than the sum 

of Table 4-5. For example, for 8-way CU_16×16, the average load value is 4224.99 

bytes, whereas for 8-way PU_16×16, PU_16×8, and PU_8×16, the average load value 

is 9481.60, which is much higher than the value needed by CU_16×16. 

Table 4-6: Memory load for CU_16×16, which covers CU_16×8 and CU_8×16, and for CU_8×8, 

which covers CU_8×4 and CU_4×8. Left: 4-way. Right: 8-way. 
 

4-way average load max load 

CU_16×16 4395.963576 6656 

CU_8×8 4368.188812 6208 

 

8-way average load max load 

CU_16×16 4224.987177 5720 

CU_8×8 4105.682959 5136 
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Even with the sharing mechanism, data shared between PU_16×16, PU_16×8, and 

PU_8×16 and between PU_8×8, PU_8×4, and PU_4×8, the value of data needed to be 

load is still high, for example, the 8-way cache needs to load about 8331 bytes in 

average and 10856 bytes if needed. To reduce the high value of loading data, the best 

way is make the data loaded for CU_16×16 be shared with CU_8×8. From the Table 

4-7, almost 97% of MVP candidates for CU_16×16 are the same as candidates for 

CU_8×8. The high overlap percentage means that CU_16×16 and CU_8×8 has high 

possibility that they need the same data. As shown in Table 4-7, if the loaded data for 

CU_16×16 can be shared with CU_8×8, the average loaded value will be about 6500 

bytes, which is much higher than 8331 bytes from the previous design, and the 

maximum value will be 7656 bytes, not 10856 bytes. 

Table 4-7: Overall memory loaded. 

CU_16×16 MVP and CU_8×8 MVP overlap 

% 

0.967461 

Average byte reloaded 

6497.6 

Maximum byte reloaded 

7656 

4.5 Architecture of Cache Based Buffer 

Since the 8-Way associative cache based buffer with 64×64 bytes has been 

selected in our design we now need to design the hardware of our cache based buffer. 

The overall architecture is mentioned in section 4.2, Figure 4-24 shows simply the 

cache relation with other element in the proposed architecture.  
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Figure 4-24: Cache module relationship in the overall proposed architecture. 

We use two cache based buffer for AMVP and PEPZS separately in our design. 

The cache mechanism for AMVP part will pre-fetch the first 3-step data for PEPZS 

while the buffer for PEPZS only load the 4
th

 or 5
th

 step needed data. Since the PEPZS 

goes beyond the 3
rd

 step, the data for the rest PEPZS step will be very divergent and if 

the cache buffer loads data for AMVP and PEPZS simultaneously, the hit rate will be 

decreased. If the cache buffer loads data for AMVP and PEPZS separately, the hit rate 

will perform better, shows as Table 4-8. 

Table 4-8: Hit rate in two different cache based buffer, which are AMVP+PEPZS and PEPZS. 

Motion Class Test sequence 
AMVP 

Hit rate (%) 

AMVP+PEPZS 

Hit rate (%) 

PEPZS 

Hit rate (%) 

High B Cactus 93.9885 63.0576 91.5577 

  

Kimono 94.6786 60.4704 92.1785 

 

C BasketballDrill 97.7362 67.5685 95.3984 

  

RaceHorsesC 91.4237 47.3322 87.8504 

 

D RaceHorses 94.9561 58.3367 91.0088 

Medium B BasketballDrive 96.8091 65.3569 93.7051 

 

C BQMall 79.9803 64.7391 85.7357 

 

D BasketballPass 97.5183 66.8536 95.3559 

Low B BQTerrace 96.7301 95.3331 95.4299 

  

ParkScene 97.4778 75.2201 83.7295 
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C PartyScene 98.4607 86.4885 98.1048 

 

D BlowingBubbles 96.1304 94.1446 96.2425 

  

BQSquare 99.8427 99.1383 99.842 

Average hit rate (%) 82.38217 72.61843 92.77994 

 

4.5.1 Overview of cache based buffer 

For the N-way cache design, the address controller is the most important core of 

the cache. The address controller maps the address of a frame and the cache address. 

It controls the loaded data should be put into which cache position. 

Valid Tag_x Index 

Cache Address

15 bits1 bit

9 bits 6 bits

Offset

3 bits

Tag_y 

 

Figure 4-25 Cache address for our hardware design 

In our design, the address controller will convert the frames address into the cache 

address. As shown in Figure 4-25, the cache address can be departed into offset, index, 

tags, and valid bit. The cache address is mapped from the frame address. We use 9 bits 

to identify the x-address and y-address in a frame and both address will be mapped 

with a CU_64×64 starting position into the cache address. The offset in our cache 

address is 3 bits because each word in the cache is 8 bytes. The index is calculated 

from the Y-position in a frame, as shown in  

(Equation 4-5, it is 6 bits. The tags are calculated from the X-position and 

Y-position in a frame separately. The valid bit shows 1 if this cache word has valid 

data, 0 for non-valid data. Every value in a cache address is calculated by the address 

controller. 

 

16 
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𝑌 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑖𝑛 𝑎 𝑓𝑟𝑎𝑚𝑒%(64 × 64 ÷ (8 × 8)) = 𝐼𝑛𝑑𝑒𝑥 

(Equation 4-5) 

4.5.2 Address controller design 

The address controller is the most import part of our cache design [27] [31]. As an 

8-way cache address controller, it will compare the information with the requested 

data and then sends signal to the cache or to the off-chip memory. 

Cache Tag

V T

Compare Cache Address

V T

… … 

Way 1 Way 8

6
4

Cache Data

compare compare

Request 

Address IN

Tag 

Index 

… … 
Get Data

Reload Data

Update Data

Update Tag

Miss Miss 

Hit 

 
Figure 4-26 Address controller architecture 

As shown in Figure 4-26, the address controller compares the requested data 

address with the index and tags in our cache. It first calculates the index of the 

requested data and finds the corresponding cache row to find the data. The controller 

then compare from the first way tag to the eighth way tag to find if the cache word if 

valid or not, and if the data information is the same. If the comparison result is the 

same, then the controller will send a hit signal to the cache and the system can get the 

required data. If the comparison result is not the same, it sends a miss signal to the 

cache and off-chip memory and updating the cache data. 
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4.5.3 Cache based buffer architecture design 

The index, tags, and valid bit, they will be kept as register in the address controller 

whereas the data will be kept in 8-way associative cache. To implement an 8-way 

associative cache, we depart the cache into 8 parts. As shown in Figure 4-27, there 

will be 8 8×64 bytes register files to build up an 8-way associative cache. With the hit 

signal from the address controller, the cache can prepare the data requested by the 

system and send data into the PEPZS module. When the address controller sends miss 

and updating signal, the cache updates the data with corresponding X and Y address 

values coming along.  
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Figure 4-27 Cache architecture 

4.5.4 Cache based buffer updating mechanism 

The cache updating behavior is controlled by the address controller. The address 

controller sends request address in the cache to get the desired data for the PEPZS 

calculation. The desired data will be collected as OUT_DATA, as shown in Figure 

4-28, and send to the AMVP or PEPZS calculator. And the controller also sends 
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updating address in the cache to put the updating data in the correct position. The 

updating data comes from the off-chip memory requested by the address controller. 

The address controller will update the tag and data if needed when the AMVP or 

PEPZS calculation request.  

Cache 

Request Add Update DataUpdate Add

Get Data
Update 

Data/ Tag

OUT_DATA

EPZS 

Controller 
 

Figure 4-28 Cache fetching and updating. 
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Chapter 5. Results  

5.1 Design Flow 

Figure 5-1 shows the design flow in this work. After the defining system target 

specification, the corresponding C-model is developed. In order to meet the 

requirement of the system, we exploit the encoding algorithm by software-based 

approach. When the algorithm is confirmed, the hardware architecture is proposed to 

implement in Verilog. The RTL functional behavior verification is simulated with the 

pattern from the C-model. 

System 

Specification

Algorithm 

Development

Hardware 

Architecture 

Design

RTL

Simulation
Synthesis

C Verilog

Verification

 

Figure 5-1: Design flow. 

5.2 Simulation Results 

The proposed IME fast algorithm is implemented on HM 6.0, and the test 

sequences are listed as Table 5-1: 

Table 5-1: Tested sequence description.[2] 

Class Description Video Name 

Class A Cropped "Ultra-HD" areas of 

size 2560x1600 taken from the 

sequence (30 fps) 

Traffic (4096x2048p), 

PeopleOnStreet(3840x2160p) 

Class B 1920x1080p 24 fps: ParkScene, Kimono 

50-60 fps: Cactus, 
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BasketballDrive, BQTerrace 

Class C 832x480p 30-60 fps WVGA BasketballDrill, BQMall, 

PartyScene, RaceHorses 

Class D 416x240p 30-60 fps WQVGA BasketballPass, BQSquare, 

BlowingBubbles, RaceHorses 

Class E 1280x720p 60fps video 

conferencing scenes 

FourPeople, Johnny, 

KristenAndSara 

An experiment is conducted under the low-delay B-slice main condition, which 

allows HM to use fast motion estimation algorithm. HM 6.0 reference software is 

used as base software. Table 5-2 summarizes BD-rate result in this experiment. The 

overall BD-rate for our proposed IME fast algorithm is 1.3% for Y-component, 1.4% 

for U-component, and 1.6% for V-component separately.  

Table 5-2: Simulation result of proposed fast IME algorithm under the low delay B-slice main 

condition. 

  Low delay B Main 

  Y U V 

Class A 1.0% 2.3% 2.1% 

Class B 1.6% 0.9% 1.5% 

Class C 1.3% 1.7% 1.5% 

Class D 1.1% 1.2% 2.0% 

Class E 1.7% 1.1% 0.8% 

Overall 1.3% 1.4% 1.6% 

We pick the worst results from the Class B, C, and D to make the PSNR versus 

bitrate plots. The worst case is Class C— RaceHorsesC sequence; its BD-rate is 2.2%, 

2.4%, and 2.5% for Y, U, and V component separately. But from the Figure 5-2 - 

Figure 5-4, we can see that the PSNR is only slightly smaller than the reference 

software HM 6.0. 
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Figure 5-2: Y PSNR v.s. Bitrate, Class B, BasketballDrive 

 

Figure 5-3: Y PSNR v.s. Bitrate, Class C, RaceHorsesC 
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Figure 5-4: Y PSNR v.s. Bitrate, Class D, RaceHorses 

 

Figure 5-5 to Figure 5-8 show the encoded result by two different method, 

proposed fast IME algorithm and HM 6.0 separately. The red unit is the inter coded 

blocks. The percentage of each different size PU distribution of the proposed 

algorithm is very close to the ones of the original HM. The distribution results are 

identical with the PSNR results, which is also very similar to the PSNR value of 

original HM. 
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Figure 5-5: Result of proposed IME, RaceHorses_416x240 

 

Figure 5-6: Result of original IME, RaceHorses_416x240 
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Figure 5-7: Result of proposed IME, BasketballDrive_1920x1080 

 

Figure 5-8: Result of original IME, BasketballDrive_1920x1080 
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5.3 Memory Reduction Results 

We can have the memory access comparison between the proposed architecture 

and other algorithm without data reuse mechanisms. The result of the memory access 

of AMVP and PEPZS is shown as Table 5-3. 

Table 5-3: Memory access comparison. LCU size is 64×64. 

 Original AMVP 

Full Search 

Original 

AMVP 

EPZS 

Diamond 

Combination 

4 at section 3.5 

Proposed 

architecture 

Memory 

Access/CU 

375 Kbytes About 188 

Kbytes 

About 74 

Kbytes 

About 8KB 

Memory 

loaded for 

MVP blocks + 

(W+2SR)(H+2SR) 

MVP blocks + 

SP blocks 

Reduced MVP 

blocks + 

Reduced SP 

blocks 

Cache 

mechanism 

 

5.4 Synthesis Results 

The proposed architecture is implemented by Verilog and synthesis in TSMC 

90nm technology at operating frequency 270MHz. 

Table 5-4: Synthesis results of proposed architecture. 

Module Name Gate Count in 270 MHz 

PEPZS module 111,873 

Address Controller module 164,914 

Cache 2,786 

Memory  8K bytes 

Total 279,573 

 

As shown in Table 5-4, the memory consumes a large amount of hardware. Since 

the tag information need to be stored in the address controller that it can be used for 

cache updating mechanism, the gate count for address controller is a little bit high.  
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We have our result compared with two other exited architectures, as shown in Table 

5-5.  

Table 5-5: Comparison of IME architecture. 

 Grellert[26] Lin[19] Tsai[20] Tsung[30] This work 

CU 4×4 16×16 16×16 16×16 64×64 

Search 

range 

19×19 256×256 256×256 33×33 33×33 

Search 

algorithm 

Full search PMRME EIMD+PHS Predictor- 

centered 

search 

PEPZS 

Reference 

frame # 

4 3 1 1 1 

Targeted 

resolution 

1280×720 

@56fps 

1920×1080 

@60fps 

4k×2k 

@30fps 

4k×2k 

@24fps 

4k×2k 

@60fps 

Clock 

frequency 

265.2MHz 100MHz 125MHz 300MHz 270MHz 

Logic Gate 127.83K 180.1K 300K 230K 280K 

Memory 

(Kbytes) 

3.96 5.6 12.6 7.81 8 

Technology TSMC 

0.18um 

UMC 

0.13um 

UMC 

0.13um 

TSMC 

90nm 

TSMC 

90nm 

Standard H.264 H.264 H.264 H.264 HEVC 

The proposed architecture can supports a CU sized 64×64, while the other two 

only support 4×4 and 16×16 separately. Since our hardware deals with different PU 

motion estimation, the logic gate is a little bit higher than [30]. The proposed 

architecture has the most memory consumption among the 3 different hardware 

design, however, this work is capable of processing larger frame size than [26] and 

higher fps than [30]. In other words, if [26] [30] follow our specification, the memory 

consumption they need may be much more than it does now.  

We also can find the hardware cost reduction from the algorithm comparison. For 

example, if the hardware adopts the algorithm in [25], which have +/-16 search range 

around MVP, it will need to calculate at least 1024 SADs of PU_64×64. This has to 
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use at least 8 PE_16×16 to meet the specification. Compared with [25], the proposed 

algorithm only needs 2 PE_16×16 to implement in hardware, which is much lower 

than [25].  
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Chapter 6. Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we have the overall IME design from the algorithm to the hardware. 

We have discussed the important issues in PEPZS and AMVP when developing the 

fast IME algorithm and also the high cost and memory use problem in hardware 

design. The contributions of this thesis can be summarized as follows. 

First, we observe and analyze the search direction relation between each step in 

PEPZS and propose some method to make efficient direction selection, which can be 

concluded as predictive PEPZS (PEPZS). We also find the AMVP importance in 

HEVC, the performance degrades if some specific sized AMVP is skipped. Here we 

analyze the affection of each sized PU to HEVC and skip non-square PUs larger than 

16×16 for AMVP calculation while keeps the good compression quality. 

Second, we propose an architecture that adopts our fast IME algorithm. We have a 

scheduling that SAD calculation and data loading are interlaced in order to meet the 

design specification. We also make the cost down by lowering the PE number. When 

facing the high memory bandwidth issue, we present a cache design that can fit our 

fast IME algorithm needs. The overall algorithm and hardware design is implemented 

with 279K logic gates and 8 KB on-chip memory witch can support the 4Kx2K 60fps 

video encoding at 270 MHz operation frequency. 

6.2 Future work 

Although we have the cache design to lower the memory access, the size of cache 

and local buffer is still an issue for design. In addition, the fast algorithm may be 

improved by doing some mode selection to reduce the complexity further. This will 
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help the hardware design; it will lower the cost or have flexible time for loading data.  
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