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Abstract

Motion estimation (ME) processing is the most complex part and the bottle neck
of a real time video encoder due to its heavy complexity, and large memory
bandwidth, especially for the latest video coding standard, High Efficient Video
Coding (HEVC), due to its recursive coding structure, larger prediction unit (PU) size,
and advanced motion vector predictors (AMVP).

To meet real time demands, this thesis presents an efficient VLSI ME
implementation. This design first skips non-square size AMVP for PU size larger than
16x16 and then adopts a 5-step predictive EPZS (Enhanced Predictive Zonal Search)
algorithm only for PU size 16x16, 16x8, 8x16, and 8x8 to reduce the search points
significantly by 78.1% while maintain the coding performance. The architecture
design uses interlaced AMVP and predictive EPZS scheduling for different PU size
and the 16x16 PU based partial AMVP computation for PU size larger than 16x16 to
maximize hardware utilization and overcome the data dependency problem. To
maximize data reuse while keep design simple for such fast algorithm, the proposed
design uses separated 8-way set associative cache based search buffers for AMVP and
predictive EPZS with reduced tag address indexing.

The simulation result illustrates the BDrate performance drop by 1.3%, 1.4%, and

1.6% for Y, U, and V component separately, when compared to HEVC reference
I



software HM 6.0. The presented design with 90 nm CMOS process costs 279K logic
gates and 8K bytes of on-chip memory and is capable of processing 4Kx2K 60fps

video when running at 270 MHz.
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Chapter 1. Introduction

1.1. Motivation

The growing digital media technology such as digital television, mobile phone,
internet video streaming, and home entertainment equipment has become an
important role in our daily life. Most of us get the information all around the world
through these media and devices. However, the multimedia data is too large to
transmit or record without compression. The video codec is targeted to compress or
decompress digital video effectively; an encoder converts video into a compressed
format and a decoder converts compressed video back into-an uncompressed format.
With the video codec and compression, the multimedia information could be
transmitted and stored as digital signal. In order to keep the good quality of the video
for the users, the video encoder should effectively compress the data. It is quite
complex to keep the video quality the quantity of the video data needed to represent.
Because the multimedia data is transmitted or stored under various constraints such as
storage size, real time encoding, and power consumption. Therefore, the video
compression process needs to exploit the redundancy within or between each frame to
reduce the bitrate with minimum video quality loss.

The encoder exploits the subjective, spatial, temporal, and statistical redundancy
of the video. Because moving videos contain significant temporal redundancy, for
example, successive frames are very similar, it is useful for compression. The amount
of data to be coded can be reduced significantly if the previous frame is subtracted
from the current frame, and that is why motion estimation and compensation are

widely applied to video compression. It is very useful and efficient; however, it



occupies very high computational complexity and energy consumption in the
encoding process. Many technologies have emerged to get the balance between the
coding efficiency and the complexity consumption.

H.264/ AVC has been widely used for the application from the media broadcasting
to the personal consumer electronics product nowadays. However, with the
development technology of shooting and the economic growth, the demand for higher
resolution video becomes larger and larger. High Efficiency Video Coding (HEVC) is
a new Standard under the development by the ISO and ITU-T, and it is expected to be
more efficient than its predecessor, H.264/ AVC. As well as its improved compression
performance, HEVC has greater computational complex and needs longer coding time.
Consequently, this becomes a crucial problem in the encoder development and is what

we are going to-discuss.

Video Encoder

Video Source ——»| Prediction » Transform » Encode

Transmit or Store

Inverse
Transform

Decode |-

Video Output = Reconstruct [«

Video Decoder

Figure 1-1: Video codec flow

1.2. Thesis Organization

The organization of this thesis is as follows: in chapter 2, we introduce the new
video codec standard — HEVC. In chapter 3, we first review some related works and
then we will propose a fast hardware-friendly algorithm for our IME architecture. In
chapter 4, we propose our architecture of the proposed fast algorithm. Then, in

chapter 5, we list the final simulation results to demonstrate our proposed algorithm
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and some encoded sequence comparison. Hardware implementation results of our
motion estimation are also listed in chapter5. In the end, a conclusion is given in

chapter 6.







Chapter 2. Overview of HEVC Standards

2.1 Overview of HEVC

High efficiency Video Coding (HEVC) is a new standard by the Joint
Collaborative Team on Video Coding (JCT-VC). HEVC has the similar individual
building blocks of the hybrid coding to H.264/ AVC, however, the flexibility of the
block partitioning for prediction and transform coding is much higher. HEVC
improves the coding efficiency compared to H.264/ AVC but it also increases the
computational complexity-and-memory usage because of encoding high resolution
video. HEVC is viewed as next-generation video coding standard for HDTV. It
provides a bit.rate savings for equal PSNR of about 39% for random access

applications, 44% for low-delay use, and 25% for all-intra use [1][2].

Transformed Quantized

i ici coefficients
esiduals coefficients

N| i ati
) Transform l—»l Quantization I—.I CABAC HEVC

bitstream

D
N\

Inverse Quantization

Inverse Transform

VAR
N

[ Deblocking Filter |

Current PU

[ intra Prediction

Intra/Inter
[ Motion Compensation

,
Z
I
;
,
.
,
Reconstructed
Frame Buffer

| Reconstructed image

L——  Motion Estimation

Prediction information

Figure 2-1: HEVC encoding flow.

2.2 Featuresin HEVC

The video codec concept of HEVC is very similar to the H.264/ AVC, it can be
viewed as a generalization of H.264/ AVC. Even though, HEVC has some different

characters in this new video coding standard. It has larger prediction and transform
5



blocks and flexible partitioning in those blocks. The spatial intra prediction has much
more direction mode. The inter prediction has a new motion vector prediction method
for better IME performance and the FME also has two new interpolation filters.
HEVC also has a new concept of adaptive loop filter for reconstruction signal after
the SAO process [3]. All the improvement in the HEVC helps it gain high coding

efficiency and low bit-rate for high resolution video coding application.

2.3 Coding Structure in HEVC

The HEVC standard uses block-based hybrid coding scheme that relies on
motion-compensated prediction. Pictures to be encoded will be partitioned into largest
coding units (LCUs). The LCU concept is like the macroblock in the standard H.264/
AVC. The maximum allowed size of LCU in HEVC is 64x64.

A LCU consists of different sizes coding units. The Coding Unit (CU) is the basic
unit of region splitting used for inter/intra coding. It is square and it may take a size

from 8x8 up to the size of the LCU.



Split Flag=0 Split Flag=1
0
Depth =0, N =64
2N CUo -
2 3 I
_d
2N /

/

Split Flag=0 Split Flag=1
0 1
Depth =1, N =32
2N CUx -
2 3 I

2N g5

1

No Split Flag

Depth =3, N =8
2N CUs

2N

Figure 2-2: Coding Unit recursive partitioning

The CU is recursive split into four equally sized blocks, starting from the LCU. A
2Nx2N LCU will be split into 4 NxN CUs with the split flag, and the process goes
further to the next depth. This will build up a quad-tree structure of CU blocks. The

CUs are sized from LCU to 8x8, and the depth is from 0 to 3.

Figure 2-3: Example of Coding Unit structure [3]
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The Prediction Unit (PU) is the basic unit used for prediction processes. The PU
carries needed information for the prediction and brings the information from top to
bottom depth through the prediction flow. The PU is not restricted to being square in
shape. A CU could have one or more PUs, and the size for each PU could be as large

as CU or as small as 8x4 or 4x8.

2Nx2N Nx2N 2NxN NxN
Figure 2-4: Different PU partitions. [3]

The Transform Unit (TU) is the basic unit used for the transform and quantization
processes. TU shape depends.on PU partitioning mode. TU will be square as PU is
square, and it sized from 4x4 up to 32x32. TU is non-square when PU has non-square
shape, it may be sized as 32x8, 8x32, 16x4, and 4x16. The TU size is as shown in
Figure 2-5. Each CU may contain one or more TUs depend on the PU size, transform

and quantization results.

0.5N

2N

Square Non-Square

Figure 2-5: TU shape in HEVC



2.4 Advanced Motion Vector Prediction in HEVC

The AMVP is a technique to find the best MVP by the spatio-temporal correlation
of motion vector with neighboring PUs. AMVP builds its own motion vector
candidate list by firstly checking availability of left, top, and temporal PU positions. It
starts checking with A0, Al, BO, B1, B2 (as shown in Figure 2-6), and then the
temporary PU. It will remove redundant candidates if it already gets enough
candidates for the calculation. The encoder will choose the best predictor from the
candidate list by the calculation and then sends the corresponding index of the chosen

candidate.

Ar

Ao

Figure 2-6: Motion vector candidates [3]
2.5 High Efficiency and Low Complexity in HEVC

HEVC encoder supports two encoder configurations, which are High Efficiency
(HE) and Low Complexity (LC). HE coding is designed to obtain high compression
performance. It supports a bit depth increase up to 10 bit (Internal Bit Depth Increase,

IBDI), full capability of loop-filtering process including ALF and CABAC as entropy



coder. LC is designed to obtain as high compression performance as it could while

keeping the complexity to be low. It will not support IBDI and adaptive loop filtering.

2.6 Challenges in HEVC Implementation

To implement HEVC encoder is a huge challenge. HEVC for HDTV application
results in complex video coding. To implement HEVC in hardware, however, will
leads to high computational complexity, a large external memory bandwidth, and
large size on-chip memory consumption. The computational complexity and memory
usage will be our main design challenge if we want to implement HEVC on hardware.
The following sections will-develop an algorithm and architecture based on the

concern of complexity and bandwidth cost.
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Chapter 3. Proposed Integer Motion
Estimation Fast Algorithm

3.1 Related Works

Block-based motion estimation is adopted by the HEVC. In block-based motion
estimation, a block-matching algorithm searches for the best matching block for the
current block. During the encoding process, motion estimation is the most important
part. The integer motion estimation-contributes a lot for the encoding performance but
also dominates the complexity and. bandwidth consumption because it uses
block-matching. strategy. To get the good performance while keep the balance with
complexity and bandwidth consumption, many motion estimation algorithms have be
proposed. Those algorithms focus on reducing computational complexity, and
memory  bandwidth loading, and that Is quite an important issue for the
hardware-friendly design. In this section, we will review some related motion

estimation algorithms.

3.1.1 Full search algorithm

The well-known full search algorithm (FSA) is the most accurate and simplest
method to find the best motion vector. It searches all search points within the search
range. However, this approach gets it good performance by its heavy computational
complexity since it will calculate every SAD result of all possible search points.

As the full search algorithm searches all the possible point to find the best motion
vector in a regular search flow, it is friendly for hardware design. The data within the

search range could be fully reused, this decrease the huge memory access amount that
11



motion estimation usually faced.
Because FSS needs to calculate all the SAD results of every search point in the
search area, there are some other algorithms have been proposed to decide the

checking point to reduce the computation amount.

3.1.2 Three-step search and new three-step search

@) first step

———————————————— D=1 [ ] second step

A third step

Figure 3-1: TSS search pattern

Three-step search (TSS) [4] is a very popular fast search algorithm because its
simplicity and good performance. As the initial step size is picked, 8 search points at a
distance of the step size from the center are picked for calculation. The second step
center will be moved to the point with the minimum distortion. And the step size for
2" step and 3" step is halved and further. From the Figure 3-1, we can see the search
points needed for TSS is 25 per macroblock, which is much less than FSS needs.

However, the distribution of the global minimum points in real-world video
sequences is centered at the position of zero motion (i.e., search window center) [5],
the center-biased new three-step search algorithm (NTSS) has been proposed. It is an
improved version of TSS; it adds 8 checking point at the first step, and targeted to
achieve better performance with fewer number of search points on average. While it

improves the search performance compared to TSS, it somehow loses the simplicity
12



and regularity of TSS [5] [6].

3.1.3 Diamond search

07
0]

O first step

[] second step

a  third step

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LDSP -> LDSP LDSP -> SDSP

Figure 3-2: DS search pattern

The diamond search algorithm assumes most of motions have a center-biased
motion_vector distribution [6] [7]. This search algorithm begins with the center. It
picks 9 checking points, one is at the center and the other eight one surrounded to
compose a diamond shape, to calculate the difference. The diamond search pattern
center will be moved to the point with the minimum distortion, which is known as
LDSR to LDSR. If the minimum distortion point is at the center, the search pattern
will turn into SDSP to check the neighboring four search points. The diamond search
step is shown as Figure 3-2.

Diamond search reduces the number of checking point efficiently. The average
search point for diamond search algorithm is about 12 to 19. However, the reduced
checking points affect considerably the encoding video [8][9]. And sometimes, DS

has unrestricted number of steps when it is trapped by local minimum [10].

3.2 EPZS in HM

The HM adopts the EPZS method for the default IME fast search algorithm. This
13



algorithm will check different searching points at each step [9] [11]. The distance
between each searching point is doubled when the search is going to next step. For
example, the distance between each search point in 1* step is 1, whereas it is 2 and 4
in 2" and 3™ step separately. The default searching range in HM for the motion

estimation is +/- 64 so the search steps for EPZS is seven.

Square Diamond
Dist
o [ ] [
1 2 3 2
Dist Dist o
Dist/2< * 3
o o [ o o [ ]
4 0 5 4 0 5
® [
6 8
o o o o
6 7 8 7

Figure 3-3: The original search point for EPZS square search and diamond search.

There are two different EPZS search algorithm in the HM, one is square and the
other is diamond. These two search algorithm have the same search points from 1%
step to 4™ step, the search point position is like the square search shown.in Figure 3-3.
While when the step number becomes larger than 4, the search point position is a little
bit different for these two search method. The diamond search method still keeps 9
search points while the distance for top-left, top-right, bottom-left, and bottom-right is
only half distance which it should be in corresponding step. These two different
search methods both have good performance but different data bandwidth. The
diamond search method has smaller data bandwidth because it will have more data
reuse rate according to the search point position. We adopt diamond search method in

EPZS for our later IME fast algorithm development.
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3.3 Predictive EPZS in Proposed IME Fast

Algorithm

The HM adopts EPZS as its motion estimation algorithm. It has good performance;
however, the good performance comes from the dispersive search point. Even though
the search points needed for EPZS is less than full search, the total EPZS search point
for all PU size is still-a large number.

The HM will do EPZS for each PU size, which means that it has to do 57 search
point calculation for each PU sized 2Nx2N, 2NxN, Nx2N, and NxN at each depth.
The total number of search point is 23800 for one CU_64x64. This will lead to large
computational complexity.

In order to make the motion estimation faster, we need to cut down the number of
search points as many as possible. There are many factors that dominate the number
of search points. The first one is the search direction. The second one is number of
search steps. And the last one is the different PU size do its own search separately.

The later sub sections will talk about the analysis of EPZS search point and its
relation with the three factors mentioned above. And we will follow those analyses to

develop our fast motion estimation algorithm.

3.3.1 Relationship of direction between each step

The good performance of EPZS comes from the 8 different searching directions at
each step. The 8 diverse searching directions results in high computational complexity;
however, it can be reduced if we can predict the next direction. In order to predict the
next direction, we need to find the relation between two consecutive steps. The

relation may be traced by the content of the PU in the test sequence; the final
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searching point decision at each step would possibly follow the similar direction or
route. It is important for us to find the direction difference between the two
continuously steps.

From the two following plot, Figure 3-4 and Figure 3-5, it has higher probability
to change the direction before step3; this means that the direction at later steps will
follow the direction which has been chosen at previous step. This behavior concludes
that the search at first 3 steps is much more important than the later ones because the
searching direction in the first 3 steps may change more than the later ones, whereas
the later ones has higher probability to follow the same direction as the one at

previous step.

Search direction difference at each step
0.5

B 64x64
0.45
ol W 64x32
035 - M 32x64
03 - W 32x32
X 0.25 - m 32x16
0.2 m 16x32
0.15 m 16x16
0.1 - m 16x8
0.05 - P
0 _
2 3 4 5 6 7 " 8x8

Figure 3-4: Results for Different direction relation with step for
RaceHorses_416x240.

16



Search direction difference at each step

0.6

W 64x64
W 64x32

W 32x64

H 32x32
W 32x16

W 16x32
m 16x16

W 16x8

8x16
m 8x8

m 8x4

Figure 3-5: Results for Different direction relation with step for
BasketballDrive_1920x1080.

3.3.2  Selection of search direction

There are 8 searching points each step for EPZS algorithm, which means that for
each PU size, the total searching points will be 8 SPs x 7 steps = 56 searching points.
With 56 searching points for each PU sizes, the computational complexity will be
very large. To reduce the number of search points and the computational complexity,
the decision of search direction for EPZS at each step would be very important.

The simulation results reveal the relationshidip of direction between the previous
step and the current one, as shown in Figure 3-6 and Figure 3-7. There are 8 searching
points each step so the degree between the previous and current step would be 0°, +/-
45°, +/- 90°, or +/- 135°. The probability for EPZS to choose the same direction as the
previous step is very high whereas is very close to zero when the degree difference is

more than 45°.
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Probability of different direction

W 64x64

W 64x32

W 32x64
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W 32x16

W 16x32
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Figure 3-6: Probability of different direction at next step fo'r RaceHorses_416x240.
Table 3-1: Probability of different direction at next step for RaceHorses_416x240

Average 0.865065 0.100924 0.012062 0.003022 0.004166

Probability of each direction change
1 . Qc
0.9 W 64x64
| 2
08 - 64x3
m 32x64
0.7 -
W 32x32
0.6 -
H 32x16
X 0.5 A
W 16x32
0.4 -
B 16x16
0-3 1 = 16x8
0.2 1 " 8x16
0.1 - H 8x8
0 - = 8x4
0 45 90 135 180
M 4x8
Degree

Figure 3-7: Probability of different direction at next step for

BasketballDrive_1920x1080.
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Table 3-2: Probability of different direction at next step for
BasketballDrive_1920x1080

Average 0.860406 0.096112 0.008742 0.007685 0.004454

As shown in Figure 3-6 and Figure 3-7, the two difference sequence results, one is
Class B with high motion (BasketballDrive_1920x1080) and the other one is Class D
with high motion (RaceHorses_416x240). Both of these two sequences have the same
behavior that the probability for direction degree of 0° or 45° is much higher than
other degree. According to their behavior, EPZS may only need to check the same
direction as the previous step or the two neighboring directions. This predictive EPZS

(PEPZS) is shown in Figure 3-8.

Square Diamond
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Figure 3-8: Modified searching point at next step.

With the modification mentioned above, we can get the simulation results as
shown in Table 3-3. For low and high QP, the bitrate will increase at most 1.02% and

the vaule of PSNR decreasing will under 0.03.
Table 3-3: Results for PEPZS.

Original Modified Difference

QP Bitrate | PSNR | Bitrate | PSNR (Bitrate %| PSNR

BasketballPass 22 |1511.172|39.5281|1526.602| 39.523 | 1.02% |(-0.0051
416x240 37 |148.8864|28.7357|149.3064|28.7121| 0.28% |(-0.0236
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BlowingBubbles

22 |1858.804(38.1771|1862.908|38.1744

0.22% |-0.0027

416x240 37 1163.208 [28.2231| 163.656 (28.2281| 0.27% | 0.005
BasketballDrive 22 |26190.18(39.3694|26256.25(39.3699| 0.25% |0.0004
1920x1080 37 4230.6 | 35.425| 4245.1 |35.4284| 0.34% |0.0034

3.3.3 EPZS search steps and bandwidth analysis

There is an early termination condition for EPZS. The early termination is on

when the EPZS have the same SAD results for 3 steps in a row. It will stop the further

EPZS and use the result at the current step.

With the early termination, the computational complexity and bandwidth would be

reduced a lot. In the Figure 3-9, the original consumption of memory bandwidth is

very high to the modified EPZS in Figure 3-8. As the step goes larger, the increasing

amount.of memory bandwidth consumption grows quickly for the original EPZS,

while it increases not that much for the EPZS modification.

Memory Bandwidth V.S. Step

8
7 »
%6 //
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=
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== o0rig
== modified

Figure 3-9: The memory bandwidth reduction with early termination.
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Table 3-4: The memory bandwidth reduction at each step and with early termination.

Original

Modified

1.55 KB

1.42 KB

2.21 KB

1.83 KB

3.21 KB

2.08 KB

5.21 KB

2.58 KB

7.21 KB

3.08 KB

From the simulation results in Figure 3-10 and in Table 3-5, we can find that most

of the searching will be ended at step.3 if it meets the early termination condition, the

next searching SAD calculation will be cut off and the system do not to need to load

any more for next searching point.

Early Termination Step

0.45
0.4

0.35
0.3
0.25
X
0.2
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0.1
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step 3

step 4
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B PU_64x64
B PU_32x32
M PU_16x16
M PU_16x8
© PU_8x16
B PU_8x8
m PU_8x4
PU_4x8

Figure 3-10: Early termination probability at each step.

Table 3-5: Early termination probability for each PU size at every step for RaceHorses_416x240.

step 3 step 4 step 5 step 6 step 7
PU_64x64 0.188005 0.310596 0.298128 0.152905 0.050368
PU_64x32 0.04785 0.209133 0.247056 0.320096 0.175864
PU_32x64 0.044018 0.174289 0.218883 0.331507 0.231303
PU_32x32 0.196024 0.324827 0.282737 0.139079 0.057333
PU_32x16 0.068425 0.219711 0.2431 0.264324 0.20444
PU_16x32 0.060552 0.210402 0.233748 0.281853 0.213445
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PU_16x16 0.257562 0.334026 0.242902 0.11147 0.054039
PU_16x8 0.297505 0.338639 0.218877 0.095603 0.049376
PU_8x16 0.298328 0.337522 0.217305 0.096868 0.049977
PU_8x8 0.347569 0.34672 0.189285 0.07547 0.040957
PU_8x4 0.393838 0.35341 0.16489 0.056984 0.030878
PU_4x8 0.392855 0.352398 0.164719 0.057835 0.032193

The result in Table 3-6 shows the different probability at 4 different QP

simulations. From the average value, the probability to early terminate at step 3 is up

to 35% to 73%, and more than 50% that EPZS will be terminated at or before step 4.

This could help us to decide how to add an early termination constraint on our design

if the EPZS can not be finished in specific time.

Table 3-6: Probability of early termination at each step

Step 3 Step 4 Step 5 Step 6 Step 7
22 | 242501 | 17.3408 | 21.4232 | 21.0376 | 15.9484
RaceHorses | 27 | 394271 | 13.7942 | 17.2538 | 16.8337 | 12.6912
416x240 32 | 56.6103 | 95758 | 12.1253 | 12.2618 | 9.4268
37 | 69.9798 | 71739 | 7.6239 | 8538 | 6.6844
22 | 323331 | 1268 | 18.8522 | 19.0209 | 17.1137
RaceHorsesC 1™ T 484898 | 104471 | 14.0276 | 14.0963 | 12.7392
" 32 | 63053 | 8701 | 9.7851 | 9.5555 | 8.9055
37 | 746346 | 7.2277 | 6.1866 | 6.0817 | 5.8694

22 | 46.079 | 17.3307 | 15.057 | 12.3487 | 9.1845

BasketballPass| 27 |.56.8994 | 13.6769 | 11,8859 | 9.9168 | 7.621
416x240 32 | 67.0048 | 104172 | 89616 | 7.6673 | 5.9492
37 | 763703 | 7.2471 | 6.4241 | 55786 | 4.3798
22 | 342207 | 15.7838 | 18.4441 | 17.469 | 14.0822
27 | 482721 | 12.6394 | 14.4557 | 13.6156 | 11.0171

Average

32 | 622227 | 95646 | 10.2906 | 9.8282 | 8.0938

37 | 736615 | 7.2162 | 6.7448 | 6.7327 | 5.6445

With the result and the consideration of the limit working cycle for our hardware

design, the performance of early termination should be acceptable if we cut off EPZS

after step 5 even after step 3.
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3.3.4 Bandwidth reduction by PEPZS

For the EPZS part, the original calculation complexity for each CU_16x16 is very
high, and the total data needed to be loaded is 20.75K bytes. From the above
experiment results, we can reduced the searching points number from 56 to 29 for
each PU size, what is more, with the early termination condition, the search points
number will be reduced further. And with the reduced number of the searching points,
the pixels needed to be loaded from the off-chip memory will be much lower than the

original EPZS algorithm needs. The comparison result is as shown in Table 3-7.

Table 3-7: Memory comparison between different ME algorithm. PU size is 16x16.

Full Search Original Original PEPZS
EPZS EPZS
Square Diamond
Memory 20.75 Kbytes 7.25 Kbytes 6 Kbytes 2.35 Kbytes
Access/PU
Memory MVP blocks + MVP blocks + | MVP blocks + | MVP blocks +
loaded (W+2SR)(H+2SR) SP blocks SP blocks reduced SP
from blocks

3.3.5 PEPZS base PU selection for search direction

Because of the design specification (will be described in Chapter4) we need to
finish the overall IME process in 2220 cycles. Part of high computational complexity
comes from the AMVP decision and others come from the PEPZS calculation; for this
reason, we try to find a method to cost down the number of SAD calculations in
PEPZS.

In order to reduce the computational complexity, we need to lower the search
points in the overall PEPZS flow. The original EPZS flow tests all search points for

every sized PU; obviously, this will dominate the number of SAD calculation. If we
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can only check the search points for specific sizes PU, the complexity will be reduced
a lot. Therefore, we have to find the specific size unit as the base PU and use the
direction of the base PU for the PEPZS. Table 3-8 shows the candidate for the base

PU that we tested.

Table 3-8: Tested cases for base PU selection

Use CU_16x16 as base PU for PU size is smaller than 16x16.
Use CU_16x16 as base PU for PU size is 16x16, 16x8, or 8x16.
Use CU_8x8 as base PU for PU size is 8x8, 8x4, or 4x8.

Do its own PEPZS when PU size is smaller or equal to 16x16.
Others use CU_64x64 as base PU.

Do its own PEPZS when PU size is larger or equal to 16x16.
Others use CU_16x16 as base PU.

First, we only use the CU_16x16 as the base PU, and PU size smaller than 16x16
will do the PEPZS with the same direction as CU_16x16. (both reference and

modified HMs’ AMVP decisions follows the CU_64x64)

Table 3-9: Use only the CU_16x16 as the base PU for search direction (AMVP_64x64)

Case 1 QP kbps Y psnr U psnr V psnr
22 1518.09 39.99 41.36 42.4 13.00%
27 725.8 35.75 38.42 39.56
RaceHorses
32 333.31 32.01 36.36 37.46
37 157.99 29.15 34.88 35.9
22 6343.38 40.1 41.62 42.93 13.20%
27 2606.95 36.22 38.9 40.45
RaceHorses
32 1139.65 32.86 36.94 38.61
37 513.67 29.92 35.6 37.27
22 1845.84 41.07 43.76 43.18 5.50%
27 922.17 37.06 40.85 39.88
BasketballPass
32 446.51 33.49 38.72 37.46
37 224.6 30.51 37.25 35.74
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In the second case, we use the CU_16x16 and CU_8x8 as the base PU, and PU
size between CU_16x16 and CU_8x8 will do the PEPZS with the same direction as
CU_16x16, other PU size smaller than CU_8x8 will follow the direction of CU_8x8.

(both reference and modified HMs’ AMVP decisions follows the CU_64x64)

Table 3-10: Use CU_16x16 and CU_8x8 as base PU for search direction (AMVP_64x64)

Case 2 QP kbps Y psnr U psnr V psnr BDrate
22 1462.7 40.01 41.37 42.4 9.10%
27 701.15 35.79 38.45 39.58

RaceHorses
32 327.29 32.06 36.36 37.46
37 156.59 29.17 34.89 35.94
22 6231.95 40.09 41.62 42.93 10.70%
27 2548.61 36.23 38.9 40.47

RaceHorses
32 1120.69 32.89 36.96 38.63
37 509.02 29.94 35.61 37.26
22 1807.63 41.08 43.77 43.2 3.60%
27 903.28 37.08 40.86 39.91

BasketballPass

32 442.1 335 38.75 375
37 223.03 30.52 37.27 35.77

From the above two tables, we can find that the performance with base PU does
not reach the requirement, we try the third case: do PEPZS when PU size is smaller
than CU_16x16. The results is better than the previous two cases, it means that the

direction for each PU should been chosen by its own PEPZS but not by the base PU.

Table 3-11: Use its own search direction when PU size is smaller or equal to CU_16x16
(AMVP_64x64)

Case 3 QP kbps Y psnr U psnr V psnr BDrate

22 1428.31 40.02 41.39 42.42 6.10%
RaceHorses 27 683.97 35.81 38.47 39.62

32 321.11 321 36.41 375

37 155.15 29.2 34.93 35.99

22 6144.21 40.09 41.63 42.94 8.70%
RaceHorses 27 2500.58 36.24 38.93 40.49

32 1102.82 32.92 36.99 38.66
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37 504.16 29.97 35.63 37.3
22 1788.14 41.08 43.78 43.21 2.20%
27 893.05 37.09 40.9 39.91
BasketballPass
32 437.41 33.52 38.8 37.52
37 222.2 30.54 37.3 35.8
22 3754.03 40.37 43.01 43.66 2.70%
) 27 1788.61 37.12 40.42 40.76
BasketballDrill
32 863.75 34.26 38.3 38.45
37 438.91 31.82 36.41 36.27

Below shows the Table 3-12, the BDrate result of all modification for the base PU
chosen and PEPZS. (Both reference and modified HMs’ AMVP decisions follow the

best candidate of CU_64%x64)
Table 3-12: Results of 3 different cases modification for PU chosen, with AMVP_64x64

-~ Original CU_16x16|CU_16x16,CU_8%x8| PEPZS PEPZS
Modification PEPZS
EPZS As base PU As base PU >=CU_16x16/<=CU_16x16
RaceHorses
2.70% |5.50% | 13.00% 9.10% 6.80% 6.10%
416%240
RaceHorses
3.00% (4.70%| 13.20% 10.70% 6.80% 8.70%
832x480
BasketballPass
1.60%| 5.50% 3.60% 2.80% 2.20%
416x240

The two cases, doing PEPZS for PU sizes larger than CU 16x16 and doing

PEPZS for PU sizes smaller than CU_16x16, give us very similar BDrate

performance. In the concern of processing period for IME, the modification doing

PEPZS for PU sizes smaller than CU_16x16 is much more appropriate for the

hardware design.

From the Table 3-11 we can find the BD-rate performance is not very good, the

BD-rate is up to 8.7%, which is too high for the video codec. The modification in

Table 3-9 to Table 3-11 is combining the modification of PEPZS and uses the AMVP

result of CU_64x64 for each PU. We can see that the performance is too low when it

only with one AMVP for every PU. Table 3-13 shows the result of PEPZS with the
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original AMVP process, and the BD-rate performance is very good for the two test
sequence. This shows the importance of the AMVP process, and that is what we are

going to discuss in section 3.3.

Table 3-13: Result of original AMVP and PEPZS.

Original AMVP + Do all PEPZS under CU_16x16 BDrate
HM.6. kbps Y psnr U psnr V psnr Y u \Y
BasketballPass | 22 1757.49 41.11 43.82 43.22 0.30% 1.20% 0.50%
27 874.24 37.13 40.94 39.95
32 428.01 33.6 38.83 37.59
37 218.07 30.65 37.38 35.88
RaceHorses 22 1364.76 40.07 41.43 42.45 0.80% 1.10% 1.60%
27 652.12 35.93 38.51 39.67
32 307.77 32.26 36.45 37.56
37 149.56 29.37 35.01 36.04

3.4 Modified AMVP in Proposed IME Fast

Algorithm

AMVP is a new concept in HEVC and this brings the good performance for
HEVC encoding. The AMVP is very important as it is one process that will results in
large computational complexity and cost a high memory bandwidth.

The HM does the AMVP for each PU to get the best MVP. This help HM gain the
good performance. However, the AMVP calculation for every PU leads to high
complexity. What is more, the data for the calculation of MVP candidates are usually
very diverse from the other. All these conditions are important issues that we need to
concern when we develop the IME fast algorithm. The later sub sections will show

the AMVP analysis and our result of modified AMVP.
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3.4.1 CU _64x64 as AMVP base PU for LCU_64x64

In HM 6.0, the original IME would do AMVP calculation for each PU size; each
AMVP processes two candidates SAD calculations. There are total 401 PUs in each
CU_64x64 and this leads to high computational complexity and cost much data
bandwidth. For the hardware design, we need to concern the complexity and
bandwidth and that is why we want to reduce the calculation of AMVP. What is more,
AMVP will decide which searching point is the starting point for PEPZS so the
AMVP is very.important for the both IME and PEPZS performance.

The simplest way to reduce the AMVP complexity is use the same MVP candidate
for every PU in a CU_64x64. After the AMVP of CU_64x64, the candidate will be
transmitted to the next depth and all of the rest sized PUs will use the same candidate
as their PEPZS starting searching point. This could definitely reduce the complexity a
lot; however, as shown in Table 3-14, the BD-rate compared to the original HM which
allows every PU to choose its own best MVP is very bad. The BD-rate is 6.6% for
luma component; this is not a good performance if we want to apply this on the high

resolution video encoding.

Table 3-14: Result of AMVP_64x64 and original EPZS.

AMVP_64x64 + Original EPZS BD-rate
HM_6.0
kbps Y psnr - Upsnr  V psnr Y U \%
RaceHorses 22 1386.83 39.80 41.07 42.12 6.60% 5.80% 5.30%
416x240 27 665.54 35.68 38.17 39.34
32 311.84 32.04 36.15 37.30
37 149.67 29.17 34.69 35.79
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3.4.2 Different AMVP base PU analysis and results

Because the experience from the section 3.3.1, we can find that the performance
will not match requirement if HEVC only supports only one best MVP for every PU
in a LCU sized as 64x64. Here we try some combination of PEPZS and AMVP
modification, as shown in Table 3-15, to find the best method for the PUs’ AMVP
chosen. These combinations are being considered because of the importance of the

AMVP size that tested.

Table 3-15: Tested cases for AMVP base PU selection.

Only do AMVP for PU_64x64 and PU_8x8.

Do PEPZS for PU size smaller than PU_16x16.

Do AMVP for PU_64x64 and PU size smaller than PU_8x8.
Do PEPZS for PU size smaller than PU_16x16.

Only do AMVP for PU_64x64 and PU_16x16.

Do PEPZS for PU size smaller than PU_16x16.

Do AMVP for PU_64x64 and PU size smaller than PU_16x16.
Do PEPZS for PU size smaller than PU_16x16.

Because the small size plays an important role in the motion estimation if the
sequence content has too complex texture, Case 1 tries to support one more AMVP
than the test in 3.4.1 for the motion estimation. This one more AMVP should be
supported for the smallest LCU size, CU_8x8, to improve the performance. As shown
in Table 3-16, the performance is a little bit better than that in Table 3-14. This one

more AMVP shows how the starting point is important for the small sized PUs.

Table 3-16: Result of casel AMVP base PU selection.

AMVP_64x64 + AMVP 8x8
Case 1 BDrate
PEPZS under16x16
QPISlice kbps Y psnr Upsnr 'V psnr Y U \Y
RaceHorses 22 6051.97 40.0894 415927 42917 | 6.10% 6.60%  7.10%
27 2387.09 36.2596 38.9254 40.4929
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32 1049.2 33.0326 37.0085 38.6836
37 482.197 30.1269 35.6694 37.3525
RaceHorses 22 1389.13 40.0117 41.3806 42.4057 | 3.40%  3.60%  4.50%
27 660.031 35.8699 38.4712 39.6141
32 312.311 32.2093 36.4489 37.5347
37 152.09 29.3088 34.9522 36.0048

According to the results in Case 1, it may be improved by adding more AMVP to

the rest small sized PUs. Case 2 supports more AMVP to the motion estimations, for

PUs which sized smaller than 8x8 will choose its.own best MVVP for the PEPZS

calculation. As shown in Table 3-17, the BD-rate is improved by about 1% for Class C

sequence, RaceHorses_832x480, and about 0.4% for Class D.

Table 3-17: Result of case2 AMVP base PU selection.

AMVP. 64x64+AM\VP<=8x8

Case 2 BDrate
PEPZS<=16x16
QPISlice kbps Y psnr UpsnrVpsnr Y U \Y
RaceHorses 22 5966.92 40.0816 41.6326 42.943 | 5.10% 4.90% = 4.80%
27 2378.21 36.2768 38.947 40.5182
32 1040.7 33.025 37.0202 38.7193
37 472.734 30.1327 35.6867 37.3919
RaceHorses 22 1404.12  40.0003 41.3657 42.3959 [ 3.80%  38.80%  4.60%
27 664.011 35.8531 38.4745 39.6267
32 311.26 32.2085 36.4509 37.5436
37 150.973 29.321 34.9704 35.9981

Because HEVC is targeted for high resolution video codec, such as 3840x2160,

the small sized PUs for complex texture block matching may be larger than 8x8. Case

3 tries to support only one more AMVP for CU_16x16 to find which the second best

AMVP base is from AMVP by CU_64x64.

As shown in Table 3-18, the result in Case 3 is not as good as Case 1. If AMVP is

only supported for the CU_16x16, the performance will not be good enough for our

needs.
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Table 3-18: Result of case3 AMVP base PU selection.

AMVP_64x64+AMVP_16x16
Case 3 PEP7S<=16x16 BDrate
QPISlice kbps Ypsnr  Upsnr  Vpsnr Y U \

RaceHorses 22 5989.69 40.0781 41.6304 42.9481 | 7.00%  6.80% 7.60%

27 2406.9 36.2769 38.942  40.4997

32 1060.58 33.008 36.9997 38.6722

37 487.302 30.092 35.6705 37.3545
RaceHorses 22 1405.53 40.0317 41.3919 424173 | 5.60% 5.00% 5.80%

27 671.524 35.8416 38.4912 39.6498

32 315.717 32.1471 36.4235 37.5117

37 152.565 29.2599 34.9383 35.9536

Case 4 tries to improve the performance in Case 2, which allows PUs to get its
own best MVP through AMVP if it sized smaller than 8x8. Case 4 supports more
MVP chosen opportunity for PUs; it allows PUs to choose its starting point for motion
estimation if it takes size smaller than 16x16. Every PU which is smaller than 16x16
can do AMVP to get the best MV/P. It performs much better than the Case 2 does, the

results is.in Table 3-19, the BD-rate is now under 3.0% for both Class C and Class D

sequence.
Table 3-19: Result of case4 AMVP base PU selection.
Case 4 AMVP_64x64+AMVP<=16x16 -
EPZS<=16x16
QPISlice kbps Y psnr U psnr V psnr Y U \Y
RaceHorses 22 5839.1 40.0797 41.6419 42.9618 | 2.40% 2.60% 3.00%
27 232409 36.3227 38.9606 40.5236
32 1031.34 33.093 37.0314 38.7121
37 479.434 30.1706 35.7055 37.3935
RaceHorses 22 1366.98 40.0673 41.4097 42455 | 1.50% 150% 2.40%
27 653.342 359128 38.5038  39.654
32 309.836 32.2465 36.4663 37.5515
37 151.425 29.347 34.9973 36.0134
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3.5 Combination of PEPZS and AMVP Modification

for Proposed IME Fast Algorithm

In section 3.3 and section 0, we have different modification for PEPZS and AMVP
separately. IME is composed of MV prediction and motion estimation. Both of them
are important that we cannot ignore neither MVP nor ME calculation. We will try to
combine the modification is section 3.3 and section 0 to get the best performance as

the method for the IME in our algorithm.

3.5.1 . Different combination of modified fast algorithm

Because of-the limited working cycles (will be described in section 4.1), it is
important for the modification to concern the number of SAD calculations at each PU
size and steps. The following combinations will be based on those we have done in
section 3.2 and 3.3. We can get the importance of AMVP.and PEPZS for each PU size
as we have the performance from the combinations as shown in Table 3-20. Each

combination'is targeted to decide the best PU size for AMVP.and PEPZS calculation.

Table 3-20: Tested combinations for fast algorithm.

Do AMVP for PU_64x64.

Do AMVP and PEPZS for PU sized 16x16, 16x8, 8x16, and 8x8.
Do AMVP for PU_64x64 and PU size smaller than 16x16.

Do PEPZS for PU sized 16x16, 16x8, 8x16, and 8x8.

Do AMVP and PEPZS 1% step for PU_64x64, 32x32, and PU
smaller than 16x16.

Do rest PEPZS steps for PU sized 16x16, 16x8, 8x16, and 8x8.
Do AMVP and PEPZS 1% step for PU_64x64, 32x32, 8x4, 48,
Do AMVP and PEPZS for PU 16x16 to 8x8.

Search range for PU larger than 8x8 is +/-16, for 8x8 is +/-4
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The Combination 1 tries to reduce the number of SAD calculation in the IME so it
cuts off the AMVP and PEPZS if the PU size is smaller than 8x8. As shown in Table
3-21, the results is not as good as Table 3-19. It may because the PUs smaller than

8x8 do important block matching when the content is complex in a sequence.

Table 3-21: Result of tested combination 1.

Combination 1 amvp_64x64+amvp_pepzs_under16x16 BDrate
8x8 cut off pepzs+amvp
QP kbps Y psnr — Upsnr Vpsnr Y U \Y
RaceHorses 22 5902.06 40.0788 41.6368 42.9501 | 4.30% 4.50% 5.10%
27 2363.48 36.3117 38.9552 40.5176
32 1044.01 33.0624 37.0171 38.6952
37 485.198 30.1442 35.6776 37.3617
RaceHorses 22 139457 40.0492 414011 42.4278 | 4.40% 4.50% 4.90%
27 666.513 35.8795 38.4684 39.6412
32 313.367 32.2005 36.4206 37.5233
37 152.914 29.306 34.9797 35.9801

The Combination 2, in the other way, tries to get the balance between reducing the
SAD calculations and BD-rate performance. It cuts off the PEPZS calculation if the
PU size Is smaller 8x8. The result is shown in Table 3-22, which is a little bit better

than Combination 1.

Table 3-22: Result of tested combination 2.

b amvp_64x64+amvp_pepzs_under16x16 BDrate
8x8 cut off pepzs
QP kbps Y psnr ~ Upshr  V psnr Y U \Y
RaceHorses 22 5853.14 40.0816 41.6377 42.9605 | 3.10% 3.10% 3.90%
27 2337.44 36.3224 38.9604 40.5221
32 1038.32 33.0876 37.0381 38.6949
37 483.408 30.1545 35.7019 37.388
RaceHorses 22 1370.32 40.0569 41.4147 42.455 | 2.30% 2.10% 2.70%
27 656.953 35.9102 38.5077 39.6552
32 311.706 32.2306 36.4583 37.5614
37 152.117 29.3197 34.9968 36.0259
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The Combination 3 is based on the Combination 2 and is targeted to improve the
BD-rate performance. It adds one more AMVP for CU_32x32 in the IME, the AMVP
in Combination 3 now are AMVP_64x64, AMVP_32x32, and AMVP_under_16x16,
which is also viewed as skip the non-square AMVP if the PU size is larger than 16x16.
With one more AMVP, the BD-rate performs about 0.4% to 0.6% better, as shown in

Table 3-23.

Table 3-23: Result of tested combination 3.

Combination 3 amvp_64x64+32x32+under16x16 BDrate
pepzs_16x16~8x8
QP kbps Y psnr - Upsnr  V psnr Y U \
RaceHorses 22 5844.38 40.0807 41.6372 42.9601 | 2.50% 2.80% 3.70%
27 2330.64 36.3274 38.9604 40.5174
32 1033.79 33.1003 37.0287 38.6958
37 479.079 30.1745 35.7103 37.3734
RaceHorses 22 1370.15 40.0697 41.4221 42.4593 | 1.90% 2.00% 3.00%
27 655.322 35.9086 38.4947 39.6426
32 310.88 32.2454 36.4603 37.5382
37 151.412 29.3324 35.0007 36.0151

Targeted for HDTV application, our algorithm needs be further modified to get a
better BD-rate performance than the Combination 3. The Combination 4 adds part of
PEPZS for the PU size is smaller than 8x8. If the PU size is 8x8, it will have 3 steps
PEPZS calculation with the searching range by +/- 4. The BD-rate performances of Y,
U, and V are now all under 3.0%, as shown in Table 3-24, and for Class D
RaceHorses, it could be about 1.5% for Y-component, which is much better than the

Combination 1, 2, and 3.
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Table 3-24: Result of tested combination 4.

amvp_64x64+32x32+<=16x16
Combination 4 pepzs_16x16~8x8 BDrate
16x16_SR16+8x8_SR4
QP kbps Y psnr Upsnr V pshr Y U \
RaceHorses 22 5840.6 40.0794 41.6383 42.9657 2.50% 240% 3.00%
27 2328.48 36.3223 38.9677 40.528
32 1032.2 33.0943 37.0388 38.7151
37 480.134 30.1744 35.7191 37.3948
RaceHorses 22 1366.82 40.0642 41.4066 42.4396 1.50% 1.90% 3.00%
27 653.495 35.9148 38.5 39.6446
32 309.956 32.2452 36.4439 37.5333
37 151.334 29.3448 34.9888 35.9594

From the above combinations, it is obvious that AVMP and PEPZS are as
important as each other.-While finding the balance between the computational
complexity and bandwidth, it is also important to find the balance number of AMVP
and PEPZS calculation. Each AMVP and PEPZS for PU should be chosen carefully in

IME.

3.5.2 _Bandwidth and complexity reduction

The Combination 4 is designed to reduce the high computational complexity and
memory bandwidth that the eriginal IME needs. The Table 3-25 shows the memory
bandwidth cost comparison between different IME supported by the original HM and
our modification, Combination 4. We can see the memory access amount for
combination 4 is much smaller than the original HM needs but it still keeps a good
video compression performance. What is more, it needs at most 20 search points per
CU, which has much lower complexity compared to other search method. In the Table
3-26, we can find the memory access amount is reduced by 60.6% and the search
point number is decreased by 78.1% compared with HM which adopts original AMVP

and diamond EPZS.
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Table 3-25: Memory bandwidth and search point number comparison. CU size is 64x64.

Original AMVP Original Original Combination 4
Full Search AMVP AMVP
EPZS EPZS
Square Diamond
Memory 375 Kbytes About 218 About 188 About 74 Kbytes
Access/CU Kbytes Kbytes
Memory MVP blocks + MVP blocks | MVP blocks Reduced MVP
loaded for | (W+2SR)(H+2SR) | + SP blocks + SP blocks | blocks + Reduced
SP blocks
SP #/ 16384 57 57 20
CU_16x16
Table 3-26: Memory access and complexity comparison per CU_64x64.
Original AMVP Proposed Saving %
EPZS Diamond (Combination 4)
Memory Access About 188 Kbytes | About 74 Kbytes 60.6%
SP # for AMVP 850 810 4.7%
SP # for search 23800 4584 80.7%
Total SP# 24650 5394 78.1%
3.5.3 Final decision of fast IME algorithm

The Combination 4 in section 3.5.1 has the good BD-rate performance and a large

amount of decreased computational complexity and memory bandwidth usage. It

should be a hardware friendly motion estimation algorithm and is also the final fast

algorithm for our IME architecture design. The IME fast algorithm we proposed is

shown as Figure 3-11. The encoding flow for one CU_64x64 starts from PU_64x64.

It will first do the AMVP of PU_64x64 and PU_32x32. Then, the flow goes into

further depth and does AMVP for PU_16x16, PU_16x8, and PU_8x16. It is followed

by the corresponding PEPZS with search range +/- 16. After finishing AMVP and

PEPZS at this depth, it continues to do AMVP for PU_8x8, PU_8x4, and PU_4x8. At




this depth, the encoder will only do the PEPZS for PU_8x8 with search range +/-8.

AMVP
PU_64X64

!

PEPZS_1% step
PU_64X64

!

AMVP
PU_32X32

!

PEPZS_1% step
PU_32X32

I
v

AMVP -

Depth =2 ¢

PEPZS, SR =16

Depth =0

Depth =1

PU size <= 8x8 ?

Depth =3 ¢

Figure 3-11: Proposed fast IME algorithm.
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Chapter 4. Hardware Architecture Design

4.1 Design Specification

The desired system specification is described as follows: an HEVVC encoder works
under 270 MHz operating frequency with frame size 4kx2k (3840x2160) and frame
rate 60fps. According to the specification mentioned above, we can get the needed

time as calculated below:

3840 x 2160 + (64 x 64) = 2025 LCUs (Equation 4-1)
With the frame rate 60 fps and the operating frequency 270 MHz, the cycles for

encoding a LCU sized 64x64 will be:
270M Hz + (2025 x 60) = 2222 cycles (Equation 4-2)
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Figure 4-1: The pipelined architecture of HEVVC encoder.

In order to make the hardware work as efficiently as possible, we need to figure
out how many search points should be calculated at one cycle. From the algorithm
proposed in Chapter 3, we can get the total pixels that needed to be computed for the
SAD calculation, which will dominate the processing element (PE) number. There are
total 425984 pixels needed to be calculated during IME for one CU_64x64.

64 X 64 X 8(PU sizes) X 2 + 64 X 64 X 8 X 2(PUgsxea, PU3zx32) + 64 X
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64 X 20(search point) X 4(PU sizes) = 425984 pixels
(Equation 4-3)
Since the overall calculation should be finished in 2222 cycles, we can find that
the hardware should at least get the 192 pixels SAD results per cycle. In short, if the
hardware calculates SAD every cycle, it only needs a SAD PE for 192 pixels, which

could be covered by a PE sized 16x16.

425984 + 2222 cycles = 19222

cycle

(Equation 4-4)

To consider the time for the data loading in the hardware, we need to get more
SAD results per cycle. Because the data dependency caused by the algorithm, the
SAD calculation will be followed by data loading, which means that it needs a larger
size PE. To solve the problem of data dependency, the data loading and SAD
calculation will not be inthe same cycle, it will need at least 2 cycles for data loading
and SAD calculation. Based on the PE size from (Equation 4-4, our hardware
should have a twice larger sized PE. The hardware will have two PE_16x16 for the

overall SAD calculation.
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4.2 Search Scheduling and Architecture

4.2.1 Overview of IME architecture design

From the section 3.1 we can see there are many block matching algorithms
(BMAS) have been proposed. And numerous VLSI architectures have been introduced
for motion estimation, such as typical works in [12] and [13]. In [12], Chao proposed
an architecture that implements a specific set of BMAs for fast FS and DS. In [13], Li
presented an architecture with 9 PEs for PMVFAST and EPZS. These architectures
support more than one BMA. in the hardware design. And as the video resolution
becomes higher recently, there are many efficient works for ME architecture design
have been developed, shown in [14] - [25].

From the section 4.1, it Is necessary to have 2 processing element so that we can
encode a CU_64x64 in 2222 cycles. There will be two PE_16x16 in the EPZS
module and work simultaneously according to the scheduling. Every reference pixel
needed by PEPZS module will be prepared by the Cache and current unit pixels are
kept in PEPZS module. The PEPZS module calculates SAD of AMVP and decides the
best candidate for motion estimation to start. It also calculates SAD for EPZS from
each PU and keeps the results for the motion estimation to decide what the best
partition is for a CU_64x64. The address generator is the most important part of this
hardware design; it gets the decision from the PEPZS module and searches the cache
module to find the required pixels. The generator also asks for data from the off-chip
memory if the needed data is not in the cache. The overall architecture is shown as

Figure 4-2.
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Searching flow of IME hardware
In the original HEVC flow, the encoding begins at LCU 2Nx2N and then the

smaller partitions. Because of the dependency of the AMVP calculation, we need to
finish the motion estimation from top and left, so that the current PU can get its own

Figure 4-2: Architecture of IME
AMVP candidates.

4.2.2



In our hardware design, we start from the top-left corner to the bottom-right one.
Begin with the first 16x16 unit, process simultaneously with top-left part of
CU_32x32 and CU_64x64 and then finally finish all PUs in a CU_64x64. Because
the processing element size is 16x16 so the CU size larger than 16x16 (such as
CU_64x64 and CU_32x32) would be processed by the flow of CU_16x16, as shown
in Figure 4-3. Whenever we do motion estimation for CU_16x16, the AMVP for
corresponding blocks of CU_64x64 and CU_32x32 would be finished. When the
MVPs of CU_64x64 and CU_32x32 are finally decided, the first step of PEPZS

would be calculated and then find the best partition size of IME.

32x32.1 | 32x32.1

16x16_0 16; 6 1 block0 block1

32x32_1

x320 |
| 32x32.1 | 32x32.1
| block2 block3

Figure 4-3: Search flow in one CU_32x32 and in CU_64x64.

The CU_64x64 has 16 sets of 16x16 blocks, and CU_32x32 has 4 sets. According
to the scheduling, AMVP of CU_64x64 and CU_32x32 would be finished after all
CU_16x16s finish their motion estimation. After motion estimation of smaller PUs
are finished, the 8 searching points SAD of first step PEPZS for CU_64x64 and

CU_32x32 will start. The overall flow for each sized PU is as shown in Figure 4-4.
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Interlaced Scheduling of IME hardware
The target encoding time for each CU_64x64 is 2222 cycles. For this limited time,

Figure 4-4 Flow of hardware encoder process

4.2.3



we pipeline the loading data and SAD calculation. Based on the flow in section 4.2.2
and Figure 4-4, we can have an interlaced scheduling shown as Figure 4-5 and we will

schedule our hardware work by process separately.

2" Process

1% Proce 2" Process 3 1% Process=> - 3" Proce,
IETEEEE Interlaced
AMVP_64X64_block0,AMVP_32X32_block0 \| v oS8 o PEPZS_1° step
AMVP_16X16, 16X8, 8X16 PEPZS BXS’ 8X4' 4X8 64X64, 32X32
PEPZS_16X16, 16X8, 8X16 — ! :

78 cycles 10 cycles 168 cycles:

2056 cycles

Figure 4-5: Overall encoding interlaced scheduling for proposed fast IME algorithm.

Because of the dependency, sometimes the SAD of searching points needed be
calculated first and then the system can get the desired data to do the next step. This is
very important in first and second process. For this reason, we process different sizes
PU simultaneously, such as PU_16x16, PU_16x8, and PU 8x16 at the same time,
when processing elements are working on the PU_16x16, the system can load the

desired data for PU_16x8 and PU_8x16, as shown in Figure 4-6.

Load SP Load SP Load SP
PU_16x16 PU_16x8, 8x16 PU_16x16

( 1SP16x88x16 Y  1SP16x16 X 1SP 16x8 8X16 )}er-see---
( 1SP16x88x16 )  1SP16x16 X 1SP 16x8 8X16 )-sa---ue:

Figure 4-6: Interlace loading data and calculating SAD for PU_16x16, PU_16x8, and PU_8x16.

The system loads data from cache by 64 pixels/cycles, so it needs 4 cycles to load
a PU_16x16 candidate, 256 bytes, for AMVP. As a result, the loading time for AMVP
in the first process is 32 cycles for each PU_16x16. And because there are two
process units 16x16, the SAD calculation time for PEPZS step 0 with 8 searching
points is 8 cycles and for the rest steps is 3 cycles with 3 different searching direction

points.

45



AMVP EPZS_step0 EPZS_stepl

AMVP AMVP _ _

16x16_0 16x16_0 16x16_0,  }-rooe X3 e
CU_32x32_block0 0. _0. _0.

( CU_64x64_blocko X —3exse_bloc X 16x8_0, 8x16_0 X 16x8_0, 8x16_0 X 16x8_0, 8x16_0 )

32 cycles % 8 cycles——>¢——3 cycles——>-- 9 cycles -
AMVP EPZS_step0 EPZS stepl | X3 o
16x8_1, 8x16_1 16x8_1, 8x16_1 16x8_1, 8x16_1
< 14 cycles % 3 cycles—>--- 9 cycles -

Figure 4-7: The encoding time for 1* process each CU_16x16.

In Figure 4-7, we can find that for the first process, it needs 78 cycles for each
CU_16x16. For the overall 1% process, it costs 1248 cycles in total to finish a

CU_64x64.
B324+8+3*4+14+3+4)x16 = 1248 cycles
For the second process, because the CU_8x8 need to do 5 steps PEPZS but the

CU_8x4 and CU_4x8 only need to do the first step with 8 different searching point
SADs, the encoding time is shorter than first process needs. It costs 10 cycles for

CU_8x8, CU 8x4, and CU_4x8 in second process.

AMVP PEPZS AMVP PEPZS
8x8_0, 8x4_0, 4x8 0 )\ 8x8_0, 8x4_0, 4x8_0 8x4_1,4x8_1 8x8 0,8x4_1,4x8 1

€—4 cycles——>¢——3 cycles——>¢——1 cycles——>¢—2 cycles—>

Figure 4-8: The encoding time for 2™ process each CU_8x8

There are total 64 sets of CU_8x8 in a LCU sized 64x64, therefore, the total time

for the 2" process encoding is 640 cycles.
10 X 64 = 640 cycles
The third process only deals with the first step of PEPZS for CU_64x64 and

CU_32x32; the encoding time for this process is 168 cycles, as shown in Figure 4-9.

Load CU_64x64 Load CU_32x32 Load CU_64x64 Load CU_32x32
Block 0 Block 0 Block 1 Block 1

6 cycle 6 cycle 5 cycle 5 cycle

( 16x16SAD Y 16x16SAD |  16xI6SAD  }-----e:--
( 16x16SAD ) 16x16SAD k'  16xI6SAD  }-----e---

4 cycle 4 cycle 4 cycle
Figure 4-9: The encoding time for 3" process for CU_64x64.

From the above calculation of encoding cycles for each process, the overall
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encoding time for this interlaced scheduling design is 2056 cycles for each CU_64x64.
The overall interlaced scheduling for those 3 different processes in the hardware is
shown as Figure 4-5.This is faster than the one without interlaced idea, shown as
Figure 4-10. If the hardware follows the scheduling shown in Figure 4-10, it needs
130 cycles for 1% process, shown as Figure 4-11. The comparison is shown as Table
4-1.

Loaa Ve (CAmveeas ) LSRUAMYE \(TAMVPI6XI6 ) o) Tor xie JAMVPIEX BXIE ).
oo Tt AMVP_16X16 o o AMVP_L6X16 ) b, J6re, 816 _16X8,

&—4 cycles——>¢—1 cycle—>——4 cycles—>¢—1 cycle——¢——14 cycles———1 cycle—>

Figure 4-10: Non-interlaced scheduling for AMVP_16x16, 16x8, and 8x16.

AMVP EPZS_step0 EPZS_stepl
AMVP AMVP _ _
16x16_0, 16x16_0, 16x16_0,  fu--- X3 oo
< CU_64x64_blockd X CU_32x32_block0 X 16x8_0, 8x16_0 X 16x8_0, 8x16_0 X 16x8_0, 8x16_0 )
18
<€ 40 cycles —¢——16 cycles—>%——6 cycles——>- cycles
AMVP EPZS_step0 EPZS_stepl | X3 e
16x8_1, 8x16_1 16x8_1, 8x16_1 16x8_1, 8x16_1
¢ les N 18
<€ 26 cycles > 6 cycles——>---
cycles
¢ 130 cycles >

Figure 4-11: Non-interlaced scheduling for 1* process.

Table 4-1: Working cycles needed for IME for two different scheduling.

Without interlaced Interlaced Saving

(cycles) (cycles)
1% Process 130 78 40.0 %
2" Process 18 10 44.4 %
3" Process 296 168 432 %
Total scheduling 3528 2056 41.7 %
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4.3 Architecture of PEPZS

4.3.1 Overview of PEPZS architecture design

The most computational part is the PEPZS part, in our hardware design, it
includes processing elements PE_16x16, so it can deal with both the AMVP and
PEPZS calculations. The PEPZS module is communicated with the IME controller,
address controller, and the cache. The control signal comes from the IME controller
and address controller whereas the needed data all comes from the cache.

The IME controller sends-crucial information for the calculation, such as begin
signal, AMVP signal, PEPZS signal, and PU size signal, into the module. After the
SAD calculations, it sends the SAD results and best MVP candidate for AMVP or
three searching points for next PEPZS step. The architecture of PEPZS module is

shownin Figure 4-12.

Begin Signal Cu#
SAD_Result
Next 3 SP Address
Processing Engine
SAD Result
256 Byte SAD

Current CU PE_16x16 CU_2Nx2N Next Step
Decision

A\ 4

. Or
1 KByte CU_2NxN Early Terminate
Ref. CU }—» PE_16x16

y CU_Nx2N

Figure 4-12: Overall architecture of PEPZS module

The PEPZS module keeps the current CU and some reference pixels for the
PE_16x16 inside the module, the registers could be updated if the current CU is

changed or the new reference pixels come. According to the encoding flow, the
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decision of best MVP candidate is made after the SAD calculation in AMVP process,
what is more, the SAD result will be kept as the (0,0) searching points result for the
PEPZS first step in order to reduce the computational number. When the system is
processing PEPZS calculation, it will send the next step decision or early termination
signal to IME controller, PE_16x16, and data registers to stop the calculation. The
early termination will stop the data loading from the cache and also stop asking data
from the off-chip memory. When the motion estimation is finished for one PU, the
results are kept inside the module and the system will decide the best partition size

through these kept SAD results.

RefA 4 RefB 4

| —
Reference || % v v v v v <+« v |
sclection | YV vy Yy A |
module || *l % R
Ref0 4 Refl 4 Ref2 4 Ref3 4
CurrO 4—m» SAD Y
Currl 4—+——p—m SAD
Y
Curr2 4 ——» SAD
/
Curr3 4 —» SAD
]
vV Yy
| ADD
reg Hm
[ PE_4x4 modile |

Figure 4-13: PE_4x4

The crucial part in the PEPZS module is the processing element. The processing

element we use in our design is sized as 16x16, which can calculate SAD of unit
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16x16 . The PE_16x16 is composed by 16 sets of PE_4x4 and the outputs are 16
results of PE_4x4. The system sums these SAD results according to the PU size and
uses the summation to make the decision. The PE_16x16 and PE_4x4 can select the

reference data by the system desire.

Curr0~3 Curr4~7 Curr8~11 Currl2~15

- 14
Ref0~3 PE_4x4 j PE_4x4 :: PE_4x4 PE_4x4 SADO~3
[[$ 14 [[1 L3
Ref4~7 N = :
e PE_4x4 [ PE_axa || PE_axa B3] PE_axa } SAD4~7
— ) »
I 11
Ref8~11 3 :
PE_4x4 [ PE 4x4 [ PE 4x4 [} PE 4x4 3 SADs-11
i
RIS PE_axa [ PE_ax4 (¥ PE_ax4 3| PE_ax4 SAD12~15
PE_16x16 module

Figure 4-14: PE_16x16

In the PEPZS module, the outputs from PE 16x16 are kept in the register
temporally, after the comparison and decision, the results will be updated into the

SAD Result register, as shown in Figure 4-15.
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CUR REF CUR REF
PE_16x16 PE_16x16
\ \

16 16
| |
SAD Result
| | | |
16 16 16 16
\ A | A |
Comp Comp
EPZS AMVP
Best SP Best Cand

Next Dir MVP

v

Figure 4-15: PEPZS comparison and updating of SAD results

For the calculation, the PEPZS system controls the PE_16x16 to wark or not, as
shown in Figure 4-16. According to section 4.2.2, each process stage includes
processing of 2Nx2N, Nx2N, and 2NxN, so the system need to figure out which PU
size is under the calculation, and with the PU size information, the system can get the
SAD results from the register and do the comparison for AMVP and PEPZS. These
comparisons can choose the best MVP candidate, best searching point for next step, or

early termination.
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CUR REF CUR REF
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Enable » PE_16x16 PE_16x16 [«
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Same SAD 3 |
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Terminate
End of current CU Next Dir MVP

i

:

i

Figure 4-16: PEPZS controller and calculation

4.3.2  PEPZS hardware flow

The calculation flow is following the scheduling in section 4.2. When the IME
controller sends the begin signal, the PEPZS system starts the AMVP of PU_2Nx2N,
PU_Nx2N, and PU_2NxN. After finishing AMVP, the PEPZS calculation is in
progress then. It can decide whether to do the next searching points or have an early
termination. After 5 steps PEPZS or early termination for one PU_2Nx2N, the system
then continues to do AMVP and PEPZS for the rest PU_Nx2N and PU_2NxN. The

overall flow is shown as Figure 4-17.
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Figure 4-17: PEPZS hardware progress flow

4.4 Cache Based Buffer Design

As same as the huge computational complexity by AMVP and PEPZS, the amount
of pixels needed for the SAD calculation is also very large. For those data needed for
calculation, the easiest way is loading the pixels whenever the system requests;
obviously, this would leads to a large data access bandwidth consumption and costs a
long time to load data from the off-chip memory. For the hardware architecture, the
data reuse should be an important issue and taken carefully.

Many works are proposed to reduce the memory access. It is efficient to use Level

C data reuse algorithm when implementing FS in ME hardware. As for fast ME
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algorithm, there may be some redundant SR memory access. To get better data reuse
rate, many cache-based architectures have been presented [26]-[30]. Some
architecture supports multilevel data reuse [26] ; it makes local buffer and cache
working simultaneously.

A simple way to do the data reuse is to keep the data in the temporary register by
the size according to the PU under operating. If the current PU is 16x16, the pixels
would be partitioned into 16 sets of 4x4 blocks and kept in the temporary register, as
shown in Figure 4-18, it is very like the cache implementation in [27]. When the
system requests the data, it can get the pixels according to its PE size. Most of the
previous cache works adopts-this kind of word block to store data in cache [26]-[30].
This is good for the hardware design whose motion estimation uses the same MVP for
every different sized blocks or units, but not for our proposed motion estimation fast
algorithm. Because the MVP for each different PU is not the same, the pixels needed
by different PUs may not be the same, even the data could be reused, keeping data in

4x4 blocks is not an easy way for data fetching.

[ ' ! —  16byte 16 byte 16 byte 16 byte
16byte | 16 byte | 16 byte | 16 byte
J | I — 16 byte 16 byte 16 byte 16 byte
I N R
| | = 16 byte |
LT e —————— = v
e | e | | 16 byte |
_______ a
____Il____: 16 byte
16x16 i
16 byte : 16 byte : U lepiz
L | 16 byte
- 64-byte
Ready data

Figure 4-18: Simple data reuse with register

4.4.1 Load all needed blocks into cache based buffer

To design good hardware architecture, we prefer to use the cache to improve the

rate of reuse rather than use registers. The first key point to use cache is to figure out
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which size to load our needed data can benefit most. For the AMVP, we can find the

suitable loading size by the MVD value, which is the final MV difference from MVP.

90
80
70
60 \
50 \§\
= 40 ——QP37_MVD_X
;8 ——QP32_MVD_X
10 \L QP27_MVD_X
—————————
0 e QP22_MVD_X
™ % © 0 v
4 7 N 2 o
& & o o= 3
S S 3
e P N
o RS
MVD difference
100
90
80 \\
= B\
60
% 50 A\\
% \ ——-QP37_MVD_Y
30 we=(QP32_MVD_Y
20
10 \ QP27_MVD_Y
0 QP22_MVD_Y
» P © v W
o o 2 & o
@Q @Q \\Q QO N
o N N
LY K
MVD difference

Figure 4-19 MVD distribution of X-axis and Y-axis

From the MVD distribution analysis, as shown in Figure 4-19, most MVD is
within +/- 4, which means that for different PU, the MVP candidates have high
probability be overlapped with others within distance +/- 4. With the high probability,

it is appropriate to load a bigger block. What is more, PEPZS will do at least 3
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searching steps in our algorithm, so if we preload a bigger block in AMVP calculation,
the data could also be used for 3-step search in PEPZS. For example, if the current PU

IS 16x16, the system will load a 24x24 block per MVP candidate into the cache buffer

for both the AMPV and PEPZS calculation, as shown in Figure 4-20.

Reference Frame

Epzs | | | TTUTUTYMW M Cache Row
Cand2

Cand1l

Cand

<24 pixels—

«— 1080 pixels———

«—24 pixels—

1920 pixels
Figure 4-20 The Cache loaded blocks. It will load two candidates blocks and PEPZS block separately.

To keep the data in the cache based buffer, the system employs a cache design
with a number of memory rows. Each memory row consists of eight words, which is
64 bits and contains 8 pixels data, as shown in Figure 4-21. However, this storage
method does not perform well if it does not have a good searching and comparing
function and updating mechanism.. The following sub-sections will discuss some

cache mechanisms and architectures.
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One Memory Row

SYUTRWNFO

64 pixels

«——8 pixels (64 bits) x———8 pixels (64 bits)—— k——38 pixels (64 bits)——

Figure 4-21 One memory row contains 8 words, each word is 8 bytes.
4.4.2 - Fully associative cache based buffer

For the cache based buffer design, we first try the fully associative cache idea.
When. the buffer is empty, the data would be loaded in directly. Every time the system
checks the buffer to see if the data needed is valid or not, when there is a miss, the
cache will be updated.

For this design, the updating mechanism is loading data inside when the buffer
still has empty space for new data. The new data will be added next to the data if they
share the same Y position in a frame, otherwise, it will be added randomly if there is
an empty space. When the cache is full, the data which is not be used recently will be

replaced with the new data. The mechanism is as shown in Figure 4-22.
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Figure 4-22: Fully associative cacheupdating mechanism.

4.4.3  Cache based buffer size analysis

The cache based buffer performance depends on the hit rate and miss rate, and
these depend on the updating mechanism and cache based buffer size. The size could
affect the hit rate a lot, larger size makes the hit rate could be higher. With the fully
associative cache method mentioned in 4.4.2, we try some different buffer sizes to
find an appropriate one for our cache based buffer design.

The sizes tested are 24x64 bytes to 96x64 bytes. The determinants of cache based
buffer size are the value of maximum reloaded byte, average reloaded byte, and hit
rate. The maximum value is the number of reloaded bytes per CU_64x64, the average
one is the average number of reloaded bytes per CU_64x64 in a test sequence, and the
hit rate is percentage of finding data successfully in the cache based buffer.

As shown in Figure 4-23, the maximum value is very large when the size is too

small, such as 24x64 bytes, and it becomes lower when the size is bigger than 64x64
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bytes. The hit rate behavior is, however, contrast to the max reloaded value. The
average reloaded value, however, keeps almost the same for every cache based buffer
size. From the results of maximum value, average value, and hit rate, it is obvious that
the maximum value is much more related to the size. The maximum reloaded value is
what we want to reduce by the cache mechanism. Between the size 64x64 and 96x64,
concerning the cache size and the cache performance, the cache based buffer size

64x64 is a better for our design.

Cache Based Buffer Size Analysis

12000 94

10000 S — — 92

6000 / \ 88
4000 36 == \]ax Reload

byte

Avg Reload
2000 84
== Hit Rate(%)
0 82
v v v v v
© © © © ©
X + + o+ I+
\U. ¢ - o
XX X XX XX N
& & & & &

Cache Based Buffer Size

Figure 4-23 Cache based buffer size relationship with the maximum and average reload byte and hit

rate.
4.4.4  N-way associative cache based buffer

Because we want to improve the cache performance, we try N-way associative
cache mechanism to replace fully-associative cache. There will be two cases, 4-way
and 8-way, and different cache based buffer sizes to find the best N-way associative
cache based buffer and corresponding size.

When starting to encode a new CU_64x64, the buffer could be refreshed or not,
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and this decision will results in different data loading value. The first case shows the
results that system loads (W+8)x(H+8) bytes in buffer per MVP candidate and
refreshes whenever another CU_64x64 starts to encode. As shown in Table 4-2, the
8-way associative cache based buffer both performs better in the hit rate and

maximum reloaded value.

Table 4-2: N-way cache based buffer, Load 24x24 each MVP. Refresh buffer if a new CU_64x64 starts

64x64 87.8233 12176 6957.214352
32x64 87.6364 12256 6979.570924
24x64 87.1571 12560 7182.692694
Sy R0 Mexload(ye) | Aveseload (e
64x64 94.5497 9048 5545.914110
32x64 93.5684 10888 6855.1733080
24x64 87.153 11536 7300.229782

The second case, the cache based buffer will not refresh when the next CU_64x64
starts to encode. From the Table 4-3, 8-way associative cache based buffer is still
better than 4-way one, and the cache buffer in second case performs better than in first

case slightly.

Table 4-3: N-way cache based buffer, Load 24x24 each MVP. Do not refresh buffer if a new
CU_64x64 starts

64x64 87.8896 13120 7021.131065
32x64 87.701 13224 7233.610708
24x64 83.1832 13328 7471.692136
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64x64 95.1466 8832 6322.919502
32x64 93.8596 9264 7027.929355
24x64 87.2431 9640 7325.913367

Because the maximum value from the above two cases is still a little bit high for
the hardware design, the system needs to try different load mechanism for the cache
based buffer. In third case, the system loads WxH bytes in cache buffer per MVP
candidate and loads the rest needed data later when the MVP is decided. And the
buffer refreshes whenever the next CU_64x 64 starts encoding. As shown in Table 4-4,
the performance is better-than both first. and second cases, the third case is a good for

our hardware design.

Table 4-4: N-way cache based buffer, Load 16x16 each MV/P. Load rest 320 byte if MVP:is found.
Refresh buffer if a new CU_64x64 starts.

64x64 88.9422 6656 4385.88664
32x64 88.8228 8768 6307.480201
24x64 86.096 8824 6485.419595
Swey HRaSOR) | Maoad() | Awragsload(ove)
64x64 93.2805 5720 4215.33544
32x64 90.859 7856 6294.738799
24x64 88.3407 9368 6587.254136

The third case performs well than other two cases. With the third cache design, we
can compute the reloaded byte for each PU size. There are two N-way associative

cache based buffer, 4-way and 8-way, and the PU sizes are 16x16, 16x8, 8x16, 8x8,
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8x4, and 4x8. As shown in Table 4-5, the average load and maximum load value are
about 2000 to 5000. If we load data into cache for every size PU separately, the

overall value of loaded byte will be very high.

Table 4-5: Memory load for each PU separately by 4-way (left) and 8-way (right) cache based buffer.

4385.88664 6656 4215.33544 5720

2793.71864 5040 2683.651366 3960

2626.979372 5208 2582.611411 4224

4361.483739 6208 4099.505668 5136

2883.073035 4672 2712.346404 4016

4786.360899 8928 4182.862665 5952

From the scheduling, our design will process PU_16x16, PU_16x8, and PU_8x16
simultaneously and encodes PU_8x8, PU_8x4, and PU_4x8 together in other process.
This means that the loaded data for PU_16x16 may be shared with PU_16x8 and
PU_8x16, and PU_8x8 could share data with PU.8%x4 and PU_4x8. As shown in
Table 4-6, the value for average load and maximum load are much lower than the sum
of Table 4-5. For example, for 8-way CU_16x16, the average load value is 4224.99
bytes, whereas for 8-way PU_16x16, PU_16x8, and PU_8x16, the average load value

is 9481.60, which is much higher than the value needed by CU_16x16.

Table 4-6: Memory load for CU_16x16, which covers CU_16x8 and CU_8x16, and for CU_8x8,
which covers CU_8x4 and CU_4x8. Left: 4-way. Right: 8-way.

4395.963576 6656 4224987177 5720

4368.188812 6208 4105.682959 5136
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Even with the sharing mechanism, data shared between PU_16x16, PU_16x8, and
PU_8x16 and between PU_8x8, PU_8x4, and PU_4x8, the value of data needed to be
load is still high, for example, the 8-way cache needs to load about 8331 bytes in
average and 10856 bytes if needed. To reduce the high value of loading data, the best
way is make the data loaded for CU_16x16 be shared with CU_8x8. From the Table
4-7, almost 97% of MVP candidates for CU_16x16 are the same as candidates for
CU_8x8. The high overlap percentage means that CU_16x16 and CU_8x8 has high
possibility that they need the same data. As shown in Table 4-7, if the loaded data for
CU_16x16 can be shared with CU_8x8, the average loaded value will be about 6500
bytes, which is much higher-than 8331 bytes from the previous design, and the

maximum value will be 7656 bytes, not 10856 bytes.

Table 4-7: Overall memory loaded.

0.967461

6497.6

7656

4.5 Architecture of Cache Based Buffer

Since the 8-Way associative cache based buffer with 64x64 bytes has been
selected in our design we now need to design the hardware of our cache based buffer.
The overall architecture is mentioned in section 4.2, Figure 4-24 shows simply the

cache relation with other element in the proposed architecture.
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Figure 4-24: Cache module relationship in the overall proposed architecture.

We use two cache based buffer for AMVP and PEPZS separately in our design.
The cache mechanism for AMVP part will pre-fetch the first 3-step data for PEPZS
while the buffer for PEPZS only load the 4™ or 5" step needed data. Since the PEPZS
goes beyond the 3" step, the data for the rest PEPZS step will be very divergent and if
the cache buffer loads data for AMVP and PEPZS simultaneously, the hit rate will be
decreased. If the cache buffer loads data for AMVP and PEPZS separately, the hit rate

will perform better, shows as Table 4-8.

Table 4-8: Hit rate in two different cache based buffer, which are AMVP+PEPZS and PEPZS.

 High B Cactus 039885  63.0576 915577
] Kimono 046786 60.4704 92.1785
I BasketballDrill  97.7362  67.5685 95.3984
] RaceHorsesC 914237  47.3322 87.8504
I D RaceHorses 949561  58.3367 91.0088
DVEGILMY B  BasketballDrive  96.8091  65.3569 93.7051
B BQMall 799803  64.7391 85.7357
B D basketballPass  97.5183 66,8536 95.3559
Low B BQTerrace 967301  95.3331 95.4299
] ParkScene 97.4778  75.2201 83.7295
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C PartyScene 98.4607 86.4885 98.1048
D  BlowingBubbles 96.1304 94.1446 96.2425
BQSquare 99.8427 99.1383 99.842
82.38217 72.61843 92.77994

45.1 Overview of cache based buffer

For the N-way cache design, the address controller is the most important core of
the cache. The address controller maps the address of a frame and the cache address.

It controls the loaded data should be put into which cache position.

Cache Address

Valid Tag_x Tag_y Index Offset

< lbit»<«———— 15bits —— >« 3 hits »
<+—— 9bits——»<«+—— G bits———»

Figure 4-25 Cache address for our hardware design

In our design, the address controller will convert the frames address into the cache
address. As shown in Figure 4-25, the cache address can be departed into offset, index,
tags, and valid bit. The cache address is mapped from the frame address. We use 9 bits
to identify the x-address and y-address in a frame and both address will be mapped
with a CU_64x64 starting position into the cache address. The offset in our cache
address is 3 bits because each word in the cache is 8 bytes. The index is calculated
from the Y-position in a frame, as shown in

(Equation 4-5, it is 6 bits. The tags are calculated from the X-position and
Y-position in a frame separately. The valid bit shows 1 if this cache word has valid
data, 0 for non-valid data. Every value in a cache address is calculated by the address

controller.
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Y address in a frame% (64 X 64 + (8 x 8)) = Index
(Equation 4-5)

4.5.2  Address controller design

The address controller is the most import part of our cache design [27] [31]. As an
8-way cache address controller, it will compare the information with the requested

data and then sends signal to the cache or to the off-chip memory.

Compare Cache Address
Cache Tag
Way 1 Way 8
V T V] T
...... - -
Request nde Cache Data
Address IN ; S
Update Tag
Y Y Y
Hit
‘Tag compare compare Get Data
Update Data
Miss Miss
» Reload Data

Figure 4-26 Address controller architecture

As shown in Figure 4-26, the address controller compares the requested data
address with the index and tags in our cache. It first calculates the index of the
requested data and finds the corresponding cache row to find the data. The controller
then compare from the first way tag to the eighth way tag to find if the cache word if
valid or not, and if the data information is the same. If the comparison result is the
same, then the controller will send a hit signal to the cache and the system can get the
required data. If the comparison result is not the same, it sends a miss signal to the

cache and off-chip memory and updating the cache data.
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4.5.3 Cache based buffer architecture design

The index, tags, and valid bit, they will be kept as register in the address controller
whereas the data will be kept in 8-way associative cache. To implement an 8-way
associative cache, we depart the cache into 8 parts. As shown in Figure 4-27, there
will be 8 8x64 bytes register files to build up an 8-way associative cache. With the hit
signal from the address controller, the cache can prepare the data requested by the
system and send data into the PEPZS module. When the address controller sends miss
and updating signal, the cache updates the data with corresponding X and Y address

values coming along.

Updated Data/ Updated Address

Hit/ Miss Signal

(op G808 \ o
(CIUT LN

Cache

Way 1 Way 8

<64 pixels—> <64 pjxels—>

64 bytes

AA

Al

Figure 4-27 Cache architecture
45.4  Cache based buffer updating mechanism

The cache updating behavior is controlled by the address controller. The address
controller sends request address in the cache to get the desired data for the PEPZS
calculation. The desired data will be collected as OUT_DATA, as shown in Figure

4-28. and send to the AMVP or PEPZS calculator. And the controller also sends
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updating address in the cache to put the updating data in the correct position. The
updating data comes from the off-chip memory requested by the address controller.
The address controller will update the tag and data if needed when the AMVP or

PEPZS calculation request.

Request Add Updar Add Update Data

Cache

Update
Data/ Tag
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Chapter 5. Results

5.1 Design Flow

Figure 5-1 shows the design flow in this work. After the defining system target
specification, the corresponding C-model is developed. In order to meet the
requirement of the system, we exploit the encoding algorithm by software-based
approach. When the algorithm is confirmed, the hardware architecture is proposed to
implement in Verilog. The RTL functional behavior verification is simulated with the

pattern from the C-model.

= Verilog
r Hardware
Sys_tem_ > ALY Architecture > A RTL. > Synthesis
Specification Development - Simulation
Design
Verification

Figure 5-1: Design flow.

5.2 Simulation Results

The proposed IME fast algorithm is implemented on HM 6.0, and the test

sequences are listed as Table 5-1:

Table 5-1: Tested sequence description.[2]

Class A Cropped "Ultra-HD" areas of Traffic (4096x2048p),
size 2560x1600 taken from the PeopleOnStreet(3840x2160p)
sequence (30 fps)

Class B 1920x1080p 24 fps: ParkScene, Kimono

50-60 fps: Cactus,
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BasketballDrive, BQTerrace

Class C 832x480p 30-60 fps WVGA BasketballDrill, BQMall,
PartyScene, RaceHorses
Class D 416x240p 30-60 fps WQVGA BasketballPass, BQSquare,
BlowingBubbles, RaceHorses
Class E 1280x720p 60fps video FourPeople, Johnny,
conferencing scenes KristenAndSara

An experiment is conducted under the low-delay B-slice main condition, which
allows HM to use fast motion estimation algorithm. HM 6.0 reference software is
used as base software. Table 5-2 summarizes BD-rate result in this experiment. The
overall BD-rate for our proposed IME fast algorithm is 1.3% for Y-component, 1.4%

for U-component, and 1.6% for \/-component separately.

Table 5-2: Simulation result of proposed fast IME algorithm under the low delay B-slice main

condition.
Low delay B Main
% U \/
Class A 1.0% 2.3% 2.1%
Class B 1.6% 0.9% 1.5%
Class C 1.3% 1.7% 1.5%
Class D 1.1% 1.2% 2.0%
Class E 1.7% 1.1% 0.8%
Overall 1.3% 1.4% 1.6%

We pick the worst results from the Class B, C, and D to make the PSNR versus
bitrate plots. The worst case is Class C— RaceHorsesC sequence; its BD-rate is 2.2%,
2.4%, and 2.5% for Y, U, and VV component separately. But from the Figure 5-2 -
Figure 5-4, we can see that the PSNR is only slightly smaller than the reference

software HM 6.0.
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Figure 5-2:'Y PSNR v.s. Bitrate, Class B, BasketballDrive
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Figure 5-3: Y PSNR v.s. Bitrate, Class C, RaceHorsesC
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Y PSNR vs Bitrate
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Figure 5-4:Y PSNR v.s. Bitrate, Class D, RaceHorses

Figure 5-5 to Figure 5-8 show the encoded result by two different method,
proposed fast IME algorithm and HM 6.0 separately. The red unit is the inter coded
blocks. The percentage of each different size PU distribution of the proposed
algorithm is very close to the ones of the original HM. The distribution results are
identical with the PSNR results, which is also very similar to the PSNR value of

original HM.
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Figure 5-7: Result of proposed.IME; BasketbalIDrive_1920x1080
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5.3 Memory Reduction Results

We can have the memory access comparison between the proposed architecture

and other algorithm without data reuse mechanisms. The result of the memory access

of AMVP and PEPZS is shown as Table 5-3.

Table 5-3: Memory access comparison. LCU size is 64x64.

Original AMVP Original Combination Proposed
Full Search AMVP 4 at section 3.5 | architecture
EPZS
Diamond
Memory 375 Kbytes About 188 About 74 About 8KB
Access/CU Kbytes Kbytes
Memory MVP blocks + MVP blocks + | Reduced MVP Cache
loaded for | (W+2SR)(H+2SR) SP blocks blocks + mechanism
Reduced SP
blocks

5.4 "Synthesis Results

The proposed architecture is implemented by \erilog and synthesis in TSMC

90nm technology at operating frequency 270MHz.

Table 5-4: Synthesis results of proposed architecture.

Module Name

Gate Count in 270 MHz

PEPZS module 111,873

Address Controller module 164,914
Cache 2,786

Memory 8K bytes

Total 279,573

As shown in Table 5-4, the memory consumes a large amount of hardware. Since

the tag information need to be stored in the address controller that it can be used for

cache updating mechanism, the gate count for address controller is a little bit high.
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We have our result compared with two other exited architectures, as shown in Table

5-5.
Table 5-5: Comparison of IME architecture.
Grellert[26] Lin[19] Tsai[20] Tsung[30] This work
CuU 4x4 16x16 16x16 16x16 64x64
Search 19x19 256x%256 256256 33x33 33x33
range
Search Full search PMRME | EIMD+PHS | Predictor- PEPZS
algorithm centered
search
Reference 4 3 1 1 1
frame #
Targeted 1280x720 | 1920x1080 4kx 2k 4kx 2k 4kx2k
resolution @56fps @60fps @30fps @24fps @60fps
Clock 265.2MHz 100MHz 125MHz 300MHz 270MHz
frequency
Logic Gate 127.83K 180.1K 300K 230K 280K
Memory 3.96 5.6 12.6 7.81 8
(Kbytes)
Technology TSMC UMC UMC TSMC TSMC
0.18um 0.13um 0.13um 90nm 90nm
Standard H.264 H.264 H.264 H.264 HEVC

The propoesed architecture can supports a CU sized 64%x64, while the other two

only support 4x4 and 16x16 separately. Since our hardware deals with different PU

motion estimation, the logic gate is a little bit higher than [30]. The proposed

architecture has the most memory consumption among the 3 different hardware

design, however, this work is capable of processing larger frame size than [26] and

higher fps than [30]. In other words, if [26] [30] follow our specification, the memory

consumption they need may be much more than it does now.

We also can find the hardware cost reduction from the algorithm comparison. For

example, if the hardware adopts the algorithm in [25], which have +/-16 search range

around MVP, it will need to calculate at least 1024 SADs of PU_64x64. This has to
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use at least 8 PE_16x16 to meet the specification. Compared with [25], the proposed
algorithm only needs 2 PE_16x16 to implement in hardware, which is much lower

than [25].







Chapter 6. Conclusion and Future Work

6.1 Conclusion

In this thesis, we have the overall IME design from the algorithm to the hardware.
We have discussed the important issues in PEPZS and AMVP when developing the
fast IME algorithm and also_the high cost and memory use problem in hardware
design. The contributions of this thesis can be summarized as follows.

First, we observe and analyze the search direction relation between each step in
PEPZS and propose some method to make efficient direction selection, which can be
concluded as predictive PEPZS (PEPZS). We also find the AMVP importance in
HEVC, the performance degrades if some specific sized AMVP is skipped. Here we
analyze the affection of each sized PU to HEVC and skip non-square PUs larger than
16x16 for AMVP calculation while keeps the good compression quality.

Second, we propose an architecture that adopts our fast IME algorithm. We have a
scheduling that SAD calculation and data loading are interlaced in order to meet the
design specification. We also make the cost down by lowering the PE number. When
facing the high memory bandwidth issue, we present a cache design that can fit our
fast IME algorithm needs. The overall algorithm and hardware design is implemented
with 279K logic gates and 8 KB on-chip memory witch can support the 4Kx2K 60fps

video encoding at 270 MHz operation frequency.

6.2 Future work

Although we have the cache design to lower the memory access, the size of cache
and local buffer is still an issue for design. In addition, the fast algorithm may be

improved by doing some mode selection to reduce the complexity further. This will
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help the hardware design; it will lower the cost or have flexible time for loading data.
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