
國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

非二進位之低密度同位檢查碼的編碼器設計與實作

Design and Implementation of Non-binary

Low-density Parity-check Codes (NB-LDPC)

Decoders

學生：凃淑文

指導教授：李鎮宜教授

中華民國一○一年八月

非二進位之低密度同位檢查碼的解碼器設計與實作

Design and Implementation for Non-binary Low-density Parity-check

Codes (NB-LDPC) Decoders

研 究 生：凃淑文 Student：Shu-Wen Tu

指導教授：李鎮宜 博士 Advisor：Dr. Chen-Yi Lee

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering

& Institute of Electronics

College of Electrical and Computer Engineering

National Chiao-Tung University

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In

Electronics Engineering

Aug. 2012

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 ○ 一 年 八 月

非二進位之低密度同位檢查碼的解碼器設計與實作

學生：凃淑文 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

由低密度同位檢查碼衍伸而來的非二進位低密度同位檢查碼，不僅具有極佳

的錯誤更正能力，並且在通訊品質較差的傳輸環境下更能克服通道的雜訊。非二

進位低密度同位檢查碼具有極佳的解碼能力，但是複雜的運算以及大量的記憶體

需求，是其硬體實現上急需克服的問題與挑戰。在本篇論文中，應用可以加速收

斂速度的分層解碼架構，我們提出了具有高硬體效能的非二進位低密度同位檢查

碼的解碼器設計。根據擴展最小和算法(EMS)的解碼演算法，我們在檢查點(CNU)

的運算上使用雙倍吞吐量去提升整體解碼器的運算速度，並善加利用同位檢查矩

陣(H)本身的結構特性，使所需的訊息儲存量縮減為原本的一半。最後，利用 UMC

90奈米 CMOS製程，我們實作了一個(112,56)，應用在 GF(64)下的非二進位低密

度同位檢查碼之解碼器來展示我們的構想，與目前其他研究的成果相比，我們所

提出的解碼器架構，在硬體效能上擁有至少 4倍以上的優勢。

誌 謝

碩班其實真的很短，這兩年裡，除了跟研究題目日夜糾纏外，也充滿著跟實

驗室同伴們相處的點點滴滴，正因為有大家的陪伴與幫助，讓我在研究上有可以

討論的對象並時常得到寶貴的意見，在生活上有一起吃吃喝喝的同好，更在

Tape-out與趕畢業之際有互相扶持的好夥伴們，讓我可以開心且順利的渡過這

兩年的碩班生活。

首先要感謝指導教授李鎮宜老師，總是以溫和的言語給與我寶貴且實際的建

議，指引我研究的方向與要點，還有活潑且親和力十足的錫嘉老師，以自己對研

究的態度給我們做了最好的示範，謝謝老師在我研究上的指導與鼓勵。接下來就

是要感謝 SI2與 OCEAN的學長姐們，特別要感謝指導我的佳龍，對於我有時粗心

難以理解的思維還是給予耐心且好脾氣的教導與指正，還有阿龍在研究上時常給

我一針見血的意見，並且擴大我的新竹美食地圖。還有駕駛技術一流的長宏，尤

其感謝你在 Tape-out期間對我們的協助與照顧，可愛的飯咖兼美食家小肥，好

脾氣且盡責處理實驗室大小事的欣儒，開始分享爸爸經的義澤，總是給我最中肯

誠實意見的義閔，用言語鞭策我要努力的智翔，在研究上給我很多幫助的 RTL

達人巴博，當然還有 SI2與 OCEAN的眾學長姐們: 柏均、李曜、歐陽、宣婷、魚

爺、建螢、宋仔、佳融、人偉、渠、其衡、小約、玉祥、士家，很感謝你們在研

究上對我的協助與建議。

除了感謝老師及學長姐們外，我也要感謝過程中一起同甘共苦的好朋友們，

很開心能與雞皮、柚子、小朱哥、奕勳在最後畢業時刻，一起互相扶持努力的撐

過去，感謝佩好、美維一直以來的聆聽與鼓勵，以及在各種大小事上的協助幫忙，

當然還有 SI2與 OCEAN的同學及學弟們: 博堯、恕平、家麟、宇滔、大嘴、思齊、

日和、方舟、泓源，感謝你們給我的加油打氣，跟大家相處的日子都是我很開心

的回憶，當然還有很多沒有提及的朋友們，很感謝大家在我碩班生涯的陪伴。

最後，我要感謝我的家人，謝謝我的爸爸和媽媽，在我學習的路上總是給我

自由發揮的空間，給予我最大的精神鼓勵而且是我最重要的後盾，謝謝我的姐姐，

不管是學業與生活，總是在一旁協助鼓勵我，給我最真誠的意見，還有我可愛的

弟弟，謝謝你總是對我信心滿滿，讓我也覺得自己可以做得更好，謝謝我親愛的

家人讓我一路以來開心的學習並健全的成長。

中華民國 一○一年 九月

凃淑文

Abstract

Non-binary LDPC codes which extended from binary LDPC codes have ex-

cellent decoding performance, and it is robust to various channel impairments.

With the remarkable decoding ability, the high computational complexity and huge

memory usage are the main challenges for non-binary LDPC codes to be imple-

mented in practical. This thesis presents a high hardware efficient architecture for

implementing non-binary LDPC decoder using improved Extended Min-Sum de-

coding algorithm with layered scheduling. Based on the enhancement in the check

node processing and efficient memory storing, the proposed decoder can double

the throughput and have half reduction in storing the edge messages. Using 90-

nm CMOS process technology, a (2,4)-regular non-binary QC-LDPC decoder over

GF(26) is implemented. In the post-layout simulation results, the decoder through-

put can reach over 100 Mbps at 10 iterations. Compared with state-of-the-art de-

signs, this implementation has at least 4.3 times improvement in hardware effi-

ciency (throughput-to-gate-count-ratio), and the decoding performance still keep

competitive.

i

Contents

1 Introduction 1
1.1 Research Motivation . 1
1.2 Thesis Organization . 3

2 Principle of Non-binary Low Density Parity Check Codes 4
2.1 Basic Introduction of Finite Field . 4
2.2 Non-binary LDPC Codes . 5
2.3 Encoding of Non-binary LDPC Codes . 6
2.4 Decoding of Non-binary LDPC Codes . 7

2.4.1 Sum of Product Algorithm (SPA) . 8
2.4.2 Extended Min-Sum Algorithm (EMS) 13
2.4.3 Min-Max Algorithm . 16

3 Non-binary LDPC Decoder Architecture 19
3.1 Non-binary Quasi-Cyclic LDPC Codes . 19

3.1.1 Code Structure . 19
3.2 Decoder Architecture . 20
3.3 Forward and Backward Algorithm . 21
3.4 Check Node Unit (CNU) . 22

3.4.1 Check Elementary Step (CES) . 23
3.4.2 Bubble Check Algorithm . 26
3.4.3 Proposed Check Elementary Step . 30

3.5 Variable Node Unit (VNU) . 35
3.5.1 Variable Elementary Step (VES) . 35
3.5.2 Proposed Variable Node Unit . 38

3.6 Scheduling . 43
3.6.1 Layered Scheduling . 43
3.6.2 Early Termination . 44
3.6.3 Memory Configuration . 44

4 Implementation Results 47
4.1 Chip Plan . 47
4.2 Post-layout Results . 49
4.3 Comparisons . 49
4.4 Application . 52

5 Conclusion and Future Work 55
5.1 Conclusion . 55
5.2 Future Work . 56

ii

Bibliography 57

iii

List of Figures

1.1 Performance of LDPC and NB-LDPC in high modulations 2

2.1 Tanner graph of H described in (2.2) . 7
2.2 Permutation . 9
2.3 Decoding flow . 10
2.4 Check node updating unit . 12
2.5 Variable node updating unit . 12
2.6 Extended min-sum decoding algorithm . 13
2.7 Candidate set . 16
2.8 Pperformance curve . 18

3.1 Proposed decoder architecture . 21
3.2 Forward/Backward recursive structure . 22
3.3 Candidate map . 24
3.4 Updating process in conventional CES . 25
3.5 Example of bubble check algorithm . 26
3.6 Procedure of bubble check algorithm . 28
3.7 Candidate choosing step . 30
3.8 Performance comparison of different processing cycles 30
3.9 Candidate choosing flow . 31
3.10 Region definition in M . 32
3.11 Candidate choosing in region a . 32
3.12 Performance comparison of defining regions 34
3.13 Comparison with other conventional algorithms 35
3.14 Conventional VES . 37
3.15 Channel value calculation . 38
3.16 Proposed VNU . 39
3.17 Posterior probability computation . 41
3.18 Decision circuit . 41
3.19 Internal buffer controlling of ECU . 42
3.20 Function unit of CES and VNU . 43
3.21 Memory configuration . 45
3.22 Memory collision problem . 45

4.1 Chip plan . 48
4.2 Components in the non-binary LDPC decoder 48
4.3 Post-layout photo . 50
4.4 Performance curve . 52
4.5 Performance curve in SC mode . 53
4.6 Performance curve in HSI mode . 54

iv

List of Tables

1.1 Efficiency comparison . 2

2.1 Representation of the elements in GF (24) . 5
2.2 Candidate set of the example in Figure 2.7 . 16
2.3 Complexity comparison in CNU . 18
2.4 Complexity comparison in VNU . 18

3.1 The relation between ns and nm . 27
3.2 Comparison of the memory usage in channel values 40

4.1 Post-layout results . 50
4.2 Comparison Table . 51

v

Chapter 1

Introduction

1.1 Research Motivation

Error control code (ECC) plays an important role in many practical application related to

the design for reliable digital transmission and storage system. ECC is applied in the channel

encoder and channel decoder in the digital transmission system. In channel encoder, adding the

redundant message called parity bits to the source information by the mathematical calculation.

Then based on the arithmetic relationship between information bits and parity bits to detect and

correct the errors caused by transmitting channel, and recover the message. Thus, ECC can

efficiently resist the channel effect and provide reliable communication system.

Non-binary Low-Density-Parity-Check (NB-LDPC) codes are an extension of binary LDPC

codes, were investigated by Davey and Mackay in 1998 [1]. It was shown that, non-binary

LDPC codes can outperform than binary LDPC codes when the code length is small or applying

to the higher-order modulation as shown in Figure 1.1. In Figure 1.1, it displays that non-

binary LDPC codes can outperform binary LDPC codes especially in the higher modulations.

Furthermore, non-binary LDPC can combat burst errors and further approach Shannon limit

with good error floors [2] [3].

Although non-binary LDPC codes have so many advantages in decoding performance, the

computational complexity and huge storage requirements are the considerable challenge to im-

1

1 2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

NB−LDPC FFT−BP, BPSK
NB−LDPC FFT−BP, 8PSK
NB−LDPC FFT−BP, 64QAM
LDPC log−BP, BPSK
LDPC log−BP, 8PSK
LDPC log−BP, 64QAM

Figure 1.1: Bit error performance of (672,336) binary LDPC code with floating point log-BP
and (112,56) non-binary LDPC codes over GF(26) with floating point FFT-BP. The simula-
tion is performed under AWGN channel, and modulations are BPSK, 8PSK, and 64QAM. The
maximum number of iterations is 50.

plement non-binary LDPC codes practically. In the state-of-the-art works, there are few designs

can reach over 100 M bps in throughout and the gate counts all exceed 1 M as listed in Table 1.1.

In order to enhance the hardware efficiency of non-binary LDPC codes decoder, we improve

the throughput in CNU and VNU which are the main computation components in the decoder.

In addition, we reduce the storage element of the edge messages and the channel values, and

use layered scheduling to increase convergence speed.

Table 1.1: Hardware efficiency (throughput-to-gate-count-ratio) of existing designs
[4] T-CASI-2012 [5] T-CASI-2011 [6] VLSI-2011 [7] T-CASI-2010

Synthesis Post-layout Synthesis Synthesis
Throughput 31.2 Mb/s 47.69 Mb/s 10 Mb/s 60 Mb/s
Gate count 1.24 M 1.92 M 1.6 M 14.9 M

Hardware Efficiency
50.4 24.84 6.25 8.06

(M bps/M gates)

2

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce the concept of non-binary

low-density parity-check block codes and discuss several conventional decoding algorithms

for non-binary LDPC codes. Chapter 3 will first introduce the conventional function units of

non-binary LDPC decoder in hardware implementation. Then, the details of proposed function

units and decoder architecture are provided. Chapter 4 gives the implementation results and

the comparison with other related designs. Finally, conclusions and future works are given in

Chapter 5.

3

Chapter 2

Principle of Non-binary Low Density

Parity Check Codes

Because of being the Shannon limit approaching codes, LDPC codes is an attractive solution

in many communication and digital storage systems. Non-binary LDPC codes is an extension of

binary LDPC codes, and it has excellent decoding ability and resist burst error. The more details

about non-binary LDPC are prepared to discuss in section 2.2. In this chapter, we will first give

the concept of the finite field. In addition, non-binary LDPC performance and its impact to

system designs will be addressed. Finally, survey of available non-binary LDPC solutions will

be briefly discussed.

2.1 Basic Introduction of Finite Field

A field contains only finitely many elements is called a Finite Field, or Galois Field. Like

general field, finite field is also a framework for doing arithmetic, and it is closed under the

operations defined like addition, subtraction, multiplication and division. Basic finite field can

be constructed by a prime number p, and the field elements are 0, 1, ..., p− 1. In GF (p), a non-

zero element a is called a primitive element if ap−1 = 1, and the powers of a generate the overall

element over GF (p). Extending GF (p) to GF (pm), the field with pm elements is constructed

4

as 0,1,α,...,αpm−1 based on the modulo p arithmetic, and the coefficient in polynomial form is

0, 1, ..., p− 1. The elements defined over GF(2p) are represented as binary sequence and have

the advantage of easier arithmetic especially in addition. Therefore, binary finite field is widely

used in several area like error control code (ECC) and cryptography.

Table 2.1 shows an example of the three kinds of representation for GF (24) and the primitive

polynomial is f(x) = x4 + x+ 1.

Table 2.1: Representation of the elements in GF (24)
Power Polynomial 4-tuple

0 0 0 0 0 0
1 1 0 0 0 1
α α 0 0 1 0
α2 α2 0 1 0 0
α3 α3 1 0 0 0
α4 α + 1 0 0 1 1
α5 α2 + α 0 1 1 0
α6 α3 + α2 1 1 0 0
α7 α3 + α + 1 1 0 1 1
α8 α2 + 1 0 1 0 1
α9 α3 + α 1 0 1 0
α10 α2 + α + 1 0 1 1 1
α11 α3 + α2 + α 1 1 1 0
α12 α3 + α2 + α + 1 1 1 1 1
α13 α3 + α2 + 1 1 1 0 1
α14 α3 + 1 1 0 0 1

2.2 Non-binary LDPC Codes

In 1998 [1], Davey and MacKay extended the binary LDPC to the finite field GF (q), and

the non-zero entries in H are replaced by the elements in finite field. It was shown that, non-

binary LDPC codes can perform better than binary LDPC codes when the code length is small

or applying to the higher-order modulation. Furthermore, non-binary LDPC can combat burst

errors and further approach Shannon limit with good error floors. In [8], they confirm that non-

binary LDPC codes outperform both convolutional turbo codes and quasi-cyclic LDPC codes

for all code rate, modulation and codeword lengths. In addition, non-binary LDPC codes can

5

have good performance especially in more complex system, like MIMO and M-QAM channels

[9]. In application, because of the good decoding ability and low throughput, non-binary LDPC

codes are appealing solution for space/satellite communication systems [10] [11].

Even if non-binary LDPC codes have so excellent error correcting ability, but the rela-

tively high complexity is always the main problem of the hardware implementation in practical.

In order to figure out the efficient hardware implementation, several simplified versions from

belief-propagation (BP) decoding algorithms are put forward in recent years. We will introduce

some of them more detail in section 2.4.

2.3 Encoding of Non-binary LDPC Codes

The non-binary LDPC code is defined of the sparse parity check matrix H, and the con-

struction of H are as follows. The matrix size of H is M rows by N columns, and (M ,N) stand

for the numbers of check equations (check nodes) and variable nodes respectively. In (2.1), the

codeword c are defined as the null space of H, and the generator matrix G can be obtained by

performing Gauss-Jordan elimination on H. The number of rows in G is represented as K, the

length of information symbols. The entries of H are the elements which are defined in GF (q),

and (dv,dc) stand for the column and row degree (or variable node and check node degree) re-

spectively. Note that the code is said regular if it has the same number of non-zero elements in

all the columns and rows, otherwise it is called irregular code.

c = uG , GHT = 0 (2.1)

In (2.2) shows an example of (1,2) regular non-binary LDPC code over GF (8). Note that the

code with dv=1 is not general, and it is for convenient to illustrate the example. The parity check

matrix H can be represented as a graphic form, called Tanner graph to illustrate the connection

between variable nodes and check nodes. Based on the H described in (2.2), the correspond-

ing Tanner graph is depicted in 2.1. In Tanner graph, the connections between variable and

check nodes represent the non-zero elements in H, and the permutation node stands for the

6

corresponding symbol.

H =

α3 0 α5 0 0 0 0 0

0 α7 0 0 0 α6 0 0

0 0 0 α2 0 0 α4 0

0 0 0 0 1 0 0 α5

(2.2)

V1 V2 V3 V4 V5 V6 V7 V8

C1 C2 C3 C4

3α 5α 7α 6α 2α 4α 11
5α

Variable

node

Check

node

Permutation

node

C2V
V2C

Figure 2.1: Tanner graph of H described in (2.2)

2.4 Decoding of Non-binary LDPC Codes

Like binary LDPC, the decoding of non-binary LDPC codes is based on belief-propagation

(BP) algorithm, or sum-product-algorithm (SPA) which iteratively updates the posterior prob-

abilities of each variable node. In non-binary case, because the non-zero entries in H are not

equal to 1, the arithmetic in finite field is required. In [12], the author proposed FFT-SPA to

perform in the frequency domain, which transfers the complicated convolution operation into

simpler multiplications. In order to further reduce the computational complexity, the decoding

algorithm can be transferred to the logarithm domain [13]. In log-domain algorithm, it requires

fewer quantization bits for storing message, and it is more robust to the quantization effect [14].

SPA (or BP) and FFT-SPA are the decoding algorithms without performance loss, but the

7

complicated computation and huge memory usage are very hard to be implemented in hard-

ware. Therefore, the simplified versions with acceptable performance loss, like Extend Min-

Sum (EMS) and Min-Max decoding algorithms are invented. In the following section, we will

introduce SPA, EMS, and Min-Max decoding algorithms respectively. Except SPA, EMS and

Min-Max are introduced in Log-Likelihood-Ratio (LLR) form. There are some comparison in

complexity between several main decoding algorithms in non-binary LDPC codes, and it will

be presented finally.

2.4.1 Sum of Product Algorithm (SPA)

In non-binary LDPC, the entries in H are defined in finite field, and the non-zero elements

are not always equal to one. That is, the finite field multiplication is applied in check equations,

and the single row check sum with degree dc over GF(2p) is shown in (2.3). Note that vi(x)

represents the variable symbol in polynomial form, and p(x) is the primitive polynomial.

dc∑
i=1

hi(x)vi(x) = 0 mod p(x) (2.3)

In non-binary LDPC codes, the operation of multiplying the non-zero element in H is called

permutation, and it is not required in binary LDPC decoding. Since the arithmetic operation

in finite field is closed, the multiplication is a one-to-one mapping process. If the elements

represented in power form, multiplication is actually a cyclic shift of whole elements in the

field as shown in Figure 2.2. This is the reason that multiplication of the non-zero element in H

in non-binary LDPC decoding procedure is called permutation.

Algorithm 1 shows the overall SPA decoding procedure in non-binary LDPC codes, and it

is similar with the binary one except permutation and inverse permutation.

In Algorithm 1, one decoding iteration requires permutation, check node update, inverse

permutation, and variable node update these steps to accomplish. In the following, we will

discuss these processing steps in more details.

First, we introduce the notations used in the decoding process. In non-binary LDPC codes,

8

symbol

2α
α

symbol

2α
α

α×

Figure 2.2: Finite field multiplication over GF(22) with power form

Algorithm 1: Decoding Procedure
Input: The messages after adding the channel noises
Output: Decoded symbols

1 Initialization:
2 Initialize the channel value as the V2C message in the first time
3 while syndrome is zero or the maximum iteration number is reached do
4 Permutation:
5 Multiply C2V messages by corresponding non-zero element in H
6 Check Node Update:
7 Compute C2V messages based on the check equations
8 Inverse Permutation:
9 Multiply the corresponding non-zero inverse element in H

10 Variable Node Update:
11 Compute V2C messages and the posterior probability of each variable to decide

decoded symbols
12 Syndrome Computation:
13 Compute syndrome
14 end

the channel value and the message transmitted between nodes are all represented as a vector.

The vector contains the possibility of each element defined in finite field, and the vector length

depends on the size of the finite field. Note that in Figure 2.3, the two directions of message

vector are represented as U (up) and D(down), and the direction from check node to variable

node is U , and the other is D. The suffix of U and D stands for the incoming node and the

outgoing node of this message vector. For example, DV C means the message vector going from

variable node to the check node. And DV C [i] stands for the possibility which the symbol of

the element is equal to i. Furthermore, LVj
represents the channel value vector of variable node

Vj , and LVj
[i] stands for the possibility of channel value is equal to i. These notations are all

depicted in Figure 2.3.

9

V1 V2 V3 V4

C1 C2

4α 11
5α

Variable

node

Check

node

Permutation

node

4 2
V C

D
3 1

V C
D2 2

C V
U

1 1
C V

U

1
V

L
2

V
L

3
V

L
4

V
L

2α

Figure 2.3: Notations used in non-binary LDPC decoding procedure

In the following, we will introduce these five decoding processes in the details.

1. Initialization

Using the information with the Gaussian additive noise from channel to calculate the

probability of each element over GF(2p) in each variable node. Note that the symbol like-

lihood value is denoted as L[i1, i2, ..., ip], and its polynomial form is

i(x) = (i1, i2, ..., ip) =

p∑
k=1

ikx
k−1 (2.4)

For example, L[1, 0, 1] represents the possibility which the polynomial form of the ele-

ment is x2 + 1 over GF(23).

Define bk is the kth bit of the symbol over GF(2p), and yk is the result after adding the

Gaussian noise nk. After transmitting in the channel, the corresponding possibility of

each symbol in variable node is calculated as

L[i1, i2, ..., ip] =

p∏
k=1

l(ik) (2.5)

In (2.5), l(ik) = probability(yk|bk = ik) and where yk = bk + nk. Using the channel

value vector L as the V2C message vector in the first iteration.

2. Permutation and inverse permutation

10

In non-binary LDPC codes, the non-zero elements in the parity check matrix H are not

only equal to 1, so the multiplication in the finite field is required when operating the

check equations. Furthermore, the multiplication with inverse element after doing the

check node update is also needed. In particular, the multiplication become much easier

if the symbol of elements are stored as power form. Then, the multiplication is just to do

the addition of the power items, and match the concept of naming permutation.

3. Check node update (CNU)

Using the incoming message DV C to update the check node of degree dc. According to

the combination of elements in the input vectors, to find out the check-sum set that satis-

fies the check node equation such as

h1DV1C + h2DV2C + h3DV3C = 0 (2.6)

and calculate the summation of all the elements in this check-sum set. Assume the updat-

ing symbol in polynomial form is i(a)(x) of the mth edge in Figure 2.4, and UCV [i
(a)
1 , i

(a)
2 , ..., i

(a)
p]

represents the possibility which the symbol in UCV vector is equal to a. The updating

equation is

UCVm [i
(a)
1 , i

(a)
2 , ..., i

(a)
p]

=
∑

{..,i(a)(x),..|
dc∑

l=1,l̸=m

il(x)=i(a)(x)}

dc∏
k=1,k ̸=m

DVkC [i1, i2, ..., ip]
(2.7)

4. Variable node update (VNU)

In Figure 2.5, using the incoming message UCV s and the channel values to compute the

V2C messages (DV Cs) of degree dv. The (2.8) describes the computing function for the

case that updating symbol is a in the mth edge of variable node.

DV Cm [i
(a)
1 , i

(a)
2 , ..., i

(a)
p]

= LV [i
(a)
1 , i

(a)
2 , ..., i

(a)
p]

dv∏
k=1,k ̸=m

UCkV [i
(a)
1 , i

(a)
2 , ..., i

(a)
p]

(2.8)

11

V1 V2 V3

C

Variable

node

Check

node

2
V C

D
3

V C
D

1
CV

U

V4

4
V C

D

Figure 2.4: A CNU when dc is 4 and compute the first edge(m = 1)

V
Variable

node

Check

node

1
C V

U
3

VC
D

C2 C3C1

V
L

2
C V

U

Figure 2.5: A VNU when dv is 3 and compute the third edge(m = 3)

Note that we need to normalize the possibilities in the message vector after doing VNU.

Because the possibilities stored in SPA are the pdf forms, we need to ensure the sum-

mation of all possibilities is equal to 1. By means of normalization process, can prevent

some possibilities to become very close to zero after several iteratively calculations.

5. Decision Unit

After an iteration every time, taking all the updated incoming messages of the variable

node with the channel values to compute the posterior probabilities. Based on the q-ary

probabilities, choose the largest one as the decoded symbol. According to the decoded

symbols, the syndrome of each check equation is calculated. If the syndromes are not all

zeros, the decoding process should be continued. But if there is no non-zero syndrome,

the decoding process can be stopped even if the maximum iteration number is not reached

called early termination.

12

2.4.2 Extended Min-Sum Algorithm (EMS)

The high computational complexity and the huge memory requirements are the main prob-

lems for non-binary LDPC to implement in practical. In [15] [16], Extended Min-Sum (EMS)

algorithm is to simplify the CNU computation, and truncate the message vector from the origi-

nal field size q to a limited number denoted as nm. The nm elements are selected according to

the order of possibilities, so the message vectors need to store the first nm largest possibilities

and the corresponding symbols. Because of storing the incomplete messages, the compensated

value γ is required to represent the possibility of the (q−nm) truncated elements. For simplicity,

γ usually sets a constant value decided by performance simulation.

V1 V2 V3

h1V1 h2V2 h3V3

Channel

Value

Channel

Value

Channel

Value

dv dv dv

Permutation

node

Variable

node

Check

node

possibility

D[1]

D[2]

D[q]

possibility symbol

γ

C

D[1]

D[2]

D[nm]

DGF[1]

DGF[2]

DGF[nm]

Figure 2.6: One check equation and edge message reduction in EMS decoding algorithm

Like SPA algorithm, we use U and D to represent the C2V and V2C message vectors re-

spectively. Moreover, the notations for possibility and symbol of each element should be dis-

tinguished. For example, U is still represented as the vector which stores the possibilities, but

U [i] changes to stand for the ith largest possibility (in SPA, U [i] stands for the possibility of

symbol i). And UGF [i] represents the corresponding symbol of U [i]. Note that the form of

storing the possibilities can transfer to log-domain with Log-Likelihood-Ratio (LLR). It trans-

form the complicated multiplication into simpler summations. In log-domain, the real-value

addition transform to complicated operation related to logarithm, and EMS is to simplify it by

13

max function which is to find out the maximum among all inputs. Furthermore, it was shown

that arithmetic operation in log-domain are more robust to quantization effect, and the required

number of quantization bits are also smaller. Assume P (a) is the possibility of symbol a, and

the LLR form is calculated

U [k] = log
P (UGF [k])

P (UGF [1])
k ∈ {1, 2, ..., nm} (2.9)

The decoding process of EMS algorithm is similar to the SPA decoding algorithm intro-

duced in section 2.4.1. The most different thing is the simplified version of CNU, and the

elements in edge message vector truncate to a limited size nm. In the following, the decoding

function based on the truncated messages with LLR form will be introduced.

1. Initialization

In general, the channel values are stored in complete field size in order to avoid perfor-

mance loss. In the first iteration, sort out nm elements with the first nm largest possibilities

be the V2C message vectors.

2. Variable Node Unit

Assume that the variable node degree is dv, and the updating function is

DV Cm [i
(a)
1 , i

(a)
2 , ..., i(a)p] = LV [i

(a)
1 , i

(a)
2 , ..., i(a)p] +

dv∑
k=1,k ̸=m

UCmV [i
(a)
1 , i

(a)
2 , ..., i(a)p] (2.10)

In VNU, we need to combine the possibilities of identical symbols in (dv − 1) message

vectors. Because symbols in the message vector are stored by the order of possibility, the

storing of symbols is non-regular and incomplete. Therefore, the operation of searching

the same symbol from each input vector is required. If the identical symbol does not exist,

it will be replaced by the compensated value γ.

3. Permutation and Inverse Permutation

In fact, the permutation and inverse permutation steps are just to do the multiplication

in finite field, and the multiplicator is the non-zero element in parity check matrix H.

14

Because the set of symbols stored in message vector is incomplete, the set of symbols is

changed after multiplying a symbol which is not equal to one. But for consistency, we

still use ”permutation” to represent the multiplication with the non-zero elements in H.

4. Check Node Unit

In SPA, we need multiplications and summations to accomplish a CNU. Using the LLR

form, the real-value multiplication can transform to simpler summation, but the real-

value summation will become more complicated. For example, the addition like x1 + x2

changes to ln(ex1 + ex2). EMS is to simplify the summation related with logarithm to

max operation according to (2.11).

ln(ex1 + ex2) = max(x1, x2) + ln(1 + e−|x1−x2|) (2.11)

Note that max operation is to find out the maximum from all inputs. Assume that the

check node degree is dc, the updating function is.

UCVm [i
(a)
1 , i

(a)
2 , ..., i(a)p] = max

a=
dc∑

k=1,k ̸=t
ak

(
dc∑

k=1,k ̸=m

DVmC [i
(ak)
1 , i

(ak)
2 , ..., i(ak)p]) (2.12)

Note that the output vector updated is still sorted in decreasing order. The function target

of CNU is to sort out the first nm largest possibilities from the candidate set. The example

of constructing a candidate set is illustrated in Figure 2.7 and Table 2.2. If the check node

degree is dc, the size of the set is equal to n
(dc−1)
m . Sorting from this huge set is too complex

to implement in practical. For this reason, in non-binary LDPC codes, we usually apply

the approach like divide and conquer to simplify an updating function step by step [13].

In EMS algorithm, nm is a significant factor, and its size directly affects the performance on

hardware efficiency and decoding ability. It is a trade-off between hardware cost and decoding

performance. Deciding the value of nm and figuring out a cost-performance balance is the most

important issue when implementing non-binary LDPC decoder in practical. In general, the

15

V1 V2 V3

C

2
V C

D
3

V C
D

1
CV

U

V4

4
V C

D

γ
2

[4]
V C

D

2

[3]
V C

D

2

[2]
V C

D

2

[1]
V C

D

2

GF

V C
D

2
(010)D

2

2
(100)D

2
(011)D

2
(000)D

γ
3

[4]
V C

D

3

[3]
V C

D

3

[2]
V C

D

3

[1]
V C

D

3

GF

V C
D

3
(110)D

3

3
(111)D

3
(010)D

3
(101)D

γ
4

[4]
V C

D

4

[3]
V C

D

4

[2]
V C

D

4

[1]
V C

D

4

GF

V C
D

4
(000)D

4

4
(001)D

4
(100)D

4
(111)D

Figure 2.7: Update the first edge message UCV1 when dc = 4 and nm = 4

Table 2.2: Candidate set of the example in Figure 2.7
U1(000) U1(001)

D2(010) +D3(110) +D4(100) D2(010) +D3(111) +D4(100)
D2(010) +D3(010) +D4(000) D2(010) +D3(010) +D4(001)
D2(010) +D3(101) +D4(111) D2(100) +D3(010) +D4(111)
D2(100) +D3(101) +D4(001) D2(100) +D3(101) +D4(000)
D2(011) +D3(111) +D4(100) D2(011) +D3(110) +D4(100)
D2(011) +D3(010) +D4(001) D2(011) +D3(010) +D4(000)
D2(000) +D3(111) +D4(111) D2(011) +D3(101) +D4(111)

D2(000) +D3(110) +D4(111)
D2(000) +D3(101) +D4(100)

performance loss in EMS is the least (< 0.1 dB) in all simplified non-binary LDPC decoding

algorithms.

2.4.3 Min-Max Algorithm

In [17], Min-Max decoding algorithm is further simplifier than EMS decoding algorithm

in check node processing. Based on the concept that the largest value dominates the result

in addition, Min-Max replace the summation to max operation to reduce the computational

complexity. The main differences in decoding process from EMS are initialization and CNU,

so we describe these two steps in more detail as follows. Note that we use the complete field

size without considering nm for convenient in presenting the notations.

1. Initialization

The priori information is calculated by

16

Di(a) = ln(P (xi = si|channel)/P (xi = a|channel))

, where si is the most likely symbol for xi

(2.13)

Note that P (x = a|channel) stands for the probability that the symbol representation

of x is equal to a after adding the channel effect. The possibilities in message vector

are initialized by (2.13), and the smaller value represents the higher possibility on the

contrary.

2. Check Node Update (CNU)

Compared with the CNU computation in EMS, Min-Max replaces the summation to max

operation in order to further simplify the updating function. Because of the overestima-

tion in CNU, Min-Max is a little sub-optimal than EMS algorithm. The updating function

in CNU is described by

UCVm [i
(a)
1 , i

(a)
2 , ..., i(a)p] = min

a=
dc∑

k=1,k ̸=m
ak

(max(DVmC [i
(ak)
1 , i

(ak)
2 , ..., i(ak)p])) (2.14)

In (2.14), the min and max functions are to find out the minimum and maximum among

all the inputs respectively. Because the smaller value stored in Min-Max decoding al-

gorithm stands for the higher possibility, the CNU use min function to choose the most

likely result.

For the reason of simplicity, almost non-binary LDPC decoder are implemented by Min-

Max algorithm, and there are many improved Min-Max decoding algorithms are presented [7]

[6] . In the following, the complexity in CNU and VNU with different decoding algorithms

discussed in previous sections are presented [18] [19] [8], and the decoding performance is

depicted in Figure 2.8. From the performance curve in Figure 2.8, the EMS is very close to FFT-

SPA which is no performance loss, and outperforms than Min-Max about 0.2 dB. Supposing

that it is defined over GF(q), and nt stands for the required clock cycles to accomplish a CNU

with degree 2. Note that except SPA, EMS and Min-Max are applied in LLR form and use the

17

truncated number nm.

Table 2.3: Number of operations of check node updating function (dc = 2) for different decod-
ing algorithms

Multiplications Max/Min Additions (real) Additions (GF(q))
SPA q2 0 q(q − 1) 0
EMS 0 ntnm nt + nm nt + nm

Min-Max 0 ntnm + nt + nm 0 nt + nm

Table 2.4: Number of operations of variable node updating function (dv = 2) for different
decoding algorithms

Multiplications Divisions Max Additions (real)
SPA q q 0 q − 1
EMS 0 0 nm(nm + 2) nm

Min-Max 0 0 nm(nm + 2) nm

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

FFT−BP
EMS, n

m
=32

Min−Max, n
m

=32

Figure 2.8: Performance simulation for a (112,56) non-binary LDPC code over GF(26) with
FFT-BP, EMS, and Min-Max decoding algorithms. The simulation is performed under BPSK
modulation and AWGN channel. The maximum number of iterations is 50.

18

Chapter 3

Non-binary LDPC Decoder Architecture

In this chapter, we will first show the overall proposed decoder architecture. Then, the

conventional approach for implementing each main function component in non-binary LDPC

decoder with EMS algorithm [20] will be introduced. Following this, the proposed function

units of the decoder are presented.

3.1 Non-binary Quasi-Cyclic LDPC Codes

Because of the code regularity and special code structure, QC-LDPC codes are an appeal-

ing solution for VLSI implementation. Furthermore, QC-LDPC codes have good decoding

performance and relatively low error floor [21]. In our design, we also choose (2,4)-regular

64-ary non-binary QC-LDPC code to implement. Note that (2,4) stands for the column and row

degrees respectively.

3.1.1 Code Structure

Quasi-cyclic code is composed of r by r sub-matrix with cyclic shift to identity matrix I0,

and the subscript of each I denotes the times of shift. With the feature of regularity in quasi-

cyclic code, the complexity of decoder implementation can be simplified. Note that the block

row stands for the r rows grouped by sub-matrices, and the same as block columns.

19

The non-binary QC-LDPC code used in our design is described in (3.1)

H =

0 0 0 I5 0 0 I0 0 0 0 I0 I1 0 0

0 0 I4 0 0 0 I4 0 0 I4 0 0 I5 0

0 I7 0 0 0 I7 0 0 0 I7 0 0 0 I0

0 0 I0 0 0 I1 0 0 I6 0 0 0 0 I6

I2 0 0 0 I1 0 0 0 I1 0 0 0 I2 0

I4 0 0 I7 0 0 0 I7 0 0 0 I7 0 0

0 I1 0 0 I6 0 0 I3 0 0 I3 0 0 0

(3.1)

Our code is transformed by a binary LDPC code, and replace the non-zero elements from

1 to the symbol over GF(q) randomly. This binary LDPC code is built from the CP-PEG algo-

rithm presented in [22]. The code is a regular QC code, and it is suitable for layered decoding

algorithm. In addition, it was shown in [23], the ”ultra-sparse” codes (dv = 2) have excel-

lent error-correcting performance especially in high order finite field (q ≥ 64). Because of

the minimum connectivity in variable nodes, a class of regular (2,dc) codes can simplify the

decoder complexity in hardware implementation. Furthermore, we figure out several improved

approaches in edge memory reduction and efficient VNU processing based on this property.

And this code can be separated into two sub-blocks from the middle in matrix, because these

two sub-blocks contain the same number of non-zero sub-matrices in each block row. For this

reason, if we want to increase the memory banks for improving bandwidth, it is a convenient

property for configuring the memories.

3.2 Decoder Architecture

Figure 3.1 shows the overall decoder architecture, and it is mainly composed of several

Processing Elements (PEs), storage elements , and control circuits. A PE is composed of one

20

CNU and its associated VNUs, and it is the main computation unit in our proposed design.

Furthermore, Np stands for the number of parallelism when implementing the decoder, and the

number of Np is directly affect the throughput and hardware cost. Note that the dashed line is

the extra bypass path to solve the memory collision problem which will be discussed in 3.6.3.1.

PE#1 PE#2 PE#Np

V2C Memory

PE Input Buffer

PE Output Buffer

Temp

Buffer

Channel

Value

Memory

Figure 3.1: Proposed decoder architecture for non-binary QC-LDPC codes

3.3 Forward and Backward Algorithm

In non-binary LDPC codes, the complexity of updating function grows in exponential ac-

cording to the number of node degrees. For this reason, using the efficient approach called

forward and backward algorithm [24], which is a recursive structure like the concept of divide

and conquer to accomplish the updating function step by step. First, the updating function is

decomposed by several basic functions called elementary steps, and then executing the elemen-

tary steps recursively to accomplish an updating function. An elementary step is defined as an

updating function composed of only 2 input vectors and 1 output vector. In general, if the node

degree is equal to d, it requires 3(d − 2) elementary steps to finish a node updating function.

Figure 3.2 illustrates the required elementary steps and the corresponding forward/backward

21

recursive structure when the check node degree dc is equal to 4.

(a) (b)

V1 V2 V3 V4

CNU

CES

CES

CES in the

first stage

CES in the

second stage

CES

V1 V2 V3 V4

CES

I3,4

I1,2

4CV
U

3CV
U2CV

U
1CV

U

CESCES

CES CES

1CV
U

2CV
U

3CV
U

4CV
U

Figure 3.2: (a) A CNU with dc = 4 (b) Forward/Backward recursive structure with dc = 4

The following describe a check node (dc = 4) updating procedure with the forward/backward

algorithm. At the first stage, using 2 Check Elementary Steps (CES) to compute 2 inter-

nal vectors, I1,2 and I3,4. Note that I1,2 stands for the internal message vector containing

the information from input vectors V1 and V2. At the second stage, the 4 output vectors

(UCV1 ,UCV2 ,UCV3 ,UCV4) are computed from the combination of each input vector and the 2

internal results calculated in the first stage. Therefore, in the case that dc is equal to 4, we need

3(4− 2) = 6 elementary steps and 2 stages to accomplish a check node updating function.

3.4 Check Node Unit (CNU)

Check node unit (CNU) is the most complicated component in non-binary LDPC decoding

procedure, and it is usually the bottleneck when implementing the decoder in practical. Based

on the forward and backward recursive structure, a CNU is decomposed of several check ele-

mentary steps (CESs) to implement. In this section, we first introduce the conventional approach

in processing a CES, and then an efficient algorithm [25] especially target on simplifying the

CES in EMS decoding algorithm is addressed. Following this, we will present our proposed

CES architecture for improving the throughput without extra decoding performance loss.

22

3.4.1 Check Elementary Step (CES)

Check elementary step (CES) is an updating function of degree 2, and it is assumed that

the input vectors already finish the permutation step. Suppose the vector size is nm, and the

notations of input and output vectors are I1, I2, and O respectively. Note that the possibilities

in each message vector are represented as log-likelihood-ratio (LLR) and sorted in decreasing

order. Define a candidate set Sc, and the elements in Sc are the combinations from the input

vectors which satisfy the equation IGF
1 [i]⊕ IGF

2 [j] = OGF [k] and the corresponding possibility

is I1[i] + I2[j] = O[k]. Then, the goal of CES is to explore the non-repeating symbols with the

first nm largest possibilities from Sc. The equation of CES to compute the kth largest possibility

is

O[k] = max
IGF
1 [i]⊕IGF

2 [j]=OGF [k]

i,j∈[1,nm]2

{I1[i] + I2[j]} (3.2)

There are n2
m elements in candidate set Sc, and exploring in whole Sc is very complicated.

Using the sorted property in each message vector, the more efficient way to realize a CES is

to search elements from the graphic form [24]. Define a candidate map called M as shown in

Figure 3.3, and M displays the possibilities distribution of the n2
m elements in Sc. In order to

reduce the size of Sc, the author in [24] proposed a ”sorter” which stores nm candidates for

exploring at a time, and then the size of Sc changes from n2
m to nm. Note that candidate set Sc

is redefined as the elements in the sorter, and it updates every cycle.

Based on the candidate map M and a sorter of size nm, the processing operations of CES

using graphic approach are as follows [20]. Note that the meaning of sorting used in EMS

algorithm is to insert one element into a sorted sequence denoted as sorter.

1. Initialization

Insert nm elements in the first column of M into the sorter.

2. Output

Output an element with the largest possibility in the sorter.

3. Check

23

S

P

1

16

4

2

8

13.2

11.7

10.1

7.9

6

24

20.3

25

8

28

26

16

33.5

32

30.4

28.2

26.3

8

17.1

9

24

12

10

0

30.3

28.8

27.2

25

23.1

3

15

2

19

7

1

11

28.2

26.7

25.1

22.9

21

15

13.4

14

31

11

13

7

26.6

25.1

23.5

21.3

19.4

7

11.1

6

23

3

5

15

24.3

22.8

21.2

19

17.1

Figure 3.3: Candidate map M , (S,P) stands for symbol and possibility respectively

Check whether the symbol is redundant. If this symbol is already in the output vector,

discard this symbol. This operation is implemented by p bits comparator circuit when the

symbol is defined over GF (2p).

4. Candidate Choose

Choose the right side symbol of the output symbol as the candidate inserting to the sorter.

5. Sort

According to the possibility, insert the candidate symbol into the sorted sequence in the

sorter.

Repeat step 2 to step 5 till output vector is full or the predetermined processing cycles

is reached. The operations are described in Algorithm 2, and Figure 3.4 illustrates a CES

procedure.

If message vector contains the repeated symbols, it means that the valid number of nm

becomes smaller. After iteratively decoding process, the valid symbols will be fewer and fewer

and result in the significant decoding performance loss. Therefore, the operation of symbol

checking is necessary, and the repeated symbols should be discarded.

24

Algorithm 2: Check Elementary Step
Input: I1 and I2 (input vectors)
Output: O (output vector)
Data: M (candidate map, [row,column]), S (sorter size nm), tpre (predetermined cycles)

1 Initialization:
2 forall the i such that nm ≤ i ≤ 1 do
3 S[i]←M [i, 1]
4 end
5 i = 1, n = 1
6 while n < nm or i < tpre do
7 Output:
8 Smax ← S[1], and S[1] = M [r, c]
9 Check:

10 if SGF
max /∈ OGF then

11 O[n] = Smax

12 OGF [n] = SGF
max

13 n = n+ 1

14 end
15 Candidate Choose:
16 Candidate←M [r, c+ 1]
17 Sort:
18 forall the j such that nm ≤ j ≤ 1 do
19 Diff [j] = Candidate− S[j]
20 end
21 if Diff [k] > 0 and Diff [k − 1] ≤ 0 then
22 forall the j such that nm ≤ j ≤ k + 1 do
23 S[j]← S[j − 1]
24 SGF [j]← SGF [j − 1]

25 end
26 S[k]← Candidate
27 SGF [k]← CandidateGF

28 end
29 i = i+ 1

30 end

Sorter, length nm

Output vector: O

I1

I2

input symbol

symbol in output vector

candidates in the sorter

the largest symbol in the sorter

next candidate will be inserted

M

c

r

Check

circuit

insert to O

or discard

Figure 3.4: Updating process of conventional CES.

25

3.4.2 Bubble Check Algorithm

In [24], the author proposed a method to reduce the number of elements when searching the

largest possibility, and the size of candidate set Sc is smaller than nm. Every clock cycle, the

operation of a CES is to find out an element with the largest possibility from the sorter. For

this reason, it just needs to ensure that the element with the largest possibility is in the sorter

in every clock cycle. Bubble check algorithm [25] uses this property to efficiently reduce the

number of elements in Sc at one time. It means that only the element which probably has the

largest possibility at that time will be considered, and this is based on the regular distributing

property of possibilities in M .

We use an example to describe the basic concept of bubble check algorithm. Assuming that

there are already 4 elements in the output vector, and then we want to find next element with

the fifth largest possibility. In Figure 3.5, it illustrates all possible distributions of the output

symbols and their corresponding candidates which should be considered. Note that white circle

represents the element in the output vector, and the black circle stands for the candidate which

will be inserted to the sorter. The number in the white circle stands for the order in possibilities

of output symbols.

(1) (2) (3) (4) (5)

1 2 3 4 1 3 42 1 243 123 4 1234
Figure 3.5: 5 possible conditions when finding the 5th largest possibility.

According to the possibilities stored in input vectors are in decreasing order, the larger

possibilities are centralized in the upper left of M . Based on the regularity in M , candidates

choosing are decided from the right or down side of the output symbols. Because bubble check

algorithm only considers the possible candidates with the largest possibility, we do not need

to take account of more than one elements in the same row or the same column. Therefore,

26

the minimum required number of candidates depends on the distributing shape of the output

symbols. In the second and forth graphs, when the distributing shape is close to triangular, the

number of possible candidates is more. Looking into other graphs, the number of candidates

is the least when the distributing shape of the output symbols is rectangular. After considering

these five situations, we can infer that the minimum required sorter size with nm 5 should be 3.

Therefore, the minimum required sorter size depends on the distributing shape of elements

in the output vector, and the worst case is when the distributing shape is triangular. Without

considering the symbol repetition problem, the sorter size ns is calculated by supposing there

are already (nm − 1) symbols in the output vector and the distributing shape of these symbols

is triangular. The relation between nm and ns is described by

(1+ns)ns

2
= (nm − 1) + ns

⇒ ns =

⌈
1+
√

1+8(nm−1)

2

⌉ (3.3)

Table 3.1: The relation between ns and nm

nm 4 8 16 32 64
ns 3 5 6 9 12

Based on (3.3), the number of ns with different nm are listed in Table 3.1. The process of the

CES applying the bubble check algorithm is similar with conventional CES mentioned above,

and the main difference is the smaller sorter size ns and the way of choosing the candidate. The

procedures are illustrated in Figure 3.6 and the operations are described as follows:

1. Initialization

Insert ns symbols in the first column of M to the sorter.

2. Output

Output the symbol with the largest possibility in the sorter.

3. Check

Check whether the symbol is redundant. If this symbol is already in the output vector,

discard this symbol.

27

I2

1
I1

M

Sorter (size=nm=4)

4 8 9

2 5

3 7

6

10

11

12

13

14

15 16

1 2 3 6

1 4 8 9

2 5

3 7

6

10

11

12

13

14

15 16

1

2 3 6

1

2 3 6

Output vector

Check

Discard

1

1 4 8 9

2 5

3 7

6

10

11

12

13

14

15 16

2 3 6

1 4 8 9

2 5

3 7

6

10

11

12

13

14

15 16

2 3 6

4
Sort

1 4 8 9

2 5

3 7

6

10

11

12

13

14

15 16

2

3 4 6

Figure 3.6: Procedure of bubble check algorithm in the beginning.

4. Candidate choose

(a) If the output symbol is in the first column/row, choose its down/right side symbol as

the candidate. (b) If not, maintain the same direction with last clock cycle.

5. Sort

According to the possibility, insert the candidate symbol into the sorted sequence which

is reduced to ns.

Repeat (2) to (5) till output vector is full or the predetermined processing cycles is reached.

The overall processing steps are described in Algorithm 3.

In bubble check algorithm, it needs to decide the candidate from right or down side of the

element with the largest possibility as shown in Figure 3.7(a). This increases some complexity

in the controlling circuit when choosing candidate. In order to simplify the controlling circuit,

L-bubble check [26] is to determine the paths of choosing next candidate in advance. There is

an example when ns is equal to 4 in Figure 3.7(b), and the elements in dark zone will not be

considered.

Using the regularity of candidate map M , bubble check algorithm can efficiently reduce the

28

Algorithm 3: Check Elementary Step with Bubble Check Algorithm
Input: I1 and I2 (input vectors)
Output: O (output vector)
Data: M (candidate map), S (sorter size ns), flag (the direction of candidate choosing)

1 Initialization:
2 forall the i such that ns ≤ i ≤ 1 do
3 S[i]←M [i, 1]
4 end
5 i = 1, n = 1
6 while n < nm do
7 Output:
8 Smax ← S[1], and S[1] = M [r, c]
9 Check:

10 if SGF
max /∈ OGF then

11 O[n] = Smax

12 OGF [n] = SGF
max

13 n = n+ 1

14 end
15 Candidate Choose:
16 if r = 1 then
17 flag ← 0
18 else if c = 1 then
19 flag ← 1
20 else if M [r + flag, c+ ¯flag] ∈ S then
21 flag ← ¯flag
22 else
23 flag ← flag
24 end
25 Candidate←M [r + flag, c+ f̄ lag]
26 Sort:
27 forall the j such that ns ≤ j ≤ 1 do
28 Diff [j] = Candidate− S[j]
29 end
30 if Diff [k] > 0 and Diff [k − 1] ≤ 0 then
31 forall the j such that nm ≤ j ≤ k + 1 do
32 S[j]← S[j − 1]
33 SGF [j]← SGF [j − 1]

34 end
35 S[k]← Candidate
36 SGF [k]← CandidateGF

37 end
38 i = i+ 1

39 end

number of candidates and have
√
nm complexity reduction [25]. But like traditional CES, it

still has symbol repetition problem and requires more than nm processing cycles to fill up the

29

(a) (b)

Figure 3.7: (a) The illustration of choosing the candidate from right or down direction
(b)Example of predetermined path for ns = 4 in L-bubble check algorithm

output vector. In average, the processing time of a CES is equal to 2nm cycles for avoiding the

performance loss as shown in Figure 3.8. For this reason, if we want to improve the throughput,

the processing cycles in a CES should be reduced.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1 (112,56), R=1/2,Iteration=50,BPSK

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

2n
m

 processing cycles

n
m

 processing cycles

no predetermined cycles

Figure 3.8: Performance curve when the processing cycles is decided as nm and 2nm. No
predetermined cycles stands for the case that the CES stop computing until output vector is full.

3.4.3 Proposed Check Elementary Step

As mentioned in last section, 2nm clock cycles are required in processing the CES because

of the repeated symbols. There is still no efficient way to filter out the redundant symbols

in candidate choosing step, so 2 times nm processing cycles in CES is unavoidable. For this

30

reason, the proposed method of improving the throughput in CES is directly to double the output

symbol at a time.

3.4.3.1 Proposed Double Throughput Bubble Check Algorithm

According to the target of double throughput, we modify the approach in candidate choosing

step and output 2 symbols at a time. Supposing that (nm,ns) is (7,5), we introduce the candidates

choosing procedure with Figure 3.9, and discuss in the followings.

(a) (b) (c) (d) (e)

(f) (g) (h)

Symbol in output vector

Symbol in sorter

Output symbol

Temporary candidate

Figure 3.9: Candidate choosing procedure of double throughput bubble check, (nm,ns) = (7,5)

In original bubble check algorithm, it guarantees that the sorter contains the element with the

largest possibility. But in our proposed method, the sorter output 2 elements at a time, so the first

2 largest possibilities should be considered. For this reason, the distribution for initialization is a

little different from conventional one, and it is depicted in (a). The next 2 candidates are chosen

among 4 temporary candidates, so we need to decide 4 temporary candidates first. These 4

temporary candidates are the right and down side symbols of the 2 output symbols. It is needed

to check that these 4 temporary candidates should be the element with the largest possibility

in its row or column as illustrated in (f) and (h). From this example, it is too complicated in

controlling the direction of deciding the next 2 candidates. Therefore, we combine the L-bubble

check algorithm to simplify the controlling circuit.

31

3.4.3.2 Proposed Double Throughput L-bubble Check Algorithm

In general, the paths for choosing candidates are determined after performance simulation,

and we first define 2 regions in M for describing the procedure easily. In Figure 3.10, the

darked zone in the first row and first column is denoted as region a, and the rest predetermined

paths is region b. In our proposed method, if the output symbol is in region a, we need extra

computation to decide the candidate.

x y

m

n

Region a

Region b

Elements in output vector

Elements in sorter

Figure 3.10: Candidate map M used in proposed CES

We use an example illustrated in Figure 3.11 to describe the procedure which the output

symbol is in the region a. Every time, using 4 possibilities (x, y,m, n) and 3 comparators to

determine the first 2 largest possibilities in region a, and we denote 1 and 2 in the circles to

represent them. Then, depends on the number of output symbols in the region a to decide

the next candidate. And Figure 3.12 shows the performance loss when directly applying the

L-bubble check algorithm without separating the regions.

x y

m

n

1

2

x y

(a) (b)

Elements in output vector

Elements in sorter

Output symbol

Candidate in region am

n

Figure 3.11: When output symbol is in region a, choose the larger one be the next candidate.

32

Algorithm 4: Candidates Choose in CES with Proposed Double Throughout L-Bubble
Check Algorithm

Input: S1 and S2 (output elements with the first 2 largest possibilities), M [r1, c1] and
M [r2, c2] (the corresponding position in M)

Output: C1 and C2 (the candidates prepared to insert to the sorter)
Data: Region a: path1 records the position for current symbol in the sorter of the first

row, pathns records the position for current symbol in the sorter of the first
column. Region b: (Lr,Lc) represents the predetermined path

1 Extra 2 Candidates in Region a, Ca1 and Ca2 (x, y,m, n are defined as Figure 3.11):
2 p1 = x−m, p2 = x− n, p3 = m− y
3 if [sign(p1), sign(p2), sign(p3)] = [0, 0, 1] then
4 Ca1 ←M [1, c(path1) + 1], Ca2 ←M [1, c(path1) + 2]
5 else if [sign(p1), sign(p2), sign(p3)] = [0, 0, 0] then
6 Ca1 ←M [1, c(path1) + 1], Ca2 ←M [r(pathns) + 1, 1]
7 else if [sign(p1), sign(p2), sign(p3)] = [1, 1, 0] then
8 Ca1 ←M [r(pathns) + 1, 1], Ca2 ←M [r(pathns) + 2, 1]
9 else

10 Ca1 ←M [r(pathns) + 1, 1], Ca2 ←M [1, c(path1) + 1]
11 end
12 Decide C1 and C2 :
13 if Both M [r1, c1] and M [r2, c2] are in regin a then
14 C1 ← Ca1, C2 ← Ca2
15 else if M [r1, c1] is in regin a, M [r2, c2] is in regin b then
16 Cb1 ←M [r2 + Lr, c2 + Lc]
17 C1 ← max(Ca1, Cb1), C2 ← min(Ca1, Cb1)

18 else if M [r1, c1] is in regin b, M [r2, c2] is in regin a then
19 Cb1 ←M [r1 + Lr, c1 + Lc]
20 C1 ← max(Ca1, Cb1), C2 ← min(Ca1, Cb1)

21 else
22 Cb1 ←M [r1 + Lr, c1 + Lc], Cb2 ←M [r2 + Lr, c2 + Lc]
23 C1 ← max(Cb1, Cb2), C2 ← min(Cb1, Cb2)

24 end

The overall operations are as follows:

1. Initialization

Insert (ns − 1) symbols in the first column and second symbol in the first row into the

sorter. Because we want to ensure that there are at least two symbols in the first column

and the first row. In Figure 3.10, the white circles represent the initialization when ns is

equal to 4.

2. Output

Output two symbols with the first two largest possibilities in the sorter.

33

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(112,56), R=1/2,Iteration=50,n
m

=32,BPSK

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

w/ regions
w/o regions

Figure 3.12: Performance comparison of defining regions

3. Check

Check whether these two symbols are already in the output vector. If yes, give up the

redundant symbols.

4. Candidate choosing

(a) If output symbol is in region a, choose the candidates from the 2 candidates, Ca1 and

Ca2 . (b) If output symbol is in region b, choosing the candidate followed predetermined

path.

5. Sorting

Insert two candidates C1 and C2 into the sorter, and C1 is larger than C2.

Using our proposed double throughput L-bubble check algorithm, there is no decoding per-

formance loss compared with conventional one, and the processing time in a CES reduces to

nm cycles. The decoding performances of several decoding algorithms and our proposed one

are depicted in Figure 3.13.

34

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1 (112,56), R=1/2,Iteration=50,BPSK

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

FFT−BP
EMS, n

m
=32

Min−Max, n
m

=32

Proposed, n
m

=32

Figure 3.13: Comparison with other conventional algorithms

3.5 Variable Node Unit (VNU)

Target on the (2,dc) non-binary LDPC codes, we proposed an efficient architecture to imple-

ment the variable node unit (VNU) with less memory usage. In the following sections, we first

introduce the conventional variable elementary step (VES), and then the proposed VNU will be

presented. The final parts in this section are the decision unit and proposed function unit which

contains CES, VNU, and decision unit.

3.5.1 Variable Elementary Step (VES)

A VES is composed of two input vectors and one output vector, and the updating function

is the following.

O[k] = max
IGF
1 [i]=IGF

2 [j]=OGF [k]
i,j∈[1,nm]

{I1[i] + I2[j]} (3.4)

The goal of a VES is to sort out the first nm largest message possibilities among the 2nm

elements involved in the two input vectors. Assume that I1 and I2 are the input vectors and O

is the output vector of the VES, and each vector size is equal to nm. The updating process is

described as the following:

35

1. Candidates computation

First nm cycles: According to the elements in I1, search for the element with identical

symbol from I2 and combine their possibilities. If there is no corresponding identical

symbol, adding the compensation value of I2 to replace it.

Second nm cycles: Add the possibility of each symbol in I2 with the compensation value

of I1.

C[i] = I1[i] +

 I2[j] if IGF
1 [i] = IGF

2 [j]

γI2 if IGF
1 [i] /∈ IGF

2

, CGF [i] = IGF
1 [i]

C[i+ nm] = γI1 + I2[i] , CGF [i+ nm] = IGF
2 [i]

i ∈ [1, 2, ..., nm]

(3.5)

The function of candidates computation is described in (3.5). Note that C represents

as a vector which size is 2nm for storing the candidates, and γ1 and γ2 stand for the

compensation value of I1 and I2 respectively.

2. Insert

According to the possibility calculated, insert the candidate into the output vector in de-

creasing order. If the identical symbol already exists in O, discard this candidate element.

Repeat these two steps for 2nm clock cycles, and the VES updating procedure is described

in Algorithm 5.

In VES, it needs nm ”symbol matching” circuits to search identical symbol from nm ele-

ments in I2 as shown in Figure 3.14, and a symbol matching circuit is to check whether 2 inputs

are the same or not. The conventional VES needs 2nm cycles to process, and maybe several

repeated symbols are accessed in these cycles. Therefore, we try to figure out the more efficient

way to implement the VES without consuming redundant cycles on the repeated symbols.

36

Algorithm 5: Variable Elementary Step
Input: I1 and I2 (input vectors)
Output: O (output vector)

1 for i = 1 to 2nm do
2 Candidate Computation:
3 if i ≤ nm then
4 if the identical symbol exists, and IGF

1 [i] = IGF
2 [j] then

5 Candidate← I1[i] + I2[j]
6 CandidateGF ← I1[i]

GF = I2[j]
GF

7 else
8 Candidate← I1[i] + γI2
9 CandidateGF ← I1[i]

GF

10 end
11 else
12 Candidate← γI1 + I2[i− nm]
13 CandidateGF ← I2[i− nm]

GF

14 end
15 Insertion:
16 forall the j such that nm ≤ j ≤ 1 do
17 Diff [j] = Candidate− S[j]
18 end
19 if Diff [k] > 0 and Diff [k − 1] ≤ 0 then
20 forall the jsuch that nm ≤ j ≤ k + 1 do
21 S[j]← S[j − 1]
22 SGF [j]← SGF [j − 1]

23 end
24 S[k]← Candidate
25 SGF [k]← CandidateGF

26 end
27 i = i+ 1

28 end

I1
GF[i]

I2
GF[1]

I2
GF

[2]

I2
GF[nm]

Possibility

Decision

indexnm

I2[1]

I2[2]

I2[nm]

I1[i]

ᵞI2

Sorter

Size=nm

O

Symbol

Matching #1

Symbol

Matching #2

Symbol

Matching #nm

Figure 3.14: Conventional VES in ith clock cycle

37

3.5.2 Proposed Variable Node Unit

Because the code we used is ultra sparse (2,dc) non-binary LDPC code, we do not need

to apply the forward and backward algorithm to implement a VNU. Furthermore, one of the

inputs of each VNU is always the channel value. In order to efficiently improve the processing

cycles and reduce the storage element for channel values, we change the approach of storing

channel values from conventional one. Instead of storing the elements with the first nm largest

channel possibilities and corresponding symbols, the proposed VNU only stores the binary Log-

Likelihood-Ratios (LLRs) of each variable node. According to the symbol of the input element

from edge message, the corresponding LLR value is computed immediately from the channel

value calculator (CVC). A CVC calculates the summation of binary LLRs by matching the

symbol in binary representation as shown in Figure 3.15. Note that C is denoted as the channel

value immediately computed from CVC, and it is defined over GF(2p).

llri

0

ith bit(symbol)

sign(llri)

1

0

LLR1

LLR2

LLRp

p

Channel

Value

Calculator

symbol [S1,S2,…,Sp]

LLRs [llr1,llr2,…,llrp]
p(CGF=S)

S1

S2

Sp

llr1

llr2

llrp

(a)

(b) (c)

p(CGF=S)

LLRi

Figure 3.15: (a) Channel Value Calculator (b) Architecture of Channel Value Calculator (c)
Architecture of calculating the ith bit Log-Likelihood-Ratio

Updating process of proposed VNU are illustrated in Figure 3.16. Without considering the

2nm elements involved in two incoming vectors, the proposed VNU only take account of nm

different symbols in the edge vector I1. For this reason, using this method may miss several

38

VNU

I1 I2

O

V

Channel

Value

I1

I2

O

Channel

Value

Calculatorelement

from I1

I1
GF
[i]

I1[i]

llr1 llr2 llrp

Channel Value

(a) (b) (c)

O
Sorter

size=nm

elements with the

first 5 possibilities

Check

circuit

@ last 5 cycles

Figure 3.16: (a) Variable node degree is 2 (b) Variable node unit (c) Proposed VNU processing
in ith clock cycle

symbols not included in the edge vector, but they have non-negligible possibilities. Lack of con-

sidering these symbols with high weight will result in the decoding performance loss. There-

fore, we need the extra memory to store some elements with the first several largest possibilities

in channel value vector for compensating the performance loss. After performance simulation,

the elements with the first 5 largest possibilities of channel values should be additionally stored

in our design. Therefore, the processing cycles in proposed VNU is nm + 5 which is fewer

than 2nm cycles required in conventional VES. The overall operation in a proposed VNU is

described in Algorithm 6. Note that the notation of CV C stands for channel value calculator,

and channel value vector stores elements with the first 5 largest possibilities.

Compared with traditional VES, the memory usage for channel value change from (bs+bp)∗

nm to (bLLR) ∗ p+ (bs + bp) ∗ 5 over GF(2p). Note that (bs,bp,bLLR) represent the quantization

bits of symbol, possibility, and LLR value respectively. In Table 3.2, the channel value memory

reduction in different cases are listed, and it is assumed that (bs,bp,bLLR) is (6,7,6) and defined

over GF(26). The proposed method can reduce the storage element for channel value especially

when nm is larger. When nm is equal to 32, the reduction can reach about 75%. But if nm is

equal to 8, there is no remarkable improvement in the memory reduction of channel values.

39

Algorithm 6: Proposed Variable Node Unit
Input: I (C2V message vector), LLRs and C (channel value vector which store the first

5 largest elements)
Output: O (output vector)

1 for i = 1 to (nm + 5) do
2 Channel Value Calculation:
3 if i ≤ nm then
4 Candidate = I[i] + CV C(IGF [i])
5 CandidateGF = IGF [i]

6 else
7 Candidate = γI + C[i− nm]
8 CandidateGF = CGF [i− nm]

9 end
10 Insertion:
11 forall the j such that nm ≤ j ≤ 1 do
12 Diff [j] = Candidate− S[j]
13 end
14 if Diff [k] > 0andDiff [k − 1] ≤ 0 then
15 S[k]← Candidate
16 SGF [k]← CandidateGF

17 end
18 end

Table 3.2: Comparison of the memory usage in channel values
Algorithm nm Memory bits/Variable Normalization
Traditional 32 (6 + 7) ∗ 32 = 416 1
Proposed 32 6 ∗ 6 + (6 + 7) ∗ 5 = 101 0.24

Traditional 8 (6 + 7) ∗ 8 = 104 0.25
Proposed 8 6 ∗ 6 + (6 + 7) ∗ 5 = 101 0.24

3.5.2.1 Decision Unit

In proposed VNU, the decision unit is included, and it operates simultaneously with VNU.

Decision unit is to calculate the posterior probability by means of all incoming messages of

the variable node, and choose the symbol with the largest posterior probability as the decoded

result. In our work, the variable node degree is 2. There are 3 incoming vectors should be

considered, 2 edge messages and 1 channel value. The edge memories stored are the messages

from variable nodes to check nodes, and it contains the information of one of the C2V edge

messages and channel value as shown in Figure 3.17 (a).

Therefore, we can use the C2V message immediately computed from the second stage CES

40

Decision

CircuitV

channel

V2C

C2V

C2VV2C

Decoded symbol

(a) (b)

Figure 3.17: (a) Posterior probability of each variable is computed from C2V and V2C messages
(b) Decision circuit

and the stored V2C message to calculate the posterior probability of each variable node. The

Figure 3.18 illustrates the part of calculating the posterior probability of each variable in de-

cision circuit. In addition, the main operation components in design unit is the same with

conventional VES.

Symbol

Match 1

Symbol

Match 2

Symbol

Match nm

C2V
GF
[i]

V2C
GF

[1]

V2CGF[2]

V2CGF[nm]

Possibility

Decision

indexnm

V2C[1]

V2C[1]

V2C[nm]

C2V[i]

ᵞV2C

Vpost

Compare

Temp

Figure 3.18: Calculating posterior probability in the decision unit

3.5.2.2 Proposed Processing Element (PE)

In our decoder architecture, we concatenate the second stage CES and one VNU to form a

function unit for reducing the internal buffer size and sharing the check circuit. In this function

unit, the output elements computed from the second stage CES will operate VNU simultane-

ously, and the internal buffer can reduce to half size compared with the original one.

As described in previous section, our proposed CES output 2 elements at a time, but the

41

VNU operates 1 element once. For this reason, the internal buffer is needed to temporarily store

the elements. In Figure 3.19, there are three kinds of situation of the output elements from CES

and the corresponding operations for controlling the internal buffer. Note that the meanings of

”redundant” and ”unique” stand for whether the element is already in the output vector or not.

Internal buffer

size nm/2

VES

CES

VES VES

(a) (b.1) (b.2) (b.3)

Figure 3.19: (a) Two output elements from CES prepare to operate VNU (b) Three cases for
arranging internal buffer and deciding the input element of VNU

1. Figure 3.19 (b.1)

The two output elements are all unique, one operates VNU and another one put into the

internal buffer.

2. Figure 3.19 (b.2)

If one of the two output symbols is redundant, using the unique one to executes VNU,

and discard the redundant one.

3. Figure 3.19 (b.3)

If both two output symbols are redundant, taking the symbol in the internal buffer to do

VNU.

The overall block diagram which contains the second stage CES, a VNU, and decision unit

is depicted in Figure 3.20.

42

PE
CES

Internal Buffer

(size=nm/2)

VNU

Check

Circuit

Decision

Unit

Channel

Value

U1

D2 I34
D1

@ 1~nm
cycles

@ (nm+1)~(nm+5)

cycles

D'1

CES CES

D4 D3 D2 D1

Temp Buffer (D1, D2, D3, D4, I12, I34)

V'1 V'2V'3 V'4 D'2D'3 D'4

V3

U1

D1

D2
D3

D4

D'1

CV1

V2 V4

CNU

V1

CV2 CV3 CV4

D'2
D'3 D'4

CES

V1 V2 V3 V4

CES

I3,4

I1,2

CESCES

CES CES

U3U4

U1U2

(a) (b)

Figure 3.20: (a) Update the V2C message D′
1 (b) Block diagram of operating the second stage

CES, VNU, and decision unit

3.6 Scheduling

3.6.1 Layered Scheduling

The key feature of layered scheduling is to use the immediately updated results from previ-

ous layers within the same iteration. In [27], it was shown that nearly half number of iterations

improvement when applying the layered scheduling. Based on the code structure of the quasi-

cyclic code, it is suitable to apply the layered decoding. In layered decoding scheduling, the

overall check equations separate to several groups, and the group size stands for the number of

check equations included.

Note that there is no specific restriction on grouping the check equations and the size of a

group, and there are two kinds of common manners. One is to take the block row as a group,

and the group size is the number of rows in a sub-matrix. Another one is composed of one row

in each block row, and the group size is equal to the number of block rows in H.

43

3.6.1.1 Constraints of H

The methods of saving storage elements and controlling the memory access for making this

decoder be an efficient design are based on some significant presuppositions. Here we conclude

some requirements for applying the proposed decoder architecture in other non-binary LDPC

codes.

1. Variable node degree dv should be 2

Because our proposed VNU is only for the code which the column degree is 2, and the

half edge messages reduction and efficient VNU design are based on this property.

2. Arrange the order of accessing rows appropriately

Since we only store one edge memory of each variable node, it should be prevented from

accessing the variable node which has not finish updated yet.

3.6.2 Early Termination

In our proposed decoder architecture, the early termination design is included. It can re-

duce the redundant iteratively decoding, and our decoder can finish the decoding process in 4

iterations when the bit error rate is equal to 10−5.

After operating the decision units, the decoded symbols are stored in the buffer. Until ac-

complish one iteration, computing the syndrome check to decide whether terminating the de-

coding process or not.

3.6.3 Memory Configuration

In the proposed decoder depicted in Figure 3.1, we use two main memory banks. V2C

memory is used to store edge messages from variable node to check node. The binary LLRs of

channel and the first nc largest possibilities of each variable are included in LLRCV memory

bank. In addition, we separate these memory banks into several smaller memory blocks because

of the limitation in the bandwidth. The configuration of the memory banks is illustrated in

44

Figure 3.21.

V2C

Memory

1
V

D

2
V

D

1NVD
−

NVD

2

[1]VD

2

[2]VD

2

[]V mD n

2

[1]
GF

VD

2

[2]
GF

V
D

2

[]
GF

V m
D n

Channel

Value

Memory

1
V

CV

2
VCV

1NVCV
−

NVCV

1 2
()llr V

2
()

p
llr V

2

[]
V c

CV n
2

[]
GF

V c
CV n

2

[1]VCV
2

[1]
GF

V
CV

(a) (b)

Figure 3.21: (a) Memory bank of V2C messages (b) Memory bank of channel values

3.6.3.1 Memory Collision Problem

Because of using the forward and backward algorithm, the (2, 4) code needs 2 stages CESs

to accomplish a check node updating function. Assumed that the processing time in a CES is

nt clock cycles. The calculation time of one check node includes the memory accessing time

totally needs 4nt cycles. Based on the memory configuration for V2C messages of the proposed

decoder, there are some memory collision problem can not prevent from arranging the rows. In

the following cases, assume that some associated variable nodes of the updating check nodes in

group1 are the same with in group2, group3 and group4 as shown in Figure 3.22.

Read Mem Calculation Write Mem

Read Mem Calculation Write Mem

Read Mem Calculation Write Mem

Calculation

Calculation

Calculation

Read Mem Calculation Write MemCalculation

Time

Group 1

Group 2

Group 3

Group 4

nt cycles

Figure 3.22: Every possible memory collision problems

45

1. Case 1

Before completing the second edge message of the variable node in group1, the V2C

memory read by group2 will be the wrong edge. And there is no way to solve this

situation instead of changing the group decoding order.

2. Case 2

The V2C messages are calculating when the group3 want to access them. The solution is

using the extra circuit to bypass the data from the output buffer to the input buffer of the

computation units. The signal path covered in dashed line in Figure 3.1 is represented as

the bypass path for this case.

3. Case 3

The updated messages are already in the output buffer, and prepared to write into the V2C

memory. The order of writing and reading data should be careful. It needs to check the

updated message is already written into the memory before the next group reads it.

46

Chapter 4

Implementation Results

Using the efficient decoder architecture and improved CNU algorithm described in chapter

3, we implement a (2,4)-regular non-binary QC-LDPC decoder using proposed double through-

put L-bubble check algorithm over GF(26). In this chapter, we will first discuss the architecture

for this non-binary LDPC test chip. Then, we will illustrate the hardware implementation plan

and the post-layout results of our chip. The comparison in hardware efficiency and decoding

performance with other related works are presented. Finally, we apply the proposed decoder on

the baseband simulation platform.

4.1 Chip Plan

Based on our proposed non-binary LDPC decoder architecture, we design 2 kinds of differ-

ent nm size, 8 and 32 respectively. According to the consideration of the hardware efficiency,

we choose the decoder with nm=8 to be realized in chip. The overall chip plan is depicted in

Figure 4.1, and it can be separated into three major parts.

1. Docoder

In the proposed decoder, We partial-parallel with 7 Processing Elements(PEs), and the

overall architecture is illustrated in Figure 4.2. Each component for function unit and

memory access in proposed decoder are illustrated, and the number in every function

47

CORECLK
RESET

IN_VALID

MODE

IN

42

2

M

U

X

RNG

MUXLLR

Generator

Memory

(Input Buffer)
7 PEs

Decoder

Memory

(V2C&CV)

OUT_VALID

OUT
6

CORRECT

Figure 4.1: Chip plan

unit stands for the gate count. The total gate count of the core (includes decoder, LLR

generator, and input buffer) is 655 K, and the proposed decoder accounts for 564 K.

PE#1 PE#2 PE#Np

V2C Memory

PE Input Buffer

PE Output Buffer

Channel

Value

Memory

PE
CES

Internal Buffer

(size=nm/2)

VNU

Check

Circuit

Decision

Unit

Channel

Value

U1

D2 I34
D1

@ 1~nm
cycles

@ (nm+1)~(nm+5)

cycles

D'1

CES CES

D4 D3 D2 D1

Temp Buffer (D1, D2, D3, D4, I12, I34)

V'1 V'2V'3V'4 D'2D'3D'4

Figure 4.2: Components in the non-binary LDPC decoder

2. LLR Generator [28]

By means of the binary LLR values from channel, LLR generator is used to compute

the first nm largest LLR values. With LLR generator over GF(2p), the required bits of

input information for each variable node change from bp ∗ 2p to bLLR ∗ p, and the reduced

amount can improve the processing time of initialization and reduce the number of input

pins. Note that (bp,bLLR) stand for the quantization bits of possibility and binary LLR

48

value respectively.

3. Input Buffer

It is used to store the LLR values calculated from LLR generators for the next decoding

process when the decoder is doing the iterative decoding. For this reason, the decoder

can operate the decoding procedure continuously without wasting time on accessing the

input information.

Note that we also design 4 kinds of test plan to test functions of certain modules for avoiding

fabrication uncertainty. These 4 test mode are controlled by 2 multiplexers as shown in Figure

4.1, and the testing targets are as follows

1. Normal operation

2. Test for input buffer

3. Test for one PE

4. Test for one PE without any input information

In mode 4, using the Random Number Generator (RNG) to generate the values as the binary

LLRs, and it is designed for the case when some of the input pins in chip malfunction.

4.2 Post-layout Results

With 90-nm CMOS process technology, the proposed (112,56) non-binary QC-LDPC lay-

ered decoder over GF(26) is implemented, and the number of nm=8. In the following, we list

the post-layout results of our test chip in Table 4.1, and show the layout picture in Figure 4.3.

4.3 Comparisons

Table 4.2 compares the proposed decoder with other related works [4] [5], and the synthesis

result with nm=32 is also listed. Because there is no other synthesis or post-layout result of

49

Table 4.1: Post-layout results of (112,56) non-binary QC-LDPC codes decoder
Technology 90-nm CMOS process
Algorithm EMS
Scheduling Layered

nm,ns 8,5
Quantization bits 7
Logic gate count 580 K

Memory bits 42 K
Frequency 277 MHz

Throughout 124.6 Mb/s
Core area 2.24 mm2

Power 274 mW

C
h
a
n
n
e
l

V
a
l
u
e
s

C
h
a
n
n
e
l

V
a
l
u
e
s

Edge Memory

Edge Memory

I
n
p
u
t

B
u
f
f
e
r

I
n
p
u
t

B
u
f
f
e
r

PE 3

PE 2

PE 1

PE 3

PE 2

PE 6

PE 5

PE 4

PE 6

PE 4

PE 7

PE 5

L
L
R

G
e
n
e
r
a
t
o
r

1.94 mm

2
.2
 m
m

Figure 4.3: Post-layout photo

non-binary LDPC decoder with EMS decoding algorithm, the related works listed in Table 4.2

are implemented using Min-Max decoding algorithm. In non-binary LDPC, the hardware per-

formance is usually represented as the parameter denoted hardware efficiency, which is defined

of throughput-to-gate-count-ratio. From the value of hardware efficiency in the comparison

table, our proposed decoder is an hardware efficient implementation. Note that the EMS de-

50

coding algorithm we used is more complicated than Min-Max algorithm, and the field size we

applied is also the highest compared with others. Figure 4.4 shows the decoding performance

with [5]. Based on the competitive decoding performance with [5], our design have 4.3 times

improvement in hardware efficiency.

Table 4.2: Comparison Table
[4] T-CASI-2012 [5] T-CASI-2011 Proposed Proposed

Synthesis Post-layout Synthesis Post-layout

Code length 640 248 112 112
Code rate 0.5 0.55 0.5 0.5

Galois Field / nm GF(32)/32 GF(32)/8 GF(64)/32 GF(64)/8
(dv, dc) (3,6) (4,8) (2,4) (2,4)

Algorithm Min-Max Min-Max EMS EMS
Process 180 nm 90 nm 90 nm 90 nm

Quantization bit 7b 7b 7b 7b
Frequency 200 MHz 260 MHz 312 MHz 277 MHz
Iterations 10 10 10 10

Throughput 31.2 Mb/s 47.69 Mb/s 57 Mb/s 124.6 Mb/s
Decoder gate count 1.24 M 1.92 M 1.42 M 564 K

Area (mm2) N/A 10.33 N/A 2.24
Power (mW) N/A 479.8 N/A 274

Hardware Efficiency
50.4 24.84 40.1 220.9

(M bps/M gates)
Energy Efficiency

N/A 1.01 N/A 0.22
(nJ/bit/iter)

In Figure 4.4, we also display the decoding result with FFT-SPA decoding algorithm, which

represents the curve without performance loss. Therefore, we can find out the decoder which

nm is 32 is very close to the curve of FFT-SPA result. Because the code length we used is

relatively small, it has the error floor problem at higher signal-to-noise-ratio (SNR). But if we

apply to other (2, 4) ultra sparse code with longer code length, the hardware efficiency is still

the same.

51

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

S
ym

bo
l E

rr
or

 R
at

e

EMS−Proposed,n
m

=8,iter=10,Fixed 7b

EMS−Proposed,n
m

=32,iter=10,Fixed 7b

[5] Min−Max,n
m

=8,iter=10,Fixed 7b

EMS−Proposed,n
m

=8,iter=50,Floating

EMS−Proposed,n
m

=32,iter=50,Floating

[5] Min−Max,n
m

=8,iter=50,Floating

[5] Min−Max,n
m

=32,iter=50,Floating

FFT−BP,iter=50,Floating

Figure 4.4: Symbol error performances comparison of proposed (112,56) non-binary LDPC
decoder using EMS algorithm over GF(26) and [5] (248,137) non-binary LDPC decoder using
Min-Max algorithm over GF(25). The simulation is performed under BPSK modulation and
AWGN channel

4.4 Application

Applying our design on the simulation platform which supports dual SC/HSI modes of IEEE

802.15.3c applications [29] [30]. In Single Carrier (SC) and High Speed Interface (HSI) modes,

the simulation results of the proposed decoders which nm is 32 and 8 are shown in Figure 4.5

and Figure 4.6 respectively. In addition, the simulation result of (672,336) binary LDPC code

which is well-chosen for 802.15.3c specification is also depicted.

In SC mode, there are two kinds of modulations (8PSK and 16QAM) to simulate, and the

dashed line represents 16 QAM modulation in Figure 4.5. With the 16QAM modulation, our

proposed decoder can outperform the binary code more than 1 dB. But in the 8PSK modulation,

the performance result with nm=8 is worse than the binary case about 0.2 dB.

52

5 6 7 8 9 10 11
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

8PSK, LDPC, Iter=11

8PSK, NB−LDPC,n
m

=8, Iter=10

8PSK, NB−LDPC,n
m

=32, Iter=10

16QAM, LDPC, Iter=11

16QAM, NB−LDPC, n
m

=8, Iter=10

16QAM, NB−LDPC, n
m

=32, Iter=10

Figure 4.5: Performance simulations for (112,56) non-binary LDPC codes and (672,336) binary
LDPC codes in SC mode.

HSI mode has 16QAM and 64QAM modulations, and the dashed line in Figure 4.6 stands

for 16QAM. From the performance curve, the implementation with nm=32 is better than the

binary case about 0.2 dB in both modulations. When nm is equal to 8, the simulation results

worse than the binary one. But in the 64QAM modulation, the performance curve of nm=8 is

overlapping with the binary code at low error rate.

The proposed decoder design which nm is 32 has good decoding ability, and the perfor-

mance loss is negligible (< 0.1 dB). Considering from the simulation results with no perfor-

mance loss, the (112,56) non-binary LDPC code can better than the (672,336) binary LDPC

code which is well-chosen for the 802.15.3c specification about 0.2 dB in average. Because the

implementation that nm is 8 has about 0.4 dB performance degradation, it results in the worse

decoding performance than the binary case.

53

6 7 8 9 10 11 12 13 14 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

16QAM, LDPC, Iter=11
16QAM, NB−LDPC, n

m
=8, Iter=10

16QAM, NB−LDPC, n
m

=32, Iter=10

64QAM, LDPC, Iter=11
64QAM, NB−LDPC, n

m
=8, Iter=10

64QAM, NB−LDPC, n
m

=32, Iter=10

Figure 4.6: Performance simulations for (112,56) non-binary LDPC codes and (672,336) binary
LDPC codes in HSI mode.

54

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a novel decoder architecture for non-binary QC-LDPC codes with improved

EMS decoding algorithm was proposed. Using 90-nm CMOS process, a (2,4)-regular non-

binary QC-LDPC decoder over GF(26) is implemented. To the best of our knowledge, this is

the first chip of non-binary LDPC decoder using EMS decoding algorithm and high order finite

field (≥ GF(26)).

Compared with state-of-the-art, our design has 5 advantages. First, we enhance the through-

out in CES and VES, which are the main computation units in the decoder. In the implementa-

tion of nm = 8, it can reach over 100 Mbps throughout with only 655 K gate counts (564 K gate

count only for decoder). Second, because of the code property that variable node degree is 2, we

can reduce half storage elements for edge messages. Third, the architecture in proposed VES

can efficiently save the memory usage in channel values, and it has about 75% reduction when

the number of nm is equal to 32. Forth, we use EMS decoding algorithm which is more com-

plicated than Min-Max decoding algorithm but it has better decoding performance. Although

we use very short code length (672 bits), the decoding performance are still competitive with

other designs based on the higher finite field size (GF(26)). Especially when choosing nm=32

to implement, the decoding performance loss is negligible (< 0.1 dB) compared with FFT-SPA

55

decoding algorithm. Fifth, the hardware efficiency of our design is better than other existing

works, and it has at least 4.3 times improvement.

Based on the improvements in our design above, we can really enhance the hardware effi-

ciency of the non-binary LDPC decoder, and have well enough decoding performance. Using

a 90-nm CMOS process, we implemented the proposed non-binary LDPC decoder with nm=8,

and the throughput can reach over 100 Mbps.

5.2 Future Work

In proposed decoder, we double the throughput and reduce the memory usage by the code

property that the column degree is 2. Applying these techniques, non-binary LDPC decoder

design for two different size of nm (8 and 32) are provided. In non-binary LDPC decoding

algorithm, the larger size of nm can have better decoding performance, but the computational

complexity and memory usage are also increased. Based on the consideration of hardware cost,

we choose the decoder with nm=8 to implement, but its decoding performance is worse than

the case of nm=32 about 0.4 dB. For this reason, we can try to figure out some approaches

to decrease the performance loss when changing the value of nm. Besides, as we only store

half edge messages in our decoder in layered scheduling, grouping and processing order are

important in decoding. To avoid the memory collision problems (in 3.6.3.1), we rearrange the

processing order by manual operation. For more general implementation, the relation between

the accessing order of groups and the number of parallelism in the decoder should be made by

a valid inference.

56

Bibliography

[1] M. Davey and D. MacKay, “Low-density parity check codes over gf(q),” IEEE Commun.
Lett., vol. 2, no. 6, pp. 165 –167, June 1998.

[2] J. Chen, L. Wang, and Y. Li, “Performance comparison between non-binary ldpc codes
and reed-solomon codes over noise bursts channels,” in Communications, Circuits and
Systems, 2005. Proceedings. 2005 International Conference on, vol. 1, may 2005, pp. 1 –
4 Vol. 1.

[3] A. Marinoni, P. Savazzi, and S. Valle, “Efficient design of non-binary ldpc codes for mag-
netic recording channels, robust to error bursts,” in in Proc. ISTC, Sep. 2008, pp. 288
–293.

[4] X. Chen, S. Lin, and V. Akella, “Efficient configurable decoder architecture for nonbinary
quasi-cyclic ldpc codes,” IEEE Trans. On Circuit and Systems-I, vol. 59, no. 1, pp. 188
–197, Jan 2012.

[5] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, and S.-W. Chen, “An effi-
cient layered decoding architecture for nonbinary qc-ldpc codes,” IEEE Trans. On Circuit
and Systems-I, vol. 59, no. 2, pp. 385 –398, Feb. 2012.

[6] X. Zhang and F. Cai, “Reduced-complexity decoder architecture for non-binary ldpc
codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1229 –1238,
July 2011.

[7] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient decoder design for nonbinary quasicyclic
ldpc codes,” IEEE Trans. On Circuit and Systems-I, vol. 57, no. 5, pp. 1071 –1082, May
2010.

[8] I. Gutierrez, G. Bacci, J. Bas, A. Bourdoux, H. Gierszal, A. Mourad, and S. Pleftschinger,
“Davinci non-binary ldpc codes: Performance and complexity assessment,” in Future Net-
work and Mobile Summit, 2010, June 2010, pp. 1 –8.

[9] X. Jiang, Y. Yan, X. gen Xia, and M. H. Lee, “Application of nonbinary ldpc codes based
on euclidean geometries to mimo systems,” in in Proc. WCSP, Nov. 2009, pp. 1 –5.

[10] L. Costantini, B. Matuz, G. Liva, E. Paolini, and M. Chiani, “On the performance of
moderate-length non-binary ldpc codes for space communications,” in 2010 5th Advanced
Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Com-
munications Workshop, Sep. 2010, pp. 122 –126.

[11] G. Calzolari, M. Chiani, F. Chiaraluce, R. Garello, and E. Paolini, “Channel coding for
future space missions: New requirements and trends,” Proceedings of the IEEE, vol. 95,
no. 11, pp. 2157 –2170, Nov. 2007.

57

[12] L. Barnault and D. Declercq, “Fast decoding algorithm for ldpc over gf(2q),” in IEEE
Information Theory Workshop, march-4 April 2003, pp. 70 – 73.

[13] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of ldpc codes
over gf(q),” in in Proc. IEEE ICC, vol. 2, June 2004, pp. 772 – 776 Vol.2.

[14] ——, “Computational complexity and quantization effects of decoding algorithms for
non-binary ldpc codes,” in in Proc. ICASSP, vol. 4, May 2004, pp. iv–669 – iv–672 vol.4.

[15] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary ldpc codes over gf(q),”
IEEE Trans. Commun., vol. 55, no. 4, pp. 633 –643, Apr. 2007.

[16] ——, “Extended minsum algorithm for decoding ldpc codes over gf(q),” in on Proc. ISIT,
Sep. 2005, pp. 464 –468.

[17] V. Savin, “Min-max decoding for non binary ldpc codes,” in in Proc. ISIT, July 2008, pp.
960 –964.

[18] A. G. A. Conde-Canencia, L. and E. Boutillon, “Complexity comparison of non-binary
ldpc decoders,” June 2009.

[19] T. Lehnigk-Emden and N. Wehn, “Complexity evaluation of non-binary galois field ldpc
code decoders,” in in Proc. ISTC, Sep. 2010, pp. 53 –57.

[20] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, and P. Urard, “Architecture of a low-
complexity non-binary ldpc decoder for high order fields,” in in Proc. ISCIT, Oct. 2007,
pp. 1201 –1206.

[21] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction of non-
binary quasi-cyclic ldpc codes by arrays and array dispersions,” IEEE Trans. Commun.,
vol. 57, no. 6, pp. 1652 –1662, June 2009.

[22] Y.-K. Lin, “Design of structured cp-peg ldpc codes with low error floor,” Master’s thesis,
National Chiao Tung University, Nov. 2007.

[23] X.-Y. Hu and E. Eleftheriou, “Binary representation of cycle tanner-graph gf(2b) codes,”
in in Proc. IEEE ICC, vol. 1, June 2004, pp. 528 – 532 Vol.1.

[24] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity decoding
for non-binary ldpc codes in high order fields,” IEEE Trans. Commun., vol. 58, no. 5, pp.
1365 –1375, May 2010.

[25] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified algorithm for elemen-
tary check node processing in extended min-sum non-binary ldpc decoders,” Electronics
Letters, vol. 46, no. 9, pp. 633 –634, Apr. 2010.

[26] ——, “Simplified check node processing in nonbinary ldpc decoders,” in in Proc. ISTC,
Sep. 2010, pp. 201 –205.

[27] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of ldpc
codes,” in in Proc. IEEE SIPS, Oct. 2004, pp. 107 – 112.

[28] A. Ghouwayel and E. Boutillon, “A systolic llr generation architecture for non-binary ldpc
decoders,” IEEE Commun. Lett., vol. 15, no. 8, pp. 851 –853, august 2011.

58

[29] Y.-S. Huang, W.-C. Liu, and S.-J. Jou, “Design and implementation of synchronization
detection for ieee 802.15.3c,” in in Proc. VLSI-DAT, Apr. 2011, pp. 1 –4.

[30] F.-C. Yeh, T.-Y. Liu, T.-C. Wei, W.-C. Liu, and S.-J. Jou, “A sc/ofdm dual mode frequency-
domain equalizer for 60ghz multi-gbps wireless transmission,” in in Proc. VLSI-DAT, Apr.
2011, pp. 1 –4.

59

	01
	02_書名
	中文摘要
	誌謝
	dissertation_pipy

