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Abstract

Non-binary LDPC codes which extended from binary LDPC codes have ex-
cellent decoding performance, and it is robust to various channel impairments.
With the remarkable decoding ability, the high computational complexity and huge
memory usage are the main challenges for non-binary LDPC codes to be imple-
mented in practical. This thesis presents a -high hardware efficient architecture for
implementing non-binary LDPC decoder using improved Extended Min-Sum de-
coding algorithm with layered scheduling. Based on the enhancement in the check
node processing-and efficient memory storing, .the proposed decoder can double
the throughput and have half reduction in storing the edge messages. Using 90-
nm CMOS process technology, a (2,4)-regulat non-binary QC-LDPC decoder over
GF(2°) is implemented. In the post-layout simulation results, the decoder through-
put can reach over 100 Mbps at 10 iterations. Compared with state-of-the-art de-
signs, this implementation has at least 4.3 times improvement in hardware effi-
ciency (throughput-to-gate-count-ratio), and the decoding performance still keep

competitive.
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Chapter 1

Introduction

1.1 Research Motivation

Error control code (ECC) plays-an important role in. many practical application related to
the design for reliable digital transmission and storage system. ECC is applied in the channel
encoder and channel' decoder 1n the digital transmission system. In channel encoder, adding the
redundant message called parity bits to the source information by the mathematical calculation.
Then based on the arithmetic relationship between information bits and parity bits to detect and
correct the errors caused by transmitting channel, and-recover the message. Thus, ECC can
efficiently resist the channel effect and provide reliable communication system.

Non-binary Low-Density-Parity-Check (NB-LDPC) codes are an extension of binary LDPC
codes, were investigated by Davey and Mackay in 1998 [1]. It was shown that, non-binary
LDPC codes can outperform than binary LDPC codes when the code length is small or applying
to the higher-order modulation as shown in Figure 1.1. In Figure 1.1, it displays that non-
binary LDPC codes can outperform binary LDPC codes especially in the higher modulations.
Furthermore, non-binary LDPC can combat burst errors and further approach Shannon limit
with good error floors [2] [3].

Although non-binary LDPC codes have so many advantages in decoding performance, the

computational complexity and huge storage requirements are the considerable challenge to im-
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Figure 1.1: Bit error performance of (672,336) binary LDPC code with floating point log-BP
and (112,56) non-binary LLDPC codes over GF(2°%) with floating-point FFT-BP. The simula-
tion is performed under AWGN channel, and modulations are BPSK, 8PSK, and 64QAM. The
maximum number of iterations is 50.

plement non-binary LDPC codes practically. In the state-of-the-art works, there are few designs
can reach over 100 M bps in throughout and the gate counts all exceed 1 M as listed in Table 1.1.
In order to enhance the hardware efficiency of non-binary LDPC codes decoder, we improve
the throughput in CNU and VNU which-are the main computation components in the decoder.
In addition, we reduce the storage element of the edge messages and the channel values, and

use layered scheduling to increase convergence speed.

Table 1.1: Hardware efficiency (throughput-to-gate-count-ratio) of existing designs

[4] T-CASI-2012 | [5] T-CASI-2011 | [6] VLSI-2011 | [7] T-CASI-2010
Synthesis Post-layout Synthesis Synthesis
Throughput 31.2 Mb/s 47.69 Mb/s 10 Mb/s 60 Mb/s
Gate count 1.24 M 1.92M 1.6 M 149 M
Hardware Efficiency
(M bps/M gates) 50.4 24.84 6.25 8.06




1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce the concept of non-binary
low-density parity-check block codes and discuss several conventional decoding algorithms
for non-binary LDPC codes. Chapter 3 will first introduce the conventional function units of
non-binary LDPC decoder in hardware implementation. Then, the details of proposed function
units and decoder architecture are provided. Chapter 4 gives the implementation results and
the comparison with other related designs. Finally, conclusions and future works are given in

Chapter 5.



Chapter 2

Principle of Non-binary Low Density

Parity Check Codes

Because of being the Shannon-limit approaching codes, LDPC codes is an attractive solution
in many communication and digital storage systems. Non-binary LDPC codes is an extension of
binary LDPC codes, and it has excellent decoding ability and resist burst error. The more details
about non-binary LDPC are prepared to discuss in section 2.2. In this chapter, we will first give
the concept of the finite field. In addition, non-binary LDPC performance and its impact to
system designs will be addressed.. Finally, survey of available non-binary LDPC solutions will

be briefly discussed.

2.1 Basic Introduction of Finite Field

A field contains only finitely many elements is called a Finite Field, or Galois Field. Like
general field, finite field is also a framework for doing arithmetic, and it is closed under the
operations defined like addition, subtraction, multiplication and division. Basic finite field can
be constructed by a prime number p, and the field elements are 0,1, ...,p — 1. In GF'(p), a non-
zero element a is called a primitive element if a?~! = 1, and the powers of a generate the overall

element over GF'(p). Extending GF(p) to GF(p™), the field with p™ elements is constructed



as 0,1,a,...,a”" ~! based on the modulo p arithmetic, and the coefficient in polynomial form is
0,1,...,p — 1. The elements defined over GF(2P) are represented as binary sequence and have
the advantage of easier arithmetic especially in addition. Therefore, binary finite field is widely
used in several area like error control code (ECC) and cryptography.

Table 2.1 shows an example of the three kinds of representation for G F'(2?) and the primitive

polynomial is f(z) = z* +z + 1.

Table 2.1: Representation of the elements in GF'(2*)

Power Polynomial 4-tuple
0 0 0000
1 0001

« « 0010
a? a? 0100
a? a’ 1000
at a +o1 0011
a’® & + a 0110
af e 1100
a’ ad o+ a +01 1011
a® a? 4+ 1 0101
o’ a® + a 1010
al® a+ a + 1 0111
a'l Pt Ay Ny 1110
al? a?d+ o’ + -+ 1 1111
ald ah '+ a? + 1 1101
a't a® 4 1001

2.2 Non-binary LDPC Codes

In 1998 [1], Davey and MacKay extended the binary LDPC to the finite field GF'(q), and
the non-zero entries in H are replaced by the elements in finite field. It was shown that, non-
binary LDPC codes can perform better than binary LDPC codes when the code length is small
or applying to the higher-order modulation. Furthermore, non-binary LDPC can combat burst
errors and further approach Shannon limit with good error floors. In [&], they confirm that non-
binary LDPC codes outperform both convolutional turbo codes and quasi-cyclic LDPC codes

for all code rate, modulation and codeword lengths. In addition, non-binary LDPC codes can



have good performance especially in more complex system, like MIMO and M-QAM channels
[9]. In application, because of the good decoding ability and low throughput, non-binary LDPC
codes are appealing solution for space/satellite communication systems [10] [11].

Even if non-binary LDPC codes have so excellent error correcting ability, but the rela-
tively high complexity is always the main problem of the hardware implementation in practical.
In order to figure out the efficient hardware implementation, several simplified versions from
belief-propagation (BP) decoding algorithms are put forward in recent years. We will introduce

some of them more detail in section 2.4.

2.3 Encoding of Non-binary LDPC Codes

The non-binary LDPC code is defined of the sparse parity check matrix H, and the con-
struction of H are as follows. The matrix size of H is M rows by NV columns, and (M ,N) stand
for the numbers of check equations (check nodes) and variable nodes respectively. In (2.1), the
codeword c are defined as the null space of H; and the generator matrix G can be obtained by
performing Gauss-Jordan elimination on H. The number of rows in'G is represented as K, the
length of information symbols. The entries of H are the elements which are defined in GF'(q),
and (d,,d.) stand for the column and row degree (or.variable node and check node degree) re-
spectively. Note that the code is said regular if it has the same number of non-zero elements in

all the columns and rows, otherwise it is called irregular code.

c=uG , GH' =0 2.1)

In (2.2) shows an example of (1,2) regular non-binary LDPC code over GF'(8). Note that the
code with d,=1 is not general, and it is for convenient to illustrate the example. The parity check
matrix H can be represented as a graphic form, called Tanner graph to illustrate the connection
between variable nodes and check nodes. Based on the H described in (2.2), the correspond-
ing Tanner graph is depicted in 2.1. In Tanner graph, the connections between variable and

check nodes represent the non-zero elements in H, and the permutation node stands for the

6



corresponding symbol.

H = (2.2)

Variable

node
/ v2C

Permutation
node

Check
node

C C; G C,

Figure 2.1: Tanner graph of H described in (2.2)

2.4 Decoding of Non-binary LDPC Codes

Like binary LDPC, the decoding of non-binary LDPC codes is based on belief-propagation
(BP) algorithm, or sum-product-algorithm (SPA) which iteratively updates the posterior prob-
abilities of each variable node. In non-binary case, because the non-zero entries in H are not
equal to 1, the arithmetic in finite field is required. In [12], the author proposed FFT-SPA to
perform in the frequency domain, which transfers the complicated convolution operation into
simpler multiplications. In order to further reduce the computational complexity, the decoding
algorithm can be transferred to the logarithm domain [ 3]. In log-domain algorithm, it requires
fewer quantization bits for storing message, and it is more robust to the quantization effect [ 14].

SPA (or BP) and FFT-SPA are the decoding algorithms without performance loss, but the



complicated computation and huge memory usage are very hard to be implemented in hard-
ware. Therefore, the simplified versions with acceptable performance loss, like Extend Min-
Sum (EMS) and Min-Max decoding algorithms are invented. In the following section, we will
introduce SPA, EMS, and Min-Max decoding algorithms respectively. Except SPA, EMS and
Min-Max are introduced in Log-Likelihood-Ratio (LLR) form. There are some comparison in
complexity between several main decoding algorithms in non-binary LDPC codes, and it will

be presented finally.

2.4.1 Sum of Product Algorithm (SPA)

In non-binary LDPC, the entries in H are defined in finite field, and the non-zero elements
are not always equal to one. That s, the finite field multiplication is applied in check equations,
and the single row check sum with-degree d. over GF(2?) is shown in (2.3). Note that v;(x)

represents the variable symbol in-polynomial form, and p() is the primitive polynomial.

de
Z hi(@)v(xz) =0 mod p(z) (2.3)
i=1

In non-binary LDPC codes, the operation of multiplying the non-zero element in H is called
permutation, and it is not required.in binary LDPC decoding. Since the arithmetic operation
in finite field is closed, the multiplication is a one-to-one mapping process. If the elements
represented in power form, multiplication is actually a cyclic shift of whole elements in the
field as shown in Figure 2.2. This is the reason that multiplication of the non-zero element in H
in non-binary LDPC decoding procedure is called permutation.

Algorithm 1 shows the overall SPA decoding procedure in non-binary LDPC codes, and it
is similar with the binary one except permutation and inverse permutation.

In Algorithm 1, one decoding iteration requires permutation, check node update, inverse
permutation, and variable node update these steps to accomplish. In the following, we will
discuss these processing steps in more details.

First, we introduce the notations used in the decoding process. In non-binary LDPC codes,
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Figure 2.2: Finite field multiplication over GF(2?) with power form

A 4

Algorithm 1: Decoding Procedure

Input: The messages after adding the channel noises
Output: Decoded symbols

1 Initialization:
2 Initialize the channel value as the V2C message in the first time
3 while syndrome is zero or the maximum iteration number is reached do

4

N=TN--HEE N B ) |

11

12
13

Permutation:

Multiply C2V messages by corresponding non-zero element in H
Check Node Update:

Compute C2V'messages based on the check equations

Inverse Permutation:

Multiply the corresponding non-zero inverse element in H
Variable Node Update:

Compute V2C messages and the posterior probability of each variable to decide
decoded symbols

Syndrome Computation:

Compute syndrome

14 end

the channel value and the message transmitted between nodes are all represented as a vector.

The vector contains the possibility of each element defined in finite field, and the vector length

depends on the size of the finite field. Note that in Figure 2.3, the two directions of message

vector are represented as U(up) and D(down), and the direction from check node to variable

node is U, and the other is D. The suffix of U and D stands for the incoming node and the

outgoing node of this message vector. For example, Dy ¢ means the message vector going from

variable node to the check node. And Dy ¢[i] stands for the possibility which the symbol of

the element is equal to i. Furthermore, Ly, represents the channel value vector of variable node

Vj, and Ly, [i] stands for the possibility of channel value is equal to i. These notations are all

depicted in Figure 2.3.



Permutation
node

Check
node

C G,

Figure 2.3: Notations used in non-binary LDPC decoding procedure

In the following, we will introduce these five decoding processes in the details.

1. Initialization
Using the information with the Gaussian.additive noise from channel to calculate the
probability of each element over GF(2”) in each variable node. Note that the symbol like-

lihood value is denoted as Ly, 42, ...s%,),and its polynomial form is

P
@) = (i sigrsyiph=> figz"s" (2.4)
k=1

For example, L[1,0, 1] represents the possibility which the polynomial form of the ele-

ment is 22 + 1 over GF(2?).

Define by, is the &y, bit of the symbol over GF(2P), and y, is the result after adding the
Gaussian noise ny. After transmitting in the channel, the corresponding possibility of

each symbol in variable node is calculated as

Lliy, i, ... 1) = [ [ (i) (2.5)

k=1
In (2.5), l(ix) = probability(yx|bx = ix) and where y, = by + ny. Using the channel
value vector L as the V2C message vector in the first iteration.

2. Permutation and inverse permutation

10



In non-binary LDPC codes, the non-zero elements in the parity check matrix H are not
only equal to 1, so the multiplication in the finite field is required when operating the
check equations. Furthermore, the multiplication with inverse element after doing the
check node update is also needed. In particular, the multiplication become much easier
if the symbol of elements are stored as power form. Then, the multiplication is just to do

the addition of the power items, and match the concept of naming permutation.

. Check node update (CNU)
Using the incoming message Dy« to update the check node of degree d.. According to
the combination of elements in the input vectors, to find out the check-sum set that satis-

fies the check node equation such as

hiDya + haDvye +hs Dyye =0 (2.6)

and calculate the summation of all the elements in this check-sum set. Assume the updat-

) ;(a)

ing symbol in polynomial form is i'*) () of the m;, edge in Figure 2.4, and Uy [zga Iy ...

represents the possibility which the symbol in Ugy vector.is equal to a. The updating

equation is

Ucv,, [i\%, 85 4 i)

- >

de
(i@ (@) > i(e)=i@ (2)}

I=1,l#m

dc
Dy, cliv, iz, -y ip (2.7)
k=1,k#m

. Variable node update (VNU)
In Figure 2.5, using the incoming message Uy s and the channel values to compute the
V2C messages (Dy¢s) of degree d,. The (2.8) describes the computing function for the

case that updating symbol is a in the m,, edge of variable node.
Dye, [i,i%, .. i\

dy
= Ly[i\™, i i) T Uew [, il
k=1,k#m

(2.8)

11



Variable
node

Check
node

i\

Figure 2.4: A CNU when d. is 4 and compute the first edge(m = 1)

Variable
node

Check
node

Ci G, '\

Figure2.5: A VNU when d,, is 3 and compute the third edge(m = 3)

Note that we need to normalize the possibilities.in the message vector after doing VNU.
Because the possibilities stored in SPA are the pdf forms, we need to ensure the sum-
mation of all possibilities is-equal.to 1. By-means of normalization process, can prevent

some possibilities to become very close to zero after several iteratively calculations.

. Decision Unit

After an iteration every time, taking all the updated incoming messages of the variable
node with the channel values to compute the posterior probabilities. Based on the g-ary
probabilities, choose the largest one as the decoded symbol. According to the decoded
symbols, the syndrome of each check equation is calculated. If the syndromes are not all
zeros, the decoding process should be continued. But if there is no non-zero syndrome,
the decoding process can be stopped even if the maximum iteration number is not reached

called early termination.

12



2.4.2 Extended Min-Sum Algorithm (EMS)

The high computational complexity and the huge memory requirements are the main prob-
lems for non-binary LDPC to implement in practical. In [15] [16], Extended Min-Sum (EMS)
algorithm is to simplify the CNU computation, and truncate the message vector from the origi-
nal field size ¢ to a limited number denoted as n,,. The n,, elements are selected according to
the order of possibilities, so the message vectors need to store the first n,, largest possibilities
and the corresponding symbols. Because of storing the incomplete messages, the compensated
value 7 is required to represent the possibility of the (¢—n,,) truncated elements. For simplicity,

~ usually sets a constant value decided by performance simulation.

Channel
Value

Variable
node VD VD VD
-»dv ->dv _'dv

l possibility possibilityl symbol
D[1] D[1] DGF[I]
D2] | =>| D] [D%[2]

Channel
Value

Channel
Value

Permutation
node

Dinn] |[D%[n,]
Y

Check
node

Figure 2.6: One check equation and edge message reduction in EMS decoding algorithm

Like SPA algorithm, we use U and D to represent the C2V and V2C message vectors re-
spectively. Moreover, the notations for possibility and symbol of each element should be dis-
tinguished. For example, U is still represented as the vector which stores the possibilities, but
Uli] changes to stand for the i, largest possibility (in SPA, U][i] stands for the possibility of
symbol 7). And U%"[i] represents the corresponding symbol of U[i]. Note that the form of
storing the possibilities can transfer to log-domain with Log-Likelihood-Ratio (LLR). It trans-
form the complicated multiplication into simpler summations. In log-domain, the real-value

addition transform to complicated operation related to logarithm, and EMS is to simplify it by
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max function which is to find out the maximum among all inputs. Furthermore, it was shown
that arithmetic operation in log-domain are more robust to quantization effect, and the required
number of quantization bits are also smaller. Assume P(a) is the possibility of symbol a, and

the LLR form is calculated

PU"[k])

Ulk] = log

The decoding process of EMS algorithm is similar to the SPA decoding algorithm intro-
duced in section 2.4.1. The most different thing is the simplified version of CNU, and the
elements in edge message vector truncate to a limited size n,,. In the following, the decoding

function based on the truncated messages with LLLR form will be introduced.

1. Initialization
In general, the channel values are stored.in complete field size in order to avoid perfor-
mance loss. In the first iteration, sort out n,,, €lements with the first n,,, largest possibilities

be the V2C message vectors.

2. Variable Node Unit

Assume that the variable.node degree is d,, and the updating function is

dy
Dy, [, .., i®) = Ly i 00, i+ N Uil s, .., i) (2.10)

» U P P
k=1,k#m
In VNU, we need to combine the possibilities of identical symbols in (d, — 1) message
vectors. Because symbols in the message vector are stored by the order of possibility, the
storing of symbols is non-regular and incomplete. Therefore, the operation of searching
the same symbol from each input vector is required. If the identical symbol does not exist,

it will be replaced by the compensated value ~.

3. Permutation and Inverse Permutation
In fact, the permutation and inverse permutation steps are just to do the multiplication

in finite field, and the multiplicator is the non-zero element in parity check matrix H.
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Because the set of symbols stored in message vector is incomplete, the set of symbols is
changed after multiplying a symbol which is not equal to one. But for consistency, we

still use “permutation” to represent the multiplication with the non-zero elements in H.

4. Check Node Unit
In SPA, we need multiplications and summations to accomplish a CNU. Using the LLR
form, the real-value multiplication can transform to simpler summation, but the real-
value summation will become more complicated. For example, the addition like z1 + x5
changes to In(e™ + €2). EMS is to simplify the summation related with logarithm to

max operation according to (2.11).

(™ 4 ¢®2) = max (w1, T2 )k (L + e o722 (2.11)

Note that max operation is to find out the maximum from all inputs. Assume that the

check node degree is d.., the updating function is.

de
Ucy,, [\, 1] = max (1> Dy, S, i, i) (2.12)
a= f: ap k=1k#m
k=1, k=t
Note that the output vector updated is still sorted in decreasing order. The function target
of CNU is to sort out the first n,,, largest possibilities from the candidate set. The example
of constructing a candidate set is illustrated in Figure 2.7 and Table 2.2. If the check node
degree is d., the size of the set is equal to nide™h, Sorting from this huge set is too complex

to implement in practical. For this reason, in non-binary LDPC codes, we usually apply

the approach like divide and conquer to simplify an updating function step by step [ 3].

In EMS algorithm, n,, is a significant factor, and its size directly affects the performance on
hardware efficiency and decoding ability. It is a trade-off between hardware cost and decoding
performance. Deciding the value of n,, and figuring out a cost-performance balance is the most

important issue when implementing non-binary LDPC decoder in practical. In general, the
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Figure 2.7: Update the first edge message Uy, when d. = 4 and n,,, = 4

Table 2.2: Candidate set of the example in Figure 2.7

U1 (000 o) ..
D5(010) + D3(110) + D4(100) D5(010) + D3(111) + D4(100) ...
D5 (010) + D5(010) + D4(000)  D5(010) 4+ D3(010) + Dy(001) ...
D5(010) + Dy 111)  D5(100) + D3(010) + Dy(111)  .....

Dy(011) + D4(010) 4 D, (001
D,

2(011) 4+.D3(010) 4+ D4(000) ...
5(011) + Ds(101) + Dy(111) ...
2(000) + D3(110)+ Dy (111) ...
5(000) +-D3(101)+ D,(100) .....

(000)

(010) + D5(110) + )

(010) + D5(010) + )
(010) + D5(101) 4 Dy(111)

D5(100) + D3(101) +Dy(001)

D5(011) + D3(111) +-Da100)
(011) + D5(010)4 D4 (001)
(000) + Ds(Li1) + Dy(111)

00) + Ds(111) + D, (111

richvRuRwiie

Us(

(010) (111) (

(010) (010) (

(100) (010) (
5(100)+ D3(101) 4 D4(000) ...
5(011) 4 D3(110) 4 D4(100) ...

(011) (010) (

(011) (101) (

(000) (110) (

(000) (101) (

performance loss in EMS is the least (< 0.1 dB) in all simplified non-binary LDPC decoding

algorithms.

2.4.3 Min-Max Algorithm

In [17], Min-Max decoding algorithm is further simplifier than EMS decoding algorithm
in check node processing. Based on the concept that the largest value dominates the result
in addition, Min-Max replace the summation to max operation to reduce the computational
complexity. The main differences in decoding process from EMS are initialization and CNU,
so we describe these two steps in more detail as follows. Note that we use the complete field

size without considering n,, for convenient in presenting the notations.

1. Initialization

The priori information is calculated by
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D;(a) = In(P(x; = s;|channel)/P(x; = a|channel)) (2.13)

, where s; is the most likely symbol for x;

Note that P(z = a|channel) stands for the probability that the symbol representation
of = is equal to a after adding the channel effect. The possibilities in message vector
are initialized by (2.13), and the smaller value represents the higher possibility on the

contrary.

. Check Node Update (CNU)
Compared with the CNU computation in EMS, Min-Max replaces the summation to max
operation in order to further simplify the updating function. Because of the overestima-

tion in CNU, Min-Max is a little sub-optimal than EMS algorithm. The updating function

in CNU is described by
Uo,, %545 ... 89 = min_(@max(Dy, cfit 5™, ... ik)])) (2.14)
a= ZC ag
k=1,k#m

In (2.14), the mun-and max functions are to find out the minimum and maximum among
all the inputs respectively... Because the smaller.value stored in Min-Max decoding al-
gorithm stands for the higher possibility, the CNU use min function to choose the most

likely result.

For the reason of simplicity, almost non-binary LDPC decoder are implemented by Min-

Max algorithm, and there are many improved Min-Max decoding algorithms are presented [7]

[6] . In the following, the complexity in CNU and VNU with different decoding algorithms

discussed in previous sections are presented [!8] [19] [8], and the decoding performance is

depicted in Figure 2.8. From the performance curve in Figure 2.8, the EMS is very close to FFT-

SPA which is no performance loss, and outperforms than Min-Max about 0.2 dB. Supposing

that it is defined over GF(q), and n; stands for the required clock cycles to accomplish a CNU

with degree 2. Note that except SPA, EMS and Min-Max are applied in LLR form and use the
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truncated number n,,.

Table 2.3: Number of operations of check node updating function (d. = 2) for different decod-

ing algorithms

\ Multiplications Max/Min Additions (real) Additions (GF(q))
SPA q° 0 q(¢g—1) 0
EMS 0 NN, Ny + Ny, N + Ny,
Min-Max 0 NNy + Ny + Ny 0 Ny + Ny,

Table 2.4: Number of operations of variable node updating function (d, = 2) for different

decoding algorithms

\ Multiplications Divisions Max Additions (real)
SPA q q 0 qg—1
EMS 0 0 N (M + 2) N
Min-Max 0 0 [ () N,
10" ; : }
; —FFT-BP
4 -o-EMS, nm:32
10 7 I
-~ Min—Max, nm=32
10°L
9
i
5107t
i
5
10°+ .
1]
10 D
107 : : : : : :
1 1.2 1.4 1.6 2 2.2 2.4 2.6

18
E,/N, (dB)

Figure 2.8: Performance simulation for a (112,56) non-binary LDPC code over GF(2°) with
FFT-BP, EMS, and Min-Max decoding algorithms. The simulation is performed under BPSK

modulation and AWGN channel.

The maximum number of iterations is 50.
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Chapter 3

Non-binary LDPC Decoder Architecture

In this chapter, we will first show the overall propoesed decoder architecture. Then, the
conventional approach for implementing each main function component in non-binary LDPC
decoder with EMS algorithm [20] will be introduced. Following. this, the proposed function

units of the decoder are presented.

3.1 Non-binary Quasi-Cyclic LDPC Codes

Because of the code regularity and special code structure, QC-LDPC codes are an appeal-
ing solution for VLSI implementation. Furthermore, QC-LDPC codes have good decoding
performance and relatively low error floor [21]. In our design, we also choose (2,4)-regular
64-ary non-binary QC-LDPC code to implement. Note that (2,4) stands for the column and row

degrees respectively.

3.1.1 Code Structure

Quasi-cyclic code is composed of 7 by r sub-matrix with cyclic shift to identity matrix /,
and the subscript of each I denotes the times of shift. With the feature of regularity in quasi-
cyclic code, the complexity of decoder implementation can be simplified. Note that the block

row stands for the r rows grouped by sub-matrices, and the same as block columns.
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The non-binary QC-LDPC code used in our design is described in (3.1)

0O 0 0 Iz 0 0 Iy 00 O Iy 0 O

0O 0 b, 00 0 Iy 0 011y 0 0 Iy O

H=10 01 0 0 I, 0 0 Iy 0 0 0 0O I4 (3.1)

Our code is transformed by a binary LDPC code; and replace the non-zero elements from
1 to the symbol over GF(q) randomly. This binary LDPC code is built from the CP-PEG algo-
rithm presented in [22]. The code is a regular QC code, and it is suitable for layered decoding
algorithm. In addition, it was shown in [23], the “ultra-sparse” codes (d, = 2) have excel-
lent error-correcting performance especially in high order finite field (¢ > 64). Because of
the minimum connectivity in variable nodes, a class of regular (2,d.) codes can simplify the
decoder complexity in hardware implementation. Furthermore, we figure out several improved
approaches in edge memory reduction and efficient VNU processing based on this property.
And this code can be separated into two sub-blocks from the middle in matrix, because these
two sub-blocks contain the same number of non-zero sub-matrices in each block row. For this
reason, if we want to increase the memory banks for improving bandwidth, it is a convenient

property for configuring the memories.

3.2 Decoder Architecture

Figure 3.1 shows the overall decoder architecture, and it is mainly composed of several

Processing Elements (PEs), storage elements , and control circuits. A PE is composed of one
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CNU and its associated VNUs, and it is the main computation unit in our proposed design.
Furthermore, N, stands for the number of parallelism when implementing the decoder, and the
number of N, is directly affect the throughput and hardware cost. Note that the dashed line is

the extra bypass path to solve the memory collision problem which will be discussed in 3.6.3.1.

Channel
Value
Memory

Figure 3.1: Proposed decoder architecture for non-binary QC-LDPC codes

3.3 Forward and Backward Algorithm

In non-binary LDPC codes, the complexity of updating function grows in exponential ac-
cording to the number of node degrees. For this reason, using the efficient approach called
forward and backward algorithm [24], which is a recursive structure like the concept of divide
and conquer to accomplish the updating function step by step. First, the updating function is
decomposed by several basic functions called elementary steps, and then executing the elemen-
tary steps recursively to accomplish an updating function. An elementary step is defined as an
updating function composed of only 2 input vectors and 1 output vector. In general, if the node
degree is equal to d, it requires 3(d — 2) elementary steps to finish a node updating function.

Figure 3.2 illustrates the required elementary steps and the corresponding forward/backward
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recursive structure when the check node degree d. is equal to 4.

AW

i ot CESinthe
: ¢ first stage

CES in the
second stage

CES

(@ (b)

Figure 3.2: (a) A CNU with d. = 4 (b) Forward/Backward recursive structure with d, = 4

The following describe acheck node (d. = 4) updating procedure with the forward/backward
algorithm. At the first stage, using 2 Check Elementary Steps (CES) to compute 2 inter-
nal vectors, I andwfg,. Note-that [, 5 stands for the internal.message vector containing
the information from: input vectors V4 and V5. At the second stage, the 4 output vectors
(Uev,,Ucv,, Ucvsy,Uev,) are computed from.-the combination of each input vector and the 2
internal results calculated in the first stage. Therefore, in the case that d. is equal to 4, we need

3(4 — 2) = 6 elementary steps and 2 stages to accomplish a check node updating function.

3.4 Check Node Unit (CNU)

Check node unit (CNU) is the most complicated component in non-binary LDPC decoding
procedure, and it is usually the bottleneck when implementing the decoder in practical. Based
on the forward and backward recursive structure, a CNU is decomposed of several check ele-
mentary steps (CESs) to implement. In this section, we first introduce the conventional approach
in processing a CES, and then an efficient algorithm [25] especially target on simplifying the
CES in EMS decoding algorithm is addressed. Following this, we will present our proposed

CES architecture for improving the throughput without extra decoding performance loss.
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3.4.1 Check Elementary Step (CES)

Check elementary step (CES) is an updating function of degree 2, and it is assumed that
the input vectors already finish the permutation step. Suppose the vector size is n,,, and the
notations of input and output vectors are /1, 5, and O respectively. Note that the possibilities
in each message vector are represented as log-likelihood-ratio (LLR) and sorted in decreasing
order. Define a candidate set .S., and the elements in S, are the combinations from the input
vectors which satisfy the equation I&F[i] @ IS [j] = O%F[k] and the corresponding possibility
is 11[i] + I1[j] = O[k]. Then, the goal of CES is to explore the non-repeating symbols with the
first n,,, largest possibilities from S.. The equation of CES to compute the k,;, largest possibility
is

S~ za i) o055 3.2
W= o aiiozrg 20l (3.2)
ivje[].,'nm]Q

There are n?, elements in candidate set'S., and exploring in whole S, is very complicated.
Using the sorted property in each message vector, the more efficient way to realize a CES is
to search elements from the graphic form [24]. Define a candidate map called M as shown in
Figure 3.3, and M displays the possibilities distribution of the n2, elements in S.. In order to
reduce the size of S, the author in [24] proposed a “’sorter” which stores n,, candidates for
exploring at a time, and then the size of .S, changes from n? to n,,. Note that candidate set S,
is redefined as the elements in the sorter, and it updates every cycle.

Based on the candidate map M and a sorter of size n,,, the processing operations of CES
using graphic approach are as follows [20]. Note that the meaning of sorting used in EMS

algorithm is to insert one element into a sorted sequence denoted as sorter.

1. Initialization

Insert n,,, elements in the first column of M into the sorter.

2. Output

Output an element with the largest possibility in the sorter.

3. Check

23



Pl 203 171 15| 134 111

13.2] 33.5| ~30.3| 28.2 26.6| 243

16 8 24 19 31 23
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6 26.3 23.1 21 194 171

Figure 3.3: Candidate map M, (S,P) stands for symbol and possibility respectively

Check whether the symbol is redundant. If this symbol is already in the output vector,
discard this symbol. This operation is implemented by p bits comparator circuit when the

symbol is defined over G'F(27).

4. Candidate Choose

Choose the right side symbol of the output symbol as the candidate inserting to the sorter.

5. Sort
According to the possibility, insert the candidate symbol into the sorted sequence in the

sorter.

Repeat step 2 to step 5 till output vector is full or the predetermined processing cycles
is reached. The operations are described in Algorithm 2, and Figure 3.4 illustrates a CES
procedure.

If message vector contains the repeated symbols, it means that the valid number of n,,
becomes smaller. After iteratively decoding process, the valid symbols will be fewer and fewer
and result in the significant decoding performance loss. Therefore, the operation of symbol

checking is necessary, and the repeated symbols should be discarded.
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Algorithm 2: Check Elementary Step

Input: /; and /5 (input vectors)
Output: O (output vector)
Data: M (candidate map, [row,column]), S (sorter size n,,), t,.. (predetermined cycles)
1 Initialization:
2 forall the ¢ such that n,, <1 <1do
3 Sli] < M]i, 1]
4 end
si=1,n=1
6 while n < n,, ori <t,.do

7 Output:

8 Smaz < S[1], and S[1] = M|r, c|
9 Check:

v if S¢F ¢ OYF then

1 O[n] = Smaz

12 O%F[n] = S54,

13 n=n+1

14 end

15 Candidate Choose:
16 Candidate < Mlr, ¢+ 1]

17 Sort:
18 forall the j such that n,, <9< 1do
19 Dif flj] = Candidate — S|j]
20 end
n if Dif f[k] >0and Dif f[k — 1] < 0 then
22 forall the j such thatn,, <7 <k-+1do
2 Sl] <8 — 1]
24 S & 84 i1
25 end
26 S[k] < Candidate
27 SCF k] «+ Candidate“®
28 end
29 1=14+1
30 end
Lo Sorter, length n,;,
[ej[e)(e)(e](e] |i|®|@|®|®| L] O input symbol
1' O] [e]@]® @ —» grl:;li @ symbol in output vector
%8 : g'@ l insert to O @ candidates in the sc?rter
o] [e® or discard @ the largest symbol in the sorter
Ol 0|8 [Telele[ee[e] @ next candidate will be inserted
M

Output vector: O

Figure 3.4: Updating process of conventional CES.
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3.4.2 Bubble Check Algorithm

In [24], the author proposed a method to reduce the number of elements when searching the
largest possibility, and the size of candidate set S, is smaller than n,,. Every clock cycle, the
operation of a CES is to find out an element with the largest possibility from the sorter. For
this reason, it just needs to ensure that the element with the largest possibility is in the sorter
in every clock cycle. Bubble check algorithm [25] uses this property to efficiently reduce the
number of elements in S, at one time. It means that only the element which probably has the
largest possibility at that time will be considered, and this is based on the regular distributing
property of possibilities in M.

We use an example to describe the basic concept of bubble check algorithm. Assuming that
there are already 4 elements in the output vector, and then we want to find next element with
the fifth largest possibility.  In Figure 3.5, it illustrates all possible distributions of the output
symbols and their corresponding candidates which should be considered. Note that white circle
represents the element in the output vector, and the black circle stands for the candidate which
will be inserted to the sorter. The number in the white circle stands for the order in possibilities

of output symbols.

ElE)
[ JIE)

LICl[S]
@00

[ JSl[C)[S]
L J(ClC)[C)iS]

(1 2) ) “) ®)

Figure 3.5: 5 possible conditions when finding the 5, largest possibility.

According to the possibilities stored in input vectors are in decreasing order, the larger
possibilities are centralized in the upper left of M. Based on the regularity in M, candidates
choosing are decided from the right or down side of the output symbols. Because bubble check
algorithm only considers the possible candidates with the largest possibility, we do not need

to take account of more than one elements in the same row or the same column. Therefore,
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the minimum required number of candidates depends on the distributing shape of the output
symbols. In the second and forth graphs, when the distributing shape is close to triangular, the
number of possible candidates is more. Looking into other graphs, the number of candidates
is the least when the distributing shape of the output symbols is rectangular. After considering
these five situations, we can infer that the minimum required sorter size with n,, 5 should be 3.

Therefore, the minimum required sorter size depends on the distributing shape of elements
in the output vector, and the worst case is when the distributing shape is triangular. Without
considering the symbol repetition problem, the sorter size n; is calculated by supposing there
are already (n,, — 1) symbols in the output vector and the distributing shape of these symbols

is triangular. The relation between 1 and ng is described by

% = (g —1) + g
‘I (3.3)

144/ 1+8(nm—1
=l £ AN

Table 3.1: The relation between ngand 75,
N || 41 81 16 | 32 | 64
ng|l 31516 9|12

Based on (3.3), the number of n; with different n,,, are listed in Table 3.1. The process of the
CES applying the bubble check algorithm.is.similar with conventional CES mentioned above,
and the main difference is the smaller sorter size ns and the way of choosing the candidate. The

procedures are illustrated in Figure 3.6 and the operations are described as follows:

1. Initialization

Insert n symbols in the first column of M to the sorter.

2. Output

Output the symbol with the largest possibility in the sorter.

3. Check
Check whether the symbol is redundant. If this symbol is already in the output vector,

discard this symbol.
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Figure 3.6: Procedure of bubble check-algorithm in the beginning.

4. Candidate choose
(a) If the output symbol is in the first column/row, choose its down/right side symbol as

the candidate. (b) If not, maintain the same direction with last clock cycle.

5. Sort

According to the possibility, insert the candidate symbol into the sorted sequence which

is reduced to n,.

Repeat (2) to (5) till output vector is full or the predetermined processing cycles is reached.
The overall processing steps are described in Algorithm 3.

In bubble check algorithm, it needs to decide the candidate from right or down side of the
element with the largest possibility as shown in Figure 3.7(a). This increases some complexity
in the controlling circuit when choosing candidate. In order to simplify the controlling circuit,
L-bubble check [26] is to determine the paths of choosing next candidate in advance. There is
an example when n; is equal to 4 in Figure 3.7(b), and the elements in dark zone will not be
considered.

Using the regularity of candidate map M, bubble check algorithm can efficiently reduce the
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Algorithm 3: Check Elementary Step with Bubble Check Algorithm

Input: /; and /5 (input vectors)
Output: O (output vector)
Data: M (candidate map), S (sorter size n;), flag (the direction of candidate choosing)

1 Initialization:
2 forall the ¢ such that n, < i <1do

3

Sli] < M]i, 1]

4 end
si=1,n=1
¢ while n < n,, do

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Output:
Smaz < S[1], and S[1] = M|r, c|
Check:
if SSI' ¢ OF then
O[n] = Shaa
O%F[n] = S54.
n=n+1
end
Candidate Choose:
if = 1 then
flag < 0
else if c = 1 then
flag + 1
else if M|[r 4 flag, c + flag] € S then
flag < flag
else
flag < flag
end
Candidate < Mr+ flag, c + flag]
Sort:
forall the j such that n,< 5 <.1do
Dif f[j] = Candidate —S|j]
end
if Dif flk] > 0and Dif f[k — 1] < 0 then
forall the j such thatn,, < j < k-+1do
Sl < S —1]
SEF] = S = 1]
end
S[k] < Candidate
S (k] + CandidateSr
end
t=1+1

39 end

number of candidates and have ,/n,, complexity reduction [

]. But like traditional CES, it

still has symbol repetition problem and requires more than n,, processing cycles to fill up the
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Figure 3.7: (a) The illustration of choosing the candidate from right or down direction
(b)Example of predetermined path for ns = 4 in L-bubble check algorithm

output vector. In average, the processing time of a CES is equal to 2n,, cycles for avoiding the
performance loss as shown in Figure 3.8. For this reason, if we want to improve the throughput,

the processing cycles in a CES should be-reduced.

1 (112,56), R;l/Z,It‘eratio‘n:50,‘BPSK‘

10°

Bit Error Rate
o

+2n processing cycles ’Y-J\
10°°k N, processing cycles ; : 4

= = =no predetermined cycles

10’ 1 I 1 1
14 1.6 2.4 2.6 2.8

1.8 2 2‘.2
E, /N, (dB)

Figure 3.8: Performance curve when the processing cycles is decided as n,, and 2n,,. No
predetermined cycles stands for the case that the CES stop computing until output vector is full.

3.4.3 Proposed Check Elementary Step

As mentioned in last section, 2n,, clock cycles are required in processing the CES because
of the repeated symbols. There is still no efficient way to filter out the redundant symbols

in candidate choosing step, so 2 times n,, processing cycles in CES is unavoidable. For this
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reason, the proposed method of improving the throughput in CES is directly to double the output

symbol at a time.

3.4.3.1 Proposed Double Throughput Bubble Check Algorithm

According to the target of double throughput, we modify the approach in candidate choosing
step and output 2 symbols at a time. Supposing that (n,,,n,) is (7,5), we introduce the candidates

choosing procedure with Figure 3.9, and discuss in the followings.
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@ Output symbol

© Temporary candidate
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Figure 3.9: Candidate choosing procedure of double throughput bubble check, (n,,,,ns) = (7,5)

In original bubble check algorithm, it guarantees that the sorter contains the element with the
largest possibility. But in our proposed method, the sorter output 2 elements at a time, so the first
2 largest possibilities should be considered. For this reason, the distribution for initialization is a
little different from conventional one, and it is depicted in (a). The next 2 candidates are chosen
among 4 temporary candidates, so we need to decide 4 temporary candidates first. These 4
temporary candidates are the right and down side symbols of the 2 output symbols. It is needed
to check that these 4 temporary candidates should be the element with the largest possibility
in its row or column as illustrated in (f) and (h). From this example, it is too complicated in
controlling the direction of deciding the next 2 candidates. Therefore, we combine the L-bubble

check algorithm to simplify the controlling circuit.
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3.4.3.2 Proposed Double Throughput L-bubble Check Algorithm

In general, the paths for choosing candidates are determined after performance simulation,
and we first define 2 regions in M for describing the procedure easily. In Figure 3.10, the
darked zone in the first row and first column is denoted as region a, and the rest predetermined
paths is region b. In our proposed method, if the output symbol is in region a, we need extra
computation to decide the candidate.

XYy

1] Regionb

(O+ Elements in output vector

@ Elements in sorter

LY

Figure 3.10: Candidate map M used in proposed CES

We use an example illustrated in Figure 3.11 to describe the procedure which the output
symbol is in the region a. Every time, using 4-possibilities (Z;y,;m,n) and 3 comparators to
determine the first 2 largest possibilities in region a, and we denote 1 and 2 in the circles to
represent them. Then, depends on-the number of output symbols in the region a to decide
the next candidate. And Figure 3.12 shows the performance loss when directly applying the

L-bubble check algorithm without separating the regions.

Xy X ¥y

Elements in output vector

Elements in sorter

Output symbol

©e @0

Candidate in region a

(@ (b)

Figure 3.11: When output symbol is in region a, choose the larger one be the next candidate.
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Algorithm 4: Candidates Choose in CES with Proposed Double Throughout L-Bubble
Check Algorithm

o X N NN AW N -

I S R N R S S < =
AW N = S 8 NN R W N =D

Input: S; and S, (output elements with the first 2 largest possibilities), M |rq, ¢;] and
M{ry, cs] (the corresponding position in M)
Output: C; and C; (the candidates prepared to insert to the sorter)
Data: Region a: path; records the position for current symbol in the sorter of the first
row, path,,, records the position for current symbol in the sorter of the first
column. Region b: (L,,L.) represents the predetermined path
Extra 2 Candidates in Region a, C'a; and C'as (x, y, m,n are defined as Figure 3.11):
Pr=—M,pp =T —N,p3 =M —Y
if [sign(p1), sign(p2), sign(ps)] = [0, 0, 1] then
Cay < M[1,c(pathy) + 1], Cay < M1, c(pathy) + 2]
else if [sign(pi), sign(p2), sign(ps)] = [0, 0, 0] then
Cay < M[1,c(pathy) + 1], Cay < M|r(path,, )+ 1,1]
else if [sign(p1), sign(p2), sign(ps)] = [1, 1, 0] then
Cay + M[r(path,,) + 1,1], Cas +=-M][r(path,,) + 2, 1]
else
Cay < M[r(path, )+ 1, 1];Cay < M| elpathy) + 1]
end
Decide C'; and C5 :
if Both M{ry, c1| and M |rs, ¢s]-are in regin a then
Cl — C’al, Cg & ] CCLQ

else if M|ry, c1] isin regin a, M|rs, €3] is in regin b then
Cby < M[ro+ L., co+ L]
Cy < mazx(Cay,Cby), Cy + min(Caq, Chy)

else if M{[ry, ci]'is in regin b, M|rs, es] is in regin a then
Cby « M[ry +Lyyc1 + L
Cy < max(Caq; Cby), Co <= min(Cayy Cby)

else
Cby < M[ry + L, €1 #LJ3Cby < Mro €9+ L]
Cl — max(C’bl, Cbg), CQ — mm(C’bl, Cbg)

end

The overall operations are as follows:

1. Initialization
Insert (ns — 1) symbols in the first column and second symbol in the first row into the
sorter. Because we want to ensure that there are at least two symbols in the first column
and the first row. In Figure 3.10, the white circles represent the initialization when n; is

equal to 4.

2. Output

Output two symbols with the first two largest possibilities in the sorter.
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(112,56), R=1/2,Iteration=50,nm=32,BPSK

=
o
©
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Bit Error Rate
S
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H-w/o regions

L L L
) 2.2 2.4 ?‘2

1 112 114 116 1.8 é
E /N, (dB)

Figure 3.12: Performance comparison of defining regions

3. Check

Check whether these two symbols are already in the output vector. If yes, give up the

redundant symbols.

4. Candidate choosing
(a) If output symbol is inregion a, choose the candidates from the 2 candidates, C,, and

Cy,. (b) If output symbol is in region b, choosing the candidate followed predetermined

path.

5. Sorting

Insert two candidates C'; and C’ into the sorter, and (] is larger than C.

Using our proposed double throughput L-bubble check algorithm, there is no decoding per-
formance loss compared with conventional one, and the processing time in a CES reduces to
n., cycles. The decoding performances of several decoding algorithms and our proposed one

are depicted in Figure 3.13.
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Figure 3.13: Comparison with other.conventional algorithms

3.5 Variable Node Unit (VNU)

Target on the (2,d.) non-binary LDPC codes, we proposed an efficient architecture to imple-
ment the variable node unit (VNU) with less memory usage. In the following sections, we first
introduce the conventional variable elementary step (VES), and then the proposed VNU will be
presented. The final parts in this section are the decisionunit and proposed function unit which

contains CES, VNU, and decision unit.

3.5.1 Variable Elementary Step (VES)

A VES is composed of two input vectors and one output vector, and the updating function

is the following.

1,7€(l,nm

The goal of a VES is to sort out the first n,, largest message possibilities among the 2n,,
elements involved in the two input vectors. Assume that /; and I, are the input vectors and O
is the output vector of the VES, and each vector size is equal to n,,. The updating process is

described as the following:

35



1. Candidates computation
First n,, cycles: According to the elements in /[y, search for the element with identical
symbol from /> and combine their possibilities. If there is no corresponding identical
symbol, adding the compensation value of I, to replace it.
Second n,, cycles: Add the possibility of each symbol in /5 with the compensation value

Of]l.

Llj] if ICF[i] = ISF[j
ci =+ P I e = eey

v, if T[] ¢ I5T

Cli+ nm] = v1,_+dafi]ly 1O i nn] = I57i]

(3.5)

i €[1,2, .0, M)

The function of ‘candidates computation is described in(3.5). Note that C' represents
as a vector which size is 2n,, for storing the candidates, and v; and v, stand for the

compensation value of /; and /5 respectively:

2. Insert
According to the'possibility calculated, insert the candidate into the output vector in de-
creasing order. If the identical symbol already exists in (), discard this candidate element.
Repeat these two steps for 2n,,, clock cycles, and the VES updating procedure is described

in Algorithm 5.

In VES, it needs n,, ’symbol matching” circuits to search identical symbol from n,, ele-
ments in /5 as shown in Figure 3.14, and a symbol matching circuit is to check whether 2 inputs
are the same or not. The conventional VES needs 2n,, cycles to process, and maybe several
repeated symbols are accessed in these cycles. Therefore, we try to figure out the more efficient

way to implement the VES without consuming redundant cycles on the repeated symbols.
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Algorithm 5: Variable Elementary Step

1 fori =1 to 2n,, do

Input: /; and /5 (input vectors)

Output: O (output vector)

2 Candidate Computation:
3 if i <n,, then
4 if the identical symbol exists, and I1¢¥[i] = I$F[j] then
5 Candidate < I[i] + I1[j]
6 Candidate®t < I[i]9F = L[j]°F
7 else
8 Candidate + I[i] + i,
9 Candidate®r « I,[i]%F
10 end
1 else
12 Candidate < 1, + La[i — ny]
13 Candidate®"r « I[i — n,,]¢F
14 end
15 Insertion:
16 forall the j such thatn;, < j < 1do
17 Dif flj] = Candidate—-S|j]
18 end
19 if Dif flk] > 0and Dif f[k-—1] <.0 then
20 forall the jsuch that n,, < j < k + Ldo
21 S[j] =5l — 1]
2 SN 5P -]
23 end
24 S[k| « Candidate
25 SCF k] «+ Candidatet
26 end
27 1=14+1
28 end
Li[i]
p  Symbol L[1]— ¢
IzGF[l] —»| Matching #1 L[2] —
Possi-b?lity »@_} Sorter >0
»| Symbol L] —a Decision Size=n,,
IZGF[2] —»»| Matching #2 2 m
IIGF[i]_ ’Y12 —>
A
N | N index
- Symbol
IZGF[nm] —» Matching #n,,

Figure 3.14: Conventional VES in iy, clock cycle
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3.5.2 Proposed Variable Node Unit

Because the code we used is ultra sparse (2,d.) non-binary LDPC code, we do not need
to apply the forward and backward algorithm to implement a VNU. Furthermore, one of the
inputs of each VNU is always the channel value. In order to efficiently improve the processing
cycles and reduce the storage element for channel values, we change the approach of storing
channel values from conventional one. Instead of storing the elements with the first n,, largest
channel possibilities and corresponding symbols, the proposed VNU only stores the binary Log-
Likelihood-Ratios (LLRs) of each variable node. According to the symbol of the input element
from edge message, the corresponding LLR value is computed immediately from the channel
value calculator (CVC). A CVC calculates the summation of binary LLRs by matching the
symbol in binary representation as shown in Figure 3.15. Note that C' is denoted as the channel

value immediately computed from- €V C, and it is defined over GF(2P).

symbol [S;,S5,::+,S;] —a| Channel
Valte [ p(CF=S)
LLRs [llr,,1lrs,- -, 1rp] —¥| Calculator

(a)
S; —»
HI}l—V LLRI | llri |—> 1
S, —p 0 0 — LLR;
2 LLR, — ™

111‘2_> p p(CGF:S) A

- 1y, bit(symbol) ——
1?%; —ILLR, sign(llr) —169

(b) (c)

Figure 3.15: (a) Channel Value Calculator (b) Architecture of Channel Value Calculator (c)
Architecture of calculating the 74, bit Log-Likelihood-Ratio

Updating process of proposed VNU are illustrated in Figure 3.16. Without considering the
2n,, elements involved in two incoming vectors, the proposed VNU only take account of n,,

different symbols in the edge vector [;. For this reason, using this method may miss several
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Figure 3.16: (a) Variable node degree is 2 (b) Variable node unit (¢) Proposed VNU processing
in 74, clock cycle

symbols not included in the edge vector, but they have non-negligible possibilities. Lack of con-
sidering these symbols with high weight will result in the decoding performance loss. There-
fore, we need the extra memory to store some elements with the first several largest possibilities
in channel value vector for compensating the performance loss. After performance simulation,
the elements with the first 5 largest possibilities of channel values should be additionally stored
in our design. Therefore, the processing cyeles-in.proposed VNU is n,, + 5 which is fewer
than 2n,, cycles required in conventional VES. The overall operation in a proposed VNU is
described in Algorithm 6. Note that.the notation of C'V/C' stands for channel value calculator,
and channel value vector stores elements with the first S largest possibilities.

Compared with traditional VES, the memory usage for channel value change from (b;+b, ) *
N t0 (brrr) * p + (bs 4 by) * 5 over GF(2P). Note that (bs,b,,b.r) represent the quantization
bits of symbol, possibility, and LLR value respectively. In Table 3.2, the channel value memory
reduction in different cases are listed, and it is assumed that (b,,b,,0r1r) is (6,7,6) and defined
over GF(25). The proposed method can reduce the storage element for channel value especially
when n,, is larger. When n,, is equal to 32, the reduction can reach about 75%. But if n,, is

equal to 8, there is no remarkable improvement in the memory reduction of channel values.
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Algorithm 6: Proposed Variable Node Unit
Input: 7 (C2V message vector), LLRs and C' (channel value vector which store the first
5 largest elements)
Output: O (output vector)
1 fori =1t (n,, +5) do

2 Channel Value Calculation:

3 if i <n,, then

4 Candidate = I[i] + CV C(I9F[i])
5 Candidate®t = 1¢7i]

6 else

7 Candidate = vy + C[i — ny]

8 Candidate®t = C9F[i — n,,)

9 end

10 Insertion:

11 forall the j such that n,, < j <1do
12 Dif flj] = Candidate — S[j]

13 end

14 if Dif f[k] > OandDif flk =1] < 0 then
15 S[k] < Candidate

16 SCF K] «+ CandidateSt

17 end

18 end

Table 3.2: Comparison of the memory usage in channel values
Algorithm n,, = Memory bits/Variable  Normalization

Traditional 32 (64 7) %32~ 416 1

Proposed. . 32 66+ (6 +7)%*5= 101 0.24
Traditional 8 (6+7) %8 =104 0.25
Proposed < 8. 6% 6 + (6 + 7)%5 =101 0.24

3.5.2.1 Decision Unit

In proposed VNU, the decision unit is included, and it operates simultaneously with VNU.
Decision unit is to calculate the posterior probability by means of all incoming messages of
the variable node, and choose the symbol with the largest posterior probability as the decoded
result. In our work, the variable node degree is 2. There are 3 incoming vectors should be
considered, 2 edge messages and 1 channel value. The edge memories stored are the messages
from variable nodes to check nodes, and it contains the information of one of the C2V edge
messages and channel value as shown in Figure 3.17 (a).

Therefore, we can use the C2V message immediately computed from the second stage CES
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Figure 3.17: (a) Posterior probability of each variable is computed from C2V and V2C messages
(b) Decision circuit

and the stored V2C message to calculate the posterior probability of each variable node. The
Figure 3.18 illustrates the part of calculating the posterior probability of each variable in de-
cision circuit. In addition; the ‘main operation components in design unit is the same with

conventional VES.

- 1 . »| Symbol V€] >
| V2€ 11— Match 1 vaetl] ibili
| : Possibility
| - Decision
Mo \ \ »| Symbol V2C ] —»
|V2CGF2—> Mth2 m

— [2] ate Tyae —

——————— » Symbol
Match ny,

Figure 3.18: Calculating posterior probability in the decision unit

3.5.2.2 Proposed Processing Element (PE)

In our decoder architecture, we concatenate the second stage CES and one VNU to form a
function unit for reducing the internal buffer size and sharing the check circuit. In this function
unit, the output elements computed from the second stage CES will operate VNU simultane-
ously, and the internal buffer can reduce to half size compared with the original one.

As described in previous section, our proposed CES output 2 elements at a time, but the
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VNU operates 1 element once. For this reason, the internal buffer is needed to temporarily store
the elements. In Figure 3.19, there are three kinds of situation of the output elements from CES
and the corresponding operations for controlling the internal buffer. Note that the meanings of

“redundant” and “unique” stand for whether the element is already in the output vector or not.

CES o0
| [O[C[Cle] T Iolo[0] T [ Jo[0]

|_[O[0[0]
Internal buffer . . O VES

size n,/2

(2) (b.1) (b:2) (b.3)

Figure 3.19: (a) Two output elements from CES prepare to operate VNU (b) Three cases for
arranging internal buffer and deciding the input element of VNU

1. Figure 3.19 (b.1)
The two output elements are-all- unique, one operates VNU and another one put into the

internal buffer.

2. Figure 3.19 (b.2)
If one of the two output symbols is redundant, using the unique one to executes VNU,

and discard the redundant one.

3. Figure 3.19 (b.3)
If both two output symbols are redundant, taking the symbol in the internal buffer to do

VNU.

The overall block diagram which contains the second stage CES, a VNU, and decision unit

is depicted in Figure 3.20.
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Figure 3.20: (a) Update the’'V2C message D] (b) Bloek diagram of operating the second stage
CES, VNU, and decision unit

3.6 Scheduling

3.6.1 Layered Scheduling

The key feature of layered scheduling is to use the immediately updated results from previ-
ous layers within the same 1iteration. In [27], it was shown that nearly half number of iterations
improvement when applying the layered scheduling. Based on the code structure of the quasi-
cyclic code, it is suitable to apply the layered decoding. In layered decoding scheduling, the
overall check equations separate to several groups, and the group size stands for the number of
check equations included.

Note that there is no specific restriction on grouping the check equations and the size of a
group, and there are two kinds of common manners. One is to take the block row as a group,
and the group size is the number of rows in a sub-matrix. Another one is composed of one row

in each block row, and the group size is equal to the number of block rows in H.
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3.6.1.1 Constraints of H

The methods of saving storage elements and controlling the memory access for making this
decoder be an efficient design are based on some significant presuppositions. Here we conclude
some requirements for applying the proposed decoder architecture in other non-binary LDPC

codes.

1. Variable node degree d,, should be 2
Because our proposed VNU is only for the code which the column degree is 2, and the

half edge messages reduction and efficient VNU design are based on this property.

2. Arrange the order of accessing rows appropriately
Since we only store one edge memory of each variable node, it should be prevented from

accessing the variable node which has not finish updated yet.

3.6.2 Early Termination

In our proposed ‘decoder architecture; the early termination design is included. It can re-
duce the redundant iteratively decoding, and our decoder can finish the decoding process in 4
iterations when the bit error rate is equal to 107°.

After operating the decision units, the decoded symbols are stored in the buffer. Until ac-
complish one iteration, computing the syndrome check to decide whether terminating the de-

coding process or not.

3.6.3 Memory Configuration

In the proposed decoder depicted in Figure 3.1, we use two main memory banks. V2C
memory is used to store edge messages from variable node to check node. The binary LLRs of
channel and the first n. largest possibilities of each variable are included in LL Rsy memory
bank. In addition, we separate these memory banks into several smaller memory blocks because

of the limitation in the bandwidth. The configuration of the memory banks is illustrated in
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Figure 3.21.
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Figure 3.21: (a) Memory bank of V2C messages (b) Memory bank of channel values

3.6.3.1 Memory Collision Problem

Because of using the forward and backward algorithm, the (2, 4) code needs 2 stages CESs
to accomplish a check node updating function. Assumed that the processing time in a CES 1is
n; clock cycles. The ealculation time of one check node includes the memory accessing time
totally needs 4n, cycles. Based on the memory configuration for V2C messages of the proposed
decoder, there are some memory. collision problem can not prevent from arranging the rows. In
the following cases, assume that some associated variable nodes of the updating check nodes in

group, are the same with in group,, groups and group, as shown in Figure 3.22.

» Time
Group 1 |Read Mem|Calculation/CalculationWrite Mem
Group 2 Read Mem/|Calculation/Calculation|Write Mem
Group 3 Read Mem|Calculation/Calculation/Write Mem|
Group 4 Read Mem|CalculationCalculation|Write Mem
-+
n; cycles

Figure 3.22: Every possible memory collision problems
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1. Case 1
Before completing the second edge message of the variable node in group,, the V2C
memory read by group, will be the wrong edge. And there is no way to solve this

situation instead of changing the group decoding order.

2. Case 2
The V2C messages are calculating when the groups want to access them. The solution is
using the extra circuit to bypass the data from the output buffer to the input buffer of the
computation units. The signal path covered in dashed line in Figure 3.1 is represented as

the bypass path for this case.

3. Case 3
The updated messages are already in the-output buffer, and prepared to write into the V2C
memory. The order of writing and reading data should be careful. It needs to check the

updated message is already written into the memory before the next group reads it.
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Chapter 4

Implementation Results

Using the efficient decoder architecture and improved CNU algorithm described in chapter
3, we implement a (2,4)-regular non-binary QC-LDPC decoder using proposed double through-
put L-bubble check algorithm over GE(2%). In this chapter, we will first discuss the architecture
for this non-binary LDPC test chip. Then, we will illustrate the hardware implementation plan
and the post-layout/results of our chip. The comparison in hardware efficiency and decoding
performance with other related works arepresented. Finally, we apply the proposed decoder on

the baseband simulation platform.

4.1 Chip Plan

Based on our proposed non-binary LDPC decoder architecture, we design 2 kinds of differ-
ent n,, size, 8 and 32 respectively. According to the consideration of the hardware efficiency,
we choose the decoder with n,,=8 to be realized in chip. The overall chip plan is depicted in

Figure 4.1, and it can be separated into three major parts.

1. Docoder
In the proposed decoder, We partial-parallel with 7 Processing Elements(PEs), and the
overall architecture is illustrated in Figure 4.2. Each component for function unit and

memory access in proposed decoder are illustrated, and the number in every function
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Figure 4.1: Chip plan

unit stands for the gate count._The total gate count of the core (includes decoder, LLLR

generator, and input buffer) is 655 K, and the proposed decoder accounts for 564 K.
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Figure 4.2: Components in the non-binary LDPC decoder

2. LLR Generator [28]

By means of the binary LLR values from channel, LLR generator is used to compute

the first n,, largest LLR values. With LLR generator over GF(2?7), the required bits of

input information for each variable node change from b, * 27 to by, * p, and the reduced

amount can improve the processing time of initialization and reduce the number of input

pins. Note that (b,,brr) stand for the quantization bits of possibility and binary LLR
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value respectively.

3. Input Buffer
It is used to store the LLR values calculated from LLR generators for the next decoding
process when the decoder is doing the iterative decoding. For this reason, the decoder
can operate the decoding procedure continuously without wasting time on accessing the

input information.

Note that we also design 4 kinds of test plan to test functions of certain modules for avoiding
fabrication uncertainty. These 4 test mode are controlled by 2 multiplexers as shown in Figure

4.1, and the testing targets are as follows
1. Normal operation
2. Test for input buffer
3. Test for one PE
4. Test for one PE without any input information

In mode 4, using the Random Number Generator (RNG) to generate the values as the binary

LLRs, and it is designed for the case when some of the input pins in chip malfunction.

4.2 Post-layout Results

With 90-nm CMOS process technology, the proposed (112,56) non-binary QC-LDPC lay-
ered decoder over GF(2%) is implemented, and the number of n,,=8. In the following, we list

the post-layout results of our test chip in Table 4.1, and show the layout picture in Figure 4.3.

4.3 Comparisons

Table 4.2 compares the proposed decoder with other related works [4] [5], and the synthesis

result with n,,=32 is also listed. Because there is no other synthesis or post-layout result of
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Table 4.1: Post-layout results of (112,56) non-binary QC-LDPC codes decoder

Technology 90-nm CMOS process
Algorithm EMS
Scheduling Layered
MM 8,5
Quantization bits 7
Logic gate count 580K
Memory bits 42K
Frequency 277 MHz
Throughout 124.6 Mb/s
Core area 2.24 mm?
Power 274 mW

1.94 mm

==
)
]
2
b ]
c
5
ol
(I

ww e

Figure 4.3: Post-layout photo

non-binary LDPC decoder with EMS decoding algorithm, the related works listed in Table 4.2
are implemented using Min-Max decoding algorithm. In non-binary LDPC, the hardware per-
formance is usually represented as the parameter denoted hardware efficiency, which is defined
of throughput-to-gate-count-ratio. From the value of hardware efficiency in the comparison

table, our proposed decoder is an hardware efficient implementation. Note that the EMS de-
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coding algorithm we used is more complicated than Min-Max algorithm, and the field size we
applied is also the highest compared with others. Figure 4.4 shows the decoding performance
with [5]. Based on the competitive decoding performance with [5], our design have 4.3 times

improvement in hardware efficiency.

Table 4.2: Comparison Table

[4] T-CASI-2012 [5] T-CASI-2011 Proposed Proposed
Synthesis Post-layout Synthesis Post-layout
Code length 640 248 112 112
Code rate 0.5 0.55 0.5 0.5
Galois Field / n,, GF(32)/32 GF(32)/8 GF(64)/32 GF(64)/8
(dy,d.) (3,0) (4,8) (2,4) (2,4)
Algorithm Min-Max Min-Max EMS EMS
Process 180 nm 90 nm 90 nm 90 nm
Quantization bit 7b 7b 7b 7b
Frequency 200 MHz 260 MHz 312 MHz 277 MHz
Iterations 10 10 10 10
Throughput 31.2 Mb/s 47.69 Mb/s 57 Mb/s 124.6 Mb/s
Decoder gate count 1.24 M 1.92M 1.42M 564 K
Area (mm?) N/A 10.33 N/A 2.24
Power (mW) N/A 479.8 N/A 274
Hardware Efficiency 50.4 24,84 40.1 220.9
(M bps/M gates)
Energy Efficiency N/A 1.01 N/A 0.22
(nJ/bit/iter)

In Figure 4.4, we also display the decoding result with FFT-SPA decoding algorithm, which
represents the curve without performance loss. Therefore, we can find out the decoder which
Ny 1S 32 1s very close to the curve of FFT-SPA result. Because the code length we used is
relatively small, it has the error floor problem at higher signal-to-noise-ratio (SNR). But if we
apply to other (2, 4) ultra sparse code with longer code length, the hardware efficiency is still

the same.
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Figure 4.4: Symbol error performances comparison of proposed (112,56) non-binary LDPC
decoder using EMSralgorithm over GF(2%) and [5] (248,137) non-binary LDPC decoder using
Min-Max algorithm'over GF(2?). 'The simulation is performed under BPSK modulation and

AWGN channel

4.4 Application

Applying our design on the simulation platform which supports dual SC/HSI modes of IEEE
802.15.3c applications [29] [30]. In Single Carrier (SC) and High Speed Interface (HSI) modes,
the simulation results of the proposed decoders which 7, is 32 and 8 are shown in Figure 4.5
and Figure 4.6 respectively. In addition, the simulation result of (672,336) binary LDPC code
which is well-chosen for 802.15.3c¢ specification is also depicted.

In SC mode, there are two kinds of modulations (8PSK and 16QAM) to simulate, and the
dashed line represents 16 QAM modulation in Figure 4.5. With the 16QAM modulation, our
proposed decoder can outperform the binary code more than 1 dB. But in the 8PSK modulation,

the performance result with n,,,=8 is worse than the binary case about 0.2 dB.
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Figure 4.5: Performance simulations for (112,56) non-binary LDPC codes and (672,336) binary
LDPC codes in SC mode.

HSI mode has 16QAM and 64QAM modulations, and the dashed line in Figure 4.6 stands
for 16QAM. From the performance curve, the implementation with n,,=32 is better than the
binary case about 0.2 dB in both modulations. When n,, is equal to 8, the simulation results
worse than the binary one. But in the 64QAM ‘modulation, the performance curve of 7n,,=8 is
overlapping with the binary code.at low error rate.

The proposed decoder design/which my;1s 32 has good decoding ability, and the perfor-
mance loss is negligible (< 0.1 dB). Considering from the simulation results with no perfor-
mance loss, the (112,56) non-binary LDPC code can better than the (672,336) binary LDPC
code which is well-chosen for the 802.15.3c¢ specification about 0.2 dB in average. Because the
implementation that n,, is 8 has about 0.4 dB performance degradation, it results in the worse

decoding performance than the binary case.
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LDPC codes in HSI mode.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a novel decoder architecture for non-binary QC-LDPC codes with improved
EMS decoding algorithm was proposed. Using 90-nm CMOS process, a (2,4)-regular non-
binary QC-LDPC decoder over GF(2°) is implemented. To the best of our knowledge, this is
the first chip of non-binary LDPC decoder using EMS decoding algorithm and high order finite
field ( > GF(29)).

Compared with state-of-the-art, our design has 5 advantages. First, we enhance the through-
out in CES and VES, which are the main computation units in the decoder. In the implementa-
tion of n,,, = §, it can reach over 100 Mbps throughout with only 655 K gate counts (564 K gate
count only for decoder). Second, because of the code property that variable node degree is 2, we
can reduce half storage elements for edge messages. Third, the architecture in proposed VES
can efficiently save the memory usage in channel values, and it has about 75% reduction when
the number of n,, is equal to 32. Forth, we use EMS decoding algorithm which is more com-
plicated than Min-Max decoding algorithm but it has better decoding performance. Although
we use very short code length (672 bits), the decoding performance are still competitive with
other designs based on the higher finite field size (GF(2%)). Especially when choosing n,,=32

to implement, the decoding performance loss is negligible (< 0.1 dB) compared with FFT-SPA
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decoding algorithm. Fifth, the hardware efficiency of our design is better than other existing
works, and it has at least 4.3 times improvement.

Based on the improvements in our design above, we can really enhance the hardware effi-
ciency of the non-binary LDPC decoder, and have well enough decoding performance. Using
a 90-nm CMOS process, we implemented the proposed non-binary LDPC decoder with n,,=8,

and the throughput can reach over 100 Mbps.

5.2 Future Work

In proposed decoder, we double the throughput and reduce the memory usage by the code
property that the column degree is 2.-Applying these techniques, non-binary LDPC decoder
design for two different:size of n,, (8 and 32) are provided. -In non-binary LDPC decoding
algorithm, the larger size of n,, can-have better decoding performance, but the computational
complexity and memory usage are also increased. Based on the consideration of hardware cost,
we choose the decoder with n,,=8 to implement, but its decoding performance is worse than
the case of n,,=32 about 0.4 dB. For this reason, . we.can try to figure out some approaches
to decrease the performance loss when changing the value of 7,,. Besides, as we only store
half edge messages in our decoder.in layered scheduling, grouping and processing order are
important in decoding. To avoid the' memory collision problems (in 3.6.3.1), we rearrange the
processing order by manual operation. For more general implementation, the relation between
the accessing order of groups and the number of parallelism in the decoder should be made by

a valid inference.
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