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針對多重臨界電壓ＣＭＯＳ設計之 

有效率一筆劃電源開關繞線 
 

 

學生：王易民                 指導教授：趙家佐 博士 

  

國立交通大學 電子工程學系 電子研究所碩士班 

摘要 

多重臨界電壓 CMOS 因能藉由關掉閒置的電路區域而有效率地減少漏電功耗，

已成為現今業界最常用的電源閘控技術。然而，被電源閘控下的區域在閒置到工

作的模式轉換間可能會消耗大量的瞬間電流。所以主要的 IC 廠商建議一個接著

一個地開啟電源開關以減少模式轉換產生的瞬間電流，故需要漢米爾頓圓環的一

筆劃繞線串連所有的電源開關。本論文提出的電源開關繞線架構可有效率地得到

一條可行的漢米爾頓圓環繞線以連接電源開關，其不違反兩相連電源開關間的曼

哈頓距離限制，同時也能處理因硬體巨集導致電源開關的不規律擺放。此架構可

與商業的自動化流程工具相容且已被設計服務公司用於多重臨界電壓 CMOS 設計

的下線。 
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Abstract

Multi-threshold CMOS (MTCMOS) is currently the most popular methodol-

ogy in industry for implementing a power gating design, which can effectively re-

duce the leakage power by turning off inactive circuit domains. However, large peak

current may be consumed in a power-gated domain during its sleep-to-active mode

transition. As a result, major IC foundries recommend turning on power switches

one by one to reduce the peak current during the mode transition, which requires

a Hamiltonian-cycle routing to serially connect all the power switches. The pro-

posed efficient power-switch routing framework, which can effectively and efficiently

find a feasible Hamiltonian-cycle routing among power switches without violating

the Manhattan distance constraint between any two power switches while handling

the irregular placement of the power switches resulting from the hard macros. The

proposed framework is compliant to commercial APR tools and has been used in a

major design-service company for taping out complex MTCMOS designs.
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Chapter 1

Introduction

The leakage power (static power) of circuits has been greatly increased and

gradually dominate an IC’s total power consumption as the process technologies

continually scale down [2] [3]. This leakage power consumption may significantly

shortened the battery lifetime of electronic products, and hence reducing the leakage

power consumption is one of the most critical design tasks for today’s battery-

powered portable applications, such as cell phones, tablet PCs, PDAs, and GPS;

the market for such applications has been expanding consistently for the past decade

and shows no sign of stopping in the foreseeable future. The most straightforward

and effective method to reduce leakage power is the power-gating technique, which

cuts off the power supply (or ground) of a power-gated domain when idle and resumes

the power supply when in operation. As a result, an extremely small leakage power

is consumed by the idle power-gated devices.

Being able to simultaneously reduce leakage power for the always-on circuits

and maintain performance for the power-gated circuits, the Multi-threshold CMOS

(MTCMOS) technology [1] has now become the most popular methodology to realize

a power-gating design. In MTCMOS designs, high-Vt transistors are used to build

always-on circuits, such as power switches, retention flip-flops, and always-on buffers,

such that their leakage power consumption can be further reduced during its idle

mode. Meanwhile, low- Vt transistors are used to build the power-gated circuits,

1
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such that their perform can still be maintained during its active mode.

Several previous works have been proposed to optimize different design fac-

tors for an MTCMOS design. [11] [15] [17] proposed analytical models to minimize

the size of switch transistors while satisfying the constraint of the IR drop between

true VDD and virtual VDD. [6] [7] [8] [16] [18] minimized the wake-up time by finding

proper turn-on scheduling of power switches while satisfying the constraint of the

peak current on the power-gated domain or the worst dynamic IR drop on active

domains. [19] [20] introduced new power-switch structure, such as stacking power

gating and stepwise switching, to reduce the potential dynamic IR drop on active

domain.

In current industrial MTCMOS designs, the distributed sleep transistor net-

work (DSTN) [4] is the most popular power-switch structure, where all the power

switches share the same mesh of the virtual VDD (or ground) and are connected to the

true VDD in parallel. Compared to the cluster-based switch structure [5] [8] [15] [17],

where one power switch individually supplies one portion of the power-gated cir-

cuit, DSTN can result in less IR drop of the power mesh with less area overhead.

In TSMC’s reference flow, the power switches in DSTN are recommended to be

turned on one by one, instead of in parallel, to reduce the peak current during the

sleep-to-active mode transition.

To realize such a serial turn-on sequence, the physical design tools need to find

a feasible Hamiltonian-cycle connection among all power switches while the distance

between any two adjacent switches must be smaller than a pre-defined Manhattan

distance constraint. A connection violating the Manhattan distance constraint may

result in a large capacitance which exceeds the characterization range of the timing

library, and in turn may generate an unpredictable large delay. In addition, some

power switches are placed irregularly due to the existence of hard macro, which
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further increases the difficulty of finding a feasible Hamiltonian cycle for switch

routing. Note that the number of power switches in a power-gated domain can

easily exceed 20K in current MTCMOS designs. Such problem space usually exceeds

the limit of a general TSP solver [22] [23] [24]. [21] proposed a framework to find a

feasible Hamiltonian path (instead of a Hamiltonian cycle) for switch routing, which

can only be applied to one type of power switches (double-input power switches)

and hence its application is limited. Furthermore, [21] focuses on minimizing the

total wire length of switch routing. However, the wire length used for switch routing

is only a small portion (usually less than 1%) to the total wire length of the gated

circuits. As a result, how to efficiently find a feasible Hamiltonian cycle for switch

routing is much more critical than minimize its wire length in practical MTCMOS

designs.

In this thesis, we propose a switch-routing framework, which can systemati-

cally deal with the irregularity of switches’ placement and efficiently find a feasible

Hamiltonian cycle for switch routing. The proposed framework is built compliant

to the environment of a commercial APR tool, Encounter [10]. First, the location

of power switches and the information of hard macros are extracted from the design

data base of Encounter through its Tcl interface. Second, the core of the proposed

framework is called from Encounter interface to generate a feasible Hamiltonian

cycle for switch routing. Next, the final physical routing of the Hamiltonian-cycle

switch routing is realized by Encounter through its Tcl interface. The experiments

reported in this thesis are conducted based on 40nm MTCMOS designs. This au-

tomatic switch-routing framework is currently used in the MTCMOS design flow of

a major design-service company and has successful taped out multiple MTCMOS

chips.

Note that the content of this thesis focuses on the MTCMOS designs using
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header switches. The same idea can also be applied to the MTCMOS designs using

footer switches easily.



Chapter 2

Background

2.1 Architecture of Power-gating Designs

Figure 2.1 illustrates the power-mesh structure of an exemplary DSTN [4]

power-gating design with two power-gated domains. Each power-gated domain uses

an independent power mesh to form its own virtual VDD mesh, which supplies power

to the circuits in the power-gated domain. A virtual-VDD mesh is connected with

the true-VDD mesh through multiple parallel-connected power switches (PMOS

transistors) in between. As a result, all the current consumed in a power-gated

domain is shared by all the parallel-connected power switches, unlike the cluster-

based switch structure [5] [8] [15] [17], where one portion of power-gated circuit is

supplied solely by one power switch. The on/off of the power switches are controlled

by the wake-up-request signal, which will serially turns on/off the power switches.

Once the wake-up-acknowledge signal is received, the system knows whether the

gated domain is successfully turned on and then start to send jobs to the gated

domain.

2.2 Power Switch and Switch Routing

The TSMC library [9] provides two types of header switches: the single-input

switches and double-input switches as showed in Figure 2.2(a) and Figure 2.2(b),

5
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VDD

VDD

VDDVDD

True VDD mesh

Virtual VDD mesh of  domain 2 

Virtual VDD mesh of  domain 1 

Power Switch

!wake_up_req

!wake_up_ack

Figure 2.1: An example of the power meshes in a DSTN MTCMOS design.

respectively, where all the inverters in Figure 2.2 are always-on and get their power

directly from the true VDD. If the single-input switches are used, the switches are

serially connected as Figure 2.3(a), where the NSIn signal of the first routed switch

is connected to system’s wake-up-request signal and the NSOut of the last routed

switch is connected to the system’s wake-up-acknowledge signal. Since the pins of

wake-up-request and wake-up-acknowledge signals usually locate next to each other,

the routing of single-input switches will form a Hamiltonian cycle. If the double-

input switches are used, the switches are connected as Figure 2.3(b), where the

wake-up-request and wake-up-acknowledge signals are connected to the NSIn2 and

NSOut1 signals of the first routed switch, respectively. Also, the NSOut2 signal of

last routed switch is connected to the NSIn1 signal of itself. Therefore, the routing

of double-input switches will form a Hamiltonian path.
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true VDD true VDD

NSIn NSIn1

NSIn2

NSOut NSOut1

NSOut2

virtual VDDvirtual VDD

mother header

transistor

daughter header

transistor

(a) single input header switch (b) double input header switch

Figure 2.2: Types of header power switches.

Figure 2.3: Power-switch routing for (a) single-input and (b) double-input
switches.

2.3 Tradeoff of Turning on Power Switches Serially

Turning on power switches serially can reduce the peak current during the

sleep-to-active mode transition while its power-up time is increased. Figure 2.4(a)

and Figure 2.4(b) shows the virtual VDD and the current versus time, respectively,

when turning on 1 (denoted by C1), 5 (denoted by C5), and 10 (denoted by C10)

power switches at a time. This experiment is performed based on a 40nm power-

gated domain with 31559 power switches. As the result shows, the peak current of

C1 is significantly lower than that of C5 (44.7%) and C10 (31.6%) while the power-

up time of C1 is significantly longer than that of C5 (2.24X) and C10 (3.16X).

However, this trade-off is still preferred for most power-gating designs since the

system’s transition between power modes does not occur often and the end users
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Figure 2.4: The power-up time and peak current of turning on 1 (denoted
as C1), 5 (denoted as C5), and 10 (denoted as C10) power switches at a
time.

may not notice the delay of the power-up process. On the other hand, if the peak

current during the power-up process is excessive, the system may be damaged from

its induced IR drop or electro-migration and hence degrades the performance or

reliability.

2.4 Manhattan-Distance Constraint

When connecting two power switches, designers have to make sure that the

output loading of the current power switch (or the input slew of the next routed

power switch) cannot exceed the upper bound of the timing library. Otherwise, the

signal delay between two power switches may be unpredictably long. One practical

solution is to set a constraint on the Manhattan-distance between two connected

power switches based on metal’s unit-length loading and power switch’s intrinsic

loading. This Manhattan-distance constraint has to be conservative since the detail
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routing tour between two power switches may detour due to routing congestion.

In fact, this constraint is usually an empirical value and may vary from different

designs and adopted APR tools.



Chapter 3

Problem Formulation of Power-switch Routing

3.1 Problem Formulation of the Proposed Framework

The power-switch routing is performed after the power-switch allocation is

done. The physical location of each power switch and each hard macro can be

obtained from the design data base through the Tcl interface of Encounter. Then

the proposed framework will try to find a Hamiltonian-cycle routing covering all

power switches without violating the Manhattan-distance constraint. Also, we try

to avoid the connections that travels across a hard macro since the routing resource

on top of the hard macro is limited and its resulting wire length may be longer than

expected even though its Manhattan distance is under the constraint. As a result,

the primary objective of the proposed framework is to minimize the number of

connections not only violating the Manhattan-distance constraint but also traveling

across the hard macros. The secondary objective of the power-switch routing is

to minimize the total length of the routing tour in terms of Manhattan-distance.

The complete problem formulation of the proposed switch-routing framework is

summarized as follows.

Input:

• The location of each power switch and hard macros after switch allocation.

10



11

• The Manhattan-distance constraint (denoted as MDC) between two connected

power switches.

• The starting location (the wake-up-req. signal).

Output:

• A Hamiltonian-cycle tour which visits each switch once.

Objective:

• First priority: minimize the number of connections that violates the Manhattan-

distance constraint or travels across a hard macro.

• Second priority: minimize the total length of the tour in terms of Manhattan

distance.

3.2 Power-switch Routing Using a TSP Solver

Several TSP solvers have been developed in the past to find a Hamiltonian

path with minimal length. However, current public TSP solvers (such as Con-

corde [22], GOBLIN [23], or LKH [24]) are all performed based on a complete graph,

where any two nodes are connected to each other and a Hamiltonian path can always

be easily found. Due to the Manhattan-distance constraint, the connection graph of

MTCMOS switch routing is not complete and hence the existing TSP solver cannot

be directly applied to solve the MTCMOS switch routing.

In order to solve the MTCMOS switch routing with a general TSP solver, we

try the following method based on a modified complete graph. First, we assign each

edge’s weight as the distance between the two switches of the edge if this distance
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is smaller than the given Manhattan-distance constraint. Then, to further lead the

TSP result to satisfy the Manhattan-distance constraint, we assign an excessively

large weight to each edge whose distance between its two switches exceeds the con-

straint. In our experiment, this excessively large weight is set to the summation

of the distance between any two switches. In other words, as long as any of those

constraint-violated edges is included in the resulting Hamiltonian path, the length

of the Hamiltonian path is guaranteed to be larger than that of a path including no

constraint-violated edge. Therefore, when a TSP solver tries to minimize the path’s

length, those constraint-violated edges should be avoided if the TSP algorithm is

optimal enough. Unfortunately, the TSP solvers we tried cannot lead to a Hamil-

tonian path without going through a constraint-violated edge. We will show the

experimental results later in the thesis.



Chapter 4

The Proposed Framework

4.1 Cyclic and Acyclic Power-Switch Tour

We classify the power-switch tours into cyclic tours and acyclic tours as

shown in Figure 4.1. A cyclic power-switch tour is a sequence of power switches

that are visited in order without violating Manhattan distance constraint and ends

at its starting switch. On the other hand, an acyclic power-switch tour ends at a

power switch other than its starting switch. In our proposed framework, two cyclic

tours can be merged into a larger cyclic tour, while an acyclic tour cannot be merged

with another cyclic tour.

4.2 Data Structure for Power Switch and Hard Macro

In our switch-routing framework, we use a two-dimensional position matrix

to record the location of power-switches and hard macros. The elements on the same

Macro

(a) (b)

Figure 4.1: (a) Acyclic and (b) cyclic power-switch tour.
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row/column have the same coordinate in the X/Y axis. If the value of an element

is not 0, the element is occupied by a power-switch or a hard macro. Otherwise,

no power switch or hard macro exists on that location. The distance between each

pair of adjacent rows (or columns) may not be the same and hence is recorded in

another matrix, called the distance matrix. The search for switches discussed in

later subsections is performed based on the position and distance matrices. Note

that we do not record the distance between each two switches to speed up the search

of the closest switch. This is because the total number of switches in our power-

gating design may be easily more than 10K and the size of a N2 matrix may exceed

the memory limitation of our system.

4.3 Overall Flow

Basically, our switch-routing framework applies a divide-and-conquer algo-

rithm to recursively merge smaller cyclic sub-tours of power switches into a larger

sub-tour until forming one cyclic tour visiting all power switches. Therefore, the

most critical task of the proposed framework is to turn the given power switches

into several non-overlapping cyclic sub-tours, which can then be merged into one.

Figure 4.2 illustrates the overall flow of the proposed switch-routing frame-

work, which contains five major steps: (1) group power switches, (2) split the

overlapping groups into non-overlapping ones, (3) tour the power switches inside

a non-overlapping group, (4) transform acyclic sub-tours into cyclic ones, and (5)

merge all cyclic sub-tours into one. The details of each step will be introduced in

the following subsections.
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Group Power Switches4.4

Split Overlapping Switch Groups
4.5

Transform Acyclic Sub-tour into Cyclic Ones
4.7

Unitization
4.8

Tour Switches inside a Group
4.6

Tour Around-Macro Groups Tour Column-based Groups

Figure 4.2: The overall algorithm of the proposed switch-routing frame-
work.

4.4 Group Power Switches

Two types of power-switch groups are used in the proposed algorithm, which

are the around-macro groups and column-based groups. First, each hard macro has

its own around-macro group. The power switches placed around a hard macro will

be assigned to its around-macro group. Note that one power switch may be assigned

to two around-macro groups simultaneously since it may locate just in between two

nearby hard macros. Next, the rest power switches are divided into different column-

based group based on its column index in the position matrix. The power switches in

a column-based group will not overlap with the power switches in any other group.

Note that the reason why we group the rest switches based on column index instead

of row index is that the distance between two vertically adjacent switches is much

shorter than the distance between two horizontal adjacent switches based on the

result of the adopted switch-allocation tool. So touring the switches in the vertical
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direction is more preferred than the horizontal direction.

4.5 Split Overlapping Switch Groups

The power switches in two around-macro groups may overlap, such a scenario

happens when one row (or column) of switches are embedded just in between two

hard macros. The objective of this step is to separate those overlapped switches

into the two groups by interleaving the switches along the X-axis (or Y-axis). Fig-

ure 4.3 illustrates an example of splitting two overlapping switch groups into two

non-overlapping ones.

Macro MacroMacro Macro

Figure 4.3: An example of splitting two overlapping groups.

4.6 Tour Switches inside a Group

4.6.1 Tour Around-Macro Groups

We first try to tour all the switches in an around-macro group clockwise

starting from the most left-bottom one. If no two adjacent switches exceeds the

Manhattan-distance constraint, we can form a cyclic sub-tour. Otherwise, the first

sub-tour ends at one end of the violating edge, and we start the next sub-tour from

the other end of the violating edge. Note that these two sub-tours are both acyclic.

We repeat the above process until all switches are visited.
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(b)(a)

Figure 4.4: Touring switches of combined column-based groups.

4.6.2 Tour Column-based Groups

When touring the column-based groups, we first try to combine as many

adjacent column-based groups as possible and form an acyclic sub-tour as shown

in Figure 4.4(a). If one end switch of a column, s1, cannot be directly connected

to the end switch of its adjacent column, s2, we will connect the s1 to a relay

switch, sr between s1 and s2 first, and then connect sr to s2, as highlighted by the

dash line in Figure 4.4(a). We will repeat the above process until the relay switch

can be connected to s2. Next, we will create a path starting from the end switch

of the acyclic sub-tour back to the start switch while removing the corresponding

connection of the original acyclic sub-tour. An example of creating such a cyclic sub-

tour is illustrated in Figure 4.4(b). Last, for each remaining dangling column-based

groups, we tour the switches from bottom to top to forms an acyclic sub-tour.

4.7 Transform Acyclic Sub-tour into Cyclic Ones

For each acyclic sub-tour, we interlace the order of its switches to form a

cyclic one. Figure 4.5(a) and (b) illustrate the examples of how to interlace the
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switch order to transform an acyclic column-based sub-tour and around-macro sub-

tour into a cyclic one, respectively.

X：Violating MDC

(a)

Macrox x

Macro

(b)

Figure 4.5: Transform an acyclic (a) column-based sub-tour or (b) around-
macro sub-tour into a cyclic sub-tour by interlacing.

4.8 Unitization

Figure 4.6 illustrates the unitization algorithm. First, we schedule the merg-

ing list for around-macro sub-tours and column-based sub-tours, respectively, based

on the locations of sub-tours’ starting point (from lower left to upper right by de-

fault). Then we append the merging list of the column-based macros to the end of

the merging list of the around-macro sub-tours. Next, we iteratively use the first

available sub-tour in the merging list as the current discard sub-tour. Then we at-

tempt to identify a pair of adjacent switches, called the connecting switches, inside

the discard sub-tour which can satisfy the following two conditions: (1) there exist

a pair of connecting switches in another nearby sub-tour, denoted as the augmented

sub-tour, where either connecting switch in the discard sub-tour can correspond to

a connecting switch in the augmented sub-tour within the search range, and (2)

the Manhattan distance between the corresponding connecting switches in the two
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Algorithm: Unitization

1    begin

2      Schedule merging list for sub-tours around macros.

3 Schedule merging list for sub-tours away from macros.

4 Concatenate the above merging list.

5 Set searching range to Manhattan-distance constraint.

6 while ( exists more than one sub-tour ) {

7          foreach first available discard sub-tour in merging list {

8              Search the best pair of joint switches in discard sub-tour  

and obtain the corresponding joint switches in the 

augmented sub-tour.

10            Merge discard sub-tour into augmented sub-tour.

11            Remove discard sub-tour from merging list.

12      }

13      Increase searching range.

14    }

14  end

Figure 4.6: The algorithm of unitization.

sub-tours is minimum. Once a pair of feasible connecting switches can be found in

the discard sub-tour, we can merge it into the corresponding augmented sub-tour

by reconnecting the connecting switches as shown in Figure 4.7. Finally, we remove

the discard sub-tour from the merging list and repeat the above process for the next

available sub-tour in the merging list until all the sub-tours are tried.

If more than one sub-tours are left in the merging list after this iteration, we

increase the searching range and repeat the above iteration until only one sub-tour

is left. The remaining sub-tour is the final Hamiltonian-cycle routing for the power

switches.

4.9 Merging Operation

Figure 4.7 illustrates how a merging operation in the proposed algorithm can

merge the discard sub-tour into the augmented sub-tour. Note that the modified
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augmented sub-tour is still cyclic after the merging operation.

Augmented

connecting switch

Augmented Discarded

Figure 4.7: An example of a merging operation.

4.10 Switch Routing with Designated Start and End Points

For most MTCMOS designs, the system’s wake-up-request signal is right

next to its wake-up-acknowledge signal, and hence the switch routing needs to form

a Hamiltonian cycle. However, for some seldom cases, the wake-up-request signal is

far apart from the wake-up-acknowledge signal, so that the switch routing here needs

to find a Hamiltonian-path tour starting from the location of the wake-up-request

and ending at the location of the wake-up-acknowledge signal. Our proposed frame-

work also provide an operation, called stretching, to turn a feasible Hamiltonian-

cycle routing into a feasible Hamiltonian-path routing with designated start and end

points.

The stretching operation will first cut the original Hamiltonian cycle at the

designated start point and end point, which breaks the original Hamiltonian cycle

into two acyclic sub-tours. Then we apply the splitting operation (as shown in
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Section 4.5) to turn one acyclic sub-tour into a cyclic one and reconnect it with the

other acyclic sub-tour. Figure 4.8 illustrates an example of applying the stretching

operation.

new starting switch

old starting switch

new ending switch

old ending switch

Figure 4.8: An example of stretching operation.



Chapter 5

Experimental Results

The experiments in this section are conducted based on three power-gated

domains in a 4G-application MTCMOS design, which is implemented with a TSMC

40nm low-power cell library. The Manhattan-distance constraint is set to 80µm.

Table 5.1 first shows the experimental result after applying the proposed switch-

routing framework. In Table 5.1, Column 2 lists the total number of power switches

used in a domain. Column 3 and 4 list the maximum Manhattan distance and the

total Manhattan distance. Column 5 and 6 list the wire length of the resulting switch

routing and the total wire length of the domain reported by Encounter. Column 7

lists the total runtime consumed by the proposed framework in seconds.

Table 5.1: Routing results of the proposed switch-routing framework on 3
power-gating domains.

power # of max MD total MD routing wire length (µm) runtime
domain switch (µm) (µm) switch total (sec)
Case 1 31559 78.12 411137.42 456065 80510465 3.81
Case 2 18813 75.60 254320.61 283742 47743977 2.59
Case 3 27190 78.12 335451.14 371419 46339737 4.42

The result in Table 5.1 first shows that the proposed switch-routing frame-

work can always generate a feasible Hamiltonian-cycle routing without violating

the Manhattan-distance constraint for all three cases, which demonstrates the ef-

22
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fectiveness of the proposed framework. Also, the longest runtime of the proposed

framework is less than 5 seconds for the three cases, which demonstrates the effi-

ciency of the proposed framework and its scalability to large industrial MTCMOS

designs. Note that the wire length of the switch routing is at most 0.8% of the total

wire length in a domain, showing that minimizing the wire length of switch routing

is indeed a secondary issue when designing a power-gated domain.

Table 5.2 further shows some simulation result regarding the switch routing

generated in Table 5.1. In Table 5.2, Column 2 lists the response time from the

wake-up-request signal to the wake-up-acknowledge signal reported by Encounter.

Column 3 lists the power-up time, defined as the time that the virtual VDD rise

from ground to 99.5% of the true VDD (1.1V). Column 4 lists the peak current

consumed during the sleep-to-active mode transition. The results of Column 3 and

4 are reported by a power-analysis tool [28].

Table 5.2: Simulation results of the proposed switch-routing framework
on 3 power-gating domains.

power response time power-up time peak current
domain (ns) (ns) (mA)
Case 1 23096.25 1279.92 76.99
Case 2 13764.30 991.32 59.59
Case 3 21206.20 1181.55 66.64

Next, we attempt to solve the switch-routing problem by applying a TSP

solver based on a modified complete graph as described in Section 3.2. Since we set

an excessively large weight to each edge whose distance between its two switches ex-

ceeds the constraint, the TSP solver should avoid passing through such a constraint-

violated edge while minimizing the total path length. If the TSP solver is optimal

enough, no constraint-violated edge will be visited and hence a feasible Hamiltonian-

cycle can be found.
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We try to apply a state-of-the-art TSP solver [22] to solve the switch-routing

problem and check whether this advanced TSP solver can generate a feasible Hamiltonian-

cycle without going through any constraint-violated edge. The TSP solver [22] can

be obtained from public domain and has been applied to solve several optimization

problems [25] [26] [27]. Also, this TSP solver [22] can always iteratively fine-tune an

existing solution to obtain a better solution. However, this TSP solver [22] requires

a two-dimensional matrix to store all edges’ weight of the complete graph.

Table 5.3 compares the maximum and total Manhattan-distance of the re-

sulting Hamiltonian-cycle, the number of constraint-violated edges, and the runtime

between the proposed framework and the TSP solver [22]. For Case 1 and Case 3,

the TSP solver [22] cannot generate any result since building the corresponding data

structure to store all edge’s weight will run out of memory at a workstation with

32GB main memory and 16 AMD64 cores. For Case 2, the resulting Hamiltonian

cycle reported by the TSP solver [22] still contains few edges violating the constraint

after running 100 iterations. Its runtime is 7243 seconds, which is 2796 times of the

runtime consumed by the proposed framework. Even though we keep on running

more iterations for over one day, the three constraint-violated edges still cannot be

removed. This result demonstrates that a feasible Hamiltonian-cycle routing, which

can be efficiently and effectively obtained by applying the proposed switch-routing

framework, cannot be easily obtained by applying a general TSP solver.
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Table 5.3: Comparison between the proposed framework and a TSP
solver [22].

power max MD total MD # of MD runtime
domain method (µm) (µm) violations (sec)
Case 1 Proposed 78.12 411137.42 0 3.81

TSP [22] N.A. N.A. N.A. N.A.
Case 2 Proposed 75.60 254320.61 0 2.59

TSP [22] 2363.07 148378.00 3 7243
Case 3 Proposed 78.12 335451.14 0 4.42

TSP [22] N.A. N.A. N.A. N.A.



Chapter 6

Conclusion

In this thesis, an efficient framework has been proposed to generate a Hamiltonian-

cycle switch routing that can satisfy the Manhattan distance constraint and avoid

the connection traveling across the hard macros. This Hamiltonian-cycle switch

routing can support both the single-input and double-input power switches provided

by current TSMC coarse-gain MTCMOS libraries, which cannot be both supported

by applying the previous switch-routing framework [21]. The proposed framework

can also handle the switch routing with arbitrary locations of its wake-up-request

signal and wake-up-request signal. The experimental result demonstrates the ef-

ficiency and effectiveness of the proposed framework by comparing it with a TSP

solver based on industrial MTCMOS designs. The proposed switch-routing frame-

work is compliant to the environment of a commercial APR tool [10] and has helped

taping out multiple MTCMOS designs inside a major design-service company.
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