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摘要 

由於高解析度影像應用的需求，視訊編碼在 3C 產品中是不可或缺的技術，例如行

動電話、高畫質電視、藍光光碟機。進階視訊編碼(Advanced Video Coding, AVC/H.264)

是目前商業產品中，廣泛採用的壓縮標準格式。為了達到更高的編碼效率，國際組織

JCT-VC 正在進行下一代標準的制定，即高效率視訊編碼(High Efficiency Video Coding, 

HEVC) 。 相較於進階視訊編碼，雖然高效率視訊編碼的複雜度提升許多，但是在相似

的影像品質下，可以增加近一倍的壓縮效率。 

此論文包含兩個研究主題：第一個主題是改善進階視訊編碼中，整數精確度的移動

估測以增進編碼效能；第二個主題是關於高效率視訊編碼的編碼單元(Coding Unit, CU)

大小的快速決策，以達到降低編碼器複雜度的目標。在進階視訊編碼中，整數移動估測

的失真項，是以區塊之絕對誤差總和(The Sum of the Absolute Distortion, SAD)來

計算，但是此方法並不能完全反應最後結果的失真。為了在相似的畫面品質下，進一步

節省位元率，我們提出迭代的位元率-失真(Rate-Distortion, R-D)計算方式，以選擇

較佳的移動向量。我們將此演算法實現於 JM18.0，用許多組 MPEG 測試影像來檢驗此方

法的效能，並將執行結果和原始 JM 做法的結果進行比較。雖然 JM18.0 是發展已久的優

化編碼器，我們仍可從中節省 1.1%至 4.2%的位元率，但代價是增加 45%的運算複雜度。 
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另一方面，高效率視訊編碼在傳統的編碼流程中，增加了編碼單元四元分割樹的構

造。彈性的編碼單元設計提升了編碼效率，但相較於進階視訊編碼傳統的巨區塊

(Macroblock, MB)結構而言，編碼複雜度提升不少。因此我們設計快速演算法以有效率

地建造出編碼單元四元分割樹，其中演算法包括分裂決策、終止決策。這些快速編碼單

元大小決策參考週遭相關的編碼單元之切割資訊以進行判斷。此外，我們設計額外的工

具以增進我們提出的演算法效能，其中包含畫面層級加速控制和跳過決策後的快速預測

單元判斷。最後，我們分析提出的快速演算法，並和 HM5.0 中的兩種快速演算法進行比

較，以找出有效率的結合方法。相較於 HM5.0 的原始設定，我們提出的快速演算法，經

過多組高解析度的影像測試，可以節省高達 49%的整體編碼時間，但平均損失 0.06dB

的峰值信噪比(PSNR)。 
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Abstract 

With the growing demand for high resolution video applications, video coding is an 

indispensable element in many 3C products, such as mobile phone, DTV, and BD player. Today, 

Advanced Video coding (AVC/H.264) is one of the most popular video formats in commercial 

applications. Aiming at higher compression efficiency, the international JCT-VC is currently 

developing the next generation standard, High Efficiency Video Coding (HEVC). With a much 

higher encoder complexity, HEVC is able to achieve a 50% bitrate reduction compared to 

H.264/AVC.  

This thesis has two topics, one is the enhanced motion estimation (ME) for AVC/H.264 

and the other is the fast coding unit (CU) decision for HEVC. In H.264, the sum of the absolute 

difference (SAD) is used as the distortion term in ME, but it does not reflect the final coding 

distortion. To achieve further bitrate reduction, we propose an enhanced motion vector 

selection method based on the iterative R-D calculation. We compare the proposed method with 

the original H.264/AVC JM18.0 reference software on several MPEG test sequences. Although 
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JM18.0 is a highly optimized scheme, we can still obtain a BD-rate improvement from 1.1% to 

4.2% but with additional 45% complexity increase.  

In HEVC, the CU quadtree structure is added to the traditional fixed size macroblock. 

With flexible CU size selection, the coding efficiency increases but the complexity of HEVC 

becomes much higher than that of AVC/H.264 fixed macroblock (MB) structure. To reduce 

computational complexity, we propose a fast algorithm, which includes the splitting decision 

and the termination decision, in building the CU quadtree. The fast CU size decision of the 

current CU makes use of the size information of its neighboring CUs. Furthermore, we design 

the additional tools to enhance the performance of the proposed algorithm. The additional tools 

include the frame level acceleration and the fast PU size decision after the splitting decision. At 

the end, we compare it with the existing fast algorithms in HM5.0 and find an efficient way to 

blend them together. In comparison to the original HM5.0, our method saves the overall 

encoding time up to 49% with 0.06 dB average PSNR drop. 
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Chapter 1 Introduction 

 

Video coding plays an important role in the commercial products, and its techniques 

have been developed during the past 20 years. The matured video compression technique is 

adopted by many applications, such as television, digital camera, mobile communication, and 

video recording devices, to store and transmit a large amount of video data. For the better 

visual quality and the bitrate reduction, the international standard committee is still specifying 

new standards, and many researchers are still looking for better algorithms. The main stream 

of video coding in recently years is AVC/H.264. HEVC is the next generation standard that is 

still in progress. 

 

In this thesis, we study both AVC/H.264 and HEVC. In AVC/H.264, we study the 

transform effect on the motion vector search and design an iterative scheme to improve the 

overall coding performance. In HEVC, the coding unit (CU) has flexible sizes. In general, the 

HEVC encoder uses large CU in the stationary or smooth areas particularly at low bitrates. It 

uses small CUs in the texture areas at the high bitrates. Although HEVC has a better coding 

performance, it takes a large amount of the complexity to decide the best CU size. Therefore, 

we want to design a fast algorithm in deciding CU size to reduce calculations. 
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1.1 Research Contributions 

The main contributions of the HEVC part are the development and the analysis of the 

fast CU decision. Our proposed algorithm achieves up to 49% encoding time reduction, or 

equivalently, about 2x speed up. On the other hand, the contribution of the AVC part is 

designing a method to improve compression efficiency by modifying the motion selection 

process. Our proposed iterative scheme saves up to 4.2% bitrate usage and it retains the video 

quality. The major contributions in this thesis are listed as below. 

1. Develop a fast CU size algorithm for HEVC based on the size information of the 

neighboring CUs. The fast algorithm includes splitting decision and termination 

decision.  

 

2. Propose additional tools to further enhance video quality or to reduce complexity. 

 

3. Compare and combine our proposed method to the existing fast algorithms in HM5.0. 

We investigate their advantages and disadvantages, and find an efficient way to combine 

them together. 

 

4. Propose a 2-pass ME scheme to identify the best MV for the AVC/H.264 encoder. 
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1.2 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview of the 

state-of-the-art encoders, AVC/H.264 and HEVC. We describe their work flows, their basic 

operations, and the HEVC advanced coding features. The thesis has two parts: the HEVC part 

is from Chapter 3 to Chapter 5, and Chapter 6 is the AVC part. In Chapter 3, we describe the 

CU quadtree structure in HEVC, and introduce the fast algorithms in HM5.0. In Chapter 4, 

we describe the proposed fast CU size decision algorithm in detail. Then, we design several 

compensated schemes to improve the original fast algorithm. Chapter 5 presents the 

simulation results of our scheme and discusses the possible combinations with the existing 

fast scheme. The second part of this thesis is about AVC/H.264 motion vector search in 

Chapter 6. Finally, Chapter 7 summarizes our work. 
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Chapter 2 Overview of H.264/AVC and HEVC 

 

In 1993, the ITU-T Video Coding Experts Group (VCEG) started a long-term project 

(H.26L). After about ten years of development, the project led to the well-known H.264 

standard [1]. The final stage of developing the H.264/MPEG Advanced Video Coding (AVC) 

standard was carried out by the ITU and ISO/MPEG Joint Video Team (JVT) in 2003. In the 

past a couple of years, MPEG and VCEG collaborate again to form the Joint Collaborative 

Team on Video Coding (JCT-VC). With the demand of high-resolution video applications, 

JCT-VC is currently specifying the next generation video standard, High Efficiency Video 

Coding (HEVC), which aims to achieve about 50% bit-rate reduction compared to 

H.264/AVC. And HEVC is expected to be finalized in 2012. For more information about the 

progress of AVC and HEVC, please refer to [2]. 

 

2.1 Advanced Video Coding 

Basically, the H.264/AVC standard has a video coding structure similar to that of the 

prior video coding standards, which is known as the “hybrid coding scheme” [3]. It uses 

transform coding to code the motion compensated prediction errors. The basic processing unit 

is macroblock (MB), corresponding to a 16 × 16 -pixel square region of a frame. In this 

section, we will introduce the fundamental concept of H.264/AVC. For more details, please 
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refer to [1], [4]. 

2.1.1 H.264 Architecture  

Fig. 1 shows a typical H.264/AVC encoder. The encoder includes two data paths, an 

encoding path (left to right) and a reconstruction path (right to left). An input video frame 
nF  

is processed in the unit of MB. A coded MB may belong to an I-MB (intra-coded), P-MB 

(predictive-coded), and B-MB (bi-directional predictive-coded). 

 

 

Fig. 1 An H.264/AVC encoder 

 

2.1.2 Basic Coding Tools 

In Fig. 1, a prediction block P  is formed by intra-prediction or inter-prediction. A 

residual block nD  is produced by subtracting the prediction block P  from the current block. 

The residual block nD  is transformed (separable integer Discrete Cosine Transformation), 



 

 6 

and it is quantized to X . The quantized transform coefficients are reordered, and then are 

entropy-coded. The above coding tools are explained in detail in the following subsections. 

2.1.2.1 Intra prediction 

Because the correlation between the neighboring blocks within a video frame is 

extremely high, the encoder, which uses the intra-prediction, can reduce the spatial 

redundancy. In the intra modes, a prediction block P  is generated based on the neighboring 

blocks (top-left, top, top-right, and left.), which have been encoded and reconstructed. There 

are four optional intra-prediction modes for a 16 × 16 luma block, and nine modes for each  

4 × 4 luma block. A special intra coding mode, I_PCM, transmits the image samples directly 

(without prediction or transform).  

2.1.2.2 Inter Prediction 

For video sequences at high frame rate, the nearby frames are generally similar. By using 

the inter-prediction technique to transmit the difference between successive frames, the 

temporal redundancy could be reduced. The P and B MBs may be coded in one of 

motion-compensation (MC) modes. Motion compensated prediction based on one or more 

reference pictures produces the prediction P . An inter-mode MB can be partitioned into various 

sizes corresponding to the SKIP mode, INTER-16×16, INTER-8×16, INTER-16×8, and 

INTER-8×8 modes, and an 8×8 sub-MB mode can be further divided into smaller partitions 
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with block sizes of 8×4, 4×8, 4×4 blocks. Motion estimation (ME) is a key step in 

inter-prediction. The partitioned block inside an inter-mode MB is predicted from the same 

size region in the reference pictures. The vector from the current frame block pointing to the 

best matching region in the referenced frame is the so-called motion vector (MV). 

2.1.2.3 Transform and Quantization 

Due to the inter-pixel redundancy in the residual block, the encoder transforms the 

spatial domain pixels to the frequency domain coefficients to compress its original redundant 

information. The discrete cosine transformation (DCT) is a general tool in the state-of-the-art 

video encoder. In AVC/H.264, there are two variable size transforms: 4×4 and 8×8. To 

increase their computational speeds, they are implemented in the butterfly structure that uses 

addition, bit-shift, and a few multiplication operations. The DCT coefficients of a residual 

block should be processed by reordering (zig-zag scanning), scaling, and rounding 

(quantization). The Quantization parameter (QP) ranges from 0 to 51. With an increment of 6 

in QP, the quantization step becomes double.  

2.1.2.4 Deblocking Filter 

The deblocking filter is designed for eliminating the blocking artifacts on the boundaries, 

which are caused by the block-based transform with a coarse quantization and by the MC 

prediction in which the interpolated data are derived from different regions of multiple 
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reference frames. The filter is applied to each decoded MB to reduce blocking distortion, and 

the encoder stores the filtered MB in the reconstruction frame to be used as the reference 

frame in the future. The deblocking filter is an important coding tool for inter-prediction. 

2.1.2.5 Entropy Coding 

At the slice layer level and below, the syntax elements are encoded either by the variable 

length coding tool (VLC) or by the context-adaptive arithmetic coding tool (CABAC). In 

VLC, a quantized DCT block is coded by using the context-adaptive variable length coding 

(CAVLC) scheme, and the other data units are coded by using Exp-Golomb codes. The tables 

of CAVLC are designed to match the corresponding conditional probability. The context 

adaptive feature of CABAC can be more efficient became it is adaptive to the statistics of 

previously encoded data. Generally, CAVLC has low complexity, and CABAC has better 

efficiency. 

2.1.3 Encoder Control 

The H.264/AVC standard provides only the syntax of bit-stream and the decoder 

structure. Therefore, we need to design and to control the encoding process in our preferred 

way. How to decide the coding parameters is a key to achieve video compression efficiency. 

The H.264 coding parameters include MVs, quantization levels, and MB modes. The same 

encoder structure with different coding parameters will affect the R-D efficiency of the 

produced bit-stream. 
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The general R-D cost function for video coding is presented by (1). In (1), symbol D  

denotes distortion, which is often the absolute difference between the processed image block 

and the original block. Symbol R  means rate, which is the bits needed to send the processed 

information. According to the information theory, we can fix R  first and then minimize D . 

We can combine D and R together to form the total cost J. Mathematically, we can convert 

this constrained optimization problem to a non-constrained form, the so-called Lagrange cost 

function in (1). How to select the optimal Lagrange multiplier   is a difficult problem in 

practice, and for more details, please refer to [5], [6]. 

 J D R   (1) 

A traditional H.264/AVC encoder splits the optimization of the cost function for the inter 

modes into two parts as illustrated in Fig. 2. The first part is finding the optimal MV, and 

second part is choosing the best mode, block size etc. 

 

Motion
Vectors

Selection

Mode 
Selection

Entropy 
Coding

Controller of RD Optimization

MB

(2) (4) Rate

Mode MV

 

Fig. 2 R-D optimization for selecting MV and mode 
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2.1.3.1 Searching for Optimal Motion Vector 

A traditional H.264/AVC encoder splits the optimization of the cost function for the inter 

modes into two parts. In the first part, the encoder finds the MVs with the optimum residual 

distortion and the MV coding bits. Based on the motion R-D cost function (2), [3], the motion 

estimation step finds the vector with the smallest cost for various block sizes. Given the 

current and the reference frames and the Lagrange multiplier motion , the ME operation for a 

partition block is  is to minimize (2) to find the best MV. 

 ( , ) ( , ),motion motion i motion motion iJ D s m R s m   (2) 

where m  is the set consists of all possible vectors ( , , )x y tm m m , in which 
xm  is the MV 

horizontal component, and ym  is the vertical component, tm  is time difference. motionR is 

the number of bits for transmitting MV, and motionD  is the distortion term given by 

 
( , )

( , ) ( , , ) ( , , )
i

p

motion i x y t

x y s

D s m pixel x y t pixel x m y m t m


      (3) 

To speed-up the ME process, we usually choose 1p  , and (3) becomes the sum of the 

absolute difference (SAD). The symbols, x and y , are the pixel location in a block. It should 

be noted that the state-of-the-art encoder often uses hadamard measure for fractional ME for 

coding efficiency, and the detail is describe in section 6.1. 

2.1.3.2 Selection for the Best Mode 

In the second part of the inter-coding process, the encoder applies integer DCT to the 
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motion-compensated residual error signals, and then we choose the best MB coding mode. 

With the given Lagrange parameter mode  and the quantized parameter Q , the coding mode 

of MB ( S ) is decided by minimizing the following R-D cost function [3], 

  mod mod mod( , ) | , ( , | ) ( , | ),  e k e REC k e REC kJ S I Q D S I Q R S I Q  (4) 

where 
kI  represents a legitimate mode. For example, k possible modes for P-slice in 

H.264/AVC are Intra-16×16, Intra 4×4, SKIP mode, INTER-16×16, INTER-8×16, INTER- 

16×8, INTER- 8×8 modes. RECD is the distortion between the reconstructed MB and the 

original one, and it is usually measured in the sum of the squared difference (SSD), p=2 in (3). 

RECR  denotes the rate after entropy coding for a MB. Although the calculated cost function is 

an approximation, it reflects the rate-distortion efficiency reliably.  

 

2.2 High Efficiency Video Coding 

A joint call-for-Proposal (CfP) for HEVC was issued by JCT-VC in January 2010, and 

27 proposals in response of the CfP were submitted with their test material. The promising 

results were reported in [7], and the proposed scheme [8] from Heinrich Hertz Institute (HHI) 

was ranked among the five best performing proposals. For its wonderful performance, most of 

its design elements were selected to specify a first model of the initialed HEVC 

standardization project. The project is still in progress, and HEVC is expected to achieve 

excellent coding performance on high resolution video with low delay and low complexity. 
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Fig. 3 shows the HEVC encoder structure. Although HEVC has a similar structure to the 

H.264/AVC architecture, there are some significant innovations in HEVC. The innovations of 

re-definition of coding units and the enhancement on coding tools offer remarkable 

compression efficiency. 

 

 

Fig. 3 An HEVC encoder 

 

2.2.1 Coding Unit Definition 

In H.264/AVC, the basic processing unit is called MB, which is expanded to what we 

called a coding tree block (CTB). For flexibility and efficiency, the basic coding units in 

HEVC have variable sizes with various resolutions. They are CU (Coding Units), PU 

(Prediction Units), and TU (Transform Units). A CTB in HEVC which covers max max2 2N N  

luma samples, and its associated quadtree structure indicates how the CTB are further 
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subdivided for CUs, corresponding PUs and TUs. The concept of decomposing MB into three 

different units allows each to be optimized independently, which brings high adaption to 

enhance the performance of each coding tools. The definition and details of three units in the 

HEVC encoder [9] are given in the following sub sections. 

2.2.1.1 Coding Unit 

A basic unit of HEVC, referred as CU, is a square region of a picture, and it may contain 

several PUs and TUs. An input processing frame is divided into slices, and each slice is 

composed of CTBs, which are also called largest coding units (LCUs). Dividing a picture into 

LCUs and further recursively subdividing each CUs into 4 smaller CUs with half width and 

half height is the so called nested quadtree structure as shown in Fig. 4 (with solid lines). Both 

the block sizes and the block coding parameters such as maximum allowed depth will be 

specified in the sequence parameter set (SPS) or the slice header.  

2.2.1.2 Prediction Unit 

PU is defined only for the leaf node of CU in each depth level, and PUs have various 

partitions for prediction. They are confined within its CU node with a shape of square or 

rectangular, and for some cases the prediction units are asymmetric in CU as list in Table 1. 

The prediction ways are similar to the prediction methods of H.264/AVC, which can be the 

skip, the intra, or the inter modes. In Fig. 5, we can see all the possible PUs for each 
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prediction mode in low complexity setting. The information related prediction such as the PU 

splitting types, the prediction modes, the intra prediction direction, the motion vector 

difference (MVD), and the corresponding referenced frame indices are transmitted in PU 

level.    

2.2.1.3 Transform Unit 

TU is a basic unit of residual coding, including transform and quantization. The TUs are 

aligned within their corresponding CU, and the size of TUs is variable which is not 

constrained by boundaries of PU. In HM5.0, the NSQT is added, that is, the shape of TU has 

not to be square, and it may be rectangular. The splitting flag and transform coefficients are 

specified in TU level. 

 

The tree structure of CU or TU splits from top to down, but the optimal structure is 

decided by G-BFOS algorithm [10], [11]. The algorithm makes pruning decision from bottom 

to up, which reduces much computational complexity, and we will describe the detail part in 

the next chapter. The coding tree blocks for TU are illustrated by Fig. 4 (with dashed line). 

More details of the encoder controller for HEVC are described in chapter 3. An Example of a 

nested quadtree structure (right part) for dividing a given coding tree block (left part) in Fig. 4. 

The order of parsing the coding blocks follows their labeling in alphabetical order. 
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Fig. 4 An Example of a nested quadtree structure [8] 
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Fig. 5 Possible PUs in low complexity setting 

2.2.2 Enhanced Coding Tools 

After H.264/AVC standard was defined, people tried to propose algorithm to improve it. 

As time goes by, people notice that some modifications on the existing tools and many newly 

proposed tools provide a certain amount of improvement. Therefore, many adaptive and novel 
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tools are adopted in the current HEVC model compared to H.264/AVC. With the development 

of HEVC standardization project, JCT-VC adds useful tools, refines the existing tools, and 

removes inferior tools in the model [12]. A summary list of the tools that are included in 

HM5.0 is provided in Table 1 below. 

Table 1 Structure of Tools in HM 5.0 Configures [9] 

High Efficiency Configuration Low Complexity Configuration 

Coding units, Prediction units, and Transform units: 

Coding unit quadtree structure  

(square coding unit block sizes 2Nx2N, for N=4, 8, 16, 32; 

i.e., up to 64x64 luma samples in size) 

Prediction units  

(for coding unit size 2Nx2N:  

(1) for Inter, 2Nx2N, 2NxN, Nx2N, and, 

for N>4, also 2Nx(N/2+3N/2) & 

(N/2+3N/2)x2N;  

(2) for Intra, only 2Nx2N and, for N=4, also 

NxN) 

Prediction units  

(for coding unit size 2Nx2N:  

(1) for Inter, 2Nx2N, 2NxN, Nx2N;  

(2) for Intra, only 2Nx2N and, for N=4, also NxN) 

Transform unit tree structure within coding unit (maximum of 3 levels) 

Transform block size of 4x4 to 32x32 samples 

(always square for Intra; also non-square 4x16, 

16x4, 8x32, 32x8 for Inter) 

Transform block size of 4x4 to 32x32 samples 

(always square ) 

Spatial Signal Transformation and PCM Representation: 

DCT-like integer block transform; 

for Intra also a DST-based integer block transform (selected based on the intra prediction mode) 

Transforms can cross prediction unit boundaries for Inter; not for Intra 

PCM coding with worst-case bit usage limit 

Intra-picture Prediction: 

Angular intra prediction (17 directions for 4x4, 3 directions for 64x64, 34 directions for others) 

Planar intra prediction 
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Chroma intra prediction separate from or using luma samples 

Inter-picture Prediction: 

Luma motion compensation interpolation: 1/4 sample precision, 

8x8 separable with 6 bit tap values 

Chroma motion compensation interpolation: 1/8 sample precision, 

4x4 separable with 6 bit tap values 

Advanced motion vector prediction with motion vector “competition” and “merging” 

Entropy Coding: 

Context adaptive binary arithmetic entropy coding 

RDOQ on RDOQ off 

Picture Storage and Output Precision: 

8 bit-per-sample storage and output 

In-Loop Filtering: 

Deblocking filter 

Sample-adaptive offset filter - 

Adaptive loop filter - 

2.2.2.1 Intra prediction 

Comparing to H.264/AVC, the unified intra prediction coding tool provides extensive 

prediction modes up to 35 directional prediction modes including DC and Planar modes for 

luma component of each PU. The total number of available prediction modes depends on the 

size of the corresponding PU. 

2.2.2.2 Inter Prediction 

Each inter coded PU have a set of motion parameters consisting of motion vector, 

reference picture index, etc. Choosing the optimal motion parameters is crucial to the 



 

 18 

performance of inter mode. The Advanced motion vector prediction (AMVP) is an adaptive 

prediction technique for motion merging. AMVP constructs the motion vector candidate list 

from the co-related PUs, which exploits spatial and temporal correlation. Then, remove 

duplicated and redundant the candidates. At the last, the encoder selects the best inferred 

motion parameters from multiple candidates formed by spatial neighboring PUs and 

temporally neighboring PUs, and it transmits the corresponding chosen candidate index. Also, 

merging mode plays an important role in inter prediction because it can reduce the transmitted 

motion information. Thanks to AMVP and merge mode, the compressed motion data often 

consist of a small amount of side information. 

2.2.2.3 Transform and Quantization 

HEVC provides larger size transforms compared to H.264/AVC, and the size of 

transform covers from 4 4  to 32 32 . With larger sizes transformation, the encoder is 

more flexible and the compression efficiency is higher in the smooth texture region especially. 

The scaling matrices of the quantization process are added for the additional transform sizes, 

which do not included in H.264/AVC. 

2.2.2.4 Loop Filter 

Loop filter consists of deblocking filter, sample adaptive offset (SAO), and adaptive loop 

filter (ALF). The goal of these filters is improving the quality of the reconstruction frames. A 
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deblocking filter is performed for the block boundaries. Then, SAO is applied to the 

reconstruction signal after the deblocking filter by using the offset values given. In the final 

stage of filtering, an ALF is applied to the reconstruction signal after the SAO process and 

deblocking filter process by using the filter coefficients also signaled in the slice header. It is 

should be noted that ALF scheme and its control method change a lot in the later version HM. 

2.2.2.5 Entropy Coding 

In HM 5.0, the syntax elements are encoded by variable length coding (VLC), and the 

residual coefficients are encoded by CABAC. Because the complexity of CABAC is very 

high, it results in low data throughput when handling high resolution videos. This problem has 

been improved by the parallel entropy coder design. For pursuing high efficiency, the HEVC 

specifications retain CABAC, but remove CAVLC. 

 

2.3 Experiment Conditions 

Our experimental platforms and their configuration settings are introduced in this section. 

The referenced software of H.264/AVC is JM 18.0 [13], and it has four configures, which are 

baseline, main, extended, and high profile. We utilize the baseline configure setting to 

simulate our experiments with the widely used MPEG sequences [14]. Our platform for 

HEVC experiments is the referenced software HM5.0 [15], in which 4 configures are defined. 

They are all intra, low delay, low delay P, and random access. These configurations can be set 
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as the high efficiency or low complexity coding modes. We choose the low delay P, low 

complexity configuration as our experimental conditions. The experimental sequences are the 

testing materials of HEVC standard. To compare performance between the proposed 

algorithm and the original codec, we exploit the BD-rate [16] definition to measure the 

compression efficiency. Table 2 shows our parameters setting through this thesis, and Table 3 

lists the information about size and frame rate of all video sequences in this thesis. 

 

Table 2 Experiment Conditions 

QP 22,27,32,37 

AVC Encoder 

Configuration： 

baseline 

Sequence Type：IPPP 

Motion Search : Fast full search 

Motion Search range： 32  pixels 

Multiple Referenced frame：Disable 

RDO : High complexity 

Fractional ME : Hadamard measure 

Transform Size: 4 4  

Intra period：16  

Number of encoded frames：32  

HEVC Encoder 

Configuration： 

low delay P, 

low complexity 

Sequence Type：IPPP. 

Motion Search range： 64  pixels 

Multiple Referenced frame：Disable 

GOP：1 

Intra period：Only first 

Max CU size：64  

Max CU partition Depth： 4  

Max TU size：32 32  

Min TU size： 4 4  

Inter Max RQT depth：3  

Intra Max RQT depth：3  

RDOQ：Disable 
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DisableInter4x4：On 

FEN: On 

Number of encoded frames：16 , 32 , 64 ,100  

 

Table 3 Test Sequences  

HEVC sequences 

Sequence Information Sequence Information 

Kimono 1920x1080 24Hz BallDrill 832x420 50Hz 

Park 1920x1080 24Hz BQMall 832x420 60Hz 

Cactus 1920x1080 50Hz Party 832x420 50Hz 

Basketball 1920x1080 50Hz HorseC 832x420 30Hz 

BQTerrace 1920x1080 60Hz BallPass 416x240 50Hz 

Vidyo1 1280x720 60Hz Bubbles 416x240 60Hz 

Vidyo3 1280x720 60Hz BQsquare 416x240 50Hz 

Vidyo4 1280x720 60Hz Horses 416x240 30Hz 

H.264/AVC sequences 

Foreman 352x288 30Hz Silent 352x288 30Hz 

Bus 352x288 30Hz Ice 352x288 30Hz 

Football 352x288 30Hz City 704x576 30Hz 

Mobile 352x288 30Hz Crew 704x576 30Hz 

News 352x288 30Hz Harbour 704x576 30Hz 

Paris 352x288 30Hz Soccer 704x576 30Hz 

Mother_daughter 352x288 30Hz Download link [14] 
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Chapter 3 Nested Quadtree Coding Unit 

 

In this chapter, we introduce the principle and decision flow of quadtree Coding Unit 

(CU) decision in HM5.0. This coding unit structure differs from the macroblock coding 

architecture in H.264 for flexible and compression efficiency. However, the CU quadtree 

structure with possible node sizes from 64 64  to 8 8  in 4 admissible depths also brings 

high computation complexity. Although HM 5.0 has some fast algorithms to accelerate the 

encoding procedure, we still want to reduce more complexity under the tolerable coding loss. 

3.1 Overview of Coding Unit Quadtree Structure 

CU is a 2 2N N square and 2N can be 64, 32, 16, or 8. The encoder processes LCUs in 

a frame in the sequential order from the left to the right, and then from top to down (raster 

scan). Fig. 6 illustrates a real example of the partitioned nested CU quadtree structure.  

Larger CU provides less bits usage in the smooth residual texture and the static motion 

area in an encoded frame compared to the maximum 16 16  macroblock coding structure in 

H.264. The HEVC encoder can also has the same small size CU as that in H.264 to handle the 

areas with fast motion and complex residual texture. Targeting at high spatial resolution 

picture for HEVC, the CU quadtree structure is especially designed for 720P and 1080P 

video. 
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Fig. 6 An example of nested CU quadtree structure (Vidyo1, Frame 2, QP=32) 

 

3.1.1 Partition Decision Flow of Nested Quadtree CU 

In HEVC, a slice is composed of many LCUs, and a large CU can be divided into four 

smaller CUs. Each partitioned CU can be recursively split until the smallest size CU is 

reached, in which 4 depths are allowed in HM 5.0. As one 2 2N N  (not 8 8 ) CU is 

processed in each depth, the encoder will analyze the R-D cost of all possible prediction 

modes. First, the skip mode is used for compression, and then try Inter 2 2N N , 2N N , 

2N N  ( If in the high efficiency setting, the encoder will try additional asymmetric PUs.). 

Last, Intra 2 2N N  is tried for prediction. It should be noted that I_PCM is turned off in 

HM5.0 in every profile. The smallest CU (8 8 ) is additionally tested with N N  PUs for 

intra mode, but the asymmetric is not included in this depth. When the best prediction of each 
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mode produces the residual signal, the encoder processes it in the units of TU. The size of TU 

is limited to that of the CU to which the TU belongs. TU in the CU with size 2 2N N can be 

split into N N and / 2 / 2N N  in a similar way to the CU recursively partition. However, 

as already stated in Table 1, the maximum TU size cannot exceed 32 32 , and the NSQT is 

used in some cases for inter residual signals. 

At the same depth of CU, after analyzing each mode, its RD cost is compared with that 

of the other previously processed modes to determine the best mode for the CU in this depth. 

However, we still need an efficient method to compare the R-D cost of the best partitioned 

modes at different depths. For example, allowing three admissible depths in the CU quadtree 

has sizes varying from 64 64  to 16 16 . The number of the possible tree structures is 17. 

The exhaustive comparison is not practical if the depth becomes larger. 

To reduce the redundant comparisons, G-BFOS algorithm follows the well-known 

“divide and conquer” concept. At the beginning, a full tree grows from the root to all possible 

nodes until reaching the maximum admissible depth in the way of depth first and in the 

Z-order (CDEF) of the same depth as shown in Fig. 7. When all nodes in one branch 

are constructed, a pruning decision process compares the cost of the parent and that of its 

children nodes to decide that the splitting process is needed or not. If (5) is satisfied, the 

children nodes would be pruned. Otherwise, the sum of costs of all children nodes is assigned 

to the parents’ node for the following comparison. 
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When all the compared nodes are built up, the decision process is executed until the root 

node is reached. Using G-BFOS algorithm ensures that we can get the local minimum cost in 

each partition region, and then combine them to find the best nested CU tree structure for a 

LCU with the global minimum cost. Through this efficient decision algorithm, we only need 5 

comparisons to decide the best CU partitioned structure in the example of Fig. 7. 

 

 

Fig. 7 A G-BFOS example. 

The alpha-order is the CU processing order (depth first and Z order at the same depth), and 

the numerical-order is the pruning decision order. 

 

3.1.2 Existing fast algorithms for Partition Decision Flow in HM5.0 

Because of the huge complexity associated with the quadtree structure, many researchers 

like to reduce its complexity. G-BFOS is the good solution for quadtree structure decision. 

Thus, the targets of researchers are often chosen to be the efficient methods to build nodes. 
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There are 3 existing schemes in the literature, namely, fast encoder setting (FEN) [9] [17], 

early CU termination (ECU) [18], and cbf fast mode decision (CFM) [19]. 

 

There are 3 parts in FEN [9]. The first part is the CU early skip method, the second is the 

sub-sampled SAD calculation, and the third is the simplified bi-prediction. We describe first 

part in detail because it relates to the CU tree structure. The CU early skip method in FEN is 

based on the average rate-distortion cost statistic in each slice. That is, when the R-D cost of 

the current CU with skip mode in the current depth is smaller than the average cost of 

previously encoded CUs with skip mode which is chosen as the optimal mode in the same 

depth, the rest of PU modes in this depth are skipped. For a more aggressive decision, the 

average R-D cost is multiplied by a fix-weighting factor of 1.5, and some research people 

reports that an adaptive weighting factor can improve the performance of FEN [17]. The 

performance of FEN is about 2.0% luma BD bit-rate loss and 48% overall encoding time 

saving in the setting of high efficiency random access in HM3.2. Because FEN has multiple 

considerations for speeding up HEVC, all configurations of HM5.0 turn on FEN in the 

original settings. 

 

ECU is a fast CU decision method using early termination based on the optimal PU 

mode which was proposed by Choi et al [18], and the algorithm is also designed for skip 
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modes for CU quadtree pruning. From their analysis of condition probability of the CU depth 

selection, they observe that if the current CU selects the skip mode as the best prediction in 

the current depth, 95% of this type CU will finally be encoded with the skip modes at this 

depth. Exploiting this property, the CU depth check is skipped for all the next sub-CUs when 

the R-D cost of the skip mode is minimum in the current CU. ECU algorithm has been adopt 

in HM4.0, and it yields approximately 42% time reduction in encoding time with negligible 

loss on the luma BD-rate in HM3.1 (i.e., 0.6% ). 

 

Except for the acceleration of FEN, every PU is processed to measure its R-D cost in one 

CU regardless of the performance of the previous PUs. The R-D costs for all allowed PUs in 

each depth are examined to ensure the optimal prediction, but the exhaustive method wastes a 

lot of time. The coded block flag (cbf) is a good indicator to estimate the benefit of using 

prediction. After the prediction operation of a PU, its corresponding CU becomes a residual 

quadtree (RQT) block, which is to be processed as the TU. After the RQT is transformed and 

quantized with a suitable tree structure, if all coefficients in this residual block are zero, the 

cbf is set to 0, which means the prediction is sufficient (no residual coefficients coding). 

Otherwise, cbf is 1. Gweon et al [19] proposed a CFM algorithm that uses this cbf property, 

and the computational complexity is reduced to about 58.8% with the luma BD-rate loss 

0.85% in HM3.2. The core idea of CFM is checking that three cbf values (1 luma and 2 



 

 28 

chromas) for every PU partition. If all of them are zero, then the processing of the PU options 

of the current depth are terminated. It should be noted that the encoder simply skips the 

analysis of PUs at this depth when the termination condition of CFM is satisfied, but it still 

has to process PUs of all the sub-CUs in deeper depths. 

 

ECU and CFM are powerful tools for reducing complexity, but they are closed in the 

original settings of all configurations in HM5.0. An example of ECU is illustrated in Fig. 8, 

and the program flow of CFM with the execution order of PUs in the low-complexity profile 

is shown as Fig. 9 and Fig. 10 respectively. 

 

 

Fig. 8 An example of ECU [18] 
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Fig. 9 Program flow of CFM 
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     Low complexity setting :    
    (1) Intra NxN is only used as 2N=8.
    (2) Inter NxN and IPCM are close originally.

 

Fig. 10 PU execution order in CU in the low-complexity setting 

 

3.2 Analysis of Nested CU Quadtree Structure 

The nested CU quadtree Structure decision process in HM5.0, which pursues the optimal 

structure selection, is described earlier in section 3.1.1. Although there exist FEN, ECU, CFM, 

and G-BFOS algorithms to reduce the encoding complexity, we like to further speed up the 

CU quadtree processing. Thus, we need to examine that which part in HM 5.0 takes most time 
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and find out what factors producing the complexity. 

The HEVC encoder computes the R-D cost to select the best CU size, PU partition, and 

TU depth. The encoder spends a huge amount of computations on PUs and RQT in a CU 

quadtree to identify the lowest R-D cost. We measure the computing time of the function 

named “xCompressCU.cpp”, which is used for CU decision in HM5.0. In Table 4, we collect 

the execution time ratio of “xCompressCU.cpp” regarding the overall encoding time in 8 

high-resolution test sequences for 16 frames, and the average time ratio is taken over 4 

selected QP cases. 

Table 4 Time percentage of “xCompressCU.cpp” in HM5.0 

Test Sequence Time Percentage Test Sequence Time Percentage 

Kimono(1080P) 99.6% Vidyo1(720P) 99.4% 

Park(1080P) 99.5% Vidyo3(720P) 99.5% 

Cactus(1080P) 99.5% Vidyo4(720P) 99.5% 

BasketballDrive(1080P) 99.5% BQTerrace(1080P) 99.5% 

AVG 99.5% 

 

Table 4 shows a surprising result that CU decision takes more than 99% time in the low 

delay P with low complexity configuration. The computation associated with CU decision 

includes inter prediction, intra prediction, RQT, and calculate R-D cost, and we know that the 

computing time grows up rapidly with the increment of maximum admissible depth. Different 

maximum admission depth results in different compression efficiency and computational 
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complexity. In Table 5, we try the original block size setting of H.264/AVC with the 

maximum CU size equals 16 and the maximum admissible depth is 2 compared to the original 

setting in HEVC; that is, the encoder only uses 16 16  and 8 8  CUs to compress the video 

sequences with same testing condition as Table 4. 

 

Table 5 Comparison of 64/4 CU structure and 16/2 CU structure 

(Maximum CU size / Maximum admissible depth) 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving (QP22) -40.88% -43.75% -43.67% -42.95% -43.91% -45.39% -44.92% -44.40% -43.73% 

Time-Saving (QP27) -42.30% -46.01% -45.00% -44.56% -42.99% -45.57% -43.79% -45.22% -44.43% 

Time-Saving (QP32) -44.10% -45.33% -44.39% -45.46% -43.38% -44.47% -44.04% -44.40% -44.45% 

Time-Saving (QP37) -44.92% -45.08% -44.67% -46.15% -43.77% -43.99% -45.34% -43.14% -44.63% 

AVG. Time-Saving -43.05% -45.04% -44.43% -44.78% -43.51% -44.86% -44.52% -44.29% -44.31% 

Y BD-rate (%) 5.544 2.576 3.283 9.909 3.037 7.359 7.263 8.257 5.904 

Y BD-PSNR (dB)  -0.150 -0.078 -0.071 -0.167 -0.094 -0.207 -0.197 -0.193 -0.145 

 

As depicted in Table 5, the 16/2 CU structure saves about 44% overall encoding time, 

but causes 5.9% luma BD-rate loss in average. In general, it is a trade-off issue between 

computational complexity and coding performance in designing a fast algorithm. Nevertheless, 

such a large loss from 16/2 CU structure is generally not considered cost-effective, so we are 

looking for other methods to accelerate the process of CU decision.  
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Chapter 4 Fast CU Size Decision Algorithm Design 

 

In the following section, we first describe the problem and the target we want to achieve, 

and then we survey some ideas about fast CU quadtree decision algorithms, [20] and [21], 

published recently but not have been accepted in HM as the coding tools in our testing 

platform. After implementing the original platform, we measure and analyze its performance 

with many standard sequences, and propose some ideas referred from [21] to compensate the 

weakness of the testing platform. 

 

4.1 Problem Formulation and Design Goal 

Because HM5.0 has FEN, ECU, and CFM for CU fast algorithm, we try to design 

additional fast algorithms from different perspectives. The principle of our new tool should be 

different with those three existing tools, and the added tool should not reduce the performance 

of the existing and also be compatible with the CU quadtree structure in HM5.0. 

For the above reasons and the simulation results in section 3.2, skipping the analysis of 

coding units in unnecessary depth is a possible way to accelerate encoding procedure, 

especially for the high resolution video. Typical fast algorithm performance or experimental 

results are examined by the ratio of time reduction, the bitrate and PSNR with the specified 

QP and R-D curve [20], [21]. Therefore, we set up a reasonable target of our final proposed 
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algorithm that reduces about 50% complexity and minimize the coding loss. Moreover, the 

collaborative effect between our proposed algorithm and the existent fast algorithms is also an 

important issue. 

 

4.2 Related Work 

Even though the original encoding procedure returns the best possible tree structure, its 

complexity is very high. Heuristics scene characteristics estimation is necessary to predict the 

optimal depth for the next encoded CU. In [20], the main idea is to accelerate the encoding 

procedure of HEVC by utilizing the correlation of related CUs. The encoder uses the size 

information of neighboring coding units and the processed depth-ratio in the previous frame 

to limit possible processed depth. In [21], a complexity-control method is proposed, which 

performs the time analysis and adjusts the number of fast encoding frames of each picture 

group. Recording the deepest depth used in the unit of LCU in the previous frame, the 

encoder finds the best possible tree structure until the recorded depth in each LCU in the 

current frame.  

However, the methods, [20] and [21], are implemented in the earlier version HM, so we 

need to convert their ideas to fit our experimental platform HM5.0. Due to the above reasons 

and performance consideration, we remove the frame level algorithm in [20], and the time 

analysis in [21] is not suitable for our research because different computers would execute the 
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same program with different time, so we use QP value as the indicator to adjust our algorithm. 

The details will be described in the following sections. 

 

4.3 Core Ideas of Fast CU Size Decision 

The CU-level fast decision is based on the fact that the in the temporal and spatial 

neighborhoods, the motion and texture characteristics of a picture patch are similar. Therefore, 

we can predict the candidate CU depth by checking the size of its neighbor CUs (spatial) and 

co-located CU (temporal). 

 The data structure for HEVC is that each LCU includes 21 bits for representing the 

splitting information as illustrated in Fig. 11.  The accuracy of the data structure extends to 

depth 2 which is sufficient for our fast decision. For example, during the encoding procedure, 

G-BFOS tells us that splitting the LCU into 4 sub-CUs is better due to its lower R-D cost. 

Then, the encoder will record the bit of index 0 in Fig.11 as 1 to indicate the splitting. 

Otherwise, the bit is set to 0. 
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Fig. 11 Data representation of splitting information 
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The other important factor in our algorithm is the location of corresponding CUs. Fig. 12 

depicts the relation between the referred neighboring CUs and the current encoded CU. The 

co-located CU means that the previous frame CU has the same position as the current encoded 

CU. It should be mentioned that our algorithm executes recursively in depth 0, depth 1, and 

depth 2 with the corresponding CU size of 2 2N N and CU index show in Fig. 11.  

 

 

Fig. 12 Reference CUs and the current CU 

 

 As already stated in Chapter 3, some exceptions of losing reference CUs exist in Fig. 12 

due to the encoding order or the picture boundary. When we want to encode a CU with index 

4 in Fig.11, the right-top referenced CU has not been processed, so the encoder can’t find any 

information about the right-top CU as shown in Fig. 12. For this case, we ignore the right-top 

CU but still follow the decision rule that to be described in the next two sections. On the other 

hand, if the encoded CU is so close the boundary of picture that it loses more than one 

referred CU, it will find the best CU quadtree structure without our proposed fast decision. 
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4.3.1 Splitting Decision 

The splitting decision is utilized for preventing the unnecessary prediction, RQT, and 

R-D calculation in a larger size CU. When the CU analysis begins at the current depth and all 

the following conditions are satisfied, the PU mode search in the current depth will be skipped 

except for the 2 / 2N N N N   inter modes, and then it jumps into the next depth directly. 

An example of splitting decision is illustrated in Fig. 13, where the current encoded CU in 

depth 0 chooses the splitting decision. 

 

 The co-located CU has smaller CUs. 

 All neighboring CUs have smaller CUs. 

 The current encoding frame is not I frame. 

 

Current
Encoded 

CU

Co-located 
CU

64

64

 

Fig. 13 An example of splitting decision 
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If all reference CUs prefer the splitting mode for lowering the R-D cost, which often 

implies that the region has complex residual texture, and the encoded block has a large 

probability in using the deeper depth to compress this CU. Nevertheless, when the depth of 

CU becomes smaller and smaller, we retain the inter modes, 2 / 2N N N N  , with two MVs 

in the skipping data depth. 

 

4.3.2 Termination Decision 

The termination decision prevents the encoder from building a larger tree with a lot of 

computational complexity owing to the webs small CUs. If the encoder has already finished 

the CU mode decision in the current depth, the termination decision is determined by the 

following conditions. The mode decision whose depth is greater than the current depth will 

not be conducted when all the conditions are satisfied. Fig. 14 shows an example of 

termination decision, and the current encoded CU will not build any nodes with the depth 

larger than 0 in the CU quadtree. The termination decision often occurs in the smooth residual 

texture region or the static background. 

 

 The co-located CU does not have any smaller CU. 

 3 or more neighboring CUs do not have any smaller CU. 

 The current encoding frame is not I frame. 
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Fig. 14 An example of termination decision 

 

4.3.3 Basic Fast CU Size Decision Scheme 

 

Fig. 15 shows the flowchart of the basic fast CU size decision algorithm. It should be 

noted that the 2 fast decisions will not happen simultaneously in each depth of the encoded 

CU. From the above sections, we know that splitting decision and termination decision will 

not happen in I frame because a mismatched CU size in intra frame will result in a great 

PSNR drop or bit rate increase. Moreover, for the co-located CU and the consistence of 

reference CU size, we set up the experimental conditions for low delay P having only one 

reference frame (only one co-located CU) and the GOP size is equal to one to avoid the 

automatic increase in QP. 
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Fig. 15 Flowchart of basic fast CU size decision algorithm  

 

4.4 Additional Tools 

In this section, we try three methods to improve the performance of fast CU size decision. 

There is no BD-rate measurement in [20] and [21], so we check our luma BD-rate, BD-PSNR, 

and R-D curve to find the weakness of the basic algorithm and enhance it for better efficiency.  
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First, we observe that the coding loss increases as QP gets larger, such as 32 and 37. 

Nevertheless, the high QP setting is important for real-time application, and we should solve 

this problem. Secondly, the time-saving is small in the lower QP cases. We want to solve this 

problem because the encoder usually spends a lot of time compressing the videos at lower QP. 

In the following sub-sections, we analyze the data from the result of the proposed basic 

algorithm and design the modifications. 

 

4.4.1 Frame Level Parameter Control 

We collect the result of eight high-resolution video sequences with 32 frames per 

sequence, and find that the performance is better than that of 16/2 CU structure which is 

defined in section 3.2, but the coding loss is too high. Table 6 lists the BD-performance and 

time reduction ratio, and Fig.16 shows the R-D curve of sequence “Basketball”. 

The reference curve is the original HM, and the test curve is our proposed method. We 

can find that two curves separate far in the higher QP cases, and we also notice that the time 

reduction ratio is very high, which may drop some necessary mode calculations. In [21], the 

depth-consideration fast algorithm sets the target of complexity from 40% to 100%, and there 

is a large amount of R-D performance drop between 40% and 60%. Therefore, we like to 

modify the method to maintain an appropriate complexity and to improve its BD-performance. 

The improved method in [21] defines two types of frames: the unconstrained frames ( uF ) and 
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the constrained ones ( cF ). cF  represents that the CU in the frame is encoded with the fast 

algorithm. On the contrary, the CU in uF  is processed in the original way to find the best CU 

quadtree structure. Each uF  is followed by a number of cN  constrained frames cF  as 

illustrated by Fig. 17. 

 

Table 6 Performance of the basic fast CU decision algorithm 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -50.58% -37.73% -33.35% -35.83% -38.29% -41.56% -39.06% -40.78% -39.65% 

Time-Saving(QP27)  -57.94% -41.80% -44.40% -51.38% -36.90% -51.74% -50.37% -53.91% -48.56% 

Time-Saving(QP32)  -56.62% -46.10% -50.93% -55.60% -45.34% -60.38% -56.03% -60.28% -53.91% 

Time-Saving(QP37)  -55.81% -53.26% -56.15% -61.44% -54.38% -65.85% -61.48% -67.31% -59.46% 

AVG. Time-Saving -55.24% -44.72% -46.21% -51.06% -43.73% -54.88% -51.74% -55.57% -50.39% 

Y BD-rate (%) 5.311 5.347 3.906 7.559 1.650 7.661 4.323 8.203 5.495 

Y BD-PSNR (dB)  -0.147 -0.160 -0.086 -0.127 -0.049 -0.200 -0.132 -0.181 -0.135 

 

 

Fig. 16 R-D curve of Basketball 
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Fu FuFc Fc Fc Fc Fc

Nc
 

Fig. 17 Example of Nc=3 

In Table 6, the BD performance drops due to the unlimited cN . Our original proposed 

algorithm sometimes takes the reconstructed frame with lower PSNR as the reference frame 

which results in inaccurate prediction. Therefore, we should pay attention to the PSNR loss 

with fixed cN  and set the tolerable bound for the PSNR decrease. The experiments set cN  

equal to 3, 6, 9, 12, and 15. Fig. 18 shows the suitable cN  as the intersection of two lines for 

QP=22, 27, 32, and 37, where over 75% sequences limit their drops of PSNR under 0.1dB 

compared to the result of the original HM. The testing sequences and the frame number are 

the same as the stated in the beginning of this section. 

We use the results from Fig. 18 to select the proper integral cN  for the corresponding 

QP. Then, we estimate the relationship between cN and QP. The minimum square error 

method is adopted for finding the approximated linear equation, which is 

 ( 0.32 14.94), 46    cN round QP QP  (6) 

cN  must be a positive integer, so we add the round operation outside the linear equation, and 

thus cN  is 0, when QP is larger than 46. The four QP values are taken into (6) iteratively to 
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produce stable cN . Table 7 lists the finally selected cN  to the corresponding QP. Thus, we 

limit the value of cN  in our proposed fast algorithm. The BD-performance in Table 8 is 

much better than that in Table 6, and we also control the average time complexity at about 

60%.The resulting R-D curves in Fig. 19 are closer to each other than those in Fig. 16, 

especially in the high QP region. The same improvement of R-D curve trend is also found in 

other sequences.  

Nc is equal to 5 as QP=32. Therefore, we know the 7
th

 frame and the 13
th

 frame are 

encoded originally, and the other frames in Table 9 are processed with fast CU size decision. 

In Table 9, the usage bits per frame alter less than 28% between the consecutive frames, and 

the maximum changed PSNR value is smaller than 0.14 dB. Although the reconstruction 

videos seem continuous as the original way, we should consider the stable bits usage and the 

video quality for the general applications. 

Table 7 Specified QP versus Nc 

QP 22 27 32 37 

Nc 8 6 5 3 

Table 8 BD-performance and time reduction ratio of limited Nc 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22) -41.54% -33.41% -31.47% -31.57% -35.91% -34.27% -33.46% -32.43% -34.26% 

Time-Saving(QP27) -45.73% -33.05% -36.50% -40.78% -32.31% -40.75% -39.23% -41.21% -38.70% 

Time-Saving(QP32) -44.32% -35.11% -39.86% -42.78% -33.90% -46.06% -43.99% -44.93% -41.37% 

Time-Saving(QP37) -40.10% -37.53% -40.19% -42.76% -37.67% -46.42% -44.29% -46.64% -41.95% 

AVG. Time-Saving -42.92% -34.78% -37.01% -39.47% -34.95% -41.88% -40.24% -41.30% -39.07% 
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Y BD-rate (%) 2.907 1.888 1.530 2.992 0.567 1.234 1.579 1.755 1.807 

Y BD-PSNR (dB) -0.080 -0.057 -0.032 -0.049 -0.018 -0.029 -0.049 -0.040 -0.044 

Table 9 PSNR and bits measurements at QP=32 

Vidyo1 PSNR (dB) bits  BQTerrace PSNR (dB) bits  

Frame7 39.5052 13016 Frame7 34.1248 193544 

Frame8 39.4256 11408 Frame8 34.1320 201480 

Frame9 39.4629 10016 Frame9 34.1214 201984 

Frame10 39.4524 9432 Frame10 34.1148 200944 

Frame11 39.3932 9656 Frame11 34.1008 200216 

Frame12 39.3379 10848 Frame12 34.1081 197904 

Frame13 39.4740 13784 Frame13 34.1911 211504 

 

 

Fig. 18 Experiment for choosing cN  

The solid line means the ratio under the tolerable bound, and the dashed horizontal line 

represents the expected ratio which equals 75%. 

 



 

 45 

 

Fig. 19 R-D curve of Basketball with Nc control 

 

4.4.2 LCU Level Parameter Control with Error-Bound 

In this section, we focus on analyzing the distortion statistics between the original video 

and the reconstructed video at LCU level. By limiting our algorithm working in the high 

distortion region of the previous frame, the HEVC inter-prediction scheme can produce better 

matching block from the reconstructed frame. It should be noted that the data in this section is 

based on CU size fast decision with splitting information, and the used cN  values are 

different from those in other sections in this thesis. 

At the beginning, we test our proposed algorithm including the cN
 
value control on 

eight high resolution sequences with 32 frames per sequence. Fig. 20 shows the probability 

density distribution of the sum of the absolute distortion (SAD) in each LCU at various QP. 
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Then, we also apply the minimum square error method to estimate the relationship between 

QP and the 3% bound of SAD as 

 
,

 error bound (3%) = 1332.708 QP - 22694.336  (7) 

where 3% means the top 3% error in our collected SAD data. In Fig. 20, we divide all 

collected data within the corresponding QP into 100 groups to calculate its probability density 

distribution, and the red dash lines in Fig. 20 indicates the position of the top 3% error for 

each QP. 

When we insert 4 QP values into (7), we find that the estimated error bound values do 

not match our assumption. This is particularly true for the case of QP 22 and the 

corresponding error bound is 6625.24. The bound is on the left of the peak (near 7000) and 

thus excludes over 10% LCU for fast algorithm which decreases the time reduction. For 

accurate error bound, we try the second order approximation equation, and the result is 

 2 error bound (3%) = 33.222 QP  -627.39 QP + 5178.922  (8) 

Although the computation of second order equation is high, it gives us a better fitting 

curve to the original data. Fig. 21 shows the curve fitting, and Table 10 lists the 3% error 

bound of the specified QP. We add error bound threshold for LCU skipping into our proposed 

fast algorithm with limited cN , and the simulation results of 1080P sequences with 32 frames 

per sequence are shown in Table 11. 
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Fig. 20 Error bound (3%) for SAD 

 

 

Fig. 21 Second order curve fitting for error bound (3%) 
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Table 10 Specified QP versus error bound (3%) 

QP 22 27 32 37 

ErrorBound (3%) 7455.79 12458.23 19121.77 27446.41 

 

Table 11 BD-performance and time reduction ratio with 3% error bound 

Test Sequence Kimono Park Cactus Basketball BQTerrace 

Time-Saving(QP22) -41.67% -20.22% -3.22% -21.77% -11.68% 

Time-Saving(QP27) -47.97% -32.46% -29.37% -39.94% -15.55% 

Time-Saving(QP32) -45.67% -35.55% -38.54% -43.27% -24.08% 

Time-Saving(QP37) -41.65% -37.09% -39.70% -43.82% -32.57% 

AVG. Time-Saving -44.24% -31.33% -27.71% -37.20% -20.97% 

Y BD-rate (%) 3.062 2.083 1.296 2.972 0.455 

Y BD-PSNR (dB) -0.085 -0.063 -0.027 -0.051 -0.013 

 

We only try 1080P sequences and discontinue trying other ones because the time 

reduction significantly decreases in the low QP setting. Nevertheless, the BD-performance 

improves a little bit. Thus, we can still use this method but this is a concern on time reduction. 

Therefore, the final scheme sets the threshold bound only on the QP equals 32 and 37. The 

simulation result with 64 frames per sequence is shown in Table 12. To test its robustness, we 

add eight lower resolution sequences to check the effect of error bounds. Table 13 shows the 

simulation result without error bound for comparison. 

Table 12 Simulation result with 3% error bound with 64 frames per sequence 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22) -38.77% -33.45% -32.53% -30.92% -35.96% -37.67% -37.67% -34.24% -35.15% 
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Time-Saving(QP27) -45.38% -33.71% -37.57% -40.72% -31.92% -44.68% -44.98% -43.37% -40.29% 

Time-Saving(QP32) -44.14% -35.07% -39.06% -42.48% -23.23% -50.37% -47.76% -47.78% -41.24% 

Time-Saving(QP37) -41.11% -38.36% -41.36% -43.14% -33.13% -51.69% -48.88% -48.83% -43.31% 

AVG. Time-Saving -42.35% -35.15% -37.63% -39.32% -31.06% -46.10% -44.82% -43.56% -40.00% 

Y BD-rate (%) 3.364 2.395 2.063 3.229 0.696 1.702 2.530 2.430 2.301 

Y BD-PSNR (dB)  -0.092 -0.074 -0.044 -0.061 -0.018 -0.043 -0.073 -0.055 -0.058 

 

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG. 

Time-Saving(QP22) -32.15% -31.69% -30.35% -28.53% -21.46% -21.88% -23.67% -23.15% -26.61% 

Time-Saving(QP27) -32.35% -29.82% -28.96% -28.21% -22.15% -20.29% -19.96% -20.83% -25.32% 

Time-Saving(QP32) -31.76% -26.74% -11.68% -22.43% -22.22% -18.09% -9.48% -18.37% -20.10% 

Time-Saving(QP37) -32.19% -27.48% -13.56% -22.96% -23.58% -20.63% -11.65% -19.76% -21.48% 

AVG. Time-Saving -32.11% -28.93% -21.14% -25.53% -22.35% -20.22% -16.19% -20.53% -23.38% 

Y BD-rate (%) 4.413 2.309 0.510 1.762 1.611 0.662 0.161 0.820 1.531 

Y BD-PSNR (dB) -0.174 -0.094 -0.025 -0.075 -0.08 -0.028 -0.008 -0.04 -0.066 

 

Table 13 Simulation result without error bound with 64 frames per sequence 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22) -39.19% -33.60% -32.56% -32.48% -37.12% -38.12% -37.62% -34.90% -35.70% 

Time-Saving(QP27) -45.27% -34.25% -37.86% -42.01% -32.66% -45.15% -45.06% -44.35% -40.83% 

Time-Saving(QP32) -44.11% -36.19% -41.76% -43.72% -35.01% -51.07% -48.21% -48.55% -43.58% 

Time-Saving(QP37) -41.12% -39.17% -43.51% -44.55% -41.48% -52.18% -49.53% -49.77% -45.16% 

AVG. Time-Saving -42.42% -35.80% -38.92% -40.69% -36.57% -46.63% -45.11% -44.39% -41.32% 

Y BD-rate (%) 3.364 2.383 2.237 3.217 0.818 1.702 2.529 2.430 2.335 

Y BD-PSNR (dB) -0.092 -0.073 -0.047 -0.062 -0.024 -0.043 -0.073 -0.055 -0.059 

 

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG. 

Time-Saving(QP22) -31.47% -30.51% -29.38% -27.90% -23.54% -23.17% -24.38% -23.22% -26.70% 

Time-Saving(QP27) -30.98% -28.75% -27.94% -28.07% -22.88% -20.61% -21.19% -21.51% -25.24% 

Time-Saving(QP32) -31.90% -29.03% -25.93% -27.43% -24.06% -21.17% -19.56% -20.44% -24.94% 

Time-Saving(QP37) -32.61% -29.80% -25.83% -26.56% -25.64% -24.25% -19.34% -21.35% -25.67% 

AVG. Time-Saving -31.74% -29.52% -27.27% -27.49% -24.03% -22.30% -21.12% -21.63% -25.64% 

Y BD-rate (%) 4.509 2.540 0.723 2.092 1.566 0.903 0.216 1.029 1.697 

Y BD-PSNR (dB) -0.178 -0.102 -0.037 -0.09 -0.078 -0.039 -0.011 -0.052 -0.073 
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 We find that the BD-performance improves a little but not much, especially in some 

worst cases. Although the error bound scheme reduces the efficiency of time saving, we still 

increase the bound up to 5% to compare their performance and evaluate the necessity of the 

error bound. The comparison is in Table 14. 

 

Table 14 Comparison of different ratios of error bound  

High resolution sequences(1080P,720P) Low resolution sequences 

Error Bound BD-rate (%) BD-PSNR(dB) Time saving Error Bound BD-rate (%) BD-PSNR(dB) Time saving 

none 2.335 -0.059 -41.32% none 1.697 -0.073 -25.64% 

3% 2.301 -0.058 -40.00% 3% 1.531 -0.066 -23.38% 

5% 2.297 -0.057 -39.86% 5% 1.517 -0.065 -22.33% 

 

From Table 14, we know that increasing the ratio of the error bound is not useful for 

coding gain, and there are 2 phenomena we notice in comparing Table 12 to Table 13. Firstly, 

the performance of “Kimono” seems no different with the error bound. Secondly, the time 

reduction becomes about half in the sequence of “Party”. For investigate these cases, we 

analyze their SAD distribution separately, and find that the measurement of error bound 

scheme is too rough for representing the individual sequences. The SAD distribution of 

“Kimono” is shown in Fig. 22, and the 3% threshold decided by all sequences does not work 

on the “Kimono” because its PSNR is higher than the average PSNR of the high resolution 

sequences. On the other hand, the threshold limits about 50% case for fast algorithm in “Party” 

because the threshold is located near the center of its SAD probability density distribution 
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which is shown in Fig. 23. In conclusion, we remove this tool from our algorithm due to the 

large variation of probability distribution of individual sequences and additional operations of 

calculation for SAD values. An effective threshold scheme should consider both PSNR and 

bitrate in setting up the adaptive threshold for different sequences. 

 

 

Fig. 22 Probability density distribution of SAD of “Kimono” 

 

 

Fig. 23 Probability density distribution of SAD of “Party” 
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4.4.3 2NxN/Nx2N Decision after Splitting Decision 

 

In the last two sections, we notice that the time reduction of low QP is lower than that of 

high QP. We also know that the small sized CUs are often used in lower QP case, so the 

splitting decision occurs easily in the region of many small sized CUs. However, the time 

saving of the splitting decision is less than that of the termination decision, so we are expected 

to use only one inter prediction after the splitting decision to reduce the complexity further. 

There are 2 possible inter modes examined originally after the splitting decision, 

2 / 2N N N N  . We assume that the shape is highly dependent on the size of neighboring 

CUs. If the number of small CU in the horizontal direction is larger than that in the vertical 

direction, the encoder will compute the R-D cost of 2N N in the current depth. Otherwise, 

we will only use 2N N  prediction instead. The positions of reference CUs for depth 0 and 

1 are shown in Fig. 24, and those for depth 2 are shown in Fig. 25.  

 

In the example of Fig. 24, the current encoded CU of depth 1 refers CU1 and CU2 as the 

horizontal referenced CUs, and takes CU3 and CU4 as the vertical referenced CUs. That is, as 

the depth of current encoded CU is smaller than 2, the referenced CUs are the sub-CUs at the 

top and the left, and we decide the suitable mode by the splitting bits in those referenced CUs. 

However, we only save the splitting information of CU up to depth 2, so we should adjust the 
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decision rule for the encoded CU in the depth 2. In Fig. 25, CU5 and CU6 are horizontal 

referenced CUs for the current encoded CU of depth 2, and CU9 and CU10 are its vertical 

referenced CUs. As the encoded CU shifts in range of 3 3  in the current depth, the 

referenced CUs shift in the same way. It is should be noted that CU13 is located at the bottom 

row of the LCU, then the encoder takes CU7 and CU8 as the referred CUs due to that the CUs 

under CU8 are not encoded. For symmetry, the CU14 located the right column of LCU refers 

CU11 and CU12 to decide the shape of prediction in the current depth. The rest CUs after the 

splitting decision in the right edge and the bottom edge of green LCU refers the corresponding 

CUs with the similar way we stated above.  

 

The design scheme in this section based on the assumption that after the splitting 

decision, the 2 / 2N N N N  decision is computed for choosing the only proper inter mode 

in the current depth. Table 15 shows the improvement of time reduction by the 

2 / 2N N N N   decision, the number of testing frame is 64 per sequence. Obviously, the 

time reduction increases 3% in average with negligible coding loss, especially in lower QP, 

where higher percentage of splitting decisions happening. 
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Fig. 24 An example of 2NxN/Nx2N Decision in depth 1 
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Fig. 25 An example of 2NxN/Nx2N Decision in depth 2 
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Table 15 Performance for schemes with and without 2NxN/Nx2N decision  

With 

2NxN/Nx2N 

Decision? 

Average 

Time 

reduction 

QP=22 

Average 

Time 

reduction 

QP=27 

Average 

Time 

reduction 

QP=32 

Average 

Time 

reduction 

QP=37 

Average 

Time 

reduction 

BD-rate 

(%) 

BD-PSNR 

(dB) 

No(1080P,720P) -34.28% -38.75% -42.01% -41.53% -39.14% 2.089 -0.052 

No (Other) -25.01% -23.31% -23.72% -23.39% -23.86% 1.417 -0.062 

Yes(1080P,720P) -40.18% -41.95% -44.15% -42.75% -42.26% 2.050 -0.051 

Yes (Other) -30.81% -28.16% -27.07% -25.55% -27.90% 1.406 -0.060 

 

4.5 Overview of the Overall Proposed Algorithm 

 

In this chapter, we firstly propose the basic algorithm for fast CU size decision, and then 

we design two useful additional tools to enhance its coding performance and to increase time 

reduction, respectively. The detailed experiments and discussions are in the next chapter. The 

final flowchart of our algorithm is depicted in Fig. 26. The main additional parts are Nc 

control block and Nx2N decision block. Nc decision block executes before the splitting 

decision to reduce the coding loss by long-term Nc. Nx2N decision block places after the 

splitting decision to reduce the calculation from the unnecessary PU in the current depth. Due 

to these tools, our proposed scheme increases its efficiency. 
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Fig. 26 Flowchart of overall proposed algorithm for processing an LCU 
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Chapter 5 HEVC Experiments and Discussions 

 

In this chapter, we examine the performance of the proposed algorithm by testing 16 

sequences with 100 frames per sequence. Then, we discuss the different time reduction 

efficiency due to the different depth combinations. The experiment conditions and the 

platform are already stated in section 2.3. The rest of this chapter is organized as follows. The 

performance measurements for all experiments in this study are listed in section 5.1, and then 

section 5.2 conducts several experiments and discussions for ECU, CFM, and our proposed 

algorithm. At the end of this chapter, we analyze the useful combination of the above 

algorithms. 

5.1 Performance Measure 

The time reduction, also called time saving (TS) in the thesis, is defined as  

 
,

( ) ( )
( ) 100%

( )

tested i referenced i

i

referenced i

Time QP Time QP
TS QP

Time QP


   (9) 

where ( )referenced iTime QP  is the overall encoding time for referenced setting, such as the 

original HM5.0, and ( )tested iTime QP  is the overall encoding time for the tested setting with 

the fast algorithm. iQP  is usually set as 22, 27, 32, or 37 ( 1QP , 2QP , 3QP , or 4QP ) for 

BD-performance measurement described later.  In general, we use the arithmetic average to 

represent the overall time saving ( averageTS ) as 
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4

1

1

4
average i

i

TS TS


    (10) 

On the other hand, we also need a way to show the loss in the R-D performance as the 

trade-off for time reduction. The BD-rate and BD-PSNR [16] are adopt to measure the 

average performance in the most standard contests, so we use it to show the average 

difference between 2 R-D curves produced by the reference scheme and the proposed scheme. 

The BD-measurement [16] only needs the R-D results of 4 iQP  as mentioned previously to 

interpolate the overall R-D curve and further to estimate the average difference between 2 

schemes. 

When we want to observe the R-D performance of the specified QP, we analyze the data 

based on the formulas defined as (11) and (12) to represent the difference between the 

reference scheme and the proposed scheme. 

 tested referencedPSNR PSNR PSNR    (11) 

 (%) 100%
tested referenced

referenced

BitRate BitRate
BitRate

BitRate


    (12) 

Last but not the least, the depth analysis is essential to know the strong and weak points 

of procedure for our fast decision algorithm. Thus, we should compare the depth changing 

trend due to the fast size decision to show the usefulness of each proposed tool. In (13), 

AvgDepth means the average depth per LCU in the frame. iCUDepth  is the depth of thi CU, 

iCUArea

LCUArea
 is the area ratio of the thi CU to LCU, FrameArea is the area of the Frame, and n 

is the number of CU in a frame. This depth measurement is defined by [21]. 
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1

1

( / )

n
i

i

i

CUArea
AvgDepth CUDepth

FrameArea LCUArea LCUArea

   (13) 

 

5.2 Experimental Results and Discussions 

In this section, we show the results of our proposed fast algorithm including cN  control 

scheme and 2 / 2N N N N   decision described in subsection 5.2.1. Here, we also analyze 

the depth changing-trend in videos with different characteristics. Then, we simulate the 

original HM plus the ECU and CFM tools with the original low delay P and low complexity 

configuration in subsection 5.2.2, and compare them to the results of our schemes with 

GOP=1 and referenced frame=1. For the aggressive design, we add ECU and CFM into our 

proposed algorithm, and discuss the advantages and disadvantages caused by integrating these 

tools together. Hence, we have to find an efficient way to use these tools at proper QP values 

in subsection 5.2.3. 

5.2.1 Fast CU Size Decision 

The performance of our proposed fast decision in section 4.5 is listed in Table 16 (64 

frames per sequence) and in Table 17 (100 frames per sequence) respectively. The reference 

scheme is the original HM5.0 without ECU and CFM.  The simulation data in Table 16 

shows that our scheme can averagely provide about 43 % overall encoding time saving in the 

high resolution test sequences. On the average, the luma BD-rate increment is about 2.24% 

and the luma BD-PSNR loss is about 0.06 dB. 
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When the number of frames increases, the BD-performance decreases slightly because 

we set the number of the reference frame is 1 to lower complexity but the inaccurate 

prediction in the IPPP sequence type also decreases coding performance. Hence, we should 

select a suitable intra period for the fast decision scheme, when the loss is not tolerated. The 

changing trend is about -0.2% BD-rate as adding the additional 32 encoded frames, averagely. 

Table 16 Performance of the overall proposed algorithm (64 frames/sequence) 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22) -42.73% -39.54% -39.84% -38.61% -43.65% -39.39% -40.03% -37.62% -40.18% 

Time-Saving(QP27) -45.88% -36.83% -39.77% -43.17% -37.57% -44.09% -44.64% -43.66% -41.95% 

Time-Saving(QP32) -45.76% -38.21% -42.96% -43.80% -36.73% -49.53% -47.90% -48.27% -44.15% 

Time-Saving(QP37) -40.04% -37.47% -41.86% -41.82% -39.34% -48.72% -46.19% -46.58% -42.75% 

AVG. Time-Saving -43.60% -38.01% -41.11% -41.85% -39.32% -45.43% -44.69% -44.03% -42.26% 

Y BD-rate (%) 3.094 2.173 1.909 2.723 0.789 1.059 2.460 2.189 2.050 

Y BD-PSNR (dB) -0.084 -0.067 -0.040 -0.051 -0.022 -0.024 -0.074 -0.049 -0.051 

 

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG. 

Time-Saving(QP22) -34.57% -35.71% -35.81% -33.49% -24.73% -27.29% -28.15% -26.72% -30.81% 

Time-Saving(QP27) -33.20% -31.82% -33.30% -31.62% -23.73% -23.45% -24.18% -23.96% -28.16% 

Time-Saving(QP32) -33.34% -30.81% -30.72% -30.96% -23.47% -22.56% -21.67% -23.02% -27.07% 

Time-Saving(QP37) -31.69% -29.47% -27.97% -27.98% -23.83% -22.87% -18.65% -21.96% -25.55% 

AVG. Time-Saving -33.20% -31.95% -31.95% -31.01% -23.94% -24.04% -23.16% -23.92% -27.90% 

Y BD-rate (%) 3.583 2.231 0.613 1.773 1.255 0.788 0.187 0.819 1.406 

Y BD-PSNR (dB) -0.143 -0.090 -0.030 -0.077 -0.062 -0.033 -0.009 -0.040 -0.061 

Table 17 Performance of the overall proposed algorithm (100 frames/sequence) 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -41.95% -39.66% -39.66% -38.74% -43.05% -43.60% -40.60% -37.02% -40.54% 

Time-Saving(QP27)  -45.09% -36.43% -39.73% -45.33% -36.69% -48.33% -45.06% -43.06% -42.47% 

Time-Saving(QP32)  -44.97% -37.73% -42.70% -47.73% -36.87% -52.83% -48.97% -47.41% -44.90% 

Time-Saving(QP37)  -39.85% -36.84% -41.02% -45.67% -41.82% -51.89% -46.32% -46.35% -43.72% 

AVG. Time-Saving -42.97% -37.67% -40.78% -44.37% -39.61% -49.16% -45.24% -43.46% -42.91% 
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Y BD-rate (%) 3.112 2.231 2.052 2.775 0.934 1.839 2.615 2.379 2.242 

Y BD-PSNR (dB) -0.084 -0.069 -0.044 -0.056 -0.026 -0.043 -0.077 -0.053 -0.057 

 

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG. 

Time-Saving(QP22) -34.44% -35.32% -36.13% -34.32% -26.48% -27.52% -28.50% -27.25% -31.25% 

Time-Saving(QP27) -33.37% -31.55% -33.15% -32.32% -25.15% -23.43% -24.53% -24.53% -28.50% 

Time-Saving(QP32) -32.98% -31.29% -30.49% -30.99% -24.49% -22.67% -22.06% -23.07% -27.26% 

Time-Saving(QP37) -31.12% -29.63% -27.72% -28.40% -23.65% -23.49% -20.02% -22.23% -25.78% 

AVG. Time-Saving -32.98% -31.95% -31.87% -31.51% -24.94% -24.28% -23.78% -24.27% -28.20% 

Y BD-rate (%) 3.422 2.747 0.588 1.923 1.317 0.883 0.301 1.008 1.524 

Y BD-PSNR (dB) -0.134 -0.109 -0.028 -0.084 -0.066 -0.036 -0.015 -0.051 -0.065 

 

It should be noted that the low resolution sequences has less time saving averagely. The 

main reason is that the depth combination of low resolution sequences is often different from 

that of the high resolution sequences. In general, the encoder takes more 8 8  CUs as QP 

equals 22, and the large sized CU is usually used in the case of the higher QP and the static 

region. Our proposed algorithm consists of splitting decision and termination decision. 

Splitting decision can speed up the convergence of small CUs area. On the other hands, 

termination decision cuts off unnecessary depth in the CU quadtree construction resulting in 

larger CU sizes. The depth data of our experiments explains the above observation. Here, we 

examine 3 sequences with the specified QP in the consecutive frames, Vidyo1 (QP=32), 

BQsquare (QP=32), and BQTerrence (QP=22).  In Table 18, the depth distribution is listed 

from 7
h
 to 13

th
 frames for observing the complete acceleration period with QP=32. It is should 

be mentioned that all the depth measurements in the section include the area factor. 
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Table 18 Depth percentage (QP is 32) 

Vidyo1 Depth0 Depth1 Depth2 Depth3 BQsquare Depth0 Depth1 Depth2 Depth3 

Frame7 44.0% 28.8% 20.0% 7.3% Frame7 0.0% 15.4% 28.7% 55.9% 

Frame8 61.8% 21.9% 14.3% 2.1% Frame8 0.0% 19.5% 33.3% 47.2% 

Frame9 59.1% 25.4% 14.6% 0.9% Frame9 0.0% 19.5% 34.1% 46.4% 

Frame10 65.3% 16.6% 17.6% 0.5% Frame10 0.0% 14.4% 37.9% 47.7% 

Frame11 60.0% 20.8% 18.9% 0.4% Frame11 0.0% 12.3% 36.4% 51.3% 

Frame12 68.4% 17.1% 14.2% 0.2% Frame12 0.0% 16.4% 26.7% 56.9% 

Frame13 51.6% 26.6% 16.0% 5.9% Frame13 0.0% 20.5% 28.5% 51.0% 

 

We notice that the larger CUs are seldom used in the sequence “BQsquare”. The same 

phenomenon usually happens in the small sized videos even when QP is 37. Table 19 shows 

that the depth combination of the 10
th

 frame in all small sequences as QP equals 37. For 

comparison, we also list the depth combination in the high resolution videos with the same 

conditions in Table 20. 

Table 19 Depth percentage of the 10
th

 frame in low resolution sequences (QP=37) 

Frame10 BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses 

Depth0 49.2% 44.1% 3.1% 1.0% 32.8% 4.1% 0.0% 0.0% 

Depth1 24.1% 29.2% 25.6% 38.7% 32.8% 45.1% 31.8% 11.3% 

Depth2 20.5% 18.5% 42.9% 42.2% 23.8% 37.7% 41.0% 55.9% 

Depth3 6.2% 8.1% 28.4% 18.0% 10.5% 13.1% 27.2% 32.8% 

Table 20 Depth percentage of the 10
th

 frame in HD sequences (QP=37) 

Frame10 Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 

Depth0 25.5% 35.4% 55.7% 55.5% 39.5% 75.6% 77.3% 80.9% 

Depth1 54.0% 39.8% 24.0% 31.5% 32.6% 18.0% 12.4% 15.4% 

Depth2 19.4% 20.8% 16.7% 11.5% 22.6% 5.9% 9.8% 3.4% 

Depth3 1.1% 4.0% 3.5% 1.5% 5.3% 0.6% 0.5% 0.3% 
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The time saving measure is highly depends on depth combination. For example, Vidyo1 

has many large CUs in the case of QP=32, and its depth combination tends to be larger in size 

because the termination decision works frequently. The time reduction ratio analysis of 

Vidyo1 is listed in Table 21. Moreover, we also find the depth information of BQsquare in 

Table 18 with large amount small size CU, so the splitting decision is the major fast decision 

operation as shown in Table21. 

Table 21 Time reduction ratio analysis of Vidyo1 and BQsquare 

Vidyo1 (QP32 with encoding 64frames) BQsquare (QP32 with encoding 64frames) 

Fast Setting Time (sec) TS Fast Setting Time (sec) TS 

None 581.968 0% None 106.910 0% 

Overall 293.730 -49.53% Overall 83.742 -21.67% 

Only 

Termination  
306.052 -47.41% 

Only 

Termination  
102.062 -4.53% 

Only  

Splitting  
570.772 -1.92% 

Only  

Splitting  
87.600 18.06% 

 

Although Vidyo1 has more time reduction than that of BQsquare, it does not mean that 

the splitting decision is useless relative to the termination decision. It depends on the depth 

combination and the CU distribution in a frame. For example, Sequence “BQTerrence” 

(QP=22) with dense small size CUs leads to that the splitting decision is the major fast 

decision and that the time saving is about 44%. Table 22 lists its depth combination and Table 

23 shows its time reduction analysis. Further, we show the real examples of 9
th

 frame of 

sequences “BQsquare (QP=32)”, “Vidyo1 (QP=32)”, and “BQTerrence (QP=22)”, 
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respectively in Fig. 27, Fig. 28, and Fig 29. We also show the depth convergence processes of 

“BQsquare (QP=32)” and “Vidyo1 (QP=32)” from 12
th

 frame to 17
th

 frame in the pie chart 

respectively in Fig. 30 and Fig. 31. 

 

Table 22 Depth percentage of BQTerrence (QP=22) 

BQTerrence Frame12 Frame13 Frame14 Frame15 Frame16 Frame17 

Depth 0 2.0% 2.4% 2.6% 2.4% 2.0% 2.2% 

Depth 1 12.9% 12.0% 12.7% 10.7% 11.5% 11.6% 

Depth 2 13.7% 13.6% 12.1% 15.8% 13.4% 13.5% 

Depth 3 71.5% 71.9% 72.6% 71.1% 73.1% 72.7% 

Table 23 Time reduction ratio analysis BQTerrence (QP=22) 

Fast Setting None Overall Only Splitting Only Termination 

Time(Sec) 3536.034 1992.612 2168.625 3367.291 

TS 0% -43.65% -38.67% -4.77% 

 

 

Fig. 27 CU distribution of the 9
th

 frame of BQsquare (QP=32) 
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Fig. 28 CU distribution of the 9
th

 frame of Vidyo1 (QP=32) 

 

 

Fig. 29 CU distribution of the 9
th

 frame of BQTerrence (QP=22) 
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According to the CU distribution in Fig. 27 and Fig. 29, we find that sequence 

“BQTerrence” has densely populated small CU in the center. Therefore, the splitting decision 

in sequence “BQTerrence” appears more often than that in sequence “BQsquare”. 

 

Frame 7

Frame 9

Frame 8

Frame 10

Frame 11 Frame 12

 

Fig. 30 Pie chart of depth amount ratio of BQsquare (QP=32) 
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Frame 7 Frame 8

Frame 9 Frame 10

Frame 11 Frame 12

 

Fig. 31 Pie chart of depth amount ratio of Vidyo1 (QP=32) 

From the above experiments and discussions of several frames in three sequences, the 

CU changing trend is dominated by the majority CU sizes. Furthermore, we like to examine 

the CU distribution for the entire encoding period, and we also combine the CU area factor 

with the amount of the specified CU sizes to represent the depth information. Hence, we 
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illustrate two significantly different properties of AvgDepth  defined in (13) for sequences 

“Vidyo1 (QP is 37)” and “BQTerrence (QP is 22)” in Fig. 32 and Fig. 33, respectively. 

 

 

Fig. 32 Average depth of Vidyo1 (QP=37) 

 

 

Fig. 33 Average depth of BQTerrence (QP=22) 
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The majority CU depths are 0 and 1 in Fig.32. When the frame is not Nc, which is 

encoded without our proposed fast decision, the average depth then increases slightly since 

the encoder uses the small size CU for coding detailed residual texture. In Fig. 33, the 

majority CU depths are 2 and 3 obviously. The average depth is almost the same no matter the 

fast decision turns on or off, so the BD loss is the minimal among high resolution sequences. 

However, Fig. 32 and Fig. 33 are extreme examples for explaining the phenomena of 

changing trend. In general, most encoding cases in the middle QP region have the uniform 

depth distribution. Thus, the termination decision and splitting decision both are needed for 

saving time.  

 

In summary, we propose the fast CU size decision algorithm including splitting decision 

and termination decision with 2 additional tools, which are cN  control scheme and 

2 / 2N N N N  decision. When the video is encoded mostly by small sized CUs, the 

encoding procedure can speed up by the splitting decision operation. On the other hand, as the 

encoder uses more large sized CUs for processing the video, it will benefit from the 

termination decision operation. The simulation results of high resolution sequences in Table 

17 show that our fast decision method averagely provides about 43% overall encoding time 

reduction, and the BD-rate increases by about 2.24%. 
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5.2.2 Comparison with ECU/CFM  

In this section, we enable the fast encoding tools, ECU and CFM, to accelerate HM5.0 

without our proposed scheme. The simulation results with the original low delay P with low 

complexity setting (GOP=4 and 4 reference frames) are listed in Table 24 for eight high 

resolution sequences (32 frames per sequence).  

 

Table 24 Simulation results of ECU and CFM with low delay_P loco setting 

Only ECU Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -8.92% -21.29% -15.51% -14.37% -13.88% -47.18% -39.21% -39.27% -24.95% 

Time-Saving(QP27)  -18.53% -37.40% -33.56% -28.52% -40.82% -59.46% -52.29% -54.33% -40.61% 

Time-Saving(QP32)  -31.86% -50.42% -43.71% -40.64% -57.87% -66.24% -60.97% -63.26% -51.87% 

Time-Saving(QP37)  -44.92% -60.55% -51.96% -50.39% -68.05% -70.71% -67.03% -68.92% -60.32% 

AVG. Time-Saving -26.06% -42.42% -36.19% -33.48% -45.16% -60.90% -54.88% -56.45% -44.44% 

Y BD-rate 0.456 0.640 0.765 0.399 1.410 -0.159 0.916 -0.028 0.550 

Y BD-PSNR -0.015 -0.019 -0.014 -0.008 -0.022 0.009 -0.022 -0.001 -0.012 

 

Only CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -16.33% -27.21% -20.64% -21.82% -18.02% -41.10% -35.08% -36.43% -27.08% 

Time-Saving(QP27)  -24.90% -39.38% -33.76% -31.70% -41.24% -49.82% -45.72% -47.16% -39.21% 

Time-Saving(QP32)  -34.93% -47.96% -41.95% -40.00% -51.63% -53.75% -51.50% -52.74% -46.81% 

Time-Saving(QP37)  -43.54% -52.86% -47.24% -46.39% -56.45% -55.88% -54.97% -55.66% -51.62% 

AVG. Time-Saving -29.93% -41.85% -35.90% -34.98% -41.84% -50.14% -46.82% -48.00% -41.18% 

Y BD-rate 0.449 0.756 1.126 1.044 1.046 0.713 0.964 0.622 0.840 

Y BD-PSNR -0.015 -0.023 -0.024 -0.022 -0.021 -0.017 -0.028 -0.018 -0.021 

 

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -20.64% -38.06% -29.46% -28.39% -24.40% -61.66% -52.04% -53.29% -38.49% 

Time-Saving(QP27)  -33.31% -56.06% -48.52% -43.56% -60.85% -74.48% -67.75% -70.85% -56.92% 

Time-Saving(QP32)  -48.60% -68.92% -59.88% -56.35% -76.65% -81.01% -76.77% -78.75% -68.37% 

Time-Saving(QP37)  -61.81% -77.30% -68.48% -66.44% -84.44% -84.91% -82.32% -83.30% -76.13% 
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AVG. Time-Saving -41.09% -60.09% -51.59% -48.69% -61.59% -75.52% -69.72% -71.55% -59.98% 

Y BD-rate 0.804 2.667 3.155 1.469 3.026 0.824 2.553 0.558 1.882 

Y BD-PSNR -0.026 -0.079 -0.062 -0.027 -0.051 -0.024 -0.073 -0.01 -0.044 

 

We notice that the time saving with low QP is less than that with high QP, and it achieves 

about 60% time saving with increasing BD-rate 1.88% when ECU and CFM both turn on. 

Another interesting observation is the side-effect of combining 2 fast algorithms together. For 

example, the ideal maximum time saving is 75% for perfectly combining two 2x faster 

algorithms. That is, the overall time saving is less than the ideal maximum time saving, but 

the overall loss of BD-rate is higher than the sum of their separate coding loss. Unfortunately, 

our proposed method has not been designed for adaptive QP case and multiple referenced 

frames yet, so we simulate the ECU and CFM in HM5.0 with our low delay P and low 

complexity setting (GOP =1 and 1 referenced frames), and the result is listed in Table 25 with 

eight high resolution sequences (64 frames per sequence). 

 

Table 25 Simulation results of ECU and CFM with our low delay_P loco setting 

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -6.34% -5.92% -1.90% -4.98% -5.57% -37.84% -34.89% -27.63% -15.63% 

Time-Saving(QP27)  -15.28% -23.51% -22.77% -19.34% -15.22% -55.57% -49.39% -43.12% -30.53% 

Time-Saving(QP32)  -23.29% -38.69% -37.20% -31.84% -33.24% -69.03% -62.68% -59.87% -44.48% 

Time-Saving(QP37)  -33.49% -53.56% -47.81% -43.49% -57.75% -77.06% -71.64% -70.62% -56.93% 

AVG. Time-Saving -19.60% -30.42% -27.42% -24.91% -27.95% -59.88% -54.65% -50.31% -36.89% 

Y BD-rate 0.513 1.230 0.965 0.818 0.659 -0.976 0.893 0.006 0.514 

Y BD-PSNR -0.014 -0.038 -0.021 -0.016 -0.019 0.026 -0.028 -0.001 -0.014 
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The QP in my setting is smaller than that in the GOP case ( fixed n VS. 

n,n+3,n+2,n+3,n+1, n+3……) , and reference frame=1 makes the rough prediction. Therefore, 

“cbf=0” and “skip mode is the best mode” cannot happen easily especially when QP=22. So, 

the time saving has room to improve. However, the R-D performance of ECU and CFM is 

much better than that of our proposed CU-correlation algorithm.  

 

5.2.3 Combined Fast CU Size Decision with ECU/CFM 

Due to the experiments in section 5.2.2, the performance of ECU and CFM in our setting 

is good for time saving with negligible coding loss. Hence, we should try to combine our 

algorithm with them to get more acceleration. The experiment turns on ECU, CFM, and our 

proposed algorithm with the same testing conditions as Table 25, and the result is shown in 

Table 26. 

 

Table 26 Simulation result of ECU, CFM, and our proposed algorithm  

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22)  -45.66% -41.67% -39.92% -40.69% -44.70% -54.95% -54.25% -49.10% -46.37% 

Time-Saving(QP27)  -50.48% -47.67% -48.59% -48.07% -43.75% -66.03% -63.97% -60.38% -53.62% 

Time-Saving(QP32)  -52.62% -54.30% -57.05% -53.40% -51.91% -74.88% -71.82% -68.99% -60.62% 

Time-Saving(QP37)  -52.47% -61.91% -61.21% -58.17% -65.98% -80.45% -76.58% -75.57% -66.54% 

AVG. Time-Saving -50.31% -51.39% -51.69% -50.08% -51.59% -69.08% -66.66% -63.51% -56.79% 

Y BD-rate 3.495 3.619 3.198 3.833 1.637 3.001 4.164 3.215 3.270 

Y BD-PSNR -0.095 -0.111 -0.068 -0.072 -0.046 -0.072 -0.124 -0.072 -0.083 
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Fig. 34 R-D curve of Basketball in Table 26 

 

The performance reduction of mixed algorithms also occurs in this case. Although the 

time reduction reaches about 57%, the BD rate also increases, too. We observe the R-D curve 

of Basketball in Fig. 34 to find a way to solve this problem. When QP becomes larger, the 

R-D curves separate far as illustrated in Fig. 34. The coding loss mainly comes from the low 

rate regions. Thus, we turn off our algorithm when QP is larger than 29. We take 16 sequences 

with 100 frames per sequence to test the adaptively combined algorithm, and the results are 

listed in Table 27. As QP is smaller than 30, the encoder adopts ECU, CFM, and our fast 

decision method. On the other hand, we only use ECU and CFM to accelerate encoding 

procedure to avoid excessive coding loss when QP is larger than 29.  
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Table 27 Results of the adaptively combined fast algorithm with ECU and CFM 

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG. 

Time-Saving(QP22) -45.59% -42.25% -40.14% -40.65% -44.52% -58.36% -54.96% -48.41% -46.86% 

Time-Saving(QP27) -50.53% -47.33% -48.88% -50.61% -43.30% -68.43% -64.46% -59.14% -54.09% 

Time-Saving(QP32) -22.61% -36.59% -35.74% -35.54% -32.02% -71.13% -65.00% -59.22% -44.73% 

Time-Saving(QP37) -32.97% -51.83% -45.79% -46.35% -57.63% -78.84% -73.36% -70.50% -57.16% 

AVG. Time-Saving -37.93% -44.50% -42.64% -43.29% -44.37% -69.19% -64.45% -59.32% -50.71% 

Y BD-rate 1.791 2.197 2.291 2.432 1.332 1.582 2.671 1.861 2.020 

Y BD-PSNR -0.056 -0.070 -0.054 -0.055 -0.032 -0.050 -0.088 -0.049 -0.057 

 

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG. 

Time-Saving(QP22) -40.29% -39.68% -37.99% -35.70% -35.54% -29.06% -30.32% -29.16% -34.72% 

Time-Saving(QP27) -41.76% -41.06% -37.03% -35.81% -38.63% -29.94% -31.85% -29.02% -35.64% 

Time-Saving(QP32) -28.60% -26.80% -11.21% -11.82% -33.03% -18.83% -17.47% -11.37% -19.89% 

Time-Saving(QP37) -40.02% -38.83% -27.58% -23.17% -42.47% -34.43% -35.71% -20.17% -32.80% 

AVG. Time-Saving -37.67% -36.59% -28.45% -26.63% -37.42% -28.07% -28.84% -22.43% -30.76% 

Y BD-rate (%) 2.589 1.909 0.498 0.947 1.688 1.513 0.431 1.028 1.325 

Y BD-PSNR (dB) -0.098 -0.080 -0.023 -0.039 -0.082 -0.061 -0.019 -0.051 -0.057 

 

From Table 27, our proposed algorithm improves the time saving efficiency in the low 

QP region because the principle of our fast decision method is not using cbf and the skip 

mode to decide the early termination scheme. Moreover, we can combine our algorithm with 

ECU and CFM without implementation conflict. In Table 28, we check the coding 

performance of our proposed method at QP= 22 for high resolution sequences, and the results 

show that the combined method is valuable in improving the time saving for the high bitrate 

applications. 
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 In summary, the combined algorithm not only retains the coding efficiency at the low 

bitrate region but it also reduces computing time at the high bitrate region. On the average, it 

offers about 51% time reduction with the increment of BD-rate about 2.02% for high 

resolution sequences. In addition, it provides 31% time saving but adds the BD-rate 1.33% for 

low resolution sequences.  

 

Table 28 R-D performance of our proposed algorithm (QP= 22) 

Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 

PSNR  -0.109 -0.029 0.004 -0.012 -0.001 -0.120 -0.121 -0.074 

BitRate  -3.53% -0.22% 0.49% 0.41% 0.11% -1.57% -1.56% -0.42% 

TS -41.95% -39.66% -39.66% -38.74% -43.05% -43.60% -40.60% -37.02% 
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Chapter 6 Combined MV and DCT Optimization for 

H.264/AVC Codec 

 

Although we introduce the process of encoding control in section 2.1.3, some details are 

described in this section. The experimental platform and the research topic are different from 

the previous chapters which are based on HEVC. Here, we use H.264/AVC encoder JM 18.0 

[14] as the platform and we explore the effect of transform on ME in video coding. The 

chapter organization is as follows. Section 6.1 introduces the cost functions for MV searching 

in JM18.0 and the related work. Then, we design the algorithm to change the data flow 

concerning the problems mentioned in the related work in section 6.2. Finally, section 6.3 

represents the experimental results and discussions. 

6.1 MV Refinement with DCT result 

A typical H.264 video encoder (such as JM) selects the best motion vector based on the 

sum of absolute difference (SAD) and the sum of absolute transformed difference (SATD) in 

the different accuracy layers to get the matching prediction block. Then, it uses the transform 

coding technique to encode the motion-compensated prediction errors. In baseline profile, a 

residual block is transformed by the 4x4 separable integer DCT (IDCT) or the 4x4 hadamard 

transform (H matrix) as shown in (14) which is an approximation form of IDCT [22] for low 

complexity. 
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In the integer ME, the distortion term in the motion R-D cost function (2) is decided by 

SAD as equation (15) where x and y are the pixel locations, and Dblock is the difference block 

between the referenced candidate block and the original block. In the sub ME (searching the 

MV in the half and the quarter accuracy), the distortion term is calculated with SATD in (16) 

to get less transmitted frequency information for better compression efficiency. 

 

 
,
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SAD Dblock x y  (15) 
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* *
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SATD H Dblock H  (16) 

Although SATD needs little more operations than SAD, the number of searching points 

in the sub ME is only nine points in each level, so the additional encoding complexity from 

hadamard transform is tolerable. 

In [23], the effect of SATD on ME in different layers is discussed and tested. The encoder 

adopts SATD for searching integer MV directly, and averagely gets the 1.85% bitrate saving 

with increasing 781% encoding time as the sub-pixel motion search is unable. However, the 

same method brings little coding loss about 0.39% BD-rate [16] when sub MV is enabled. The 

reason is that SATD aims to match frequencies instead of residual pixels, so the interpolated 
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filter for the sub-pixel accuracy would bring the negative effect. The research in [23] is 

interesting, but there are two problems should be noted. First, the number of searching points 

with SATD is  
2

2 search range 1  which brings too much complexity. Secondly, the experiment 

shows that SAD seems a better way to find MV in integer level. Therefore, we proposed our 

algorithm with concerning about the above problems in the next section. 

 

6.2 Modified MV Selection Scheme 

In this section, we describe the principle behind the proposed combined ME and DCT 

algorithm and its implementation step by step. In the traditional H.264/AVC encoder, the ME 

procedure chooses the integer vector that minimizes (2) with SAD consideration. However, (2) 

does not truly reflect the final distortion and the bit rate of encoded the coded block. 

Therefore, we include (1) into the ME procedure further in selecting MVs to improve coding 

performance. That is, we combine (1) and (2) in the integer ME procedure further. 

The motivation is as follows. Although a selected MV is not the best candidate in the 

MV decision in the integral level, its residual DCT may have fewer large coefficients and thus 

produces fewer bits in the entropy coding in the final stage. Figs. 35‒37 show the image 

examples. Fig. 35 shows the ten times magnified difference between the JM-encoded frame 

and our encoded frame using the proposed method, and QP is 22. In Figs. 36‒37, we compare 

the residual MBs produced by two MVs on the second frame of the FOREMAN sequence. 
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The comparison is done in both the spatial domain and the frequency domain. Our proposed 

algorithm chooses a different quarter MV in the final stage (called Motion RDcost#2 means 

the 2nd best MV in the integer ME step). The resultant residual block has a more clustered 

frequency domain distribution; that is, the large magnitude coefficients are few and are close 

to each other as shown in Fig. 37 (Right). Therefore, these coefficients are easier to compress. 

 

 

Fig. 35 Difference between the JM-encoded and our proposed method 

 

 

Fig. 36 Spatial domain: The residual MBs of Inter-16x16 mode on the second frame.  

The MB location (upper-left corner) is (80,160). Gray values are adjusted to show a range 

from 15 to -20 (the maximum and minimum pixel values). (Left) The residual block produced 

by the MV with Motion RDcost#1. (Right) The residual block produced by the MV with 

Motion RDcost#2. 
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Fig. 37 Frequency domain: The transformed and quantized residual MBs of Fig.4.  

Coefficients are produced by 4x4 integral DCT with QP 22. Gray values are adjusted to show 

a range from 20 to -35. (Left) A residual transform block produced by the MV with Motion 

RDcost#1. (Right) A residual transform block produced by the MV with Motion RDcost#2. 

 

The flowchart of the combined ME and DCT algorithm is to decide the best integer MV 

illustrated by Fig. 38. In the integral layer of ME procedure, our proposed method chooses the 

top five candidate MVs in the integral accuracy based on SAD, and then finds their 

corresponding half and quarter MVs using hadamard SAD. At the end, we use the modified 

function from the mode decision function to calculate the distortion based on hadamard again 

and estimate the bit rate. Therefore we choose the best integer MV with additional complexity 

from SATD about 5 × [2 × (sub search points) +1] times for each integer MV searching. After 

our proposed scheme, we get the best integer vector of each partitioned block, and then take it 

to the following steps as the original JM, such as the sub-pixel ME and the mode decision. 
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Fig. 38 Flowchart of the combined ME and DCT algorithm 

 

6.3 AVC/H.264 Experimental Results and Discussions 

To examine the effectiveness of our proposed motion estimation and DCT combined 

algorithm, we implement it on the software JM 18.0 [14], which is the reference software of 

the H.264/AVC encoder. We compare its performance with that of the original JM encoder. In 

the experiments, we use nine CIF sequences and four 4CIF sequences as already stated in 

Table 3 with a frame rate of 30 frame/sec: FOREMAN, BUS, FOOTBALL, MOBILE, NEWS, 

PARIS MOTHER_DAUGHTER, SILENT, ICE, CITY, SOCCER, HARBOUR, CREW [14]. 

In all experiments in this section, the number of encoded frames is 32 and I-frame period 
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is 16. We run four different QP values: 22, 27, 32, and 37. The search range is ±32, and the 

number of sub search points is nine. The previous frame is the reference frame. The 

Configuration is the baseline profile in JM18.0 with IPPP structure and CAVLC coding. It 

should be mentioned that the comparing JM setting of RDO is high complexity, and the MV 

search method is “fast full search”. For integer MV, motion cost in (2) is only decided by 

SAD and MV information. Then for half and quarter MV searching, the hadamard 

consideration is added to calculate the cost in (2) in JM18.0. The distortion of mode decision 

function is also calculated with SATD. 

 

Table 29 shows the PSNR and rate comparison at different QP for the FOREMAN 

sequence, and Fig. 39 shows their RD curve with different QPs. We find that the curve has a 

larger gain in the high rate region because the 8x8 modes are used more often. In this case, 

because more MVs may be altered and because different MVs may result in different 

quantized residuals when QP is small, our coding gain becomes more obvious. This 

phenomenon happens also in the other sequences. Table 30 shows statistics of the chosen 

coding modes at different QP values. In general, a smaller QP produces fewer zero blocks, 

which leads to fewer skip modes. Therefore, our method would get benefits from a better MV 

choice. 
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Table 29 R-D Comparison for FOREMAN in P slices 

FOREMAN 

JM18 Proposed Method 

BD-rate 

Y 

Y_PSNR 

(dB) 

Bitrate 

(kbps) 

Y_PSNR 

(dB) 

Bitrate 

(kbps) 

QP=22 41.078 1121.89 41.115 1091.63 

-3.4 

QP=27 37.648 423.31 37.679 409.61 

QP=32 34.651 183.02 34.668 179.77 

QP=37 31.911 97.47 31.924 94.57 

 

Table 30 Modes and Motion Info Bits/Frame 

FOREMAN JM18 Proposed Method 

QP=22 Modes MV_bits Modes MV_bits 

16x16 2498 488.33 2205 426.93 

16x8 1410 593.27 1320 557.47 

8x16 1431 605.67 1423 569.27 

8x8s 3449 4591.40 3965 5306.07 

QP=27 Modes MV_bits Modes MV_bits 

16x16 2999 678.47 2958 662.47 

16x8 1423 649.93 1391 631.27 

8x16 1440 617.60 1488 643.67 

8x8s 1760 2116.00 1880 2314.33 

QP=32 Modes MV_bits Modes MV_bits 

16x16 3249 802.93 3307 794.40 

16x8 1087 511.47 1104 498.40 

8x16 1109 480.40 1157 493.60 

8x8s 636 721.07 625 723.73 

QP=37 Modes MV_bits Modes MV_bits 

16x16 2872 769.80 2901 748.27 

16x8 721 309.40 713 303.60 

8x16 635 252.93 637 260.33 

8x8s 211 220.53 205 209.93 
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Fig. 39 R-D curve of Foreman for P slice 

 

Table 31 shows the luma BD-rate [16] gain for all sequences. There are two sequences, 

MOTHER_DAUGHTER and SILENT, which have smaller gains at about 1% because these 

two videos have very little motion and thus the encoder frequently chooses the skip modes. 

Our MV selection scheme is applied only to the motion-compensated blocks, whose number 

is now small. Another factor affects the performance is image contents (patterns). In some 

sequences, such as CITY and MOBILE, our method provides more gain because they contain 

a number of fine edges, and thus our method has more chances to manipulate the residual 

distribution patterns. In summary, two factors seem to have major impact on our algorithm 

performance. One is the percentage of motion-compensated modes in P-slices, and the other 

one is the texture pattern of the residual blocks. 
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Table 31 BD Rate Improvement in P Slices of all Sequences 

Sequence Y BD-rate  

Encoding 

Time 
Sequence Y BD-rate 

Encoding 

Time 

FOREMAN -3.4 +43.2% 
MOTHER_ 

DAUGHTER 

-1.3 +41.2% 

BUS -2.6 +46.6% SILENT -1.1 +43.2% 

FOOTBALL -1.9 +49.6% HARBOUR -2.2 +47.0% 

MOBILE -2.4 +48.9% CITY -2.9 +45.9% 

NEWS -2.7 +43.0% SOCCER -1.8 +46.1% 

ICE -4.2 +39.8% CREW -1.7 +45.2% 

PARIS -1.6 +45.3% Average -2.3 +45.0% 

 

We collect the final MV choices in our method in Table 32. It shows that the best motion 

R-D cost vector is chosen with higher probability when QP is large. In this case, because the 

number of transform coefficients is small, it thus makes little difference on the residual blocks 

produced by different MVs. On the average, the probability of choosing the fifth candidate 

MV is less than 5%. Thus, retaining more than five candidate MVs does not seem to offer 

much improvement. Finally, we may like to know how many “different” MVs in the integral 

level are chosen at the end using this approach (versus JM 18.0). We examine both the 

numbers of sub-blocks and their area. Table 33 shows the sub-block numbers and the area 

ratio of the changed MVs that are chosen by our algorithm. 
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Table 32 Final MV Choice from Candidate MVs (Percentages) 

FOREMAN QP=22 QP=27 QP=32 QP=37 

Motion RDcost1 53.4% 56.7% 61.4% 67.3% 

Motion RDcost2 21.8% 21.3% 19.9% 17.4% 

Motion RDcost3 11.8% 10.5% 9.1% 7.5% 

Motion RDcost4 7.6% 6.7% 5.7% 4.5% 

Motion RDcost5 5.5% 4.7% 3.9% 3.3% 

SILENT QP=22 QP=27 QP=32 QP=37 

Motion RDcost1 83.4% 84.0% 85.8% 89.1% 

Motion RDcost2 7.8% 7.8% 7.0% 5.6% 

Motion RDcost3 4.2% 4.0% 3.4% 2.5% 

Motion RDcost4 2.7% 2.5% 2.2% 1.6% 

Motion RDcost5 2.0% 1.7% 1.5% 1.2% 

 

Table 33 Partitioned Sub-Blocks and the Area Ratio Using the Changed MVs 

FOREMAN 

Changed MV 

Blocks 

Partitioned 

Blocks 

Changed Area 

Ratio 

QP=22 16223 36196 35.38% 

QP=27 9739 23969 31.60% 

QP=32 5780 17047 26.52% 

QP=37 3559 14158 20.05% 

SILENT 

Changed MV 

Blocks 

Partitioned 

Blocks 

Changed Area 

Ratio 

QP=22 4534 21115 9.27% 

QP=27 3016 16681 8.93% 

QP=32 1932 14066 7.92% 

QP=37 1214 12743 6.62% 

 

In summary, we propose a possible way to enhance R-D performance that further 

combines motion estimation and DCT for the H.264/AVC encoders. The algorithm considers 

the transform coding effect on choosing the best motion vectors from the integer to the quarter 
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accuracy. Based on the multiple sequences tests, we demonstrate that the proposed algorithm 

can achieve 2.3% bitrate saving averagely without changing the syntax of the standard 

AVC/H.264. 

 

There is a trade-off between coding efficiency and time complexity. Although we reduce 

much SATD operations comparing to [23], the encoding time is still increased by about 45%. 

To overcome the high complexity of our method, two properties can be introduced:  

(a) There are still some redundant calculations in our program. For example, we should 

directly use the best sub MV instead of the best integer MV in Fig. 38 to the following 

encoding steps to save the operations from SATD. In addition, Some of 5 candidate MVs 

from the integral layer would have the same sub MV with repeated calculations. 

(b) A parallel design should be feasible in hardware implementation because a 

data-independent loop exists in Fig. 38. Also, computing the cost in our proposed method for 

all candidate MVs can be executed in parallel. 

Utilizing well the above properties, the encoding complexity of our proposed algorithm 

can decrease further. Acceleration of our scheme in software or hardware level is one of our 

future work items. 
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Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions 

In this thesis, we design two algorithms for different goals. Thus, we conclude them in 

two parts. 

In first part from Chapter 3 to Chapter 5, we study the computational complexity of 

building CU quadtree. Our fast CU size decision algorithm, which is based on the size 

information of the neighboring CUs and the co-located CU, speeds up the encoding procedure 

at about 1.75 times faster in average comparing to the original encoding process. Then, we 

also combine the existing ECU and CFM schemes together with our proposed algorithm in an 

efficient way. In the low QP cases, our algorithm provides more time reduction over ECU and 

CFM with acceptable coding loss. Totally, the combined fast algorithm offers averagely 51% 

time reduction, and the BD-rate increases at about 2.02% for high resolution videos. Our 

algorithm is also particularly useful in the low motion videos such as vidyo1, vidyo3, and 

vidyo4. This type of videos often occur in the mobile video communication, and the 

combined algorithm achieves up to about 69% time reduction with tolerable BD-PSNR drop 

about 0.05dB for the test sequences. 

Chapter 6 is the second part: We study the effect of transform on motion vector selection. 

We propose the modified AVC/H.264 motion vector search process. First, we keep five 
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integer MV candidates by their SAD values, and then process the sub-pixel MV searching by 

using SATD. At the end, we use the modified AVC mode decision function to estimate the 

R-D cost to decide the best MV from five candidates. In comparing to the previous approach, 

our method not only reduces the time-consuming SATD calculations but also avoids the poor 

performance of using SATD directly in integer MV selection. In general, our proposed 

optimization scheme achieves 2.3% bit rate saving with an additional 45% encoding time, 

averagely. The method can achieve up to 4.2% BD-rate improvement in our test sequences, 

and the algorithm performs well especially for the sequences with strong residual texture. 

 

7.2 Future Work 

In proposing fast algorithms for HEVC, we design our algorithm under the configuration 

of low complexity and low delay P, but we change the encoding parameter setting in the GOP 

size and the number of reference frames. For real applications, we should consider the 

incremented QP to adjust the decision rule and the thresholds, adaptively. On the other hand, 

considering the MV offset and the multiple reference frames in the search of co-located CU 

will decrease the coding loss for our proposed fast algorithm. Last but not the least, we can 

include other indicators in reducing candidates. For example, cbf is an important indicator 

telling us whether the nearby CU partitions are reliable or not, especially for the termination 

decision in large size CU. Reducing the coding loss in the low bitrate case is a research 
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challenge. 

Another topic is the R-D performance improvement for H.264/AVC. Its bottleneck is the 

high complexity. Therefore, we suggest some methods for speeding up the modified encoding 

procedure at the end of section 6.3. If we want to extend this combined ME and transform 

idea to HEVC, the scheme will be very complicated because HEVC has transform of different 

sizes. Also, because the current HEVC has very flexible ME modes and transform modes, the 

combined scheme may not provide much additional advantage.  
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