
國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

用於HEVC編碼單元之快速決策演算法 與

結合移動向量與DCT之H.264編碼器優化

Fast HEVC Coding Unit Decision Algorithm and

Combined MV and DCT Optimization for

H.264/AVC Codec

 研 究 生：許維哲

 指導教授：杭學鳴 博士

中 華 民 國 一 O 一 年 七 月

用於HEVC編碼單元之快速決策演算法 與

結合移動向量與DCT之H.264編碼器優化

Fast HEVC Coding Unit Decision Algorithm and

Combined MV and DCT Optimization for

H.264/AVC Codec

 研 究 生：許維哲 Student：Wei-Jhe Hsu

 指導教授：杭學鳴 博士 Advisor：Dr. Hsueh-Ming Hang

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering and

Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

July 2012

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 O 一 年 七 月

 i

用於 HEVC 編碼單元之快速決策演算法 與

結合移動向量與 DCT 之 H.264 編碼器優化

研究生 : 許維哲 指導教授 : 杭學鳴 博士

國立交通大學 電子工程學系 電子研究所碩士班

摘要

由於高解析度影像應用的需求，視訊編碼在 3C 產品中是不可或缺的技術，例如行

動電話、高畫質電視、藍光光碟機。進階視訊編碼(Advanced Video Coding, AVC/H.264)

是目前商業產品中，廣泛採用的壓縮標準格式。為了達到更高的編碼效率，國際組織

JCT-VC 正在進行下一代標準的制定，即高效率視訊編碼(High Efficiency Video Coding,

HEVC) 。 相較於進階視訊編碼，雖然高效率視訊編碼的複雜度提升許多，但是在相似

的影像品質下，可以增加近一倍的壓縮效率。

此論文包含兩個研究主題：第一個主題是改善進階視訊編碼中，整數精確度的移動

估測以增進編碼效能；第二個主題是關於高效率視訊編碼的編碼單元(Coding Unit, CU)

大小的快速決策，以達到降低編碼器複雜度的目標。在進階視訊編碼中，整數移動估測

的失真項，是以區塊之絕對誤差總和(The Sum of the Absolute Distortion, SAD)來

計算，但是此方法並不能完全反應最後結果的失真。為了在相似的畫面品質下，進一步

節省位元率，我們提出迭代的位元率-失真(Rate-Distortion, R-D)計算方式，以選擇

較佳的移動向量。我們將此演算法實現於 JM18.0，用許多組 MPEG 測試影像來檢驗此方

法的效能，並將執行結果和原始 JM 做法的結果進行比較。雖然 JM18.0 是發展已久的優

化編碼器，我們仍可從中節省 1.1%至 4.2%的位元率，但代價是增加 45%的運算複雜度。

 ii

另一方面，高效率視訊編碼在傳統的編碼流程中，增加了編碼單元四元分割樹的構

造。彈性的編碼單元設計提升了編碼效率，但相較於進階視訊編碼傳統的巨區塊

(Macroblock, MB)結構而言，編碼複雜度提升不少。因此我們設計快速演算法以有效率

地建造出編碼單元四元分割樹，其中演算法包括分裂決策、終止決策。這些快速編碼單

元大小決策參考週遭相關的編碼單元之切割資訊以進行判斷。此外，我們設計額外的工

具以增進我們提出的演算法效能，其中包含畫面層級加速控制和跳過決策後的快速預測

單元判斷。最後，我們分析提出的快速演算法，並和 HM5.0 中的兩種快速演算法進行比

較，以找出有效率的結合方法。相較於 HM5.0 的原始設定，我們提出的快速演算法，經

過多組高解析度的影像測試，可以節省高達 49%的整體編碼時間，但平均損失 0.06dB

的峰值信噪比(PSNR)。

 iii

Fast HEVC Coding Unit Decision Algorithm and

Combined MV and DCT Optimization for H.264/AVC

Codec

Student : Wei-Jhe Hsu Advisor : Dr. Hsueh-Ming Hang

Department of Electronic Engineering & Institute of Electronics

National Chiao Tung University

Abstract

With the growing demand for high resolution video applications, video coding is an

indispensable element in many 3C products, such as mobile phone, DTV, and BD player. Today,

Advanced Video coding (AVC/H.264) is one of the most popular video formats in commercial

applications. Aiming at higher compression efficiency, the international JCT-VC is currently

developing the next generation standard, High Efficiency Video Coding (HEVC). With a much

higher encoder complexity, HEVC is able to achieve a 50% bitrate reduction compared to

H.264/AVC.

This thesis has two topics, one is the enhanced motion estimation (ME) for AVC/H.264

and the other is the fast coding unit (CU) decision for HEVC. In H.264, the sum of the absolute

difference (SAD) is used as the distortion term in ME, but it does not reflect the final coding

distortion. To achieve further bitrate reduction, we propose an enhanced motion vector

selection method based on the iterative R-D calculation. We compare the proposed method with

the original H.264/AVC JM18.0 reference software on several MPEG test sequences. Although

 iv

JM18.0 is a highly optimized scheme, we can still obtain a BD-rate improvement from 1.1% to

4.2% but with additional 45% complexity increase.

In HEVC, the CU quadtree structure is added to the traditional fixed size macroblock.

With flexible CU size selection, the coding efficiency increases but the complexity of HEVC

becomes much higher than that of AVC/H.264 fixed macroblock (MB) structure. To reduce

computational complexity, we propose a fast algorithm, which includes the splitting decision

and the termination decision, in building the CU quadtree. The fast CU size decision of the

current CU makes use of the size information of its neighboring CUs. Furthermore, we design

the additional tools to enhance the performance of the proposed algorithm. The additional tools

include the frame level acceleration and the fast PU size decision after the splitting decision. At

the end, we compare it with the existing fast algorithms in HM5.0 and find an efficient way to

blend them together. In comparison to the original HM5.0, our method saves the overall

encoding time up to 49% with 0.06 dB average PSNR drop.

 v

誌謝

鳳凰花開，又到了畢業的季節。而我也終於拿到了我的碩士學位。當初，剛開始進

入交大電子研究所就讀時，因為是跨領域 (從固態換系統)，系統組的老師實在難找，

領域也選擇了許久。幸運地，杭學鳴教授願意指導我。老師開啟了我的學術之路，提供

了充足的研究環境和有趣的研究題目，使我心中名為研究生的種子慢慢地發芽、成長；

老師豐富的學術知識和謙遜的人生態度更是我學習的目標，在此誠摯地感謝我的指導老

師杭學鳴教授。

在我碩士兩年的求學之旅中，最有回憶的地方就是 Commlab。在這邊，我接觸到許

多強者學長：感謝朝雄學長辛苦地管理實驗室，並且常和我分享研究的甘苦；謝謝峻利

學長和宸銜學長平時跟我討論研究和課業；感謝書緯學長教我如何看 CODE、改 CODE，

在學長畢業後還一直熱心地提供我 HEVC 方面的技術支援；謝謝崇豪學長，讓我了解做

研究該有的熱情；謝謝鴻志學長，您留下的 MATLAB 教材非常的實用；感謝家揚學長在

我做 AVC 計劃時，教我如何下手改 CODE；謝謝彰哲學長和柏森學長在我找工作時，給予

我人生道路和工作態度的建議；學長們無論在研究、課業、人生態度都給我很大的啟示

和幫助。另外，我也在這邊碰到了許多有趣的同學：感謝讀修從我準備考研究所開始，

就不斷地幫助我解決數學上的問題；謝謝義文平時約我去健身，鍛鍊身體兼紓發壓力；

感謝士傑與我一起準備七月的口試，讓我得以順利地通過口試。Commlab 的人、事、物

 vi

在這兩年來給予我很大的幫助，我在此由衷地感謝。這邊也特別感謝 MAPL 的俊吉學長

和彥宇，在我口試之前，幫我確認基本的想法，消除我緊張的心情。

最後我想感謝的是交大和我的家人。我在交大就讀的六年之中，我從交大得到許多

重要的東西和回憶，在此特別感謝母校。感謝我的家人，總是在背後支持著我，一路走

來有他們的親情和支持，我才能有現在的成就。 將此篇論文獻給所有關心我的人，因

為有你們，我會盡力讓自己變得更好。

 維哲 7/20 於 Commlab 筆

 vii

CONTENTS

摘要……….....…………………………………………………………………………...i

Abstraction...…………………………………………………………………………...iii

誌謝……….....…………………………………………………………………………..v

CONTENTS..vii

LIST OF FIGURES ... x

LIST OF TABLES .. xii

Chapter 1 Introduction .. 1

1.1 Research Contributions .. 2

1.2 Thesis Organization ... 3

Chapter 2 Overview of H.264/AVC and HEVC .. 4

2.1 Advanced Video Coding .. 4

2.1.1 H.264 Architecture .. 5

2.1.2 Basic Coding Tools ... 5

2.1.2.1 Intra prediction .. 6

2.1.2.2 Inter Prediction .. 6

2.1.2.3 Transform and Quantization .. 7

2.1.2.4 Deblocking Filter .. 7

2.1.2.5 Entropy Coding ... 8

2.1.3 Encoder Control .. 8

2.1.3.1 Searching for Optimal Motion Vector ... 10

2.1.3.2 Selection for the Best Mode .. 10

2.2 High Efficiency Video Coding ... 11

2.2.1 Coding Unit Definition ... 12

2.2.1.1 Coding Unit ... 13

 viii

2.2.1.2 Prediction Unit .. 13

2.2.1.3 Transform Unit .. 14

2.2.2 Enhanced Coding Tools .. 15

2.2.2.1 Intra prediction .. 17

2.2.2.2 Inter Prediction .. 17

2.2.2.3 Transform and Quantization .. 18

2.2.2.4 Loop Filter ... 18

2.2.2.5 Entropy Coding ... 19

2.3 Experiment Conditions .. 19

Chapter 3 Nested Quadtree Coding Unit ... 22

3.1 Overview of Coding Unit Quadtree Structure ... 22

3.1.1 Partition Decision Flow of Nested Quadtree CU ... 23

3.1.2 Existing fast algorithms for Partition Decision Flow in HM5.0 25

3.2 Analysis of Nested CU Quadtree Structure ... 29

Chapter 4 Fast CU Size Decision Algorithm Design ... 32

4.1 Problem Formulation and Design Goal ... 32

4.2 Related Work .. 33

4.3 Core Ideas of Fast CU Size Decision ... 34

4.3.1 Splitting Decision ... 36

4.3.2 Termination Decision .. 37

4.3.3 Basic Fast CU Size Decision Scheme .. 38

4.4 Additional Tools ... 39

4.4.1 Frame Level Parameter Control ... 40

4.4.2 LCU Level Parameter Control with Error-Bound .. 45

4.4.3 2NxN/Nx2N Decision after Splitting Decision .. 52

 ix

4.5 Overview of the Overall Proposed Algorithm ... 55

Chapter 5 HEVC Experiments and Discussions ... 57

5.1 Performance Measure .. 57

5.2 Experimental Results and Discussions .. 59

5.2.1 Fast CU Size Decision .. 59

5.2.2 Comparison with ECU/CFM .. 70

5.2.3 Combined Fast CU Size Decision with ECU/CFM 72

Chapter 6 Combined MV and DCT Optimization for H.264/AVC Codec 76

6.1 MV Refinement with DCT result ... 76

6.2 Modified MV Selection Scheme .. 78

6.3 AVC/H.264 Experimental Results and Discussions 81

Chapter 7 Conclusions and Future Work .. 88

7.1 Conclusions .. 88

7.2 Future Work ... 89

REFERENCES .. 91

 x

LIST OF FIGURES

Fig. 1 An H.264/AVC encoder ... 5

Fig. 2 R-D optimization for selecting MV and mode .. 9

Fig. 3 An HEVC encoder ... 12

Fig. 4 An Example of a nested quadtree structure [8] ... 15

Fig. 5 Possible PUs in low complexity setting .. 15

Fig. 6 An example of nested CU quadtree structure (Vidyo1, Frame 2, QP=32) 23

Fig. 7 A G-BFOS example. .. 25

Fig. 8 An example of ECU [18] ... 28

Fig. 9 Program flow of CFM ... 29

Fig. 10 PU execution order in CU in the low-complexity setting 29

Fig. 11 Data representation of splitting information ... 34

Fig. 12 Reference CUs and the current CU ... 35

Fig. 13 An example of splitting decision ... 36

Fig. 14 An example of termination decision.. 38

Fig. 15 Flowchart of basic fast CU size decision algorithm .. 39

Fig. 16 R-D curve of Basketball .. 41

Fig. 17 Example of Nc=3 ... 42

Fig. 18 Experiment for choosing cN .. 44

Fig. 19 R-D curve of Basketball with Nc control .. 45

Fig. 20 Error bound (3%) for SAD .. 47

Fig. 21 Second order curve fitting for error bound (3%) .. 47

Fig. 22 Probability density distribution of SAD of “Kimono” .. 51

Fig. 23 Probability density distribution of SAD of “Party” .. 51

Fig. 24 An example of 2NxN/Nx2N Decision in depth 1 ... 54

 xi

Fig. 25 An example of 2NxN/Nx2N Decision in depth 2 ... 54

Fig. 26 Flowchart of overall proposed algorithm for processing an LCU 56

Fig. 27 CU distribution of the 9
th

 frame of BQsquare (QP=32) 64

Fig. 28 CU distribution of the 9
th

 frame of Vidyo1 (QP=32) .. 65

Fig. 29 CU distribution of the 9
th

 frame of BQTerrence (QP=22) 65

Fig. 30 Pie chart of depth amount ratio of BQsquare (QP=32) 66

Fig. 31 Pie chart of depth amount ratio of Vidyo1 (QP=32) ... 67

Fig. 32 Average depth of Vidyo1 (QP=37) .. 68

Fig. 33 Average depth of BQTerrence (QP=22) .. 68

Fig. 34 R-D curve of Basketball in Table 26 ... 73

Fig. 35 Difference between the JM-encoded and our proposed method 79

Fig. 36 Spatial domain: The residual MBs of Inter-16x16 mode on the second frame. .. 79

Fig. 37 Frequency domain: The transformed and quantized residual MBs of Fig.4. 80

Fig. 38 Flowchart of the combined ME and DCT algorithm .. 81

Fig. 39 R-D curve of Foreman for P slice ... 84

 xii

LIST OF TABLES

Table 1 Structure of Tools in HM 5.0 Configures [9] .. 16

Table 2 Experiment Conditions ... 20

Table 3 Test Sequences .. 21

Table 4 Time percentage of “xCompressCU.cpp” in HM5.0 .. 30

Table 5 Comparison of 64/4 CU structure and 16/2 CU structure 31

Table 6 Performance of the basic fast CU decision algorithm .. 41

Table 7 Specified QP versus Nc ... 43

Table 8 BD-performance and time reduction ratio of limited Nc 43

Table 9 PSNR and bits measurements at QP=32 ... 44

Table 10 Specified QP versus error bound (3%) ... 48

Table 11 BD-performance and time reduction ratio with 3% error bound 48

Table 12 Simulation result with 3% error bound with 64 frames per sequence 48

Table 13 Simulation result without error bound with 64 frames per sequence 49

Table 14 Comparison of different ratios of error bound .. 50

Table 15 Performance for schemes with and without 2NxN/Nx2N decision 55

Table 16 Performance of the overall proposed algorithm (64 frames/sequence) 60

Table 17 Performance of the overall proposed algorithm (100 frames/sequence) 60

Table 18 Depth percentage (QP is 32) ... 62

Table 19 Depth percentage of the 10
th

 frame in low resolution sequences (QP=37) 62

Table 20 Depth percentage of the 10
th

 frame in HD sequences (QP=37) 62

Table 21 Time reduction ratio analysis of Vidyo1 and BQsquare 63

Table 22 Depth percentage of BQTerrence (QP=22) .. 64

Table 23 Time reduction ratio analysis BQTerrence (QP=22) .. 64

Table 24 Simulation results of ECU and CFM with low delay_P loco setting 70

 xiii

Table 25 Simulation results of ECU and CFM with our low delay_P loco setting 71

Table 26 Simulation result of ECU, CFM, and our proposed algorithm 72

Table 27 Results of the adaptively combined fast algorithm with ECU and CFM 74

Table 28 R-D performance of our proposed algorithm (QP= 22) 75

Table 29 R-D Comparison for FOREMAN in P slices .. 83

Table 30 Modes and Motion Info Bits/Frame ... 83

Table 31 BD Rate Improvement in P Slices of all Sequences ... 85

Table 32 Final MV Choice from Candidate MVs (Percentages) 86

Table 33 Partitioned Sub-Blocks and the Area Ratio Using the Changed MVs 86

 1

Chapter 1 Introduction

Video coding plays an important role in the commercial products, and its techniques

have been developed during the past 20 years. The matured video compression technique is

adopted by many applications, such as television, digital camera, mobile communication, and

video recording devices, to store and transmit a large amount of video data. For the better

visual quality and the bitrate reduction, the international standard committee is still specifying

new standards, and many researchers are still looking for better algorithms. The main stream

of video coding in recently years is AVC/H.264. HEVC is the next generation standard that is

still in progress.

In this thesis, we study both AVC/H.264 and HEVC. In AVC/H.264, we study the

transform effect on the motion vector search and design an iterative scheme to improve the

overall coding performance. In HEVC, the coding unit (CU) has flexible sizes. In general, the

HEVC encoder uses large CU in the stationary or smooth areas particularly at low bitrates. It

uses small CUs in the texture areas at the high bitrates. Although HEVC has a better coding

performance, it takes a large amount of the complexity to decide the best CU size. Therefore,

we want to design a fast algorithm in deciding CU size to reduce calculations.

 2

1.1 Research Contributions

The main contributions of the HEVC part are the development and the analysis of the

fast CU decision. Our proposed algorithm achieves up to 49% encoding time reduction, or

equivalently, about 2x speed up. On the other hand, the contribution of the AVC part is

designing a method to improve compression efficiency by modifying the motion selection

process. Our proposed iterative scheme saves up to 4.2% bitrate usage and it retains the video

quality. The major contributions in this thesis are listed as below.

1. Develop a fast CU size algorithm for HEVC based on the size information of the

neighboring CUs. The fast algorithm includes splitting decision and termination

decision.

2. Propose additional tools to further enhance video quality or to reduce complexity.

3. Compare and combine our proposed method to the existing fast algorithms in HM5.0.

We investigate their advantages and disadvantages, and find an efficient way to combine

them together.

4. Propose a 2-pass ME scheme to identify the best MV for the AVC/H.264 encoder.

 3

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview of the

state-of-the-art encoders, AVC/H.264 and HEVC. We describe their work flows, their basic

operations, and the HEVC advanced coding features. The thesis has two parts: the HEVC part

is from Chapter 3 to Chapter 5, and Chapter 6 is the AVC part. In Chapter 3, we describe the

CU quadtree structure in HEVC, and introduce the fast algorithms in HM5.0. In Chapter 4,

we describe the proposed fast CU size decision algorithm in detail. Then, we design several

compensated schemes to improve the original fast algorithm. Chapter 5 presents the

simulation results of our scheme and discusses the possible combinations with the existing

fast scheme. The second part of this thesis is about AVC/H.264 motion vector search in

Chapter 6. Finally, Chapter 7 summarizes our work.

 4

Chapter 2 Overview of H.264/AVC and HEVC

In 1993, the ITU-T Video Coding Experts Group (VCEG) started a long-term project

(H.26L). After about ten years of development, the project led to the well-known H.264

standard [1]. The final stage of developing the H.264/MPEG Advanced Video Coding (AVC)

standard was carried out by the ITU and ISO/MPEG Joint Video Team (JVT) in 2003. In the

past a couple of years, MPEG and VCEG collaborate again to form the Joint Collaborative

Team on Video Coding (JCT-VC). With the demand of high-resolution video applications,

JCT-VC is currently specifying the next generation video standard, High Efficiency Video

Coding (HEVC), which aims to achieve about 50% bit-rate reduction compared to

H.264/AVC. And HEVC is expected to be finalized in 2012. For more information about the

progress of AVC and HEVC, please refer to [2].

2.1 Advanced Video Coding

Basically, the H.264/AVC standard has a video coding structure similar to that of the

prior video coding standards, which is known as the “hybrid coding scheme” [3]. It uses

transform coding to code the motion compensated prediction errors. The basic processing unit

is macroblock (MB), corresponding to a 16 × 16 -pixel square region of a frame. In this

section, we will introduce the fundamental concept of H.264/AVC. For more details, please

 5

refer to [1], [4].

2.1.1 H.264 Architecture

Fig. 1 shows a typical H.264/AVC encoder. The encoder includes two data paths, an

encoding path (left to right) and a reconstruction path (right to left). An input video frame
nF

is processed in the unit of MB. A coded MB may belong to an I-MB (intra-coded), P-MB

(predictive-coded), and B-MB (bi-directional predictive-coded).

Fig. 1 An H.264/AVC encoder

2.1.2 Basic Coding Tools

In Fig. 1, a prediction block P is formed by intra-prediction or inter-prediction. A

residual block nD is produced by subtracting the prediction block P from the current block.

The residual block nD is transformed (separable integer Discrete Cosine Transformation),

 6

and it is quantized to X . The quantized transform coefficients are reordered, and then are

entropy-coded. The above coding tools are explained in detail in the following subsections.

2.1.2.1 Intra prediction

Because the correlation between the neighboring blocks within a video frame is

extremely high, the encoder, which uses the intra-prediction, can reduce the spatial

redundancy. In the intra modes, a prediction block P is generated based on the neighboring

blocks (top-left, top, top-right, and left.), which have been encoded and reconstructed. There

are four optional intra-prediction modes for a 16 × 16 luma block, and nine modes for each

4 × 4 luma block. A special intra coding mode, I_PCM, transmits the image samples directly

(without prediction or transform).

2.1.2.2 Inter Prediction

For video sequences at high frame rate, the nearby frames are generally similar. By using

the inter-prediction technique to transmit the difference between successive frames, the

temporal redundancy could be reduced. The P and B MBs may be coded in one of

motion-compensation (MC) modes. Motion compensated prediction based on one or more

reference pictures produces the prediction P . An inter-mode MB can be partitioned into various

sizes corresponding to the SKIP mode, INTER-16×16, INTER-8×16, INTER-16×8, and

INTER-8×8 modes, and an 8×8 sub-MB mode can be further divided into smaller partitions

 7

with block sizes of 8×4, 4×8, 4×4 blocks. Motion estimation (ME) is a key step in

inter-prediction. The partitioned block inside an inter-mode MB is predicted from the same

size region in the reference pictures. The vector from the current frame block pointing to the

best matching region in the referenced frame is the so-called motion vector (MV).

2.1.2.3 Transform and Quantization

Due to the inter-pixel redundancy in the residual block, the encoder transforms the

spatial domain pixels to the frequency domain coefficients to compress its original redundant

information. The discrete cosine transformation (DCT) is a general tool in the state-of-the-art

video encoder. In AVC/H.264, there are two variable size transforms: 4×4 and 8×8. To

increase their computational speeds, they are implemented in the butterfly structure that uses

addition, bit-shift, and a few multiplication operations. The DCT coefficients of a residual

block should be processed by reordering (zig-zag scanning), scaling, and rounding

(quantization). The Quantization parameter (QP) ranges from 0 to 51. With an increment of 6

in QP, the quantization step becomes double.

2.1.2.4 Deblocking Filter

The deblocking filter is designed for eliminating the blocking artifacts on the boundaries,

which are caused by the block-based transform with a coarse quantization and by the MC

prediction in which the interpolated data are derived from different regions of multiple

 8

reference frames. The filter is applied to each decoded MB to reduce blocking distortion, and

the encoder stores the filtered MB in the reconstruction frame to be used as the reference

frame in the future. The deblocking filter is an important coding tool for inter-prediction.

2.1.2.5 Entropy Coding

At the slice layer level and below, the syntax elements are encoded either by the variable

length coding tool (VLC) or by the context-adaptive arithmetic coding tool (CABAC). In

VLC, a quantized DCT block is coded by using the context-adaptive variable length coding

(CAVLC) scheme, and the other data units are coded by using Exp-Golomb codes. The tables

of CAVLC are designed to match the corresponding conditional probability. The context

adaptive feature of CABAC can be more efficient became it is adaptive to the statistics of

previously encoded data. Generally, CAVLC has low complexity, and CABAC has better

efficiency.

2.1.3 Encoder Control

The H.264/AVC standard provides only the syntax of bit-stream and the decoder

structure. Therefore, we need to design and to control the encoding process in our preferred

way. How to decide the coding parameters is a key to achieve video compression efficiency.

The H.264 coding parameters include MVs, quantization levels, and MB modes. The same

encoder structure with different coding parameters will affect the R-D efficiency of the

produced bit-stream.

 9

The general R-D cost function for video coding is presented by (1). In (1), symbol D

denotes distortion, which is often the absolute difference between the processed image block

and the original block. Symbol R means rate, which is the bits needed to send the processed

information. According to the information theory, we can fix R first and then minimize D .

We can combine D and R together to form the total cost J. Mathematically, we can convert

this constrained optimization problem to a non-constrained form, the so-called Lagrange cost

function in (1). How to select the optimal Lagrange multiplier  is a difficult problem in

practice, and for more details, please refer to [5], [6].

 J D R  (1)

A traditional H.264/AVC encoder splits the optimization of the cost function for the inter

modes into two parts as illustrated in Fig. 2. The first part is finding the optimal MV, and

second part is choosing the best mode, block size etc.

Motion
Vectors

Selection

Mode
Selection

Entropy
Coding

Controller of RD Optimization

MB

(2) (4) Rate

Mode MV

Fig. 2 R-D optimization for selecting MV and mode

 10

2.1.3.1 Searching for Optimal Motion Vector

A traditional H.264/AVC encoder splits the optimization of the cost function for the inter

modes into two parts. In the first part, the encoder finds the MVs with the optimum residual

distortion and the MV coding bits. Based on the motion R-D cost function (2), [3], the motion

estimation step finds the vector with the smallest cost for various block sizes. Given the

current and the reference frames and the Lagrange multiplier motion , the ME operation for a

partition block is is to minimize (2) to find the best MV.

 (,) (,),motion motion i motion motion iJ D s m R s m  (2)

where m is the set consists of all possible vectors (, ,)x y tm m m , in which
xm is the MV

horizontal component, and ym is the vertical component, tm is time difference. motionR is

the number of bits for transmitting MV, and motionD is the distortion term given by

(,)

(,) (, ,) (, ,)
i

p

motion i x y t

x y s

D s m pixel x y t pixel x m y m t m


     (3)

To speed-up the ME process, we usually choose 1p  , and (3) becomes the sum of the

absolute difference (SAD). The symbols, x and y , are the pixel location in a block. It should

be noted that the state-of-the-art encoder often uses hadamard measure for fractional ME for

coding efficiency, and the detail is describe in section 6.1.

2.1.3.2 Selection for the Best Mode

In the second part of the inter-coding process, the encoder applies integer DCT to the

 11

motion-compensated residual error signals, and then we choose the best MB coding mode.

With the given Lagrange parameter mode and the quantized parameter Q , the coding mode

of MB (S) is decided by minimizing the following R-D cost function [3],

  mod mod mod(,) | , (, |) (, |),  e k e REC k e REC kJ S I Q D S I Q R S I Q (4)

where
kI represents a legitimate mode. For example, k possible modes for P-slice in

H.264/AVC are Intra-16×16, Intra 4×4, SKIP mode, INTER-16×16, INTER-8×16, INTER-

16×8, INTER- 8×8 modes. RECD is the distortion between the reconstructed MB and the

original one, and it is usually measured in the sum of the squared difference (SSD), p=2 in (3).

RECR denotes the rate after entropy coding for a MB. Although the calculated cost function is

an approximation, it reflects the rate-distortion efficiency reliably.

2.2 High Efficiency Video Coding

A joint call-for-Proposal (CfP) for HEVC was issued by JCT-VC in January 2010, and

27 proposals in response of the CfP were submitted with their test material. The promising

results were reported in [7], and the proposed scheme [8] from Heinrich Hertz Institute (HHI)

was ranked among the five best performing proposals. For its wonderful performance, most of

its design elements were selected to specify a first model of the initialed HEVC

standardization project. The project is still in progress, and HEVC is expected to achieve

excellent coding performance on high resolution video with low delay and low complexity.

 12

Fig. 3 shows the HEVC encoder structure. Although HEVC has a similar structure to the

H.264/AVC architecture, there are some significant innovations in HEVC. The innovations of

re-definition of coding units and the enhancement on coding tools offer remarkable

compression efficiency.

Fig. 3 An HEVC encoder

2.2.1 Coding Unit Definition

In H.264/AVC, the basic processing unit is called MB, which is expanded to what we

called a coding tree block (CTB). For flexibility and efficiency, the basic coding units in

HEVC have variable sizes with various resolutions. They are CU (Coding Units), PU

(Prediction Units), and TU (Transform Units). A CTB in HEVC which covers max max2 2N N

luma samples, and its associated quadtree structure indicates how the CTB are further

 13

subdivided for CUs, corresponding PUs and TUs. The concept of decomposing MB into three

different units allows each to be optimized independently, which brings high adaption to

enhance the performance of each coding tools. The definition and details of three units in the

HEVC encoder [9] are given in the following sub sections.

2.2.1.1 Coding Unit

A basic unit of HEVC, referred as CU, is a square region of a picture, and it may contain

several PUs and TUs. An input processing frame is divided into slices, and each slice is

composed of CTBs, which are also called largest coding units (LCUs). Dividing a picture into

LCUs and further recursively subdividing each CUs into 4 smaller CUs with half width and

half height is the so called nested quadtree structure as shown in Fig. 4 (with solid lines). Both

the block sizes and the block coding parameters such as maximum allowed depth will be

specified in the sequence parameter set (SPS) or the slice header.

2.2.1.2 Prediction Unit

PU is defined only for the leaf node of CU in each depth level, and PUs have various

partitions for prediction. They are confined within its CU node with a shape of square or

rectangular, and for some cases the prediction units are asymmetric in CU as list in Table 1.

The prediction ways are similar to the prediction methods of H.264/AVC, which can be the

skip, the intra, or the inter modes. In Fig. 5, we can see all the possible PUs for each

 14

prediction mode in low complexity setting. The information related prediction such as the PU

splitting types, the prediction modes, the intra prediction direction, the motion vector

difference (MVD), and the corresponding referenced frame indices are transmitted in PU

level.

2.2.1.3 Transform Unit

TU is a basic unit of residual coding, including transform and quantization. The TUs are

aligned within their corresponding CU, and the size of TUs is variable which is not

constrained by boundaries of PU. In HM5.0, the NSQT is added, that is, the shape of TU has

not to be square, and it may be rectangular. The splitting flag and transform coefficients are

specified in TU level.

The tree structure of CU or TU splits from top to down, but the optimal structure is

decided by G-BFOS algorithm [10], [11]. The algorithm makes pruning decision from bottom

to up, which reduces much computational complexity, and we will describe the detail part in

the next chapter. The coding tree blocks for TU are illustrated by Fig. 4 (with dashed line).

More details of the encoder controller for HEVC are described in chapter 3. An Example of a

nested quadtree structure (right part) for dividing a given coding tree block (left part) in Fig. 4.

The order of parsing the coding blocks follows their labeling in alphabetical order.

 15

Fig. 4 An Example of a nested quadtree structure [8]

2NxN

2Nx2N

Nx2N NxN

2Nx2N

2Nx2N

NxN

Skip

Intra

Inter

Intra NxN is only used as 2N=8
Inter NxN is close originally.

Fig. 5 Possible PUs in low complexity setting

2.2.2 Enhanced Coding Tools

After H.264/AVC standard was defined, people tried to propose algorithm to improve it.

As time goes by, people notice that some modifications on the existing tools and many newly

proposed tools provide a certain amount of improvement. Therefore, many adaptive and novel

 16

tools are adopted in the current HEVC model compared to H.264/AVC. With the development

of HEVC standardization project, JCT-VC adds useful tools, refines the existing tools, and

removes inferior tools in the model [12]. A summary list of the tools that are included in

HM5.0 is provided in Table 1 below.

Table 1 Structure of Tools in HM 5.0 Configures [9]

High Efficiency Configuration Low Complexity Configuration

Coding units, Prediction units, and Transform units:

Coding unit quadtree structure

(square coding unit block sizes 2Nx2N, for N=4, 8, 16, 32;

i.e., up to 64x64 luma samples in size)

Prediction units

(for coding unit size 2Nx2N:

(1) for Inter, 2Nx2N, 2NxN, Nx2N, and,

for N>4, also 2Nx(N/2+3N/2) &

(N/2+3N/2)x2N;

(2) for Intra, only 2Nx2N and, for N=4, also

NxN)

Prediction units

(for coding unit size 2Nx2N:

(1) for Inter, 2Nx2N, 2NxN, Nx2N;

(2) for Intra, only 2Nx2N and, for N=4, also NxN)

Transform unit tree structure within coding unit (maximum of 3 levels)

Transform block size of 4x4 to 32x32 samples

(always square for Intra; also non-square 4x16,

16x4, 8x32, 32x8 for Inter)

Transform block size of 4x4 to 32x32 samples

(always square)

Spatial Signal Transformation and PCM Representation:

DCT-like integer block transform;

for Intra also a DST-based integer block transform (selected based on the intra prediction mode)

Transforms can cross prediction unit boundaries for Inter; not for Intra

PCM coding with worst-case bit usage limit

Intra-picture Prediction:

Angular intra prediction (17 directions for 4x4, 3 directions for 64x64, 34 directions for others)

Planar intra prediction

 17

Chroma intra prediction separate from or using luma samples

Inter-picture Prediction:

Luma motion compensation interpolation: 1/4 sample precision,

8x8 separable with 6 bit tap values

Chroma motion compensation interpolation: 1/8 sample precision,

4x4 separable with 6 bit tap values

Advanced motion vector prediction with motion vector “competition” and “merging”

Entropy Coding:

Context adaptive binary arithmetic entropy coding

RDOQ on RDOQ off

Picture Storage and Output Precision:

8 bit-per-sample storage and output

In-Loop Filtering:

Deblocking filter

Sample-adaptive offset filter -

Adaptive loop filter -

2.2.2.1 Intra prediction

Comparing to H.264/AVC, the unified intra prediction coding tool provides extensive

prediction modes up to 35 directional prediction modes including DC and Planar modes for

luma component of each PU. The total number of available prediction modes depends on the

size of the corresponding PU.

2.2.2.2 Inter Prediction

Each inter coded PU have a set of motion parameters consisting of motion vector,

reference picture index, etc. Choosing the optimal motion parameters is crucial to the

 18

performance of inter mode. The Advanced motion vector prediction (AMVP) is an adaptive

prediction technique for motion merging. AMVP constructs the motion vector candidate list

from the co-related PUs, which exploits spatial and temporal correlation. Then, remove

duplicated and redundant the candidates. At the last, the encoder selects the best inferred

motion parameters from multiple candidates formed by spatial neighboring PUs and

temporally neighboring PUs, and it transmits the corresponding chosen candidate index. Also,

merging mode plays an important role in inter prediction because it can reduce the transmitted

motion information. Thanks to AMVP and merge mode, the compressed motion data often

consist of a small amount of side information.

2.2.2.3 Transform and Quantization

HEVC provides larger size transforms compared to H.264/AVC, and the size of

transform covers from 4 4 to 32 32 . With larger sizes transformation, the encoder is

more flexible and the compression efficiency is higher in the smooth texture region especially.

The scaling matrices of the quantization process are added for the additional transform sizes,

which do not included in H.264/AVC.

2.2.2.4 Loop Filter

Loop filter consists of deblocking filter, sample adaptive offset (SAO), and adaptive loop

filter (ALF). The goal of these filters is improving the quality of the reconstruction frames. A

 19

deblocking filter is performed for the block boundaries. Then, SAO is applied to the

reconstruction signal after the deblocking filter by using the offset values given. In the final

stage of filtering, an ALF is applied to the reconstruction signal after the SAO process and

deblocking filter process by using the filter coefficients also signaled in the slice header. It is

should be noted that ALF scheme and its control method change a lot in the later version HM.

2.2.2.5 Entropy Coding

In HM 5.0, the syntax elements are encoded by variable length coding (VLC), and the

residual coefficients are encoded by CABAC. Because the complexity of CABAC is very

high, it results in low data throughput when handling high resolution videos. This problem has

been improved by the parallel entropy coder design. For pursuing high efficiency, the HEVC

specifications retain CABAC, but remove CAVLC.

2.3 Experiment Conditions

Our experimental platforms and their configuration settings are introduced in this section.

The referenced software of H.264/AVC is JM 18.0 [13], and it has four configures, which are

baseline, main, extended, and high profile. We utilize the baseline configure setting to

simulate our experiments with the widely used MPEG sequences [14]. Our platform for

HEVC experiments is the referenced software HM5.0 [15], in which 4 configures are defined.

They are all intra, low delay, low delay P, and random access. These configurations can be set

 20

as the high efficiency or low complexity coding modes. We choose the low delay P, low

complexity configuration as our experimental conditions. The experimental sequences are the

testing materials of HEVC standard. To compare performance between the proposed

algorithm and the original codec, we exploit the BD-rate [16] definition to measure the

compression efficiency. Table 2 shows our parameters setting through this thesis, and Table 3

lists the information about size and frame rate of all video sequences in this thesis.

Table 2 Experiment Conditions

QP 22,27,32,37

AVC Encoder

Configuration：

baseline

Sequence Type：IPPP

Motion Search : Fast full search

Motion Search range： 32 pixels

Multiple Referenced frame：Disable

RDO : High complexity

Fractional ME : Hadamard measure

Transform Size: 4 4

Intra period：16

Number of encoded frames：32

HEVC Encoder

Configuration：

low delay P,

low complexity

Sequence Type：IPPP.

Motion Search range： 64 pixels

Multiple Referenced frame：Disable

GOP：1

Intra period：Only first

Max CU size：64

Max CU partition Depth： 4

Max TU size：32 32

Min TU size： 4 4

Inter Max RQT depth：3

Intra Max RQT depth：3

RDOQ：Disable

 21

DisableInter4x4：On

FEN: On

Number of encoded frames：16 , 32 , 64 ,100

Table 3 Test Sequences

HEVC sequences

Sequence Information Sequence Information

Kimono 1920x1080 24Hz BallDrill 832x420 50Hz

Park 1920x1080 24Hz BQMall 832x420 60Hz

Cactus 1920x1080 50Hz Party 832x420 50Hz

Basketball 1920x1080 50Hz HorseC 832x420 30Hz

BQTerrace 1920x1080 60Hz BallPass 416x240 50Hz

Vidyo1 1280x720 60Hz Bubbles 416x240 60Hz

Vidyo3 1280x720 60Hz BQsquare 416x240 50Hz

Vidyo4 1280x720 60Hz Horses 416x240 30Hz

H.264/AVC sequences

Foreman 352x288 30Hz Silent 352x288 30Hz

Bus 352x288 30Hz Ice 352x288 30Hz

Football 352x288 30Hz City 704x576 30Hz

Mobile 352x288 30Hz Crew 704x576 30Hz

News 352x288 30Hz Harbour 704x576 30Hz

Paris 352x288 30Hz Soccer 704x576 30Hz

Mother_daughter 352x288 30Hz Download link [14]

 22

Chapter 3 Nested Quadtree Coding Unit

In this chapter, we introduce the principle and decision flow of quadtree Coding Unit

(CU) decision in HM5.0. This coding unit structure differs from the macroblock coding

architecture in H.264 for flexible and compression efficiency. However, the CU quadtree

structure with possible node sizes from 64 64 to 8 8 in 4 admissible depths also brings

high computation complexity. Although HM 5.0 has some fast algorithms to accelerate the

encoding procedure, we still want to reduce more complexity under the tolerable coding loss.

3.1 Overview of Coding Unit Quadtree Structure

CU is a 2 2N N square and 2N can be 64, 32, 16, or 8. The encoder processes LCUs in

a frame in the sequential order from the left to the right, and then from top to down (raster

scan). Fig. 6 illustrates a real example of the partitioned nested CU quadtree structure.

Larger CU provides less bits usage in the smooth residual texture and the static motion

area in an encoded frame compared to the maximum 16 16 macroblock coding structure in

H.264. The HEVC encoder can also has the same small size CU as that in H.264 to handle the

areas with fast motion and complex residual texture. Targeting at high spatial resolution

picture for HEVC, the CU quadtree structure is especially designed for 720P and 1080P

video.

 23

Fig. 6 An example of nested CU quadtree structure (Vidyo1, Frame 2, QP=32)

3.1.1 Partition Decision Flow of Nested Quadtree CU

In HEVC, a slice is composed of many LCUs, and a large CU can be divided into four

smaller CUs. Each partitioned CU can be recursively split until the smallest size CU is

reached, in which 4 depths are allowed in HM 5.0. As one 2 2N N (not 8 8) CU is

processed in each depth, the encoder will analyze the R-D cost of all possible prediction

modes. First, the skip mode is used for compression, and then try Inter 2 2N N , 2N N ,

2N N (If in the high efficiency setting, the encoder will try additional asymmetric PUs.).

Last, Intra 2 2N N is tried for prediction. It should be noted that I_PCM is turned off in

HM5.0 in every profile. The smallest CU (8 8) is additionally tested with N N PUs for

intra mode, but the asymmetric is not included in this depth. When the best prediction of each

 24

mode produces the residual signal, the encoder processes it in the units of TU. The size of TU

is limited to that of the CU to which the TU belongs. TU in the CU with size 2 2N N can be

split into N N and / 2 / 2N N in a similar way to the CU recursively partition. However,

as already stated in Table 1, the maximum TU size cannot exceed 32 32 , and the NSQT is

used in some cases for inter residual signals.

At the same depth of CU, after analyzing each mode, its RD cost is compared with that

of the other previously processed modes to determine the best mode for the CU in this depth.

However, we still need an efficient method to compare the R-D cost of the best partitioned

modes at different depths. For example, allowing three admissible depths in the CU quadtree

has sizes varying from 64 64 to 16 16 . The number of the possible tree structures is 17.

The exhaustive comparison is not practical if the depth becomes larger.

To reduce the redundant comparisons, G-BFOS algorithm follows the well-known

“divide and conquer” concept. At the beginning, a full tree grows from the root to all possible

nodes until reaching the maximum admissible depth in the way of depth first and in the

Z-order (CDEF) of the same depth as shown in Fig. 7. When all nodes in one branch

are constructed, a pruning decision process compares the cost of the parent and that of its

children nodes to decide that the splitting process is needed or not. If (5) is satisfied, the

children nodes would be pruned. Otherwise, the sum of costs of all children nodes is assigned

to the parents’ node for the following comparison.

 25

4

1

() ()
i

J parent node J children node


 (5)

When all the compared nodes are built up, the decision process is executed until the root

node is reached. Using G-BFOS algorithm ensures that we can get the local minimum cost in

each partition region, and then combine them to find the best nested CU tree structure for a

LCU with the global minimum cost. Through this efficient decision algorithm, we only need 5

comparisons to decide the best CU partitioned structure in the example of Fig. 7.

Fig. 7 A G-BFOS example.

The alpha-order is the CU processing order (depth first and Z order at the same depth), and

the numerical-order is the pruning decision order.

3.1.2 Existing fast algorithms for Partition Decision Flow in HM5.0

Because of the huge complexity associated with the quadtree structure, many researchers

like to reduce its complexity. G-BFOS is the good solution for quadtree structure decision.

Thus, the targets of researchers are often chosen to be the efficient methods to build nodes.

 26

There are 3 existing schemes in the literature, namely, fast encoder setting (FEN) [9] [17],

early CU termination (ECU) [18], and cbf fast mode decision (CFM) [19].

There are 3 parts in FEN [9]. The first part is the CU early skip method, the second is the

sub-sampled SAD calculation, and the third is the simplified bi-prediction. We describe first

part in detail because it relates to the CU tree structure. The CU early skip method in FEN is

based on the average rate-distortion cost statistic in each slice. That is, when the R-D cost of

the current CU with skip mode in the current depth is smaller than the average cost of

previously encoded CUs with skip mode which is chosen as the optimal mode in the same

depth, the rest of PU modes in this depth are skipped. For a more aggressive decision, the

average R-D cost is multiplied by a fix-weighting factor of 1.5, and some research people

reports that an adaptive weighting factor can improve the performance of FEN [17]. The

performance of FEN is about 2.0% luma BD bit-rate loss and 48% overall encoding time

saving in the setting of high efficiency random access in HM3.2. Because FEN has multiple

considerations for speeding up HEVC, all configurations of HM5.0 turn on FEN in the

original settings.

ECU is a fast CU decision method using early termination based on the optimal PU

mode which was proposed by Choi et al [18], and the algorithm is also designed for skip

 27

modes for CU quadtree pruning. From their analysis of condition probability of the CU depth

selection, they observe that if the current CU selects the skip mode as the best prediction in

the current depth, 95% of this type CU will finally be encoded with the skip modes at this

depth. Exploiting this property, the CU depth check is skipped for all the next sub-CUs when

the R-D cost of the skip mode is minimum in the current CU. ECU algorithm has been adopt

in HM4.0, and it yields approximately 42% time reduction in encoding time with negligible

loss on the luma BD-rate in HM3.1 (i.e., 0.6%).

Except for the acceleration of FEN, every PU is processed to measure its R-D cost in one

CU regardless of the performance of the previous PUs. The R-D costs for all allowed PUs in

each depth are examined to ensure the optimal prediction, but the exhaustive method wastes a

lot of time. The coded block flag (cbf) is a good indicator to estimate the benefit of using

prediction. After the prediction operation of a PU, its corresponding CU becomes a residual

quadtree (RQT) block, which is to be processed as the TU. After the RQT is transformed and

quantized with a suitable tree structure, if all coefficients in this residual block are zero, the

cbf is set to 0, which means the prediction is sufficient (no residual coefficients coding).

Otherwise, cbf is 1. Gweon et al [19] proposed a CFM algorithm that uses this cbf property,

and the computational complexity is reduced to about 58.8% with the luma BD-rate loss

0.85% in HM3.2. The core idea of CFM is checking that three cbf values (1 luma and 2

 28

chromas) for every PU partition. If all of them are zero, then the processing of the PU options

of the current depth are terminated. It should be noted that the encoder simply skips the

analysis of PUs at this depth when the termination condition of CFM is satisfied, but it still

has to process PUs of all the sub-CUs in deeper depths.

ECU and CFM are powerful tools for reducing complexity, but they are closed in the

original settings of all configurations in HM5.0. An example of ECU is illustrated in Fig. 8,

and the program flow of CFM with the execution order of PUs in the low-complexity profile

is shown as Fig. 9 and Fig. 10 respectively.

Fig. 8 An example of ECU [18]

 29

Calculate RD cost of
the current PU

cbf_Y==0
&& cbf_U==0
&& cbf_V==0

Start

End
All PUs
finish?

No
No

Yes

Yes Compare cost and
move to the next PU

Fig. 9 Program flow of CFM

Strat SKIP Inter 2Nx2N Inter NxN

Inter Nx2NInter 2NxNIntra 2Nx2NIntra NxN

IPCM End
 Low complexity setting :
 (1) Intra NxN is only used as 2N=8.
 (2) Inter NxN and IPCM are close originally.

Fig. 10 PU execution order in CU in the low-complexity setting

3.2 Analysis of Nested CU Quadtree Structure

The nested CU quadtree Structure decision process in HM5.0, which pursues the optimal

structure selection, is described earlier in section 3.1.1. Although there exist FEN, ECU, CFM,

and G-BFOS algorithms to reduce the encoding complexity, we like to further speed up the

CU quadtree processing. Thus, we need to examine that which part in HM 5.0 takes most time

 30

and find out what factors producing the complexity.

The HEVC encoder computes the R-D cost to select the best CU size, PU partition, and

TU depth. The encoder spends a huge amount of computations on PUs and RQT in a CU

quadtree to identify the lowest R-D cost. We measure the computing time of the function

named “xCompressCU.cpp”, which is used for CU decision in HM5.0. In Table 4, we collect

the execution time ratio of “xCompressCU.cpp” regarding the overall encoding time in 8

high-resolution test sequences for 16 frames, and the average time ratio is taken over 4

selected QP cases.

Table 4 Time percentage of “xCompressCU.cpp” in HM5.0

Test Sequence Time Percentage Test Sequence Time Percentage

Kimono(1080P) 99.6% Vidyo1(720P) 99.4%

Park(1080P) 99.5% Vidyo3(720P) 99.5%

Cactus(1080P) 99.5% Vidyo4(720P) 99.5%

BasketballDrive(1080P) 99.5% BQTerrace(1080P) 99.5%

AVG 99.5%

Table 4 shows a surprising result that CU decision takes more than 99% time in the low

delay P with low complexity configuration. The computation associated with CU decision

includes inter prediction, intra prediction, RQT, and calculate R-D cost, and we know that the

computing time grows up rapidly with the increment of maximum admissible depth. Different

maximum admission depth results in different compression efficiency and computational

 31

complexity. In Table 5, we try the original block size setting of H.264/AVC with the

maximum CU size equals 16 and the maximum admissible depth is 2 compared to the original

setting in HEVC; that is, the encoder only uses 16 16 and 8 8 CUs to compress the video

sequences with same testing condition as Table 4.

Table 5 Comparison of 64/4 CU structure and 16/2 CU structure

(Maximum CU size / Maximum admissible depth)

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving (QP22) -40.88% -43.75% -43.67% -42.95% -43.91% -45.39% -44.92% -44.40% -43.73%

Time-Saving (QP27) -42.30% -46.01% -45.00% -44.56% -42.99% -45.57% -43.79% -45.22% -44.43%

Time-Saving (QP32) -44.10% -45.33% -44.39% -45.46% -43.38% -44.47% -44.04% -44.40% -44.45%

Time-Saving (QP37) -44.92% -45.08% -44.67% -46.15% -43.77% -43.99% -45.34% -43.14% -44.63%

AVG. Time-Saving -43.05% -45.04% -44.43% -44.78% -43.51% -44.86% -44.52% -44.29% -44.31%

Y BD-rate (%) 5.544 2.576 3.283 9.909 3.037 7.359 7.263 8.257 5.904

Y BD-PSNR (dB) -0.150 -0.078 -0.071 -0.167 -0.094 -0.207 -0.197 -0.193 -0.145

As depicted in Table 5, the 16/2 CU structure saves about 44% overall encoding time,

but causes 5.9% luma BD-rate loss in average. In general, it is a trade-off issue between

computational complexity and coding performance in designing a fast algorithm. Nevertheless,

such a large loss from 16/2 CU structure is generally not considered cost-effective, so we are

looking for other methods to accelerate the process of CU decision.

 32

Chapter 4 Fast CU Size Decision Algorithm Design

In the following section, we first describe the problem and the target we want to achieve,

and then we survey some ideas about fast CU quadtree decision algorithms, [20] and [21],

published recently but not have been accepted in HM as the coding tools in our testing

platform. After implementing the original platform, we measure and analyze its performance

with many standard sequences, and propose some ideas referred from [21] to compensate the

weakness of the testing platform.

4.1 Problem Formulation and Design Goal

Because HM5.0 has FEN, ECU, and CFM for CU fast algorithm, we try to design

additional fast algorithms from different perspectives. The principle of our new tool should be

different with those three existing tools, and the added tool should not reduce the performance

of the existing and also be compatible with the CU quadtree structure in HM5.0.

For the above reasons and the simulation results in section 3.2, skipping the analysis of

coding units in unnecessary depth is a possible way to accelerate encoding procedure,

especially for the high resolution video. Typical fast algorithm performance or experimental

results are examined by the ratio of time reduction, the bitrate and PSNR with the specified

QP and R-D curve [20], [21]. Therefore, we set up a reasonable target of our final proposed

 33

algorithm that reduces about 50% complexity and minimize the coding loss. Moreover, the

collaborative effect between our proposed algorithm and the existent fast algorithms is also an

important issue.

4.2 Related Work

Even though the original encoding procedure returns the best possible tree structure, its

complexity is very high. Heuristics scene characteristics estimation is necessary to predict the

optimal depth for the next encoded CU. In [20], the main idea is to accelerate the encoding

procedure of HEVC by utilizing the correlation of related CUs. The encoder uses the size

information of neighboring coding units and the processed depth-ratio in the previous frame

to limit possible processed depth. In [21], a complexity-control method is proposed, which

performs the time analysis and adjusts the number of fast encoding frames of each picture

group. Recording the deepest depth used in the unit of LCU in the previous frame, the

encoder finds the best possible tree structure until the recorded depth in each LCU in the

current frame.

However, the methods, [20] and [21], are implemented in the earlier version HM, so we

need to convert their ideas to fit our experimental platform HM5.0. Due to the above reasons

and performance consideration, we remove the frame level algorithm in [20], and the time

analysis in [21] is not suitable for our research because different computers would execute the

 34

same program with different time, so we use QP value as the indicator to adjust our algorithm.

The details will be described in the following sections.

4.3 Core Ideas of Fast CU Size Decision

The CU-level fast decision is based on the fact that the in the temporal and spatial

neighborhoods, the motion and texture characteristics of a picture patch are similar. Therefore,

we can predict the candidate CU depth by checking the size of its neighbor CUs (spatial) and

co-located CU (temporal).

 The data structure for HEVC is that each LCU includes 21 bits for representing the

splitting information as illustrated in Fig. 11. The accuracy of the data structure extends to

depth 2 which is sufficient for our fast decision. For example, during the encoding procedure,

G-BFOS tells us that splitting the LCU into 4 sub-CUs is better due to its lower R-D cost.

Then, the encoder will record the bit of index 0 in Fig.11 as 1 to indicate the splitting.

Otherwise, the bit is set to 0.

0

3

2
7

4

5 6 9 10

20

8 11 12

13 14 17 18

15 16 19

1

Depth 0 Depth 1 Depth 2

64

64

Fig. 11 Data representation of splitting information

 35

The other important factor in our algorithm is the location of corresponding CUs. Fig. 12

depicts the relation between the referred neighboring CUs and the current encoded CU. The

co-located CU means that the previous frame CU has the same position as the current encoded

CU. It should be mentioned that our algorithm executes recursively in depth 0, depth 1, and

depth 2 with the corresponding CU size of 2 2N N and CU index show in Fig. 11.

Fig. 12 Reference CUs and the current CU

 As already stated in Chapter 3, some exceptions of losing reference CUs exist in Fig. 12

due to the encoding order or the picture boundary. When we want to encode a CU with index

4 in Fig.11, the right-top referenced CU has not been processed, so the encoder can’t find any

information about the right-top CU as shown in Fig. 12. For this case, we ignore the right-top

CU but still follow the decision rule that to be described in the next two sections. On the other

hand, if the encoded CU is so close the boundary of picture that it loses more than one

referred CU, it will find the best CU quadtree structure without our proposed fast decision.

 36

4.3.1 Splitting Decision

The splitting decision is utilized for preventing the unnecessary prediction, RQT, and

R-D calculation in a larger size CU. When the CU analysis begins at the current depth and all

the following conditions are satisfied, the PU mode search in the current depth will be skipped

except for the 2 / 2N N N N  inter modes, and then it jumps into the next depth directly.

An example of splitting decision is illustrated in Fig. 13, where the current encoded CU in

depth 0 chooses the splitting decision.

 The co-located CU has smaller CUs.

 All neighboring CUs have smaller CUs.

 The current encoding frame is not I frame.

Current
Encoded

CU

Co-located
CU

64

64

Fig. 13 An example of splitting decision

 37

If all reference CUs prefer the splitting mode for lowering the R-D cost, which often

implies that the region has complex residual texture, and the encoded block has a large

probability in using the deeper depth to compress this CU. Nevertheless, when the depth of

CU becomes smaller and smaller, we retain the inter modes, 2 / 2N N N N  , with two MVs

in the skipping data depth.

4.3.2 Termination Decision

The termination decision prevents the encoder from building a larger tree with a lot of

computational complexity owing to the webs small CUs. If the encoder has already finished

the CU mode decision in the current depth, the termination decision is determined by the

following conditions. The mode decision whose depth is greater than the current depth will

not be conducted when all the conditions are satisfied. Fig. 14 shows an example of

termination decision, and the current encoded CU will not build any nodes with the depth

larger than 0 in the CU quadtree. The termination decision often occurs in the smooth residual

texture region or the static background.

 The co-located CU does not have any smaller CU.

 3 or more neighboring CUs do not have any smaller CU.

 The current encoding frame is not I frame.

 38

Co-located
CU

Current
Encoded

CU
64

64

Fig. 14 An example of termination decision

4.3.3 Basic Fast CU Size Decision Scheme

Fig. 15 shows the flowchart of the basic fast CU size decision algorithm. It should be

noted that the 2 fast decisions will not happen simultaneously in each depth of the encoded

CU. From the above sections, we know that splitting decision and termination decision will

not happen in I frame because a mismatched CU size in intra frame will result in a great

PSNR drop or bit rate increase. Moreover, for the co-located CU and the consistence of

reference CU size, we set up the experimental conditions for low delay P having only one

reference frame (only one co-located CU) and the GOP size is equal to one to avoid the

automatic increase in QP.

 39

Start
 Set Depth=0

and CU
address

Depth<3

Splitting
Decision

Termination
Decision

Do mode decision
 in the current depth.

Compare the R-D cost by G-BFOS.
Decide the best CU structure and

record it.

Depth++

Back to (A)

Do Inter modes
Nx2N,2NxN.

yes

no

yes

no

yes

no no

yes

Tree
complete?

End

(A) Set new depth
and CU address

yes

no

Increase
depth?

Comparable
for G-BFOS?

yes no

Set CU address

Fig. 15 Flowchart of basic fast CU size decision algorithm

4.4 Additional Tools

In this section, we try three methods to improve the performance of fast CU size decision.

There is no BD-rate measurement in [20] and [21], so we check our luma BD-rate, BD-PSNR,

and R-D curve to find the weakness of the basic algorithm and enhance it for better efficiency.

 40

First, we observe that the coding loss increases as QP gets larger, such as 32 and 37.

Nevertheless, the high QP setting is important for real-time application, and we should solve

this problem. Secondly, the time-saving is small in the lower QP cases. We want to solve this

problem because the encoder usually spends a lot of time compressing the videos at lower QP.

In the following sub-sections, we analyze the data from the result of the proposed basic

algorithm and design the modifications.

4.4.1 Frame Level Parameter Control

We collect the result of eight high-resolution video sequences with 32 frames per

sequence, and find that the performance is better than that of 16/2 CU structure which is

defined in section 3.2, but the coding loss is too high. Table 6 lists the BD-performance and

time reduction ratio, and Fig.16 shows the R-D curve of sequence “Basketball”.

The reference curve is the original HM, and the test curve is our proposed method. We

can find that two curves separate far in the higher QP cases, and we also notice that the time

reduction ratio is very high, which may drop some necessary mode calculations. In [21], the

depth-consideration fast algorithm sets the target of complexity from 40% to 100%, and there

is a large amount of R-D performance drop between 40% and 60%. Therefore, we like to

modify the method to maintain an appropriate complexity and to improve its BD-performance.

The improved method in [21] defines two types of frames: the unconstrained frames (uF) and

 41

the constrained ones (cF). cF represents that the CU in the frame is encoded with the fast

algorithm. On the contrary, the CU in uF is processed in the original way to find the best CU

quadtree structure. Each uF is followed by a number of cN constrained frames cF as

illustrated by Fig. 17.

Table 6 Performance of the basic fast CU decision algorithm

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -50.58% -37.73% -33.35% -35.83% -38.29% -41.56% -39.06% -40.78% -39.65%

Time-Saving(QP27) -57.94% -41.80% -44.40% -51.38% -36.90% -51.74% -50.37% -53.91% -48.56%

Time-Saving(QP32) -56.62% -46.10% -50.93% -55.60% -45.34% -60.38% -56.03% -60.28% -53.91%

Time-Saving(QP37) -55.81% -53.26% -56.15% -61.44% -54.38% -65.85% -61.48% -67.31% -59.46%

AVG. Time-Saving -55.24% -44.72% -46.21% -51.06% -43.73% -54.88% -51.74% -55.57% -50.39%

Y BD-rate (%) 5.311 5.347 3.906 7.559 1.650 7.661 4.323 8.203 5.495

Y BD-PSNR (dB) -0.147 -0.160 -0.086 -0.127 -0.049 -0.200 -0.132 -0.181 -0.135

Fig. 16 R-D curve of Basketball

34

36

38

40

42

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

P
S

N
R

-d
B

Log10-bitrate-kbps

BasketBall

Reference

Test

 42

Fu FuFc Fc Fc Fc Fc

Nc

Fig. 17 Example of Nc=3

In Table 6, the BD performance drops due to the unlimited cN . Our original proposed

algorithm sometimes takes the reconstructed frame with lower PSNR as the reference frame

which results in inaccurate prediction. Therefore, we should pay attention to the PSNR loss

with fixed cN and set the tolerable bound for the PSNR decrease. The experiments set cN

equal to 3, 6, 9, 12, and 15. Fig. 18 shows the suitable cN as the intersection of two lines for

QP=22, 27, 32, and 37, where over 75% sequences limit their drops of PSNR under 0.1dB

compared to the result of the original HM. The testing sequences and the frame number are

the same as the stated in the beginning of this section.

We use the results from Fig. 18 to select the proper integral cN for the corresponding

QP. Then, we estimate the relationship between cN and QP. The minimum square error

method is adopted for finding the approximated linear equation, which is

 (0.32 14.94), 46    cN round QP QP (6)

cN must be a positive integer, so we add the round operation outside the linear equation, and

thus cN is 0, when QP is larger than 46. The four QP values are taken into (6) iteratively to

 43

produce stable cN . Table 7 lists the finally selected cN to the corresponding QP. Thus, we

limit the value of cN in our proposed fast algorithm. The BD-performance in Table 8 is

much better than that in Table 6, and we also control the average time complexity at about

60%.The resulting R-D curves in Fig. 19 are closer to each other than those in Fig. 16,

especially in the high QP region. The same improvement of R-D curve trend is also found in

other sequences.

Nc is equal to 5 as QP=32. Therefore, we know the 7
th

 frame and the 13
th

 frame are

encoded originally, and the other frames in Table 9 are processed with fast CU size decision.

In Table 9, the usage bits per frame alter less than 28% between the consecutive frames, and

the maximum changed PSNR value is smaller than 0.14 dB. Although the reconstruction

videos seem continuous as the original way, we should consider the stable bits usage and the

video quality for the general applications.

Table 7 Specified QP versus Nc

QP 22 27 32 37

Nc 8 6 5 3

Table 8 BD-performance and time reduction ratio of limited Nc

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -41.54% -33.41% -31.47% -31.57% -35.91% -34.27% -33.46% -32.43% -34.26%

Time-Saving(QP27) -45.73% -33.05% -36.50% -40.78% -32.31% -40.75% -39.23% -41.21% -38.70%

Time-Saving(QP32) -44.32% -35.11% -39.86% -42.78% -33.90% -46.06% -43.99% -44.93% -41.37%

Time-Saving(QP37) -40.10% -37.53% -40.19% -42.76% -37.67% -46.42% -44.29% -46.64% -41.95%

AVG. Time-Saving -42.92% -34.78% -37.01% -39.47% -34.95% -41.88% -40.24% -41.30% -39.07%

 44

Y BD-rate (%) 2.907 1.888 1.530 2.992 0.567 1.234 1.579 1.755 1.807

Y BD-PSNR (dB) -0.080 -0.057 -0.032 -0.049 -0.018 -0.029 -0.049 -0.040 -0.044

Table 9 PSNR and bits measurements at QP=32

Vidyo1 PSNR (dB) bits BQTerrace PSNR (dB) bits

Frame7 39.5052 13016 Frame7 34.1248 193544

Frame8 39.4256 11408 Frame8 34.1320 201480

Frame9 39.4629 10016 Frame9 34.1214 201984

Frame10 39.4524 9432 Frame10 34.1148 200944

Frame11 39.3932 9656 Frame11 34.1008 200216

Frame12 39.3379 10848 Frame12 34.1081 197904

Frame13 39.4740 13784 Frame13 34.1911 211504

Fig. 18 Experiment for choosing cN

The solid line means the ratio under the tolerable bound, and the dashed horizontal line

represents the expected ratio which equals 75%.

 45

Fig. 19 R-D curve of Basketball with Nc control

4.4.2 LCU Level Parameter Control with Error-Bound

In this section, we focus on analyzing the distortion statistics between the original video

and the reconstructed video at LCU level. By limiting our algorithm working in the high

distortion region of the previous frame, the HEVC inter-prediction scheme can produce better

matching block from the reconstructed frame. It should be noted that the data in this section is

based on CU size fast decision with splitting information, and the used cN values are

different from those in other sections in this thesis.

At the beginning, we test our proposed algorithm including the cN

value control on

eight high resolution sequences with 32 frames per sequence. Fig. 20 shows the probability

density distribution of the sum of the absolute distortion (SAD) in each LCU at various QP.

34

36

38

40

42

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

P
S

N
R

-d
B

Log10-bitrate

BasketBall

Reference

Test

 46

Then, we also apply the minimum square error method to estimate the relationship between

QP and the 3% bound of SAD as

,

 error bound (3%) = 1332.708 QP - 22694.336 (7)

where 3% means the top 3% error in our collected SAD data. In Fig. 20, we divide all

collected data within the corresponding QP into 100 groups to calculate its probability density

distribution, and the red dash lines in Fig. 20 indicates the position of the top 3% error for

each QP.

When we insert 4 QP values into (7), we find that the estimated error bound values do

not match our assumption. This is particularly true for the case of QP 22 and the

corresponding error bound is 6625.24. The bound is on the left of the peak (near 7000) and

thus excludes over 10% LCU for fast algorithm which decreases the time reduction. For

accurate error bound, we try the second order approximation equation, and the result is

 2 error bound (3%) = 33.222 QP -627.39 QP + 5178.922 (8)

Although the computation of second order equation is high, it gives us a better fitting

curve to the original data. Fig. 21 shows the curve fitting, and Table 10 lists the 3% error

bound of the specified QP. We add error bound threshold for LCU skipping into our proposed

fast algorithm with limited cN , and the simulation results of 1080P sequences with 32 frames

per sequence are shown in Table 11.

 47

Fig. 20 Error bound (3%) for SAD

Fig. 21 Second order curve fitting for error bound (3%)

 48

Table 10 Specified QP versus error bound (3%)

QP 22 27 32 37

ErrorBound (3%) 7455.79 12458.23 19121.77 27446.41

Table 11 BD-performance and time reduction ratio with 3% error bound

Test Sequence Kimono Park Cactus Basketball BQTerrace

Time-Saving(QP22) -41.67% -20.22% -3.22% -21.77% -11.68%

Time-Saving(QP27) -47.97% -32.46% -29.37% -39.94% -15.55%

Time-Saving(QP32) -45.67% -35.55% -38.54% -43.27% -24.08%

Time-Saving(QP37) -41.65% -37.09% -39.70% -43.82% -32.57%

AVG. Time-Saving -44.24% -31.33% -27.71% -37.20% -20.97%

Y BD-rate (%) 3.062 2.083 1.296 2.972 0.455

Y BD-PSNR (dB) -0.085 -0.063 -0.027 -0.051 -0.013

We only try 1080P sequences and discontinue trying other ones because the time

reduction significantly decreases in the low QP setting. Nevertheless, the BD-performance

improves a little bit. Thus, we can still use this method but this is a concern on time reduction.

Therefore, the final scheme sets the threshold bound only on the QP equals 32 and 37. The

simulation result with 64 frames per sequence is shown in Table 12. To test its robustness, we

add eight lower resolution sequences to check the effect of error bounds. Table 13 shows the

simulation result without error bound for comparison.

Table 12 Simulation result with 3% error bound with 64 frames per sequence

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -38.77% -33.45% -32.53% -30.92% -35.96% -37.67% -37.67% -34.24% -35.15%

 49

Time-Saving(QP27) -45.38% -33.71% -37.57% -40.72% -31.92% -44.68% -44.98% -43.37% -40.29%

Time-Saving(QP32) -44.14% -35.07% -39.06% -42.48% -23.23% -50.37% -47.76% -47.78% -41.24%

Time-Saving(QP37) -41.11% -38.36% -41.36% -43.14% -33.13% -51.69% -48.88% -48.83% -43.31%

AVG. Time-Saving -42.35% -35.15% -37.63% -39.32% -31.06% -46.10% -44.82% -43.56% -40.00%

Y BD-rate (%) 3.364 2.395 2.063 3.229 0.696 1.702 2.530 2.430 2.301

Y BD-PSNR (dB) -0.092 -0.074 -0.044 -0.061 -0.018 -0.043 -0.073 -0.055 -0.058

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.

Time-Saving(QP22) -32.15% -31.69% -30.35% -28.53% -21.46% -21.88% -23.67% -23.15% -26.61%

Time-Saving(QP27) -32.35% -29.82% -28.96% -28.21% -22.15% -20.29% -19.96% -20.83% -25.32%

Time-Saving(QP32) -31.76% -26.74% -11.68% -22.43% -22.22% -18.09% -9.48% -18.37% -20.10%

Time-Saving(QP37) -32.19% -27.48% -13.56% -22.96% -23.58% -20.63% -11.65% -19.76% -21.48%

AVG. Time-Saving -32.11% -28.93% -21.14% -25.53% -22.35% -20.22% -16.19% -20.53% -23.38%

Y BD-rate (%) 4.413 2.309 0.510 1.762 1.611 0.662 0.161 0.820 1.531

Y BD-PSNR (dB) -0.174 -0.094 -0.025 -0.075 -0.08 -0.028 -0.008 -0.04 -0.066

Table 13 Simulation result without error bound with 64 frames per sequence

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -39.19% -33.60% -32.56% -32.48% -37.12% -38.12% -37.62% -34.90% -35.70%

Time-Saving(QP27) -45.27% -34.25% -37.86% -42.01% -32.66% -45.15% -45.06% -44.35% -40.83%

Time-Saving(QP32) -44.11% -36.19% -41.76% -43.72% -35.01% -51.07% -48.21% -48.55% -43.58%

Time-Saving(QP37) -41.12% -39.17% -43.51% -44.55% -41.48% -52.18% -49.53% -49.77% -45.16%

AVG. Time-Saving -42.42% -35.80% -38.92% -40.69% -36.57% -46.63% -45.11% -44.39% -41.32%

Y BD-rate (%) 3.364 2.383 2.237 3.217 0.818 1.702 2.529 2.430 2.335

Y BD-PSNR (dB) -0.092 -0.073 -0.047 -0.062 -0.024 -0.043 -0.073 -0.055 -0.059

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.

Time-Saving(QP22) -31.47% -30.51% -29.38% -27.90% -23.54% -23.17% -24.38% -23.22% -26.70%

Time-Saving(QP27) -30.98% -28.75% -27.94% -28.07% -22.88% -20.61% -21.19% -21.51% -25.24%

Time-Saving(QP32) -31.90% -29.03% -25.93% -27.43% -24.06% -21.17% -19.56% -20.44% -24.94%

Time-Saving(QP37) -32.61% -29.80% -25.83% -26.56% -25.64% -24.25% -19.34% -21.35% -25.67%

AVG. Time-Saving -31.74% -29.52% -27.27% -27.49% -24.03% -22.30% -21.12% -21.63% -25.64%

Y BD-rate (%) 4.509 2.540 0.723 2.092 1.566 0.903 0.216 1.029 1.697

Y BD-PSNR (dB) -0.178 -0.102 -0.037 -0.09 -0.078 -0.039 -0.011 -0.052 -0.073

 50

 We find that the BD-performance improves a little but not much, especially in some

worst cases. Although the error bound scheme reduces the efficiency of time saving, we still

increase the bound up to 5% to compare their performance and evaluate the necessity of the

error bound. The comparison is in Table 14.

Table 14 Comparison of different ratios of error bound

High resolution sequences(1080P,720P) Low resolution sequences

Error Bound BD-rate (%) BD-PSNR(dB) Time saving Error Bound BD-rate (%) BD-PSNR(dB) Time saving

none 2.335 -0.059 -41.32% none 1.697 -0.073 -25.64%

3% 2.301 -0.058 -40.00% 3% 1.531 -0.066 -23.38%

5% 2.297 -0.057 -39.86% 5% 1.517 -0.065 -22.33%

From Table 14, we know that increasing the ratio of the error bound is not useful for

coding gain, and there are 2 phenomena we notice in comparing Table 12 to Table 13. Firstly,

the performance of “Kimono” seems no different with the error bound. Secondly, the time

reduction becomes about half in the sequence of “Party”. For investigate these cases, we

analyze their SAD distribution separately, and find that the measurement of error bound

scheme is too rough for representing the individual sequences. The SAD distribution of

“Kimono” is shown in Fig. 22, and the 3% threshold decided by all sequences does not work

on the “Kimono” because its PSNR is higher than the average PSNR of the high resolution

sequences. On the other hand, the threshold limits about 50% case for fast algorithm in “Party”

because the threshold is located near the center of its SAD probability density distribution

 51

which is shown in Fig. 23. In conclusion, we remove this tool from our algorithm due to the

large variation of probability distribution of individual sequences and additional operations of

calculation for SAD values. An effective threshold scheme should consider both PSNR and

bitrate in setting up the adaptive threshold for different sequences.

Fig. 22 Probability density distribution of SAD of “Kimono”

Fig. 23 Probability density distribution of SAD of “Party”

 52

4.4.3 2NxN/Nx2N Decision after Splitting Decision

In the last two sections, we notice that the time reduction of low QP is lower than that of

high QP. We also know that the small sized CUs are often used in lower QP case, so the

splitting decision occurs easily in the region of many small sized CUs. However, the time

saving of the splitting decision is less than that of the termination decision, so we are expected

to use only one inter prediction after the splitting decision to reduce the complexity further.

There are 2 possible inter modes examined originally after the splitting decision,

2 / 2N N N N  . We assume that the shape is highly dependent on the size of neighboring

CUs. If the number of small CU in the horizontal direction is larger than that in the vertical

direction, the encoder will compute the R-D cost of 2N N in the current depth. Otherwise,

we will only use 2N N prediction instead. The positions of reference CUs for depth 0 and

1 are shown in Fig. 24, and those for depth 2 are shown in Fig. 25.

In the example of Fig. 24, the current encoded CU of depth 1 refers CU1 and CU2 as the

horizontal referenced CUs, and takes CU3 and CU4 as the vertical referenced CUs. That is, as

the depth of current encoded CU is smaller than 2, the referenced CUs are the sub-CUs at the

top and the left, and we decide the suitable mode by the splitting bits in those referenced CUs.

However, we only save the splitting information of CU up to depth 2, so we should adjust the

 53

decision rule for the encoded CU in the depth 2. In Fig. 25, CU5 and CU6 are horizontal

referenced CUs for the current encoded CU of depth 2, and CU9 and CU10 are its vertical

referenced CUs. As the encoded CU shifts in range of 3 3 in the current depth, the

referenced CUs shift in the same way. It is should be noted that CU13 is located at the bottom

row of the LCU, then the encoder takes CU7 and CU8 as the referred CUs due to that the CUs

under CU8 are not encoded. For symmetry, the CU14 located the right column of LCU refers

CU11 and CU12 to decide the shape of prediction in the current depth. The rest CUs after the

splitting decision in the right edge and the bottom edge of green LCU refers the corresponding

CUs with the similar way we stated above.

The design scheme in this section based on the assumption that after the splitting

decision, the 2 / 2N N N N  decision is computed for choosing the only proper inter mode

in the current depth. Table 15 shows the improvement of time reduction by the

2 / 2N N N N  decision, the number of testing frame is 64 per sequence. Obviously, the

time reduction increases 3% in average with negligible coding loss, especially in lower QP,

where higher percentage of splitting decisions happening.

 54

Current
Encoded

CU

1

2

3 4

64

64

Fig. 24 An example of 2NxN/Nx2N Decision in depth 1

Current
Encoded

CU

5

6

7

8

64

64

9 10 11 12

13

14

Fig. 25 An example of 2NxN/Nx2N Decision in depth 2

 55

Table 15 Performance for schemes with and without 2NxN/Nx2N decision

With

2NxN/Nx2N

Decision?

Average

Time

reduction

QP=22

Average

Time

reduction

QP=27

Average

Time

reduction

QP=32

Average

Time

reduction

QP=37

Average

Time

reduction

BD-rate

(%)

BD-PSNR

(dB)

No(1080P,720P) -34.28% -38.75% -42.01% -41.53% -39.14% 2.089 -0.052

No (Other) -25.01% -23.31% -23.72% -23.39% -23.86% 1.417 -0.062

Yes(1080P,720P) -40.18% -41.95% -44.15% -42.75% -42.26% 2.050 -0.051

Yes (Other) -30.81% -28.16% -27.07% -25.55% -27.90% 1.406 -0.060

4.5 Overview of the Overall Proposed Algorithm

In this chapter, we firstly propose the basic algorithm for fast CU size decision, and then

we design two useful additional tools to enhance its coding performance and to increase time

reduction, respectively. The detailed experiments and discussions are in the next chapter. The

final flowchart of our algorithm is depicted in Fig. 26. The main additional parts are Nc

control block and Nx2N decision block. Nc decision block executes before the splitting

decision to reduce the coding loss by long-term Nc. Nx2N decision block places after the

splitting decision to reduce the calculation from the unnecessary PU in the current depth. Due

to these tools, our proposed scheme increases its efficiency.

 56

Start Depth=0

Depth<3
& allowable

Nc ?

Splitting
Decision

Termination
Decision

Do mode decision
 in the current depth

Compare the R-D cost
by G-BFOS.

Decide the best CU structure
and record it.

Set CU address

Back to (A)

Comparable
for G-BFOS?

yes

no

yes

no

yes

no no

yes

Nx2N decision

Do Nx2NDo 2NxN

yesno

(A) Set new depth
and CU address

Tree
complete?

End
yes

no

Depth++

Increase
depth?

noyes

Fig. 26 Flowchart of overall proposed algorithm for processing an LCU

 57

Chapter 5 HEVC Experiments and Discussions

In this chapter, we examine the performance of the proposed algorithm by testing 16

sequences with 100 frames per sequence. Then, we discuss the different time reduction

efficiency due to the different depth combinations. The experiment conditions and the

platform are already stated in section 2.3. The rest of this chapter is organized as follows. The

performance measurements for all experiments in this study are listed in section 5.1, and then

section 5.2 conducts several experiments and discussions for ECU, CFM, and our proposed

algorithm. At the end of this chapter, we analyze the useful combination of the above

algorithms.

5.1 Performance Measure

The time reduction, also called time saving (TS) in the thesis, is defined as

,

() ()
() 100%

()

tested i referenced i

i

referenced i

Time QP Time QP
TS QP

Time QP


  (9)

where ()referenced iTime QP is the overall encoding time for referenced setting, such as the

original HM5.0, and ()tested iTime QP is the overall encoding time for the tested setting with

the fast algorithm. iQP is usually set as 22, 27, 32, or 37 (1QP , 2QP , 3QP , or 4QP) for

BD-performance measurement described later. In general, we use the arithmetic average to

represent the overall time saving (averageTS) as

 58

4

1

1

4
average i

i

TS TS


  (10)

On the other hand, we also need a way to show the loss in the R-D performance as the

trade-off for time reduction. The BD-rate and BD-PSNR [16] are adopt to measure the

average performance in the most standard contests, so we use it to show the average

difference between 2 R-D curves produced by the reference scheme and the proposed scheme.

The BD-measurement [16] only needs the R-D results of 4 iQP as mentioned previously to

interpolate the overall R-D curve and further to estimate the average difference between 2

schemes.

When we want to observe the R-D performance of the specified QP, we analyze the data

based on the formulas defined as (11) and (12) to represent the difference between the

reference scheme and the proposed scheme.

 tested referencedPSNR PSNR PSNR   (11)

 (%) 100%
tested referenced

referenced

BitRate BitRate
BitRate

BitRate


   (12)

Last but not the least, the depth analysis is essential to know the strong and weak points

of procedure for our fast decision algorithm. Thus, we should compare the depth changing

trend due to the fast size decision to show the usefulness of each proposed tool. In (13),

AvgDepth means the average depth per LCU in the frame. iCUDepth is the depth of thi CU,

iCUArea

LCUArea
 is the area ratio of the thi CU to LCU, FrameArea is the area of the Frame, and n

is the number of CU in a frame. This depth measurement is defined by [21].

 59

1

1

(/)

n
i

i

i

CUArea
AvgDepth CUDepth

FrameArea LCUArea LCUArea

  (13)

5.2 Experimental Results and Discussions

In this section, we show the results of our proposed fast algorithm including cN control

scheme and 2 / 2N N N N  decision described in subsection 5.2.1. Here, we also analyze

the depth changing-trend in videos with different characteristics. Then, we simulate the

original HM plus the ECU and CFM tools with the original low delay P and low complexity

configuration in subsection 5.2.2, and compare them to the results of our schemes with

GOP=1 and referenced frame=1. For the aggressive design, we add ECU and CFM into our

proposed algorithm, and discuss the advantages and disadvantages caused by integrating these

tools together. Hence, we have to find an efficient way to use these tools at proper QP values

in subsection 5.2.3.

5.2.1 Fast CU Size Decision

The performance of our proposed fast decision in section 4.5 is listed in Table 16 (64

frames per sequence) and in Table 17 (100 frames per sequence) respectively. The reference

scheme is the original HM5.0 without ECU and CFM. The simulation data in Table 16

shows that our scheme can averagely provide about 43 % overall encoding time saving in the

high resolution test sequences. On the average, the luma BD-rate increment is about 2.24%

and the luma BD-PSNR loss is about 0.06 dB.

 60

When the number of frames increases, the BD-performance decreases slightly because

we set the number of the reference frame is 1 to lower complexity but the inaccurate

prediction in the IPPP sequence type also decreases coding performance. Hence, we should

select a suitable intra period for the fast decision scheme, when the loss is not tolerated. The

changing trend is about -0.2% BD-rate as adding the additional 32 encoded frames, averagely.

Table 16 Performance of the overall proposed algorithm (64 frames/sequence)

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -42.73% -39.54% -39.84% -38.61% -43.65% -39.39% -40.03% -37.62% -40.18%

Time-Saving(QP27) -45.88% -36.83% -39.77% -43.17% -37.57% -44.09% -44.64% -43.66% -41.95%

Time-Saving(QP32) -45.76% -38.21% -42.96% -43.80% -36.73% -49.53% -47.90% -48.27% -44.15%

Time-Saving(QP37) -40.04% -37.47% -41.86% -41.82% -39.34% -48.72% -46.19% -46.58% -42.75%

AVG. Time-Saving -43.60% -38.01% -41.11% -41.85% -39.32% -45.43% -44.69% -44.03% -42.26%

Y BD-rate (%) 3.094 2.173 1.909 2.723 0.789 1.059 2.460 2.189 2.050

Y BD-PSNR (dB) -0.084 -0.067 -0.040 -0.051 -0.022 -0.024 -0.074 -0.049 -0.051

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.

Time-Saving(QP22) -34.57% -35.71% -35.81% -33.49% -24.73% -27.29% -28.15% -26.72% -30.81%

Time-Saving(QP27) -33.20% -31.82% -33.30% -31.62% -23.73% -23.45% -24.18% -23.96% -28.16%

Time-Saving(QP32) -33.34% -30.81% -30.72% -30.96% -23.47% -22.56% -21.67% -23.02% -27.07%

Time-Saving(QP37) -31.69% -29.47% -27.97% -27.98% -23.83% -22.87% -18.65% -21.96% -25.55%

AVG. Time-Saving -33.20% -31.95% -31.95% -31.01% -23.94% -24.04% -23.16% -23.92% -27.90%

Y BD-rate (%) 3.583 2.231 0.613 1.773 1.255 0.788 0.187 0.819 1.406

Y BD-PSNR (dB) -0.143 -0.090 -0.030 -0.077 -0.062 -0.033 -0.009 -0.040 -0.061

Table 17 Performance of the overall proposed algorithm (100 frames/sequence)

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -41.95% -39.66% -39.66% -38.74% -43.05% -43.60% -40.60% -37.02% -40.54%

Time-Saving(QP27) -45.09% -36.43% -39.73% -45.33% -36.69% -48.33% -45.06% -43.06% -42.47%

Time-Saving(QP32) -44.97% -37.73% -42.70% -47.73% -36.87% -52.83% -48.97% -47.41% -44.90%

Time-Saving(QP37) -39.85% -36.84% -41.02% -45.67% -41.82% -51.89% -46.32% -46.35% -43.72%

AVG. Time-Saving -42.97% -37.67% -40.78% -44.37% -39.61% -49.16% -45.24% -43.46% -42.91%

 61

Y BD-rate (%) 3.112 2.231 2.052 2.775 0.934 1.839 2.615 2.379 2.242

Y BD-PSNR (dB) -0.084 -0.069 -0.044 -0.056 -0.026 -0.043 -0.077 -0.053 -0.057

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.

Time-Saving(QP22) -34.44% -35.32% -36.13% -34.32% -26.48% -27.52% -28.50% -27.25% -31.25%

Time-Saving(QP27) -33.37% -31.55% -33.15% -32.32% -25.15% -23.43% -24.53% -24.53% -28.50%

Time-Saving(QP32) -32.98% -31.29% -30.49% -30.99% -24.49% -22.67% -22.06% -23.07% -27.26%

Time-Saving(QP37) -31.12% -29.63% -27.72% -28.40% -23.65% -23.49% -20.02% -22.23% -25.78%

AVG. Time-Saving -32.98% -31.95% -31.87% -31.51% -24.94% -24.28% -23.78% -24.27% -28.20%

Y BD-rate (%) 3.422 2.747 0.588 1.923 1.317 0.883 0.301 1.008 1.524

Y BD-PSNR (dB) -0.134 -0.109 -0.028 -0.084 -0.066 -0.036 -0.015 -0.051 -0.065

It should be noted that the low resolution sequences has less time saving averagely. The

main reason is that the depth combination of low resolution sequences is often different from

that of the high resolution sequences. In general, the encoder takes more 8 8 CUs as QP

equals 22, and the large sized CU is usually used in the case of the higher QP and the static

region. Our proposed algorithm consists of splitting decision and termination decision.

Splitting decision can speed up the convergence of small CUs area. On the other hands,

termination decision cuts off unnecessary depth in the CU quadtree construction resulting in

larger CU sizes. The depth data of our experiments explains the above observation. Here, we

examine 3 sequences with the specified QP in the consecutive frames, Vidyo1 (QP=32),

BQsquare (QP=32), and BQTerrence (QP=22). In Table 18, the depth distribution is listed

from 7
h
 to 13

th
 frames for observing the complete acceleration period with QP=32. It is should

be mentioned that all the depth measurements in the section include the area factor.

 62

Table 18 Depth percentage (QP is 32)

Vidyo1 Depth0 Depth1 Depth2 Depth3 BQsquare Depth0 Depth1 Depth2 Depth3

Frame7 44.0% 28.8% 20.0% 7.3% Frame7 0.0% 15.4% 28.7% 55.9%

Frame8 61.8% 21.9% 14.3% 2.1% Frame8 0.0% 19.5% 33.3% 47.2%

Frame9 59.1% 25.4% 14.6% 0.9% Frame9 0.0% 19.5% 34.1% 46.4%

Frame10 65.3% 16.6% 17.6% 0.5% Frame10 0.0% 14.4% 37.9% 47.7%

Frame11 60.0% 20.8% 18.9% 0.4% Frame11 0.0% 12.3% 36.4% 51.3%

Frame12 68.4% 17.1% 14.2% 0.2% Frame12 0.0% 16.4% 26.7% 56.9%

Frame13 51.6% 26.6% 16.0% 5.9% Frame13 0.0% 20.5% 28.5% 51.0%

We notice that the larger CUs are seldom used in the sequence “BQsquare”. The same

phenomenon usually happens in the small sized videos even when QP is 37. Table 19 shows

that the depth combination of the 10
th

 frame in all small sequences as QP equals 37. For

comparison, we also list the depth combination in the high resolution videos with the same

conditions in Table 20.

Table 19 Depth percentage of the 10
th

 frame in low resolution sequences (QP=37)

Frame10 BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses

Depth0 49.2% 44.1% 3.1% 1.0% 32.8% 4.1% 0.0% 0.0%

Depth1 24.1% 29.2% 25.6% 38.7% 32.8% 45.1% 31.8% 11.3%

Depth2 20.5% 18.5% 42.9% 42.2% 23.8% 37.7% 41.0% 55.9%

Depth3 6.2% 8.1% 28.4% 18.0% 10.5% 13.1% 27.2% 32.8%

Table 20 Depth percentage of the 10
th

 frame in HD sequences (QP=37)

Frame10 Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4

Depth0 25.5% 35.4% 55.7% 55.5% 39.5% 75.6% 77.3% 80.9%

Depth1 54.0% 39.8% 24.0% 31.5% 32.6% 18.0% 12.4% 15.4%

Depth2 19.4% 20.8% 16.7% 11.5% 22.6% 5.9% 9.8% 3.4%

Depth3 1.1% 4.0% 3.5% 1.5% 5.3% 0.6% 0.5% 0.3%

 63

The time saving measure is highly depends on depth combination. For example, Vidyo1

has many large CUs in the case of QP=32, and its depth combination tends to be larger in size

because the termination decision works frequently. The time reduction ratio analysis of

Vidyo1 is listed in Table 21. Moreover, we also find the depth information of BQsquare in

Table 18 with large amount small size CU, so the splitting decision is the major fast decision

operation as shown in Table21.

Table 21 Time reduction ratio analysis of Vidyo1 and BQsquare

Vidyo1 (QP32 with encoding 64frames) BQsquare (QP32 with encoding 64frames)

Fast Setting Time (sec) TS Fast Setting Time (sec) TS

None 581.968 0% None 106.910 0%

Overall 293.730 -49.53% Overall 83.742 -21.67%

Only

Termination
306.052 -47.41%

Only

Termination
102.062 -4.53%

Only

Splitting
570.772 -1.92%

Only

Splitting
87.600 18.06%

Although Vidyo1 has more time reduction than that of BQsquare, it does not mean that

the splitting decision is useless relative to the termination decision. It depends on the depth

combination and the CU distribution in a frame. For example, Sequence “BQTerrence”

(QP=22) with dense small size CUs leads to that the splitting decision is the major fast

decision and that the time saving is about 44%. Table 22 lists its depth combination and Table

23 shows its time reduction analysis. Further, we show the real examples of 9
th

 frame of

sequences “BQsquare (QP=32)”, “Vidyo1 (QP=32)”, and “BQTerrence (QP=22)”,

 64

respectively in Fig. 27, Fig. 28, and Fig 29. We also show the depth convergence processes of

“BQsquare (QP=32)” and “Vidyo1 (QP=32)” from 12
th

 frame to 17
th

 frame in the pie chart

respectively in Fig. 30 and Fig. 31.

Table 22 Depth percentage of BQTerrence (QP=22)

BQTerrence Frame12 Frame13 Frame14 Frame15 Frame16 Frame17

Depth 0 2.0% 2.4% 2.6% 2.4% 2.0% 2.2%

Depth 1 12.9% 12.0% 12.7% 10.7% 11.5% 11.6%

Depth 2 13.7% 13.6% 12.1% 15.8% 13.4% 13.5%

Depth 3 71.5% 71.9% 72.6% 71.1% 73.1% 72.7%

Table 23 Time reduction ratio analysis BQTerrence (QP=22)

Fast Setting None Overall Only Splitting Only Termination

Time(Sec) 3536.034 1992.612 2168.625 3367.291

TS 0% -43.65% -38.67% -4.77%

Fig. 27 CU distribution of the 9
th

 frame of BQsquare (QP=32)

 65

Fig. 28 CU distribution of the 9
th

 frame of Vidyo1 (QP=32)

Fig. 29 CU distribution of the 9
th

 frame of BQTerrence (QP=22)

 66

According to the CU distribution in Fig. 27 and Fig. 29, we find that sequence

“BQTerrence” has densely populated small CU in the center. Therefore, the splitting decision

in sequence “BQTerrence” appears more often than that in sequence “BQsquare”.

Frame 7

Frame 9

Frame 8

Frame 10

Frame 11 Frame 12

Fig. 30 Pie chart of depth amount ratio of BQsquare (QP=32)

 67

Frame 7 Frame 8

Frame 9 Frame 10

Frame 11 Frame 12

Fig. 31 Pie chart of depth amount ratio of Vidyo1 (QP=32)

From the above experiments and discussions of several frames in three sequences, the

CU changing trend is dominated by the majority CU sizes. Furthermore, we like to examine

the CU distribution for the entire encoding period, and we also combine the CU area factor

with the amount of the specified CU sizes to represent the depth information. Hence, we

 68

illustrate two significantly different properties of AvgDepth defined in (13) for sequences

“Vidyo1 (QP is 37)” and “BQTerrence (QP is 22)” in Fig. 32 and Fig. 33, respectively.

Fig. 32 Average depth of Vidyo1 (QP=37)

Fig. 33 Average depth of BQTerrence (QP=22)

 69

The majority CU depths are 0 and 1 in Fig.32. When the frame is not Nc, which is

encoded without our proposed fast decision, the average depth then increases slightly since

the encoder uses the small size CU for coding detailed residual texture. In Fig. 33, the

majority CU depths are 2 and 3 obviously. The average depth is almost the same no matter the

fast decision turns on or off, so the BD loss is the minimal among high resolution sequences.

However, Fig. 32 and Fig. 33 are extreme examples for explaining the phenomena of

changing trend. In general, most encoding cases in the middle QP region have the uniform

depth distribution. Thus, the termination decision and splitting decision both are needed for

saving time.

In summary, we propose the fast CU size decision algorithm including splitting decision

and termination decision with 2 additional tools, which are cN control scheme and

2 / 2N N N N  decision. When the video is encoded mostly by small sized CUs, the

encoding procedure can speed up by the splitting decision operation. On the other hand, as the

encoder uses more large sized CUs for processing the video, it will benefit from the

termination decision operation. The simulation results of high resolution sequences in Table

17 show that our fast decision method averagely provides about 43% overall encoding time

reduction, and the BD-rate increases by about 2.24%.

 70

5.2.2 Comparison with ECU/CFM

In this section, we enable the fast encoding tools, ECU and CFM, to accelerate HM5.0

without our proposed scheme. The simulation results with the original low delay P with low

complexity setting (GOP=4 and 4 reference frames) are listed in Table 24 for eight high

resolution sequences (32 frames per sequence).

Table 24 Simulation results of ECU and CFM with low delay_P loco setting

Only ECU Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -8.92% -21.29% -15.51% -14.37% -13.88% -47.18% -39.21% -39.27% -24.95%

Time-Saving(QP27) -18.53% -37.40% -33.56% -28.52% -40.82% -59.46% -52.29% -54.33% -40.61%

Time-Saving(QP32) -31.86% -50.42% -43.71% -40.64% -57.87% -66.24% -60.97% -63.26% -51.87%

Time-Saving(QP37) -44.92% -60.55% -51.96% -50.39% -68.05% -70.71% -67.03% -68.92% -60.32%

AVG. Time-Saving -26.06% -42.42% -36.19% -33.48% -45.16% -60.90% -54.88% -56.45% -44.44%

Y BD-rate 0.456 0.640 0.765 0.399 1.410 -0.159 0.916 -0.028 0.550

Y BD-PSNR -0.015 -0.019 -0.014 -0.008 -0.022 0.009 -0.022 -0.001 -0.012

Only CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -16.33% -27.21% -20.64% -21.82% -18.02% -41.10% -35.08% -36.43% -27.08%

Time-Saving(QP27) -24.90% -39.38% -33.76% -31.70% -41.24% -49.82% -45.72% -47.16% -39.21%

Time-Saving(QP32) -34.93% -47.96% -41.95% -40.00% -51.63% -53.75% -51.50% -52.74% -46.81%

Time-Saving(QP37) -43.54% -52.86% -47.24% -46.39% -56.45% -55.88% -54.97% -55.66% -51.62%

AVG. Time-Saving -29.93% -41.85% -35.90% -34.98% -41.84% -50.14% -46.82% -48.00% -41.18%

Y BD-rate 0.449 0.756 1.126 1.044 1.046 0.713 0.964 0.622 0.840

Y BD-PSNR -0.015 -0.023 -0.024 -0.022 -0.021 -0.017 -0.028 -0.018 -0.021

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -20.64% -38.06% -29.46% -28.39% -24.40% -61.66% -52.04% -53.29% -38.49%

Time-Saving(QP27) -33.31% -56.06% -48.52% -43.56% -60.85% -74.48% -67.75% -70.85% -56.92%

Time-Saving(QP32) -48.60% -68.92% -59.88% -56.35% -76.65% -81.01% -76.77% -78.75% -68.37%

Time-Saving(QP37) -61.81% -77.30% -68.48% -66.44% -84.44% -84.91% -82.32% -83.30% -76.13%

 71

AVG. Time-Saving -41.09% -60.09% -51.59% -48.69% -61.59% -75.52% -69.72% -71.55% -59.98%

Y BD-rate 0.804 2.667 3.155 1.469 3.026 0.824 2.553 0.558 1.882

Y BD-PSNR -0.026 -0.079 -0.062 -0.027 -0.051 -0.024 -0.073 -0.01 -0.044

We notice that the time saving with low QP is less than that with high QP, and it achieves

about 60% time saving with increasing BD-rate 1.88% when ECU and CFM both turn on.

Another interesting observation is the side-effect of combining 2 fast algorithms together. For

example, the ideal maximum time saving is 75% for perfectly combining two 2x faster

algorithms. That is, the overall time saving is less than the ideal maximum time saving, but

the overall loss of BD-rate is higher than the sum of their separate coding loss. Unfortunately,

our proposed method has not been designed for adaptive QP case and multiple referenced

frames yet, so we simulate the ECU and CFM in HM5.0 with our low delay P and low

complexity setting (GOP =1 and 1 referenced frames), and the result is listed in Table 25 with

eight high resolution sequences (64 frames per sequence).

Table 25 Simulation results of ECU and CFM with our low delay_P loco setting

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -6.34% -5.92% -1.90% -4.98% -5.57% -37.84% -34.89% -27.63% -15.63%

Time-Saving(QP27) -15.28% -23.51% -22.77% -19.34% -15.22% -55.57% -49.39% -43.12% -30.53%

Time-Saving(QP32) -23.29% -38.69% -37.20% -31.84% -33.24% -69.03% -62.68% -59.87% -44.48%

Time-Saving(QP37) -33.49% -53.56% -47.81% -43.49% -57.75% -77.06% -71.64% -70.62% -56.93%

AVG. Time-Saving -19.60% -30.42% -27.42% -24.91% -27.95% -59.88% -54.65% -50.31% -36.89%

Y BD-rate 0.513 1.230 0.965 0.818 0.659 -0.976 0.893 0.006 0.514

Y BD-PSNR -0.014 -0.038 -0.021 -0.016 -0.019 0.026 -0.028 -0.001 -0.014

 72

The QP in my setting is smaller than that in the GOP case (fixed n VS.

n,n+3,n+2,n+3,n+1, n+3……) , and reference frame=1 makes the rough prediction. Therefore,

“cbf=0” and “skip mode is the best mode” cannot happen easily especially when QP=22. So,

the time saving has room to improve. However, the R-D performance of ECU and CFM is

much better than that of our proposed CU-correlation algorithm.

5.2.3 Combined Fast CU Size Decision with ECU/CFM

Due to the experiments in section 5.2.2, the performance of ECU and CFM in our setting

is good for time saving with negligible coding loss. Hence, we should try to combine our

algorithm with them to get more acceleration. The experiment turns on ECU, CFM, and our

proposed algorithm with the same testing conditions as Table 25, and the result is shown in

Table 26.

Table 26 Simulation result of ECU, CFM, and our proposed algorithm

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -45.66% -41.67% -39.92% -40.69% -44.70% -54.95% -54.25% -49.10% -46.37%

Time-Saving(QP27) -50.48% -47.67% -48.59% -48.07% -43.75% -66.03% -63.97% -60.38% -53.62%

Time-Saving(QP32) -52.62% -54.30% -57.05% -53.40% -51.91% -74.88% -71.82% -68.99% -60.62%

Time-Saving(QP37) -52.47% -61.91% -61.21% -58.17% -65.98% -80.45% -76.58% -75.57% -66.54%

AVG. Time-Saving -50.31% -51.39% -51.69% -50.08% -51.59% -69.08% -66.66% -63.51% -56.79%

Y BD-rate 3.495 3.619 3.198 3.833 1.637 3.001 4.164 3.215 3.270

Y BD-PSNR -0.095 -0.111 -0.068 -0.072 -0.046 -0.072 -0.124 -0.072 -0.083

 73

Fig. 34 R-D curve of Basketball in Table 26

The performance reduction of mixed algorithms also occurs in this case. Although the

time reduction reaches about 57%, the BD rate also increases, too. We observe the R-D curve

of Basketball in Fig. 34 to find a way to solve this problem. When QP becomes larger, the

R-D curves separate far as illustrated in Fig. 34. The coding loss mainly comes from the low

rate regions. Thus, we turn off our algorithm when QP is larger than 29. We take 16 sequences

with 100 frames per sequence to test the adaptively combined algorithm, and the results are

listed in Table 27. As QP is smaller than 30, the encoder adopts ECU, CFM, and our fast

decision method. On the other hand, we only use ECU and CFM to accelerate encoding

procedure to avoid excessive coding loss when QP is larger than 29.

34

36

38

40

42

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

P
S

N
R

-d
B

Log10-bitrate

BasketBall

Reference

Test

 74

Table 27 Results of the adaptively combined fast algorithm with ECU and CFM

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) -45.59% -42.25% -40.14% -40.65% -44.52% -58.36% -54.96% -48.41% -46.86%

Time-Saving(QP27) -50.53% -47.33% -48.88% -50.61% -43.30% -68.43% -64.46% -59.14% -54.09%

Time-Saving(QP32) -22.61% -36.59% -35.74% -35.54% -32.02% -71.13% -65.00% -59.22% -44.73%

Time-Saving(QP37) -32.97% -51.83% -45.79% -46.35% -57.63% -78.84% -73.36% -70.50% -57.16%

AVG. Time-Saving -37.93% -44.50% -42.64% -43.29% -44.37% -69.19% -64.45% -59.32% -50.71%

Y BD-rate 1.791 2.197 2.291 2.432 1.332 1.582 2.671 1.861 2.020

Y BD-PSNR -0.056 -0.070 -0.054 -0.055 -0.032 -0.050 -0.088 -0.049 -0.057

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.

Time-Saving(QP22) -40.29% -39.68% -37.99% -35.70% -35.54% -29.06% -30.32% -29.16% -34.72%

Time-Saving(QP27) -41.76% -41.06% -37.03% -35.81% -38.63% -29.94% -31.85% -29.02% -35.64%

Time-Saving(QP32) -28.60% -26.80% -11.21% -11.82% -33.03% -18.83% -17.47% -11.37% -19.89%

Time-Saving(QP37) -40.02% -38.83% -27.58% -23.17% -42.47% -34.43% -35.71% -20.17% -32.80%

AVG. Time-Saving -37.67% -36.59% -28.45% -26.63% -37.42% -28.07% -28.84% -22.43% -30.76%

Y BD-rate (%) 2.589 1.909 0.498 0.947 1.688 1.513 0.431 1.028 1.325

Y BD-PSNR (dB) -0.098 -0.080 -0.023 -0.039 -0.082 -0.061 -0.019 -0.051 -0.057

From Table 27, our proposed algorithm improves the time saving efficiency in the low

QP region because the principle of our fast decision method is not using cbf and the skip

mode to decide the early termination scheme. Moreover, we can combine our algorithm with

ECU and CFM without implementation conflict. In Table 28, we check the coding

performance of our proposed method at QP= 22 for high resolution sequences, and the results

show that the combined method is valuable in improving the time saving for the high bitrate

applications.

 75

 In summary, the combined algorithm not only retains the coding efficiency at the low

bitrate region but it also reduces computing time at the high bitrate region. On the average, it

offers about 51% time reduction with the increment of BD-rate about 2.02% for high

resolution sequences. In addition, it provides 31% time saving but adds the BD-rate 1.33% for

low resolution sequences.

Table 28 R-D performance of our proposed algorithm (QP= 22)

Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1 Vidyo3 Vidyo4

PSNR -0.109 -0.029 0.004 -0.012 -0.001 -0.120 -0.121 -0.074

BitRate -3.53% -0.22% 0.49% 0.41% 0.11% -1.57% -1.56% -0.42%

TS -41.95% -39.66% -39.66% -38.74% -43.05% -43.60% -40.60% -37.02%

 76

Chapter 6 Combined MV and DCT Optimization for

H.264/AVC Codec

Although we introduce the process of encoding control in section 2.1.3, some details are

described in this section. The experimental platform and the research topic are different from

the previous chapters which are based on HEVC. Here, we use H.264/AVC encoder JM 18.0

[14] as the platform and we explore the effect of transform on ME in video coding. The

chapter organization is as follows. Section 6.1 introduces the cost functions for MV searching

in JM18.0 and the related work. Then, we design the algorithm to change the data flow

concerning the problems mentioned in the related work in section 6.2. Finally, section 6.3

represents the experimental results and discussions.

6.1 MV Refinement with DCT result

A typical H.264 video encoder (such as JM) selects the best motion vector based on the

sum of absolute difference (SAD) and the sum of absolute transformed difference (SATD) in

the different accuracy layers to get the matching prediction block. Then, it uses the transform

coding technique to encode the motion-compensated prediction errors. In baseline profile, a

residual block is transformed by the 4x4 separable integer DCT (IDCT) or the 4x4 hadamard

transform (H matrix) as shown in (14) which is an approximation form of IDCT [22] for low

complexity.

 77

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

 
 

 
 
  
 

  

 (14)

In the integer ME, the distortion term in the motion R-D cost function (2) is decided by

SAD as equation (15) where x and y are the pixel locations, and Dblock is the difference block

between the referenced candidate block and the original block. In the sub ME (searching the

MV in the half and the quarter accuracy), the distortion term is calculated with SATD in (16)

to get less transmitted frequency information for better compression efficiency.

,

(,)
x y

SAD Dblock x y (15)

,

1
* *

2
x y

SATD H Dblock H (16)

Although SATD needs little more operations than SAD, the number of searching points

in the sub ME is only nine points in each level, so the additional encoding complexity from

hadamard transform is tolerable.

In [23], the effect of SATD on ME in different layers is discussed and tested. The encoder

adopts SATD for searching integer MV directly, and averagely gets the 1.85% bitrate saving

with increasing 781% encoding time as the sub-pixel motion search is unable. However, the

same method brings little coding loss about 0.39% BD-rate [16] when sub MV is enabled. The

reason is that SATD aims to match frequencies instead of residual pixels, so the interpolated

 78

filter for the sub-pixel accuracy would bring the negative effect. The research in [23] is

interesting, but there are two problems should be noted. First, the number of searching points

with SATD is  
2

2 search range 1  which brings too much complexity. Secondly, the experiment

shows that SAD seems a better way to find MV in integer level. Therefore, we proposed our

algorithm with concerning about the above problems in the next section.

6.2 Modified MV Selection Scheme

In this section, we describe the principle behind the proposed combined ME and DCT

algorithm and its implementation step by step. In the traditional H.264/AVC encoder, the ME

procedure chooses the integer vector that minimizes (2) with SAD consideration. However, (2)

does not truly reflect the final distortion and the bit rate of encoded the coded block.

Therefore, we include (1) into the ME procedure further in selecting MVs to improve coding

performance. That is, we combine (1) and (2) in the integer ME procedure further.

The motivation is as follows. Although a selected MV is not the best candidate in the

MV decision in the integral level, its residual DCT may have fewer large coefficients and thus

produces fewer bits in the entropy coding in the final stage. Figs. 35‒37 show the image

examples. Fig. 35 shows the ten times magnified difference between the JM-encoded frame

and our encoded frame using the proposed method, and QP is 22. In Figs. 36‒37, we compare

the residual MBs produced by two MVs on the second frame of the FOREMAN sequence.

 79

The comparison is done in both the spatial domain and the frequency domain. Our proposed

algorithm chooses a different quarter MV in the final stage (called Motion RDcost#2 means

the 2nd best MV in the integer ME step). The resultant residual block has a more clustered

frequency domain distribution; that is, the large magnitude coefficients are few and are close

to each other as shown in Fig. 37 (Right). Therefore, these coefficients are easier to compress.

Fig. 35 Difference between the JM-encoded and our proposed method

Fig. 36 Spatial domain: The residual MBs of Inter-16x16 mode on the second frame.

The MB location (upper-left corner) is (80,160). Gray values are adjusted to show a range

from 15 to -20 (the maximum and minimum pixel values). (Left) The residual block produced

by the MV with Motion RDcost#1. (Right) The residual block produced by the MV with

Motion RDcost#2.

 80

Fig. 37 Frequency domain: The transformed and quantized residual MBs of Fig.4.

Coefficients are produced by 4x4 integral DCT with QP 22. Gray values are adjusted to show

a range from 20 to -35. (Left) A residual transform block produced by the MV with Motion

RDcost#1. (Right) A residual transform block produced by the MV with Motion RDcost#2.

The flowchart of the combined ME and DCT algorithm is to decide the best integer MV

illustrated by Fig. 38. In the integral layer of ME procedure, our proposed method chooses the

top five candidate MVs in the integral accuracy based on SAD, and then finds their

corresponding half and quarter MVs using hadamard SAD. At the end, we use the modified

function from the mode decision function to calculate the distortion based on hadamard again

and estimate the bit rate. Therefore we choose the best integer MV with additional complexity

from SATD about 5 × [2 × (sub search points) +1] times for each integer MV searching. After

our proposed scheme, we get the best integer vector of each partitioned block, and then take it

to the following steps as the original JM, such as the sub-pixel ME and the mode decision.

 81

Integral Motion Vector Search :
Choose the top 5 candidate vectors

(vectorn) by (2) with SAD

Let n=1

Half and Quarter MV Search:

With SATD and update vectorn

Calculate cost of si with vectorn
by (1)

RD cost is minimum for
this block?

n++

n<5?

Partitioned block si

Set vectorn with integral accurcy

is the best MV

Compute the next
partitioned block

Yes

No
Yes

No

Fig. 38 Flowchart of the combined ME and DCT algorithm

6.3 AVC/H.264 Experimental Results and Discussions

To examine the effectiveness of our proposed motion estimation and DCT combined

algorithm, we implement it on the software JM 18.0 [14], which is the reference software of

the H.264/AVC encoder. We compare its performance with that of the original JM encoder. In

the experiments, we use nine CIF sequences and four 4CIF sequences as already stated in

Table 3 with a frame rate of 30 frame/sec: FOREMAN, BUS, FOOTBALL, MOBILE, NEWS,

PARIS MOTHER_DAUGHTER, SILENT, ICE, CITY, SOCCER, HARBOUR, CREW [14].

In all experiments in this section, the number of encoded frames is 32 and I-frame period

 82

is 16. We run four different QP values: 22, 27, 32, and 37. The search range is ±32, and the

number of sub search points is nine. The previous frame is the reference frame. The

Configuration is the baseline profile in JM18.0 with IPPP structure and CAVLC coding. It

should be mentioned that the comparing JM setting of RDO is high complexity, and the MV

search method is “fast full search”. For integer MV, motion cost in (2) is only decided by

SAD and MV information. Then for half and quarter MV searching, the hadamard

consideration is added to calculate the cost in (2) in JM18.0. The distortion of mode decision

function is also calculated with SATD.

Table 29 shows the PSNR and rate comparison at different QP for the FOREMAN

sequence, and Fig. 39 shows their RD curve with different QPs. We find that the curve has a

larger gain in the high rate region because the 8x8 modes are used more often. In this case,

because more MVs may be altered and because different MVs may result in different

quantized residuals when QP is small, our coding gain becomes more obvious. This

phenomenon happens also in the other sequences. Table 30 shows statistics of the chosen

coding modes at different QP values. In general, a smaller QP produces fewer zero blocks,

which leads to fewer skip modes. Therefore, our method would get benefits from a better MV

choice.

 83

Table 29 R-D Comparison for FOREMAN in P slices

FOREMAN

JM18 Proposed Method

BD-rate

Y

Y_PSNR

(dB)

Bitrate

(kbps)

Y_PSNR

(dB)

Bitrate

(kbps)

QP=22 41.078 1121.89 41.115 1091.63

-3.4

QP=27 37.648 423.31 37.679 409.61

QP=32 34.651 183.02 34.668 179.77

QP=37 31.911 97.47 31.924 94.57

Table 30 Modes and Motion Info Bits/Frame

FOREMAN JM18 Proposed Method

QP=22 Modes MV_bits Modes MV_bits

16x16 2498 488.33 2205 426.93

16x8 1410 593.27 1320 557.47

8x16 1431 605.67 1423 569.27

8x8s 3449 4591.40 3965 5306.07

QP=27 Modes MV_bits Modes MV_bits

16x16 2999 678.47 2958 662.47

16x8 1423 649.93 1391 631.27

8x16 1440 617.60 1488 643.67

8x8s 1760 2116.00 1880 2314.33

QP=32 Modes MV_bits Modes MV_bits

16x16 3249 802.93 3307 794.40

16x8 1087 511.47 1104 498.40

8x16 1109 480.40 1157 493.60

8x8s 636 721.07 625 723.73

QP=37 Modes MV_bits Modes MV_bits

16x16 2872 769.80 2901 748.27

16x8 721 309.40 713 303.60

8x16 635 252.93 637 260.33

8x8s 211 220.53 205 209.93

 84

Fig. 39 R-D curve of Foreman for P slice

Table 31 shows the luma BD-rate [16] gain for all sequences. There are two sequences,

MOTHER_DAUGHTER and SILENT, which have smaller gains at about 1% because these

two videos have very little motion and thus the encoder frequently chooses the skip modes.

Our MV selection scheme is applied only to the motion-compensated blocks, whose number

is now small. Another factor affects the performance is image contents (patterns). In some

sequences, such as CITY and MOBILE, our method provides more gain because they contain

a number of fine edges, and thus our method has more chances to manipulate the residual

distribution patterns. In summary, two factors seem to have major impact on our algorithm

performance. One is the percentage of motion-compensated modes in P-slices, and the other

one is the texture pattern of the residual blocks.

 85

Table 31 BD Rate Improvement in P Slices of all Sequences

Sequence Y BD-rate

Encoding

Time
Sequence Y BD-rate

Encoding

Time

FOREMAN -3.4 +43.2%
MOTHER_

DAUGHTER

-1.3 +41.2%

BUS -2.6 +46.6% SILENT -1.1 +43.2%

FOOTBALL -1.9 +49.6% HARBOUR -2.2 +47.0%

MOBILE -2.4 +48.9% CITY -2.9 +45.9%

NEWS -2.7 +43.0% SOCCER -1.8 +46.1%

ICE -4.2 +39.8% CREW -1.7 +45.2%

PARIS -1.6 +45.3% Average -2.3 +45.0%

We collect the final MV choices in our method in Table 32. It shows that the best motion

R-D cost vector is chosen with higher probability when QP is large. In this case, because the

number of transform coefficients is small, it thus makes little difference on the residual blocks

produced by different MVs. On the average, the probability of choosing the fifth candidate

MV is less than 5%. Thus, retaining more than five candidate MVs does not seem to offer

much improvement. Finally, we may like to know how many “different” MVs in the integral

level are chosen at the end using this approach (versus JM 18.0). We examine both the

numbers of sub-blocks and their area. Table 33 shows the sub-block numbers and the area

ratio of the changed MVs that are chosen by our algorithm.

 86

Table 32 Final MV Choice from Candidate MVs (Percentages)

FOREMAN QP=22 QP=27 QP=32 QP=37

Motion RDcost1 53.4% 56.7% 61.4% 67.3%

Motion RDcost2 21.8% 21.3% 19.9% 17.4%

Motion RDcost3 11.8% 10.5% 9.1% 7.5%

Motion RDcost4 7.6% 6.7% 5.7% 4.5%

Motion RDcost5 5.5% 4.7% 3.9% 3.3%

SILENT QP=22 QP=27 QP=32 QP=37

Motion RDcost1 83.4% 84.0% 85.8% 89.1%

Motion RDcost2 7.8% 7.8% 7.0% 5.6%

Motion RDcost3 4.2% 4.0% 3.4% 2.5%

Motion RDcost4 2.7% 2.5% 2.2% 1.6%

Motion RDcost5 2.0% 1.7% 1.5% 1.2%

Table 33 Partitioned Sub-Blocks and the Area Ratio Using the Changed MVs

FOREMAN

Changed MV

Blocks

Partitioned

Blocks

Changed Area

Ratio

QP=22 16223 36196 35.38%

QP=27 9739 23969 31.60%

QP=32 5780 17047 26.52%

QP=37 3559 14158 20.05%

SILENT

Changed MV

Blocks

Partitioned

Blocks

Changed Area

Ratio

QP=22 4534 21115 9.27%

QP=27 3016 16681 8.93%

QP=32 1932 14066 7.92%

QP=37 1214 12743 6.62%

In summary, we propose a possible way to enhance R-D performance that further

combines motion estimation and DCT for the H.264/AVC encoders. The algorithm considers

the transform coding effect on choosing the best motion vectors from the integer to the quarter

 87

accuracy. Based on the multiple sequences tests, we demonstrate that the proposed algorithm

can achieve 2.3% bitrate saving averagely without changing the syntax of the standard

AVC/H.264.

There is a trade-off between coding efficiency and time complexity. Although we reduce

much SATD operations comparing to [23], the encoding time is still increased by about 45%.

To overcome the high complexity of our method, two properties can be introduced:

(a) There are still some redundant calculations in our program. For example, we should

directly use the best sub MV instead of the best integer MV in Fig. 38 to the following

encoding steps to save the operations from SATD. In addition, Some of 5 candidate MVs

from the integral layer would have the same sub MV with repeated calculations.

(b) A parallel design should be feasible in hardware implementation because a

data-independent loop exists in Fig. 38. Also, computing the cost in our proposed method for

all candidate MVs can be executed in parallel.

Utilizing well the above properties, the encoding complexity of our proposed algorithm

can decrease further. Acceleration of our scheme in software or hardware level is one of our

future work items.

 88

Chapter 7 Conclusions and Future Work

7.1 Conclusions

In this thesis, we design two algorithms for different goals. Thus, we conclude them in

two parts.

In first part from Chapter 3 to Chapter 5, we study the computational complexity of

building CU quadtree. Our fast CU size decision algorithm, which is based on the size

information of the neighboring CUs and the co-located CU, speeds up the encoding procedure

at about 1.75 times faster in average comparing to the original encoding process. Then, we

also combine the existing ECU and CFM schemes together with our proposed algorithm in an

efficient way. In the low QP cases, our algorithm provides more time reduction over ECU and

CFM with acceptable coding loss. Totally, the combined fast algorithm offers averagely 51%

time reduction, and the BD-rate increases at about 2.02% for high resolution videos. Our

algorithm is also particularly useful in the low motion videos such as vidyo1, vidyo3, and

vidyo4. This type of videos often occur in the mobile video communication, and the

combined algorithm achieves up to about 69% time reduction with tolerable BD-PSNR drop

about 0.05dB for the test sequences.

Chapter 6 is the second part: We study the effect of transform on motion vector selection.

We propose the modified AVC/H.264 motion vector search process. First, we keep five

 89

integer MV candidates by their SAD values, and then process the sub-pixel MV searching by

using SATD. At the end, we use the modified AVC mode decision function to estimate the

R-D cost to decide the best MV from five candidates. In comparing to the previous approach,

our method not only reduces the time-consuming SATD calculations but also avoids the poor

performance of using SATD directly in integer MV selection. In general, our proposed

optimization scheme achieves 2.3% bit rate saving with an additional 45% encoding time,

averagely. The method can achieve up to 4.2% BD-rate improvement in our test sequences,

and the algorithm performs well especially for the sequences with strong residual texture.

7.2 Future Work

In proposing fast algorithms for HEVC, we design our algorithm under the configuration

of low complexity and low delay P, but we change the encoding parameter setting in the GOP

size and the number of reference frames. For real applications, we should consider the

incremented QP to adjust the decision rule and the thresholds, adaptively. On the other hand,

considering the MV offset and the multiple reference frames in the search of co-located CU

will decrease the coding loss for our proposed fast algorithm. Last but not the least, we can

include other indicators in reducing candidates. For example, cbf is an important indicator

telling us whether the nearby CU partitions are reliable or not, especially for the termination

decision in large size CU. Reducing the coding loss in the low bitrate case is a research

 90

challenge.

Another topic is the R-D performance improvement for H.264/AVC. Its bottleneck is the

high complexity. Therefore, we suggest some methods for speeding up the modified encoding

procedure at the end of section 6.3. If we want to extend this combined ME and transform

idea to HEVC, the scheme will be very complicated because HEVC has transform of different

sizes. Also, because the current HEVC has very flexible ME modes and transform modes, the

combined scheme may not provide much additional advantage.

 91

REFERENCES

[1] T. Wiegand et al., “Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC),”

ISO/IEC JTC/SC29/WG11 and ITU-T SG16 Q.6, JVT-Go50r1, Mar.2003.

[2] H. M. Hang et al., “Towards the next video standard: high efficiency video coding,”

Asia-Pacific Signal and Information Processing Association Annual Summit and

Conference, 2010.

[3] B. Girod, “The Efficiency of Motion-compensating prediction for hybrid coding of

video sequences,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 7, pp.

1140-1154, 1987.

[4] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for

Next-Generation Multimedia, Wiley.

[5] T. Wiegand, et. al., “Rate-constrained coder control and comparison of video coding

standards,” IEEE Trans. Circuit Syst. Video Technol., vol. 13, no. 7, pp. 688–703, Jul.

2003.

[6] T.Wiegand and B. Girod, “Lagrange multiplier selection in hybrid video coder control,”

in Proc. Int. Conf. Image Proc., pp542–545, Oct. 2001.

[7] T. Wiegand et al., “Special section on the joint call for proposals on High Efficiency

Video Coding (HEVC) standardization,” IEEE Trans. Circuits Syst. Video Technol., vol.

 92

20, no. 12, pp. 1661–1666, 2010.

[8] D. Marpe et al., “Video compression using nested quadtree structures, leaf merging, and

improved techniques for motion representation and entropy coding,” IEEE Trans.

Circuits Syst. Video Technol., vol. 20, no. 12, pp. 1676–1687, 2010.

[9] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 5 (HM 5) Encoder

Description”, JCT-VC document, JCTVC-G1102, January 2012.

[10] P. A. Chou et al., “Optimal pruning with applications to tree-structured source coding

and modeling,” IEEE Trans. Inform. Theory, vol. 35, no. 2, pp. 299–315, Mar. 1989.

[11] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images and video,” IEEE

Trans. Image Process., vol. 3, no. 3, pp. 327–331, May 1994.

[12] JCT-VC, “WD5: Working Draft 5 of High-Efficiency Video Coding”, JCT-VC

document, JCTVC-G1103, December 2012.

[13] H.264/AVC codec [online] http://iphome.hhi.de/suehring/tml/download/.

[14] Test sequences of H.264/AVC [Online] http://media.xiph.org/video/derf/ .

[15] HEVC codec [online] http://hevc.kw.bbc.co.uk/trac/browser/tags/HM-5.0 .

[16] G. Bjontegaard, “Calculation of Average PSNR Differences between

RD-curves,” Document VCEG-M33, Apr. 2001.

[17] J. Kim et al., “Adaptive coding unit early termination algorithm for HEVC,”

International Conference on Consumer Electronics, pp. 261–262, 2012.

 93

[18] K. Choi et al., “Coding tree pruning based CU early termination,” JCT-VC document,

JCTVC-F092, Jul. 2011.

[19] R. H. Gweon et al., “Early termination of CU encoding to reduce HEVC complexity,”

JCT-VC document, JCTVC-F045, Jul. 2011.

[20] J. Leng et al., “Content based hierarchical fast coding unit decision algorithm for

HEVC,” International Conference on Multimedia and Signal Processing, pp. 56–59,

2011.

[21] G. Correa and L. Agostini, “Complexity control of high efficiency video encoders for

power-constrained devices,” IEEE Trans. on Consumer Electronics, Vol. 57, No. 4, Nov.

2011.

[22] H. S. Malvar et al., “Low complexity transform and quantization in H.264/AVC,” IEEE

Trans. Circuit Syst. Video Technol., vol. 13, no. 7, pp. 598–603, Jul. 2003.

[23] A. Abdelazim et al., “Effect of the hadamard transform on motion estimation of

different layers in video coding,” International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. XXXVIII, Part5 Commission V

Symposium, Newcastle upon Tyne, UK. 2010.

