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Abstract

With the growing demand for high resolution video applications, video coding is an
indispensable element in many 3C products, such as mebile phone, DTV, and BD player. Today,
Advanced Video coding (AVC/H.264) is one of the most popular video formats in commercial
applications. Aiming at higher compression efficiency, the international JCT-VC is currently
developing the next generation standard, High Efficiency Video Coding (HEVC). With a much
higher encoder complexity, HEVC is able to achieve a 50% bitrate reduction compared to
H.264/AVC.

This thesis has two topics, one is the enhanced motion estimation (ME) for AVC/H.264
and the other is the fast coding unit (CU) decision for HEVC. In H.264, the sum of the absolute
difference (SAD) is used as the distortion term in ME, but it does not reflect the final coding
distortion. To achieve further bitrate reduction, we propose an enhanced motion vector
selection method based on the iterative R-D calculation. We compare the proposed method with

the original H.264/AVC JM18.0 reference software on several MPEG test sequences. Although

il



JM18.0 is a highly optimized scheme, we can still obtain a BD-rate improvement from 1.1% to

4.2% but with additional 45% complexity increase.

In HEVC, the CU quadtree structure is added to the traditional fixed size macroblock.

With flexible CU size selection, the coding efficiency increases but the complexity of HEVC

becomes much higher than that of AVC/H.264 fixed macroblock (MB) structure. To reduce

computational complexity, we propose a fast algorithm, which includes the splitting decision

and the termination decision, in building the CU quadtree. The fast CU size decision of the

current CU makes use of the size information of its neighboring CUs. Furthermore, we design

the additional tools to enhance the performance of the proposed algorithm. The additional tools

include the frame level acceleration-and the-fast PU size decision after the splitting decision. At

the end, we compare it with the existing fast algorithms'in HMS5.0 and find an efficient way to

blend them together. In comparison to. the original HMS5.0, our method saves the overall

encoding time up to 49% with 0.06 dB average PSNR drop.
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Chapter 1 Introduction

Video coding plays an important role in the commercial products, and its techniques
have been developed during the past 20 years. The matured video compression technique is
adopted by many applications, such as television, digital camera, mobile communication, and
video recording devices, to store and transmit a large amount of video data. For the better
visual quality and the bitrate reduction, the international standard committee is still specifying
new standards, and many researchers are still looking for better algorithms. The main stream
of video coding in recently years is AVC/H.264. HEVC is the next generation standard that is

still in progress.

In this thesis, we study both AVC/H.264 and HEVC. In AVC/H.264, we study the
transform effect on the motion vector search and design an iterative scheme to improve the
overall coding performance. In HEVC, the coding unit (CU) has flexible sizes. In general, the
HEVC encoder uses large CU in the stationary or smooth areas particularly at low bitrates. It
uses small CUs in the texture areas at the high bitrates. Although HEVC has a better coding
performance, it takes a large amount of the complexity to decide the best CU size. Therefore,

we want to design a fast algorithm in deciding CU size to reduce calculations.



1.1 Research Contributions

The main contributions of the HEVC part are the development and the analysis of the

fast CU decision. Our proposed algorithm achieves up to 49% encoding time reduction, or

equivalently, about 2x speed up. On the other hand, the contribution of the AVC part is

designing a method to improve compression efficiency by modifying the motion selection

process. Our proposed iterative scheme saves up to 4.2% bitrate usage and it retains the video

quality. The major contributions in this thesis are listed as below.

1. Develop a fast CU size algorithm for HEVC based on the size information of the

neighboring CUs. The fast algorithm includes  splitting decision and termination

decision.

2. Propose additional tools to further enhance video quality or to reduce complexity.

3. Compare and combine our proposed method to the existing fast algorithms in HM5.0.

We investigate their advantages and disadvantages, and find an efficient way to combine

them together.

4. Propose a 2-pass ME scheme to identify the best MV for the AVC/H.264 encoder.



1.2  Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview of the
state-of-the-art encoders, AVC/H.264 and HEVC. We describe their work flows, their basic
operations, and the HEVC advanced coding features. The thesis has two parts: the HEVC part
is from Chapter 3 to Chapter 5, and Chapter 6 is the AVC part. In Chapter 3, we describe the
CU quadtree structure in HEVC, and introduce the fast algorithms in HMS5.0. In Chapter 4,
we describe the proposed fast CU size decision algorithm in detail. Then, we design several
compensated schemes to improve the original fast algorithm. Chapter 5 presents the
simulation results of our scheme and discusses the possible combinations with the existing
fast scheme. The second part of this thesis is about AVC/H.264 motion vector search in

Chapter 6. Finally, Chapter 7 summarizes our work.



Chapter 2 Overview of H.264/AVC and HEVC

In 1993, the ITU-T Video Coding Experts Group (VCEG) started a long-term project
(H.26L). After about ten years of development, the project led to the well-known H.264
standard [1]. The final stage of developing the H.264/MPEG Advanced Video Coding (AVC)
standard was carried out by the ITU and ISO/MPEG Joint Video Team (JVT) in 2003. In the
past a couple of years, MPEG and VCEG collaborate again to form the Joint Collaborative
Team on Video Coding (JCT-VC). With the demand of high-resolution video applications,
JCT-VC is currently specifying the next generation video standard, High Efficiency Video
Coding (HEVC), which aims 'to achieve about 50% bit-rate reduction compared to
H.264/AVC. And HEVC is expected to be finalized in 2012. For more information about the

progress of AVC and HEVC, please refer to [2].

2.1 Advanced Video Coding

Basically, the H.264/AVC standard has a video coding structure similar to that of the
prior video coding standards, which is known as the “hybrid coding scheme” [3]. It uses
transform coding to code the motion compensated prediction errors. The basic processing unit
i1s macroblock (MB), corresponding to a 16 x 16 -pixel square region of a frame. In this

section, we will introduce the fundamental concept of H.264/AVC. For more details, please



refer to [1], [4].
2.1.1 H.264 Architecture

Fig. 1 shows a typical H.264/AVC encoder. The encoder includes two data paths, an
encoding path (left to right) and a reconstruction path (right to left). An input video frame F,
is processed in the unit of MB. A coded MB may belong to an I-MB (intra-coded), P-MB

(predictive-coded), and B-MB (bi-directional predictive-coded).

CEE— D, X
Current ’O_’T-)Q —O0—> Entr(_)py L S NAL
Frame F, [ - Coding
N — ME+MC
O—> Inter
Frame s| Pred. \
Buffer k P
N 4
Intra
Pred.
v
d . VY + ] 1
Reconstructe Filter. T €Q
Frame F, D

Fig. 1 An H.264/AVC encoder

2.1.2 Basic Coding Tools

In Fig. 1, a prediction block P is formed by intra-prediction or inter-prediction. A
residual block D, is produced by subtracting the prediction block P from the current block.

The residual block D, is transformed (separable integer Discrete Cosine Transformation),



and it is quantized to X . The quantized transform coefficients are reordered, and then are

entropy-coded. The above coding tools are explained in detail in the following subsections.

2.1.2.1 Intra prediction

Because the correlation between the neighboring blocks within a video frame is

extremely high, the encoder, which uses the intra-prediction, can reduce the spatial

redundancy. In the intra modes, a prediction block P is generated based on the neighboring

blocks (top-left, top, top-right, and left.), which have been encoded and reconstructed. There

are four optional intra-prediction modes for @ 16 % 16 luma block, and nine modes for each

4 x 4 luma block. A special intra ¢oding mode, I PCM; transmits the image samples directly

(without prediction or transform).

2.1.2.2 Inter Prediction

For video sequences at high frame rate, the nearby frames are generally similar. By using

the inter-prediction technique to transmit the difference between successive frames, the

temporal redundancy could be reduced. The P and B MBs may be coded in one of

motion-compensation (MC) modes. Motion compensated prediction based on one or more

reference pictures produces the prediction P . An inter-mode MB can be partitioned into various

sizes corresponding to the SKIP mode, INTER-16x16, INTER-8x16, INTER-16x8, and

INTER-8x8 modes, and an 8§x8 sub-MB mode can be further divided into smaller partitions



with block sizes of 8x4, 4x8, 4x4 blocks. Motion estimation (ME) is a key step in

inter-prediction. The partitioned block inside an inter-mode MB is predicted from the same

size region in the reference pictures. The vector from the current frame block pointing to the

best matching region in the referenced frame is the so-called motion vector (MV).

2.1.2.3 Transform and Quantization

Due to the inter-pixel redundancy in the residual block, the encoder transforms the

spatial domain pixels to the frequency domain coefficients to compress its original redundant

information. The discrete cosine transformation (DCT) is a general tool in the state-of-the-art

video encoder. In AVC/H.264, there are two variable size transforms: 4x4 and 8x8. To

increase their computational speeds, they are‘implemented in the butterfly structure that uses

addition, bit-shift, and a few multiplication-operations. The DCT coefficients of a residual

block should be processed by reordering (zig-zag scanning), scaling, and rounding

(quantization). The Quantization parameter (QP) ranges from 0 to 51. With an increment of 6

in QP, the quantization step becomes double.

2.1.2.4 Deblocking Filter

The deblocking filter is designed for eliminating the blocking artifacts on the boundaries,

which are caused by the block-based transform with a coarse quantization and by the MC

prediction in which the interpolated data are derived from different regions of multiple



reference frames. The filter is applied to each decoded MB to reduce blocking distortion, and

the encoder stores the filtered MB in the reconstruction frame to be used as the reference

frame in the future. The deblocking filter is an important coding tool for inter-prediction.

2.1.2.5 Entropy Coding

At the slice layer level and below, the syntax elements are encoded either by the variable

length coding tool (VLC) or by the context-adaptive arithmetic coding tool (CABAC). In

VLC, a quantized DCT block is coded by using the context-adaptive variable length coding

(CAVLC) scheme, and the other data units are coded by using Exp-Golomb codes. The tables

of CAVLC are designed to match the corresponding' conditional probability. The context

adaptive feature of CABAC can-be more efficient became it is adaptive to the statistics of

previously encoded data. Generally, CAVLC has low complexity, and CABAC has better

efficiency.

2.1.3 Encoder Control

The H.264/AVC standard provides only the syntax of bit-stream and the decoder

structure. Therefore, we need to design and to control the encoding process in our preferred

way. How to decide the coding parameters is a key to achieve video compression efficiency.

The H.264 coding parameters include MVs, quantization levels, and MB modes. The same

encoder structure with different coding parameters will affect the R-D efficiency of the

produced bit-stream.



The general R-D cost function for video coding is presented by (1). In (1), symbol D

denotes distortion, which is often the absolute difference between the processed image block

and the original block. Symbol R means rate, which is the bits needed to send the processed

information. According to the information theory, we can fix R first and then minimize D.

We can combine D and R together to form the total cost J. Mathematically, we can convert

this constrained optimization problem to a non-constrained form, the so-called Lagrange cost

function in (1). How to select the optimal Lagrange multiplier A4 is a difficult problem in

practice, and for more details, please refer to [5], [6].

J=D+AR (1)

A traditional H.264/AVC encoder splits the optimization of the cost function for the inter

modes into two parts as illustrated in Fig. 2. The first part is finding the optimal MV, and

second part is choosing the best mode, block size etc.

Controller of RD Optimization
A
¥)) @)
v v Rate
Motion
MB —»  Vectors > Modp > Entr(?py >
s Selection Coding
Selection
MV A Mode A

Fig. 2 R-D optimization for selecting MV and mode



2.1.3.1 Searching for Optimal Motion Vector

A traditional H.264/AVC encoder splits the optimization of the cost function for the inter
modes into two parts. In the first part, the encoder finds the MVs with the optimum residual
distortion and the MV coding bits. Based on the motion R-D cost function (2), [3], the motion
estimation step finds the vector with the smallest cost for various block sizes. Given the

current and the reference frames and the Lagrange multiplier A

‘motion

the ME operation for a

partition block s, is to minimize (2) to find the best MV.

Jmott’on = D motion (Si 'Y m) i /Imotioanotion (Si > m)? (2)
where m is the set consists of all possible vectors. (m;,m,,m,), in which m_ is the MV

horizontal component, and m, is the vertical component, m, is time difference. R, is

‘motion

the number of bits for transmitting MV, and...D,

motion

is the distortion term given by

P

3)

D, . (s,m)= Z ‘pixel(x, »,t)—pixel(x—m_,y—m ,t—m,)

(x.y)es;
To speed-up the ME process, we usually choose p=1, and (3) becomes the sum of the
absolute difference (SAD). The symbols, xand y, are the pixel location in a block. It should

be noted that the state-of-the-art encoder often uses hadamard measure for fractional ME for

coding efficiency, and the detail is describe in section 6.1.
2.1.3.2 Selection for the Best Mode

In the second part of the inter-coding process, the encoder applies integer DCT to the
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motion-compensated residual error signals, and then we choose the best MB coding mode.

With the given Lagrange parameter A

mode

and the quantized parameter O, the coding mode
of MB (§) is decided by minimizing the following R-D cost function [3],

e ((S:1)1 @ s ) = D (S, I | Q)+ Ao R (811, 1 O), 4)
where I, represents a legitimate mode. For example, &k possible modes for P-slice in
H.264/AVC are Intra-16x16, Intra 4x4, SKIP mode, INTER-16x16, INTER-8%16, INTER-
16x8, INTER- 8x8 modes. D, .is the distortion between the reconstructed MB and the
original one, and it is usually measured in the sum of the squared difference (SSD), p=2 in (3).
Ry, denotes the rate after entropy coding for a MB. Although the calculated cost function is

an approximation, it reflects the rate-distortion efficiency reliably.

2.2 High Efficiency Video Coding

A joint call-for-Proposal (C{P) for HEVC was issued by JCT-VC in January 2010, and
27 proposals in response of the CfP were submitted with their test material. The promising
results were reported in [7], and the proposed scheme [8] from Heinrich Hertz Institute (HHI)
was ranked among the five best performing proposals. For its wonderful performance, most of
its design elements were selected to specify a first model of the initialed HEVC
standardization project. The project is still in progress, and HEVC is expected to achieve
excellent coding performance on high resolution video with low delay and low complexity.
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Fig. 3 shows the HEVC encoder structure. Although HEVC has a similar structure to the

H.264/AVC architecture, there are some significant innovations in HEVC. The innovations of

re-definition of coding units and the enhancement on coding tools offer remarkable

compression efficiency.

Cu
Frame > LCUs |
{ TU \
{ \ |
Current P:J D Entrop
opy NAL
Frame F, ¢ 1 a Coding
ME+MC
O—> Inter
Frame 5 Pred.
Buffer P
—
[ ) Intra
Pred.
Reconstructed % 101
econstructe Filter. T €Q
Frame [ D

Fig. 3 An HEVC encoder

2.2.1 Coding Unit Definition
In H.264/AVC, the basic processing unit is called MB, which is expanded to what we
called a coding tree block (CTB). For flexibility and efficiency, the basic coding units in

HEVC have variable sizes with various resolutions. They are CU (Coding Units), PU

(Prediction Units), and TU (Transform Units). A CTB in HEVC which covers 2N, x2N,

max

luma samples, and its associated quadtree structure indicates how the CTB are further
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subdivided for CUs, corresponding PUs and TUs. The concept of decomposing MB into three

different units allows each to be optimized independently, which brings high adaption to

enhance the performance of each coding tools. The definition and details of three units in the

HEVC encoder [9] are given in the following sub sections.

2.2.1.1 Coding Unit

A basic unit of HEVC, referred as CU, is a square region of a picture, and it may contain

several PUs and TUs. An input processing frame is divided into slices, and each slice is

composed of CTBs, which are also called largest coding units (LCUs). Dividing a picture into

LCUs and further recursively subdividing each CUs into'4 smaller CUs with half width and

half height is the so called nested quadtree structure as shown in Fig. 4 (with solid lines). Both

the block sizes and the block coding’parameters such as maximum allowed depth will be

specified in the sequence parameter set (SPS) or the slice header.

2.2.1.2 Prediction Unit

PU is defined only for the leaf node of CU in each depth level, and PUs have various

partitions for prediction. They are confined within its CU node with a shape of square or

rectangular, and for some cases the prediction units are asymmetric in CU as list in Table 1.

The prediction ways are similar to the prediction methods of H.264/AVC, which can be the

skip, the intra, or the inter modes. In Fig. 5, we can see all the possible PUs for each
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prediction mode in low complexity setting. The information related prediction such as the PU

splitting types, the prediction modes, the intra prediction direction, the motion vector

difference (MVD), and the corresponding referenced frame indices are transmitted in PU

level.

2.2.1.3 Transform Unit

TU is a basic unit of residual coding, including transform and quantization. The TUs are

aligned within their corresponding CU, and the size of TUs is variable which is not

constrained by boundaries of PU. In HMS5:0, the NSQT is added, that is, the shape of TU has

not to be square, and it may be rectangular. The splitting flag and transform coefficients are

specified in TU level.

The tree structure of CU or TU splits from top to down, but the optimal structure is

decided by G-BFOS algorithm [10], [11]. The algorithm makes pruning decision from bottom

to up, which reduces much computational complexity, and we will describe the detail part in

the next chapter. The coding tree blocks for TU are illustrated by Fig. 4 (with dashed line).

More details of the encoder controller for HEVC are described in chapter 3. An Example of a

nested quadtree structure (right part) for dividing a given coding tree block (left part) in Fig. 4.

The order of parsing the coding blocks follows their labeling in alphabetical order.
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Fig. 4 An Example of a nested quadtree structure [§]

Skip INx2N

2Nx2N

Intra

Inter INx2N INxN

NxN

Nx2N NxN

Intra NxN is only used as 2N=8
Inter NxN is close originally.

Fig. 5 Possible PUs in low complexity setting
2.2.2 Enhanced Coding Tools
After H.264/AVC standard was defined, people tried to propose algorithm to improve it.
As time goes by, people notice that some modifications on the existing tools and many newly
proposed tools provide a certain amount of improvement. Therefore, many adaptive and novel
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tools are adopted in the current HEVC model compared to H.264/AVC. With the development

of HEVC standardization project, JCT-VC adds useful tools, refines the existing tools, and

removes inferior tools in the model [12]. A summary list of the tools that are included in

HMS5.0 is provided in Table 1 below.

Table 1 Structure of Tools in HM 5.0 Configures [9]

High Efficiency Configuration Low Complexity Configuration

Coding units, Prediction units, and Transform units:

Coding unit quadtree structure

(square coding unit block sizes 2Nx2N, for N=4, 8, 16, 32;

i.e., up to 64x64 luma samples in size)

Prediction units Prediction units
(for coding unit size 2Nx2N: (for coding unit size 2Nx2N:
(1) for Inter, 2Nx2N, 2NxN, Nx2N, and, (1) for Inter, 2Nx2N, 2NxN, Nx2N;
for N>4, also 2Nx(N/2+3N/2) & (2) for Intra, only 2Nx2N and, for N=4, also NxN)
(N/2+3N/2)x2N;
(2) for Intra, only 2Nx2N and, for N=4; also
NxN)

Transform unit tree structure within coding unit (maximum of 3 levels)

Transform block size of 4x4 to 32x32 samples Transform block size of 4x4 to 32x32 samples
(always square for Intra; also non-square 4x16, (always square )

16x4, 8x32, 32x8 for Inter)

Spatial Signal Transformation and PCM Representation:

DCT-like integer block transform;

for Intra also a DST-based integer block transform (selected based on the intra prediction mode)

Transforms can cross prediction unit boundaries for Inter; not for Intra

PCM coding with worst-case bit usage limit

Intra-picture Prediction:

Angular intra prediction (17 directions for 4x4, 3 directions for 64x64, 34 directions for others)

Planar intra prediction

16



Chroma intra prediction separate from or using luma samples

Inter-picture Prediction:

Luma motion compensation interpolation: 1/4 sample precision,

8x8 separable with 6 bit tap values

Chroma motion compensation interpolation: 1/8 sample precision,

4x4 separable with 6 bit tap values

Advanced motion vector prediction with motion vector “competition” and “merging”

Entropy Coding:

Context adaptive binary arithmetic entropy coding

RDOQ on RDOQ off

Picture Storage and Output Precision:

8 bit-per-sample storage and output

In-Loop Filtering:

Deblocking filter

Sample-adaptive offset filter -

Adaptive loop filter -

2.2.2.1 Intra prediction

Comparing to H.264/AVC, the unified intra prediction coding tool provides extensive

prediction modes up to 35 directional prediction modes including DC and Planar modes for

luma component of each PU. The total number of available prediction modes depends on the

size of the corresponding PU.

2.2.2.2 Inter Prediction

Each inter coded PU have a set of motion parameters consisting of motion vector,

reference picture index, etc. Choosing the optimal motion parameters is crucial to the
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performance of inter mode. The Advanced motion vector prediction (AMVP) is an adaptive

prediction technique for motion merging. AMVP constructs the motion vector candidate list

from the co-related PUs, which exploits spatial and temporal correlation. Then, remove

duplicated and redundant the candidates. At the last, the encoder selects the best inferred

motion parameters from multiple candidates formed by spatial neighboring PUs and

temporally neighboring PUs, and it transmits the corresponding chosen candidate index. Also,

merging mode plays an important role in inter prediction because it can reduce the transmitted

motion information. Thanks to AMVP and merge mode, the compressed motion data often

consist of a small amount of side information.

2.2.2.3 Transform and Quantization

HEVC provides larger size transforms..compared to H.264/AVC, and the size of

transform covers from 4x4 to 32x32. With larger sizes transformation, the encoder is

more flexible and the compression efficiency is higher in the smooth texture region especially.

The scaling matrices of the quantization process are added for the additional transform sizes,

which do not included in H.264/AVC.

2.2.2.4 Loop Filter

Loop filter consists of deblocking filter, sample adaptive offset (SAO), and adaptive loop

filter (ALF). The goal of these filters is improving the quality of the reconstruction frames. A
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deblocking filter is performed for the block boundaries. Then, SAO is applied to the
reconstruction signal after the deblocking filter by using the offset values given. In the final
stage of filtering, an ALF is applied to the reconstruction signal after the SAO process and
deblocking filter process by using the filter coefficients also signaled in the slice header. It is

should be noted that ALF scheme and its control method change a lot in the later version HM.

2.2.2.5 Entropy Coding

In HM 5.0, the syntax elements are encoded by variable length coding (VLC), and the
residual coefficients are encoded by CABAC. Because the complexity of CABAC is very
high, it results in low data throughput when handling high resolution videos. This problem has
been improved by the parallel entropy coder-design. For pursuing high efficiency, the HEVC

specifications retain CABAC, but remove CAVLC.

2.3 Experiment Conditions

Our experimental platforms and their configuration settings are introduced in this section.
The referenced software of H.264/AVC is JM 18.0 [13], and it has four configures, which are
baseline, main, extended, and high profile. We utilize the baseline configure setting to
simulate our experiments with the widely used MPEG sequences [14]. Our platform for
HEVC experiments is the referenced software HM5.0 [15], in which 4 configures are defined.

They are all intra, low delay, low delay P, and random access. These configurations can be set
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as the high efficiency or low complexity coding modes. We choose the low delay P, low

complexity configuration as our experimental conditions. The experimental sequences are the

testing materials of HEVC standard. To compare performance between the proposed

algorithm and the original codec, we exploit the BD-rate [16] definition to measure the

compression efficiency. Table 2 shows our parameters setting through this thesis, and Table 3

lists the information about size and frame rate of all video sequences in this thesis.

Table 2 Experiment Conditions

QP 22,27,32,37

Sequence-Type : IPPP
Motion Search : Fast full search

Motion Search range : 32 pixels

AVC Encoder Multiple Referenced frame : Disable
Configuration : RDO: High complexity
baseline Fractional ME : Hadamard measure

Transform Size: 4x4
Intra period : 16

Number of encoded frames : 32

Sequence Type : IPPP.

Motion Search range : 64 pixels

Multiple Referenced frame : Disable

GOP : 1
HEVC Encoder Intra period : Only first
Configuration : Max CU size : 64
low delay P, Max CU partition Depth : 4
low complexity Max TU size : 32x32

Min TU size : 4x4
Inter Max RQT depth : 3
Intra Max RQT depth : 3
RDOQ - Disable
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Disablelnter4x4

FEN: On

:0On

Number of encoded frames : 16,32,64,100

Table 3 Test Sequences

HEVC sequences

Sequence Information Sequence Information
Kimono 1920x1080 24Hz BallDrill 832x420 50Hz
Park 1920x1080 24Hz BQMall 832x420 60Hz
Cactus 1920x1080 50Hz Party 832x420 50Hz
Basketball 1920x1080 50Hz HorseC 832x420 30Hz
BQTerrace 1920x1080 60Hz BallPass 416x240 50Hz
Vidyo1l 1280x720 60Hz Bubbles 416x240 60Hz
Vidyo3 1280x720 60Hz BQsquare 416x240 50Hz
Vidyo4 1280x720 60Hz Horses 416x240 30Hz

H.264/AVC sequences
Foreman 352x288 30Hz Silent 352x288 30Hz
Bus 352x288 30Hz Ice 352x288 30Hz
Football 352x288 30Hz City 704x576 30Hz
Mobile 352x288 30Hz Crew 704x576 30Hz
News 352x288 30Hz Harbour 704x576 30Hz
Paris 352x288 30Hz Soccer 704x576 30Hz
Mother_daughter 352x288 30Hz Download link [14]
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Chapter 3 Nested Quadtree Coding Unit

In this chapter, we introduce the principle and decision flow of quadtree Coding Unit
(CU) decision in HM5.0. This coding unit structure differs from the macroblock coding
architecture in H.264 for flexible and compression efficiency. However, the CU quadtree
structure with possible node sizes from 64x64 to 8x8 in 4 admissible depths also brings
high computation complexity. Although HM 5.0 has some fast algorithms to accelerate the
encoding procedure, we still want to reduce more complexity under the tolerable coding loss.
3.1 Overview of Coding Unit Quadtree Structure

CUisa 2N x2N square and 2N can be 64, 32, 16, or 8. The encoder processes LCUs in
a frame in the sequential order from the left to the right;, and then from top to down (raster
scan). Fig. 6 illustrates a real example of the partitioned nested CU quadtree structure.

Larger CU provides less bits usage in the smooth residual texture and the static motion
area in an encoded frame compared to the maximum 16x16 macroblock coding structure in
H.264. The HEVC encoder can also has the same small size CU as that in H.264 to handle the
areas with fast motion and complex residual texture. Targeting at high spatial resolution
picture for HEVC, the CU quadtree structure is especially designed for 720P and 1080P

video.

22



100 B[z \ L 4200

200 F

= 150

300 L

400 £ : : -

500F

600

700
200 400 600 800 1000 1200

Fig. 6 An example of nested CU quadtree structure (Vidyol, Frame 2, QP=32)

3.1.1 Partition Decision Flow of Nested Quadtree CU

In HEVC, a slice is composed of many-LCUs, and a large CU can be divided into four
smaller CUs. Each partitioned CU can be recursively split until the smallest size CU is
reached, in which 4 depths are allowed in HM 5.0. As one 2N x2N (not 8x8) CU is
processed in each depth, the encoder will analyze the R-D cost of all possible prediction
modes. First, the skip mode is used for compression, and then try Inter 2N x2N, Nx2N,
2NxN ( If in the high efficiency setting, the encoder will try additional asymmetric PUs.).
Last, Intra 2N x2N is tried for prediction. It should be noted that I PCM is turned off in
HMS5.0 in every profile. The smallest CU (8x8) is additionally tested with Nx N PUs for

intra mode, but the asymmetric is not included in this depth. When the best prediction of each
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mode produces the residual signal, the encoder processes it in the units of TU. The size of TU

is limited to that of the CU to which the TU belongs. TU in the CU with size 2N x2N can be

splitinto NxNand N/2xN/2 in asimilar way to the CU recursively partition. However,

as already stated in Table 1, the maximum TU size cannot exceed 32x32, and the NSQT is

used in some cases for inter residual signals.

At the same depth of CU, after analyzing each mode, its RD cost is compared with that

of the other previously processed modes to determine the best mode for the CU in this depth.

However, we still need an efficient method to compare the R-D cost of the best partitioned

modes at different depths. For example, allowing three -admissible depths in the CU quadtree

has sizes varying from 64x64 to 16x16. The number of the possible tree structures is 17.

The exhaustive comparison is not practical if the depth becomes larger.

To reduce the redundant comparisons, G-BFOS algorithm follows the well-known

“divide and conquer” concept. At the beginning, a full tree grows from the root to all possible

nodes until reaching the maximum admissible depth in the way of depth first and in the

Z-order (C>D—>E->F) of the same depth as shown in Fig. 7. When all nodes in one branch

are constructed, a pruning decision process compares the cost of the parent and that of its

children nodes to decide that the splitting process is needed or not. If (5) is satisfied, the

children nodes would be pruned. Otherwise, the sum of costs of all children nodes is assigned

to the parents’ node for the following comparison.
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J(parent node)< iJ (children node) ®)]
i1
When all the compared nodes are built up, the decision process is executed until the root
node is reached. Using G-BFOS algorithm ensures that we can get the local minimum cost in
each partition region, and then combine them to find the best nested CU tree structure for a
LCU with the global minimum cost. Through this efficient decision algorithm, we only need 5

comparisons to decide the best CU partitioned structure in the example of Fig. 7.

64x64 depth0

32x32 depthl

16x16 depth2

Best Structure  (©) (D) ©) (P

Fig. 7 A G-BFOS example.

The alpha-order is the CU processing order (depth first and Z order at the same depth), and

the numerical-order is the pruning decision order.

3.1.2 Existing fast algorithms for Partition Decision Flow in HMS5.0
Because of the huge complexity associated with the quadtree structure, many researchers
like to reduce its complexity. G-BFOS 1is the good solution for quadtree structure decision.

Thus, the targets of researchers are often chosen to be the efficient methods to build nodes.
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There are 3 existing schemes in the literature, namely, fast encoder setting (FEN) [9] [17],

early CU termination (ECU) [18], and cbf fast mode decision (CFM) [19].

There are 3 parts in FEN [9]. The first part is the CU early skip method, the second is the

sub-sampled SAD calculation, and the third is the simplified bi-prediction. We describe first

part in detail because it relates to the CU tree structure. The CU early skip method in FEN is

based on the average rate-distortion cost statistic in each slice. That is, when the R-D cost of

the current CU with skip mode in the current depth is smaller than the average cost of

previously encoded CUs with skip mode which is chosen as the optimal mode in the same

depth, the rest of PU modes in this depth are skipped. For a more aggressive decision, the

average R-D cost is multiplied by a fix-weighting factor of 1.5, and some research people

reports that an adaptive weighting factor can improve the performance of FEN [17]. The

performance of FEN is about 2.0% luma BD bit-rate loss and 48% overall encoding time

saving in the setting of high efficiency random access in HM3.2. Because FEN has multiple

considerations for speeding up HEVC, all configurations of HMS5.0 turn on FEN in the

original settings.

ECU is a fast CU decision method using early termination based on the optimal PU

mode which was proposed by Choi et al [18], and the algorithm is also designed for skip
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modes for CU quadtree pruning. From their analysis of condition probability of the CU depth

selection, they observe that if the current CU selects the skip mode as the best prediction in

the current depth, 95% of this type CU will finally be encoded with the skip modes at this

depth. Exploiting this property, the CU depth check is skipped for all the next sub-CUs when

the R-D cost of the skip mode is minimum in the current CU. ECU algorithm has been adopt

in HM4.0, and it yields approximately 42% time reduction in encoding time with negligible

loss on the luma BD-rate in HM3.1 (i.e., < 0.6%).

Except for the acceleration of FEN, every PU is processed to measure its R-D cost in one

CU regardless of the performance of the previous PUs. The R-D costs for all allowed PUs in

each depth are examined to ensure the optimal prediction, but the exhaustive method wastes a

lot of time. The coded block flag (cbf) is a good indicator to estimate the benefit of using

prediction. After the prediction operation of a PU, its corresponding CU becomes a residual

quadtree (RQT) block, which is to be processed as the TU. After the RQT is transformed and

quantized with a suitable tree structure, if all coefficients in this residual block are zero, the

cbf is set to 0, which means the prediction is sufficient (no residual coefficients coding).

Otherwise, cbf is 1. Gweon et al [19] proposed a CFM algorithm that uses this cbf property,

and the computational complexity is reduced to about 58.8% with the luma BD-rate loss

0.85% in HM3.2. The core idea of CFM is checking that three cbf values (1 luma and 2
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chromas) for every PU partition. If all of them are zero, then the processing of the PU options

of the current depth are terminated. It should be noted that the encoder simply skips the

analysis of PUs at this depth when the termination condition of CFM is satisfied, but it still

has to process PUs of all the sub-CUs in deeper depths.

ECU and CFM are powerful tools for reducing complexity, but they are closed in the

original settings of all configurations in HM5.0. An example of ECU is illustrated in Fig. 8§,

and the program flow of CFM with the execution order of PUs in the low-complexity profile

is shown as Fig. 9 and Fig. 10 respectively.

CU,

PUs || TUs

cus

Fig. 8 An example of ECU [18]
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Fig. 9 Program flow of CFM
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Fig. 10 PU execution order in CU in the low-complexity setting

3.2  Analysis of Nested CU Quadtree Structure

The nested CU quadtree Structure decision process in HMS5.0, which pursues the optimal
structure selection, is described earlier in section 3.1.1. Although there exist FEN, ECU, CFM,
and G-BFOS algorithms to reduce the encoding complexity, we like to further speed up the

CU quadtree processing. Thus, we need to examine that which part in HM 5.0 takes most time
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and find out what factors producing the complexity.

The HEVC encoder computes the R-D cost to select the best CU size, PU partition, and

TU depth. The encoder spends a huge amount of computations on PUs and RQT in a CU

quadtree to identify the lowest R-D cost. We measure the computing time of the function

named “xCompressCU.cpp”, which is used for CU decision in HMS5.0. In Table 4, we collect

the execution time ratio of “xCompressCU.cpp” regarding the overall encoding time in 8

high-resolution test sequences for 16 frames, and the average time ratio is taken over 4

selected QP cases.

Table 4 Time percentage of “xCompressCU.cpp” in HMS5.0

Test Sequence TimePercentage Test Sequence Time Percentage
Kimono(1080P) 99.6% Vidyo1(720P) 99.4%
Park(1080P) 99.5% Vidyo3(720P) 99.5%
Cactus(1080P) 99.5% Vidyo4(720P) 99.5%
BasketballDrive(1080P) 99.5% BQTerrace(1080P) 99.5%
AVG 99.5%

Table 4 shows a surprising result that CU decision takes more than 99% time in the low

delay P with low complexity configuration. The computation associated with CU decision

includes inter prediction, intra prediction, RQT, and calculate R-D cost, and we know that the

computing time grows up rapidly with the increment of maximum admissible depth. Different

maximum admission depth results in different compression efficiency and computational
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complexity. In Table 5, we try the original block size setting of H.264/AVC with the
maximum CU size equals 16 and the maximum admissible depth is 2 compared to the original
setting in HEVC,; that is, the encoder only uses 16x16 and 8x8 CUs to compress the video

sequences with same testing condition as Table 4.

Table 5 Comparison of 64/4 CU structure and 16/2 CU structure

(Maximum CU size / Maximum admissible depth)

Test Sequence Kimono Park Cactus Basketball | BQTerrace | Vidyol Vidyo3 Vidyo4 AVG.

Time-Saving (QP22) | -40.88% | -43.75% | -43.67% -42.95% -43.91% -45.39% | -44.92% | -44.40% | -43.73%

Time-Saving (QP27) | -42.30% | -46.01% | -45.00% -44.56% -42.99% -45.57% | -43.79% | -45.22% | -44.43%

Time-Saving (QP32) | -44.10% | -45.33% | -44.39% -45.46% -43.38% -44.47% | -44.04% | -44.40% | -44.45%

Time-Saving (QP37) | -44.92% | -45.08% | -44.67% -46.15% -43.77% -43.99% | -45.34% | -43.14% | -44.63%

AVG. Time-Saving -43.05% | -45.04% | -44.43% -44.78% -43.51% -44.86% | -44.52% | -44.29% | -44.31%

Y BD-rate (%) 5.544 2.576 3.283 9.909 3.037 7.359 7.263 8.257 5.904

Y BD-PSNR (dB) -0.150 -0.078 -0.071 -0.167 -0.094 -0.207 -0.197 -0.193 -0.145

As depicted in Table 5, the 16/2 CU structure saves about 44% overall encoding time,

but causes 5.9% luma BD-rate loss in average. In general, it is a trade-off issue between

computational complexity and coding performance in designing a fast algorithm. Nevertheless,

such a large loss from 16/2 CU structure is generally not considered cost-effective, so we are

looking for other methods to accelerate the process of CU decision.
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Chapter 4 Fast CU Size Decision Algorithm Design

In the following section, we first describe the problem and the target we want to achieve,
and then we survey some ideas about fast CU quadtree decision algorithms, [20] and [21],
published recently but not have been accepted in HM as the coding tools in our testing
platform. After implementing the original platform, we measure and analyze its performance
with many standard sequences, and propose some ideas referred from [21] to compensate the

weakness of the testing platform.

4.1 Problem Formulation and Design Goal

Because HM5.0 has FEN, ECU, and CFM for CU fast algorithm, we try to design
additional fast algorithms from different perspectives. The principle of our new tool should be
different with those three existing tools, and the added tool should not reduce the performance
of the existing and also be compatible with the CU quadtree structure in HMS5.0.

For the above reasons and the simulation results in section 3.2, skipping the analysis of
coding units in unnecessary depth is a possible way to accelerate encoding procedure,
especially for the high resolution video. Typical fast algorithm performance or experimental
results are examined by the ratio of time reduction, the bitrate and PSNR with the specified
QP and R-D curve [20], [21]. Therefore, we set up a reasonable target of our final proposed
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algorithm that reduces about 50% complexity and minimize the coding loss. Moreover, the

collaborative effect between our proposed algorithm and the existent fast algorithms is also an

important issue.

4.2 Related Work

Even though the original encoding procedure returns the best possible tree structure, its

complexity is very high. Heuristics scene characteristics estimation is necessary to predict the

optimal depth for the next encoded CU. In [20], the main idea is to accelerate the encoding

procedure of HEVC by utilizing the correlation of related CUs. The encoder uses the size

information of neighboring coding units and the processed depth-ratio in the previous frame

to limit possible processed depth. In [21], a complexity-control method is proposed, which

performs the time analysis and adjusts the number of fast encoding frames of each picture

group. Recording the deepest depth used in the unit of LCU in the previous frame, the

encoder finds the best possible tree structure until the recorded depth in each LCU in the

current frame.

However, the methods, [20] and [21], are implemented in the earlier version HM, so we

need to convert their ideas to fit our experimental platform HMS5.0. Due to the above reasons

and performance consideration, we remove the frame level algorithm in [20], and the time

analysis in [21] is not suitable for our research because different computers would execute the
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same program with different time, so we use QP value as the indicator to adjust our algorithm.

The details will be described in the following sections.

4.3 Core Ideas of Fast CU Size Decision

The CU-level fast decision is based on the fact that the in the temporal and spatial

neighborhoods, the motion and texture characteristics of a picture patch are similar. Therefore,

we can predict the candidate CU depth by checking the size of its neighbor CUs (spatial) and

co-located CU (temporal).

The data structure for HEVC is that each LCU includes 21 bits for representing the

splitting information as illustrated in Fig. 11. The accuracy of the data structure extends to

depth 2 which is sufficient for our fast decision. For'example, during the encoding procedure,

G-BFOS tells us that splitting the LCU into 4 sub-CUs is better due to its lower R-D cost.

Then, the encoder will record the bit of index 0 in Fig.11 as 1 to indicate the splitting.

Otherwise, the bit is set to 0.

64
5 6 9 10
1 2
7 8 11 | 12
64 0
13114 | 17 | 18
3 4
15116 | 19 | 20
Depth O Depth 1 Depth 2

Fig. 11 Data representation of splitting information
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The other important factor in our algorithm is the location of corresponding CUs. Fig. 12

depicts the relation between the referred neighboring CUs and the current encoded CU. The

co-located CU means that the previous frame CU has the same position as the current encoded

CU. It should be mentioned that our algorithm executes recursively in depth 0, depth 1, and

depth 2 with the corresponding CU size of 2N x2N and CU index show in Fig. 11.

Left-top Top Right-top
Cu Cu cu
) . Current
Co-located Left E]:;:I)dr;d 2N
cu ol cu '
2N
Previous Frame Current Frame

Fig. 12 Reference CUs-and the current CU

As already stated in Chapter 3, some exceptions of losing reference CUs exist in Fig. 12

due to the encoding order or the picture boundary. When we want to encode a CU with index

4 in Fig.11, the right-top referenced CU has not been processed, so the encoder can’t find any

information about the right-top CU as shown in Fig. 12. For this case, we ignore the right-top

CU but still follow the decision rule that to be described in the next two sections. On the other

hand, if the encoded CU is so close the boundary of picture that it loses more than one

referred CU, it will find the best CU quadtree structure without our proposed fast decision.
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4.3.1 Splitting Decision

The splitting decision is utilized for preventing the unnecessary prediction, RQT, and
R-D calculation in a larger size CU. When the CU analysis begins at the current depth and all
the following conditions are satisfied, the PU mode search in the current depth will be skipped
except for the 2NxN/Nx2N inter modes, and then it jumps into the next depth directly.
An example of splitting decision is illustrated in Fig. 13, where the current encoded CU in

depth 0 chooses the splitting decision.

® The co-located CU has smaller CUs.
® All neighboring CUs have smaller CUs.

® The current encoding frame is'not I frame.

Co-located
CU
64
Current
Encoded 64
CU

Fig. 13 An example of splitting decision
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If all reference CUs prefer the splitting mode for lowering the R-D cost, which often

implies that the region has complex residual texture, and the encoded block has a large

probability in using the deeper depth to compress this CU. Nevertheless, when the depth of

CU becomes smaller and smaller, we retain the inter modes, 2N x N/ N x2N , with two MVs

in the skipping data depth.

4.3.2 Termination Decision

The termination decision prevents the encoder from building a larger tree with a lot of

computational complexity owing to the webs small CUs. If the encoder has already finished

the CU mode decision in the current depth, the termination decision is determined by the

following conditions. The mode decision whose depth is greater than the current depth will

not be conducted when all the conditions are satisfied. Fig. 14 shows an example of

termination decision, and the current encoded CU will not build any nodes with the depth

larger than 0 in the CU quadtree. The termination decision often occurs in the smooth residual

texture region or the static background.

® The co-located CU does not have any smaller CU.

® 3 or more neighboring CUs do not have any smaller CU.

® The current encoding frame is not I frame.
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Co-located
CU

64

Current
Encoded 64
CU

Fig. 14 An example of termination decision

4.3.3 Basic Fast CU Size Decision Scheme

Fig. 15 shows the flowchart of the basic fast CU size decision algorithm. It should be

noted that the 2 fast decisions will not happen simultaneously in each depth of the encoded

CU. From the above sections, we know that splitting decision and termination decision will

not happen in I frame because a mismatched CU size in intra frame will result in a great

PSNR drop or bit rate increase. Moreover, for the co-located CU and the consistence of

reference CU size, we set up the experimental conditions for low delay P having only one

reference frame (only one co-located CU) and the GOP size is equal to one to avoid the

automatic increase in QP.
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Start and CU
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(A) Set new depth
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Depth++
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Splitting
Decision
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' Do Inter modes
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ermination Comparable

Decision

0 Back to (A)

Tree
complete?

Compare the R-D cost by G-BFOS.
Decide the best CU structure and
record it.

End

yes

Fig. 15 Flowchart of basic fast CU size decision algorithm

4.4 Additional Tools

In this section, we try three methods to improve the performance of fast CU size decision.

There is no BD-rate measurement in [20] and [21], so we check our luma BD-rate, BD-PSNR,

and R-D curve to find the weakness of the basic algorithm and enhance it for better efficiency.
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First, we observe that the coding loss increases as QP gets larger, such as 32 and 37.

Nevertheless, the high QP setting is important for real-time application, and we should solve

this problem. Secondly, the time-saving is small in the lower QP cases. We want to solve this

problem because the encoder usually spends a lot of time compressing the videos at lower QP.

In the following sub-sections, we analyze the data from the result of the proposed basic

algorithm and design the modifications.

4.4.1 Frame Level Parameter Control

We collect the result of eight high-resolution video sequences with 32 frames per

sequence, and find that the performance is better than that of 16/2 CU structure which is

defined in section 3.2, but the coding loss is too high. Table 6 lists the BD-performance and

time reduction ratio, and Fig.16 shows the R-D curve of sequence “Basketball”.

The reference curve is the original HM, and the test curve is our proposed method. We

can find that two curves separate far in the higher QP cases, and we also notice that the time

reduction ratio is very high, which may drop some necessary mode calculations. In [21], the

depth-consideration fast algorithm sets the target of complexity from 40% to 100%, and there

is a large amount of R-D performance drop between 40% and 60%. Therefore, we like to

modify the method to maintain an appropriate complexity and to improve its BD-performance.

The improved method in [21] defines two types of frames: the unconstrained frames ( F,) and
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the constrained ones (F,). F, represents that the CU in the frame is encoded with the fast

algorithm. On the contrary, the CU in F, is processed in the original way to find the best CU

quadtree structure. Each F, is followed by a number of N, constrained frames F, as

illustrated by Fig. 17.

Table 6 Performance of the basic fast CU decision algorithm

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -50.58% -37.73% -33.35% -35.83% -38.29% -41.56% -39.06% -40.78% -39.65%
Time-Saving(QP27) -57.94% -41.80% -44.40% -51.38% -36.90% -51.74% -50.37% -53.91% -48.56%
Time-Saving(QP32) -56.62% -46.10% -50.93% -55.60% -45.34% -60.38% -56.03% -60.28% -53.91%
Time-Saving(QP37) -55.81% -53.26% -56.15% -61.44% -54.38% -65.85% -61.48% -67.31% -59.46%

AVG. Time-Saving -55.24% -44.72% -46.21% -51.06% -43.73% -54.88% -51.74% -55.57% -50.39%
Y BD-rate (%) 5.311 5.347 3.906 7.559 1.650 7.661 4.323 8.203 5.495
Y BD-PSNR (dB) -0.147 -0.160 -0.086 -0.127 -0.049 -0.200 -0.132 -0.181 -0.135
BasketBall
42
40 A
% 38 1
1
14
P4
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36 - ——Test
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Log10-bitrate-kbps

Fig. 16 R-D curve of Basketball
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Fig. 17 Example of Nc=3

In Table 6, the BD performance drops due to the unlimited N,. Our original proposed
algorithm sometimes takes the reconstructed frame with lower PSNR as the reference frame
which results in inaccurate prediction. Therefore, we should pay attention to the PSNR loss
with fixed N, and set the tolerable-bound for the PSNR decrease. The experiments set N,
equal to 3, 6,9, 12, and 15. Fig. 18 shows the suitable N, as the intersection of two lines for
QP=22, 27, 32, and 37, where over 75% sequences limit their drops of PSNR under 0.1dB
compared to the result of the original HM. The testing sequences and the frame number are
the same as the stated in the beginning of this section.

We use the results from Fig. 18 to select the proper integral N, for the corresponding
QP. Then, we estimate the relationship between N, ,and QP. The minimum square error
method is adopted for finding the approximated linear equation, which is

N, =round(—0.32xQOP+14.94), QP <46 (6)

N, must be a positive integer, so we add the round operation outside the linear equation, and

thus N, is 0, when QP is larger than 46. The four QP values are taken into (6) iteratively to
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produce stable N,. Table 7 lists the finally selected N, to the corresponding QP. Thus, we
limit the value of N, in our proposed fast algorithm. The BD-performance in Table 8 is
much better than that in Table 6, and we also control the average time complexity at about
60%.The resulting R-D curves in Fig. 19 are closer to each other than those in Fig. 16,
especially in the high QP region. The same improvement of R-D curve trend is also found in
other sequences.

Nc is equal to 5 as QP=32. Therefore, we know the 7" frame and the 13" frame are
encoded originally, and the other frames in Table 9 are processed with fast CU size decision.
In Table 9, the usage bits per frame alter less than 28% between the consecutive frames, and
the maximum changed PSNR value is smaller than 0.14 dB. Although the reconstruction
videos seem continuous as the original way, we should consider the stable bits usage and the
video quality for the general applications.

Table 7 Specified QP versus Nc

QP 22 27 32 37

Nc 8 6 5 3

Table 8 BD-performance and time reduction ratio of limited Nc

Test Sequence Kimono Park Cactus Basketball | BQTerrace | Vidyol Vidyo3 Vidyo4 AVG.

Time-Saving(QP22) | -41.54% | -33.41% | -31.47% -31.57% -35.91% -34.27% | -33.46% | -32.43% | -34.26%

Time-Saving(QP27) | -45.73% | -33.05% | -36.50% -40.78% -32.31% -40.75% | -39.23% | -41.21% | -38.70%

Time-Saving(QP32) | -44.32% | -35.11% | -39.86% -42.78% -33.90% -46.06% | -43.99% | -44.93% | -41.37%

Time-Saving(QP37) | -40.10% | -37.53% | -40.19% -42.76% -37.67% -46.42% | -44.29% | -46.64% | -41.95%

AVG. Time-Saving | -42.92% | -34.78% | -37.01% -39.47% -34.95% -41.88% | -40.24% | -41.30% | -39.07%
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Y BD-rate (%) 2.907 1.888 1.530 2.992 0.567 1.234 1.579 1.755 1.807

Y BD-PSNR (dB) -0.080 -0.057 -0.032 -0.049 -0.018 -0.029 -0.049 -0.040 -0.044

Table 9 PSNR and bits measurements at QP=32

Vidyol PSNR (dB) bits BQTerrace PSNR (dB) bits
Frame7 39.5052 13016 Frame?7 34.1248 193544
Frame§8 39.4256 11408 Frame8 34.1320 201480
Frame9 39.4629 10016 Frame9 34,1214 201984
Framel0 39.4524 9432 FramelO 34.1148 200944
Framel 1 39.3932 9656 Framell 34.1008 200216
Framel2 39.3379 10848 Framel2 34,1081 197904
Framel3 39.4740 13784 Framel3 34.1911 211504
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089+ i ns+
LETS 1 0afk
- D.T-_______________ _______________— - ozl T
% 0GB+ B % 06+
g 05 E 05
é 0.4 _ é 04+
= 03 B = 03+
ozt 4 02t
01 i o1k
a L L a
4 B 10 12 14 4 B 10 12 14
Me QP=22 Me QP=27
1 T 1
09k B 09r
LETS 1 0afk
- D.T-__ ____________________________— - D.?-_ _____________________________
% 0GB+ B % 06+
g 0sf 1 E e
é 0.4 _ é 04+
= 03 4 = 03k
02 _ o2k
01f 4 o1k
S 5 B 0 2 3 S 5 B 0 2 3
Me QP=32 Me QP=37

Fig. 18 Experiment for choosing N,
The solid line means the ratio under the tolerable bound, and the dashed horizontal line

represents the expected ratio which equals 75%.
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Fig. 19 R-D curve of Basketball with Nc control

4.4.2 LCU Level Parameter Control with Error-Bound

In this section, we focus on analyzing the distortion statistics between the original video
and the reconstructed video at LCU level. By limiting our algorithm working in the high
distortion region of the previous frame, the HEVC inter-prediction scheme can produce better
matching block from the reconstructed frame. It should be noted that the data in this section is
based on CU size fast decision with splitting information, and the used N, values are
different from those in other sections in this thesis.

At the beginning, we test our proposed algorithm including the N, value control on
eight high resolution sequences with 32 frames per sequence. Fig. 20 shows the probability
density distribution of the sum of the absolute distortion (SAD) in each LCU at various QP.
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Then, we also apply the minimum square error method to estimate the relationship between
QP and the 3% bound of SAD as

error bound (3%) = 1332.708 QP - 22694.336 ’ (7)
where 3% means the top 3% error in our collected SAD data. In Fig. 20, we divide all
collected data within the corresponding QP into 100 groups to calculate its probability density
distribution, and the red dash lines in Fig. 20 indicates the position of the top 3% error for
each QP.

When we insert 4 QP values into (7), we find that the estimated error bound values do
not match our assumption. This 1is particularly true for the case of QP 22 and the
corresponding error bound is 6625.24. The bound is on the left of the peak (near 7000) and
thus excludes over 10% LCU for fast algorithm which decreases the time reduction. For
accurate error bound, we try the second order approximation equation, and the result is

error bound (3%) = 33.222 QP* -627.39 QP + 5178.922 (®)

Although the computation of second order equation is high, it gives us a better fitting
curve to the original data. Fig. 21 shows the curve fitting, and Table 10 lists the 3% error
bound of the specified QP. We add error bound threshold for LCU skipping into our proposed
fast algorithm with limited N_, and the simulation results of 1080P sequences with 32 frames

per sequence are shown in Table 11.
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Table 10 Specified QP versus error bound (3%)

QP

22

27

32

37

ErrorBound (3%)

7455.79

12458.23

19121.77

27446.41

Table 11 BD-performance and time reduction ratio with 3% error bound

Test Sequence Kimono Park Cactus Basketball BQTerrace
Time-Saving(QP22) -41.67% -20.22% -3.22% -21.77% -11.68%
Time-Saving(QP27) -47.97% -32.46% -29.37% -39.94% -15.55%
Time-Saving(QP32) -45.67% -35.55% -38.54% -43.27% -24.08%
Time-Saving(QP37) -41.65% -37.09% -39.70% -43.82% -32.57%

AVG. Time-Saving -44.24% -31.33% -27.71% -37.20% -20.97%

Y BD-rate (%) 3.062 2.083 1.296 2.972 0.455

Y BD-PSNR (dB) -0.085 -0.063 -0.027 -0.051 -0.013

We only try 1080P sequences and discontinue trying other ones because the time
reduction significantly decreases in the low QP setting. Nevertheless, the BD-performance
improves a little bit. Thus, we can still use this method but this is a concern on time reduction.
Therefore, the final scheme sets the threshold bound only on the QP equals 32 and 37. The
simulation result with 64 frames per sequence is shown in Table 12. To test its robustness, we
add eight lower resolution sequences to check the effect of error bounds. Table 13 shows the
simulation result without error bound for comparison.

Table 12 Simulation result with 3% error bound with 64 frames per sequence

Test Sequence

Kimono

Park

Cactus

Basketball

BQTerrace

Vidyol

Vidyo3

Vidyo4

AVG.

Time-Saving(QP22)

-38.77%

-33.45%

-32.53%

-30.92%

-35.96%

-37.67%

-37.67%

-34.24%

-35.15%
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Time-Saving(QP27) -45.38% | -33.71% | -37.57% -40.72% -31.92% -44.68% | -44.98% | -43.37% -40.29%
Time-Saving(QP32) -44.14% | -35.07% | -39.06% -42.48% -23.23% -50.37% | -47.76% | -47.78% -41.24%
Time-Saving(QP37) -41.11% | -38.36% | -41.36% -43.14% -33.13% -51.69% | -48.88% | -48.83% -43.31%
AVG. Time-Saving -42.35% | -35.15% | -37.63% -39.32% -31.06% -46.10% | -44.82% | -43.56% -40.00%
Y BD-rate (%) 3.364 2.395 2.063 3.229 0.696 1.702 2.530 2.430 2.301
Y BD-PSNR (dB) -0.092 -0.074 -0.044 -0.061 -0.018 -0.043 -0.073 -0.055 -0.058
Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.
Time-Saving(QP22) -32.15% | -31.69% | -30.35% -28.53% -21.46% -21.88% -23.67% -23.15% -26.61%
Time-Saving(QP27) -32.35% | -29.82% | -28.96% -28.21% -22.15% -20.29% -19.96% -20.83% -25.32%
Time-Saving(QP32) -31.76% | -26.74% | -11.68% -22.43% -22.22% -18.09% -9.48% -18.37% -20.10%
Time-Saving(QP37) -32.19% | -27.48% | -13.56% -22.96% -23.58% -20.63% -11.65% -19.76% -21.48%
AVG. Time-Saving -32.11% | -28.93% | -21.14% -25.53% -22.35% -20.22% -16.19% -20.53% -23.38%
Y BD-rate (%) 4.413 2.309 0.510 1.762 1.611 0.662 0.161 0.820 1.531
Y BD-PSNR (dB) -0.174 -0.094 -0.025 -0.075 -0.08 -0.028 -0.008 -0.04 -0.066
Table 13 Simulation result without error bound with 64 frames per sequence
Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -39.19% | -33.60% | -32.56% -32.48% -37.12% -38.12% | -37.62% | -34.90% -35.70%
Time-Saving(QP27) -45.27% | -34.25% | -37.86% -42.01% -32.66% -45.15% | -45.06% | -44.35% -40.83%
Time-Saving(QP32) -44.11% | -36.19% | -41.76% -43.72% -35.01% -51.07% | -48.21% | -48.55% -43.58%
Time-Saving(QP37) -41.12% | -39.17% | -43.51% -44.55% -41.48% -52.18% | -49.53% | -49.77% -45.16%
AVG. Time-Saving -42.42% | -35.80% | -38.92% -40.69% -36.57% -46.63% | -45.11% | -44.39% -41.32%
Y BD-rate (%) 3.364 2.383 2.237 3.217 0.818 1.702 2.529 2.430 2.335
Y BD-PSNR (dB) -0.092 -0.073 -0.047 -0.062 -0.024 -0.043 -0.073 -0.055 -0.059
Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.
Time-Saving(QP22) -31.47% | -30.51% | -29.38% -27.90% -23.54% -23.17% -24.38% -23.22% -26.70%
Time-Saving(QP27) -30.98% | -28.75% | -27.94% -28.07% -22.88% -20.61% -21.19% -21.51% -25.24%
Time-Saving(QP32) -31.90% | -29.03% | -25.93% -27.43% -24.06% -21.17% -19.56% -20.44% -24.94%
Time-Saving(QP37) -32.61% | -29.80% | -25.83% -26.56% -25.64% -24.25% -19.34% -21.35% -25.67%
AVG. Time-Saving -31.74% | -29.52% | -27.27% -27.49% -24.03% -22.30% -21.12% -21.63% -25.64%
Y BD-rate (%) 4.509 2.540 0.723 2.092 1.566 0.903 0.216 1.029 1.697
Y BD-PSNR (dB) -0.178 -0.102 -0.037 -0.09 -0.078 -0.039 -0.011 -0.052 -0.073
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We find that the BD-performance improves a little but not much, especially in some

worst cases. Although the error bound scheme reduces the efficiency of time saving, we still

increase the bound up to 5% to compare their performance and evaluate the necessity of the

error bound. The comparison is in Table 14.

Table 14 Comparison of different ratios of error bound

High resolution sequences(1080P,720P) Low resolution sequences
Error Bound BD-rate (%) BD-PSNR(dB) | Time saving Error Bound BD-rate (%) BD-PSNR(dB) | Time saving
none 2.335 -0.059 -41.32% none 1.697 -0.073 -25.64%
3% 2.301 -0.058 -40.00% 3% 1.531 -0.066 -23.38%
5% 2.297 -0.057 -39.86% 5% 1.517 -0.065 -22.33%

From Table 14, we know that increasing the ratio of the error bound is not useful for

coding gain, and there are 2 phenomena we notice in comparing Table 12 to Table 13. Firstly,

the performance of “Kimono” seems no different with the error bound. Secondly, the time

reduction becomes about half in the sequence of “Party”. For investigate these cases, we

analyze their SAD distribution separately, and find that the measurement of error bound

scheme is too rough for representing the individual sequences. The SAD distribution of

“Kimono” is shown in Fig. 22, and the 3% threshold decided by all sequences does not work

on the “Kimono” because its PSNR is higher than the average PSNR of the high resolution

sequences. On the other hand, the threshold limits about 50% case for fast algorithm in “Party”

because the threshold is located near the center of its SAD probability density distribution
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which is shown in Fig. 23. In conclusion, we remove this tool from our algorithm due to the

large variation of probability distribution of individual sequences and additional operations of

calculation for SAD values. An effective threshold scheme should consider both PSNR and

bitrate in setting up the adaptive threshold for different sequences.
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4.4.3 2NxN/Nx2N Decision after Splitting Decision

In the last two sections, we notice that the time reduction of low QP is lower than that of
high QP. We also know that the small sized CUs are often used in lower QP case, so the
splitting decision occurs easily in the region of many small sized CUs. However, the time
saving of the splitting decision is less than that of the termination decision, so we are expected
to use only one inter prediction after the splitting decision to reduce the complexity further.
There are 2 possible inter modes examined originally after the splitting decision,
2NxN/Nx2N. We assume that the shape is highly dependent on the size of neighboring
CUs. If the number of small CUin the horizontal direction is larger than that in the vertical
direction, the encoder will compute the R-D cost of 2N/ x N in the current depth. Otherwise,
we will only use Nx2N prediction instead. The positions of reference CUs for depth 0 and

1 are shown in Fig. 24, and those for depth 2 are shown in Fig. 25.

In the example of Fig. 24, the current encoded CU of depth 1 refers CU1 and CU2 as the
horizontal referenced CUs, and takes CU3 and CU4 as the vertical referenced CUs. That is, as
the depth of current encoded CU is smaller than 2, the referenced CUs are the sub-CUs at the
top and the left, and we decide the suitable mode by the splitting bits in those referenced CUs.
However, we only save the splitting information of CU up to depth 2, so we should adjust the
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decision rule for the encoded CU in the depth 2. In Fig. 25, CUs and CUs are horizontal

referenced CUs for the current encoded CU of depth 2, and CU9 and CUio are its vertical

referenced CUs. As the encoded CU shifts in range of 3x3 in the current depth, the

referenced CUs shift in the same way. It is should be noted that CU13 is located at the bottom

row of the LCU, then the encoder takes CU7 and CUs as the referred CUs due to that the CUs

under CUs are not encoded. For symmetry, the CU14 located the right column of LCU refers

CUi1 and CU12 to decide the shape of prediction in the current depth. The rest CUs after the

splitting decision in the right edge and the bottom edge of green LCU refers the corresponding

CUs with the similar way we stated above.

The design scheme in this section based on' the assumption that after the splitting

decision, the 2N x N/ N x2N decision is computed for choosing the only proper inter mode

in the current depth. Table 15 shows the improvement of time reduction by the

2NxN/Nx2N decision, the number of testing frame is 64 per sequence. Obviously, the

time reduction increases 3% in average with negligible coding loss, especially in lower QP,

where higher percentage of splitting decisions happening.
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Fig. 24 An example of 2NxN/Nx2N Decision in depth 1
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Fig. 25 An example of 2NxN/Nx2N Decision in depth 2
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Table 15 Performance for schemes with and without 2NxN/Nx2N decision

) Average Average Average Average
With ] ) ) Average
Time Time Time Time ) BD-rate | BD-PSNR
2NxN/Nx2N ] Time
o reduction reduction reduction reduction ) (%) (dB)
Decision? reduction
QP=22 QP=27 QP=32 QP=37
No(1080P,720P) -34.28% -38.75% -42.01% -41.53% -39.14% 2.089 -0.052
No (Other) -25.01% -23.31% -23.72% -23.39% -23.86% 1.417 -0.062
Yes(1080P,720P) -40.18% -41.95% -44.15% -42.75% -42.26% 2.050 -0.051
Yes (Other) -30.81% -28.16% -27.07% -25.55% -27.90% 1.406 -0.060

4.5

Overview of the Overall Proposed Algorithm

In this chapter, we firstly propoese the basic algorithm for fast CU size decision, and then

we design two useful additional tools to enhance its coding performance and to increase time

reduction, respectively. The detailed experiments and discussions are in the next chapter. The

final flowchart of our algorithm is depicted in Fig. 26. The main additional parts are Nc

control block and Nx2N decision block. Nc decision block executes before the splitting

decision to reduce the coding loss by long-term Nc. Nx2N decision block places after the

splitting decision to reduce the calculation from the unnecessary PU in the current depth. Due

to these tools, our proposed scheme increases its efficiency.
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Fig. 26 Flowchart of overall proposed algorithm for processing an LCU
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Chapter 5 HEVC Experiments and Discussions

In this chapter, we examine the performance of the proposed algorithm by testing 16
sequences with 100 frames per sequence. Then, we discuss the different time reduction
efficiency due to the different depth combinations. The experiment conditions and the
platform are already stated in section 2.3. The rest of this chapter is organized as follows. The
performance measurements for all experiments in this study are listed in section 5.1, and then
section 5.2 conducts several experiments and discussions for ECU, CFM, and our proposed
algorithm. At the end of this chapter, we analyze the useful combination of the above
algorithms.

5.1 Performance Measure

The time reduction, also called time saving (TS) in the thesis, is defined as

Tlm etested (QPl ) - T imereferenced (QR )

TS(QFR) =
(Q l) T l'mergf‘erenced (Q])’)

x100% 9)

where Time

refe

encea (OF) 1s the overall encoding time for referenced setting, such as the
original HMS5.0, and Time,,(OF) is the overall encoding time for the tested setting with

the fast algorithm. QP 1is usually set as 22, 27, 32, or 37 (QF, QOP,, OF,, or QP,) for

BD-performance measurement described later. In general, we use the arithmetic average to

represent the overall time saving (7S

average ) aS
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TS e =3 2.5, (10)

On the other hand, we also need a way to show the loss in the R-D performance as the
trade-off for time reduction. The BD-rate and BD-PSNR [16] are adopt to measure the
average performance in the most standard contests, so we use it to show the average
difference between 2 R-D curves produced by the reference scheme and the proposed scheme.
The BD-measurement [16] only needs the R-D results of 4 QP as mentioned previously to
interpolate the overall R-D curve and further to estimate the average difference between 2
schemes.

When we want to observe the R-Dperformance of the specified QP, we analyze the data

based on the formulas defined as (11) and (12) to represent the difference between the

reference scheme and the proposed scheme.

APSNR = PSNR,,,..; = PSNR 1.1 (1n
. B itRatetested - B itRatereferenced
ABitRate(%) = x100% (12)
BitRate

referenced

Last but not the least, the depth analysis is essential to know the strong and weak points
of procedure for our fast decision algorithm. Thus, we should compare the depth changing
trend due to the fast size decision to show the usefulness of each proposed tool. In (13),

AvgDepth means the average depth per LCU in the frame. CUDepth, is the depth of i, CU,

CUArea,

—— 1is the area ratio of the i, CU to LCU, FrameArea is the area of the Frame, and n
LCUArea

is the number of CU in a frame. This depth measurement is defined by [21].
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2 CUArea.
AvgDepth = ! Z CUDepth; x ATed;
(FrameArea /| LCUArea) 5 LCUArea

(13)

5.2 Experimental Results and Discussions

In this section, we show the results of our proposed fast algorithm including N, control
scheme and 2NxN/Nx2N decision described in subsection 5.2.1. Here, we also analyze
the depth changing-trend in videos with different characteristics. Then, we simulate the
original HM plus the ECU and CFM tools with the original low delay P and low complexity
configuration in subsection 5.2.2, and compare them to the results of our schemes with
GOP=1 and referenced frame=1. For the aggressive design, we add ECU and CFM into our
proposed algorithm, and discuss the advantages and disadvantages caused by integrating these
tools together. Hence, we have to find an efficient way to use these tools at proper QP values
in subsection 5.2.3.

5.2.1 Fast CU Size Decision

The performance of our proposed fast decision in section 4.5 is listed in Table 16 (64
frames per sequence) and in Table 17 (100 frames per sequence) respectively. The reference
scheme is the original HM5.0 without ECU and CFM. The simulation data in Table 16
shows that our scheme can averagely provide about 43 % overall encoding time saving in the
high resolution test sequences. On the average, the luma BD-rate increment is about 2.24%
and the luma BD-PSNR loss is about 0.06 dB.
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When the number of frames increases, the BD-performance decreases slightly because

we set the number of the reference frame is 1 to lower complexity but the inaccurate

prediction in the IPPP sequence type also decreases coding performance. Hence, we should

select a suitable intra period for the fast decision scheme, when the loss is not tolerated. The

changing trend is about -0.2% BD-rate as adding the additional 32 encoded frames, averagely.

Table 16 Performance of the overall proposed algorithm (64 frames/sequence)

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -42.73% | -39.54% | -39.84% -38.61% -43.65% -39.39% | -40.03% | -37.62% | -40.18%
Time-Saving(QP27) -45.88% | -36.83% | -39.77% -43.17% -37.57% -44.09% | -44.64% | -43.66% | -41.95%
Time-Saving(QP32) -45.76% | -38.21% | -42.96% -43.80% -36.73% -49.53% | -47.90% | -48.27% | -44.15%
Time-Saving(QP37) -40.04% | -37.47% | -41.86% -41.82% -39.34% -48.72% | -46.19% | -46.58% | -42.75%

AVG. Time-Saving -43.60% | -38.01% | -41.11% -41.85% -39.32% -45.43% | -44.69% | -44.03% | -42.26%
Y BD-rate (%) 3.094 2.173 1.909 2.723 0.789 1.059 2.460 2.189 2.050

Y BD-PSNR (dB) -0.084 -0.067 -0.040 -0.051 -0.022 -0.024 -0.074 -0.049 -0.051

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.
Time-Saving(QP22) -34.57% | -35.71% | -35.81% -33.49% -24.73% -27.29% -28.15% -26.72% -30.81%
Time-Saving(QP27) -33.20% | -31.82% | -33.30% -31.62% -23.73% -23.45% -24.18% -23.96% -28.16%
Time-Saving(QP32) -33.34% | -30.81% | -30.72% -30.96% -23.47% -22.56% -21.67% -23.02% -27.07%
Time-Saving(QP37) -31.69% | -29.47% | -27.97% -27.98% -23.83% -22.87% -18.65% -21.96% -25.55%

AVG. Time-Saving -33.20% | -31.95% | -31.95% -31.01% -23.94% -24.04% -23.16% -23.92% -27.90%

Y BD-rate (%) 3.583 2.231 0.613 1.773 1.255 0.788 0.187 0.819 1.406

Y BD-PSNR (dB) -0.143 -0.090 -0.030 -0.077 -0.062 -0.033 -0.009 -0.040 -0.061

Table 17 Performance of the overall proposed algorithm (100 frames/sequence)

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyol Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -41.95% | -39.66% | -39.66% -38.74% -43.05% -43.60% | -40.60% | -37.02% | -40.54%
Time-Saving(QP27) -45.09% | -36.43% | -39.73% -45.33% -36.69% -48.33% | -45.06% | -43.06% | -42.47%
Time-Saving(QP32) -44.97% | -37.73% | -42.70% -47.73% -36.87% -52.83% | -48.97% | -47.41% | -44.90%
Time-Saving(QP37) -39.85% | -36.84% | -41.02% -45.67% -41.82% -51.89% | -46.32% | -46.35% | -43.72%

AVG. Time-Saving -42.97% | -37.67% | -40.78% -44.37% -39.61% -49.16% | -45.24% | -43.46% | -42.91%
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Y BD-rate (%) 3.112 2.231 2.052 2.775 0.934 1.839 2.615 2.379 2.242

Y BD-PSNR (dB) -0.084 -0.069 -0.044 -0.056 -0.026 -0.043 -0.077 -0.053 -0.057
Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.
Time-Saving(QP22) -34.44% -35.32% -36.13% -34.32% -26.48% -27.52% -28.50% -27.25% -31.25%
Time-Saving(QP27) -33.37% -31.55% -33.15% -32.32% -25.15% -23.43% -24.53% -24.53% -28.50%
Time-Saving(QP32) -32.98% -31.29% -30.49% -30.99% -24.49% -22.67% -22.06% -23.07% -27.26%
Time-Saving(QP37) -31.12% -29.63% -27.72% -28.40% -23.65% -23.49% -20.02% -22.23% -25.78%
AVG. Time-Saving -32.98% | -31.95% | -31.87% -31.51% -24.94% -24.28% -23.78% -24.27% -28.20%

Y BD-rate (%) 3.422 2.747 0.588 1.923 1.317 0.883 0.301 1.008 1.524

Y BD-PSNR (dB) -0.134 -0.109 -0.028 -0.084 -0.066 -0.036 -0.015 -0.051 -0.065

It should be noted that the low resolution sequences has less time saving averagely. The
main reason is that the depth combination of low resolution sequences is often different from
that of the high resolution sequences. In general, the encoder takes more 8x8 CUs as QP
equals 22, and the large sized CU is usually used in the case of the higher QP and the static
region. Our proposed algorithm consists' of splitting decision and termination decision.
Splitting decision can speed up the convergence of small CUs area. On the other hands,
termination decision cuts off unnecessary depth in the CU quadtree construction resulting in
larger CU sizes. The depth data of our experiments explains the above observation. Here, we
examine 3 sequences with the specified QP in the consecutive frames, Vidyol (QP=32),
BQsquare (QP=32), and BQTerrence (QP=22). In Table 18, the depth distribution is listed
from 7" to 13™ frames for observing the complete acceleration period with QP=32. It is should

be mentioned that all the depth measurements in the section include the area factor.
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Table 18 Depth percentage (QP is 32)

Vidyol DepthO | Depthl | Depth2 | Depth3 | BQsquare | DepthO | Depthl | Depth2 | Depth3

Frame?7 44.0% 28.8% 20.0% 7.3% Frame?7 0.0% 15.4% 28.7% 55.9%

Frame8 61.8% 21.9% 14.3% 2.1% Frame8 0.0% 19.5% 33.3% 47.2%

Frame9 59.1% 25.4% 14.6% 0.9% Frame9 0.0% 19.5% 34.1% 46.4%

FramelO | 65.3% 16.6% 17.6% 0.5% FramelO 0.0% 14.4% 37.9% 47.7%

Framel 1 60.0% 20.8% 18.9% 0.4% Framel 1 0.0% 12.3% 36.4% 51.3%

Framel2 | 68.4% 17.1% 14.2% 0.2% Framel2 0.0% 16.4% 26.7% 56.9%

Framel3 | 51.6% 26.6% 16.0% 5.9% Framel3 0.0% 20.5% 28.5% 51.0%

We notice that the larger CUs are seldom used in the sequence “BQsquare”. The same
phenomenon usually happens in the small sized videos even when QP is 37. Table 19 shows
that the depth combination of the 10" frame jin-all small sequences as QP equals 37. For
comparison, we also list the depth combination in the high resolution videos with the same
conditions in Table 20.

Table 19 Depth percentage of the 10™ frame in low resolution sequences (QP=37)

Framel0 BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses

Depth0 49.2% 44.1% 3.1% 1.0% 32.8% 4.1% 0.0% 0.0%

Depthl 24.1% 29.2% 25.6% 38.7% 32.8% 45.1% 31.8% 11.3%

Depth2 20.5% 18.5% 42.9% 42.2% 23.8% 37.7% 41.0% 55.9%
Depth3 6.2% 8.1% 28.4% 18.0% 10.5% 13.1% 27.2% 32.8%

Table 20 Depth percentage of the 10™ frame in HD sequences (QP=37)

Framel0 Kimono Park Cactus Basketball | BQTerrace Vidyol Vidyo3 Vidyo4

Depth0 25.5% 35.4% 55.7% 55.5% 39.5% 75.6% 77.3% 80.9%

Depthl 54.0% 39.8% 24.0% 31.5% 32.6% 18.0% 12.4% 15.4%

Depth2 19.4% 20.8% 16.7% 11.5% 22.6% 5.9% 9.8% 3.4%
Depth3 1.1% 4.0% 3.5% 1.5% 5.3% 0.6% 0.5% 0.3%
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The time saving measure is highly depends on depth combination. For example, Vidyol
has many large CUs in the case of QP=32, and its depth combination tends to be larger in size
because the termination decision works frequently. The time reduction ratio analysis of
Vidyol is listed in Table 21. Moreover, we also find the depth information of BQsquare in
Table 18 with large amount small size CU, so the splitting decision is the major fast decision
operation as shown in Table21.

Table 21 Time reduction ratio analysis of Vidyol and BQsquare

Vidyol (QP32 with encoding 64frames) BQsquare (QP32 with encoding 64frames)
Fast Setting Time (sec) TS Fast Setting Time (sec) TS
None 581.968 0% None 106.910 0%
Overall 293.730 -49.53% Overall 83.742 -21.67%
Only Only
306.052 -47.41% 102.062 -4.53%
Termination Termination
Only Only
570.772 -1.92% 87.600 18.06%
Splitting Splitting

Although Vidyol has more time reduction than that of BQsquare, it does not mean that
the splitting decision is useless relative to the termination decision. It depends on the depth
combination and the CU distribution in a frame. For example, Sequence “BQTerrence”
(QP=22) with dense small size CUs leads to that the splitting decision is the major fast
decision and that the time saving is about 44%. Table 22 lists its depth combination and Table
23 shows its time reduction analysis. Further, we show the real examples of 9" frame of

sequences “BQsquare (QP=32)”, “Vidyol (QP=32)”, and “BQTerrence (QP=22)",
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respectively in Fig. 27, Fig. 28, and Fig 29. We also show the depth convergence processes of
“BQsquare (QP=32)" and “Vidyol (QP=32)" from 12" frame to 17" frame in the pie chart

respectively in Fig. 30 and Fig. 31.

Table 22 Depth percentage of BQTerrence (QP=22)

BQTerrence Framel2 Framel3 Framel4 Framel5 Framel6 Framel?7
Depth 0 2.0% 2.4% 2.6% 2.4% 2.0% 2.2%
Depth 1 12.9% 12.0% 12.7% 10.7% 11.5% 11.6%
Depth 2 13.7% 13.6% 12.1% 15.8% 13.4% 13.5%
Depth 3 71.5% 71.9% 72.6% 71.1% 73.1% 72.7%

Table 23 Time reduction ratio analysis BQTerrence (QP=22)

Fast Setting None Overall Only Splitting Only Termination
Time(Sec) 3536.034 1992.612 2168.625 3367.291
TS 0% -43.65% -38.67% -4.77%
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According to the CU distribution in Fig. 27 and Fig. 29, we find that sequence

“BQTerrence” has densely populated small CU in the center. Therefore, the splitting decision

in sequence “BQTerrence” appears more often than that in sequence “BQsquare”.
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From the above experiments and discussions of several frames in three sequences, the
CU changing trend is dominated by the majority CU sizes. Furthermore, we like to examine
the CU distribution for the entire encoding period, and we also combine the CU area factor

with the amount of the specified CU sizes to represent the depth information. Hence, we
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illustrate two significantly different properties of AvgDepth defined in (13) for sequences

“Vidyol (QP is 37)” and “BQTerrence (QP is 22)” in Fig. 32 and Fig. 33, respectively.
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Fig. 33 Average depth of BQTerrence (QP=22)
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The majority CU depths are 0 and 1 in Fig.32. When the frame is not Nc, which is

encoded without our proposed fast decision, the average depth then increases slightly since

the encoder uses the small size CU for coding detailed residual texture. In Fig. 33, the

majority CU depths are 2 and 3 obviously. The average depth is almost the same no matter the

fast decision turns on or off, so the BD loss is the minimal among high resolution sequences.

However, Fig. 32 and Fig. 33 are extreme examples for explaining the phenomena of

changing trend. In general, most encoding cases in the middle QP region have the uniform

depth distribution. Thus, the termination decision and splitting decision both are needed for

saving time.

In summary, we propose the fast.CU size decision algorithm including splitting decision

and termination decision with 2 additional tools, which are N, control scheme and

2NxN/Nx2N decision. When the video is encoded mostly by small sized CUs, the

encoding procedure can speed up by the splitting decision operation. On the other hand, as the

encoder uses more large sized CUs for processing the video, it will benefit from the

termination decision operation. The simulation results of high resolution sequences in Table

17 show that our fast decision method averagely provides about 43% overall encoding time

reduction, and the BD-rate increases by about 2.24%.
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5.2.2 Comparison with ECU/CFM

In this section, we enable the fast encoding tools, ECU and CFM, to accelerate HM5.0
without our proposed scheme. The simulation results with the original low delay P with low
complexity setting (GOP=4 and 4 reference frames) are listed in Table 24 for eight high

resolution sequences (32 frames per sequence).

Table 24 Simulation results of ECU and CFM with low delay P loco setting

Only ECU Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -8.92% -21.29% | -15.51% -14.37% -13.88% -47.18% | -39.21% | -39.27% | -24.95%
Time-Saving(QP27) -18.53% | -37.40% | -33.56% -28.52% <40.82% -59.46% | -52.29% | -54.33% | -40.61%
Time-Saving(QP32) -31.86% | -50.42% | -43.71% -40.64% -57.87% -66.24% | -60.97% | -63.26% | -51.87%
Time-Saving(QP37) -44.92% | -60.55% | -51.96% -50.39% -68.05% -70.71% | -67.03% | -68.92% | -60.32%

AVG. Time-Saving -26.06% | -42.42% | "-36.19% -33.48% -45.16% -60.90% | -54.88% | -56.45% | -44.44%

Y BD-rate 0.456 0.640 0.765 0.399 1.410 -0.159 0.916 -0.028 0.550

Y BD-PSNR -0.015 -0.019 -0.014 -0.008 -0.022 0.009 -0.022 -0.001 -0.012

Only CFM Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -16.33% | -27.21% | -20.64% -21.82% -18.02% -41.10% | -35.08% | -36.43% | -27.08%
Time-Saving(QP27) -24.90% | -39.38% | -33.76% -31.70% -41.24% -49.82% | -45.72% | -47.16% | -39.21%
Time-Saving(QP32) -34.93% | -47.96% | -41.95% -40.00% -51.63% -53.75% | -51.50% | -52.74% | -46.81%
Time-Saving(QP37) -43.54% | -52.86% | -47.24% -46.39% -56.45% -55.88% | -54.97% | -55.66% | -51.62%

AVG. Time-Saving -29.93% | -41.85% | -35.90% -34.98% -41.84% -50.14% | -46.82% | -48.00% | -41.18%

Y BD-rate 0.449 0.756 1.126 1.044 1.046 0.713 0.964 0.622 0.840

Y BD-PSNR -0.015 -0.023 -0.024 -0.022 -0.021 -0.017 -0.028 -0.018 -0.021
Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyol Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -20.64% | -38.06% | -29.46% -28.39% -24.40% -61.66% | -52.04% | -53.29% | -38.49%
Time-Saving(QP27) -33.31% | -56.06% | -48.52% -43.56% -60.85% -74.48% | -67.75% | -70.85% | -56.92%
Time-Saving(QP32) -48.60% | -68.92% | -59.88% -56.35% -76.65% -81.01% | -76.77% | -78.75% | -68.37%
Time-Saving(QP37) -61.81% | -77.30% | -68.48% -66.44% -84.44% -84.91% | -82.32% | -83.30% | -76.13%
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AVG. Time-Saving -41.09% -60.09% -51.59% -48.69% -61.59% -75.52% -69.72% -71.55% -59.98%
Y BD-rate 0.804 2.667 3.155 1.469 3.026 0.824 2.553 0.558 1.882
Y BD-PSNR -0.026 -0.079 -0.062 -0.027 -0.051 -0.024 -0.073 -0.01 -0.044

We notice that the time saving with low QP is less than that with high QP, and it achieves

about 60% time saving with increasing BD-rate 1.88% when ECU and CFM both turn on.

Another interesting observation is the side-effect of combining 2 fast algorithms together. For

example, the ideal maximum time saving is 75% for perfectly combining two 2x faster

algorithms. That is, the overall time saving is less than the ideal maximum time saving, but

the overall loss of BD-rate is higher thanthe sum of their separate coding loss. Unfortunately,

our proposed method has not been designed for adaptive QP case and multiple referenced

frames yet, so we simulate the ECU and CFM in HMS.0 with our low delay P and low

complexity setting (GOP =1 and 1 referenced frames), and the result is listed in Table 25 with

eight high resolution sequences (64 frames per sequence).

Table 25 Simulation results of ECU and CFM with our low delay P loco setting

Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -6.34% -5.92% -1.90% -4.98% -5.57% -37.84% | -34.89% | -27.63% | -15.63%
Time-Saving(QP27) -15.28% | -23.51% | -22.77% -19.34% -15.22% -55.57% | -49.39% | -43.12% | -30.53%
Time-Saving(QP32) -23.29% | -38.69% | -37.20% -31.84% -33.24% -69.03% | -62.68% | -59.87% | -44.48%
Time-Saving(QP37) -33.49% | -53.56% | -47.81% -43.49% -57.75% -77.06% | -71.64% | -70.62% | -56.93%
AVG. Time-Saving -19.60% | -30.42% | -27.42% -24.91% -27.95% -59.88% | -54.65% | -50.31% | -36.89%
Y BD-rate 0.513 1.230 0.965 0.818 0.659 -0.976 0.893 0.006 0.514
Y BD-PSNR -0.014 -0.038 -0.021 -0.016 -0.019 0.026 -0.028 -0.001 -0.014
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The QP in my setting is smaller than that in the GOP case ( fixed n VS.

nn+3,nt2,nt3,n+l, nt3...... ), and reference frame=1 makes the rough prediction. Therefore,

“cbf=0" and “skip mode is the best mode” cannot happen easily especially when QP=22. So,

the time saving has room to improve. However, the R-D performance of ECU and CFM is

much better than that of our proposed CU-correlation algorithm.

5.2.3 Combined Fast CU Size Decision with ECU/CFM

Due to the experiments in section 5.2.2, the performance of ECU and CFM in our setting

is good for time saving with negligible coding loss. Hence, we should try to combine our

algorithm with them to get more ‘acceleration. The experiment turns on ECU, CFM, and our

proposed algorithm with the same-testing conditions as Table 25, and the result is shown in

Table 26.
Table 26 Simulation result of ECU, CFM, and our proposed algorithm
Both ECU and CFM Kimono Park Cactus Basketball BQTerrace Vidyol Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -45.66% -41.67% -39.92% -40.69% -44.70% -54.95% -54.25% -49.10% -46.37%
Time-Saving(QP27) -50.48% -47.67% -48.59% -48.07% -43.75% -66.03% -63.97% -60.38% -53.62%
Time-Saving(QP32) -52.62% -54.30% -57.05% -53.40% -51.91% -74.88% -71.82% -68.99% -60.62%
Time-Saving(QP37) -52.47% -61.91% -61.21% -58.17% -65.98% -80.45% -76.58% -75.57% -66.54%
AVG. Time-Saving -50.31% -51.39% -51.69% -50.08% -51.59% -69.08% -66.66% -63.51% -56.79%
Y BD-rate 3.495 3.619 3.198 3.833 1.637 3.001 4.164 3.215 3.270
Y BD-PSNR -0.095 -0.111 -0.068 -0.072 -0.046 -0.072 -0.124 -0.072 -0.083
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Fig. 34 R-D curve of Basketball in Table 26

The performance reduction of mixed algorithms also occurs in this case. Although the

time reduction reaches about 57%, the'BD:rate-also increases, too. We observe the R-D curve

of Basketball in Fig. 34 to find a way to solve this problem. When QP becomes larger, the

R-D curves separate far as illustrated in Fig. 34. The coding loss mainly comes from the low

rate regions. Thus, we turn off our algorithm when QP is larger than 29. We take 16 sequences

with 100 frames per sequence to test the adaptively combined algorithm, and the results are

listed in Table 27. As QP is smaller than 30, the encoder adopts ECU, CFM, and our fast

decision method. On the other hand, we only use ECU and CFM to accelerate encoding

procedure to avoid excessive coding loss when QP is larger than 29.
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Table 27 Results of the adaptively combined fast algorithm with ECU and CFM

Test Sequence Kimono Park Cactus Basketball BQTerrace Vidyo1l Vidyo3 Vidyo4 AVG.
Time-Saving(QP22) -45.59% | -42.25% | -40.14% -40.65% -44.52% -58.36% | -54.96% | -48.41% | -46.86%
Time-Saving(QP27) -50.53% -47.33% -48.88% -50.61% -43.30% -68.43% -64.46% -59.14% -54.09%
Time-Saving(QP32) -22.61% -36.59% -35.74% -35.54% -32.02% -71.13% -65.00% -59.22% -44.73%
Time-Saving(QP37) -32.97% -51.83% -45.79% -46.35% -57.63% -78.84% -73.36% -70.50% -57.16%

AVG. Time-Saving -37.93% -44.50% -42.64% -43.29% -44.37% -69.19% -64.45% -59.32% -50.71%
Y BD-rate 1.791 2.197 2.291 2.432 1.332 1.582 2.671 1.861 2.020
Y BD-PSNR -0.056 -0.070 -0.054 -0.055 -0.032 -0.050 -0.088 -0.049 -0.057

Test Sequence BallDrill BQMall Party HorsesC BallPass Bubbles BQSquare Horses AVG.
Time-Saving(QP22) -40.29% | -39.68% | -37.99% -35.70% -35.54% -29.06% -30.32% -29.16% -34.72%
Time-Saving(QP27) -41.76% | -41.06% | -37.03% -35.81% -38.63% -29.94% -31.85% -29.02% -35.64%
Time-Saving(QP32) -28.60% | -26.80% | -11.21% -11.82% -33.03% -18.83% -17.47% -11.37% -19.89%
Time-Saving(QP37) -40.02% | -38.83% | -27.58% :23.17% -42.47% -34.43% -35.71% -20.17% -32.80%

AVG. Time-Saving -37.67% | -36.59% | -28.45% -26.63% -37.42% -28.07% -28.84% -22.43% -30.76%
Y BD-rate (%) 2.589 1.909 0.498 0.947 1.688 1.513 0.431 1.028 1.325
Y BD-PSNR (dB) -0.098 -0.080 -0.023 -0.039 -0.082 -0.061 -0.019 -0.051 -0.057

From Table 27, our proposed algorithm improves the time saving efficiency in the low

QP region because the principle of our fast decision method is not using cbf and the skip

mode to decide the early termination scheme. Moreover, we can combine our algorithm with

ECU and CFM without implementation conflict. In Table 28, we check the coding

performance of our proposed method at QP= 22 for high resolution sequences, and the results

show that the combined method is valuable in improving the time saving for the high bitrate

applications.
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In summary, the combined algorithm not only retains the coding efficiency at the low

bitrate region but it also reduces computing time at the high bitrate region. On the average, it

offers about 51% time reduction with the increment of BD-rate about 2.02% for high

resolution sequences. In addition, it provides 31% time saving but adds the BD-rate 1.33% for

low resolution sequences.

Table 28 R-D performance of our proposed algorithm (QP= 22)

Sequence Kimono Park Cactus Basketball BQTerrace Vidyol Vidyo3 Vidyo4

APSNR -0.109 -0.029 0.004 -0.012 -0.001 -0.120 -0.121 -0.074

ABitRate -3.53% -0.22% 0.49% 0.41% 0.11% -1.57% -1.56% -0.42%
TS -41.95% -39.66% -39.66% -38.74% -43.05% -43.60% -40.60% -37.02%
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Chapter 6 Combined MV and DCT Optimization for
H.264/AVC Codec

Although we introduce the process of encoding control in section 2.1.3, some details are
described in this section. The experimental platform and the research topic are different from
the previous chapters which are based on HEVC. Here, we use H.264/AVC encoder JM 18.0
[14] as the platform and we explore the effect of transform on ME in video coding. The
chapter organization is as follows. Section 6.1 introduces the cost functions for MV searching
in JM18.0 and the related work. Then, we design the algorithm to change the data flow
concerning the problems mentioned in the related work in section 6.2. Finally, section 6.3
represents the experimental results and discussions.

6.1 MYV Refinement with DCT result

A typical H.264 video encoder (such as JM) selects the best motion vector based on the
sum of absolute difference (SAD) and the sum of absolute transformed difference (SATD) in
the different accuracy layers to get the matching prediction block. Then, it uses the transform
coding technique to encode the motion-compensated prediction errors. In baseline profile, a
residual block is transformed by the 4x4 separable integer DCT (IDCT) or the 4x4 hadamard
transform (H matrix) as shown in (14) which is an approximation form of IDCT [22] for low
complexity.
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H_l 1 -1 -1 (14)
IR S |
1 -1 1 -1

In the integer ME, the distortion term in the motion R-D cost function (2) is decided by

SAD as equation (15) where x and y are the pixel locations, and Dblock is the difference block

between the referenced candidate block and the original block. In the sub ME (searching the

MYV in the half and the quarter accuracy), the distortion term is calculated with SATD in (16)

to get less transmitted frequency information for better compression efficiency.

SAD =" | Dblock(x, y)| (15)
SATD:Z%|H*Dblock*H| (16)

X,y

Although SATD needs little more operations than SAD, the number of searching points

in the sub ME is only nine points in each level, so the additional encoding complexity from

hadamard transform is tolerable.

In [23], the effect of SATD on ME in different layers is discussed and tested. The encoder

adopts SATD for searching integer MV directly, and averagely gets the 1.85% bitrate saving

with increasing 781% encoding time as the sub-pixel motion search is unable. However, the

same method brings little coding loss about 0.39% BD-rate [16] when sub MV is enabled. The

reason is that SATD aims to match frequencies instead of residual pixels, so the interpolated
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filter for the sub-pixel accuracy would bring the negative effect. The research in [23] is
interesting, but there are two problems should be noted. First, the number of searching points
with SATD is (2xsearch range+1)2WhiCh brings too much complexity. Secondly, the experiment
shows that SAD seems a better way to find MV in integer level. Therefore, we proposed our

algorithm with concerning about the above problems in the next section.

6.2 Modified MV Selection Scheme

In this section, we describe the principle behind the proposed combined ME and DCT
algorithm and its implementation step by step. In the traditional H.264/AVC encoder, the ME
procedure chooses the integer vector that minimizes (2) with SAD consideration. However, (2)
does not truly reflect the final distortion and the bit rate of encoded the coded block.
Therefore, we include (1) into the ME procedure further in selecting MVs to improve coding
performance. That is, we combine (1) and (2) in the integer ME procedure further.

The motivation is as follows. Although a selected MV is not the best candidate in the
MYV decision in the integral level, its residual DCT may have fewer large coefficients and thus
produces fewer bits in the entropy coding in the final stage. Figs. 35-37 show the image
examples. Fig. 35 shows the ten times magnified difference between the JM-encoded frame
and our encoded frame using the proposed method, and QP is 22. In Figs. 36-37, we compare
the residual MBs produced by two MVs on the second frame of the FOREMAN sequence.
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The comparison is done in both the spatial domain and the frequency domain. Our proposed
algorithm chooses a different quarter MV in the final stage (called Motion RDcost#2 means
the 2nd best MV in the integer ME step). The resultant residual block has a more clustered
frequency domain distribution; that is, the large magnitude coefficients are few and are close

to each other as shown in Fig. 37 (Right). Therefore, these coefficients are easier to compress.

Frame |0002 Ready A

Fig. 35 Difference betwééh’_fb’e_J M-encd&é&\and our proposed method
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Fig. 36 Spatial domain: The residual MBs of Inter-16x16 mode on the second frame.

The MB location (upper-left corner) is (80,160). Gray values are adjusted to show a range
from 15 to -20 (the maximum and minimum pixel values). (Left) The residual block produced
by the MV with Motion RDcost#1. (Right) The residual block produced by the MV with
Motion RDcost#2.
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Fig. 37 Frequency domain: The transformed and quantized residual MBs of Fig.4.
Coefficients are produced by 4x4 integral DCT with QP 22. Gray values are adjusted to show
a range from 20 to -35. (Left) A residual transform block produced by the MV with Motion
RDcost#1. (Right) A residual transform block produced by the MV with Motion RDcost#2.

The flowchart of the combineq‘Miﬁ and DCTalgorlthm is to decide the best integer MV
illustrated by Fig. 38. In the integrél layér of MEprocedure, our proposed method chooses the
top five candidate MVs in the mtegralaccuracy based on SAD, and then finds their
corresponding half and quarter MVs us;n.:gltl.lada.ma;r(i .SAD. At the end, we use the modified
function from the mode decision function to calculate the distortion based on hadamard again
and estimate the bit rate. Therefore we choose the best integer MV with additional complexity
from SATD about 5 x [2 x (sub search points) +1] times for each integer MV searching. After
our proposed scheme, we get the best integer vector of each partitioned block, and then take it

to the following steps as the original JM, such as the sub-pixel ME and the mode decision.
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Fig. 38 Flowchart of the combined ME and DCT algorithm

6.3 AVC/H.264 Experimental Results and Discussions

To examine the effectiveness of our proposed motion estimation and DCT combined
algorithm, we implement it on the software JM 18.0 [14], which is the reference software of
the H.264/AVC encoder. We compare its performance with that of the original JM encoder. In
the experiments, we use nine CIF sequences and four 4CIF sequences as already stated in
Table 3 with a frame rate of 30 frame/sec: FOREMAN, BUS, FOOTBALL, MOBILE, NEWS,
PARIS MOTHER DAUGHTER, SILENT, ICE, CITY, SOCCER, HARBOUR, CREW [14].

In all experiments in this section, the number of encoded frames is 32 and I-frame period
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is 16. We run four different QP values: 22, 27, 32, and 37. The search range is £32, and the

number of sub search points is nine. The previous frame is the reference frame. The

Configuration is the baseline profile in JM18.0 with IPPP structure and CAVLC coding. It

should be mentioned that the comparing JM setting of RDO is high complexity, and the MV

search method is “fast full search”. For integer MV, motion cost in (2) is only decided by

SAD and MV information. Then for half and quarter MV searching, the hadamard

consideration is added to calculate the cost in (2) in JM18.0. The distortion of mode decision

function is also calculated with SATD.

Table 29 shows the PSNR “and rate comparison at different QP for the FOREMAN

sequence, and Fig. 39 shows their RD. curve with different QPs. We find that the curve has a

larger gain in the high rate region because the 8x8 modes are used more often. In this case,

because more MVs may be altered and because different MVs may result in different

quantized residuals when QP is small, our coding gain becomes more obvious. This

phenomenon happens also in the other sequences. Table 30 shows statistics of the chosen

coding modes at different QP values. In general, a smaller QP produces fewer zero blocks,

which leads to fewer skip modes. Therefore, our method would get benefits from a better MV

choice.
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Table 29 R-D Comparison for FOREMAN in P slices

IM18 Proposed Method
BD-rate
FOREMAN | Y PSNR Bitrate Y_PSNR Bitrate
Y

(dB) (kbps) (dB) (kbps)

QP=22 41.078 1121.89 41.115 1091.63
QP=27 37.648 42331 37.679 409.61

-3.4

QP=32 34.651 183.02 34.668 179.77

QP=37 31.911 97.47 31.924 94.57

Table 30 Modes and Motion Info Bits/Frame

FOREMAN IM18 Proposed Method
QP=22 Modes MV _bits Modes MV _bits
16x16 2498 488.33 2205 426.93
16x8 1410 593.27 1320 557.47
8x16 1431 605.67 1423 569.27
8x8s 3449 4591.40 3965 5306.07
QP=27 Modes MV _bits Modes MV _bits
16x16 2999 678.47 2958 662.47
16x8 1423 649.93 1391 631.27
8x16 1440 617.60 1488 643.67
8x8s 1760 2116.00 1880 2314.33
QP=32 Modes MV _bits Modes MV _bits
16x16 3249 802.93 3307 794.40
16x8 1087 511.47 1104 498.40
8x16 1109 480.40 1157 493.60
8x8s 636 721.07 625 723.73
QP=37 Modes MV _bits Modes MV _bits
16x16 2872 769.80 2901 748.27
16x8 721 309.40 713 303.60
8x16 635 252.93 637 260.33
8x8s 211 220.53 205 209.93
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Fig. 39 R-D curve of Foreman for P slice

Table 31 shows the luma BD-rate [16] gain for all sequences. There are two sequences,
MOTHER DAUGHTER and SILENT, which have smaller gains at about 1% because these
two videos have very little motion and thus-the-encoder frequently chooses the skip modes.
Our MV selection scheme is applied only to the motion-compensated blocks, whose number
1s now small. Another factor affects the performance is image contents (patterns). In some
sequences, such as CITY and MOBILE, our method provides more gain because they contain
a number of fine edges, and thus our method has more chances to manipulate the residual
distribution patterns. In summary, two factors seem to have major impact on our algorithm
performance. One is the percentage of motion-compensated modes in P-slices, and the other

one is the texture pattern of the residual blocks.
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Table 31 BD Rate Improvement in P Slices of all Sequences

Encoding Encoding
Sequence Y BD-rate Sequence Y BD-rate
Time Time
MOTHER _
FOREMAN -3.4 +43.2% -1.3 +41.2%
DAUGHTER
BUS -2.6 +46.6% SILENT -1.1 +43.2%
FOOTBALL -1.9 +49.6% HARBOUR 2.2 +47.0%
MOBILE -2.4 +48.9% CITY 2.9 +45.9%
NEWS -2.7 +43.0% SOCCER -1.8 +46.1%
ICE -4.2 +39.8% CREW -1.7 +45.2%
PARIS -1.6 +45.3% Average -2.3 +45.0%

We collect the final MV choices in our method in Table 32. It shows that the best motion

R-D cost vector is chosen with higher probability when QP is large. In this case, because the

number of transform coefficients is small; it thus makes little difference on the residual blocks

produced by different MVs. On the average, the probability of choosing the fifth candidate

MV is less than 5%. Thus, retaining more than five candidate MVs does not seem to offer

much improvement. Finally, we may like to know how many “different” MVs in the integral

level are chosen at the end using this approach (versus JM 18.0). We examine both the

numbers of sub-blocks and their area. Table 33 shows the sub-block numbers and the area

ratio of the changed M Vs that are chosen by our algorithm.
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Table 32 Final MV Choice from Candidate MVs (Percentages)

FOREMAN QP=22 QP=27 QP=32 QP=37
Motion RDcost1 53.4% 56.7% 61.4% 67.3%
Motion RDcost2 21.8% 21.3% 19.9% 17.4%
Motion RDcost3 11.8% 10.5% 9.1% 7.5%
Motion RDcost4 7.6% 6.7% 5.7% 4.5%
Motion RDcost5 5.5% 4.7% 3.9% 3.3%

SILENT QP=22 QP=27 QP=32 QP=37
Motion RDcostl 83.4% 84.0% 85.8% 89.1%
Motion RDcost2 7.8% 7.8% 7.0% 5.6%
Motion RDcost3 4.2% 4.0% 3.4% 2.5%
Motion RDcost4 2.7% 2.5% 2.2% 1.6%
Motion RDcost5 2.0% 1.7% 1.5% 1.2%

Table 33 Partitioned Sub-Blocks-and the Area Ratio Using the Changed MVs

Changed MV Partitioned Changed Area
FOREMAN
Blocks Blocks Ratio
QP=22 16223 36196 35.38%
QP=27 9739 23969 31.60%
QP=32 5780 17047 26.52%
QP=37 3559 14158 20.05%
Changed MV Partitioned Changed Area
SILENT
Blocks Blocks Ratio
QP=22 4534 21115 9.27%
QP=27 3016 16681 8.93%
QP=32 1932 14066 7.92%
QP=37 1214 12743 6.62%

In summary, we propose a possible way to enhance R-D performance that further
combines motion estimation and DCT for the H.264/AVC encoders. The algorithm considers

the transform coding effect on choosing the best motion vectors from the integer to the quarter
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accuracy. Based on the multiple sequences tests, we demonstrate that the proposed algorithm

can achieve 2.3% bitrate saving averagely without changing the syntax of the standard

AVC/H.264.

There is a trade-off between coding efficiency and time complexity. Although we reduce

much SATD operations comparing to [23], the encoding time is still increased by about 45%.

To overcome the high complexity of our method, two properties can be introduced:

(a) There are still some redundant calculations in our program. For example, we should

directly use the best sub MV instead of the best mteger MV in Fig. 38 to the following

encoding steps to save the operations from SATD. In addition, Some of 5 candidate MVs

from the integral layer would have the same sub MV with repeated calculations.

(b) A parallel design should be feasible in hardware implementation because a

data-independent loop exists in Fig. 38. Also, computing the cost in our proposed method for

all candidate MVs can be executed in parallel.

Utilizing well the above properties, the encoding complexity of our proposed algorithm

can decrease further. Acceleration of our scheme in software or hardware level is one of our

future work items.
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Chapter 7 Conclusions and Future Work

7.1  Conclusions

In this thesis, we design two algorithms for different goals. Thus, we conclude them in
two parts.

In first part from Chapter 3 to Chapter 5, we study the computational complexity of
building CU quadtree. Our fast CU size decision algorithm, which is based on the size
information of the neighboring CUs and the co-located CU, speeds up the encoding procedure
at about 1.75 times faster in average comparing to the original encoding process. Then, we
also combine the existing ECU and CFM schemes together with our proposed algorithm in an
efficient way. In the low QP cases, our algorithm provides more time reduction over ECU and
CFM with acceptable coding loss. Totally, the combined fast algorithm offers averagely 51%
time reduction, and the BD-rate increases at about 2.02% for high resolution videos. Our
algorithm is also particularly useful in the low motion videos such as vidyol, vidyo3, and
vidyo4. This type of videos often occur in the mobile video communication, and the
combined algorithm achieves up to about 69% time reduction with tolerable BD-PSNR drop
about 0.05dB for the test sequences.

Chapter 6 is the second part: We study the effect of transform on motion vector selection.
We propose the modified AVC/H.264 motion vector search process. First, we keep five
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integer MV candidates by their SAD values, and then process the sub-pixel MV searching by

using SATD. At the end, we use the modified AVC mode decision function to estimate the

R-D cost to decide the best MV from five candidates. In comparing to the previous approach,

our method not only reduces the time-consuming SATD calculations but also avoids the poor

performance of using SATD directly in integer MV selection. In general, our proposed

optimization scheme achieves 2.3% bit rate saving with an additional 45% encoding time,

averagely. The method can achieve up to 4.2% BD-rate improvement in our test sequences,

and the algorithm performs well especially for the sequences with strong residual texture.

7.2  Future Work

In proposing fast algorithms for HEVC, we design our algorithm under the configuration

of low complexity and low delay P, but we change the encoding parameter setting in the GOP

size and the number of reference frames. For real applications, we should consider the

incremented QP to adjust the decision rule and the thresholds, adaptively. On the other hand,

considering the MV offset and the multiple reference frames in the search of co-located CU

will decrease the coding loss for our proposed fast algorithm. Last but not the least, we can

include other indicators in reducing candidates. For example, cbf is an important indicator

telling us whether the nearby CU partitions are reliable or not, especially for the termination

decision in large size CU. Reducing the coding loss in the low bitrate case is a research
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challenge.

Another topic is the R-D performance improvement for H.264/AVC. Its bottleneck is the

high complexity. Therefore, we suggest some methods for speeding up the modified encoding

procedure at the end of section 6.3. If we want to extend this combined ME and transform

idea to HEVC, the scheme will be very complicated because HEVC has transform of different

sizes. Also, because the current HEVC has very flexible ME modes and transform modes, the

combined scheme may not provide much additional advantage.
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