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以去背相連性為基礎之立體匹配研究 
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           指導教授：簡鳳村 教授 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

基於一些技術方面的需求，立體匹配已成為一個討論很久的議題而且現今也

有許多既有的演算法，這些演算法大致上可以分成兩種種類：局部演算法和整體

演算法，而每一類的演算法都有他們獨特的優缺點。其中，整體演算法不但能實

現整體演算法的結果，整體演算法也可以採用一些實現局部演算法的方法。所以

在我們的論文中採用了整體演算法的架構去建立一個系統來解立體匹配的問題，

而這個系統同時能達到局部演算法跟整體演算法的優點。另一方面，我們也從影

像去背的影像處理議題中引進了一個叫做去背相連性的函數到我們的整體演算

法中，使我們希望能夠透過使用這個函數，只需要用到整體演算中常用到的兩個

計算費用函數的項：資料項和平滑項，就可以達到跟一些現有的論文中外加了許

多費用函數項一樣的結果。 
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Abstract 

Stereo matching has been a long discussed issue for some technological needs, 

like 3D scene reconstruction. A large number of algorithms for stereo matching have 

been developed. Most of the algorithms can be categorized into two types: local and 

global algorithms. Each category has its own pros and cons. However, global 

algorithms can not only do the work of global algorithms but also can adopt some 

methods used in local algorithms, like cost aggregation. Therefore in this thesis, we 

construct a system based on a global-type algorithm to leverage between the 

advantages of both local and global algorithms. In addition, we introduce the matting 

affinity function which comes from image matting processing into the global 

algorithms of stereo matching in order to achieve a better result by using only 

traditional term costs: the data term cost and the smoothness term cost. 
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Chapter 1. Introduction 

For technological needs, like 3D scene reconstruction, it has been a long 

discussed issue about how to find the depth information of a 3D scene by image or 

video. Stereo matching, which imitates the human vision to get the depth 

information, is one of the discussed solutions. 

How does stereo matching do to get the depth information? From the earliest 

inquiries into visual perception, it was known that we perceive depth based on the 

differences in appearance between the left and right eye. It means that one specific 

point in the vision of left eye appears in the vision of right eye with a different 

coordinate as shown in Figure 1-1. The amount of this difference, so-called “disparity” 

in stereo matching, is inversely proportional to the distance from the observer. By 

computing these disparities, we’ll get the depth information of the 3D scene.  

  

Figure 1-1 An illustrative example of the disparity. 
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Before we compute the disparity, we need to find the matching pixel in the right 

image for each pixel in the left image. To speed up the matching process and increase 

its reliability, we only need to find the matching point in a certain range instead of 

the whole image. The certain range is so-called the epipolar line. Figure 1-2 shows 

how a pixel XL in one image projects to an epipolar line segment in the other image. 

The epipolar line can be computed by intrinsic camera parameters which are already 

known. However, to simplify the matching process, the images are made to be 

rectified images. It means that the corresponding epipolar lines are just horizontal 

scan lines as shown in Figure 1-3. That is, the right image is just the left image with a 

horizontal shift. 

 

Figure 1-2 Epipolar line: a pixel in an image may be a line segment in another image. 

To sum up, stereo matching is the process of taking two images and estimating 

the depth of the scene by finding matching pixels in the two images. The inputs are 

two images and the output is the “disparity map” as shown in Figure 1-4. 



 

3 

 

 
Figure 1-3 Images are made to be rectified image to simplify matching process in stereo matching. 

Many algorithms have been developed in the literature for stereo matching. All 

the algorithms can be categorized into two categories: local and global algorithms. 

Each category has its own pros and cons. The main contribution of this research is 

that we propose a global algorithm that not only preserve the advantages of both 

local and global algorithms, but also incorporate the idea of “matting affinity 

function” into global algorithms that leads to performance improvement in the 

stereo matching result.  

The rest of the thesis is summarized as follows. In Chapter 2, we will summarize 

the backgrounds of the local and global algorithms. Also, the matting affinity function 

will be explained in details in this chapter. In Chapter 3, we will present our proposed 

method and system. Experimental results will be shown in Chapter 4. Finally, we will 

give our conclusion in Chapter 5. 
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Figure 1-4 Inputs and output of stereo matching. 
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Chapter 2. Backgrounds 

Stereo matching is an issue which has been discussed for a long time. Many 

algorithms have been developed to solving stereo matching. There has been a 

website [1] for discussing the issues of stereo matching. Lots of problems, such as the 

edge-preserved issue and edge-fatten problem, have been solved in [3]. However, 

there are still challenges for stereo matching. “Matching for textureless pixels” and 

“refining disparity of occluded pixels” are two main challenges for stereo matching. 

The former shows the problem that it’s hard to find the matching pixels in the 

corresponding image for the pixels with no specific textures, because of the presence 

of multiple matching candidates as shown in Figure 2-1. On the other hand, the latter 

shows the problem that the occluded pixels are difficult to find their matching pixels 

in the corresponding image because the actual matching pixels can’t be seen in the 

corresponding image as shown in Figure 2-2. 

 

Figure 2-1 Pixels with no specific textures are hard to find their matching pixels. 
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Figure 2-2 Pixels are occluded by the foreground object. 

All the algorithms developed to solve stereo matching problem can be 

categorized into two categories: local and global algorithms. Local algorithms 

compute the disparity pixel by pixel and focus on designing an adaptive window and 

refining the pixels with wrong disparities. On the other hand, global algorithms 

decide the disparity altogether after gathering all the information of the whole image 

and focus on defining a global cost function and solving global optimization problem. 

More details will be introduced in the following sections. 

2.1 Similarity Measures 

Before introducing algorithms, we first introduce the similarity measures. In the 

matching process, we have to check the similarity of colors, intensities, gradients…etc. 

between pixels. To check the similarity, we usually define a function called difference 

function. If the value of the difference function is low, the similarity between pixels is 

high, indicating that the pixel may be the matching pixel we want to find. The 

traditional matching process is shown in Figure 2-3. Traditional matching process 
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computes the difference values of all the possible disparities and saves them in a 

vector. We find the disparity with the minimum difference from the vector and assign 

it into the pixel. 

 

Figure 2-3 Matching process takes care of all the possible disparities and then assigns the one with the 

minimum difference. 

There are many kinds of difference functions, such as sums of squared 

differences (SSD) in Figure 2-3, and sums of absolute differences (SAD). However, we 

find that the information of only one pixel is not enough for matching process. 

Therefore, we gather the information of all the pixels inside a support region or 

window that is centered on the pixel where we want to assign the disparity as shown 

in Figure 2-4. This is the so-called window-based method. 

 
Figure 2-4 Window-based method. 
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2.2 Local Algorithms 

Local algorithms are based on the window-based method. As mentioned 

previously, local algorithms compute the disparity pixel by pixel, and the detail for its 

matching process is just as the traditional one. R. Szeliski [2] summarized four main 

steps for the local algorithm: matching cost computation, cost aggregation, disparity 

computation, and disparity refinement. The goal of matching cost computation step 

is to find the similarity measures, and the disparity computation step is assigning the 

disparity with the minimum difference value, which is also called winner-take-all 

(WTA) optimization. Actually, the main discussed steps for those developed local 

algorithms are cost aggregation step and disparity refinement step. 

 

Figure 2-5 Problem for traditional window-based method occurs at the edge. 

The cost aggregation step is to gather the information, or to sum the difference 

values, of all the pixels inside the support window. However, there is a big problem 

that might possibly occur in the window-based method, as illustrated in Figure 2-5. If 

we use the traditional window-based method, we will obtain a wrong disparity at the 
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pixel outside the edge of a foreground object. This problem is called the edge-fatten 

problem. This problem occurs because we take the information of pixels which are 

not located on the same object as the pixel that we are supposed to assign disparity 

to. 

To tackle this problem, an adaptive window method was developed in [3]. The 

adaptive window method says that we only have to take the information of the pixels 

which are located on the same object as the pixel that we are supposed to assign 

disparity to. The way to achieve this method is to add a term called the weight 

function as shown in Figure 2-6. It means that if this pixel is similar to the centered 

pixel, then we’ll take it into consideration; while if this pixel is different from the 

centered pixel, we won’t take its information. The following local algorithms are 

based on the adaptive window method and find new way to improve it. For example, 

Zhang et al. [5] designed a non-squared region for the adaptive window. This is called 

the cross-based aggregation method. 

 
Figure 2-6 Adaptive window method. 
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Another commonly discussed step is the disparity refinement step. This step 

aims to find the pixels with wrong disparities and refine them. Bleyer et al. [6] 

defined a criterion by checking the two disparity values of the two matched pixels in 

the left and right images. A pixel in the left image can find its corresponding pixel in 

the right image by its disparity. The corresponding pixels should have the same 

disparity. This criterion is called left/right consistency checking as shown in Figure2-7. 

By the left/right consistency checking, we can actually find the positions of the pixels 

with wrong disparity, and then refine them by propagating the correct disparity 

values of the neighboring pixels. 

 

Figure 2-7 Criterion: left/right consistency checking. 

 

The challenges for stereo matching are taken into consideration in the above 

two steps to achieve different solutions in different research works. The advantages 

of local algorithms are low computational time and having detailed disparity. 
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2.3 Global Algorithms 

Global algorithms show another way to solve stereo matching problem. Instead 

of deciding disparity pixel by pixel, global algorithms say that the pixels located on 

the same object should have the same or close disparity value. Therefore, they 

should have to decide their disparity at the same time. In addition to computing the 

different values of all possible disparity of all the pixels as is done by the local 

algorithms, global algorithms also compute the similarity between the pixel and the 

neighboring pixels to achieve the statement above. This similarity is called the 

connection weight in global algorithms as shown in Figure 2-8. If the similarity 

between pixels is high, they should have the same or close disparity. If they don’t, to 

achieve the statement above, we’ll give them a penalty, called the label cost, in order 

to prevent the situation that similar pixels result in noticeable different values of 

disparity. 

 

 

Figure 2-8 Connection weight between pixels. 



 

12 

To sum up, global algorithms first compute the difference values which are 

called the data term costs Ci in global algorithm. The sum of the penalties for similar 

pixels with different values of disparity is called the smoothness term costs (2.1). 

Finally, we can write the total global cost function as (2.3) and try to find the solution 

for disparity that minimizes the total cost. This is the so-called global optimization 

problem. The main steps of the global algorithms are to define a new global cost 

function and to find a proper global optimiztion algorithm to solve it. 

        Smoothness term:   ∑ W  ∗ P        (2.1) 

W  : the connection weight between pixel i and j: 

P  : penalty for similar pixels I and j with different values of disparity 

     P  = constant or (d −d )
2
      (2.2) 

d : the disparity value of pixel i 

d : the disparity value of pixel j 

 Total cost function: E(disparity)=∑ (C + ∑ W  ∗ P   )    (2.3) 

Data term cost: C  

In addition to the data term and smoothness term costs, some theses add other 

term costs into the global cost function in order to solve some problems. For 

example, Z. Wang [9] added the occlusion term cost to solve the occlusion problem, 

and M. Bleyer [10] added the soft segmentation term, curvature term, and minimum 
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description length (MDL) term costs. 

Many global optimization algorithms have been proposed to solve the global 

stereo matching problem, such as the graph cut and belief propagation. Although 

these algorithms can only get the local minimum solution, they still perform very well 

on solving the global stereo matching problem. The advatages of global algorithms 

include having only one stage to get the solution and having smooth results of 

disparity. However, the computational time of global algorithms is much higher than 

that of the local algorithms. 

2.4 Matting Affinity Function 

Matting affinity function comes from another issue of image processing called 

image matting. Image matting is an image processing technique that attempts to 

extract a foreground object from an image along with an opacity estimate for each 

pixel covered by the object, as shown in Figure 2-9. The problems of Image matting 

can be divided into two categories: supervised matting and unsupervised matting. 

 

Figure 2-9 Input and output of image matting. 
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The affinity function is first used in supervised matting. The input of supervised 

matting is not only the input image but also the map with some known results, as 

shown in Figure 2-10. This map, called the trimap, has the results of some pixels. For 

example in Figure 2-10, the black part of the trimap is already known as background, 

and the white part of the trimap is known as the foreground object. Supervised 

matting tries to find an algorithm to train the result of the gray part of the trimap. 

 

 

Figure 2-10 Inputs and output of supervised matting. 

Traditional affinity function: W  = e |     |
 

  ⁄
        (2.4) 

Matting affinity function:  

  W  = ∑
1

|ωk|
(1 + (I − μk)(Σk +

ϵ

|ωk|
I3)

 1(I − μk))

k|  , ∈ωk

 

 (2.5) 

I , I : image data (colors and intensity)of pixel i,j 

ωk: support window 

μk: mean value of the image data of pixels inside the support window 

Σk: variance of the image data of pixels inside the support window 

I3: identity matrix, ϵ: constant coefficient 
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This means that supervised matting has to infer the result of the gray part of the 

trimap by the information of input image and known results. To achieve this goal, we 

first have to obtain the relationship between pixels, and then refine the pixels of the 

gray part by the results of the known pixels with close relationship. The function for 

computing the relationship is the so-called affinity function. Equation (2.4) shows the 

traditional affinity function which is the same as the connection weight function of 

the global algorithms for stereo matching. Levin et al. [7] achieved a better result in 

image matting processing by using a new method and redefining the affinity function, 

called the matting affinity function as shown in (2.5). 

The matting affinity function can achieve a better result for computing 

relationship between two pixels because the function considers the information of all 

the nearby pixels inside a fixed window as shown in Figure 2-11 instead of 

considering only the information of the two pixels. In the equation (2.5), |ωk| is the 

size of the support window. Ii and Ij are the color information (red, green, blue) of the 

two pixels. μk is the average color values of the pixels inside the support window and 

Σk is the covariance matrix for the pixels inside the support window. I3 is an identity 

matrix and 𝛜 is a constant coefficient. 

For the reasons that the affinity function in image matting is defined the same 

as the connection weight function in stereo matching and that matting affinity 
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function achieved better results in image matting, we attempt to employ the matting 

affinity function into the proposed global algorithm for stereo matching in order to 

improve the results of stereo matching. 

 

Figure 2-11 Matting affinity function takes the information of all the pixels inside a window into 

consideration. 
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Chapter 3. Proposed Method 

In the previous chapter, we have mentioned the two main challenges for stereo 

matching and have introduced the underlying operations for both local and global 

algorithms. Each algorithm has its advantages. Local algorithms are good at 

preserving the values of disparity over small regions in the image, as shown in Figure 

3-1 because the disparity value is assigned pixel by pixel. On the other hand, global 

algorithms may sometimes mistakenly merge small region into a neighboring bigger 

region whose disparity value is actually different from the disparity value of the small 

region. In this case, the small region will be assigned an incorrect disparity value. 

However, global algorithms are good at generating a smoother disparity map as 

shown in Figure 3-2 because of the inclusion of a smoothness term in the cost 

function. In comparison, local algorithms usually generate rugged disparity map. If 

we can take the advantages of both local and global algorithms, a more accurate 

estimation of the disparity map can be expected. 

 
Figure 3-1 Local algorithms are good at preserving the values of disparity over small regions in the 

image. 
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Figure 3-2 Global algorithms are good at generating a smoother disparity map. 

 

How can we take the advantages of both local and global algorithms? Actually, 

given a global algorithm, if we remove the prior term from the cost function and 

consider the data term over each local region, this global algorithm will be reduced 

to a local algorithm. This means that we can partially incorporate methods used in 

the local algorithms into the global algorithms. This is the main reason why we 

choose global algorithms in our thesis. In the following sections, we will introduce 

our proposed global algorithm, the method that we solve global optimization 

problem, and the structure of our system. 

3.1 Proposed Global Algorithm for Stereo Matching 

In this section, we will discuss the proposed global cost function. In the next 

section, we will discuss the method used to solve the global optimization problem. 

Recent global algorithms usually introduce extra terms in the global cost function in 

order to improve the result of the estimated disparity map. In our method, we only 

use the data term and smoothness term, but with new definitions. 
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E    (d    ) = 

∑ ∑ W   ∈ [(I    ( ) − I     ( − d    ))
 

] (1 − φ    ( )) + α ∗ φ    ( )     ∈ 

    
     

    (3.1) 

            Weight function: W  = e |     |
 

  ⁄
        (3.2) 

 

   Pixel with inconsistent disparity (PID): 

φ    = {

1   f  d     ( − d    ( ))

≠ d    ( )

  0  otherw se                       

         (3.3) 

 

The proposed data term, the first component in (3.1), computes the sum of 

squared differences (SSD) over an adaptive window, as mentioned in Chap. 2. The 

reason for using the adaptive window based cost aggregation is to adopt the 

advantage of the local algorithm in the proposed algorithm. In (3.1), Wij is the weight 

function for computing the similarity between pixels. The size N of the adaptive 

window is defined as an adjustable parameter, since we would like to pay attention 

to refining the pixels with wrong disparity in some blocks of our proposed system. In 

this case, we need more information to do so. The detail will be introduced in section 

3.3. And then, we try to consider the effect of the occlusion problem into the data 

term cost. The concept is that the pixels occluded by the foreground object are not 

supposed to find its matching pixels by data term cost and their disparity values 

should be refined by the neighboring pixels with correct disparity. Therefore, if the 
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pixel is occluded or checked to have wrong disparity, we should block the decision of 

the data term, and refine the real value of disparity by the smoothness term. This 

work is done by the proposed “Pixel with inconsistent disparity (PID)” which uses the 

criterion based on left/right consistency checking in [6]. The disparity value of a pixel 

in the left image should be the same as the disparity value of its matching pixel in the 

right image. If a pixel is checked to be with inconsistent disparity, the PID of this pixel 

is set to 1 as shown in (3.3) and Figure 3-3, and then the data term cost will be set to 

be a constant value α. 

The proposed smoothness term replaces the traditional connection weight 

function by the matting affinity function as shown in (3.4). As mentioned previously, 

we have to give a penalty for similar pixels with different values of disparity. The 

penalty is defined as the squared difference of the values of disparity as shown in 

(3.5). 

 

 
Figure 3-3 Maps of “pixel with inconsistent disparity (PID)”. Inconsistent parts are indicated in white. 
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Connection weight function = matting affinity function:  

  W  = ∑
1

|ωk|
(1 + (I − μk)(Σk +

ϵ

|ωk|
I3)

 1(I − μk))

k|  , ∈ωk

 

 (3.4) 

Penalty  = (d − d )
 
                      (3.5) 

E      (d ) = ∑ W ( ,  ) ∗ (d − d )
 

                (3.6) 

 

Therefore, our proposed total global cost function is summarized as follows. β is 

an adjustable scalar for the smoothness term. 

E     (d    ) = 

∑ ∑e−|I −I |
2

 2⁄

 

[(I    ( ) − I     ( − d    ))
 

] (1 − φ    ( )) + α ∗ φ    ( )    
 ∈ 
    

     

 

+β ∗ ∑ W  ∗ (d − d )
 

                       (3.7) 

 

3.2 Proposed Method for Solving Global Optimization 

As mentioned previously, there are already many available algorithms for 

solving global optimization problem. However, these algorithms may not be able to 

find the global optimum solution unless the global cost function can be defined as a 

closed-form formulation. This is the reason why we use the squared form to define 
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our cost function. 

Nevertheless, although the closed-form formulation of our proposed global cost 

function has been derived, we still have difficulty accomplishing it. Hence, we choose 

another method to get the same solution as a closed-form solution. First, we adopt 

an available algorithm: GCoptimization, which is a software work for energy 

minimization with graph cuts [12]. This algorithm provides codes for solving 

multi-labeling problem with graph cuts algorithm. In the first module of our system 

which will be introduced in Section 3.3, we only this software to get the initial values 

of the disparity map.  

In other system modules, before computing the disparity map by the 

GCoptimization software, we have another stage for refining the disparity map. This 

stage is to prevent from getting a local optimum solution. In this stage, a 

maximum-a-posterior (MAP) estimation problem based on [8] is solved. The concept 

of this stage is that if we know the confidence of the input result, we can refine these 

pixels with inconsistent disparity based on the disparity information of the pixels 

with higher confidence. The estimation problem is expressed in Equation (3.8). Here, 

we have the input y and its confidence map Λ. The confidence map is obtained also 

by the left/right consistency check. That is, if the PID of a pixel is set to be 1, then the 

confidence value of the pixel is set to be 0, as shown in Figure 3-4. L is called the 



 

23 

matting laplacian matrix and can be seen as another expression of the 

aforementioned matting affinity function. The last term of Equation (3.8) does the 

same work as the smoothness term in the global optimization problem.  

We have to estimate the final result d by minimizing the cost function in (3.8). 

Because this cost function is defined as a closed-form formulation, the global 

minimum of (3.8) can be obtained by solving the linear equation in (3.9). 

Estimation problem: 

 E(d) = (d − y) Λ(d − y) + d Ld              (3.8) 

d Ld =
1

 
∑ w  (d − d )

 
 ,               

w  :matting affinity function                     

   (L + Λ)d = Λy                          (3.9) 

 
Figure 3-4 Confidence map: white for high confidence and black for low confidence. 

3.3 Proposed System  

In our proposed system, there are three main system blocks as shown in Figure 

3-5. In each block, there are three common processes: defining the total cost 

function, solving it by our proposed method, and checking left/right consistency. 

Each block is designed for different purposes and the details will be introduced later. 
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Figure 3-5 Proposed system block diagram. 

Before introducing the details of each block, we summarize all the adjustable 

parameters first. The adaptive square window size N is to adjust the influence of cost 

aggregation in each block. The scalar β for the smoothness term is to adjust the 

influence of the smoothness term. The parameter T denotes the number of 

iterations in the system block. 

In the first system block shown in Figure 3-5, we try to save the detailed result 

computed by the cost aggregation only. The reason we do not consider the 

smoothness term is to avoid merging small regions into their neighboring regions at 

this stage. For the example shown in Figure 3-6, the foreground chopsticks whose 

disparity value is actually different from that of the background may get merged into 

the background region if smoothness constraint is included at this stage. Another 

example is shown in Figure 3-7 in which the white background region which is 
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basically textureless will also get merged into the nearby chimney region if the 

smoothness constraint is considered. 

 

Figure 3-6 Small regions may get merged into neighboring regions if the smoothness term is 

considered. 

 
Figure 3-7 Textureless region may get merged into the nearby region if the smoothness term is 

considered. 

Based on the above discussion, we assign a big enough size N for the adaptive 

window and a scalar β for the smoothness term. On the other hand, this system 

block has no initial disparity map. Hence, we solve this system block only by using the 

GCoptimization software with the graph cut algorithm. 

The second system block shown in Figure 3-5 is designed to refine the result 

computed by the first system block with a large β for the smoothness term but 

without the use of PID. The reason not to use PID is that we don’t handle the 
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occlusion problem in this system block but only focus on refining the disparity values 

of the textureless regions instead. If we include PID at this stage, textureless regions 

will be treated as occluded regions and will not be assigned the correct disparity 

value. As mentioned previously, for textureless pixels, it is hard to find their matching 

pixels because of the existence of multiple candidates. This situation is not the same 

as that of occlusion problem. Therefore, these two conditions should be treated 

differently. In our system, we consider both cost aggregation and smoothness term at 

this stage and leave the occlusion problem to the third system block. Hence, we set 

the same window size N as that in the first system block while a bigger β to increase 

the influence of the smoothness term. On the other hand, this system block has the 

initial disparity map. Hence, in this system block, we use a matting laplacian based 

estimation, together with the GCoptimization software with the graph cut algorithm. 

 

 
Figure 3-8 The light brown region has the textureless problem. 

The third system block shown in Figure 3-5 is designed to focus on solving the 

occlusion problem. As mentioned previously, for the occluded pixels, we cannot find 



 

27 

their matching pixels in the corresponding image. All we can do is to find the 

locations of these occluded pixels and to refine their disparity value by nearby pixels 

that have the correct disparity value. In this system block, the smoothness term 

becomes more important. On the contrary, the cost aggregation term is no longer 

important. Hence, in this system block, we do not use the cost aggregation term or 

just set the window size N to 1. We also assign a large β for smoothness term to 

refine pixels with inconsistent disparity values. Since this system block also has the 

initial disparity map. We use the matting laplacian based estimation and the 

GCoptimization software with graph cut algorithm. 

To sum up, for different system blocks, we assign different values of the 

adaptive window size N, the scalar β, and the number of iterations T. Furthermore, 

we will solve the optimization problem in each block by the proposed method. For 

the first system block, the input is the image pair, and the outputs are the initial 

disparity maps and the confidence maps. The outputs of the second system block are 

the disparity maps, the confidence maps and the maps of PID. We will get our final 

results at the outputs of the third system block. The total system process is illustrated 

in Figure 3-9. 
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Figure 3-9 System Process in detail. 
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Chapter 4 Experimental Results 

By experiments, we find the proper values for all the adjustable parameters in 

each system block. In the first system block, as mentioned previously, we pay 

attention to the results achieved by cost aggregation in order to keep the details. 

Hence, the adaptive window size N is set to 7. The scalar β for the smoothness term 

is set to 0.01. The iteration times T is 1. In the second system block, we pay attention 

to refining textureless pixels. Hence, the adaptive window size N is set to 7. The 

scalar β for smoothness term is set to 0.5 for computing left image disparity map and 

0.4 for computing the right image disparity map. In order to refine the results of 

textureless pixels properly, the iteration times T is set to 2. In the third system block, 

we pay attention to solving the occlusion problem. Hence, the PID is used here. The 

adaptive window size N is set to 1. The scalar β for smoothness term is set to 3. The 

iteration times T is 1. 

There are four commonly used test patterns from the Middlebury website [1], 

as shown in Figure 4-1. Their ground truths are shown in Figure 4-2. We will show the 

results of each system block and discuss the final results pattern by pattern. Finally, 

we will show the evaluation results on Middlebury [1] and also discuss them. 
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Figure 4-1 Test patterns: (a) Tsukuba pair, (b) Venus pair, (c) Teddy pair, (d) Cones pair. 



 

31 

 

Figure 4-2 Ground truths: (a) Tsukuba ground truth, (b) Venus ground truth, (c) Teddy ground truth, (d) 

Cones ground truth. 

First, we discuss the image pair of Tsukuba. Tsukuba has a rough background but 

continuous values of disparity. Some parts of the table lamp, such as its brace, are so 

narrow and may get merged into nearby regions. To prevent merging these narrow 

parts into nearby regions, the result obtained by cost aggregation is important; that 

is, the result of the first system block is important. Figure 4-3 shows the output of the 

first system block. The output shows that the disparity values of those narrow parts 

can be kept instead of being merged into nearby regions, but the disparity values of 

the background are not smooth. This problem will be solved in the second or third 



 

32 

system block. Figure 4-3(c) and (d) show the confidence maps for the next system 

block. 

 

Figure 4-3 Outputs of the first system block: (a) initial disparity map of left image, (b) initial disparity 

map of right image, (c) confidence map of left image, (d) confidence map of right image. 

 

In the second system block, we focus on refining the disparity values based on 

the results of the first system block. Here, we try to make most of the disparity map 

smooth and try to deal with the textureless regions. There are two iterations in this 

block in order to solve the textureless problem properly. The output results are 

shown as Figure 4-4. Most parts of the disparity map are getting smooth and those 

narrow parts, such as the braces of the table lamp, remain. However, some regions 

still have incorrect disparity values, like the wire between the lamp and its brace. The 

wire cannot be seen clearly in the output disparity map and cannot be refined 

anymore. Moreover, there are still some parts with strange disparity values, such as 
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those parts at the left side of some objects in Figure 4-4(a). These parts are so-called 

occlusion pixels and will be handled in the third system block. Figure 4-4 (c) and (d) 

show the confidence maps. Figure 4-4 (e) and (f) show those pixels with inconsistent 

disparity values. 

 

Figure 4-4 Outputs of second system block: (a) disparity map of left image, (b) disparity map of right 

map, (c) confidence map of left image, (d) confidence map of right map, (e) PID map of left image, (f) 

PID map of right map. 

 

In the third system block, we focus on refining those pixels with wrong disparity 

values. Most of these pixels are the occluded pixels. The final results are shown in 

Figure 4-5. As expected, the pixels at the left side of objects that have strange 

disparity values can be refined properly. In Figure 4-6, we compare our result with 
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the ground truth. The black regions in the ground truth are the pixels with unknown 

disparity values. In addition to the missing wire between the lamp and its brace, 

there are still some obvious pixels with wrong disparity values, such as the square 

block at the right side of the table and some pixels between the braces of the table 

lamp. We have submitted the estimated disparity maps of the four test patterns to 

Middlebury for quantitative comparison. The result of Tsukuba pair performs better 

than the other three. The detail will be discussed later. 

 

 

Figure 4-5 Outputs of the third system block: (a) disparity map of left image, (b) disparity map of right 

image. 

 

Figure 4-6 Tsukuba: (a) disparity map of our method, (b) ground truth. 
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The second test pattern is called Venus, which has lots of textureless regions 

and much smoother disparity values. The disparity map of Venus can be categorized 

into four blocks. For the textureless regions, traditional local algorithms often 

estimate wrong disparity values for these pixels above the newspaper in the image. 

This problem will be solved by global algorithms. Figure 4-7 shows the outputs of the 

first system block. As mentioned before, many pixels above the newspaper have no 

confident disparity values as shown in Figure 4-7 (c) and (d). These regions will be 

solved in the second or third system block. 

 
Figure 4-7 Outputs of the first system block: (a) initial disparity map of left image, (b) initial disparity 

map of right image, (c) confidence map of left image, (d) confidence map of right image. 

 

The results of the second block are shown in Figure 4-8. As shown in Figure 4-8 

(c) and (d), the textureless pixels problem mentioned above can be solved in this 

system block. The occlusion problem is left to be solved in the third block. 
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Figure 4-8 Outputs of second system block: (a) disparity map of left image, (b) disparity map of right 

map, (c) confidence map of left image, (d) confidence map of right map, (e) PID map of left image, (f) 

PID map of right map. 

 

The output results of the third system are shown in Figure 4-9. Most of the 

aforementioned problems have been solved. However, while comparing with the 

ground truth as shown in Figure 4-10, we can find that there are still some pixels 

which don’t have smooth disparity values. This happens at the regions which get 

inconsistent disparity in the last system block. For example, this happens at the edge 

of the newspaper. This region can be refined properly by increasing the value of the 
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scalar parameter β of the smoothness term in the third system block. However, 

although a higher value of the scalar parameter can solve this problem, it may cause 

the narrow regions in the other test patterns to be merged into nearby regions, such 

as the braces of the lamp in the Tsukuba pair. Therefore, we still choose the 

previously proposed parameter set to test all four test pairs. 

 

 
Figure 4-9 Outputs of the third system block: (a) disparity map of left image, (b) disparity map of right 

image. 

 

 

 

Figure 4-10 Venus: (a) disparity map of our method, (b) ground truth. 
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The third test pattern is called Teddy. The challenging areas of this test pattern 

are the sealed region below the chimney and the region at the right side of the teddy 

bear. These regions contain lots of pixels with no specific textures. The region at the 

right side of teddy bear can be refined properly in the proposed second or third 

system block. The most difficult problem to solve is the region below the chimney. 

Most pixels of this region are occluded by the foreground objects, while the 

remaining unoccluded pixels have little texture. To solve this problem, we use mainly 

the cost aggregation term and set the adaptive window size N to 7 to obtain more 

information in the first system block. The result of the first system block is shown in 

Figure 4-11. After that, we try to refine this region by these pixels with correct 

disparity value. Here, we assign a value around 0.5 to β. However, the final 

determination of β in this system block is decided when we consider the fourth 

pattern. Furthermore, to refine the disparity map properly, we set the iteration 

number T to 2 in the second system block. The output results of the second system 

block are shown in Figure 4-12. The third system block solves the occlusion problem 

and its output results are shown in Figure 4-13, where the problems mentioned 

previously can be handled properly. 
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Figure 4-11 Outputs of the first system block: (a) initial disparity map of left image, (b) initial disparity 

map of right image, (c) confidence map of left image, (d) confidence map of right image. 

 

Figure 4-12 Outputs of second system block: (a) disparity map of left image, (b) disparity map of right 

map, (c) confidence map of left image, (d) confidence map of right map, (e) PID map of left image, (f) 

PID map of right map. 
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Figure 4-13 Outputs of the third system block: (a) disparity map of left image, (b) disparity map of 

right image. 

While comparing the results with the ground truth as shown in Figure 4-14, we 

still find some problems in our results. Although the disparity values of the region 

below the chimney are not assigned to the disparity value of the chimney anymore, 

this region still has wrong disparity values. Another region with apparent wrong 

disparity values is at the left side of the left image. Since this region cannot be seen 

in the right image, this region has wrong disparity values and is not properly refined 

in the third system block. 

 

 

Figure 4-14 Teddy: (a) disparity map of our method, (b) ground truth. 
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The fourth test pattern is called Cones. The challenging areas of this pattern are 

the region with multiple cones and the region of the chopsticks. The region with 

multiple cones has lots of occluded pixels while the region of the chopsticks is narrow. 

The methods for solving these challenges are the same as the methods used to solve 

the challenges of the last three patterns. All we have to do is to find the proper 

parameters for the four patterns. The exact scalar parameter β in the second system 

block is decided here in order to refine the disparity map of the chopsticks region. 

The output results of the first system block are shown in Figure 4-15. Figure 4-16 

shows the output results of the second system block and Figure 4-17 shows the 

output results of the third system block. 

 

 

Figure 4-15 Outputs of the first system block: (a) initial disparity map of left image, (b) initial disparity 

map of right image, (c) confidence map of left image, (d) confidence map of right image. 
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Figure 4-16 Outputs of second system block: (a) disparity map of left image, (b) disparity map of right 

map, (c) confidence map of left image, (d) confidence map of right map, (e) PID map of left image, (f) 

PID map of right map. 

 

 

 
Figure 4-17 Outputs of the third system block: (a) disparity map of left image, (b) disparity map of 

right image. 
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Then, we compare the final result with the ground truth as shown in Figure 4-18 

and identify some problems of our results. Although the region of the chopsticks is 

refined properly, the region near the chopsticks has wrong values of disparity. 

Another obvious region with wrong disparity values is at the left side of the left 

image. The reason for this problem is the same as that when comparing the results 

of the third pattern with the ground truth. 

 

Figure 4-18 Cones: (a) disparity map of our method, (b) ground truth. 

 

Finally, we submit our results to Middlebury to compare our results with the 

results obtained by other methods. The results submitted to Middlebury are listed in 

Table 4-1, 4-2, 4-3 and 4-4. The case that achieves the best rank in our proposed 

method is Tsukuba. When the error threshold, which means the allowable difference 

of disparity values between our results and the ground truth, is set to 0.5, the rank 

for our method for Tsukuba is 22. From the results submitted to Middlebury, we can 

find that when the threshold error is set to a lower value, which means the allowable 



 

44 

difference is low, we can achieve higher ranks. When the threshold error is set to a 

higher value, we achieve a lower rank. A possible reason for this result may be that 

some of the other methods set the disparity values to be a real value, while our 

method only allows integer values. 

 

 

 

Table 4-1 Results of Tsukuba on Middlebury 

Error 

Threshold  

Tsukuba 

(without occluded pixels) 

Tsukuba 

(all) 

Percentage of 

Bad Pixels 

Rank Percentage of 

Bad Pixels 

Rank 

0.5 9.97 22 11.7 24 

0.75 9.97 35 11.7 38 

1 3.05 97 4.08 91 

2 1.88 88 2.41 77 

 

Table 4-2 Results of Venus on Middlebury 

Error 

Threshold  

Venus 

(without occluded pixels) 

Venus 

(all) 

Percentage of 

Bad Pixels 

Rank Percentage of 

Bad Pixels 

Rank 

0.5 7.58 72 8.70 80 

0.75 2.17 94 3.18 95 

1 1.48 101 2.26 97 

2 0.47 87 0.89 86 
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Table 4-3 Results of Teddy on Middlebury 

Error 

Threshold  

Teddy 

(without occluded pixels) 

Teddy 

(all) 

Percentage of 

Bad Pixels 

Rank Percentage of 

Bad Pixels 

Rank 

0.5 13.9 51 21.0 59 

0.75 9.28 65 16.2 73 

1 7.80 71 14.2 82 

2 5.09 72 9.48 87 

 

Table 4-4 Results of Cones on Middlebury 

Error 

Threshold  

Cones 

(without occluded pixels) 

Cones 

(all) 

Percentage of 

Bad Pixels 

Rank Percentage of 

Bad Pixels 

Rank 

0.5 9.87 61 17.0 61 

0.75 5.91 75 12.9 78 

1 4.89 85 11.4 81 

2 2.99 71 8.11 70 
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Chapter 5 Conclusion 

In this thesis, we propose a system to solve the challenges of stereo matching 

with a proposed matting affinity based stereo matching algorithm. First, we redefine 

the global cost function for our proposed global algorithm and develop the proposed 

method to solve this global optimization problem. Second, we construct a system 

with three system blocks. Each block has its own role to solve the stereo matching 

problems. The first system block pays attention to the result of cost aggregation. The 

second system block pays attention to refining the estimated disparity map in the 

first system block and to solving the textureless problem. The third system block pays 

attention to solving the occlusion problem. For each block, we have properly 

adjusted the four kinds of parameter: adaptive window size N, scalar β for 

smoothness term, iteration numer T, and the PID. The experimental results have 

demonstrated that our proposed system can successfully solve most of the 

textureless problem and the occlusion problem. 
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