

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

具有模組選擇能力之延遲最佳化

數位微流體生物晶片合成技術

Latency-Optimization Synthesis with

Module Selection for Digital Microfluidic Biochips

研 究 生：劉廣正

 指導教授：黃俊達 博士

中 華 民 國 一０一 年 九 月

具有模組選擇能力之延遲最佳化

數位微流體生物晶片合成技術

Latency-Optimization Synthesis with

Module Selection for Digital Microfluidic Biochips

研究生：劉廣正 Student: Kuang-Cheng Liu

指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

September 2012

Hsinchu, Taiwan, Republic of China

中華民國一０一年九月

i

具有模組選擇能力之延遲最佳化

數位微流體生物晶片合成技術

研究生：劉廣正 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

 數位微流體生物晶片是近年生醫電子領域的研發成果，可用以取代現行生化實

驗所使用的大型分析儀器，以提升實驗效率和節省實驗成本。然而，要將各式各樣

的生化反應轉移至生物晶片上進行，工程極為繁複，因此需要設計自動化工具的協

助。縮短總反應時間是生物晶片合成程序最佳化的主要目標之一。為了進一步縮短

反應時間，模組選擇的能力是不可或缺的。大多數現行具備模組選擇能力的合成方

法皆為非決定性的方法，如基因演算法或禁忌搜尋演算法。然而，此類方法耗費過

多的電腦執行時間而無法達到及時合成。本篇論文提出了一個具備模組選擇能力以

達成延遲最佳化的數位微流體生物晶片合成方法，簡稱 LOSMOS。此方法利用減

少晶片上的儲存液滴的數量、並套用以系統延遲為標的的迭代重綁定過程，有效率

地完成數位微流體晶片合成及降低總反應時間。根據實驗結果，LOSMOS 比所有

已知的合成方法更出色；包含目前最新的方法 Path-scheduler，平均而言較其減少

了 18.22%的反應時間；且甚至超越了沒有模組選擇能力的整數線性規劃求得的最

佳解─且僅需要極小的運算時間而已。

ii

Latency-Optimization Synthesis with

Module Selection for Digital Microfluidic Biochips

Student: Kuang-Cheng Liu Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Digital microfluidic biochip (DMFB) is a latest development in biomedical

electronics. DMFBs can replace traditional bench-top equipments, which are

generally costly and bulky, to accelerate processes and save the costs of biochemical

experiments. However, synthesis of various reactions on a biochip is a complicated

work and thus needs the help of design automation tools. One of the major

optimization goals of DMFB synthesis is latency minimization. To minimize the assay

latency, module selection must be considered in synthesis flow. Most of current

approaches with module selection capability adopt non-deterministic methods, such as

genetic algorithms or Tabu searches. These methods may consume lots of runtime and

thus make online (real-time) synthesis impossible. In this thesis, I propose an efficient

latency-optimization synthesis with module selection ability, named LOSMOS. It

minimizes assay latency by storage minimization and latency-driven iterative

rebinding. Experimental results show that LOSMOS outperforms all the previous

works, including the state-of-the-art Path-scheduler by 18.22% in terms of latency

reduction; and even does better than an optimal ILP-based scheduler without module

selection in most cases with very little runtime.

iii

誌 謝

 首先我要謝謝我的指導教授—黃俊達副教授，在碩士的兩年當中，給予充分

的時間修習研究所相關專業課程，並在每周實驗室會議上耐心的指導與建議。在

論文研究上，也樂於安排個別會議上細心的給予寶貴的意見。並且在實驗室自由

學系的風氣下，培養出獨立思考及解決問題的能力，也能學習到與其他人的團隊

合作，對老師的感恩之情，無法以簡短的文字來形容。

 再來我要感謝我的父母，在我挫折的時候不斷鼓勵我讓我完成學業。也要感

謝我的師父，"妙禪"師父讓我有安定的心來完成實驗。而也謝謝在百忙之中抽空

參加口試的委員—周景揚教授、張世杰教授和林永隆教授，你們的意見讓我受益

良多，非常的感謝。

 另外謝謝博士班的學長姐，尤其是帶領我作研究的劉家宏學長(宏哥)，他對

研究的熱忱還有非常嚴謹的研究態度讓我體驗到作研究的樂趣。還有實驗室的同

學—許晉維(包子)、陳怡庭(馬力)、謝明廷(阿副)和賴鵬先(神)，感謝你們和我一

起在碩士的生涯中一起奮鬥、努力，和你們在一起是我珍貴的回憶。最後謝謝實

驗室的學弟妹—偉豪、惠珊、建宇和子敬，在口試時幫我打理一切，感謝你們。

 希望大家在未來的日子裡，都能順順利利完成自己的研究，也希望這篇論文

對生物科技的進步能有小小的貢獻，再次感謝所有幫助我的人。

iv

Contents

摘 要... i

Abstract .. ii

誌 謝.. iii

List of Tables .. v

List of Figures ... vi

Chapter 1 Introduction .. 1

Chapter 2 Digital Microfluidic Biochip ... 4

2.1 Architecture .. 4

2.2 Fluidic Operations ... 6

2.3 Sequencing Graph Model .. 8

2.4 High Level Synthesis of DMFBs ... 9

Chapter 3 Previous Works .. 11

3.1 Without Module Selection ... 11

3.2 With Module Selection... 13

Chapter 4 Motivations ... 14

4.1 Effects of Storage Units ... 14

4.2 Module Selection Issue .. 17

Chapter 5 Proposed Algorithm ... 18

5.1 Overview ... 18

5.2 Storage Minimization Scheduling .. 20

5.3 Iterative Operation Rebinding.. 24

5.3.1 Operation Rebinding .. 25

5.3.2 Latency Gains ... 27

Chapter 6 Experimental Results ... 29

Chapter 7 Conclusion .. 32

References .. 33

v

List of Tables

Table 1. All kinds of module for a mixing operation ... 7

Table 2. Experiment 1  multiplexed in-vitro diagnostics ... 30

Table 3. Experiment 2  sample preparations .. 31

Table 4. Experiment 3  two real cases: PCR and Protein .. 31

file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334638013

vi

List of Figures

Figure 1. A LoC substitutes bench-top procedure in laboratory 1

Figure 2. (a) DMFB architecture ... 5

Figure 2. (b) A cell with detector..5

Figure 3. Routing patterns.. 6

Figure 4. Biochemical assay .. 8

Figure 5. Sequencing graph ... 8

Figure 6. An example of operation binding ... 9

Figure 7. An example of operation scheduling .. 10

Figure 8. (a) Scheduling step in the first four cycle ... 12

Figure 8. (b) An assay and chip architecture..12

Figure 9. All paths of a sequencing graph.. 12

Figure 10. An example of the inflexible scheduling rule ... 15

Figure 11. (a) A complex reaction .. 15

Figure 11. (b) PS...15

Figure 11. (c) M-LS..15

Figure 12. All possible value of storage saving factor ... 16

Figure 13. Comparison between non-module selection and module selection 17

Figure 14. The overview of proposed algorithm ... 18

Figure 15. An example of proposed scheduling rule ... 21

Figure 16. (a) An sequencing graph of an assay .. 22

Figure 16. (b) Scheduling result using the priority only consider critical path 22

Figure 17. (a) A changed scheduling order .. 23

Figure 17. (b) Scheduling result using proposed priority...23

Figure 18. Overall flow of SMS .. 23

Figure 19. Flow of iterative operation rebinding ... 24

Figure 20. (a) A graph with 3 mixing operation c, f, and g without rebinding 25

Figure 20. (b) All BPs of operations without rebinding...25

Figure 21. Operation rebinding flow ... 26

file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636950
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636951
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636952
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636953
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636954
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636955
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636956
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636957
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636958
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636959
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636960
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636961
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636962
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636963
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636964
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636968
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636969
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636969
file:///C:/Users/ivanliu40/Desktop/論文資料/Thesis/9_5%20Ivan_thesis%20v1.docx%23_Toc334636970

1

Chapter 1

Introduction

Biochip technology is one of the most critical eras in hi-tech industry nowadays.

The annual report of International Technology Roadmap for Semiconductors (ITRS)

points out that biochip is a solution to achieve “More than Moore”, and explores

functional diversification of CMOS [1][2]. One of the emerging topics of biochip is

the digital microfluidic biochip (DMFB).

A DMFB is a kind of lab-on-chip (LoC) which develops to substitute for

traditional bench-top procedure in laboratory. Different from doing the biochemical

assay on heavily instruments, LoC accomplishes the biochemical reaction on chip

with a few square centimeter area via manipulating reactants on its surface. It

provides more safety and saves more costs when dangerous liquid and precous

reactants are involved in experiments.

Traditional LoCs manipulate continuous flow with micro-channels. The

movement of reagents and buffers are controlled by microvalves and integrated

micropumps. According to the fixed micro-channels, this type of biochip can only

Figure 1. A LoC substitutes bench-top procedure in laboratory

2

serve for a specific biochemical assay. In contrast, the digital microfluidic biochip

(DMFB) dispenses reagents as discrete droplets and manipulates them by applying

different control voltages to electrodes under chip's surface [3][4]. Therefore,

different reactions can be finished in the same chip architecture without any device

change. DMFB provides a general solution for bioassay instead of a specific purpose.

Other advantages of DMFBs are low manufacturing cost, portability, high-throughput,

reconfigurable, and higher reliability since less human involved [5]. According to

these features, DMFB is suitable to perform applications as clinical diagnostics,

environmental toxicity monitoring, and point-of-care diagnosis [6]. Designing a

DMFB to meet a variety of applications is a considerable work. Any minor change in

original reaction will lead to redesign. Therefore, design automation is indispensable

to reduce human cost. With the increased demands of biochips, lots of works have

been proposed to deal with problems in the DMFB design flow. According to [7],

DMFB design flow consists of two stages, fluidic-level synthesis and chip-level

design. The first part, fluidic-level synthesis, focuses on droplet manipulating. It

covers complicated problems like sample preparation [8] operation scheduling and

operation binding [19], module placement [20][22], and droplet routing [23][26].

Instead of fluid control, manufacture problems are the major concerns in the second

part, such as pin assignment and wiring [27][29].

 the front-end of fluidic-level synthesis, named high-level synthesis, includes two

parts: operation binding and operation scheduling. The two parts are the most

determinant of assay latency. If the operations are scheduled and bound attentively,

the assay latency can be certainly minimized. However, as far as we know, there still

some problems are not well-considered in current high-level synthesis flow, such as

storage unit control and module selection. High amount of storage units may occupy

much area, lessen available mixing space, and then leads to long assay latency or

3

infeasible scheduling. Moreover, module selection provides more possibility to

enhance utilization of array area. It leads to shorter latency. However, previous works

with module selection ability are all non-deterministic algorithms which are

time-consuming. Thus, a deterministic synthesis with module selection ability must

benefit the DMFB design flow. This work proposes a latency-optimization synthesis

with module selection, LOSMOS, to solve the operation scheduling and the operation

binding problem. LOSMOS is based on list scheduling and thus is very efficiency.

The experimental results show that LOSMOS obtains better results than most of

previous works with less execution time. The remainder of this work is organized as

follows. Chapter 2 briefly reviews the DMFB architecture and previous works. Our

motivation is described in Chapter 3. In Chapter 4, we describe the problem

formulation and present the proposed algorithm. In the end, we verify our algorithm

by experimental results in Chapter 5 and conclude this work in Chapter 6.

4

Chapter 2

Digital Microfluidic Biochip

2.1 Architecture

 A DMFB architecture is a 2-D array of cells as shown in Figure 2(a). Each cell

consists of two glass plates which are coated with indium tin oxide (electrode),

parylene C (insulator) and Teflon AF (hydrophobic surface). Indium tin oxide (ITO)

electrodes are used to drive droplets by electrowetting-on-dielectronic (EWOD) effect.

It implies the potential change leads to the surface intension change of fluids, and

makes them lean to active electrodes. In general, most droplets can be transported at

20Hz with the 1.5mm pitch [3][4]. It means that a droplet can cross more than 20

electrodes within a second (0.05sec/electrode). Compared with the duration of other

assay operations like mixing (6~10sec), the routing time is thus negligible. Parylene C,

a dielectric insulator which is coated with Teflon AF (hydrophobic surface), is

allocated on the top and bottom plates to decrease the wettability of the surface and to

add capacitance between the droplet and the electrode. Furthermore, to prevent

evaporation of droplet and to smooth the movement, immiscible silicon oil will be put

in the space between two plates [3]. In additional to cells, there are other devices

including reservoirs, dispensing ports and detecting cells in a DMFB, as shown in

Figure 2(a). Reservoirs and dispensing ports usually located on the side of the DMFB.

The droplet is formed from a reservoir and enters the chip through the dispensing port.

For avoiding liquid contamination, one reservoir should be dedicated to one kind of

reactants. The other component, detecting cell (detector), is used to evaluate the

property of a droplet. The structure of a detector is decided by the assays to be

5

performed. For example, the optical detectors suit the colorimetric assay [13]. In this

case, a photodiode and light-emitting diode are placed over the top and under the

bottom of the cell respectively, as show in Figure 2(b).

Glass

Glass

Droplet

Indium Tin Oxide

(ITO) electrodes
Photodiode

LED High voltage

(a) (b)

Electrodes

(2D array)

Droplet

Reservoirs

Detector

Bottom

glass plate

array size=16(cells)

Figure 2. (a) DMFB architecture and (b) A cell with detector

(a)

6

2.2 Fluidic Operations

 There are three kinds of fluidic operations in a DMFB, including the dispensing

operation, the detecting operation, and the mixing operation. A dispensing operation

means that a dispensing port injects a droplet from a reservoir into the chip. A

detecting operation means routing a droplet to a detecting cell and evaluating its

property. The operations mentioned above all operate on the real device (reservoirs,

dispensing ports, and detecting cells). However, mixing operation operates on a cell

group which does not locate on a specific position. This cell group is composed of

adjacent cells. Two droplets are combined and then moves rapidly among adjacent

cells to finish mixing operation. While a mixing operation is finished, all cells used by

the mixing operation will be freed immediately. Those cells can be used by the other

operation again. According to this property, a mixing operation is also called a

reconfigurable operation. Besides, the group of adjacent cells which can perform

mixing operation is also called a “module”. The performance of a module is related

by its size and routing pattern. Figure 3 shows possible routing patterns. Since the

module with large size has longer straight path to accelerate a droplet, it leads to

shorter duration. Table 1 shows different module types.

Figure 3. Routing patterns

7

Table 1. All kinds of module for a mixing operation

8

2.3 Sequencing Graph Model

 A biochemical assay, as shown in Figure 4, can be formulated as a set of fluidic

operations. The relation between fluidic operations can be represented by sequencing

graph model, as shown in Figure 5. In the sequencing graph model, each node

indicates a fluidic operation and the edge between two nodes means their dependence

and the droplet routing between two operations.

Figure 4. Biochemical assay

Figure 5. Sequencing graph

9

2.4 High Level Synthesis of DMFBs

 High-level synthesis (HLS) plays an important role in the front end of biochip

synthesis. It always contains two parts: operation binding and operation scheduling.

These procedures are crucial for determining the latency of an assay. For operations

performing on real devices like the dispensing port and the detector, operation binding

indicates that to assign a real device to perform an operation. Each device can only

execute one operation at a time. On the other hand, for the reconfigurable operations,

since there are more than one module can be performed on a reconfigurable operation,

operation binding means decide the module which contains the size and the duration

for an operation. Therefore, it is also called module selection.

 After operation binding, the size and the duration of all operations are known.

Operation scheduling can be performed after. Operation scheduling decides the start

and the end cycle of all operations without dependency and resource violation to

minimize the total latency. Since a sequencing graph is similar to a data flow graph in

VLSI synthesis, we can refer to the algorithms used in VLSI design (e.g., list

scheduling) to solve scheduling problem. However, different from the VLSI

scheduling, storage units play an important role in DMFBs. A storage unit is happened

Module Cells Duration

Mix22 2x2 5s

Mix23 2x3 4s

Mix24 2x4 3s

cell(f) = 4

duration(f) = 5

cell(g) = 8

duration(g) = 3

c

f

g

e

a b

d

S1 R1

S1

R1

Figure 6. An example of operation binding

10

when two dependent operations are not scheduled closely. 1-cell space is needed to

keep the resultant droplet of the former operation. The storage unit is not vanished

until the next operation uses it. Taking Figure 7 for example, a storage unit needs to

store the resultant of operation e since operation g cannot be scheduled right after

operation e. Because storage units may also use the area which mixing operations

need, controlling the amount of storage units is necessary to achieve an efficient

scheduling result.

Figure 7. An example of operation scheduling

11

Chapter 3

Previous Works

3.1 Without Module Selection

 The approach [10] is the first work mentioned scheduling problem as far as we

know. It formulated the biochip scheduling problem and proposed an ILP algorithm to

solve this problem. In the ILP algorithm, all operations bind to the fastest module for

simplify the complexity and a PCR reaction example are introduced. [11] is a

successor of [10]. In [11], the ILP model has been further refined. The area constraint

issue and more operation types like detecting operation are considered. This method

can guarantee an optimal solution. Since the ILP method is hard to deal with larger

cases, two heuristics, the heuristic based on a genetic algorithm (GA) and the

modified list scheduling algorithm (M-LS), were proposed in [11]. The former one 

GA is based on list scheduling and the priority of operations is decided by genetic

algorithm. However, GA may also suffer from long execution time. Therefore, a

hybrid genetic algorithm (HGA) was developed to shorter the execution time of GA

through searching space reduction [12]. However, HGA is a special purpose algorithm

for in-vitro cases. The latter one  M-LS, schedules operations in the increasing order

of their criticality, i.e., the longest path from an operation to the sink. M-LS is very

efficient and can be finished in very short time. However, it suffers from the storage

excess problem. Although M-LS uses the rescheduling step to solve this problem, it

may still be stuck in high fan-out graph. Figure 8(a) shows a rescheduling step

example by scheduling the assay in Figure 8(b) on a biochip which contains a 2-D

array with 16 cells and four ports, S1, R1, S2, and R2. At cycle three, since operation e

12

and operation j could not be scheduled, storage units are needed to store the resultants

of operation d and operation i. However, the used area is out of total area. The

rescheduling step must be performed. The step is achieved by going back to the

previous step. Then, reschedule the latest scheduled operation until the used area fits

the area constraint.

Path-scheduler (PS) avoids excess storage problem by scheduling a whole path, like

the nodes with same color in Figure 9, instead of individual operations [17], and

performs better than M-LS in high fan-out graph with different priority setup. There

also has an optimal scheduler [18] which can deal with the storage excess problem,

but it only suits the assay that can be formulated as a full binary tree.

a

b

f

g

1 2 3 4

a

b

f

g

c (8)

h (8)

1 2 3 4

d

a

b

f

g

c (8)

h (8)

1 2 3 4

d

a

b

f

g

c (8)

1 2 3 4

d

i i i

(a) (b)

cycle = 1 cycle = 2 cycle = 3 cycle = 4

Figure 8. (a) Scheduling step in the first four cycle

(b) An assay and chip architecture

Figure 9. All paths of a sequencing graph

a

b c

d e f g

13

3.2 With Module Selection

 The methods mentioned above do not consider the module selection and the

performance is thus limited. The extended GA [14] and the Tabu-search based

algorithm (Tabu) [15] are existing algorithms which consider the module selection.

The extended GA inherits from [10] and adds binding information into the

chromosome to achieve module selection. The latter method  Tabu starts with a

solution in which operations are bound to modules at random. It then use Tabu

searching to find the best binding result and use list scheduling to schedule operations.

Even if these two methods, the extended GA and the Tabu, permit module selection.

However, they are all stochastic optimization method and are difficult to apply in

online scheduling. As a result, a fast algorithm equipped with module selection ability

is indispensable.

14

Chapter 4

Motivations

4.1 Effects of Storage Units

 A storage unit exists if two dependent operations are not sequentially scheduled.

Since the storage units occupy chip area, the number of storage units located on a chip

is inversely proportional to the amount of mixing space. Therefore, how to minimize

the storage units is a crucial issue for latency minimization. For elaborating the effect

of storage units, we further classify a storage unit as a dispensing storage unit (std) or

an intermediate storage unit (stm) in this work. The first one, std, appears between a

dispensing operation and a reconfigurable operation. Previous works [12], [15], and

[18] schedule the dispensing operation and the reconfigurable operation sequentially

to ensure no std. However, this inflexible scheduling rule may lead to the worse

latency. Take Figure 10 as an example. At first, we will schedule the assay like Figure

10(a) by the list scheduling and the scheduling rule mentioned above on a biochip

consists of a 2-D array with 16 cells and two ports, S1 and R1. The scheduling result is

shown in Figure 10(b). As we can see in Figure 10(c), if we schedule operation e

earlier and permit one cycle delay between operation e and operation g, the latency

can be reduced from 8 to 7. Accordingly, a more flexibility scheduling rule may be

required.

15

The other one, stm, is a more difficult problem than std in scheduling. Path-scheduler

tries to reduce stm by scheduling an entire path, a sequence of dependent operations,

instead of operations and thus has shorter latency than M-LS in high fan-out cases

(e.g., protein assay). However, with high fan-in cases or even more complex reactions,

it may lead to worse efficient. Figure 11. (a)Figure 11(a) shows a complex reaction.

As shown in Figure 11(b) and Figure 11(c), the result which is produced by

Path-scheduler has more stm and has longer latency than the result which is produced

by M-LS.

(a) (b)

(b) (a) (c)

Figure 10. An example of the inflexible scheduling rule

Figure 11. (a) A complex reaction

(b) PS and (c) M-LS

(c)

16

 Therefore, we try to minimize stm in the other way. We observed that the number

of storage units is highly related with operations’ in-/out-degree. In fact, the in-degree

of an operation v, which is denoted as , implies how many droplets it

required, and the out-degree of v, , means the number of resultant it produces.

As a result, to schedule a vertex with high in-degree may help to minimize storage

units; on the other hand, to schedule a vertex with high out-degree implies that more

storage units may be produced, and vice versa. However, since dispensing operations

can be scheduled at any cycle, we only consider the in-degree contributed from

mixing operations,
 . Therefore, the difference between

 and

 is called storage saving factor sf(v), as the following equation:

 (1)

sf(v) can be regard as the possible usage amount of stm if an operation v is scheduled.

As an example in Figure 12, scheduling operation e (the most right graph) will save

the most number of storage units, and scheduling operation a (the most left graph)

saves the least.

Figure 12. All possible value of storage saving factor

17

4.2 Module Selection Issue

 Most of previous works bind operations with the fastest (usually also the largest)

module in synthesis. It helps to simplify the problem and is useful if the array size is

large enough. However, in most cases, especially as segregation area is wrapped

around, this strategy may be ineffective, and modules with large size may make the

array overcrowded. For example, five mixing operations are scheduled with two

different binding in Figure 13 using the modules in Table 1. The left one, bind all

operations to the fastest module, mix24, requiring 11 cycles to finish. In contrast, the

right one, bind to different module, only needs 9 cycles instead. This example shows

that binding operations with the fastest module is not always a good policy. To

explore more possibility and to enhance utilization of array area, integrate module

selection process into synthesis flow to select the suitable modules dynamically is

necessary.

 Figure 13. Comparison between non-module selection and module selection

18

Chapter 5

Proposed Algorithm

5.1 Overview

 The problem formulation of this work is as following: given three information, 1)

DMFB architecture, which consists of chip size, the count of dispensing ports,

number of detecting cells or other functional devices, 2) a sequencing graph G, which

describe the biochemical application, and 3) a resource library L, which contains all

feasible module and information of other devices, to determine the binding and the

scheduling results. These results are without dependency and resource violation, and

the latency of the biochemical assay is minimized. The overall flow of the proposed

algorithm is shown in Figure 14.

Sequencing graph Resource library

Initial binding & scheduling

Iterative operation rebinding

Scheduling & binding results

Architecture

Figure 14. The overview of proposed algorithm

19

In the beginning of the process, bind all operations to the fastest module (all the

operations are bound). Then, a scheduler, storage minimization scheduling, based on

list scheduling is performed to obtain an initial scheduling result. Following, the

initial solution will be sent to the iterative operation rebinding process to refine the

solution iteratively. More details of the storage minimization scheduling and

iteratively operation rebinding processes will be described in section 5.2 and section

5.3.

20

5.2 Storage Minimization Scheduling

 Storage minimization scheduling (SMS) is derived from the well-known list

scheduling algorithm. At first, all ready operations are put in the ready list (Lready).

There are four kinds of ready operations as following: 1) a dispensing operation, 2) a

mixing operation whose parents are dispensing operation, 3) a mixing operation

whose parents are a dispensing operation and a finished mixing operation and 4) a

mixing operation whose parents are two finished mixing operation. Then, schedule

operations in ready list (Lready) one by one in each cycle according to their priority.

Compared to conventional list-based scheduling in DMFB, we schedule dispensing

operations more flexible and propose a new priority. Previous works, like [12], [15]

and [18], discard dispensing operations from the ready list, Lready, since these

operations can be scheduled at any cycle if there are enough resource ports. The

dispensing operations and their successor operations are scheduled sequentially to

avoid std. This scheduling rule guarantees no std. However, it may lead long latency

due to inflexibility in scheduling dispensing operations, as describe in section 4.2. We

modified the rule by scheduling dispensing operations before their successors but not

necessary right before them. Figure 15 is an example of the scheduling rule. If an

operation v can be scheduled at cycle t (t=3), check previous cycles from t-1 to 1

whether there are available reservoirs and enough area to save the resultant of

reservoirs. The process starts form t-1, since we want to reduce the usage of std as

more as possible. If there are available reservoirs at cycle 1 and enough area to save

resultant at cycle 2, schedule dispensing operations of operation v at cycle 1.

Otherwise, schedule the other operation.

21

 In section 4.1, we realize that PS has a bad result with the complex graph since it

entirely minimizes stm but ignores the critical path issue. Therefore, we proposed a

priority as following:

 (2)

The proposed priority considers the critical path and stm minimization at the same

time. Since sf(v) implies the reduction of stm, we use it to indicate stm minimization.

However, since sf(v) is quite smaller than each path length, we multiply sf(v) and a

constant  to balance its value. This constant is a significant large number which is

usually set a half of the critical path length. An example in Figure 16(a) will be

demonstrated to show the importance of stm minimization. At first, all mixing

operations which are presented by circular shape are bound to the fastest module

whose area is 8 cells and duration is 2. According to the priority which only considers

the critical path (e.g., priority of operation m = 4 and operation r = 2), assign the

scheduling order to each mixing operation like the red number in both Figure 16(a)

and Figure 16(b).

Exist

Schedule the other operation

Figure 15. An example of proposed scheduling rule

22

Figure 16. (a) An sequencing graph of an assay

(b) Scheduling result using the priority only consider critical path

If operations with the same priority, set their scheduling order randomly. The

scheduling result of the assay is shown in Figure 16(b) and the latency is 15. As we

can see, this priority will lead to a BFS scheduling order and lots of stm. On the other

hand, if we schedule the assay in Figure 16(a) using the proposed priority, the

scheduling order will changed to the red numbers in Figure 17(a). At first, operation m

and operation n will be scheduled first like using the priority which only consider

critical path. However, the scheduler using the proposed priority will select the

operation which can save more storage units like operation r and operation s next. As

a result, the proposed priority will lead a DFS scheduling result as shown in Figure

17(b) and potentially reduce the amount of stm. Therefore, the latency reduces from 15

to 13 when schedule operations using the proposed priority. Figure 18 shows the

overall flow of SMS.

(a) (b)

23

Figure 17. (a) A changed scheduling order

(b) Scheduling result using proposed priority

 Figure 18. Overall flow of SMS

24

5.3 Iterative Operation Rebinding

As mentioned above, the scheduling algorithm for SMS potentially minimizes

the latency by reducing the amount of storage units. However, further improvement

may still be achieved by rebinding which explores more possibility and to enhance

utilization of array area as mentioned in section 4.2. The overall algorithm of iterative

operation rebinding is depicted in Figure 19. At first, operation rebinding is performed

to determine the new binding of all operations for latency minimization. If the latency

for the new binding result is shorter than the previous one, the counter k is reset to M;

if not, set k=k1. The process does not terminate until the counter k equals to zero.

 Figure 19. Flow of iterative operation rebinding

25

5.3.1 Operation Rebinding

The objective in operation rebinding is to find the new binding result to reduce

latency. The simplest way to achieve the objective is listing all possible binding

results and selecting the one with the most latency improvement. However, it is not

realistic. Since there are too many binding results to be checked, it will cost too much

execution time. Our strategy is rebinding an operation once at a time until all

operations are rebound. Here, a rebinding process in an iteration means changing the

module of an operation v to another module m. (v, m) is called binding pair (BP). Take

Figure 20 (a) for example. There are 3 unlocked mixing operation c, f, and g and each

mixing operation can be bound to 3 possible modules according to Table 1. Due to the

above conditions, there are 9 feasible BPs can be selected to rebind as shown in

Figure 20(b). Therefore, operation rebinding can be regard as finding the BP with the

highest latency improvement in each iteration.

(a) (b)

Figure 20. (a) A graph with 3 mixing operation c, f, and g without rebinding

(b) All BPs of operations without rebinding

26

 Figure 21 shows the operation rebinding flow. The first step in the flow is gain

calculation. It calculates latency gains for all possible BPs with unlocked operations

(i.e., operations are not rebound) to judge the latency improvement of each BP. There

are two latency gains: the primary latency gain (Gp) and the secondary latency gain

(Gs). They represent the latency improvement. The physical meaning of them will be

described in section 5.3.2. After gain calculation, BP selection will be performed. The

BP with the highest Gp will be selected first. Since the unchanging binding is also a

kind of rebinding processes (i.e. existing a BP with zero Gp), a BP with negative Gp

will not be considered here. If there is more than one BP with the highest Gp, the BP

with the highest Gs is selected. According to the selected BP (v, m), operation v will

be rebound to module m, and m will be locked after. Finally, rescheduling is

performed by SMS to get the current latency. These steps mentioned above does not

terminate until all operations are locked.

Gain calculation

Rescheduling

BP selection

All operations are locked

All unlocked operations

Rebind & Lock

False
True

Figure 21. Operation rebinding flow

27

5.3.2 Latency Gains

There are two latency gains, primary latency gain (Gp) and secondary latency

gain (Gs) to determine the latency improvement of each BP. The first one Gp can be

represented as the following equation:

 (3)

In (3), T is the latency before rebinding, and T' means the latency while the operation

v bound with the module m, and SMS is performed. The second one Gs is presented

by the following equations:

 (4)

Equation (4) is composed of two parts, local latency improvement and storage unit

reduction. Since Gp only represents the improvement of the critical path, some BPs

with the potential to make a shorter latency in the next iteration may be ignored.

Therefore, Gs indicates this potential by the sum of end cycle improvements, ti  ti', for

all operations. However, since operations locate on different paths, the importance of

each end cycle improvement is not the same. To indicate differences of them, the

weight  in (5)(6) multiplies each end cycle improvement together.

 (5)

 (6)

28

(5) means the ratio between the longest path passes through an operation and the

critical path length. Due to the fact that the number of storage units affects the total

latency, storage unit reduction, nst  nst', should also be considered. nst means the

average storage units count in each cycle before rebinding, as shown in (7). nst'

implies the average storage units in each cycle when operation v is bound to module

m. Besides, we consider that storage unit reduction is contributed by all operations.

Therefore, the number of operations, N, multiplies the storage unit reduction together.

 (7)

29

Chapter 6

Experimental Results

 The proposed algorithm has been implemented in C++ on a Linux machine. All

experiments are conducted on workstation with an Intel Xeon 2.4GHz CPU with

72GB RAM. The ILP solver we used is Gurobi optimizer 5.0 [29]. Three real-life test

cases: multiplexed in-vitro diagnostics, PCR, and Protein assay [13] and six random

cases of sample preparation are used here to evaluate our algorithm. Since previous

works are implemented with different area constraints and resource libraries, the

experimental result they proposed can't compare with each other. Therefore, we want

to re-implement them to compare with LOSMOS. Besides, the other two versions of

M-LS, M-LS (DEC) and M-LS (INC) are also implemented. They are proposed in [18]

to compare with PS. Both of them force dispensing operation scheduling right before

their successor, but M-LS (DEC) uses the increasing order of priority and M-LS (INC)

uses the inversed one. However, we cannot re-implement GA and HGA entirely and

these two works only report the experimental results using multiplexed in-vitro

diagnostics. LOSMOS will compare with the methods mentioned above using

multiplexed in-vitro diagnostics with in-vitro resource library [13] in the first

experiment. Table 2 shows the experimental result of the first experiment. Since the

execution time of all methods is less than 5 sec, we do not report the table of

execution time. As we can see, LOSMOS is 1.07 times faster than previous works on

average. However, the improvement in LOSMOS is quite small. The reason we

thought is that the number of operations in above cases are too small (16~64

operations) thus those solutions are all near optimal. Therefore, we will use cases with

larger number of operations to perform in the second experiment. Due to lack of cases

30

and related resource library, we randomly generate six cases of the multiple-targets

sample preparation reaction flow and use the in-vitro resource library. However, there

are many set of modules and detectors can be performed. For fairly, we choose the set

of module and the detector with the longest latency. The results of the second

experiment are shown in Table 3. In this experiment, we find that SMS is 1.21 times

faster than most previous works on average except ILP. It shows that scheduling

method considering storage minimization has a lot of benefits for latency

minimization. In additional to SMS, we further minimize latency using module

selection ability in LOSMOS. As the last column in Table 3, LOSMOS performs 1.35

times faster on average than previous works and even 1.04 times faster than ILP with

no module selection ability in short execution time (2~6 sec). Therefore, these results

prove that LOSMOS can achieve good performance in large cases with little run time.

Finally, we use two real cases: Protein and PCR. To evaluate our synthesis algorithm

can apply in real-life in the third experiment. The resource library using here is

proposed in [30]. Table 4 shows this experimental result. Since PCR only has seven

operations, each algorithm achieves optimal solution. In contrast, protein is a large

case. The latency of LOSMOS is equal or better than previous works.

Table 2. Experiment 1  multiplexed in-vitro diagnostics

Area

(cells)

Latency (cycle)

ILP GA HGA M-LS M-LS

(DEC)

M-LS

(INC)

PS SMS LOSMOS

In-vitro1_16 24 15 15 16 17 17 16 16 17 16

In-vitro2_24 32 17 17 18 19 18 20 19 18 17

In-vitro3_36 40 23 25 23 26 25 25 25 25 23

In-vitro4_48 56 23 26 23 27 25 26 26 25 23

In-vitro5_64 72 29 34 29 35 32 32 32 32 29

Avg. 0.98 1.07 1.01 1.14 1.08 1.10 1.09 1.08 1

31

Table 3. Experiment 2  sample preparations

Table 4. Experiment 3  two real cases: PCR and Protein

Area

(cells)

Latency (cycle)

ILP M-LS

(DEC)

M-LS

(INC)

PS SMS LOSMOS

Sample_preparation_61 100 169* 306 281 241 247 165

Sample_preparation_65 100 131 219 157 147 145 129

Sample_preparation_67 100 133 221 205 161 155 133

Sample_preparation_70 100 139* 191 177 179 153 129

Sample_preparation_78 100 -* 370 295 263 233 195

Sample_preparation_84 100 175* 291 223 - 203 163

Avg. 1.04 1.73 1.45 1.31 1.24 1

“-” The method fails in that case

“*” ILP does not terminate in 24-hours; the current best result is reported

Area

(cells)

Elapsed time

ILP M-LS

(DEC)

M-LS

(INC)

PS SMS LOSMOS

Sample_preparation_61 100 >24hr <1s <1s <1s <1s 3.2s

Sample_preparation_65 100 0.7hr <1s <1s <1s <1s 2.9s

Sample_preparation_67 100 3.1hr <1s <1s <1s <1s 3.1s

Sample_preparation_70 100 >24hr <1s <1s <1s <1s 3.3s

Sample_preparation_78 100 >24hr <1s <1s <1s <1s 6.1s

Sample_preparation_84 100 >24hr <1s <1s <1s <1s 5.4s

Area

(cells)

Latency (cycle)

ILP M-LS

(DEC)

M-LS

(INC)

PS SMS LOSMOS

PCR_7 100 8 8 8 8 8 8

Protein_103 100 179 267 179 215 185 179

Area

(cells)

Elapsed time

ILP M-LS

(DEC)

M-LS

(INC)

PS SMS LOSMOS

PCR_7 100 <1s <1s <1s <1s <1s <1s

Protein_103 100 4.3hr <1s <1s <1s <1s 10.07s

32

Chapter 7

Conclusion

 In this thesis, we proposed the latency-optimization synthesis with module

selection (LOSMOS) on DMFBs. LOSMOS consists of two major parts: the storage

minimization scheduling (SMS) and the iterative rebinding procedure. Because the

storage count is highly related to the assay latency, the first part, SMS, takes the

saving factor into consideration for storage minimization and achieves better results

accordingly. The second part further iteratively evaluates and improves the binding of

each operation with latency gains. According to the ability of module selection,

LOSMOS outperforms a state-of-the-art method, Path-scheduler, by 18.22% in terms

of latency reduction on average, and even performs better than the optimal ILP

method without module selection. Undoubtedly, the good performance and short

computation time make LOSMOS a promising option in DMFB synthesis.

33

References

[1] International Technology Roadmap for Semiconductors. Semiconductor Industry

Association, 2011

[2] T.-Y. Ho, J. Zeng, and K. Chakrabarty, “Digital microfluidic biochip: a vision for

functional diversity and more than Moore,” in Proc. IEEE/ACM International

Conference on Computer-Aided Design, 2010, pp. 578-585

[3] M. G. Pollack, A. D. Shenderov and R. B. Fair, “Electrowetting-based actuation

of droplets for integrated microfluidics,” Lab. Chip, vol. 2, no.2, pp. 96-101, Feb.

2002

[4] V. Srinivasan, V. K. Pamula, M. G. Pollack, and R. B Fair, “Clinical diagnostics

on human whole blood, plama, serum, urine, saliva, sweat, and tears on a digital

microfluidic platform,” in Proc. Micro Total Analysis Systems, 2003, pp.

1287-1290

[5] K. Chakrabarty, “Design automation and test solutions for digital microfluidic

biochips,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 1, pp. 4–17,

Jan. 2010.

[6] R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack,

and V. Pamula, “Development of a digital microfluidic platform for point of care

testing,” Lab. Chip, vol. 8, no. 12, pp. 2091–2104, Dec. 2008.

[7] T.-Y. Ho, K. Chakrabarty, and P. Pop, “Digital microfluidic biochips: recent

research and emerging challenges,” in Proc. IEEE/ACM/IFIP

Hardware/Software Codesign and System Synthesis, 2011, pp. 335–343.

[8] S. Roy, B. B. Bhattacharya, and K. Chakrabarty, “Optimization of dilution and

mixing of biochemical samples using digital microfluidic biochips,” IEEE

Transactions on Computer-Aided Design , vol. 29, no. 11, pp. 1696–1708, Nov.

2010.

[9] Y.-L. Hsieh, T.-Y. Ho, and K. Chakrabarty, “On-chip biochemical sample

preparation using digital microfluidics,” in Proc. IEEE Biomedical Circuits and

Systems Conference, 2011, pp. 297–300.

[10] J. Ding, K. Chakrabarty, and R. B. Fair, “Scheduling of microfluidic operations

for reconfigurable two-dimensional electrowetting arrays,” IEEE Transactions

on Computer-Aided Design, vol. 20, no. 12, pp. 1463–1468, Dec. 2001.

[11] F. Su and K. Chakrabarty, “Architectural-level synthesis of digital

microfluidics-based biochips,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design, 2004, pp. 223–228.

34

[12] A. J. Ricketts, K. Irick, N. Vijaykrishnan, M. J. Irwin, “Priority scheduling in

digital microfluidics-based biochips,” in Proc. IEEE/ACM Design, Automation

& Test in Europe, 2006, pp. 329–334.

[13] F. Su and K. Chakrabarty, “High-level synthesis of digital microfluidic biochips,”

ACM Journal on Emerging Technologies in Computing Systems, vol. 3, no. 4, pp.

16:1–16:32, Jan. 2008.

[14] F. Su and K. Chakrabarty, “Unified high-level synthesis and module placement

for defect-tolerant microfluidic biochips,” in Proc. IEEE/ACM Design

Automation Conference, 2005, pp. 825–830.

[15] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthesis of dynamically

reconfigurable digital microfluidic biochips.” in Proc. Compilers Architecture

and Synthesis for Embedded Systems, 2009, pp. 195–203.

[16] M. Alistar, E. Maftei, P. Pop, and J. Madsen, “Synthesis of biochemical

applications on digital microfluidic biochips with operation variability,” in Proc.

Design, Test, Integration and Packaging conferences Symp., 2010, pp. 350–357.

[17] D. Grissom and P. Brisk, “Path scheduling on digital microfluidic biochips,” in

Proc. IEEE/ACM Design Automation Conference, 2012, pp. 26–35.

[18] L. Luo and S. Akella, “Optimal scheduling of biochemical analyses on digital

microfluidic systems,” IEEE Transactions on Automation Science and

Engineering, vol. 8, no. 1, pp. 216–227, Jan. 2011.

[19] F. Su and K. Chakrabarty, “Module placement for fault-tolerant

microfluidics-based biochips,” ACM Transactions on Design Automation of

Electronic Systems, vol. 11, no. 3, pp. 682–710, Jul. 2006.

[20] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of defect-tolerant digital

microfluidic biochips using the T-tree formulation”, ACM Journal on Emerging

Technologies in Computing Systems, vol. 3, no. 3, pp. 13:1–13:32, Nov. 2007.

[21] Z. Xiao and E. F. Y. Young, “Placement and routing for cross-referencing digital

microfluidic biochips,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 30, no. 7, pp. 1000–1010, Jul. 2011.

[22] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthesis of

digital microfluidic biochips,” in Proc. IEEE/ACM Design, Automation & Test in

Europe, 2006, pp. 323–328.

[23] M. Cho and D. Z. Pan, “A high-performance droplet routing algorithm for digital

microfluidic biochips,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 10, pp. 1714–1724, Oct. 2008.

35

[24] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “BioRoute: A network flow based

routing algorithm for the synthesis of digital microfluidic biochips,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

27, no. 11, pp. 1928–1941, Nov. 2008.

[25] T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware droplet routing

algorithm for the synthesis of digital microfluidic biochips,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 11,

pp. 1682–1695, Nov. 2010.

[26] C. C.-Y. Lin and Y.-W. Chang, “ILP-based pin-count aware design methodology

for microfluidic biochips,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 29, no. 9, pp. 1315–1327, Sep. 2010.

[27] T. Xu, K. Chakrabarty, and V. K. Pamula, “Defect-tolerant design and

optimization of a digital microfluidic biochip for protein crystallization,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

29, no. 4, pp. 552–565, Apr. 2010.

[28] Y. Zhao, K. Chakrabarty, R. Sturmer, and V. K. Pamula, “Optimization

Techniques for the Synchronization of Concurrent Fluidic Operations in

Pin-Constrained Digital Microfluidic Biochips,” IEEE Transactions on Very

Large Scale Integration Systems, vol. 20, no. 6, pp.1132–1145, Jun. 2012.

[29] Gurobi. [Online]. Available: http://www.gurobi.com/

[30] Benchmarks for Digital Microfluidic Biochip Design and Synthesis. Available:

http://people.ee.duke.edu/~fs/Benchmark.pdf

http://www.gurobi.com/
http://people.ee.duke.edu/~fs/Benchmark.pdf

