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適用於三維場景重建之 

寬基線立體影像匹配  

 

研究生：劉彥廷    指導教授：王聖智 教授 

                                 簡鳳村 教授 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

在本篇論文中，我們提出了可用於三維場景重建的寬基線立體影像對應系統。在

此系統中我們使用了三台未校準的相機，且這些相機被設置的很分散。由於大角

度所造成的扭曲和遮蔽的現象，使我們的匹配任務變得更加困難。 為了得到一

個準確的對應，我們採用了隨機森林來克服影像因大角度差而造成的扭曲，並使

用修改過的 Histogram of Oriented Gradients（HOG） 配合條件隨機場（CRF）來

求解，結合了這兩種方法不僅可修正錯誤的對應關係還可處理一些大角度遮蔽的

問題。 獲得匹配點以後，可經由 Bundle Adjustment（BA）求出世界座標點雲及

相機參數。接下來，我們加入了一個分割的方法(spectral matting)，讓我們可以根

據像素空間和色彩之間的關係來重新定義點雲的世界座標。 最後再根據點雲來

建立出一個立體的三維模型。 
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Abstract 

In this thesis, we present a wide-baseline stereo system for 3D scene reconstruction. 

We implement our system with multiple un-calibrated cameras which are set widely. 

The main challenge of the system lies on how to match image pairs at wide-baseline, 

in which there appear large perspective distortions and large occlusion areas between 

images. In this research, we attempt to tackle the problem based on machine learning 

and optimization techniques. In order to match image more accurately, we apply 

random forest to overcome large perspective distortions, and add Conditional Random 

Field (CRF) with modified Histogram of Oriented Gradients (HOG) to solve the 

matching problem. Combining conditional random field with random forest can not 

only correct error correspondences but handle some occlusions. After getting matched 

points, we use these correspondences to find a 3D point set and camera matric by 

bundle adjustment (BA) that minimizes re-projection error. Then, we use the idea of 

spectral matting to refine the 3D point set. Finally, we build a 3D model with the 

refined point set. 
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Chapter 1 Introduction   

 The task of finding correspondences between two or more images of the same 

scene or object is part of many computer vision applications, such as camera 

calibration, 3D reconstruction, image registration, and object recognition. In object 

recognition areas, researchers take many reference images that include target objects, 

and build these reference images in data base. Moreover, they can recognize target 

objects by matched correspondence result. In general, testing images may be taken 

from any viewpoints. That means, testing images will be distorted due to large 

perspective distortion and occlusion. In such cases, solutions for short baseline stereo 

matching cannot work well for wide baseline stereo. On the other hand, for pose 

estimation problems, it may be necessary to compute depth from two or more widely 

separated cameras, such as a surveillance application which may install cameras 

widely. Thus, wide baseline stereo matching problems become more important in 

recent years.  

 In 3D reconstruction areas, Microsoft developed a photo tourism system [1] in 

2006 (shown in Figure 1-1) , by which users can explore photo collections in a 3D 

environment. They built a 3D virtual environment from photos collected from the 

internet. Many of the photos were taken from many viewpoints. Thus, matching these 

photos should rely on wide-baseline matching techniques. These examples reveal that 

wide baseline stereo matching problems become more important in recent years. 

 In the literature, quite a few work focus on finding correspondences by objects’ 

local gradient information so that the same object’s shape in different views might 

possibly be identified. However, objects shape will distort due to perspective 

transform. Thus, some other researchers use machine learning approach to solve this 

problem. 
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(a) Photos from internet             (b) 3D photos                     (c) 3D environment 

Figure 1-1 photo tourism: exploring photo collections in 3D [1] 

 

 In our 3D reconstruction system, likes many others. we first locate the interest 

points from training images using the method in DoG (Difference of Gaussian). Then 

the identified interest points are matched by means of the technique of the random 

forest [2]. Random forest is a machine learning approach that treats the matching 

problem as a classification problem. 

Random forest can match interest points (keypoints) well, because random forest 

can naturally handles multiclass problems and it is robust and fast. In order to estimate 

3D information, we need more point correspondences, which require larger memory 

capacity. So we first match the keypoints that have sufficient texture information 

(some regions with higher texture), and propagate these keypoints’ correspondences 

to neighbors by the CRF model. Therefore, our matching system requires less 

memory capacity and gets more accurate result than the SIFT and random forest [3].   

 In this thesis, we will introduce some backgrounds in Chapter 2. Chapter 3 will 

present our proposed method for wide-baseline stereo matching technique, 

experimental results are shown in Chapter 4, and we will give some conclusions in 

Chapter 5. 
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Chapter 2 Backgrounds 

 In the area of wide-baseline stereo matching, we can divide existing approaches 

into two branches. One is “Local” approach, many researchers try to find some 

appropriate descriptors that are insensitive to light changes and perspective distortions, 

e.g. SIFT [4],SURF[5], GLOH [6] (Gradient location and orientation histogram). 

These approaches rely on counting the local gradient orientation histograms to 

measure the similarity of pixels across images. But in wide baseline stereo, occlusions 

and perspective transformations become larger than short baseline stereo. Thus, wide 

baseline distortions will make these descriptors become weakly. In other words, 

appearance features (gradient, color …) can’t work very well because of serious 

distortions and occlusions. In recent years, some researchers [2, 3] proposed machine 

learning based method to recognize local deformed patches. In Section 2.1, we will 

introduce these local approaches in more details. 

The other branch is “Global” approach. Traditional global approach favors 

simple pixel differencing, correlation over every small window [7]. They rely on 

optimization techniques, such as graph-cuts [8] to enforce spatial consistency. In 

addition, it is difficult to tune the window size in global the approaches, as a large 

window is tolerable to perspective variations and occlusions while a small window 

does not bring enough information. 

 Moreover, texture-less is another main challenge that needs to be handled using 

either a large window or a small window, due to that the texture-less regions do not 

contain enough information. The technique we proposed addresses both the 

texture-less and occlusions issues. In our system, we designed a new descriptor to 

handle the occlusion areas, and we apply the CRF model to deal with texture-less 

regions.  
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2.1 Local Approach 

 In this section, we will introduce two kinds of local approaches, appearance 

feature based and machine learning based. In Section 2.1.1, we will introduce 

appearance feature based method – SIFT, SURF and GLOH. In Section 2.1.2, we will 

introduce two machine learning based methods.  

 

2.1.1 Appearance feature based method    

 The most common appearance feature based approach is Lowe’s method named 

Scale Invariant Feature Transform (SIFT) [4]. As SIFT transforms image into 

scale-invariant coordinates relative to local features, it follows four stages to generate 

the set of image features: 

The first stage searches over all scales and image locations. It is implemented 

efficiently by using a Difference of Gaussian (DoG) function which identifies 

potential interest points that are invariant to scale and orientation.  

The second stage computes dominant orientation assigned to each keypoint 

location based on local image gradient directions. All future operations are computed 

on image data that has been transformed relative to the assigned dominant orientation, 

scale, and location for each feature, so they can provide invariance to these 

transformations. 

The third stage measures gradients at the selected scale in the region around each 

keypoint. These are transformed into a representation that allows for significant levels 

of local shape distortion and change in illumination. In Lowe’s implementation, the 

descriptor has 128 bins (16 grids and 8 orientations). As illustrated in Figure 2-1, it 

shows a part of grids. 
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                     (a)                       (b) 

 Figure 2-1 (a) Image gradients (b) Keypoint descriptor (4 grids) [4] 

 

The final stage is finding the best candidate to match each keypoint which is 

found by identifying its nearest neighbor in the database of keypoints from images. 

The nearest neighbor is defined as the keypoint with minimum Euclidean distance for 

the invariant descriptor. That means, two points which have the nearest distance 

features are similar. Figure 2-2 shows a SIFT matching result. 

 

 

 

 

 

 

Figure 2-2 SIFT matching result [4] 

 

For image matching and recognition, SIFT features are extracted from a set of 

reference images and stored in a database. A new image is matched by comparing 

these SIFT features from the new image to this previous database and finding 

candidate matching. Thus, it can recognize the new image according to SIFT 

matching result. A big problem of SIFT is that SIFT features cannot separate 
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repetitive patterns well. In Figure 2-2, there are some similar corners that SIFT can’t 

recognize. Our system will overcome this problem. 

 Figure 2-3 some keypoints detected by DoG in two views 

  

Bay, H. and Tuytelaars, T. perform Speeded up robust features (SURF) [5] for 

speed up computation time. The SURF detector is based on the Hessian matrix but 

uses a very basic approximation, just likes DoG which is a very basic Laplacian-based 

detector.  It relies on integral images to reduce the computation time.  

 

 

 

 

 

 

 

 

 

 

Figure 2-4 SURF detector is an approximation of DOG [5] 

 

(DoG) 



 

7 
 

The SURF descriptor describes a distribution by Haar-wavelet responses within 

the interest point neighborhood. Again, they exploit integral images for speed up. 

Moreover, only 64 dimensions that include 4 x 4 square sub-regions and each 

sub-region contain four features (dx, |dx|, dy, |dy| ), The lower dimensions are used to 

reduce the time for feature computation and matching. 

 

 

 

 

 

 

 

 

Figure 2-5 SURF descriptor is a calculation of Haar wavelet [5] 

 

Gradient location and orientation histogram (GLOH) is a new descriptor, which 

is an extension of the SIFT descriptor. It is designed to increase its robustness. They 

compute the SIFT descriptor for a log-polar location grid with three bins in radial 

direction  and 8 in angular direction, which results in 17 location bins shown in 

Figure 2-6. This gives 272 bins histogram. 
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 Figure 2-6 (a) Detected region (b) Gradient image and location grids  

(c) Dimension of histograms (d) Four of eight orientation planes (e) Cartesian (SIFT) and the 

log-polar location grids (GLOH) 

 

However, the drawback of appearance feature is that features will deform 

significantly as the baseline between views becomes wider. So we will use appearance 

features with CRF model to overcome this problem.  

  

2.1.2 Machine learning based method 

  This section explains two machine learning based methods, cloth motion 

capture [10], and keypoint recognition using random trees [2, 3, 11-14]. In [10], a 

similar result [10, 2] is obtained by training the system using multiple views of a 

target object. In [10], they store all the SIFT features from these views, and expend 

keypoint patch set by using a 2 x 2 transformation matrix to scale the reference image. 

As shown in Figure 2-7 [10], D. Pritchard simulates different oblique views of the 

reference patch. For each of these scaled oblique patches, they collect a set of SIFT 

features. Finally, these collected SIFT descriptors are merged into the reference 

feature set, and D. Pritchard uses a novel seed-and-grow approach to adapt the SIFT 

algorithm to deformable geometry. That means, D. Pritchard builds a bag of features 

[15] and matching against all of them.. But when the large perspective distortions and 

occlusions make SIFT features deformable, gradient information becomes unreliable. 
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 On the other hand, V. Lepetit and P. Fua published “keypoint recognition using 

random trees” [2]. They train the random forest classifier with huge amount of simple 

binary robust independent elementary features [16] to recognize keypoints. We will 

describe how the random forest classifier can be applied to our system in more details 

in Chapter 3.  

In summary, the random forest technique relies on classifying each keypoint 

according to simulated view set, and recognizes them at test patterns.  

In next section, we will discuss global approach, and this approach matches 

correspondences according to all image pixels’ information. 

 

 

 

 

 

 

 

 

 

 Figure 2-7 top row: a reference patch horizontally scaled oblique view. Bottom row: other 

oblique views. [10] 

 

2.2 Global Approach 

 In global approach, we need to find out the overall output disparities according to 

all descriptors which are gotten from all image pixels. The global approach turns the 

matching problem to an optimization problem. However, large descriptor windows , 

which are extracted from image pixels, are seriously affected by perspective 

distortions and occlusions. Thus, wide-baseline methods [9, 17] tend to rely on very 

small descriptor windows or revert to point-wide similarity measures, which loses 
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more discriminative power than what larger windows could provide. 

 However, descriptors are therefore proved their usefulness in dense (global) 

matching. But extending their use over all the pixels incurs huge computational 

burden. In this research, we will focus more on getting better performance than on 

alleviating the computational burden. Thus, we will use large (24 x 24) windows to 

represent each image pixel with designed descriptors, which take into account the 

perspective distortions and occlusions. After representing all pixels, we solve the 

optimization problem by the graph cut algorithm to get the optimal disparities.   
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Chapter 3 Proposed System 

 Wide baseline stereo matching techniques have been studied for many years. In 

the 3D film industry, a movie scene is usually captured by stereo camera (or camera 

array) to create a 3D environment. To get the 3D information, they need a stereo 

matching technique to find the correspondences across images, and then estimate the 

scene objects’ coordinates in the 3D environment. Most of the current stereo systems 

are based on short-baseline techniques, but we'd like to adopt wide baseline 

techniques to reduce the number of cameras without large loss in accuracy. 

In our wide baseline stereo system, we widely place a few cameras around the 

scene we want to catch. Here, we place the cameras at identical high without rolling. 

After the capture of multiple images, we apply our algorithm on these images to 

create a 3D environment model. Figure 3-1 shows a schematic diagram of our 

multi-camera stereo system.   

Our system consists of three modules. First, we match keypoints on image pairs  

by using the random forest technique[2]. Second, we apply an CRF model with spatial 

constraint to refine the correspondences. Finally, we build a 3D model based on the 

correspondence result. In the following sections, we will introduce each of these three 

modules.  

 

 

 

 

 Figure 3-1 three-view stereo system [18] 
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3.1 Keypoint Matching by Random Forest 

In wide baseline matching problem, the views we caught from different cameras 

may be distorted severely, and come out more occlusion region than short- baseline 

stereo. For example, Figure 3-2 shows that the points may be occluded by something 

which is closer to camera. Figure 3-3 shows that perspective transformation 

phenomenon. This phenomenon is the main challenge of wide baseline matching, and 

it makes objects’ geometry appearance looks different. For these reasons, we will start 

to match images from keypoints firstly by random forest, and we will discuss this 

algorithm in the next section.  

 

 

 

 

  

   

  

 

 Figure 3-2 Red region is occluded in the other view 

 

 

 

 

 

 

 

 Figure 3-3 Perspective distortion 
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3.1.1 Wide baseline matching as a classification problem 

Random forest takes matching as classification problem. It relies on matching 

keypoints found in the other image, and we apply random forest classifier to 

recognize keypoints in difference images if they are the same. Here the task can be 

divided into two stages: the training stage and the testing stage. In training stage, we 

apply Lowe’s method [4] to detect keypoints. The SIFT approach, which uses the 

difference of Gaussians (DoG) algorithm, involves the subtraction of one blurred 

image of a grayscale image and another less blurred image The blurred images are 

obtained by convolving the original grayscale image with Gaussian kernels having 

differing standard deviations, and keypoint locations are defined at maximum or 

minimum of the result of DoG function applied in scale space. Therefore we can make 

sure of that keypoints can be detected in difference scale. After having detected 

keypoints, we apply 24 x 24 patch around the keypoint ,and deform patches by 

rotating them along y-axis -50°~50° and z-axis -50°~50° by perspective transform to 

simulate possible cases we may catch on the other view, Figure 3-4 shows an 

example:  

 

 
 Figure 3-4 Rotated patches 

 

After we deform all patches, we treats all patches which were deformed around a 

keypoint as a class, then we feed patches into random forest classifier to classify these 

http://en.wikipedia.org/wiki/Convolution
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patches in testing stage, and we hope that each wide baseline perspective deformed 

patches we simulated can be recognized in testing stage. 

 

3.1.2 Training the forest with random binary features 

 After we get some patches from perspective transformation, we need to classify 

them by some classification algorithms. There are several classification methods, such 

as K-Nearest Neighbor, Support Vector Machines or Neural Networks, that can be 

chosen to implement the classifier. Among these, we have found randomized forest is 

well suitable because they can handle multi-class problems and are robust and very 

fast.  Figure 3-5 shows a randomize tree, each internal node contains a simple test 

that splits the space of data to be classified, each leaf contains an estimate based on 

training data of the posterior distribution over the classes 

 

 

 

 

 

 

 

 

 

 

 Figure 3-5 Randomize tree 

 

 In our randomized tree, the tests performed by binary feature at the nodes are 

simple binary tests based on the difference of intensities of two pixels, we write these 

tests as Equation 3.1:  

                                                                 (3.1) 

 

1,      if (a )  (b )

0,          otherwise      

if f i

i

I I
f


 

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,where I(x) is the intensity at pixel location x, the patch size is 24 x 24, so the total 

number of possible pixel locations is about 165,600, which is too high to be 

efficiently realized in practice. Thus, we only choose some good features to classify 

patches. In next section, we will discuss how to choose the good features. After we 

select good binary features, we use each feature to classify patches layer by layer. 

When training patches reach leafs, we assign distributions in these leafs.      

 

3.1.3 Feature selection 

 In this thesis, we employ two methods to select the features. The first method 

bases on information gain minimization approach where the information gain is used 

to evaluate the data separation efficiency. The gain is caused by classifying a set S of 

training patches in feature space with several classes    according to a given test is 

measured as Equation 3.2: 

 

          ∑
    

                            (3.2) 

 

, where E(s) is the Shannon’s entropy ∑   
 
            with    is the probability of 

class j. Thus, if    is a good feature set, the total E will be small. The process of 

selecting a feature set is repeated for each non-terminal node, we only use the training 

patches falling in that node. Moreover, the process is stopped when the node receives 

too few patches. 

 The second method is based on greedy method that is much faster and simpler. 

Instead of finding minimum of Equation 3.2, we simply pick some random feature set 

to build a tree, and we choose the one set whose recognition rate is the highest. For a 

good recognition rate, we will use multiple trees that could partition the patches space 
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in different manners. Figure 3-6 shows the data space separated by feature set, and our 

system is based on the second method.  

 

 

 

 

 

 

 Figure 3-6  (a), (b) are different trees’ separating results, different color represent different 

classes 

 

3.1.4 Keypoint classification 

After we trained random forest classifier, the classifier is able to recognize all the 

patches we simulated in the training stage. Thus, we can use the random forest 

classifier to solve the matching problem. Figure 3-7 shows the process of this work. 

 

 

  Figure 3-7 Keypoints can be recognize by trained random forest 
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 As we trained random forest completely, a testing patch is classified by dropping 

down a tree and according to the leaf probability. Figure 3-8 shows the matching 

results. 

 

 

Figure 3-8 Matching result of random forest (Cleaner results are shown in Chapter 4.) 

   

 

Figure 3-9 Some matches of Figure 3-8 

 

Figure 3-10 The same points matched by SIFT 
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3.1.5 Matching results after random forest processing 

In Figure 3-8 Matching result of random forest, we see that keypoints can be 

matched well using the technique of the random forest. Since we use thousands binary 

features to describe our deformed patches across all classes, the random forest 

classifier can be better than SIFT in some points (see Figure 3-9 and Figure 3-10). But, 

unfortunately, random forest still cannot match the keypoints with serious distortion 

well. In the next stage (dense matching), we will correct these correspondences by 

Conditional random field. 

 

3.2 Dense Matching by Conditional Random Field 

After we match all the keypoints on testing images by random forest, we use a 

conditional random field (CRF) model to remove incorrect matches and then rematch 

these keypoints. In principle, we verify the matches by checking their neighbors. If 

the difference of disparities between neighboring keypoints is too large, the keypoint 

match is probably incorrect. This idea is implemented based on the proposed CRF 

model. 

 

3.2.1 Conditional random field (CRF)  

Conditional random field is a discriminative undirected probabilistic graphical 

model. It is often used for labeling or parsing sequential data. A conditional random 

field is similar to a Bayesian network in its representation of dependency. A random 

field is said to be a conditional random field if it satisfies the following properties. 

 

    P f > 0 ∀f ∈ F  P si ivi y                               (3.3) 

                          P(𝑓 |𝑓 −{ }, 𝑉 )  𝑃 𝑓  𝑓  , 𝑉     M rk vi ni y                  (3.4)  

http://en.wikipedia.org/wiki/Bayesian_network
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We utilize this property to describe the relation between disparities. In order to 

specify the concept of CRF, we first introduce the following notations in Figure 3-11, 

where   is a site (pixel), 𝑓  is the value at   (disparity), and 𝑉  is intensity of Pixel 

(Site) i. Here, we describe the relationship based on the second-order neighborhood, 

where there are eight neighbors around Site   and the aforementioned Markov 

property is satisfied. That is, the value at Site   (𝑓 ) conditionally depends on its 

neighborhoods. Based on this relation, we can infer a keypoint’s disparities (𝑓 ) from 

its neighborhoods.  

We use the following diagram to illustrate the structure of CRF depicted in 

Figure 3-12. In Figure 3-12 (b), orange nodes represent the output values (disparity) 

and red nodes represent the pixel intensity values. We define the disparity property by 

their pixel intensity. If the intensity values between two neighbor pixels are similar, 

their disparity values should also be closely related. 

  

  

 

 

 

 

 Figure 3-11 3X3 neighborhood around a pixel 

 

To double check the matches of image keypoints, we design a suitable descriptor 

for each keypoint. Here, we use a modified HOG feature to check if a match iscorrect 

or not by minimizing the L2 norm of the MHOG features. The detail of the MHOG 
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feature will be introduced later. In our system, we formulate the above concept as the 

minimization of the following energy.  

 

  d  ∑ 𝜑𝑝 𝑑
𝑝 + 𝛼∑ 𝜑𝑝𝑞 𝑑

𝑝, 𝑑𝑞 𝑝𝑞𝑝 , q ∈ Neighb rs  f p.         (3.5) 

 

In Equation (3.5), 𝑑𝑝 is the disparity value at Pixel p, 𝜑𝑝 𝑑
𝑝  is a cost 

function between Pixel p in the left image and Pixel p + 𝑑𝑝 in the right image. We 

will use the modified HOG (MHOG) feature to measure the degree of similarity 

between two pixels across images. Moreover, 𝜑𝑝𝑞 𝑑
𝑝, 𝑑𝑞  is a smoothness term 

which put constraints over the disparity values at p and q, where q is a neighbor of p. 

These candidate disparities have already been found by random forest at keypoints, so 

we can choose the best disparity value at each pixel from these candidates. We solve 

the CRF optimization problem (shown in Equation 3.5) to find these disparity values. 

In the next section, we will introduce Histogram of Orientated Gradients (HOG) and 

introduce our modified HOG feaute.   

 

 

 

 

. 

(a)                                     (b) 

 Figure 3-12 CRF model 

 

3.2.2 Histograms of Orientated Gradients (HOG) 

The Histograms of Orientated Gradients (HOG) descriptor is based on evaluating 

the normalized local histograms of image gradient orientations in the grids. In Figure 
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3-13(a), an input patch is divided into several small grids, with each grid containing 8 

orientated gradient magnitudes. In Figure 3-14, it shows an example of HOG for 

human detection [19, 20]. Here, the HOG descriptor is used to describe a human 

pattern. Because the CRF model has contained spatial information, we can merge all 

histogram into a grid. This causes the reduction of dimension in the proposed 

modified HOG feature.   

     

 

 

 

 

 

 

(a) HOG cells        (b) Eight orientations 

 Figure 3-13 HOG descriptor 

 

 

 

 

 

 

 

 

 

 Figure 3-14 Human’s HOG descriptor [20] 
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3.2.3 Modified HOG for distortion and occlusion handling    

 Occlusion is one of major challenges in correspondence problem, particularly in 

the wide-baseline case. For wide-baseline cases, the total occlusion areas become 

larger and more distorted than that in short-baseline cases, Here, we design the 

modified HOG descriptor to detect occlusion regions and ignore those occluded 

regions. In other word, we only extract un-occluded regions. 

  We modify the HOG descriptor by separating the original descriptor into two 

parts: left part and right part. Figure 3-15 (b) shows the modified HOG descriptor. 

When the modified descriptor is placed on an occlusion boundary, the differences 

between the left part and the right part will be large. Here, we can define an O 

function, as expressed in Equation 3.7 to describe this property.   

 

 

 

 

 

 

 

Figure 3-15 Modified HOG descriptor 

 

Now we apply the MHOG descriptor to the first term of the CRF model, MHOG 

is designed to handle occlusion effect. Here, we can write the data cost function as 

 

               𝜑𝑝 𝑑
𝑝  [𝐻𝑂𝐺      𝐻𝑂𝐺   + 𝑑𝑝 ]*O (p)            (3.6) 
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                    O p   {
1         ,  𝑓   𝑒𝑓𝑒  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑟  ℎ𝑡  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 𝛾 

𝛤         ,  𝑓   𝑒𝑓𝑒  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑟  ℎ𝑡  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≥ 𝛾
    (3.7) 

 

In Equation 3.6, O(p) is an additional penalty function. Here, we check the 

feature vector at pixel p in the left image with the feature vector at the corresponding 

pixel p + 𝑑𝑝 in the right image. If the left-part feature distance of MHOG and the 

right-part feature distance of MHOG are inconsistent (e.g. one distance is small, 

another one is big), O(p) will multiply the data cost function in Equation 3.6) by 𝛤. In 

this case, the pixel p is more likely to be labeled as occluded. Figure 3-16 shows an 

example.       

 

 

 

 

(a) Input images 

(b) 𝛤  = 2                                  (c) 𝛤  3 

Figure 3-16 Result comparison for different 𝛤 values 
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Figure 3-17 SIFT flow [21] 

 

In comparison, as shown in Figure3-17, SIFT flow cannot detect occlusion 

regions. Hence, occluded regions are forced to match the most similar region. 

 

3.2.4 Matching points by MHOG with spatially constraint 

 Now we will apply the MHOG descriptor to the CRF model. The adopted 

MHOG descriptor has a 24 x 24 window around pixels with two grids and eight 

orientations. Hence, the first term 𝜑𝑝 (data cost) of the CRF formula is a distance of 

measure of the MHOG features between Pixel p on one image and Pixel p + 𝑑𝑝 on 

the other image. Since the MHOG provide the statistical information about gradient 

information, it can’t provide us enough spatial information. Hence, we use the second 

term to compensate for the lack of spatial information. In our experiments, we found 

that if a larger window is used, the MHOG feature component along the vertical 

orientation would be similar in different views similar. This is because we have placed 

cameras at the similar height without rolling. This character is used when we match 

feature pairs across images.  

In summary, our CRF model has two terms, with the first term 𝜑𝑝 𝑑
𝑝  being 

discussed above. Our system will choose the disparity values that minimize the 

modified HOG distance over the whole image. The second term of CRF model is a 



 

25 
 

regularization term, which regulates the first term’s choice. This second term 

constrains adjacent pixels with similar intensity values to choose similar disparity 

values. This is because if a pixel and its neighbors have similar colors, then they 

probably come from the same surface of an object.  

The regularization term of the CRF model is designed to be 𝛼 ∑ 𝐺  𝐼𝑝  𝐼𝑞  ∗𝑝𝑞

  𝑑𝑝, 𝑑𝑞 , where p and q are neighbors and 𝐼𝑝 is the intensity value of Pixel p. In 

this formula, if  𝐼𝑝  𝐼𝑞| < C (In our experimentation, C is chosen to be 30), 

𝐺  𝐼𝑝  𝐼𝑞   = 1. Moreover,   𝑑𝑝, 𝑑𝑞  is the L2 norm of the disparity difference 

between 𝑑𝑝 and  𝑑𝑞  . If two neighboring pixels have similar intensity values, they 

should choose similar disparity values. 

 

 

 Figure 3-18 Matching result based on the CRF model 
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3.2.5 Model formulation 

In Table 1 we summarize all related formulas of our CRF model. 

 

Table 1 Model formulation 

Hidden State 𝑑 = (𝑑𝑥
  , 𝑑𝑦

 )、 𝑑  (𝑑𝑥
  , 𝑑𝑦

 ) 、 𝑑3   (𝑑𝑥
3 , 𝑑𝑦

3) 、 … 

Total cost 

 

Data cost     Smooth cost 

Data cost 𝜑𝑝 𝑑
𝑝   |𝐻 ( 𝑥, 𝑦 )  𝐻 (𝑥 + 𝑑𝑥

𝑝,  𝑦 + 𝑑𝑦
𝑝)  *O(x, y) - 𝐾𝑝 𝑑

𝑝  

Occlusion 

function 

𝑂 𝑥,  𝑦      {  
1    , if  bs   𝑒𝑓𝑒  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑟  ℎ𝑡  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  < γ
Γ    , if  bs   𝑒𝑓𝑒  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑟  ℎ𝑡  𝑎𝑟𝑡 𝑑 𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   ≥ γ

 

Prior Kp d
r    { 

k    , 𝑑𝑟 is se ec ed fr m r nd m f res  

0   ,     her
, p∈ Keyp in s 

Smooth cost 𝜑𝑝𝑞 𝑑
𝑝, 𝑑𝑞  = 𝐺  𝐼𝑝  𝐼𝑞   ∗   𝑑𝑝 - 𝑑𝑞    

Connection 

weight 

𝐺  𝐼𝑝  𝐼𝑞  = { 
1    , if   𝐼𝑝  𝐼𝑞 < 𝐶

0   ,     her
 

           

 

3.3 3D Model Reconstruction 

 

3.3.1 Camera calibration  

 After we have matched images and gotten pixel correspondence, we can use the 

correspondence to estimate the relative positions among the cameras. In other words, 

we can estimate each camera’s extrinsic parameter matrices 𝑅𝑛 and 𝑇𝑛, where  𝑅𝑛 is 

a rotation matrix, 𝑇𝑛 is a transformation matrix, and 𝑥′ = Rx + T. Figure 3-14 shows 

an example of the camera geometry. 

 After the estimation of the transformation matrices R and T, we can calculate the 
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3D to 2D projection matrix P, P = K*(R|T). After that, we can use the projection 

matrix P to find a 3D point cloud. Here, we apply the bundle adjustment algorithm 

used in [5] to build the 3D model.  

 

 

 

 

 

 

 

 

 

 

  Figure 3-19 Camera geometry 

 

 

3.3.2 Bundle adjustment   

 The bundle adjustment in [22] can simultaneously refine the 3D coordinates to 

describe the scene geometry with the relative motion parameters. The bundle 

adjustment is based on the mathematical expression in Equation 3.8.  

                   

                   ,  ,                (3.8)

              

where 𝑥𝑘  is the point correspondence between each image pair (in our system m = 3), 

𝑃𝑘 𝑋   is a 3D point 𝑋  projected to Image k via the projection matrix 𝑃𝑘, and D(x, y) 

is the L2 norm distance between x and y. After minimizing the sum of projection error 

of all points, we can estimate the 3D point set that coarsely describes the view 

http://en.wikipedia.org/wiki/Coordinate_system
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geometry in front of cameras. The detail will be explained in the next section. After 

the estimation of the 3D point set, we use the spatial matting algorithm in [23, 24] to 

re-define the 3D point set. In Figure 3-20, we illustrate the finding of a 3D point cloud 

that minimizes the projection errors between the projected points on the 2D image and 

the original image points with inliers. To suppress outlier points, we use the RANdom 

SAmple Consensus method in [25] (RANSAC) to identify the inlier points.      

 

 

 

 

 

 

 

 

 

 

  

  

Figure 3-20 Estimation of 3D points by using bundle adjustment 

 

3.3.3 Random sample consensus (RANSAC) 

Random sample consensus is an iterative method to estimate the parameters of a 

mathematical model from a set of observed data which may contain outliers. We use 

RANSAC to estimate a camera model that fits the largest amount of inlier matches 

across images. Here, we use RANSAC to calculate the projection matrix for the first 

iteration of bundle adjustment. 
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Figure 3-21   (a) Data set with many outliers           (b) Fitted line with RANSAC 

 

 

3.3.4 3D point set refinement by matting refinement 

 In Section 3.3.2, we build a 3D point cloud by the bundle adjustment process. 

However, the outcomes are still not good enough. There are some false matches and 

several unmatched regions at occlusion pixels. We assume that our matches around 

keypoints are accurate and we build a confidence map CM(x, y). In Equation 3.9, if 

pixel (x, y) is near a keypoint, has an inlier matches (picked by RANSAC), and has no 

occlusion, then the confidence value at that pixel is equal to one; otherwise, the 

confidence value is zero.  

 

      𝐶𝑀 𝑥, 𝑦  { 
1  , if    x, y ∈  Ne r keyp in s ∩ In iers ∩ N    cc uded  

0   ,     herwise
    (3.9) 
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  Figure 3-22   (a) Locations of keypoints                            (b) Confidence map  

 

 After we estimate the depth information at these locations whose confidence 

value is one, by using the spectral matting method in [23, 26], we propagate these 

estimated depth information to these unknown regions by minimize the cost function 

in Equation 3.10, where L is a laplacian matrix,    is a prior map (estimated depth 

map at confidence-one pixels). In Equation 3.12,     is a 3×3 covariance matrix,    

is a 3×1 mean vector of the colors in a window  𝑘, and I3 is the 3×3 identity matrix. 

The matting affinity    in Equation 3.11 is defined by pixels’ color and its spatial 

relations (In Equation 3.12).     

 

                                              𝛼  𝛼+                               (3.10) 

 

                            L = D –                            (3.11) 

 

    , 𝑗   ∑
 

 𝑊𝑘 
 1 +  𝐼  𝜇𝑘 ( 𝑘 +

𝜖

 𝑊𝑘 
𝐼3)

− 

𝑘   ,  ∈𝑊𝑘
 Ij  𝜇𝑘   .       (3.12) 

  

In Equation 3.12, D is a diagonal matrix, whose elements are defined as D 

= ∑ 𝑊  , 𝑗  
   . W is a sum of matrix   .    is a prior map, at which we have 
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estimated the depth information at pixels with CM(x, y) =1. After we solve the 

optimization problem in Equation 3.10, we can get all pixels’ depth values. A result of 

the aforementioned process is shown in Figure 3-23. 

 

 

Figure 3-23 Refined depth map (remove sky and ground) 
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Figure 3-24 Overview of spectral matting 

 

 

3.4 Summary  

 In our system, we combine local and global approaches to find the 

correspondence of image pairs. First, we use randomized forest to obtain some rough 

correspondence of image keypoints. With the initial correspondence, we can 

propagate these keypoints’ correspondence information to the entire image by solving 

a global optimization problem. Moreover, the CRF model can correct some errors by 

using spatial constraints. After we have gotten the disparity values of all pixels, we 

use the RANSAC method to find inliers whose distribution fits the camera geometry 

the most. After that, we use these inlier disparities to build a 3D point cloud and refine 

the 3D point cloud by spectral matting. Finally, we convert the point cloud to a mesh 
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of triangles and build the 3D model of the captured scene. The overall system flow is 

shown below. 

 

 

 Figure 3-25 System flow 
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Chapter 4 Experimental Results 

  In this chapter, we show some experimental results. In Section 4.1, we will 

demonstrate some matched correspondences, outcomes of random forest and the CRF 

model processing results, respectively. We can find that random forest only matches 

keypoints coarsely. In the next stage, the proposed CRF model will correct random 

forest’s result and also deal with those pixels lacking texture information.  

 

4.1 Matched results 

 

4.1.1 Matched results by using random forest  

In Figure 4-1, an outdoor case, we observe that random forest can match some 

keypoints correctly. Figure 4-2 shows the correctly matched points. The match rate 

is about 30/100.  

 

 

Figure 4-1Matched feature pairs by random forest 
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Figure 4-2 Some correct matches 

 

 

In Figure 4-3 and Figure 4-4, we show the matching of some high-texture keypoints. 

(Red circles mean the incorrect correspondence.) 

 

Figure 4-3 Matched result by random forest (part1) 

Figure 4-4 Matched result by random forest (part2) 
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  In Figure 4-5, there are many repetitive patterns and regions with texture. As 

expected, the performance of this case is not good. However, after the CRF processing, 

we can still obtain many correctly matched pairs. 

 

 
Figure 4-5 Matching result of random forest 
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4.1.2 Matched results after CRF correction 

Figure 4-6 Result of CRF 

Figure 4-7 Some matches of Figure 4-6 

 
Figure 4-8 Some matches of Figure 4-6 

 

 In Figure 4-6, two images with difference exposure levels are matched by our 

system (random forest + CRF). We can find that CRF can correct some erroneous 

correspondence (some erroneous correspondences by random forest are shown in 

Figure 4-1) and can propagate a keypoint’s correspondence information to its 
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neighbors. (Here, we only demonstrate some keypoint correspondences.) 

Next, we compare the SIFT matching result with our system, Figure 4-10 shows 

some correspondence results of our system. Note that the cameras are separated very 

widely and there are many low-texture areas and repetitive patterns in two images. 

The matching in this case is very difficult for the SIFT approach. 

Figure 4-9 SIFT result (many mismatched points over the region with repetitive patterns) 

 

(a) Our system (RF + CRF) can match repetitive patterns better than SIFT 

 

(b) Our system (RF + CRF) can match repetitive patterns better than SIFT 

Figure 4-10 Some matched results of our system 
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In our system, we use a CRF model to match points with spatial constraints. 

Hence, we can identify similar patterns at difference locations. In brief, we can match 

keypoints better than the SIFT method.  

 
 Figure 4-11 Some matched results of our system 

 

 

 

 



 

40 
 

4.2 3D Reconstruction  

This section demonstrates some results of 3D reconstruction. Figure 4-12 shows 

our reconstruction result. It fails in these white lower texture regions, since these areas 

contain too little information for accurate matching. 

 

   (a)                            (b)                            (c) 

(d)                             (e)                             (f) 

Figure 4-12 (a), (b), (c) Input images (d), (e), (f) Corresponding results of 3D reconstruction  
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Figure 4-13 Multi-view database “fountain” [7] 

In Figure 4-13, we show the multi-view database “fountain” [7]. In [27], Hiep, 

V.H. and Keriven, R. reconstructed 3D models by using 11 stereo images. Their 

results are shown in Figure 4-16. Here, we only use 3 of the 11 images (the 3 images 

with red frame in Figure 4-13) to build the 3D model. As illustrated in Figure 4-14, 

we can see the object shape clearly in our reconstructed model.     

(a)  

(b) 

Figure 4-14 (a) Input images (b) Reconstructed 3D model 
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    Figure 4-15 First row: short-baseline input images. Second row: reconstructed 3D models 

  

 In Figure 4-15, we use short-baseline image pairs to build the 3D model. Here, 

we choose the images with green frames in Figure4-13. We can find that the details 

can be built more cleanly.  

 

 

Figure 4-16 Hiep, V.H. and Keriven, R.’s results 
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Chapter 5 Conclusion 

In this thesis, we proposed a wide-baseline stereo matching approach for 3D 

reconstruction. Our system can match images in difference illuminations with the 

change of viewpoint orientation ranging from about  40°to 40°. Based on random 

forest and conditional random field, the system can deal with large perspective 

distortions and occlusions. Besides, the proposed system can also deal with images 

with repetitive patterns. Matching similar patterns by using only gradient features 

usually cannot achieve robust and accurate matching. In our approach, we add the 

spatial information around each pixel to our matching strategy. With this arrangement, 

we can match similar patterns and distorted patterns well. In the last stage of our 

system, we use RANdom SAmple Consensus (RANSAC) and Bundle Adjustment 

(BA) to reconstruct 3D point cloud. Finally, we refine the 3D point cloud by using the 

spectral matting method and convert the point cloud to a mesh of triangles that 

represent the 3D model of the captured scene. 

[11] 
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