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Abstract

In this thesis, we present a. wide-baseline.stereo.systemifor 3D scene reconstruction.
We implement our system with multiple un-calibrated cameras.which are set widely.
The main challenge of'the system lies on how to.match image pairs at wide-baseline,
in which there appear:large perspective distortions and large ocelusion areas between
images. In this research,we attempt.to tackle.the-problem'based on machine learning
and optimization techniques: In erder.to match image more accurately, we apply
random forest to overcome large perspective distortions, and add Conditional Random
Field (CRF) with modified Histogram of Oriented Gradients (HOG) to solve the
matching problem. Combining conditional random field with random forest can not
only correct error correspondences but handle some occlusions. After getting matched
points, we use these correspondences to find a 3D point set and camera matric by
bundle adjustment (BA) that minimizes re-projection error. Then, we use the idea of
spectral matting to refine the 3D point set. Finally, we build a 3D model with the

refined point set.
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Chapter 1 Introduction

The task of finding correspondences between two or more images of the same
scene or object is part of many computer vision applications, such as camera
calibration, 3D reconstruction, image registration, and object recognition. In object
recognition areas, researchers take many reference images that include target objects,
and build these reference images in data base. Moreover, they can recognize target
objects by matched correspondence result. In general, testing images may be taken
from any viewpoints. That means, testing images will be distorted due to large
perspective distortion and occlusiongln such cases, solutions for short baseline stereo
matching cannot work well.for wide baseline stereo.*On‘the other hand, for pose
estimation problems, it may be necessary to compute depth from two or more widely
separated cameras, such as asurveillance application which may install cameras
widely. Thus, wide baseline stereo matchingproblems become:more important in
recent years.

In 3D reconstruction areasy Microsoft developed.a photo tourism system [1] in
2006 (shown in Figure 1-1) , by‘'which users-can‘explore photo collections in a 3D
environment. They built a 3D virtual environment from photos collected from the
internet. Many of the photos were taken from many viewpoints. Thus, matching these
photos should rely on wide-baseline matching techniques. These examples reveal that
wide baseline stereo matching problems become more important in recent years.

In the literature, quite a few work focus on finding correspondences by objects’
local gradient information so that the same object’s shape in different views might
possibly be identified. However, objects shape will distort due to perspective
transform. Thus, some other researchers use machine learning approach to solve this

problem.



BB o 5 IR M i
mrmiE 4 A T
HmEER DB :
TYYL PR ahhe

(a) Photos from internet (b) 3D photos (c) 3D environment

Figure 1-1 photo tourism: exploring photo collections in 3D [1]

In our 3D reconstruction system, likes many others. we first locate the interest
points from training images using the method in DoG (Difference of Gaussian). Then
the identified interest points are matched by means of the technique of the random
forest [2]. Random forest is a maching learming.approach that treats the matching
problem as a classificationyproblem.

Random forest camumatch interest points (keypoints) wellybecause random forest
can naturally handles multiclass problems and itis robust.and fast. In order to estimate
3D information, we néed more point.correspondences, which/require larger memory
capacity. So we first match the keypoints that-have sufficient texture information
(some regions with higher texture),"and propagate-these keypoints’ correspondences
to neighbors by the CRF model. Therefore, our matching system requires less
memory capacity and gets more accurate result than the SIFT and random forest [3].

In this thesis, we will introduce some backgrounds in Chapter 2. Chapter 3 will
present our proposed method for wide-baseline stereo matching technique,
experimental results are shown in Chapter 4, and we will give some conclusions in

Chapter 5.



Chapter 2 Backgrounds

In the area of wide-baseline stereo matching, we can divide existing approaches
into two branches. One is “Local” approach, many researchers try to find some
appropriate descriptors that are insensitive to light changes and perspective distortions,
e.g. SIFT [4],SURF[5], GLOH [6] (Gradient location and orientation histogram).
These approaches rely on counting the local gradient orientation histograms to
measure the similarity of pixels across images. But in wide baseline stereo, occlusions
and perspective transformations become larger than short baseline stereo. Thus, wide
baseline distortions will make these descriptors become weakly. In other words,
appearance features (gradient,color ...) can’t work very well because of serious
distortions and occlusions. In recent-years, some researchers [2, 3] proposed machine
learning based method to recognize local deformed patches. In Section 2.1, we will
introduce these local approaches in more details.

The other branch is “Global” approach. Traditional global approach favors
simple pixel differencing, correlation over every small window [7]. They rely on
optimization techniques, such as graph=cuts-{8] to enforce spatial consistency. In
addition, it is difficult to tune the window size in global the approaches, as a large
window is tolerable to perspective variations and occlusions while a small window
does not bring enough information.

Moreover, texture-less is another main challenge that needs to be handled using
either a large window or a small window, due to that the texture-less regions do not
contain enough information. The technique we proposed addresses both the
texture-less and occlusions issues. In our system, we designed a new descriptor to
handle the occlusion areas, and we apply the CRF model to deal with texture-less

regions.



2.1 Local Approach

In this section, we will introduce two kinds of local approaches, appearance
feature based and machine learning based. In Section 2.1.1, we will introduce
appearance feature based method — SIFT, SURF and GLOH. In Section 2.1.2, we will

introduce two machine learning based methods.

2.1.1 Appearance feature based method

The most common appearance feature based approach is Lowe’s method named
Scale Invariant Feature Transform (SIFT) [4]. As SIFT transforms image into
scale-invariant coordinates relative to localfeatures,.it follows four stages to generate
the set of image features:

The first stage searches over-all-scales and image.locations. It is implemented
efficiently by using a Difference of Gaussian(DoG) function which identifies
potential interest points that are invariantto scale and orientation.

The second stage computes:.dominant orientation assigned to each keypoint
location based on local image gradient directions«<All future operations are computed
on image data that has been transformed relative to the assigned dominant orientation,
scale, and location for each feature, so they can provide invariance to these
transformations.

The third stage measures gradients at the selected scale in the region around each
keypoint. These are transformed into a representation that allows for significant levels
of local shape distortion and change in illumination. In Lowe’s implementation, the
descriptor has 128 bins (16 grids and 8 orientations). As illustrated in Figure 2-1, it

shows a part of grids.
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Figure 2-1 (a) Image gradients (b) Keypoint descriptor (4 grids) [4]

The final stage is finding the best candidate to match each keypoint which is
found by identifying its nearest.neighborinthe-database of keypoints from images.
The nearest neighbor is defined as the keypoint with.minimum Euclidean distance for
the invariant descriptor=That means;-two points which-have the nearest distance

features are similar. Rigure 2-2'shows a SIET matching result.

Figure 2-2 SIFT matching result [4]

For image matching and recognition, SIFT features are extracted from a set of
reference images and stored in a database. A new image is matched by comparing
these SIFT features from the new image to this previous database and finding
candidate matching. Thus, it can recognize the new image according to SIFT

matching result. A big problem of SIFT is that SIFT features cannot separate
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repetitive patterns well. In Figure 2-2, there are some similar corners that SIFT can’t

recognize. Our system will overcome this problem.

Figure 2-3 some keypoints detected by DoG in two views

Bay, H. and Tuytelaar /‘ ,.,=-.~\4 features (SURF) [5] for
speed up computation ti / e SURF : doao \\‘& Hessian matrix but
uses a very basic approximati oG Vv ery‘basic Laplacian-based

(]
detector. It relies on.integral ima ) » computation.time.

\ 1896

Figure 2-4 SURF detector is an approximation of DOG [5]



The SURF descriptor describes a distribution by Haar-wavelet responses within
the interest point neighborhood. Again, they exploit integral images for speed up.
Moreover, only 64 dimensions that include 4 x 4 square sub-regions and each
sub-region contain four features (dx, |dx|, dy, [dy| ), The lower dimensions are used to

reduce the time for feature computation and matching.

Figures2-5 SURF descriptor.is a calculation of Haar wawvelet [5]

Gradient location and orientation histogram (GLQOH) Is a new descriptor, which
is an extension of the SIFT descriptor-lt.is.designed to'increase its robustness. They
compute the SIFT descriptor for a log-polar location grid with three bins in radial
direction and 8 in angular direction, which results in 17 location bins shown in

Figure 2-6. This gives 272 bins histogram.



Figure 2-6 (a) Detected region (b) Gradient image and location grids

(c) Dimension of histograms (d) Four of eight orientation planes (e) Cartesian (SIFT) and the
log-polar location grids (GLOH)

However, the drawback of appearance feature is that features will deform
significantly as the baseline between views becomes:wider. So we will use appearance

features with CRF model'to‘overcome this problem.

2.1.2 Machine learning based method

This section explains.two machine learning based metheds, cloth motion
capture [10], and keypoint reeognition using random trees [2, 3, 11-14]. In [10], a
similar result [10, 2] is obtained by training.the;system using multiple views of a
target object. In [10], they store all the SIFT features from these views, and expend
keypoint patch set by using a 2 x 2 transformation matrix to scale the reference image.
As shown in Figure 2-7 [10], D. Pritchard simulates different oblique views of the
reference patch. For each of these scaled oblique patches, they collect a set of SIFT
features. Finally, these collected SIFT descriptors are merged into the reference
feature set, and D. Pritchard uses a novel seed-and-grow approach to adapt the SIFT
algorithm to deformable geometry. That means, D. Pritchard builds a bag of features
[15] and matching against all of them.. But when the large perspective distortions and
occlusions make SIFT features deformable, gradient information becomes unreliable.
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On the other hand, V. Lepetit and P. Fua published “keypoint recognition using
random trees” [2]. They train the random forest classifier with huge amount of simple
binary robust independent elementary features [16] to recognize keypoints. We will
describe how the random forest classifier can be applied to our system in more details
in Chapter 3.

In summary, the random forest technique relies on classifying each keypoint
according to simulated view set, and recognizes them at test patterns.

In next section, we will discuss global approach, and this approach matches

correspondences according to all image pixels’ information.

Figure 2-7 top row: a reference patch horizontally scaled oblique view. Bottom row: other

oblique views. [10]

2.2 Global Approach

In global approach, we need to find out the overall output disparities according to
all descriptors which are gotten from all image pixels. The global approach turns the
matching problem to an optimization problem. However, large descriptor windows ,
which are extracted from image pixels, are seriously affected by perspective
distortions and occlusions. Thus, wide-baseline methods [9, 17] tend to rely on very

small descriptor windows or revert to point-wide similarity measures, which loses



more discriminative power than what larger windows could provide.

However, descriptors are therefore proved their usefulness in dense (global)
matching. But extending their use over all the pixels incurs huge computational
burden. In this research, we will focus more on getting better performance than on
alleviating the computational burden. Thus, we will use large (24 x 24) windows to
represent each image pixel with designed descriptors, which take into account the
perspective distortions and occlusions. After representing all pixels, we solve the

optimization problem by the graph cut algorithm to get the optimal disparities.
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Chapter 3 Proposed System

Wide baseline stereo matching techniques have been studied for many years. In
the 3D film industry, a movie scene is usually captured by stereo camera (or camera
array) to create a 3D environment. To get the 3D information, they need a stereo
matching technique to find the correspondences across images, and then estimate the
scene objects’ coordinates in the 3D environment. Most of the current stereo systems
are based on short-baseline techniques, but we'd like to adopt wide baseline
techniques to reduce the number of cameras without large loss in accuracy.

In our wide baseline stereo system, we widely place a few cameras around the
scene we want to catch. Here, weplace the cameras-at identical high without rolling.
After the capture of multiple images,-we apply our algorithm on these images to
create a 3D environment madel. Figure 3-1 shows a schematic diagram of our
multi-camera stereo system.

Our system consists of three modules. First,.we match Keypoints on image pairs
by using the random forest.technique[2]. Second, we apply:an CRF model with spatial
constraint to refine the correspondences:Finally,"'we build a 3D model based on the
correspondence result. In the following sections, we will introduce each of these three

modules.

Figure 3-1 three-view stereo system [18]
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3.1 Keypoint Matching by Random Forest

In wide baseline matching problem, the views we caught from different cameras
may be distorted severely, and come out more occlusion region than short- baseline
stereo. For example, Figure 3-2 shows that the points may be occluded by something
which is closer to camera. Figure 3-3 shows that perspective transformation
phenomenon. This phenomenon is the main challenge of wide baseline matching, and
it makes objects’ geometry appearance looks different. For these reasons, we will start
to match images from keypoints firstly by random forest, and we will discuss this

algorithm in the next section.

Figure 3-2,Red region is occluded insthe’other view

Figure 3-3 Perspective distortion

12



3.1.1 Wide baseline matching as a classification problem

Random forest takes matching as classification problem. It relies on matching
keypoints found in the other image, and we apply random forest classifier to
recognize keypoints in difference images if they are the same. Here the task can be
divided into two stages: the training stage and the testing stage. In training stage, we
apply Lowe’s method [4] to detect keypoints. The SIFT approach, which uses the
difference of Gaussians (DoG) algorithm, involves the subtraction of one blurred
image of a grayscale image and another less blurred image The blurred images are
obtained by convolving the original grayscale image with Gaussian kernels having
differing standard deviations, and keypoint locations are defined at maximum or
minimum of the result of DoG function applied in scale space. Therefore we can make
sure of that keypoints can be detected in difference scale. After having detected
keypoints, we apply 24 x 24 patch around the keypoint ,and deform patches by
rotating them along y-axis -50°~50° and z-axis -50°~50° by perspective transform to
simulate possible cases we may catch on the other view, Figure 3-4 shows an

example:

Figure 3-4 Rotated patches

After we deform all patches, we treats all patches which were deformed around a

keypoint as a class, then we feed patches into random forest classifier to classify these

13
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patches in testing stage, and we hope that each wide baseline perspective deformed

patches we simulated can be recognized in testing stage.

3.1.2 Training the forest with random binary features

After we get some patches from perspective transformation, we need to classify
them by some classification algorithms. There are several classification methods, such
as K-Nearest Neighbor, Support Vector Machines or Neural Networks, that can be
chosen to implement the classifier. Among these, we have found randomized forest is
well suitable because they can handle multi-class problems and are robust and very
fast. Figure 3-5 shows a.randomize tree,.each internal.node contains a simple test

that splits the space of datato be classified, each leaf.contains an estimate based on

training data of the posterior distribution over the classes
bo

'1# Class E—» Class

Figure 3-5 Randomize tree

In our randomized tree, the tests performed by binary feature at the nodes are
simple binary tests based on the difference of intensities of two pixels, we write these

tests as Equation 3.1:
f 1, |f|(afi) > 1(b;;) (3.1)
0, otherwise

14



,where 1(x) is the intensity at pixel location X, the patch size is 24 x 24, so the total
number of possible pixel locations is about 165,600, which is too high to be
efficiently realized in practice. Thus, we only choose some good features to classify
patches. In next section, we will discuss how to choose the good features. After we
select good binary features, we use each feature to classify patches layer by layer.

When training patches reach leafs, we assign distributions in these leafs.

3.1.3 Feature selection

In this thesis, we employ two methods to select the features. The first method
bases on information gain minimization-approach where the information gain is used
to evaluate the data separation efficiency..The gainis caused by classifying a set S of
training patches in feature space with-several classes.S; according to a given test is
measured as Equation'3.2:

[S4

, Wwhere E(S) is the Shannon’s entropy Z?’zlpj log,(p;) with p; is the probability of
class j. Thus, if S; isa good feature set, the total E will be small. The process of
selecting a feature set is repeated for each non-terminal node, we only use the training
patches falling in that node. Moreover, the process is stopped when the node receives
too few patches.

The second method is based on greedy method that is much faster and simpler.
Instead of finding minimum of Equation 3.2, we simply pick some random feature set
to build a tree, and we choose the one set whose recognition rate is the highest. For a

good recognition rate, we will use multiple trees that could partition the patches space

15



in different manners. Figure 3-6 shows the data space separated by feature set, and our

system is based on the second method.

Figure 3-6 (a), (b) are different trees’ separating results, different color represent different

classes

3.1.4 Keypoint classification

After we trained random forest-classifier, the classifier is:able to recognize all the
patches we simulated in the training stage. Thus, we can use the random forest

classifier to solve the matching problem. Figure 3-7 shows the process of this work.

Class a Trained
Classb Random Forest
Classifier

Figure 3-7 Keypoints can be recognize by trained random forest
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As we trained random forest completely, a testing patch is classified by dropping
down a tree and according to the leaf probability. Figure 3-8 shows the matching

results.

Figure 3-10 The same points matched by SIFT
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3.1.5 Matching results after random forest processing

In Figure 3-8 Matching result of random forest, we see that keypoints can be
matched well using the technique of the random forest. Since we use thousands binary
features to describe our deformed patches across all classes, the random forest
classifier can be better than SIFT in some points (see Figure 3-9 and Figure 3-10). But,
unfortunately, random forest still cannot match the keypoints with serious distortion
well. In the next stage (dense matching), we will correct these correspondences by

Conditional random field.

3.2 Dense Matching by,Conditional Random Field

After we match allithe keypoints on testing images by.random forest, we use a
conditional random field (CRF) model to remove incorrect maiches and then rematch
these keypoints. In principle, we verify.the.matches by checking their neighbors. If
the difference of disparities between‘neighboring keypoints istoo large, the keypoint
match is probably incorrect. This.idea is implemented‘based on the proposed CRF

model.

3.2.1 Conditional random field (CRF)

Conditional random field is a discriminative undirected probabilistic graphical
model. It is often used for labeling or parsing sequential data. A conditional random
field is similar to a Bayesian network in its representation of dependency. A random

field is said to be a conditional random field if it satisfies the following properties.

P(f) > 0 vf € F (Positivity) (3.3)

P(fi|fs—ap Vi) = P(fil fui, Vi) (Markovianity) (3.4)
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We utilize this property to describe the relation between disparities. In order to
specify the concept of CRF, we first introduce the following notations in Figure 3-11,
where i isa site (pixel), f; is the value at i (disparity), and V; is intensity of Pixel
(Site) i. Here, we describe the relationship based on the second-order neighborhood,
where there are eight neighbors around Site i and the aforementioned Markov
property is satisfied. That is, the value at Site i (f;) conditionally depends on its
neighborhoods. Based on this relation, we can infer a keypoint’s disparities (f;) from
its neighborhoods.

We use the following diagram to.illustrate the/structure of CRF depicted in
Figure 3-12. In Figure 3-12 (b),"orange nodes represent.the output values (disparity)
and red nodes represent the pixelintensity values. We define the disparity property by
their pixel intensity. Ifithe intensity values between two neighbor pixels are similar,

their disparity values should also be closely related:

Figure 3-11 3X3 neighborhood around a pixel

To double check the matches of image keypoints, we design a suitable descriptor
for each keypoint. Here, we use a modified HOG feature to check if a match iscorrect

or not by minimizing the L2 norm of the MHOG features. The detail of the MHOG
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feature will be introduced later. In our system, we formulate the above concept as the

minimization of the following energy.

E(d) =X, ¢, (dP) + a Xpq 9pq(dP,d?), q € Neighbors of p. (3.5)

In Equation (3.5), dP is the disparity value at Pixel p, ¢, (d?) isa cost
function between Pixel p in the left image and Pixel p + dP in the right image. We
will use the modified HOG (MHOG) feature to measure the degree of similarity
between two pixels across images. Moreover, @,,(d?,d?) is asmoothness term
which put constraints over the disparity values at p'and g, where q is a neighbor of p.
These candidate disparities have already.been found by.random forest at keypoints, so
we can choose the best disparity value at each pixel from these candidates. We solve
the CRF optimizationsproblem (shown in Equation'3.5) to find these disparity values.
In the next section, we.will introduce Histogram of Orientated Gradients (HOG) and

introduce our modified'HOG feaute.

(@) (b)
Figure 3-12 CRF model

3.2.2 Histograms of Orientated Gradients (HOG)

The Histograms of Orientated Gradients (HOG) descriptor is based on evaluating

the normalized local histograms of image gradient orientations in the grids. In Figure
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3-13(a), an input patch is divided into several small grids, with each grid containing 8
orientated gradient magnitudes. In Figure 3-14, it shows an example of HOG for
human detection [19, 20]. Here, the HOG descriptor is used to describe a human
pattern. Because the CRF model has contained spatial information, we can merge all
histogram into a grid. This causes the reduction of dimension in the proposed

modified HOG feature.

90
135 ] 45
180 O
225 315
270
(@) HOG cells (b) Eight orientations

Figure 3-13 HOG descriptor

Figure 3-14 Human’s HOG descriptor [20]
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3.2.3 Modified HOG for distortion and occlusion handling

Occlusion is one of major challenges in correspondence problem, particularly in
the wide-baseline case. For wide-baseline cases, the total occlusion areas become
larger and more distorted than that in short-baseline cases, Here, we design the
modified HOG descriptor to detect occlusion regions and ignore those occluded
regions. In other word, we only extract un-occluded regions.

We modify the HOG descriptor by separating the original descriptor into two
parts: left part and right part. Figure 3-15 (b) shows the modified HOG descriptor.
When the modified descriptor is placed an'an occlusion boundary, the differences
between the left part and the right-part will be large:"Here, we can define an O

function, as expressed in Equation:3.7 to describe this property.

Figure 3-15 Modified HOG descriptor

Now we apply the MHOG descriptor to the first term of the CRF model, MHOG

is designed to handle occlusion effect. Here, we can write the data cost function as

¢p(dP) = [HOG,(p) — HOG,(p + dP)]*O (p) (3.6)
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0(p) {1 ,if |lefe part dif ference — right part dif ference| <y
p =

3.7
r ,if |lefe part dif ference — right part dif ference| =y 3.7)

In Equation 3.6, O(p) is an additional penalty function. Here, we check the
feature vector at pixel p in the left image with the feature vector at the corresponding
pixel p + dP inthe right image. If the left-part feature distance of MHOG and the
right-part feature distance of MHOG are inconsistent (e.g. one distance is small,
another one is big), O(p) will multiply the data cost function in Equation 3.6) by r. In
this case, the pixel p is more likely to be labeled as occluded. Figure 3-16 shows an

example.

(a) Inputimages

O I =2 ) =3

Figure 3-16 Result comparison for different I values

23



Figure 3-17 SIFT flow [21]

In comparison, as shown in Figure3-17, SIFT flow cannot detect occlusion

regions. Hence, occluded regions are forced to matech the most similar region.

3.2.4 Matching points by MHOG-with spatially constraint

Now we will apply the MHOG descriptor to the CRF'model. The adopted
MHOG descriptor has'a 24 x 24 window around pixels with two'grids and eight
orientations. Hence, thesfirst term ¢y, (data cost).of-the CRF formula is a distance of
measure of the MHOG features between Pixel p on oné.image and Pixel p + d? on
the other image. Since the MHOG providethe statistical information about gradient
information, it can’t provide us enough spatial information. Hence, we use the second
term to compensate for the lack of spatial information. In our experiments, we found
that if a larger window is used, the MHOG feature component along the vertical
orientation would be similar in different views similar. This is because we have placed
cameras at the similar height without rolling. This character is used when we match
feature pairs across images.

In summary, our CRF model has two terms, with the first term ¢, (d?) being
discussed above. Our system will choose the disparity values that minimize the

modified HOG distance over the whole image. The second term of CRF model is a
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regularization term, which regulates the first term’s choice. This second term
constrains adjacent pixels with similar intensity values to choose similar disparity
values. This is because if a pixel and its neighbors have similar colors, then they
probably come from the same surface of an object.

The regularization term of the CRF model is designed to be a }.,,, G(|I? — I19]) *
S(dP,d?), where p and g are neighbors and I? is the intensity value of Pixel p. In
this formula, if |IP — [9] < C (In our experimentation, C is chosen to be 30),

G(|I? —11]) = 1. Moreover, S(dP,d?) isthe L2 norm of the disparity difference
between dP and d? . If two neighboring pixels have similar intensity values, they

should choose similar disparity values:

Figure 3-18 Matching result based on the CRF model
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3.2.5 Model formulation

In Table 1 we summarize all related formulas of our CRF model.

Table 1 Model formulation

Hidden State

d'=(dx, dy)~ d*=(dz, dj) ~ d°= (di, dy)

Total cost E(d) = tp(d) + 2D tUpgld".d")
IJ ;Jl’!‘ ‘ l
Data cost Smooth cost

Data cost @p(dP) = |Hy(x,y) — Hy(x + di, y + d))|**O(x, y) - K,(dP)
Occlusion 0 ) = { 1 ifabs(|lefepart dif ference — right part dif ference|) <Y

XY= [« if abs(|lefepart dif ference — right part dif ference |) =y
function

Prior

Ky (d5-=

{ k| ,d" is selectedfrom random forest )
, PE Keypoints

0", -other

Smooth cost

Ppe(dP,dD) =GP =17]) = ||dP - d||,

Connection

weight

AP =11 < C

1
G(IIP — [1)=
==/

3.3 3D Model Reconstruction

3.3.1 Camera calibration

After we have matched images and gotten pixel correspondence, we can use the

correspondence to estimate the relative positions among the cameras. In other words,

we can estimate each camera’s extrinsic parameter matrices R,, and T,,, where R, is

a rotation matrix, T,, is a transformation matrix, and x’ = Rx + T. Figure 3-14 shows

an example of the camera geometry.

After the estimation of the transformation matrices R and T, we can calculate the
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3D to 2D projection matrix P, P = K*(R|T). After that, we can use the projection
matrix P to find a 3D point cloud. Here, we apply the bundle adjustment algorithm

used in [5] to build the 3D model.

® ¥

- @
/F;}{+T\ ’
.

X

Figure 3-19'Camera geometry

3.3.2 Bundle adjustment

The bundle adjustment in [22] can simultaneously refine the 3D coordinates to
describe the scene geometry with the relative motion parameters. The bundle
adjustment is based on the mathematical expression in Equation 3.8.

, argmin D(x,.P,(X,)) . (3.8)
P.X; k=1 izl
where xj; is the point correspondence between each image pair (in our system m = 3),
P, (X;) isa3D point X; projected to Image Kk via the projection matrix P, and D(X, y)
is the L2 norm distance between x and y. After minimizing the sum of projection error

of all points, we can estimate the 3D point set that coarsely describes the view
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geometry in front of cameras. The detail will be explained in the next section. After
the estimation of the 3D point set, we use the spatial matting algorithm in [23, 24] to
re-define the 3D point set. In Figure 3-20, we illustrate the finding of a 3D point cloud
that minimizes the projection errors between the projected points on the 2D image and
the original image points with inliers. To suppress outlier points, we use the RANdom

SAmple Consensus method in [25] (RANSAC) to identify the inlier points.

-
e -
. ;oo
3D-Model", "
“Of n

-H‘.‘___\ -

corresponding
feature points

Figure 3-20 Estimation of 3D points by using bundle adjustment

3.3.3 Random sample consensus (RANSAC)

Random sample consensus is an iterative method to estimate the parameters of a
mathematical model from a set of observed data which may contain outliers. We use
RANSAC to estimate a camera model that fits the largest amount of inlier matches
across images. Here, we use RANSAC to calculate the projection matrix for the first

iteration of bundle adjustment.



Figure 3-21  (a) Data set with many outliers (b) Fitted line with RANSAC

3.3.4 3D point set refinement bysmatting refinement

In Section 3.3.2, we build‘a 3D point:.cloud by the'bundle adjustment process.
However, the outcomes.are still not-good enough. There are some false matches and
several unmatched regions at occlusion pixels: Ve assume that our matches around
keypoints are accuraterand we build a«confidence map CM(X, y)r In Equation 3.9, if
pixel (x, y) is near a keypoint, has an inlier matches (picked by RANSAC), and has no
occlusion, then the confidence value at that pixel isegual to one; otherwise, the

confidence value is zero.

1 ,if € k i N Inliers N 1
CM(x,y)={ ,if (x,y) € (Near keypoints N Inliers N Not occluded ) (3.9)

0 , otherwise
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Figure 3-22  (a) Locations of keypoints (b) Confidence map

After we estimate the depth information at these locations whose confidence
value is one, by using the spectral matting method.in 23, 26], we propagate these
estimated depth informatien to-these unknewn.regions by minimize the cost function
in Equation 3.10, where L is a laplacian matrix, (3 “is\a prior map (estimated depth
map at confidence-one'pixels). In Equation 3.12, <%, Is a 3x3 covariance matrix, py
is a 3x1 mean vector ef:the colorsin awindow wy,and I; is'the 3x3 identity matrix.
The matting affinity Wy in\Equation 3.11 is defined by pixels’ color and its spatial

relations (In Equation 3.12).

E(a) = o La+8(a — B)T8(a — B) (3.10)
L=D— Wy (3.11)
Wu(i,)) = Zk|(i,j)ewk|wikl(1 + (; — 1) (Ek + ﬁ%)_l (I — ) - (3.12)

In Equation 3.12, D is a diagonal matrix, whose elements are defined as D

= Z?’zl W (i,j). W is a sum of matrix Wy;. B is a prior map, at which we have
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estimated the depth information at pixels with CM(x, y) =1. After we solve the

optimization problem in Equation 3.10, we can get all pixels’ depth values. A result of

the aforementioned process is shown in Figure 3-23.

L ol
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Input Image

Laplacian Matrix Components

Figure 3-24 Overview of spectral matting

3.4 Summary

In our system, we combine local and global approaches to find the
correspondence of image pairs. First, we use randomized forest to obtain some rough
correspondence of image keypoints. With the initial correspondence, we can
propagate these keypoints’ correspondence information to the entire image by solving
a global optimization problem. Moreover, the CRF model can correct some errors by
using spatial constraints. After we have gotten the disparity values of all pixels, we
use the RANSAC method to find inliers whose distribution fits the camera geometry
the most. After that, we use these inlier disparities to build a 3D point cloud and refine

the 3D point cloud by spectral matting. Finally, we convert the point cloud to a mesh
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of triangles and build the 3D model of the captured scene. The overall system flow is

shown below.

Camera

SR sl Calibration

Figure 3-25 System flow
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Chapter 4 Experimental Results

In this chapter, we show some experimental results. In Section 4.1, we will
demonstrate some matched correspondences, outcomes of random forest and the CRF
model processing results, respectively. We can find that random forest only matches
keypoints coarsely. In the next stage, the proposed CRF model will correct random

forest’s result and also deal with those pixels lacking texture information.

4.1 Matched results

orest can match some
keypoints correctlyuFig ed-points. The match rate

is about 30/100.

Figure 4-1Matched feature pairs by random forest
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Figure 4-2 Some correct matches

In Figure 4-3 and Figure 4-4, we show the matching of some high-texture keypoints.

(Red circles mean the incorrect.correspondence:)

Figure-4 Matched result by random forest (part2)
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In Figure 4-5, there are many repetitive patterns and regions with texture. As
expected, the performance of this case is not good. However, after the CRF processing,

we can still obtain many correctly matched pairs.

Figure 4-5 Matching result of random forest
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4.1.2 Matched results after CRF correction

Figure 4-8 Some matches of Figure 4-6

In Figure 4-6, two images with difference exposure levels are matched by our
system (random forest + CRF). We can find that CRF can correct some erroneous
correspondence (some erroneous correspondences by random forest are shown in

Figure 4-1) and can propagate a keypoint’s correspondence information to its
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neighbors. (Here, we only demonstrate some keypoint correspondences.)

Next, we compare the SIFT matching result with our system, Figure 4-10 shows
some correspondence results of our system. Note that the cameras are separated very
widely and there are many low-texture areas and repetitive patterns in two images.

The matching in this case is very difficult for the SIFT approach.

(b) Our system (RF + CRF) can match repetitive patterns better than SIFT

Figure 4-10 Some matched results of our system
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In our system, we use a CRF model to match points with spatial constraints.

Hence, we can identify similar patterns at difference locations. In brief, we can match

keypoints better than the SIFT method.

Figure 4-11 Some matched results of our system
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4.2 3D Reconstruction

This section demonstrates some results of 3D reconstruction. Figure 4-12 shows
our reconstruction result. It fails in these white lower texture regions, since these areas

contain too little information for accurate matching.

(d) (e) (f)

Figure 4-12 (a), (b), (c) Input images (d), (e), (f) Corresponding results of 3D reconstruction
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Figure 4-13 Multi-view database “fountain” [7]

In Figure 4-13, we show the multi-view database “fountain” [7]. In [27], Hiep,
V.H. and Keriven, R. reconstructed 3D"models by using 11 stereo images. Their
results are shown in Figure 4<16. Here, we only use 3 of'the 11 images (the 3 images
with red frame in Figure'4-13) to-butld the 3D.model.?As illustrated in Figure 4-14,

we can see the objectishape clearly in our reconstructed model.

(b)

Figure 4-14 (a) Input images (b) Reconstructed 3D model
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can be built more cle

Figure 4-16 Hiep, V.H. and Keriven, R.’s results
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Chapter 5 Conclusion

In this thesis, we proposed a wide-baseline stereo matching approach for 3D
reconstruction. Our system can match images in difference illuminations with the
change of viewpoint orientation ranging from about —40°to 40°. Based on random
forest and conditional random field, the system can deal with large perspective
distortions and occlusions. Besides, the proposed system can also deal with images
with repetitive patterns. Matching similar patterns by using only gradient features
usually cannot achieve robust and accurate matching. In our approach, we add the
spatial information around each pixel to our matching strategy. With this arrangement,
we can match similar patterns.anddistorted patterns'well. In the last stage of our
system, we use RANdom SAmple-Consensus (RANSAC).and Bundle Adjustment
(BA) to reconstruct 3D pointcloud:. Finally, we refine the 3D point cloud by using the
spectral matting methed and convert the point cloud to a mesh of triangles that

represent the 3D model.of the captured scene.
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