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Abstract

The goal of this thesis is to design and implement a virtual listening point audio
system by constructing a physical testing environment in an anechoic chamber. Several
techniques are employed in implementing this system.. They are blind source separation
(BSS), direction of arrival (DOA) estimation and denoising filtering. The final outcome
Is constructing an audio signal at the desired virtual listening position, which is called
Virtual Listening Point Audio Synthesis. In the Free Field Acoustic Room Chamber,
each speaker represents a sound source and a microphone array records the received
signals.

The audio synthesis procedure can be divided into three major steps. The first step
is to separate each source signal from the recorded mixed signals. This step is usually
accomplished by using the blind source separation (BSS) technique. The second step is
to estimate the direction (angle) of a sound source. This step is usually accomplished by
using the direction of arrival (DOA) technique. The third step is to synthesize an audio

signal at a virtual point, where the original recording microphone does not exist. In our



system, this step is accomplished by using the SLAB software.

In a real acoustic environment, noise and distortion are inevitable. They disturb the
BSS performance and the DOA estimation. In this project, we study the effects of
several key parameters in the system. We conduct experiments, collect data, and analyze
data to verify the proposed schemes. The experiments are classified into CASE-A,
CASE-B.1 and CASE-B.2. CASE-A denotes the speech source recorded from the
microphone arrays in the anechoic chamber. CASE-B.1 denotes the signals produced by
using SLAB developed by the NASA Ames Research Center to simulate the recorded
mixture signals in an ideal acoustic environment. CASE-B.2 denotes that we add the
Additive White Gaussian Noise (AWGN) to CASE-B.1. We also adopt audio denoising
technique to improve the subjectivehearing -quality. Finally, the 3-D audios are

synthesized with the aid of the SLAB-software.
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Chapter 1  Introduction

1.1 Motivation

Recently, the free-viewpoint TV (FTV) system concepts have been developed. It is
well-known that the FTV system uses a sequence of images to synthesize and compress
multiple images. The target of FTV is to synthesize an image at any viewpoint as we
want. Thus, it allows the users to choose an arbitrary viewing angle.

Similarly, we can use multiple microphones to record multiple audio signals. At
the receiver, an audio signal can be synthesized at a virtual listening point, which is
the so-called Virtual Listening Point Audio Synthesis. However, the procedure of
solving the audio problem is quite complex and. is different from that of the video. Our
goal is to reproduce a virtual-audio from the recorded mixed signals by using the

microphone array in an anechoic chamber.
1.2  Contributions and Organization of Thesis

In this thesis, our main target is to synthesize virtual listening-point audio in a real
environment. The acoustic signal synthesis procedure can be divided into three major
steps. The first step separates the source signals under the blind condition and the
second step estimates the source directions (locations). The third step synthesizes the
new listening-point audio.

For the first step, we use the blind source separation (BSS) technique to separate
individual sound source from the mixed signals. We model and use the known
mathematical tools [1], [2] to solve the separation problem. The subspace of interest is
extracted by the principal component analysis (PCA) method [4]. For solving the

permutation problem, there are many conventional methods are proposed in [5], [6], and

1



we adopt [7] and [8]. The scaling problem is solved by the minimum distortion principle
(MDP) [10] or the subspace methods [9]. There are many well-known BSS methods
and one of the most popular methods is the so-called independent vector analysis
(IVA) [8]. The IVA method has different learning rules [12] and different properties
from the conventional ICA methods.

For the second step, we use the direction of arrival (DOA) technique to locate
individual sound source from the mixed signals. The time difference of arrival (TDOA)
[1] is a basic concept to explain the technique. It also has to satisfy some conditions in
order to avoid the spatial aliasing [20]. The DOA technique can be solved under the
invariant property assumption [21]. There are many proposed methods such as [22],
[23], [24], [25], [26] and [27]. We adopt [28] to estimate DOA estimation for 3-D
sources.

For the third step, we separate sources and-identify their locations using the
methods described in the first step and the second step. We adopt the software
developed by the NASA Ames Research Center'to synthesize the audio at a virtual
listening point.

Because we record the audio signal in a real world environment, we need to
consider the noise effect. There are many advanced applications require audio denoising
techniques [13], [14], [15]. We adopt [16] to solve the denoising problem in our system.

This thesis contains six chapters. In Chapter 2, we describe the acoustic signals
model and the adopted BSS method for sound separation. In Chapter 3, we describe the
adopted denoising method for improving audio quality, and we also describe the
adopted DOA method for the source localizations. In addition, we describe the overall
system for virtual listening point audio synthesis. In Chapter 4, we describe the

recording environments setting and show the BSS experimental results. In Chapter 5,



we show the DOA experimental results. In Chapter 6, based on the experimental results,

we make a brief conclusion and suggest future research topics.



Chapter 2 Blind Source Separation

2.1  Model of Acoustic Signals

For a microphone array system, we can use signal processing techniques to
describe and solve microphone array problems. We construct a signal model that
includes acoustic signal and microphone array in the space, and then we model and use
the mathematical tools to solve the target problems. A system is often modeled as a
machine that takes in “inputs” and produces “outputs”. In our research, the “Input” is
the sound source signals and the “Output™ is the received signals. There are four types
of Input-Output systems: [1] single-input single-output (SISO), single-input
multiple-output (SIMO), multiple-input single-output (MISO) and multiple-input
multiple-output (MIMO). We assume the system model-is linear and shift-invariant, and
the channel impulse response is a Finite Impulse Response (FIR) filter, whose impulse
response is of finite duration [2].

MIMO is an abbreviation of the Multiple-Input Multiple-Output system. In this
study, we use the multiple-input multiple-output system to model the sound signals with
microphone array. Assume the system model involves K input signal and N output
signals as shown in Fig. 1, which can be modeled as:

X(t) = As(t) +n(t) Q)

where

XO) =[x 1) %O ... x @I



Qo Aua o Ay

A= azzk,o a2:k,1 a2k:,L—1 Kk=12..K

a a cee a
Nk,0 Nk,1 NK,L-1 [Nl

nt) =M@ n@® - nOT
where a, (n=12,..,N,k=12,...,K) denotes the channel impulse response of the
input of k -th signal and the output of n-th signal and L denotes the channel length.
Then, we can represent the transfer function of the system in the z-domain.
X(z) = A(z)S(z) + N(z) 2
where

All(z) A12(Z) AiK(Z)
A21(Z) Azz(z) AzK(Z)

A(z2)=
AN:L(Z) ANz(Z) ANK(Z)
M(Z)zfank,,z‘I n=12.. N k=12...K

and X(z),S(z),N(z)denote the x(t),s(t),n(t) inthe z-domain.
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sy (t) 'L
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Fig. 1 MIMO System



2.2  Cocktail Party Problem

P S &

Fig. 2 Cocktail Party Problem

The “Cocktail Party Problem’ in [3] is known as one of the most famous problems
in the area of acoustic signal processing. Cocktail Party Problem refers to how to focus
on a single speaker among a mixture of conversations and background noises. In this
study, we view each speaker as a sound source and a microphone array placed in the
Free Field Acoustic Room Chamber. How can we separate the sound sources based on
the mixture signals recorded by a microphone array? It is difficult to solve this problem
under condition of “blind”, which means that the mixture signals and mixing procedure
are unknown. The goal of Blind Source Separation (BSS) is how to use signals

processing techniques to recover the sound sources from the recorded mixture signals.



2.3 Independent Component Analysis (ICA)

2.3.1 Fundamental of ICA

Independent Component Analysis (ICA) is a popular BSS method to separate a
mixture signals into components. In this study, we consider the frequency domain
approach of ICA, which means that we transform signals into frequency domain, called
FD-ICA. In the section 2.1, we use the MIMO system to model the signals. In many
BSS methods, it is necessary to have the prior knowledge about the number of sound
sources. However, we make an assumption that the number of microphones is greater
than the number of source signals, which means that the exact number of sound sources
is not critical but we need to have sufficient number of microphones to solve the
problems. Let K be the number of source signal s and N be the number of
recorded signal x with N > K. It can-be modeled as:

x(f,t) =A(F)s(f,t)+n(ft) (3)

where

)(1(f,t)=a11(f)sl(f,t)+a12(f)sz(f,t)+---+a1K(f)sK(f,t)

X, (F,1) =2y, (1)s,(f,1) +a, (F)s,(f, 1) +---+a, ()s, (f.1)

X (F,1) = 8y, (F)S,(F,0) +ay,(F)8,(F,1) ++--+ay (F)s, (F,1)
where x(f,t):[xl(f,t),...,xN(f,t)]T denotes the vector of mixture signals and
X, (f,t)denotes the short-time Fourier transform (STFT) of the n-th microphone in the
t -th time frame, A(f)=[a(f)....,a.(f,t)] denotes the mixing matrix and
ak(f)=[aik(f),a2k(f)+---+aNk(f)]T denotes the STFT of the k -th channel impulse

response in the t-th time frame, n(f,t) denotes the noise components in the recorded



signals. Therefore, A(f)s(f,t) represents the principal components of x(f,t). For
simplicity, we assume there are no room reflections and ambient noises, the received
signals can be modeled as:
x(f,t)=A(f)s(f,t) 4
The goal of Independent Component Analysis (ICA) is to estimate the demixing
matrix W, which can be written as:
y(f, 1) =W(f)x(f.1) ()

where y(f,t) denotes the separated signals.

Source Mixing Mixture Demixing Separated
Signals Matix Signals Matix Signals
s(t) A > X(t) =— W | = y(t)
|
Nxk KxN
[s,qc} @, o au] [I](T [wl. w..] [mﬂ]
sg () vt gy xylt) Wy - Wi yglt)

Unknown Parts

Fig. 3 BSS Filter Structure in Time Domain

In Fig.4, the recorded signals x(t) are transferred from time domain to frequency
domain. We also apply the Principal Component Analysis (PCA) to pre-process the
recorded signals x(f,t). Then, we use FD-ICA Algorithm to deal with the permutation
and the scaling problems. At the end, after inverse DFT, we obtain the separated signals

y(t) intime domain.



Mixture Demixing Separated
Signals Matrix Signals

x(t) | W y(t)

Time Domain

| STFT | Frequency Domain l IDFT l

X(ft) =» PCA |-»{ ICA |-»{ P | -{ D | »w(f)

Fig. 4 Flow Chart of Demixing Matrix in Frequency Domain

2.3.2  Principal Component Analysis (PCA)

Since the number of mixture signals is greater than the number of source signals,
by utilizing Principal Component Analysis (PCA) [4], we can obtain the subspace
signals in which the room reflections and ambient noises are reduced. In other words,
the subspace of principal companents is reserved and the subspace of the reflection
components is discarded. Thus, we simplify the recorded signals by using the PCA
procedure, and then the estimation complexity of ICA can be reduced. The subspace
signal X is obtained by the following expression:

X =x—E{x} (6)

It is mean that by centering signal x, we obtain the zero-mean signal for
decreasing the estimation complexity.

X, (F,8) =V(f)x(f,1) @)
where the subspace filter V(f)=D(f)™"2S(f)"is derived by the Principal Component

Analysis (PCA) method, D(f) denotes the eigenvalue diagonal matrix and S(f)

denotes the eigenvector matrix corresponding to D(f).



Define the covariance matrix by Cx(f)zE[x(f,t)x(f,t)T].Then, D(f) and V(f)
are obtained from the covariance matrix, C (f) can be decomposed into
C, (f)=S(f)D(f)S(f)™; S(f) is an orthogonal matrix that should satisfy the
equation S(f)S(f)" =S(f)'S(f)=1.

It is assumed that the significant eigenvalues are associated with the direct
components from the source signals and the rest are associated with the noises. From
the covariance  matrix, we form an eigenvalue subspace  matrix

D =diag{d,,...d

d,.dy . dy} . where dy>d,>->d,>d,,>->dy . The

eigenvectors corresponding to d,,...,d  represent the principal components of the

p

signals, and the eigenvectors corresponding d d, represent the reflections and

padn: e

ambient noises. Therefore, PCAcan reduce the complexity of ICA process.

2.3.3 Characteristics of ICA

In the above PCA procedure in [4], 'we have to make some assumptions or
restrictions in solving the BSS problem using ICA. First, the goal of ICA is to make the
output signals y to be statistically independent. In other words, the joint probability
distribution of the output signals y equals to the product of each marginal distribution,

which can be shown by the following expression:
K
p) =TT m(y) (8)
i=1

Second, we make the output signals to be non-Gaussian distribution. Assume that
there exists a group of non-Gaussian distribution, and the sum of these independent

signals 'y, will to be close to Gaussian distribution, which is asserted by the so-called

central limit theorem (CLT). On the other hand, if there exists a group of Gaussian
10



distribution, the sum of a group of signals is also Gaussian distribution. Then, the ICA

method cannot separate these source signals.

2.4  Permutation Problem and Scaling Problem

2.4.1 Permutation Problem

The permutation problem is that we do not know the permutation of the
independent components. In other words, the problem can make the signals be confused
at transformation from frequency domain to time domain. We assumed that there exists
a permutation matrix P, which satisfies the following equation:

x = AP'Ps (9)

Assume Ps is kind of the independent components. If we re-arrange the order of
the permutation matrix, it does not affect the independence of the internal signals in

matrix s. When we select another matrix P, Ps corresponds to another permutation

of the independent component; so. the demixing matrix W =PA™ is not unique.
However, the ICA method is to find the demixing matrix at the each frequency bin. If
the permutation of each frequency is not consistent, we transform the signals from
frequency domain to time domain cannot be correct. For finding the solution of the
permutation problem, there are many conventional methods in [5][6][7]. We adopt [8] to

solve the permutation problem.

2.4.2 Scaling Problem

The scaling problem is that we do not known the energy of independent component,
which means that the separated signals are multiplied by non-zero constants, that is, the

separated signals are different from the original sources in magnitude. To solve the

11



scaling problem, there is a conventional method which filters individual output by the
pseudo-inverse of the demixing matrix as proposed by [9].

In this study, we solve the scaling problem by using the minimal distortion
principle [10]. Since we adopt the blind separation method, the mixing matrix A(f) is
unknown. For simplicity, we assume the permutation matrix is that P(f)=1. The ideal
scaling matrix D(f) should satisfy the following equation:

D(f)W()A(F)=diag[A(f)] (10)

Once the separated signals are well-separated by the ICA method, there exists a

diagonal matrix Q(f) such that W(f)A(f)=Q(f). Hence, the equation can be

rewritten as D(f)Q(f) =diag[A(f)], and the mixing matrix A(f) can be estimated
by A(f)=W'Q(f), where W(f)"is the Moore-Penrose pseudo-inverse of the
separation matrix W (f). Therefore, the estimation, D(f)=diag[W(f)*], is an

approximation to the solution of the scaling problem in the FD-ICA.

2.5  Fast fixed-point Independent Vector Analysis

In this study, we adopt [7][8] as the ICA method, which is described in the
preceding sections. The Independent Vector Analysis (IVA) method uses a different
approach to solve the BSS problem by assuming that the source signals have certain
dependency in the frequency domain. Under this hypothesis, the original sources are
dependent together as a group by using the multidimensional prior. The model is a
maximum likelihood approach to the multidimensional ICA (MICA), which is called

independent vector analysis.

12



2.5.1 Independent Vector Analysis (IVA)

When the mixture signals are transformed into frequency domain, the mixing

process can be modeled by the following mixing model:

x(f,1) = A(f)s(f,1) (11)
y(f,6) = W(F)x(f,1) (12)
f=12,..F

where F denotes the number of frequency bin. Since the ICA algorithm treats the
source signals as independent and identically distribution (i.i.d), the IVVA consists of a
group of ICA, which is so-called multidimensional ICA (MICA) as shown in Fig. 5.
Each 2x2 IVA mixture model denotes the ICA layer at a single frequency bin. For

simplicity, we will drop the index t. with-only one variable f in the equations.

"""""""""""""""""""" x(1)=A(1)s(1)
. x,(1) = ap(l) 1 an(l L s4(1) s(1)
X(1) === ) -1 PP =
x,(1) a,:(1)  ay(1) A1) s,(1)
P b A - % x(F)=A(F)s(F)
Xy(F)| | _ ay(F)  ay,(F) . s{F)| | s(F)
x(F) - %, 1 s,
x,(F) a,1(F)  ay,(F) A(F) s,(F)
X, 52

Fig. 5 IVA Structure in the frequency domain

In Fig. 5, s, =[s,D),....s,(F)I' and s,=[s,(),...,s,(F)]" denote the multivariate

13



sources and X, =[x (®),...,x(F)I" and x, =[x,(1),...,%,(F)]" denote the mixture

signals.
In the MICA algorithm, it also assumes the zero-mean and whitening input signals
X, SO it can increase the learning speed. Therefore, the demixing matrix W needs to

be orthogonal. These conditions are shown by the following functions:
E[x(F)x(f)"]" =1 (13)
W(f)W(f)" =1 (14)
The IVA method can be represented by the mutual information of the output

signals y . Its contrast function is represented by the following equation:
DPWITTPWY) (15)

where D(-||-) denotes a contrast function of the Kullback-Leibler divergence, which
measures the distance between two density distributions, and P(y;) denotes the
marginal distribution of y,. When the contrast is minimized to zero, y, is expected to
be independent of each other, which is represented as P(y) = Hi P(y,).

The ICA algorithm based on IVA consists of two steps. The first step is to find
contrast function as the input learning function. The second step is to choose

optimization method.

2.5.2 Contrast Function
In the above of the expression, the contrast function of IVVA can be represented by

the mutual information among multidimensional variable y;'s:

DPWITTPY) =2 HY:)-H(Y) (16)
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where H(Y):—Zi p(y;)log p(y,) denotes the entropy function, and
Y. =Ly, Y, (2),....y,(F)I" is a vector of the i-th separated signal. However, the term

H(y) is constant since Iog|det(W(f))|=0 at any frequency bin f . The equation is

equivalent to minimize the sum of the entropies of vy, .

arg_ min > H(y,) (17)

W), W(F) &

As in IVA method, negentropy can be employed for the derivation of the entropic

contrast, which is defined as:

N(y;)=D(P(Y) [ P(y")) (18)
where P(y") denotes the information projection of y onto the Gaussian manifold.
By Pythagorean relation, N(y,)=H(y')—H(y,) represents the relation in

information geometry. Substituting (18) into (17), that-is, another contrast function is

obtained by the following expression:

arg W(1)rp.i,u(p) Z H(y;) =arg W(1§,T.].?\>/(V(|:) z N(y;) (19)
D N(y)) =2 E, [log(P(y;))]+const (20)

where E, []denotes the expectation of probability distribution y;. In spite that we

have the entropy contrast, there exists the problem which is difficult to obtain the true

distribution p(y;) in finite data size. In order to solve the problem, it uses source prior

to substitute the source distribution.

5[ loa(Ps () | = fog (P.(1)) | <E | log Pur(x)) | (1)

where Ps, denotes the estimation of source signal probability distribution, which is the

so-called source prior. Here, we introduce a symmetric exponential norm distribution

(SEND), which has the following expression:
15



(22)

By replacing Ps (-) in the contrast function E[Iog(Psi (yi))] the contrast function

becomes:
G[Zlyi(f)lz}—log Ps (¥:) (23)

where G(z) = % +(F —%) logz with the constraint that W,(f) are normalized. By

using the Lagrange multiplier A, we can include the normalization constraint in the

contrast function:

Z{E[G(Zwvi(f)“vvmIZH—Z&(f)(vvmf)“vvi(f)—l) (24)

2.5.3 Optimization Method

In order to apply the I\VA algorithm to the BSS problem in frequency-domain, we
have to deal with complex-valued variables. However, these complex variables can be
expressed as circular symmetry around origin in most cases. Hence, the complex values

should satisfy the following equations:

B[]

Epoc =1

O

Once the contrast function is selected, we can derive the separating matrix by
selecting the optimization method. Most ICA algorithms use the gradient descent

technique as the learning rule [11]. However, [12] uses the Newton’s method, which is

16



called FastICA algorithm [12]. Here, we assume g(-) is the input learning function

from (23), which can be expressed as:
g(VVi(f))zE{G(ZIW(f)”VVi(f)IZJ—Z&(f)(V\/i(f)“VVi(f)—l) (25)

The function can be approximated by the quadratic Taylor polynomial:

og (W, (1))

9(W (1)~ g (WL () + s

(W (f)-W,,(f))

L a9 (W, (D)

vy (M- ()

1 T azg(w,o(f))
(W) =W, (D) AW (Wi(F)-W,,(f))  (26)
1 W 0% (W, (1)) *
2 (WD =W, (D) aVvi(f)*gwi(f)H(V\/i(f)—V\/i,o(f))
w029 (W (f
+(W, ()= Wi, (f)) Mf’f()*a'véi()f)f (W (F)-W,, (1))

The optimization of g(-) will set the gradient og (% to zero.

ag(Wi(f)) _ 29 (W (M) @ g (Wi (1))
W) aW(f)" T aWi(F) awi(f)]

(W, (f)—W, (1))

0°g (W, (1))

w1y aw(f)yT (N -Wi (D) =0 (27)

Note that, the equation is equivalent to Newton step equation, which can be reduced to

1 ag(Wi.(h)

Wi(f)—VVi,o(f)=—C(Wi’O(f)) W (F)

(28)

where c(W

i,0

) is the constant multiplication term. By substitution, the iterative

algorithm becomes as the following equation:

E[ v, ()6 (X, 10a(DE )X |- AW (1)
E[6 (X, 0o (D P13 (NF & (X 19 (NF) |- A4(D)
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where G' and G" denotes the first order and second order differentials, and

A(f)= E[| Yio(F)[ G'(Zf| yiyo(f)|2)] which denotes the Lagrange multiplier. Also,

instead of evaluating A (f), we can remove it by replacing the numerator and

denominator of equation (29):
W, (f)= E[G'(Z\ym(f)\2>+\ym(f)\2G"(Z\yi,o(f)\ﬂvvi,o(f)
- é[(yi,o<f>*)e'(2\yi,o(f)bx(f)}

In addition to normalization, the rows of the demixing matrix W have to be

decorrelated. The learning rules of W can be expressed as:

1
W(F) < (WEHW(E)!) 2 W(T)
It should be calculated by above equation to make W(f) convergent at each

frequency bin.

2.6  Evaluation of the BSS Performance

In evaluating the performance of BBS algorithms, one way is to measure the signal

to interference ratio (SIR). The definition of SIR is described below:

max |y, . (t) [
SIR:EiIog10 < A >

KT <Zj¢i| y”vsj ® |2>

where the signal y, . (t) denotes the n-th output separated signal corresponding to the

n=12...N

i -th source signal. For n=i, |y, (t) |> denotes the power of the n -th desired
separated signal with the same signal, and for zjﬂl Yns, (t)]> denotes the sum of the

interference power from the other source signal to the n -th separated signal.
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Chapter 3  Acoustic Signal Processing and Synthesis

3.1  Audio Denoising Algorithm

3.1.1 Introduction

In acoustic signal processing, audio noise reduction is an important issue. In a real
acoustic environment, the environment parameters including the air absorption, the
surface reflection and microphone intrinsic distortion, and others, all generate audio
noises. However, in many cases, it is assumed that there is no reverberation effect,
which is called the single-path assumption. Many advanced applications require audio
denoising techniques [13][14][15]. We adopt [16] to solve the denoising problem in our

system.

3.1.2 Audio Noise Modeling and the Pointwise Wiener filter
Here, the noises are considered to be-random variables, and they all have corrupted

by the additive Gaussian noise. Considering the observation z, of the recorded signals,
it can be modeled as:

Z, =X +N, (30)
where n, denotes a zero-mean white Gaussian random sequence, which means that

E[n]=0 and E[ninj]:onzé

.- Where &, is the Kronecker delta function and E[]

denotes the expectation; and x, denotes the audio signals. It is known that:

E[x]=E[z] (31)
o :E[(xi—Zﬂ:E[(zi—z_i)z}—af (32)
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— _2 . . .
where X, denotes the sample mean and o« denotes the sample variance in a W -size

window. Under this hypothesis, a local linear minimum mean square error filter
(LLMMSE) is formed. It is a well-known technique to solve the denoising problem. It
is proposed in [17] and given by:

—2
K=Kt (2 -%) 3)
O x +(7§

where x;i denotes an estimate (filter output) of the i-th sample point.

3.1.3 A Contextual Wiener Filter

An adaptive scheme designed based on minimization of the Fisher information
metric is proposed by [16]. It is an approach of using the Markovian model. In other
words, the audio is modeled as a Gaussian Markov -Random Field (GMRF), which
denotes a sample dependency ‘on neighboring audio signals (non-causal filter). A MRF
is a set of random variables that have the Markov property. In general, a window size is
selected as W =3 or W =5 of the observed signals. Then, we use the expected
Fisher Information as the cost function. The Fisher information can be defined as the

variance of the score in [18]:

0 2 o
1(0) =E, Kgﬁ(e)) }: —EL}&Z ﬁ(&)} (34)

where Eg[-] denotes the expectation over ¢ and ((8) denotes the logarithm of the

pseudo-likelihood function. In the statistical theory, a pseudo-likehood is an
approximation to the probability distribution, and this approximation provides a good
calculation alternative to the Fisher Information on the Markove Random Field models

[19]. Because it is difficult to calculate the expected Fisher information at real situation,
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the observed Fisher Information can be approximated by the pseudo-likelihood

equation:

Iobsw){%log PL(@)} (35)

By the Law of Large Numbers, it can be estimated by the following equation:

i ©)- ii[i l0g p(x, |7, e)} (36)

N ‘= 06

0=0

where p(xi|77i,9) denotes the local conditional density function (LCDF) of the

Markovian model and 7, denotes the neighboring element of the i-th sample. The

LCDF is a density function depending on the neighboring elements. Therefore, iibs 9)

is an unbiased estimator of« the—observed Fisher Information, that s,
.(6)= E[iibs (e)] making Tos(6) ~ 1 (6).

For the continuous acoustic signal, an isotropic GMRF is suitable for the analysis,

which is characterized by a set of LCDF s;.each one is described by equation:

PO |75, 2,0%, B) = \%GXD{—Z;{X.—/J—Zﬂ(X,—ﬂ)}} (37)
o

X; €
where 1 ,c® denotes the mean and the variance, and S is a control parameter

depending on neighboring samples. By i(l)bs (0) = 1,,.(0), substituting (37) into (36), the

obs

observed Fisher Information with a closed expression in the GMRF model is given by:
2
~1 131
L (B)= =D 3= X == 2 BOG—p) || D (% — ) (38)
N i-1 | O X;j €n; X; €n
Let the first factor of (38) be zero, we derive the following equation:

X = p+ D BX —p) (39)

Xj€nj
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We assume a non-stationary model, and the parameters ,,o7, 3, are time variant.

The parameter S, which is the gain of a filter, can be rewritten as:

2
O.

Bloto7)= 2 (o)

2 2
o, +0O,

where o denotes the noise variance. Substituting (40) into (39) to obtain the

following expression:

Xi=ﬂi+( 2 Z]Z(Xj‘ﬂi) (41)

Gi2+o-n Xj €1
where the parameters u; , o7, are estimated in a local adaptive way, which

essentially calculate these parameters based on the observed samples in a window.
In section 3.1.2, we introduce.the Pointwise Wiener Filter [17]. By renaming the
variables using the same notations, we -combine these two adaptive filters into a

contextual adaptive Wiener filter, which is represented by

w(—f* J{“&i-iawa—a)zaﬁ%) @2

O x +G§ Zj€n;
where « €[0,1]. For a =1, the formulation becomes the pointwise filter and for

a =0, the formulation becomes the pure contextual filter. However, according to the
Peak Signal-To-Noise Ratio (PSNR) measured in [16], «=0.79 is the optimum

tradeoff value between two adaptive filters.
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3.2 Direction of Arrival

3.2.1 Introduction to Direction of Arrival (DOA)

Fig. 6 Wave propagation and Microphone Array geometry

In acoustic signal processing, the source direction of interest is an important issue,
which would be estimated by the Direction of Arrival (DOA) technique. In a real
acoustic environment, the propagation of sound wave reaches walls, ground, and etc,
which result in reflection. The phenomenon is called reverberation or multi-path effect.
However, in many cases, it is assumed that there is no reverberant effect as we receive
the source signals from the microphone array. Furthermore, we assume that the source
signals are located far away from the microphone array, and it is the so-called far-field
signals. Then, the propagation of source signal can be approximated as plane wave. As
illustrated by in Fig. 6, different microphones receive signals along paths of different
lengths, the phenomenon of Time Difference of Arrival (TDOA) [1]. Because the
recording microphone array is linear and uniform placed, the time delays satisfy the
following equation:

o (n—l)g sin 6, (43)
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where 7, represents the delay time between the k -th source signal reaching the first

sensor and the n-th sensor, ¢ denotes the sound propagation velocity, which is about
340 m/s, d denotes the distance between two adjacent microphones, and it has to

satisfy the condition d <(1/2)A in order to avoid the spatial aliasing [20]. The DOA
problem refers to how to estimate the angle of &, from the mixture signals. In this

study, we view each speaker as a sound source and a microphone array is placed in the

Free Field Acoustic Room Chamber.

3.2.2 DOA Estimation Based on ICA

We assume that there is no reverberant effect as we receive recorded signals from
the microphone array, and all source signals reach.the microphones at the same time.

The mixing model x is obtained by the following expression:
K
Xi(0) =2 2 S (t) (44)
k=1

where a, is the attenuation generated by the "k -th source to the n-th microphone.

Considering the vector-matrix notation, the mixing model can be written as:
K
X(t) = Zaksk ®
k=1

and
X(t) = As(t)
where a, isthe k-th column of matrix A, which is called mixing matrix in Chapter

2. Here, it is also called the steering vector matrix. This model is called the
instantaneous or delay-less mixture model.
Considering the steering vector matrix, the matrix can be written as following

expression:
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A(f) =[a(f).a,(f),....a ()] (45)
where a,(f) denotes the k-th column vector of matrix A(f), which is made of the
attenuation coefficients.

When the source signals are well-separated exactly at each frequency, we can
obtain the steering matrix H(f)=W(f)"'D(f)™", where W(f) and D(f) denote
the demixing matrix and scaling matrix in Chapter 2. However, the scaling matrix does

not affect to the ratio of elements in the same column. This invariant property can be

shown below [21].

AH) _[WHODMD ], W],
Au(f) [WHHDHH]  [WH()]

mk mk

(46)

Where [], denotes the i-th row and the k-th column element of the matrix and

i #m. Then, we can use the invariant property to derive the relation as below in [21]

::k((‘;_)) = %exp (—j2rf(i-m)dsingc) (47)

And then we can extract the angle 6, :

L angle[A, ()7 A, ()]
27 f(i—m)dc™

6, (f)=sin

| angle[ WA (f)/ Wi () |

=sin .
27 f(i—m)dc™

(48)
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3.2.3 DOA Estimation for 3-D Source Signals

>y

Fig. 7 Relationship between Source and Microphone Array

The 2-D DOA estimation-is known as one of ‘the-popular methods in the area of
acoustic signal processing. In general,.the source signals and the microphone arrays are
placed in the same plane as shown in Fig.6, and the estimated angle is the azimuth angle
6. In many cases, the problem is solved by using the uniform linear array (ULA), and
there are many conventional method such as [21][22][23]. When we consider the source
signals and the microphones in a real environment, the DOA is a three dimensional
problem as shown in Fig. 7. Then, in addition to the azimuth angle &, and we also need
to find the elevation angle ¢ . In this approach, the microphone array is not necessary to
be an ULA. However, the source direction has the higher accuracy of estimation when it
is arranged as two ULA such as L-shape microphone array in [24]. There are many
methods in [25][26][27], and we adopt [28] to estimate our DOA estimation of 3-D

source signals.
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Fig. 8 Spatial Relationship of a Microphone Array and a Source Signal

We assemble three microphones as a microphone array for estimating the azimuth
and elevation of the source signal as shown .in Fig.-8. Considering the time delay
mixture model, we convert-the time-domain signals into frequency-domain by
Short-Time Fourier Transform (STFT). Let K be the number of source signal s and
N be the number of recorded signal x with N > K. It can be modeled as:

x(f,t)=A(f,t)s(f,t) (49)
and

A(f)=[a(f.0.4) a,(f.0,8) - a(f.0.4)]

ak(fyek!@):[am(f’ek’@) azk(fﬂk'@) aNk(flek’@)]T

amthew@)zgwexp{jgﬁiFT«K@,@)}

where A(f) isthe NxK mixing matrix, whose k-th column vector represents the
transfer function of the k -th source signal, which is the so-called steering matrix. The

g, denotes the gain of a,, r=(x,Y.,z,)" denotes the coordinate vector of the n-th
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microphone, and (/(Hk,@):(cosekcos@,sin@kcos@,sin@) represents the look

direction vector of the n-th microphone as shown in Fig. 8. Then, we can obtain the

equation by dividing two elements as shown in following equation:

A [ exp{jﬁ (Y, —Y,)sin g, cos g, +(zl—zz)sin¢k]} (50)
a2k a‘2k c

2 f . .
%: % exp{J% (y,—y3)sin 6, cos g, +(21—z3)3|n¢k]} (51)

The elevation angle ¢ and the azimuth angle & can be derived by the following

equations:
Siﬂ@k COS¢[< _ (yl_ys)A_(yl_yz)B (52)
(X1 - Xz)(y1 - y3) - (X1 - Xs)(y1 - yz)
Sin¢[( _ (Xi_xz)B_(X1_X3)A (53)
(Xl a2 XZ)(yl | = ys) N (Xl N XS)(yl - yz)
and

'\ angle(a, /ay)
27z fct

B angle(ay /ay, )

2rfct
Then, we extract the angles ¢ and 4:
4 :Cosl{ (%= ¥2) A= (%, — ¥,)B } (58)
[(X1 - Xz)(yl - ya) - (X1 - X3)(Y1 - yz)]cos¢k
ﬂ( :Sinl{ (Xi_xz)B_(X1_X3)A } (55)
(X1 - XZ)(yl - ys) - (X1 - Xa)(y1 - Y2)
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3.3 Acoustic Signal Synthesis

3.3.1 Virtual Listening Point Audio Synthesis
(Start >
+

Two Microphone Arrays

/

Blind Source Separation by
v Independent Vector Analysis

Separated Sources =

Direction of Arrival by Demxing
Matrix Estimation

v

Triangular Location by two
microphone arrays

Y

Virtual Listening Point Audio
Synthesis

A J

R

Fig. 9 Flow Diagram of 3D Acoustic Signal Synthesis

In our study, the main purpose is to synthesize a virtual listening point audio from
the mixture signals. We record the signals using a microphone array in an anechoic
chamber. Fig. 9 shows the acoustic signal synthesis flowchart. We are able to construct
the acoustic signal at the desired virtual listening position, which is the so-called Virtual
Listening Point Audio Synthesis. We assume that there are two source signals and two
microphone arrays in our experiment. Each array contains three or seven microphones.
The task includes three major steps. First, we adopt [8] to separate the mixture signals

recorded by the microphone array. Second, by employing the IVA method, we can
29



obtain the demixing matrix W(f) . Thus, we derive the steering matrix

A(f)=W(f)", where W(f)" denotes the pseudo-inverse of W(f). Then, we use
the steering matrix A(f) and [28] to estimate the DOA of two source signals. Third,

we select an arbitrary point to synthesis the virtual audio in the space. Fig. 10 shows

three parts in main system.

Microphone Arrays

Y

Separate the
Recorded Signals

Y

Source Location
Estimation

y

Audio Synthesis

Y

Virtual Audio

Fig. 10 Flow Diagram of Overall System

3.3.2 Recorded Signals Separation

In this section, the main purpose is to separate recorded signals by utilizing [7].
There are many different kinds of blind source separation methods. However, it is quite
difficult to completely separate the source signals in general cases since the information
about the source signals and the mixing system is not known. Fig. 11 shows our chosen
BSS system flow diagram. First, we use the PCA method, which includes centering and

whitening to pre-process the mixture signals. The purpose of the centering is to remove
30



the mean of the mixture signals. The whitening process decorrelates the mixture signals,
and it converts the variance of mixture signals to be unitary. After the mixture signals
are decorrelated, the separated signals are closer to be independent components in the
ICA scheme. Then, we can use the Newton method to optimize the contrast function.
When the iteration converges, we solve the scaling problem by using the method in [10].
Finally, we obtain the separated signals by multiplying the mixture signals by the
demixing matrix, and then we convert the frequency—domain signals back to the

time-domain by IDFT. Here, the separated signals y(t) are recorded for the purpose of

synthesizing the virtual audio.

STFT

v

PCA preprocess

v

Optimize the contrast function by
Newton method

Solve Scaling Problem
W(f)=diag(W™(f))W(f)

y(f) =W(f)x(f)

v

IDFT

End

Fig. 11 Flow Diagram of ICA scheme
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3.3.3 Source Localization

In a real acoustic environment, the source direction contain azimuth angle ¢ and
elevation angle ¢. Fig. 12 gives the DOA flow diagram of overall procedure. We use
the pseudo-inverse to obtain the demixing matrix A(f)=H(f)", which is also called

steering matrix. The i-th column of the steering matrix represents the transfer function

of the i-th source. Then, the azimuth angle 6 and the elevation angle ¢ are solved

by dividing two elements within the i-th column as dicussed in section 3.2 [28].

( Start )

A

A(=H(f)"

.
Using the element of the steering matrix to

obtain azimuth and elevation

A

End

Fig. 12 The DOA Flow Diagram

For estimating the distance between the source and the microphone array, it is
necessary to use two microphone arrays. Here, we use trigonometry to estimate the
distance of the two source signals. When we obtain the steering matrices from two
different microphone arrays, the column vectors correspond to the source signals but

their orders may not match between two microphone arrays. Assume there exists

k

steering vector matrix A, =|aj |, where A, denotes the steering matrix which is

obtained from i-th microphone array; aﬁ denotes the j-th steering vector, which

represents the transfer function of the k-th source signal from the i-th microphone
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array. If Alz[ail af2] and A2=[a§l alz?_] represent the first and the second

microphone arrays, respectively, we notice that the first column vector aj, and a2,

represent the transfer function associated with different sources. However, aj, and

a;, represent the transfer function with the same source. Let Y, =[y111 y122] and

Y1:|:y212 yzzl] represent the separated signals from two microphone arrays. We

compute the correlation coefficient of two signals to be matched. Considering the time
delay between two microphone arrays, the maximum time delay is caused by the
distance between two microphone arrays. Therefore, we can select the maximum

correlation coefficient to match signals.

argmax corrcoef (y,,"(L: L—n)y,n+d:ib)),i=12,..,K  n=01..T

T-LSRs
C

where K denotes the number of the steering vectors, L denotes the signal length, i
and n denote the index of the sample point, r denotes the distance between two
microphone arrays, ¢ denotes the sound speed, Fs denotes the sampling rate, and T

is the upper bound of the delay.
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Microphone arrayl Microphone array?2

Fig. 13 Schematic Diagram of “Law of sines”

The distance r and the azimuth-angle @ are shown in Fig. 13, and it can be

shown that:

r B )
sin(180—& ~6,) - sind, .sing,

(56)

When we obtain the distance r° between two microphones and ¢, and 6,, we
can derive r, and r,, respectively. Finally, we can estimate the distance from the
source to the microphone array by following equation:

R =r/cosg (57)
where ¢ denotes the elevation angle.

Because of the restrictions on the instrument, we do not use trigonometry to

estimate the distance of the two source signals. Here, the distances, r, and r,, are

represented by true outcomes.
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3.3.4 Audio Signal Synthesis

In our study, we adopt the software developed by the NASA Ames Research Center
to synthesize the virtual listening point. The software implements the spatial 3D-sound
processing procedure. It also supports placing the source signals in the space arbitrarily.
We perform BSS to separate signals from the recorded mixture signals. Then, we take
separated signals as inputs. Fig. 14 shows the arrangement of separated signals and the

microphone array on the X-Y plane. S;, S, and P, respectively represent the first
source, the second source and the position of the original microphone array. 6,, 6,
respectively represent the azimuth angles of the first source and the second source. d,,
d, respectively represent the distances of the first source and the second source from

the microphone. Because we do.'not use trigonometry to estimate the distance, the

distances here are true outcomes. We then synthesize the audio signals at P, P,, P,

and etc. Thus, we obtain the virtual listening point audio signals.

Fig. 14 Schematic Diagram of Audio Synthesis
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Chapter 4 Experimental Results: Part A

4.1 Real and Virtual Acoustic Environment

4.1.1 Anechoic Chamber

Fig. 15 Physical acoustic room in-an-anechoic chamber

An anechoic chamber is a room with special walls designed to prevent the sound
reflection. It can also insulate the outside interference or noise. An anechoic chamber is
commonly used to conduct experiments for simulating “free field” conditions or noise
reduction. The material covering the walls of the anechoic chamber is wedge-shaped
panels. The panel can dissipate the source energy before reflecting it away.

In our experiments, the microphones that we use are developed by Ario Company.
These microphones have a diaphragm and backplate structure. It means that the voltage
is changed by the distance between two plates, which is called Condenser Microphone
or Capacitor Microphone. Because there is no coils and magnet, this kind of

microphones have high sensitivity.
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4.1.2 NASA Sound Lab (SLAB) Software

File View slab3d Plugins Help

DS EEE G 7Yy 6000 BRY

Fig. 16 Snapshot of the 3D virtual acoustic room in SLAB

SLAB is a virtual acoustic environment rendering system developed by the NASA
Ames Research Center. The software simulates a virtual acoustic environment. It helps
us to evaluate our algorithms in spatial hearing and psychoacoustics field. In other
words, it is not necessary to construct a physical environment. There are three major
categories of parameters: the source, the environment and the listener. The source
parameters include the source locations and the source types. The environment
parameters include the sound speed, the room size and the surface reflections, etc. The
listener parameters include the listener location, the Head Related Transfer Function
(HRTF) model and the interaural time difference (ITD), etc. There are some other

specifications given in Table. 1, 2 and 3 [29].
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Table. 1 Scenario Specifications [29]

Scenario

Room Rectangular Room
Reflections 6 First-order Reflections
Direct Path FIR Taps 128

Reflection FIR Taps 32

Material Filter First-order IR Filter

Table. 2 System Dynamics Specifications [29]

System Dynamics

Sampling Rate 44.1 kHz
Update Rate

Internal Latency
FIR Update
Delay Line Update

Table. 3 Numerical Precision Specifications [29]

Numerical Precision

Sound Input / Output 16-bit Integer
Scenario Double-precision Floating-point
Signal Processing Single-precision Floating-point
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4.1.3 Experiment Setting

In our experiments, the testing source signals consist of four speeches: Female 1
(English-speaker), Female 2 (Chinese-speaker), Male_1 (English-speaker), Male 2
(Chinese-speaker). The power of the source signals is normalized. The waveforms and

spectrograms of these signals are shown in Fig. 17 (a) ~ (d).

Sound Source:Female_1 Sound Source:Female_1
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(b) Female 2
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Sound Source:Male_1 Sound Source:Male_1
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(d) Male_2
Fig. 17 The waveforms in time domain and the spectrograms in time-frequency

domain

In theory, in the case of more than two sources, the estimation procedure would be
similar to that in the two-source case. In our experiments, we only consider the
two-source case without reverberant effect. As mentioned in Chapter 3, the microphone
spacing d should be less than a half of wavelength to prevent spatial aliasing, that is,
d<(/2)A. We assume that the sound velocity ¢=345 m/sec and the maximum
frequency of source signal is 4 KHz (Sampling Rate: 8KHz). The microphone spacing

should be less than 4.25 cm. Therefore, we consider d =3 cm case.

In our experiments, we design twelve groups of the source signals, which are
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shown in Table. 4. We classify the experiments into CASE-A, CASE-B.1 and
CASE-B.2. The CASE-A denotes the speech source recorded from the microphone
arrays in an anechoic chamber. In addition, each case includes three and seven
microphone tests. They are labeled as the First-EXP and the Second-EXP. The
CASE-B.1 denotes that we use the SLAB developed by the NASA Ames Research
Center to simulate the recorded mixture signals in an ideal acoustic environment. The
CASE-B.2 denotes that we add the Additive White Gaussian Noise (AWGN) to
CASE-B.1. The noise is estimated with an approximation value in the CASE-A. Thus,
we have two noise estimates from the First-EXP and the Second-EXP. We use the

CASE-B.2 to simulate the situation in CASE-A.

Table. 4 Twelve Groups

Groups Sourcel Source2
1 Female 1 Female_2
2 Female_1 Male_1
3 Female_1 Male_2
4 Female 2 Female_1
5 Female_2 Male_1
6 Female_2 Male_2
7 Male_1 Female_1
8 Male_1 Female_2
9 Male 1 Male 2
10 Male_2 Female_1
11 Male_2 Female_2
12 Male 2 Male 1

For convenience, we move the speech source instead of moving microphone array

in recording. In addition, we set up a source and a sensor at the same horizontal plane in
our experiments as shown in Fig. 18. The speech source varies from —-30° to 30°

with a 15° step. It represents that the angles include +30°, +15°, 0° with
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different directions. The set-up of the microphone array and the sources is shown in
Fig. 19. Finally, we adopt the Adobe Audition 3.0 software to combine two speeches
into the mixture signals.

For CASE-B.2, we estimate an approximate Signal to Noise Ratio (SNR) by the

following equation:

P

SNR, =10log,, (—Obsef; ~Frore J (58)

noise

where P

observe

denotes the power of the observation recorded from the microphone

array, P

) ie denotes the power of the noise. We choose the silent speech in about
three-second period do estimate the noise. Furthermore, we calculate an average
SNR from twenty segments to estimate' SNR. The SNR with different sensors is
shown in Fig. 20. The x-axis represents the order of the sensors, which is shown in

Fig. 22. We notice that the average SNR of the First-EXP is higher than that of the

Second-EXP. The seventh sensor. x, has lower- SNR in the Second-EXP. The test in

CASE-B.2 demonstrates a mismatch between microphones. Fig. 21 shows the
difference between CASE-A and CASE-B.2. Fig. 21(a) denotes the time domain signal
of a sensor in the First-EXP of CASE-A. Fig. 21(b) denotes the simulation of the time
domain signal of a sensor in the First-EXP of CASE-B.2. Fig. 21(c) denotes the time
domain signal recorded from SLAB. Furthermore, in a real situation, we know that the
channel impulse response has an impact on our experimental results. However, it is
difficult to simulate a dynamic system. Thus, the simulation is only done with the

additive AWGN.
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(a) Placement of the Speech and the Sensor

w¥335333

S

(b) The Microphone Array

Fig. 18 Anechoic Chamber Scenario
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Fig. 19 The Location of the Source and the Microphone Array
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Fig. 20 First-EXP and Second-EXP SNR Test in CASE-A
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Fig. 21 Compare the noise between CASE-A and CASE-B.2
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4.2  Blind Source Separation Data Analysis

4.2.1 The Effect of Microphone Number

In this section, we focus on the effect of microphone numbers in the BSS algorithm.
Thus, we select three sets of microphones: x, ~X; (3 microphones), x,~Xx, (5
microphones) and x, ~ X, (7 microphones), which are shown in Fig. 22. There are

many popular metrics of evaluating the BBS quality, and one way is to measure the
Signal to Interference Ratio (SIR) as described in Chapter 2. The definition of SIR is

described below:

n=12...N

KT <Zj¢i| y”vsj ® |2>

Here, we set the input data duration four seconds (32000 sampling points). The

window size is 512 sampling points and the source distance is 1.5M.

Fig. 22 The Placement of a Microphone Array
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Fig. 23 Microphone number test in the First-EXP of CASE-A (Real)
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Fig. 24 Microphone number test in the Second-EXP of CASE-A (Real)
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In CASE-A, we have the First-EXP and the Second-EXP experiments as shown in

Fig. 23 and Fig. 24. Fig. 23(a) shows the SIR corresponding to different sources from
angle 15° and -15°. Fig. 23(b) shows the SIR corresponding to different sources from

angle 30° and —30°. The x-axis represents the test groups as shown in Table. 4.
Group 13 represents the average SIR of all 12 groups. In a similar way, there are
different sources from different angles in Fig. 24(a)~(b). In Fig. 23(a)~(b), we notice
that the results provide good performance. The average SIR is approximately 16dB. We
can observe that the overall results in Fig. 23 are better than that in Fig. 24. On the other
hand, there are some other trends in Fig. 24. The results get better performance by
adding more sensors as shown in Fig. 24(a)~(b). For example, using five and seven
sensors outperforms than using three.sensors.. The average SIR is about 11~13dB.
However, we also see that the results with five sensors show the better performance than
that with seven sensors. In fact, the situation is reasonable. In the Second-EXP, the
average SNR with five sensors provides a higher value-than that with seven sensors. On
the other hand, the average SNR of the First-EXP also provides the higher value than
that of the Second-EXP as shown in Fig. 20. Therefore, we know that the sensors with
higher SNR determine the BSS quality.

In CASE-B.1, it shows the test in a SLAB-based simulation. Fig. 25(a)~(b) show
that the SIR values are almost the same for the tests with different sensors because the
SLAB environment in CASE-B.1 is noise free and distortion free. In CASE-B.2, we see
that more sensors have a higher SIR in this simulation as shown in Fig. 26 and Fig. 27.

Based on these figures, we can observe some trends from these data. First of all,
BSS provides good quality when the average SNR of sensors is high. In other words,
the sensors with high SNR determine the BSS quality. Second, the performance of BSS

algorithm is higher by adding more sensors.
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Fig. 25 Microphone number test in CASE-B.1 (SLAB)

51

MumIC:3
L —8— NumMIC:5 |
—F— NumMIC:7
1 1 | 1 1 1
0 2 4 G 8 10 12
Group
(@) SIRwithangle 15% and -15°
1.6M-1.5M(30° -307)
MumMIC:3
L —&— NumMIC:5 [
—— NumMIC:7
1 1 | 1 | 1
0 2 4 G 8 10 12



1.5M-1.5M(15° -15%)
2[] T T T T

| —4— NumMIC:3
18} -

16

14

10

SIR(dB)

['] 1 1 1 1 1 1
0 2 4 G o 10 12

Group

(@) SIR.with angle 15° and -15°

1.5M-1.5M(30°.-30%)
2[] T T T T

| —— nummic:3
18} -

16

121

10

SIR(dB)

U | 1 1 1 1 |
0 2 4 b g 10 12

Group

(b) SIR with angle 30° and —30°

Fig. 26 Microphone number test in the First-EXP of CASE-B.2 (AWGN)

52



1.5M-1.5M(15° -15%)

2[] T T T T T T
MumMIC:3
18 —&— NumMIC:5 [
—— NumMIC:7
16|
14
12
o
e 10r
wn
B -
E o
4 i
2 - .
U | 1 1 1 1 |
0 2 4 6 8 10 12
Group
(@) SIR withangle 15° and -15°
1.68M-1.5M(30°_-30%)
25 T T T T T T
MumMIC:3
—8— NumMIC:5
—— NumMIC:7
20
15| .
[iv)
=
o
w
10F .
5 - .
U | 1 1 1 1 |
0 2 4 G 3 10 12
Group

(b) SIR with angle 30° and —30°

Fig. 27 Microphone number test in the Second-EXP of CASE-B.2 (AWGN)
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4.2.2 The Effect of Data Size

In this section, we focus on the effect of input data size, that is, we choose different
data length of mixture signals to test the BSS algorithm. Starting from a small size
inputs, increasing data size can significantly improve the performance. When the input
data reach a certain amount, we get less improvement. Therefore, we ought to limit data
to a proper size to reduce delay and processing cost. In our experiments, we have one

hundred and twenty test sequences. The sequences contain ten combinations of
6 =0°,+15°,430° as shown in Fig. 19. Each combination has twelve groups as shown

in Table. 4. Here, we set the data window size to 512 samples and the source distance

to 1.5M. For convenience, data length is abbreviated as DL.

ALLCASE
2[] T T T T T T T

18 .

141+ .

12 .

dB
=
1

U 1 1 1 1 1 1 1
0 1 2 3 4 5 b 7 g

DATAIN(s)

(a) First-EXP

54



ALLCASE
2[] T T T T T T T

18 .

14} .

121 .

dB

10 .

[] | 1 | 1 1 1 1
0 1 2 3 4 b B T g

DATAIN(s)

(b) Second-EXP

Fig. 28 Data Length test in CASE-A (Real)

In CASE-A, we show the First-EXP and the Second-EXP results in Fig. 28. They
indicate that different DL affects the BSS performance. The data points in Fig. 28 , Fig.
29 and Fig. 30 are collected from 120 test sequences. The x-axis represents the size of
DL (sampling rate: 8KHz). According to Fig. 28(a), we observe that the performance of
one-second DL, the shortest length, is the worst. When the DL increases to two seconds,
the performance gets better obviously. However, we notice that the performance
saturates at about four-second DL. In other words, when the DL gets beyond four
seconds, the SIR does not gain much. A similar trend shows in Fig. 28(b), and the
performance saturates at about three-second DL.

Fig. 29(a) and (b) show the same test in a SLAB-based simulation. They show that

there is the similar trend as in the real data case. In Fig. 30, we add the AWGN into the
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SLAB-based simulation. Fig. 30(a)~(b) also show that the curve is similar to the other
cases.

Based on these results, we have the following conclusions. First, the larger data
inputs provide better BSS performance. The improvement saturates at about four
seconds for the real test data. Second, we should avoid having silent part in the BSS

algorithm.
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Fig. 29 Data Length test in CASE-B.1 (SLAB)
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4.2.3 The Effect of source Distance

In this section, we focus on the effect of the distance between source and sensor.
When we record the speech signals, in general, they come from different distances.
Thus, we select speeches with different distances to create source signals. In our
experiments, we fix the microphone array at a point and place the speech source with
6 =15°. We set the distances between the microphone array and the source to 1M,
1.5M and 2M. The set-up is shown in Fig. 31. Here, the microphone number is three,

the data input is four seconds (32000 sampling points) and the window size is 512

samples.
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1M [
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M E

50

1 0

1M

1.5M

2M

Fig. 31 The Placement of distance test in an Anechoic Chamber

59




30

25

SIR(dB)

al

70

Power

1M-2M(15° -15%)

—i— SIR1
—#— SIR2
—#— AVE H

Group

(@) SIR atDistances 1M and 2M

1M-2M{15° -15°)

20

10

—— [Near
—®— Far ||

Group

(b) Power at Distances 1M and 2M

60



SIR(dB)

Fower

1.5M-2M(15° -159)

30 T T T T T T
—&— SIR1
—&— S|R2

25+ —4— AVE H

5r 4
U 1 1 1 1 1 1
2 4 G g 10 12
Group
(c) SIRat Distances 1.5M and 2M
1.6M-2M(15° -15%)

EU T T T T T T T T T T
—&— Mear
—%— Far

50 g

10F -

12
Group

(d) Power at Distances 1.5M and 2M

61



SIR(dB)

Fower

30

25

a0

70

20

10

1M-1.5M(15°,-15%)

—l— SIR1
—&— SIR2
—4#— AVE H

Group

(e) SIRat Distances 1M and 1.5M

1M-1.5M(15° -15%)

—— Mear
—&— Far ||

Group

(f) Power at Distances 1M and 1.5M

62



1.5M-1.5M(15° -159)

3[] T T T T T T
—— SIR1
—&#— SIR2
25+ —4— AVE H
20F -
g
e 151
m
10 -
i -
U 1 | | 1 1 1
2 4 B g 10 12
Group
(9) SIR at Distances 1.5Mand 1.5M
1.5M-1.5M(15°,-15%)
EU T T T T T T T T T T
—&— NMear
—&— Far
A0 - -
40
z
Z 30r -
o
201 -
10F -
U | 1 1 1 1 1 1 1 |
1 2 3 4 5 B 7 g 9 0 1" 12
Group

(h) Power at Distances 1.5M and 1.5M

Fig. 32 Different Distance test in the First-EXP of CASE-A (Real)
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Here, we only show the First-EXP experiment of CASE-A in Fig. 32. Fig. 32(a)
shows sources at 1M and 2M. Fig. 32(b) shows sources at 1.5M and 2M. Fig. 32(c)
shows sources at 1M and 1.5M. Fig. 32(d) shows both sources at 1.5M and 1.5M. The
X-axis represents the groups specified in Table. 4. In Fig. 32(a), we notice that the result
is better when the source is close to the sensor. Also, the separated far source signal has
lower SIR. In the meantime, we calculate the power of two received source signals,
shown in Fig. 32(b). We can observe that the high SIR comes from the high power
signal. In Fig. 32(c)~(f), we observe the same trend. When two speeches have the same
distance, each SIR value is close to the other one as shown in Fig. 32(g) and (h).
Typically, the average SIR for the cases with different distances is worse than those with
the same distance.

Fig. 33 shows the test in the. SLAB-based simulation. Here, we only show two test
sequences. Fig. 33(a) shows sources at 1M and 2M-. Fig. 33(c) shows both sources at
1.5M and 1.5M. We observe the same trends-as discussed previously. The SIR of high
power source has a better performance:-In Fig. 34, we add AWGN into the SLAB-based
simulation. The SIR has similar curves to the other simulations. For the most part, the
results are better for the sources with the same distance.

Based on these results, we can observe some trends from them. The result provides
the better performance as two source signals has the same distance. In other words, the

power of two signals is quite similar.
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4.2.4 BSS Performance in Three Types

In this section, we focus on the effect of denoising. In a real acoustic environment,
the environment parameters include the air absorption and microphone intrinsic
distortion, and others. They generate audio noises and degradation. We adopt the
denoising technique [4] described in Chapter 3 to reduce the noise. Here, we compare
three cases BSS, which are shown in Fig. 35. In the Type_ 1 case, we use the IVA
algorithm [13] in Chapter 2 to obtain the separated signals. In type_ 2, the denoising
technique is applied the separated signals. In type_3, the denoising technique is applied
to the inputs before they are processed by BSS.

Fig. 36~Fig. 39 show the results of Type 1, Type_2 and Type_3 in the First-EXP
and the Second-EXP of CASE.A. Here, we; respectively, show two test sequences for
the First-EXP and the Second-EXP.. The first test sequence consists of Female 1 and

Female_2. The second test sequence consists of Male_ 1 and Male_2. The angles of the

sources in the sequences come from 15° and- -15%, and the distance are all equal to
1.5M. The left-hand side of figures shows the time-domain signals we separate from the
mixed signals. The right-hand side of figures shows the frequency-domain
representations. Based on these figures, we observe some trends. In Type_1, we notice
that there are still some signals at high frequency. In Type 2 and Type 3, the high
frequency components are reduced and the low frequency components are reserved. It is
quite obvious that the denoising technique removes the high frequency components. The
filtered signals are rather similar in both Type 2 and Type 3. Thus, applying the

denoising filter, before or after BSS, does not seem to be critical in our applications.
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Fig. 35 BSS and inserting denoising filters
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. 38 Denoising effects in the Second-EXP of CASE-A (Real)
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Chapter 5 Experimental Results: Part B

5.1 Direction of Arrival Data Analysis

5.1.1 Frequency Bin Selection

In this section, we focus on the effect of frequency bins in the DOA estimation
algorithm. In our experiments, we examine several cases to derive our final selections.
We measure the estimation accuracy by using the mean absolute error (MAE). In
statistics, the MAE is a formulation used to measure how close the predictions are to the

true values. The definition of MAE is given below:
1 N
MAE==—3>"[6—6|
N =

where 6, denotes the estimation_of the i -th frequency bin and & denotes the true

value.

Here, we set the window size to 512 samples, the data input size to four
seconds (32000 sampling points) and the distance between source and sensor to
1.5M. The window size, which is 512, leads to the same number of transform
coefficients. The magnitudes of coefficients are symmetric at the middle point. Thus, we
only use the first 256 bins to calculate the DOA estimates. The bin represents that the

frequency components are placed at even intervals of fupe/ Nymoow - They are

referred as frequency bins or FFT bins. We divide the 256 frequency bins into five
intervals. Each interval contains 50 frequency bins, and we discard the final 16 bins

since a typical speech signal contains less high frequency components.
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In CASE-A, we show the First-EXP and the Second-EXP experiment results in Fig.
40~Fig. 42. Fig. 40(a)~(d) show the angle estimated at each frequency bin for Female_1

and Female_2 in the First-EXP. The x-axis represents 256 bins from low frequency to
high frequency. The source speeches come from 6=15° and 6#=-15°. For
convenience, we always set the elevation angle ¢ =0°. Fig. 40(e)~(h) show the MAE

corresponding to Fig. 40(a)~(d). We notice that the estimation errors are high in the
First-EXP. In principle, the DOA estimation would be more accurate when there are
more sensors. In Fig. 41 and Fig. 42, we show two test sequences with seven sensors.
The first test sequence consists of Female_1 and Female_2. The second test sequence
consists of Male_1 and Male_2. Fig. 41(e)~(h) show the MAE corresponding to Fig.
41(a)~(d). In Fig. 41(a)~(b), we observe that'the median frequency bins have better
estimations. In fact, the situation.is reasonable. The low frequency has large wavelength.
Theoretically, the wavelength 'should be smaller than the distance between source and
sensor; otherwise, the angle (phase shift) cannot be accurately estimated. In Fig. 42, we
see a similar trend. Furthermore, there are-also high estimation errors in high frequency
bins. This is particularly true for the Male_1 and Male_2 test sequence. In general, the
male voice seldom includes high frequency components. According to the above
discussions, we should avoid using low frequencies and high frequencies in DOA
estimation. Because of the high estimation errors on the elevation angles in CASE-A,
we no longer consider the estimation of the elevation angles in the rest of this chapter.
Fig. 43 and Fig. 44 show the test in the SLAB-based simulations with three and
seven sensors. Fig. 43 shows the angle estimation at each frequency bin for Female_1
and Female_2. According to these data, the results are very good. In the ideal situations,
the ICA-based scheme is quite accurate in DOA estimation. We also notice that the
angle estimations have no difference between three and seven sensors. That is, the
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recorded signals without noise interference provide accurate estimation. In Fig. 45 and
Fig. 46, we observe that the angle estimations with seven sensors have better
performance than that with three sensors.

As a summary of the above discussions, firstly, the results of DOA estimation are
improved when the number of sensors increases. Secondly, the low frequency bins and
the high frequency bins are improper for the purpose of DOA estimation. Therefore, we

choose the median frequency bins as our reliable intervals.
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5.1.2 Effect of Power in DOA Estimation

In this section, we focus on the effect of the power of bins in DOA estimation. We
randomly pick up a mixture signal recorded from a microphone, and we convert the
time-domain signal into frequency-domain by STFT. The power is estimated at the each
frequency bin. Then, we sort the bins according to the power in each bin. That is, the
power of bins is in the decreasing order. We measure the performance (accuracy) by
MAE. We set the window size to 512 samples, the data input size to four seconds
(32000 sampling points) and the distance between source and sensor to 1.5M. We
also divide the power of frequency bins into five intervals. Each interval contains 50
indexes, and the last 16 indexes are discarded since their power is typically very low.

For convenience, we abbreviate the power of a.frequency bin as PFB.
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In CASE-A, we show the First-EXP and the Second-EXP experimental results in
Fig. 47~Fig. 49. Fig. 47(a)~(d) show that the angle is estimated at each PFB for
Female_1 and Female_2 in the First-EXP, and the sources are located at #=15° and
6 =-15°. The x-axis represents 256 indexes from the high PFB to the low PFB.
Because of the poor performance in the First-EXP where three sensors were used, we
will not discuss it in detail. In Fig. 48 and Fig. 49, we show two test sequences with

seven sensors. The first test sequence consists of Female_1 and Female_2. The second
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test sequence consists of Male_1 and Male 2. Fig. 48(e)~(h) show the MAE
corresponding to Fig. 48(a)~(d). In Fig. 48(a)~(b), we find that the median PFB have
better estimates. The PFB with the small indexes are often the low frequency
components. In the preceding section, we discussed that low frequency components
cannot provide accurate estimates. In Fig. 49, we notice a similar trend. We also find
that the estimation errors of the high index PFB are high. It is quite well-known that the
estimation errors increase when the SNR decreases. Clearly low power signals are
unreliable in estimation. In conclusion, we should avoid using the lower index PFB and
the high index PFB to estimate DOA.

Fig. 50 and Fig. 51 show the tests in the SLAB-based simulations with three and
seven sensors. According to these figures, the tests have the good performance in almost
all PFB. We also notice that the angle predictions have no difference between three and
seven sensors. In Fig. 52 and Fig."53, we observe that the angle estimations with seven
sensors have the better performance than that with three-sensors when there is a noise.

Based on these data, we conclude-that thelow power components are not reliable
and more sensors provide better results for received signals containing noises (real

cases).
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5.1.3 Confidence Region

In this section, we discuss the find selections of reliable region; that is, the region
provides good performance of DOA estimates. Again, we measure performance by the

mean square error (MSE). The definition of MSE is described as below:
2
MSE(6) = E[(@—@) }

where @ denotes the angle predictions and & denotes the true outcome.

Here, we integrate two observations we have concluded in the preceding two
sections. For example, Fig. 54(a) shows the constellation with one axis in frequency
and the other axis in PFB, and the entire domain is divided into 25 areas. We try to
identify the confidence region in this plot. Fig. 54(b)~(c) show that the MSE of the
DOA estimate corresponding.to the - constellation. The x-axis represents the
frequency bins in increasing order. And, the y-axis represents the PFB in increasing
order. Fig. 54 and Fig. 55 show two ccases in the Second-EXP. We notice that the MSEs
are high at high PFB and low frequeney bins. On the other hand, the MSEs are high at
low PFB and high frequency bins. We have discussed these trends already in preceding
sections. Fig. 56 and Fig. 57 show that the low MSEs are low in the SLAB-based
simulations because there is no noise. Fig. 58 and Fig. 59 show the confidence regions
in the CASE-B.2.

According to these data, we finally select the confidence regions that have the
frequency bin ranging from 50 to 200 and the PFB ranging from 50 to 200 (512-size

window).
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5.1.4 Effect of Denoising on DOA Estimation

In this section, we look at the Type 3 set-up described earlier and its DOA
performance. Here, we show four test sequences. Two test sequences consist of

Female_1 and Female_2. Another two sequences consist of Male_1 and Male_2. Fig. 60
show that the test consists of Female_1 and Female_2. The some angles are 15° and

—-15°. In Fig. 60(a)~(c), we observe that the MSE is large in high PFBs and low
frequency bins. Somewhat different from the previous conclusions, Fig. 60(d) shows the
angle estimates at each frequency bin. Again, most reliable region is the median
frequency bins. Thus, the audio denoising technique [4] has some effects on the DOA
estimation but the difference is generally small. We can derive the same conclusions
from Fig. 60~Fig. 63. It seems that the denoising.technique may expand the confidence
regions lightly to the higher frequency bins if their power is not too low. But finally, the

middle frequency band is most reliable as discussed earlier.
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5.2  Virtual Listening Point Audio Synthesis

In our study, we adopt the SLAB software developed by the NASA Ames Research
Center to synthesize the audio-at a virtual listening point. The software implements the

spatial 3D-sound processing procedure.
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In our proposed audio synthesis system, we first perform BSS to separate signals
from the recorded mixture signals. Then, we take separated signals as inputs to SLAB.
Fig. 65 shows the arrangement of separated signals and the microphone array on the
X-Y plane. Female_2, Male_2 and P, represent the original recording layout.
They are respectively the first separated source, the second separated source and the
position of original microphone array. The azimuth angles of the first source and the
second source, estimated by the DOA algorithm, are 14° and 14° respectively.
Because of the restrictions on the instruments, we have only one set of microphone
array. We did not use trigonometry to estimate the distance of the two sources. The
distance of these sources from the microphone are the true values, 1.5M and 1.5M
respectively. With all the above set-up, we can synthesize the virtual listening point

audio using SLAB. Fig. 66(a)~(d) show the audio signals we synthesize at B, P,, P,
P,. The X-Y coordinates in Table. 5 represent the exact positions in Fig. 65.

Table. 5 Spatial Location

Female 2 | Male 2 A P, P P,
Coordinate | (.0.36, 1.46) | (0.36, 1.46) (-1,1.3) (-0.4, 1.1) (0.4,1.1) (1, 1.3)
Female_2 Male_2
L ] [ J
P1 P4
X

Fig. 65 Locations of Synthesized Audio
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Chapter 6 Conclusion and Future Work

6.1 Conclusion

The main propose of this thesis is to synthesis virtual listening point audio from the
recorded mixture signals in an anechoic chamber. We adopt the FastlVA method to
separate the sound sources from the recorded microphone array audio. We use the DOA
technique (in an ICA-based scheme) to estimate the source directions. We also adopt the
audio denoising technique to improve the subjective hearing quality. Based on the
experimental results, we have the following conclusions:

For BSS technique:

1. The microphones with high SNR determine the BSS quality.

2. The performance of BSS algorithm often improves by adding more sensors.

3. The BBS quality provides the better results when we input more data. Also, in a
real environment, there is good performance with four-second data length.

4. Two source signals with similar power results in better BSS quality.

For DOA technique:

1. The results of DOA estimation are more accurate when there are more sensors.

2. Low frequency components are unreliable in DOA estimate because of their
long period in time. However, the high frequency components often have high
noise. To obtain reliable DOA estimates, the SNR of that signal needs to be
sufficiently large. This requirement eliminates the high frequency components.
Therefore, from our statistics, the median frequency bins have more reliable
estimates. These reliable frequency bins are ranging from 50 to 200 (512-size

window).
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For denoising technique, we can find Type 2 or Type_ 3 shown in Fig. 35 are both
usable. This technique can improve the subjective hearing quality in the BSS method

but does not seem to help the source direction estimations in the DOA method.

6.2 Future Work

In our experiments, the elevation angle estimate is inaccurate. Although people
cannot dearly distinguish the voice source vertical direction at different the elevation
angle, it may still be worthwhile to improve the elevation angle estimation. Because of
the restrictions on our instruments, the distance of the two source signals is not
estimated with trigonometry. In the future, the problem can be solved by multiple
microphone arrays or by using the other methods with one microphone array. Another

possible topic is the synthesis of moving acoustic signals with the Doppler effects.
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