\L' %

-%g;

< 4.4
c‘"l

ﬁ'

ANEREA LT EL R AN T RSB L2
BEE BB ORGSR RIAR B

High-Speed and Area-Minimized FIR Filter Design
using'Memory-Based Multiplication on FPGAs

AV RE AR BEY RN T 2N RER L2
BTG AR CUREEE R BR
High-Speed and Area-Minimized FIR Filter Design

using Memory-Based Multiplication on FPGAs

Fri FRa Student: Jin-Wei Hsu

Ry fhE gL Advisor: Dr. Juinn-Dar Huang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering & Institute of Electronics

December 2012
Hsinchu, Taiwan, Republic of China
PEAR- Q-#LZ 0

E*?ﬁ@ﬁ”%%ﬁ?ﬁ*?ﬁﬁgﬁmiﬂi
B Ak B g FURERF RIR L B R

T TSSO LT R
B2~ &
28 5 RTAY AL
o VR I F AR ¢ B AR RN A S E K e F(MCM) T s v - &
RS £ 3 SRR S5 S8 AT ARE S LSIAS St Y B
FEF R FE TR CERES DG ARk - B RWY P S

B— B ERERLI(ILP) S A A 5 0 BB BB h N A kP
fi i

Bt enF dekiE o Bl SEF I E B RAG o X HEER ST AN R
L o F BB T Ao AP SR e L frvdo L it gt 0 T

SRl G -

High-Speed and Area-Minimized FIR Filter Design

using Memory-Based Multiplication on FPGAs

Student: Jin-Wei Hsu Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

The complexity of finite impulse response (FIR) filters is dominated by multiple
constant multiplication (MCM)-block which realizes the multiplication of one data sample
with multiple constant coefficients. Many works have been proposed for minimizing
memory size since multiplications in an MCM block can be implemented by memory-based
multipliers. In this work, we present an integer linear programming (ILP) based approach to
minimize the area of MCM block implemented on the field programmable gate array
(FPGA) by finding the minimal number of common partial products to carry out all constant
multiplications. Experimental results show that on average, compared with an existing
state-of-the-art method, the proposed method reduces delay and area by more than 10% and
50%, respectively. Moreover, the reduction of memory size is more prominent when the

number of constant coefficients increases.

Acknowledgement

FAAE RO R ERIE F RGP L BRI A LY T rg o § o

SLERERS =gt SRSV e E S TR A EL RS R LR L

s BA N
B P — AR e 30— AP AT A T

AP 1L 3

Contents

1 OSSPSR TP URURTPSPPPPPPRORON [
AADSTFACT. ...ttt I
ACKNOWIBAGEMENT ...ttt r e bt r e be e e sneenre e e enes i
L0001 =T KT TSP PPV PP PRPROPRP Y%
LISt OF TADIES ...t %
LISE OF FIQUIES. ...ttt ih it etk k i dr e E kbbbt ettt b bt e e Vi
Chapter 1 INTrOTUCTION w....ouieueeesoswiitiiis s e dhe b ana s e entsis b £ e R ettt et ese e e et et neenne s e 1
1.1 Finite IMpulse RESPONSE FIITETSoiviiiiiiiiiiiiiii e ibie bbb 1
1.2 Conventional Memory-Based MUIEIPIEr. . ..o i it 1
1.3 Field Programmable Gate AITAYcccie..iieieise ireaneensentaneeeeses st iashasseesenseseessessessessens 3
1.4 ThesiS"SH@Ization Sl 820 B S R ... A0F................... 4
Chapter 2 guBaFiIround.. el SN .. NP ... W8 5
2.1 PIEVIOUS WWOTKS ..ttt stesuesuesseassassassessianetesedheassass e aseanean ah e et hannenneaseneeaneeneaneas 5
2.2 TerNmi @y TR, e Ja— ...). B .. 9
Chapter 3 IMOTIVALION ...ttt satihenee e i snessesnesbeasesbe e basceneeeebe b eeesseahne b e R b e enes 11
3.1 Motivational EXample ... i i et bbb 11
3.2 Problem FOrmUIAtioNooi i e s e bbb bbb 13
Chapter 4 Prop0osed AlGOTTtNMI...........coiiiiieieiieieeeeeee e sbh sttt 14
4.1 PropoSed ArCNITECIUIE. iiiu. et bbbttt 14
4.2 Definitions......... 4. . 20 PR . 15
4.3 Overall Flow.......... 0 . B B SR B e 17
4.4 Coefficient Assembly Tree CONSIIUCTION...........cuiiiiiieieiee e 18
4.5 TTEE PIUNING .ottt bbbttt b et bbbt bttt e bbb bt 21
4.6 ILP FOIMUIBTION.......iiiitiitiiiiieiee bbbt bbb 23
Chapter 5 EXperimental RESUITS..........ccuoiiiiiiie s 29
5.1 Experimental ENVIFONMENT.........ccoiiiiiiiiiieie e 29
5.2 Experimental Results for Different Width............ccocooiiiiiiiiiice e 30
5.3 Experimental Results for DIfferent D.........ccoccoiiiiiiiiiie e 32
Chapter 6 CONCIUSIONoouiiiiieite ittt bbb 35
RETEIEINCES ...ttt 36

List of Tables

Table 1. OMS example for input word length L = 4. 6
Table 2. A match for each coefficient in coefficient set {11, 23, 45, 125, 187}.......ccccvvvvnnne. 12
Table 3. Memory size of OMS and sharing architecture for 8 bits input.cc.ccocervnvnnnn. 13
Table 4. Maximum numbers of SUPPOrts 0f CSATIEE.ooviiiiiiieeeeee s 17
Table 5. Area cost for different numMbers Of SUPPOITS.oveviiiiiiiiiieee e 26
Table 6. FIR filters with14-bit coefficient word length. ... 30
Table 7. FIR filters with 16-bit coefficient word length. ..o 30
Table 8. ReSUItS TOr WIdtN=14.......ccc..ci it 32
Table 9. ReSUILS TOr WITNZL6. .. ciuueuiaiioiessesmenmennessc e sttt se b 32

List of Figures

Figure 1. An N-tap Transposed FIR FIlter.ccoooiiiiiieii e 1
Figure 2. (a) Memory-based multiplier example. (b) Using memory partition example. 3
Figure 3. The amount of FPGA resources of the Altera Stratix family.c.ccccoeovvveiieieen, 4
Figure 4. (a) OMS architecture. (b) Address encoder circuit. (¢) Control circuit. 7
Figure 5. OMS architecture using dual-port MemMOIY..........ccccveiieeii e 8
Figure 6. An N-tap FIR filter using OMS architeCture.cccoevveieiieiieie e 9
Figure 7. MCM block using OMS architecture for coefficient set {11, 23, 45, 125, 187}...... 11
Figure 8. MCM block using sharing architecture for coefficient set {11, 23, 45, 125, 187}...13
Figure 9. Proposed MCM bIOCK arChITECIUIE.ceeiiiiiiiiue s esiesneeesianeeseese e sreesreseesreenee s 14
Figure 10. A CAT for a COEfficient C=4"b1011.cceoviiiiree st ie i sbae st 15
Figure 11. (a) Example of support number of Pathgs. (b) Example of support number of
Pathgo. .. Y. Pt EE P W 16
Figure 12. The averall flow of proposed algorithm.............ccc. e cie e 18
Figure 13. A CAT(01011) example to illustrate the function CAT.ccciiiivvicrecineceenne 20
Figure 14. An example to illustrate the sub-function Sym Enum when num_1=1................ 21
Figure 15. An example to illustrate the function PCAT. ... esiiissn e 23
Figure 16. An example of combining two LUTS into a 32x1 bit memory...........ccceieeiveiinennene 26
Figure 17.ILP results for coefficient set {1011, 10111}ccoeviiiiiniiiiiice i 28
Figure 18. Results of memory bits for different D.uveimemmmmnecveerieeeeiteeciesvissss e seesieenens 33
Figure 19. Results of LUTS for different D. ... i et 34
Figure 20. Results of delay for different D..........cooeieoii it 34

Vi

Chapter 1
Introduction

1.1 Finite Impulse Response Filters

Finite Impulse Response (FIR) digital filters are widely used in many Digital
Signal Processing (DSP) systems. because of the advantage of stability and linear
phase properties. An N-tap FIR filter formulation is shown below

y(m) = ZNG!C; x x(n —) (1)
where x(n-i), fori =0, 1, ---, N-1, are N recent input datum, Ci, fori =0, 1, ..., N-1,
are the filter coefficients,-and-y(n) is the current output data.

The Multiple Constant Multiplication (MCM) block of an N-tap FIR filter, as
shown in Figure 1, dominates the complex of the design since many constant
multiplications are required. In some DSP applications such as video coding and
image compression require high-speed FIR filters. Therefore, it is important to

design a high performance MCM block in an FIR filter.

x(n)

Figure 1. An N-tap Transposed FIR filter.

1.2 Conventional Memory-Based Multiplier

The MCM block contains a large number of constant multiplications while

multiplier is a highly time-consuming unit. The general-purpose multipliers in an

1

MCM block can be replaced by conventional memory-based multipliers since the
constant coefficients of an FIR filter can be obtained beforehand. A conventional
memory-based multiplier example is depicted in Figure 2(a). Assume Cp is a
constant coefficient and X is a 4-bit input word to be multiplied with Co. There are 2*
possible product values Co*X because X has 2* possible values. Thus, the
memory-based multiplier is composed of a memory unit of 2* words which stores all
possible pre-computed product values corresponding to all possible values of input
X. If the input X is used as address of the memory unit and then the corresponding
product value can be read from the memory unit.

Memaory-based multiplier is a high-speed constant multiplier but the memory
size will increase exponentially with the word-length of input value. In order to
reduce memory size, the scheme called memory partition was proposed in [1] where
a conventional memory-based multiplier can be implemented by two smaller
memory._units and one adder. Figure 2(b) shows a memory unit of 2* words is
replaced by two memory units of 22 words and one adder to sum the partial results
from two memory units. The left-shifter in Figure 2(b) is easily performed by using
wire permutations without additional cost. For instance, total memary bits in Figure
2(a) are 144 bits while total memory bits in Figure 2(b) are 56 bits. Although the
memory partition scheme needs an additional adder component, it can greatly reduce

the memory size especially when the word-length of input value is long.

addrass
o0o00] 0*Cy
ooo1) 1 *Cn
00101 2*Cy

address address

o011| 3°C,

oo| 0*Cs oo| 0*Cy

o100[4*C X305 X

o1o: S*CD XX 01 1AC’J XiXg 01 1*(:0
:]

o110[B*C, E 01 2*°Cy 10 2*Cy

CoX

X= XXX X 0111 ?"Cﬂ 11 g C{] 11 S*C{}
1000 8*C,

1001 9*C,
1010] 10*C,
1011] 11*C,
1100| 12*Cy
1101 13*Cy
1110] 14*C, Co*X
111 15*C,

(a) (b)

<<

Figure 2. (a) Memory-based multiplier example.

(b) Using memory partition example.

1.3 Field Programmable Gate Array

With the great technological advances for Field Programmable Gate Array
(FPGA), it contains plenty of Logic Elements (LEs) and-memory resources. Figure 3
shows the amounts of LEs and memory resources in the Altera Stratix FPGAs from
2002 to 2010. Recent FPGA devices provide almost 1 million LEs and more than 50
megabits of embedded memory. There are so many memory resources can be used
in FPGA devices that FIR filters using memory-based multiplier are very suitable to

be implemented on FPGA:s.

1000 60
900 /f

- 50
800 . / //
o = emory / / - 40
600
500 / / 30
400 / /
300 / / 20

200 /
100 / "

2002 2004 20086 2008 2010

Memory (Mb)

LogicElements (K)

Time

Figure 3. The amount of FPGA resources of the Altera Stratix family.

1.4 Thesis Organization

The remainder of this work is organized as follows. In Chapter 2, we briefly
introduce the related previous works and the necessary terminology. The
motivational example and problem formulation are delineated in Chapter 3. Chapter
4 describes in detail the proposed algorithm, and the experimental results are

presented in Chapter 5. Finally, the concluding remarks are given in Chapter 6.

Chapter 2
Background

In this chapter, we briefly introduce the related previous works which are
proposed to reduce memory size of memory-base multiplier in Section 2.1. Then, the

terminology is presented in Section 2.2.

2.1 Previous Works

In an early paper, [1] proposed the memory partition scheme, which replaces
one memory unit with two smaller memory units and one adder, to save memory
size of 'memory-based multiplier. Next, different approaches for memory-based
multiplication have been studied [2]-[18]. In [8] aimed to single constant
multiplication on FPGA. The method is to split the input into several segments and
then use 4-bit Look-Up Tables (LUTs) to generate the partial products of coefficient
multiplication. It also noted three kinds of LUTs are redundant. First, LUT contains
all zeroes or ones, which can be replaced with a constant signal value. Second, the
contents of the LUTS are identical, which can be replaced with a single LUT. Third,
the output of LUT is the same with one of address bits, which can easily use wire to
replace. After removing all redundant LUTS, the partial products are added by Carry
Propagate Adders (CPAs). Then, [9] extended this method to multiple constant
multiplications. However, it is limited that through removing the redundant LUTSs to
reduce memory size.

An approach to improve memory-based multiplication, called
Odd-Multiple-Storage (OMS), was proposed in [17], where the memory size is

saved by half. In conventional memory-based multiplier, the memory consists of 2"

possible product values Co*X corresponding to all possible values of X with
word-length L while [17] said the memory only stores (2-/2) words corresponding to
the odd multiples of Cy. The others are even multiples of Co which can be derived by
left shifting one of the odd multiples of C, except the product word is zero. An
example for L = 4 is illustrated in Table 1. The product values Co*(2i+1), for i = 0,
1, ---, 7, are stored in memory location i. The even multiples, 2*Cy, 4*Co, and 8*Cy
can be derived by left shifting Co. Similarly, 6*Cy and 12*C, can be derived by left
shifting 3*Cy; 10*Cy and 14*Cy can be derived by left shifting 5*C, and 7*C,,
respectively. The product value 0*C, cannot derive by left shifting any odd multiples
but it can be obtained by resetting the memory output. Table 1 also shows the
number of shifts is required in-each even multiple.
Table 1. OMS example for input word length L = 4.

(so and sy are control bits of the logarithmic barrel-shifter.)

0001 Cp 0 00

0010 21x ¢ 1 01
000 Cy

0100 22 x ¢ 2 10

1000 28 x ¢ 3 11

0011 3¢ 0 00
001 3¢ 0110 21x 3¢ 1 01

1100 22 x 3¢y 2 10

0101 5Cp 0 00
010 5C;

1010 21x 5¢; 1 01

0111 7C; 0 00
011 7C

1110 21x 7¢C 1 01
100 9¢; 1001 9¢; 0 00
101 11¢q 1011 11¢p 0 00
110 13¢; 1101 130, 0 00
111 16¢C; 1111 16C; 0 00

8 x (W+4)
SINGLE-PORT
MEMORY ARRAY

4-To-3 BIT
ADDRESS
ENCODER

'1
\/

BARREL
SHIFTER

CONTROL
CIRCUIT

., aBBBENL.

Figure 4. (a) OM . (c) Control circuit.

The OMS architecture for multiplication of W-bit constant coefficient with
4-bit input operand is depicted in Fig 4. The area of address encoder and control
circuit are small while the area of barrel shifter will linearly increase with increasing
bit-width of product value. Although it can save memory size by half, it also
increases extra delay and area because of address encoder, control circuit, NOR cell,

and barrel shifter.

4-To-3 BIT
ADDRESS
ENCODER

8 X (W+4)
DUAL-PORT
MEMORY ARRAY

4-To-3 BIT
ADDRESS
ENCODER

D)
BARREL BARREL
SHIFTER SHIFTER

ADDER

CONTROL
CIRCUIT

CONTROL
CIRCUIT

hen the
0 replace
two si same.

The OMS &

FIR filter (for 8-k i S [18] is
\ : ecause all
er ' ires a pair of

address encode ol circuits. Second, one merr vith N segments
units; therefore ddress decoders can be

deplcte

inputs of

can be used instead of

eliminated.

8 x [N x (W+4)] DUAL-PORT MEMORY ARRAY IN N SEGMENTS

e " — - " — - ——— - - " " " —" —"—"—"—"—"—— 1
Xp—> | 3108 I
— 4To-3BIT I LNE g I
S| -10- 3 PORT-1 | .y |
o3 PORT-1 —"-JI ADDRESS |
2
ENCODER |- |DECODER BX(W-+4) Bx(W+4) Bx(W+d) [
X3 | MEMORY MEMORY ‘o MEMORY |
I| 3708 SEGMENT-1 SEGMENT-2 SEGMENT-N :
LINE
Xa—3 || PORT-2 AN |
| ADDRESS |
Xs—3 4-To-3BIT |3 | [PECODER |
poRT2 (I | L L 1 b
83 ENCODER ; ; ;
X7 —3 iy =T iy Ry iy = T00
O 108 08 10 20 10
xo—y |REsET1] Al g Ly |y
%1 — PORT-1 [S0.8n Fwea ~FWra ' Wed ' Wes bwia " Iwra
S oReuT
X3 —H | BARREL L BARREL | || BARREL L BARREL | , , . Ly BARREL BARREL
SHIFTER SHIFTER SHIFTER SHIFTER SHIFTER SHIFTER
= RESET-2
¥s—s PORT-2 — l l«d l l«d
¥ —3 CONTROL | ADDER | [ADDER | ===
CIRCUIT
X W48 W+8 .
T Crr™X Cv-zj;i\ o
‘I Ty >

1D | At L+ r—

Figure 6. An N-tap FIR filter using OMS architecture.

2.2 Terminology

In this section we introduce some terminology that will be used in the following

chapters.

Coefficient, C: A constant coefficient.

Non-zero bits, NZB(C): Number of non-zero bits in a binary number C.
For example, NZB(101) = 2, NZB(11011) = 4.

Symbol, S: S is a binary number whose MSB and LSB are both 1°s.

For example, 101(Ss), 11011(S;7), and 101011(S43) are symbols while 011,
1010, and 011010 are not symbols.

Alphabet, A: A is a set of symbols. For example, A = {Ss, Sz7, Sz}
Fragment, F(S, i): A number generated from left shifting S by i bits.

For example, F(S11, 3) = 1011 << 3 = 1011000.

Match, M: A match for a coefficient C with respect to alphabet A is a set of

fragments such that), F; = C and),; NZB(F;) = NZB(C).

For example, assume A = {S;, S, Si3, Si9, Ss1} and C = 110110.
Coefficient C has three kinds of matches, namely Moy = {F(S3, 4), F(Ss, 1)},
M, = {F(Sl3, 2), F(S]_, 1)}, and M, = {F(Slg, 1), F(Sl, 4)} AlthOUgh F(S51,

0) plus F(S3, 0) equals C, {F(Ss1, 0), F(Ss, 0)} is not a match since

NZB(110011) plus NZB(11) not equals NZB(110110).

Chapter 3
Motivation

In this chapter, we show a motivational example to demonstrate memory size of
memory-base multiplier can further reduce by using sharing architecture which
shares common symbols among coefficients. Then, we present the problem

formulation of this work.

3.1 Motivational Example

In OMS architecture, memory size of memory-based multiplier will sharply
increase with increasing number-of constant coefficients. For instance, assume input
word length is 8 bits and the coefficient set 1s {11(1011,), 23(10111,), 45(101101,),
125(1111101,), 187(10111011,)}. The MCM block generated using OMS

architecture for this coefficient set is shown in Figure 7 where it contains an 8x50

dual-port memory unit.

8x50 DUAL-PORT MEMORY ARRAY IN 5 SEGMENTS
T |
4 4-TO-3 BIT 3 | |
ADDRESS —Hﬁ |
8 ENCODER | 8x@+4) Bx(5+4) 8x(6+4) 8x(7+4) 8x(8+4) |
X | MEMORY MEMORY MEMORY MEMORY MEMORY
SEGMENT-1|| SEGMENT-2 SEGMENT-3 SEGMENT-4 SEGMENT-5 |
4 | 4TO3BIT |4 | |
ADDRESS =<y |
ENCODER | I
4 CONTROL 3
. | =B cireur [H NOR CELL
L EN ¢
4 CONTROL [3 BARREL SHIFTER
CIRCUIT
11*X 23X 45"X 125"X 187*X

Figure 7. MCM block using OMS architecture for coefficient set {11, 23, 45, 125,

187}.
11

The MCM block generated using OMS architecture can save memory size by
half while OMS architecture does not consider correlation among different
coefficients. We assume the alphabet set A={1(S;), 1011(S11), 100101(S37)}; a match
for each coefficient in coefficient set {11, 23, 45, 125, 187} is shown in Table 2. The
symbols in A can use left shifting and adders to derive all coefficients because we
consider correlation among coefficients so that some coefficients can share common
symbols. Finally, memory only stores product values of all symbols in A except S;
which can be got directly from input. The MCM block generated using sharing
architecture for the coefficient set is shown in Figure 8 where it contains a 16x18
dual-port memory unit. Firstly, product values of symbols are read from memory
output. Then, these product values and input X are used to carry out all constant
multiplications. For example, S3;*X is read form memory output and S; is left
shifted by 3 bits. After that, the product value 45*X can be obtained through
summing those partial products using Carry Save Adder (CSA) tree as shown in
Figure 8. Finally, memory size of OMS and sharing architecture is shown in Table 3.
The memory size of MCM block for two different approaches is different. The
MCM block using sharing architecture saves memory size by 28% compared with

the OMS architecture.

Table 2. A match for each coefficient in coefficient set {11, 23, 45, 125, 187}.

Coefficient Match

11*X Fi

23*X Fi

129"X Fi

187*X Fi

(
(
45X | F(
(
(

16x18 DUAL-PORT MEMORY

3| 16x(4+4) 16x(6+4) |
1| MEMORY MEMORY ||
4 | | SEGMENT-1 SEGMENT-2 ||
- 1

11X 23"K 45X 125X 187X

Figure 8. MCM block using sharing architecture for coefficient set {11, 23, 45, 125,

187},

Table 3. Memory size of OMS and sharing architecture for 8 bits input.

| Memonbits

OMS Architecture 23x50 = 400
Sharing Architecture 24x18 = 288
3.2 Problem Formulation
Given a set of coefficients {Co, C;, -+, Cn1} and an upper bound of level of
CSA tree D. The given D is used to constrain timing of MCM block. The objective
of this work is to decide a match for each coefficient and determine an alphabet that

lead to minimum total area cost of MCM block.

13

Chapter 4
Proposed Algorithm

Our proposed algorithm, called Global Optimal Symbol Match (GOSM), is
described in this chapter. Firstly, we introduce proposed architecture and definitions
which are used in GOSM in Section 4.1 and 4.2 respectively; then, flow chart of
GOSM s illustrated in Section 4.3. GOSM consists of two main parts which are

explicitly described in Section 4.4 and Section 4.5, respectively.

4.1 Proposed Architecture

A two-stage MCM-block-using memory-based multiplication is depicted in
Figure 9. The first stage generates the product values of common symbols and then
they are used to realize all constant multiplications in second stage. The delay of the
first stage Is almost constant since it consists of memory unit. However, the delay of
the second stage including CSA tree and CPAs is flexible. It is decided by number of
levels of CSA tree; that is the reason why D is.used to constrain timing.

DUAL-PORT MEMORY ARRAY
L | 2" x(W+Li2) 2V (WoHLI2) 2% (W+Li2) |
I

MEMORY MEMORY . 8o MEMORY |
SEGMENT-1 SEGMENT-2 SEGMENT-m |

'-':..'-..'_ ! *X O ,.,._3*)(C,r*x {Tu*x

Figure 9. Proposed MCM block architecture.

14

4.2 Definitions

Coefficient Assembly Tree, CAT(C): CAT(C) is a tree which is extended
for a coefficient C and each node in CAT(C) is a fragment. A CAT for a
coefficient C=4"b1011 is depicted in Figure 10.

Path: Path which is from root to leaf in CAT(C) is a match for a
coefficient C. For example, there are five possible paths in CAT(C) in
Figure 10.

Path; ;: j path in i coefficient.

SymSet(Path): The SymSet(Path) is a set of symbols that are used on Path.
For example, the Pathgy in Figure 10 includes F(S;, 3) and F(Ss, 0), so
SymSet(Pathg ;) ={S1, S3}.

Ci=4'b1011

Q)

athy

SymSet(Pathy ;)={S;, Ss}

Figure 10. A CAT for a coefficient C=4’b1011.

15

C,=7b1011011
CAT(C)

C,=7'b1011011
CAT(C,)

(S, 8) F(5:,3) (5,0 (85, 1) M5, 0)

CSA TREE CSA TREE
| | | !

NumSup(Pathy;)=1+2+2=5 NumSup(Pathyy) =2+ 1=3

(a) (b)
Figure 11. (a) Example of support number of Pathg .
(b) Example of support number of Path .

NumSup(Path): The NumSup(Path) is total nhumber of supports on Path.
The number of supports of all symbols except S; is two because their
product values are read from dual-port memory. For example, Figure 11
illustrates NumSup(Path) on two different kinds of paths. In Figure 11(a),
Pathg s includes F(Ss, 6), F(Ss, 3), and F(Ss, 0), so NumSup(Path, 3) equals
five. Similarly, in Figure 11(b), NumSup(Pathyg) equals three since it
includes F(S4s, 1) and F(Sy, 0).
NUumMSUPmax: NUmMSupmax IS the maximal number of supports for a CSA tree.
For different values of D, NumSupmax are listed in Table 4.
Legal path: Legal path is a path whose NumSup(Path) is less or equal than
NumSupmax. That is, Legal Path can be implemented by using CSA tree

whose number of supports is not more than NumSupmax-

16

Table 4. Maximum numbers of supports of CSA tree.

NumSup,, .

® Trim leading zero’s, TrimLZ(C): Trim the leading 0’s in C. For example,
TrimLZ(01101)=1101, TrimLZ(000101101)=101101.

® Trim MSB, TrimMSB(C): Trim the MSB in C. For example,
TrimMSB(110110)=10110.

® |C|: Bit-width of TrimLZ(C), where C is a binary number. For example,
11101|=4, |001101|=4, |11010|=5.

® Difference of length, DOL(C, S): Return |C|-|S|, where C is a coefficient
and S is a symbol. For example, DOL(11010, 11)=3, DOL(110101,
1001)=2.

® Residue(B, C): TrimLZ(B-C), where B and C are binary numbers. For

example, Residue(1102101, 100100)=TrimLZ(010001)=10001.

4.3 Overall Flow

The overall of our proposed algorithm is illustrated in Figure 12. The inputs of
GOSM are a set of coefficient and an upper bound of level of CSA tree. GOSM
consists of two main parts. In first part, we enumerate all possible legal paths and
construct a Coefficient Assembly Tree (CAT) for each coefficient. In second part, we
formulate the problem into an integer linear programming (ILP) problem and use
ILP solver to find global optimal matches for coefficients. Finally, the output is a

Verilog file of the FIR filter by GOSM method.

17

Enumerate all legal paths
and construct CAT

i !

Find global optimal
matches for coefficients

Figure 12. The overall flow of proposed algorithm.

4.4 Coefficient Assembly Tree Construction

In this section, we introduce the concept of CAT enumerator which is used to
enumerate all passible paths and construct a CAT for a coefficient. The pseudo code

of CAT enumerator is shown below.

Initial: A=,
CAT(Root, TrimLZ(C))
1 Symbol=g;

2 fornum_1 from 0 to NZB(C)-1

3 C’=TrimMSB(C);
4 S=1;
5 Sym_Enum(C’, S, num_1);

18

10

End

foreach S € Symbol
d=DOL(C, S);
create a child node r=F(S, d) for Root;
add symbol S into alphabet A;

CAT(r, Residue(C, S<<d));

Sym_Enum(C’, S, num_1)

1

2

End

Initially, the alphabet A is empty; the inputs of CAT enumerator are a root node
and a coefficient without leading 0’s. The Symbol which is used to record all S
generated from the first for loop in line 2 to line 5 is set as empty. The variable
num_1 in line 2 indicates the number of 1°s which must be chosen in C’, where
C’=TrimMSB(C). The first for loop in line 2 to line 5 is mainly used to enumerate all
possible S which must include the MSB in C. For instance, assume Cy=01011, the

for loop runs from 0 to 2 because of NZB(Cp)-1=2. The S; is returned when num_1

if(hnum_1==0)

add S to Symbol,

return;
if(MSB(C’)==0)

Sym_Enum(TrimMSB(C "), S<<1, num_1); //skip current O
else //MSB(C")==1

if(NZB(C)>num_1) //enough remaining 1’s?

Sym_Enum(TrimMSB(C’), S<<1, num_1); //skip current 1

Sym_Enum(TrimMSB(C "), S<<1+1, num_1-1); //pick current 1

19

equals 0. Similarly, the Ss and Sg are returned when num_1 equals 1, while the Sy; is
returned when num_1 equals 2. There are four different symbols 1(S;), 101(Ss),
1001(Sy), 1011(S11) stored in a set Symbol. The second for loop in line 6 to line 10 is
mainly used to create a fragment for each S in Symbol and take remaining part as a
new coefficient to recursively call the same function CAT. For instance, the first
node in Pathgo in Figure 13, we create a child node r=F(S;, d) for Root where
d=DOL(Cy, S1) and add S; into A. Finally, we call function CAT again and the inputs
of function CAT are a node r and Residue(Cy, S1<<3). The function CAT does not
end until the Symbol is empty.

Cy=01011

TrimLZ(Cy)=1011
CAT(R, 1011)

num_I1=2

A={S;, 83, S5, 8o, 511}

Figure 13. A CAT(01011) example to illustrate the function CAT.

20

C=10
C=TrimMSB(C)=011

num_1=1

C=TrimMSB(C")=11
num_1=1

-- MSB(C")=1

C=TrimMSB(C")=1
num_1=0

C=TrimMSB{C")=1

num_I1=1

-- MSB(C")=1

num_ =0

Figure 14. An example to illustrate the sub-function Sym Enum when num_1=1.

An example of the sub-function Sym_Enum for coefficient C, when num_1
equals 1 is depicted in Figure 14. The function Sym_Enum, which is also a
recursive function, is used to find out all possible symbols when given a number
num_1. In each recursion, we check whether the MSB in C" is 1 or not. If the MSB
in C’is 0, we shift S left 1 bit and recursively call the same function Sym_Enum. If
the MSB in C”is 1, we let (S<<1)+1 and decrease the num_1 by 1. After that, we
recursively call the same function Sym Enum. In addition we also can regard this
bit as 0 if number of 1’s in the remaining part is bigger than the num_1; we do the
same operation with the situation of having 0 in the MSB of C’. The sub-function

Sym_Enum does not return symbol until the num_1 equals 0.

4.5 Tree Pruning

In Section 4.4, we enumerate all possible paths for a coefficient but meanwhile

all illegal paths are also enumerated in CAT. It causes extra time-consuming because

21

there is no chance to choose illegal path as a match for a coefficient. In order to
avoid enumerating illegal paths in a CAT, we use branch-and-bound to modify CAT.

The pseudo code of the modified CAT, called PCAT is shown below.

Initial: A=,
Pathmigaie=7;
PCAT(Root, TrimLZ(C), Pathyiadie)
1 Symbol=3;

2 for num_1 from 0 to NZB(C)-1

3 C =TrimMSB(C);

4 S=1,

5 Sym_Enum(C’, S, num_1);

6 foreach S € Symbol

7 d=DOL(C, S);

8 add F(S; d) to Pathgigeie;

9 if(NumSup(Pathigdle) <=NUmMSupsax)

10 create a child node r=F(S, d) for Root;

11 add symbol S into alphabet A;

12 PCAT(r, Residue(C, S<<d), Patfmidde);
End

The pseudo code of PACT and CAT are very similar. We create a fragment set
called Pathpiggle in PACT. In each recursion, we add a new fragment into Pathmiggie
and then check if NumSup(Pathpigqie) 1S less or equal than NumSupmax. If this

condition is true, we create a child node r=F(S, d) for Root and recursively call the

22

same function PCAT; otherwise, we skip it. An example of the function PCAT for
coefficient C=1111101 when D=1(NumSupma=3) is depicted in Figure 15. The
NumSup(Pathmigaie) in third node equals NumSupmax, SO its child nodes which are
marked by dash circle in Figure 15 cannot be created. Thus, we construct a CAT for
a coefficient quickly without enumerating illegal paths.

C=1111101

CAT(C)
D=1(NumSupma:=3) @
Path.

fx

NumPT(Path,,..)=3

{(852)) 1(80)) 1(S10))

~ -

' I

Figure 15. An example to illustrate the function PCAT.

4.6 ILP Formulation

In Section 4.4 and Section 4.5, we introduce how to enumerate all possible
legal paths for a coefficient. After that, in this section, we illustrate how to find
global optimal matches for all coefficients by using Integer Linear Programming

(ILP) solver.

23

4.6.1 Variables

Two variables are defined for modeling the behavior of choosing a path in a
CAT. One is VarS which indicates whether the symbol is selected into A or not. The
other is VarPath which means whether the path is selected or not. The following

equation lists the corresponding ILP formulations.

_ (1,if 5; is chosen by ILP solver.
Vars; = {O, if §; is not chosen by ILP solver.)
N 1,if Path, j is chosen by ILP solver. 3
S {0, if Path; ; is not chosen by ILP solver. 3)

4.6.2 Existence Constraint

Each path in CAT(C) is a match for coefficient C; a math is composed of a set
of fragments. Thus, if the Path;; is chosen, every symbol in SymSet(Path;j;) must be
chosen. However, when every symbol in SymSet(Path;;) is chosen, the Path;; may
not be chosen. The existence constraint is used to ensure all symbols corresponding
to the selected path are chosen into A. The formulation is as follows:

VarPath;j < min{VarS,, ...,VarS,_,} VPath;;|S € SymSet(Path;;) (4)

4.6.3 Unigueness Constraint

A CAT contains many paths while only one path should be chosen for a
coefficient. It causes unnecessary area waste if more than one path is taken. The
uniqueness constraint is used to make sure only one path to be decided in a

coefficient. The uniqueness constraint should be accordingly formulated as:
kj— _
ijolVarPathi,j =1 (5)

where k; is total number of legal paths for i coefficient.
24

4.6.4 Objective Function

The objective of the ILP problem is to minimize total area including memory
and CSA tree. Our proposed architecture has two-stage. First stage consists of a
dual-port memory which stores all product values of the symbols in A. Since VarsS is
a 0-1 variable, we can calculate the area of memory by Y™ '(Area(S;) - VarS;),
where m is number of symbols in A and Area(S;) is area cost of symbol S; (more

details will follow in Section 4.6.5). Similarly, VarPath is a 0-1 variable as well;
. — ki_
then we determine the area cost of second stage by Yo'].=01(Area(Pathi,j)-

VarPath; ;), where N is number of coefficients, kj is number of legal paths in i
coefficient, and Area(Pathi;)-is area cost of Path;; (more details will follow in

Section 4.6.6). Finally, equation (6) is the cost function of the ILP problem.

Sl ¥ ;‘;gl(Area(Pathi_j) -VarPath; ;) + Y% (Area(S;) - VarS;). (6)

4.6.5 Area Cost of Path

In a CAT, each different path has different area cost but the area cost of each
path can easily estimate. In the beginning, we calculate the bit-width of each support
in CSA tree and then rank them in ascending order. Table 5 shows the schemes for
different numbers of supports from three to six and the width of each CSA in CSA
tree. An n-bit CSA consists of n disjoint full adders. In addition, one full adder
requires two 4-input LUTs on FPGA. Therefore, the area cost of path can be

estimated by multiplication of the total CSA bit-width with two.

25

Table 5. Area cost for different numbers of supports.

#support 3 4 5 6
Scheme 0, O, O 0, 0 O; O, O 0, O; O O 0, 0, O3 O, 05 O
| | | [1| 1 [1 1 I I
Aq-bit As-bit As-bit Aq-bit Ag-bit
CSA CSA CSA CSA CSA
1 [| | I
i Az-bit As-bit
’EZST CSA CSA
L] 11
Ag-bit As-bit
CSA CSA
Bit-width Ar=|Os Ar=104 A+=]0s] A+=]0s] A5=|Cg|

Az=max{A+1, [O4} Az=max{A +1, |Oy4)} Asz=max{A+1, Az}
Ammax{As+1, [Osl} A=A+

LUTs 2+A, 2%(A,+A,) 24 Ag+A+A;) 24 (A +Ag+ASHA,)

4.6.6 Area Cost of Symbol

All product values of symbols in A are stored in dual-port memory. Two 4-input

LUTs can be combined toa 32x1-bit memory, as shown in Figure 16. Therefore, a

L
2"XW-bit dual-port memory is equivalent of (2—4 x W) X 2 LUTs. For instance, a

2°x7-bit dual-port memory and 28 LUTs are equivalent.

X4
ozl |
X1 i i
X i o LUT :
X3 i D :

M |
| [i
: LUT = !
| a

Figure 16. An example of combining two LUTSs into a 32x1 bit memory.

4.6.7 ILP example

In this section, we demonstrate an ILP example for coefficient set {1011,

10111}. In the beginning, CAT(Cy) and CAT(C,) are constructed by the function

26

PCAT when D equals two and shown in Figure 17. Assume input word length is 10.
According to CAT(Co) and CAT(C,), two kinds of constraints are listed below:

Existence constraint:

VarPatho o= min{VarS;};
VarPathg, = min{VarSs, VarS:};
VarPathy 4 =min{VarSy1};
VarPath; o =min{VarS,};
VarPathy , = min{VarS;, VarSs};
VarPath; s/ =min{ VarS;, VarS;};
VarPathy s = min{VarSs, VarSs};
VarPath; g = min{\VarSy, VarSs};
VarPath; 1o =<min{VarS;7, VarSs};

VarPath; 1o = min{VarSy;, VarS;};

VarPathg ; = min{VarS;, VarSs};

VarPathg 3 =min{VarS,, VarS;};

VarPath; ; = min{VarS;, VarS;};
VarPath; ; =min{VarS;, VarSs};
VarPath; s = min{VarSs, VarS:};
VarPath; ; = min{VarSy, VarS; };
VarPath; o =min{VarS;;, VarS;};
VarPathy 13 =min{VarSy, VarS,};

VarPath; 13 = min{VarSyg, VarS };

VarPath; 14 = min{VarSys};

Uniqueness constraint:
*oVarPath,; =1 iZoVarPath; ;=1

Then, the objective which is shown in below is minimized.
Obijective:
26VarPath, o+26VarPathg 1 +28VarPath, ,+28VarPathg s+0VarPath, 4+52VarPath o+
52VarPathy 1+54VarPath; ,+54VarPath; ;+28VarPath; 4+50VarPath; s+54VarPath; ¢
+54VarPath, 7+56VarPath; g+54VarPath; o+56VarPath; 1p+30VarPath; ;;+30VarPath
112+60VarPath; 13+0VarPath; 4.

Finally, the ILP problem is solved by using ILP solver named Gurobi [19].

VarPathy 4, VarPath; 15, and VarS; are chosen by ILP solver. The total estimated area

cost is 66 LUTs and the alphabet A contains Sy;.

27

C=1011
CAT(G)

Area(Pathy)=0

c=10111
CAT(C,)

Area(Path; ;) =30

Figure 17. 1

28

Chapter 5
Experimental Results

5.1 Experimental Environment

The proposed algorithm, GOSM, is implemented in C++/Linux environment.
The experiments are run on a workstation with an Intel Xeon 2.4GHz CPU and
48GB RAM. The ILP solver which is used to find global optimal matches for
coefficients is Gurobi 5.0 [19]. The FIR filter by GOSM method is described at RTL
level using Verilog HDL. Based on Altera Stratix Il device EP3SL50F484C2,
synthesis and post-simulation-are conducted with Quartus Il 11.0 and ModelSim SE
6.3a.

Table 6 shows 8 FIR filters with 14-bit coefficient word length and Table 7
shows 8 FIR filters with 16-bit coefficient word length, where #tap is the number of
coefficients and Width is the bit-width of filter coefficients. All filter coefficients are
available in [20]. According to the bit-width of filter coefficients, we separate test
cases into two groups. In each group, test cases are ranked in ascending order
according to number of taps. Note that the minimum and maximum number of taps
in Table 6 is 30 and 121, respectively. Similarly, the minimum and maximum

number of taps in Table 7 is 20 and 279, respectively.

29

Table 6. FIR filters with14-bit coefficient word length.

Gl ST

AKSOY11_ECCTD_A30

AKSOY08 NORCHIP_C30 30 14
AKSOY08 NORCHIP_G40 40 14
AKSOYO08 NORCHIP_A40 40 14
AKSOY08_NORCHIP_l40 40 14

SAMUELI89_60 60 14
LIMYUO7_121 121 14
LIM83_121 121 14

Table 7. FIR filters with 16-bit coefficient word length.

MIRZAEI10_20

KWENTUSS97_47 47 16
AKSOY11_ECCTD_A6B0 60 16
AKSOY08_NORCHIP_B80 80 16
AKSOY11_ECCTD_B80 80 16
MIRZAEI10_131 131 16
AKSOY07_A200 200 16
DAMPS_279_16 279 16

5.2 Experimental Results for-Different Width

Table 8 and Table 9 present the implementation results of FIR filters achieved
by OMS and GOSM method. In these tables, Delay denotes the delay in ns in the
critical path, LUTs denotes the required number of LUTs, and Memory bits denotes
the utilization of total memory bits. Moreover, Reduction rate is percentage of (cost
by OMS-cost by GOSM)/cost by OMS. The input bit-width of FIR filter is assumed
to be the same with coefficient bit-width number and D is set as two. The delay of

OMS method does not include the delay of address encoder because Stratix 111 only

30

supports synchronous dual-port ROM. Thus, the actual delay of FIR filter by OMS
method is larger.

The results of area-minimized MCM block are obtained by the ILP solver. For
coefficient bit-width is 14 and 16, the maximum ILP time was 1.6s and 44.87s,
respectively. It indicates the generated ILP problem is easily to be solved. It is
obvious that the ILP time is affected by coefficient bit-width since long coefficient
bit-width has more possible legal paths than short coefficient bit-width. Therefore,
the ILP time of 16-bit coefficient i1s much longer than the ILP time of 14-but
coefficient.

Observe from the results that FIR filter generated using GOSM clearly
outperforms that by the exiting OMS method in terms of delay and area. As shown
in Table 8, the maximum improvement of delay, LUTSs, and memory bits are 21.34%,
55.68%, and 82.98%, respectively. Similarly, in Table 9, the maximum improvement
of delay, LUTs, and memory bits are 21.79%, 57.25%, and 81.77%, respectively.
The GOSM method has significant improvement of delay and LUTSs since it replaces
the overhead in OMS architecture such as barrel shifters and control circuits with
CSA tree. Sharing common symbols among coefficients is considered in GOSM
method so that memory bits can be markedly reduced; the reduction rate of memory
bits is more prominent with increasing number of constant coefficients.

On average, the reduction rate of LUTs and memory bits in 14 bit-width do not
have significant difference compared with in 16 bit-width while the reduction rate of
delay tends to decline when bit-width changes from 14 to 16. The decline is caused
by two factors. One is that the denominator of the reduction rate of delay will
become large when bit-width increases because the delay of CPA is in positive

correlation with coefficient bit-width. The other is that routing delay does not

31

consider in GOSM. When one symbol is simultaneously shared by several

coefficients, it leads to the increase of the routing complexity degree.

Table 8. Results for width=14.

Reduction rate
(W|dth 14)

#tap Delay LUTs Memory Delay LUTs Memory Delay LUTs Memory
(ns) bits (ns) bits (%) (%) bits (%)
30 6.19 2846 16384 5.83 1484 9728 580 4786 40.63
30 6.24 2761 15168 4.99 1313 8192 20.00 5244 4599
40 6.47 3717 20416 5.88 1726 8704 9.04 5356 57.37
40 6.38 3794 21504 5.20 1900 9344 1850 4992 56.35
40 6.20 3742 20672 4.88 1766 10624 21.16 52.81 48.61
60 6.53 9124 27072 5.86 2271 4608 1023 5568 82.98
121 6.25 8932 43520 5.27 4723 14080 15.70 4724 67.65
121 6.58 10017 51840 5.18 4971 13312 21.34 50.37 74.32

Table 9. Results for width=16.

Reduction rate
(W|dth 16)

Delay LUTs Memory Delay LUTs Memory Delay LUTs Memory
(ns) bits (ns) bits (%) (%) bits (%)

o N OO g b~ W N -

20 6.38 1951 19200 4.99 834 12800 21.79 57.25 33.33
47 6.23 3030 30336 5.27 1310 17664 1535 56.77 41.77
60 6.44 7111 72576 5.73 3275 36608 11.02 53.94 49.56
80 6.35 9502 97152 5.89 4482 47616 10.11 52.83 50.99
80 6.53 8598 83968 5.56 3960 29440 1478 5394 64.94
151 6.38 16105 156288 6.14 7554 31232 381 53.10 80.02
200 6.53 18775 173312 5.90 9459 50688 9.56 49.62 70.75

6.35 23484 200832 5.95 12393 36608 6.40 47.23 81.77

5.3 Experimental Results for Different D

o ~N o g kW N =

In this study, we compared the results of memory bits, LUTs, and delay for
different D (from 1 to 3) as shown in Figure 18, Figure 19, and Figure 20,

respectively. The bit-width of coefficient and input are 16-bit. The maximum

32

number of supports for a CSA tree grows as the number of D increases. It is easier to
find common symbols among coefficients when the number of supports is big. Thus,
the utilization of memory bits in all cases is in negative correlation with the number
of D. On the other hand, delay in critical path and the required number of LUTs are
in positive correlation with the number of D. Similarly, the required ILP time is
affected by the number of D. When D equals 1, the maximum ILP time was 0.04s.
However, the maximum ILP time was 447.14s when D equals 3. It is reasonable to
expect that the ILP time tends to increase with increasing the number of D since

CAT contains more legal paths.

Memory bits
W D=1 MD=2 WD=3
160000
140000
120000
100000
80000
60000
40000
20000
-l
Filter

Figure 18. Results of memory bits for different D.

33

LUTs

mD=1 mD=2 mD=3

14000
12000
10000

0 19, Results of LUTSs for diffe ent |

8000
6000
4000

=2 WD=3

mD=1 mD

Delay

Filter

“Figure 20. Results of delay for diffe

34

Chapter 6
Conclusion

In this thesis, global optimal symbol match (GOSM) algorithm is proposed for
minimizing the area of multiple constant multiplication (MCM) block. The key
concept of GOSM is to share common symbols among coefficients. GOSM consists
of two major parts. In_ the first part, we enumerate all possible legal paths and
construct a coefficient assembly tree (CAT) for each coefficient. In order to find
global optimal matches for coefficients, we formulate the problem using integer
linear programming (ILP) and solve it by an ILP solver in the second part. Finally,
memory only consists of product values of the symbols chosen by the ILP solver.

FIR filter generated using GOSM clearly outperforms that by the existing OMS
method in terms of delay and area. The experimental results show that on average,
GOSM achieves a reduction of more than 10% and 50% in delay and area,
respectively. Moreover, GOSM is more flexible than OMS since it offers an
adjustable 'upper bound to the level of CSA tree, which can help well control the
delay. Therefore, FIR filters generated by GOSM are very suitable for high-speed

DSP applications.

35

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

H.-R. Lee, C.-W. Jen, and C.-M. Liu, “On the design automation of the
memory-based VLSI architectures for FIR filters,” IEEE Trans. Consum.
Electron., vol. 39, no. 3, pp. 619-629, Aug. 1993.

F. de Dinechin and V. Lefévre, “Constant multipliers for FPGAs,” in 2nd Intl
Workshop on Engineering of Reconfigurable Hardware/Software Objects
(ENREGLE), pp. 167-173, Jun. 2000.

J.-1. Guo, C.-M. Liu, and C.-W. Jen, “The efficient memory-based VLSI array
designs for DFT and DCT,” IEEE Trans. Circuits Syst. Il, Analog and Digit.
Signal Process., vol. 39, no 10, pp. 723-733, Oct. 1992.

D. F. Chiper, “A systolic array algorithm for an efficient unified memory-based
implementation of the inverse discrete cosine and sine transforms,” in IEEE
Conf. Image Process., Oct. 1999, pp. 764—768.

D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraits, “Systolic
algorithms and a memory-based design approach for a unified architecture for
the computation of DCT/DST/IDCT/IDST,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 52, no. 6, pp. 1125-1137, Jun. 2005.

P. K. Meher and M. N. S. Swamy, “New systolic algorithm and array
architecture for prime-length discrete sine transform,” IEEE Trans. Circuits
Syst. I, Exp. Briefs, vol. 54, no. 3, pp. 262-266, Mar. 2007.

P. K. Meher, J. C. Patra, and M. N. S. Swamy, ‘“High-throughput
memory-based architecture for DHT using a new convolutional formulation,”
IEEE Trans. Circuits Syst. 1l, Exp. Briefs, vol. 54, no. 7, pp. 606-610, Jul.
2007.

M. J. Wirthlin, “Constant. coefficient multiplication using look-up tables,” J.
VLSI Signal Process., vol. 36, no. 1, pp. 715, Jan. 2004.

M. Faust and C. H. Chang, “Bit-parallel multiple constant multiplication using
look-up tables on FPGA,” in Proc. 2011 IEEE Int. Symp. Circuits Syst., ISCAS
2011, May 2011, pp. 657-660.

[10] P. K. Meher, “Memory-based hardware for resource-constraint digital signal

processing systems,” in Proc. 6th Int. Conf. ICICS, Dec. 2007, pp. 1-4.

[11] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, “LMS

adaptive filters using distributed arithmetic for high throughput,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327-1337, Jul. 2005.

[12] H. Yoo and D. V. Anderson, “Hardware-efficient distributed arithmetic

architecture for high-order digital filters,” in Proc. IEEE Int. Conf. Acoustics,
36

Speech, Signal Processing, ICASSP 2005, Mar. 2005, pp. v/125-v/128.

[13] H.-C. Chen, J.-I. Guo, T.-S. Chang, and C.-W. Jen, “A memory-efficient
realization of cyclic convolution and its application to discrete cosine
transform,” IEEE Trans. Circuits and Systems for Video Technol., vol. 15, no. 3,
pp. 455453, Mar. 2005.

[14] P. K. Meher, “Novel input coding technique for high-precision LUT-based
multiplication for DSP applications,” The 18th IEEE/IFIP International
Conference on VLSI and System-on-Chip (VLSI-SoC 2010), pp. 201-206,
Sept. 2010.

[15] P. K. Meher, “New . look-up-table optimizations for memory-based
multiplication,” in.Proc. 12th International Circuits., ISIC 2009, Dec. 2009, pp.
663-666.

[16] P. K. Meher, “LUT optimization for memory-based computation,” IEEE Trans.
Circuits Syst. I, Exp. Briefs, vol. 57, no. 4, pp. 285-289, Apr. 2010.

[17] P. K. Meher, “New approach to LUT implementation and accumulation for
memory-based multiplication,” in_Proc. 2009 IEEE Int. Symp. Circuits Syst.,
ISCAS 2009, May 2009, pp. 453-456.

[18] P. K. Meher, “New approach to look-up-table design and memory-based
realization of FIR digital filter,” IEEE Trans. Circuits Syst. |, Reg. Papers, vol.
57, no. 3, pp. 592-603, Mar. 2010.

[19] Gurobi. [Online]. Available: http://mww.gurobi.com/

[20] FIRsuite, ““Suite of constant coefficient FIR filters,” 2010. [Online]. Available:
http://www.firsuite.net

37

