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基於記憶體式乘法器並實現於可程式邏輯閘陣列之

高速且面積最小化的有限脈衝響應濾波器設計 

 

 研究生 : 許晉維 指導教授 : 黃俊達 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘     要 

在有限脈衝響應濾波器中最複雜的部份為多重常數乘法器(MCM)區塊，它將一筆

資料乘上多個常數係數。而多重常數乘法器區塊中的乘法器可利用基於記憶體架構的

乘法器來取代，因此為了減少記憶體大小有許多方法被提出來。在此篇論文中，我們

提出一個以整數線性規劃(ILP)為基礎的方法，藉由尋找最少數目的共用部份乘積來實

現所有的常數乘法，最小化多重常數乘法器區塊面積，並將其運用於現場可程式化邏

輯閘陣列。由實驗結果可知，我們的方法和文獻上所知最先進的作法相比，以平均值

而言，減少了超過 10%的延遲和 50%的面積，且當常數係數個數增加時記憶體大小減

少的幅度更為明顯。 
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Abstract 

The complexity of finite impulse response (FIR) filters is dominated by multiple 

constant multiplication (MCM) block which realizes the multiplication of one data sample 

with multiple constant coefficients. Many works have been proposed for minimizing 

memory size since multiplications in an MCM block can be implemented by memory-based 

multipliers. In this work, we present an integer linear programming (ILP) based approach to 

minimize the area of MCM block implemented on the field programmable gate array 

(FPGA) by finding the minimal number of common partial products to carry out all constant 

multiplications. Experimental results show that on average, compared with an existing 

state-of-the-art method, the proposed method reduces delay and area by more than 10% and 

50%, respectively. Moreover, the reduction of memory size is more prominent when the 

number of constant coefficients increases. 
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Chapter 1  

Introduction 

1.1 Finite Impulse Response Filters 

Finite Impulse Response (FIR) digital filters are widely used in many Digital 

Signal Processing (DSP) systems because of the advantage of stability and linear 

phase properties. An N-tap FIR filter formulation is shown below 

                   
    (1) 

where x(n-i), for i = 0, 1, …, N-1, are N recent input datum, Ci, for i = 0, 1, …, N-1, 

are the filter coefficients, and y(n) is the current output data. 

The Multiple Constant Multiplication (MCM) block of an N-tap FIR filter, as 

shown in Figure 1, dominates the complex of the design since many constant 

multiplications are required. In some DSP applications such as video coding and 

image compression require high-speed FIR filters. Therefore, it is important to 

design a high performance MCM block in an FIR filter. 

 

Figure 1. An N-tap Transposed FIR filter. 

1.2 Conventional Memory-Based Multiplier 

The MCM block contains a large number of constant multiplications while 

multiplier is a highly time-consuming unit. The general-purpose multipliers in an 
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MCM block can be replaced by conventional memory-based multipliers since the 

constant coefficients of an FIR filter can be obtained beforehand. A conventional 

memory-based multiplier example is depicted in Figure 2(a). Assume C0 is a 

constant coefficient and X is a 4-bit input word to be multiplied with C0. There are 2
4
 

possible product values C0*X because X has 2
4
 possible values. Thus, the 

memory-based multiplier is composed of a memory unit of 2
4
 words which stores all 

possible pre-computed product values corresponding to all possible values of input 

X. If the input X is used as address of the memory unit and then the corresponding 

product value can be read from the memory unit. 

Memory-based multiplier is a high-speed constant multiplier but the memory 

size will increase exponentially with the word-length of input value. In order to 

reduce memory size, the scheme called memory partition was proposed in [1] where 

a conventional memory-based multiplier can be implemented by two smaller 

memory units and one adder. Figure 2(b) shows a memory unit of 2
4
 words is 

replaced by two memory units of 2
2
 words and one adder to sum the partial results 

from two memory units. The left-shifter in Figure 2(b) is easily performed by using 

wire permutations without additional cost. For instance, total memory bits in Figure 

2(a) are 144 bits while total memory bits in Figure 2(b) are 56 bits. Although the 

memory partition scheme needs an additional adder component, it can greatly reduce 

the memory size especially when the word-length of input value is long. 
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Figure 2. (a) Memory-based multiplier example. 

(b) Using memory partition example. 

1.3 Field Programmable Gate Array 

With the great technological advances for Field Programmable Gate Array 

(FPGA), it contains plenty of Logic Elements (LEs) and memory resources. Figure 3 

shows the amounts of LEs and memory resources in the Altera Stratix FPGAs from 

2002 to 2010. Recent FPGA devices provide almost 1 million LEs and more than 50 

megabits of embedded memory. There are so many memory resources can be used 

in FPGA devices that FIR filters using memory-based multiplier are very suitable to 

be implemented on FPGAs. 
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Figure 3. The amount of FPGA resources of the Altera Stratix family. 

1.4 Thesis Organization 

The remainder of this work is organized as follows. In Chapter 2, we briefly 

introduce the related previous works and the necessary terminology. The 

motivational example and problem formulation are delineated in Chapter 3. Chapter 

4 describes in detail the proposed algorithm, and the experimental results are 

presented in Chapter 5. Finally, the concluding remarks are given in Chapter 6.  
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Chapter 2  

Background 

In this chapter, we briefly introduce the related previous works which are 

proposed to reduce memory size of memory-base multiplier in Section 2.1. Then, the 

terminology is presented in Section 2.2. 

2.1 Previous Works 

In an early paper, [1] proposed the memory partition scheme, which replaces 

one memory unit with two smaller memory units and one adder, to save memory 

size of memory-based multiplier. Next, different approaches for memory-based 

multiplication have been studied [2]–[18]. In [8] aimed to single constant 

multiplication on FPGA. The method is to split the input into several segments and 

then use 4-bit Look-Up Tables (LUTs) to generate the partial products of coefficient 

multiplication. It also noted three kinds of LUTs are redundant. First, LUT contains 

all zeroes or ones, which can be replaced with a constant signal value. Second, the 

contents of the LUTs are identical, which can be replaced with a single LUT. Third, 

the output of LUT is the same with one of address bits, which can easily use wire to 

replace. After removing all redundant LUTs, the partial products are added by Carry 

Propagate Adders (CPAs). Then, [9] extended this method to multiple constant 

multiplications. However, it is limited that through removing the redundant LUTs to 

reduce memory size. 

An approach to improve memory-based multiplication, called 

Odd-Multiple-Storage (OMS), was proposed in [17], where the memory size is 

saved by half. In conventional memory-based multiplier, the memory consists of 2
L
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possible product values C0*X corresponding to all possible values of X with 

word-length L while [17] said the memory only stores (2
L
/2) words corresponding to 

the odd multiples of C0. The others are even multiples of C0 which can be derived by 

left shifting one of the odd multiples of C0 except the product word is zero. An 

example for L = 4 is illustrated in Table 1. The product values C0*(2i+1), for i = 0, 

1, …, 7, are stored in memory location i. The even multiples, 2*C0, 4*C0, and 8*C0 

can be derived by left shifting C0. Similarly, 6*C0 and 12*C0 can be derived by left 

shifting 3*C0; 10*C0 and 14*C0 can be derived by left shifting 5*C0 and 7*C0, 

respectively. The product value 0*C0 cannot derive by left shifting any odd multiples 

but it can be obtained by resetting the memory output. Table 1 also shows the 

number of shifts is required in each even multiple. 

Table 1. OMS example for input word length L = 4. 

(s0 and s1 are control bits of the logarithmic barrel-shifter.) 
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(a) 

 

(b)                           (c) 

Figure 4. (a) OMS architecture. (b) Address encoder circuit. (c) Control circuit. 

The OMS architecture for multiplication of W-bit constant coefficient with 

4-bit input operand is depicted in Fig 4. The area of address encoder and control 

circuit are small while the area of barrel shifter will linearly increase with increasing 

bit-width of product value. Although it can save memory size by half, it also 

increases extra delay and area because of address encoder, control circuit, NOR cell, 

and barrel shifter.  
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Figure 5. OMS architecture using dual-port memory. 

The OMS architecture also can use memory partition scheme when the 

word-length of input value is long; moreover, it uses a dual-port memory to replace 

two single-port memory units since the contents of two memory units are the same. 

The OMS architecture for 8-bit input is shown in Figure 5. 

An N-tap FIR filter (for 8-bit input) using OMS architecture proposed in [18] is 

depicted in Figure 6. Memory size can be reduced from two aspects because all 

inputs of memory-based multiplier are identical. First, it only requires a pair of 

address encoders and control circuits. Second, one memory unit with N segments 

can be used instead of N memory units; therefore, 2(N-1) address decoders can be 

eliminated.  
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Figure 6. An N-tap FIR filter using OMS architecture. 

2.2 Terminology 

In this section we introduce some terminology that will be used in the following 

chapters. 

 Coefficient, C: A constant coefficient. 

 Non-zero bits, NZB(C): Number of non-zero bits in a binary number C. 

For example, NZB(101) = 2, NZB(11011) = 4. 

 Symbol, S: S is a binary number whose MSB and LSB are both 1’s. 

For example, 101(S5), 11011(S27), and 101011(S43) are symbols while 011, 

1010, and 011010 are not symbols. 

 Alphabet, A: A is a set of symbols. For example, A = {S5, S27, S43}. 

 Fragment, F(S, i): A number generated from left shifting S by i bits. 

For example, F(S11, 3) = 1011 << 3 = 1011000. 

 Match, M: A match for a coefficient C with respect to alphabet A is a set of 

fragments such that        and                 . 
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For example, assume A = {S1, S3, S13, S19, S51} and C = 110110. 

Coefficient C has three kinds of matches, namely M0 = {F(S3, 4), F(S3, 1)}, 

M1 = {F(S13, 2), F(S1, 1)}, and M2 = {F(S19, 1), F(S1, 4)}. Although F(S51, 

0) plus F(S3, 0) equals C, {F(S51, 0), F(S3, 0)} is not a match since 

NZB(110011) plus NZB(11) not equals NZB(110110).  
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Chapter 3  

Motivation 

In this chapter, we show a motivational example to demonstrate memory size of 

memory-base multiplier can further reduce by using sharing architecture which 

shares common symbols among coefficients. Then, we present the problem 

formulation of this work.  

3.1 Motivational Example 

In OMS architecture, memory size of memory-based multiplier will sharply 

increase with increasing number of constant coefficients. For instance, assume input 

word length is 8 bits and the coefficient set is {11(10112), 23(101112), 45(1011012), 

125(11111012), 187(101110112)}. The MCM block generated using OMS 

architecture for this coefficient set is shown in Figure 7 where it contains an 8x50 

dual-port memory unit. 

 

Figure 7. MCM block using OMS architecture for coefficient set {11, 23, 45, 125, 

187}.  
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 The MCM block generated using OMS architecture can save memory size by 

half while OMS architecture does not consider correlation among different 

coefficients. We assume the alphabet set A={1(S1), 1011(S11), 100101(S37)}; a match 

for each coefficient in coefficient set {11, 23, 45, 125, 187} is shown in Table 2. The 

symbols in A can use left shifting and adders to derive all coefficients because we 

consider correlation among coefficients so that some coefficients can share common 

symbols. Finally, memory only stores product values of all symbols in A except S1 

which can be got directly from input. The MCM block generated using sharing 

architecture for the coefficient set is shown in Figure 8 where it contains a 16x18 

dual-port memory unit. Firstly, product values of symbols are read from memory 

output. Then, these product values and input X are used to carry out all constant 

multiplications. For example, S37*X is read form memory output and S1 is left 

shifted by 3 bits. After that, the product value 45*X can be obtained through 

summing those partial products using Carry Save Adder (CSA) tree as shown in 

Figure 8. Finally, memory size of OMS and sharing architecture is shown in Table 3. 

The memory size of MCM block for two different approaches is different. The 

MCM block using sharing architecture saves memory size by 28% compared with 

the OMS architecture.  

Table 2. A match for each coefficient in coefficient set {11, 23, 45, 125, 187}. 
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Figure 8. MCM block using sharing architecture for coefficient set {11, 23, 45, 125, 

187}. 

Table 3. Memory size of OMS and sharing architecture for 8 bits input. 

 

3.2 Problem Formulation 

Given a set of coefficients {C0, C1, …, Cn-1} and an upper bound of level of 

CSA tree D. The given D is used to constrain timing of MCM block. The objective 

of this work is to decide a match for each coefficient and determine an alphabet that 

lead to minimum total area cost of MCM block. 
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Chapter 4  

Proposed Algorithm 

Our proposed algorithm, called Global Optimal Symbol Match (GOSM), is 

described in this chapter. Firstly, we introduce proposed architecture and definitions 

which are used in GOSM in Section 4.1 and 4.2 respectively; then, flow chart of 

GOSM is illustrated in Section 4.3. GOSM consists of two main parts which are 

explicitly described in Section 4.4 and Section 4.5, respectively. 

4.1 Proposed Architecture 

A two-stage MCM block using memory-based multiplication is depicted in 

Figure 9. The first stage generates the product values of common symbols and then 

they are used to realize all constant multiplications in second stage. The delay of the 

first stage is almost constant since it consists of memory unit. However, the delay of 

the second stage including CSA tree and CPAs is flexible. It is decided by number of 

levels of CSA tree; that is the reason why D is used to constrain timing. 

 

Figure 9. Proposed MCM block architecture. 
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4.2 Definitions 

 Coefficient Assembly Tree, CAT(C): CAT(C) is a tree which is extended 

for a coefficient C and each node in CAT(C) is a fragment. A CAT for a 

coefficient C=4’b1011 is depicted in Figure 10. 

 Path: Path which is from root to leaf in CAT(C) is a match for a 

coefficient C. For example, there are five possible paths in CAT(C) in 

Figure 10. 

 Pathi,j: j
th

 path in i
th

 coefficient. 

 SymSet(Path): The SymSet(Path) is a set of symbols that are used on Path. 

For example, the Path0,1 in Figure 10 includes F(S1, 3) and F(S3, 0), so 

SymSet(Path0,1) = {S1, S3}. 

 

Figure 10. A CAT for a coefficient C=4’b1011. 



 

16 

 

  

                      (a)                             (b) 

Figure 11. (a) Example of support number of Path0,3.  

(b) Example of support number of Path0,9. 

 NumSup(Path): The NumSup(Path) is total number of supports on Path. 

The number of supports of all symbols except S1 is two because their 

product values are read from dual-port memory. For example, Figure 11 

illustrates NumSup(Path) on two different kinds of paths. In Figure 11(a), 

Path0,3 includes F(S1, 6), F(S3, 3), and F(S3, 0), so NumSup(Path0,3) equals 

five. Similarly, in Figure 11(b), NumSup(Path0,9) equals three since it 

includes F(S45, 1) and F(S1, 0). 

 NumSupmax: NumSupmax is the maximal number of supports for a CSA tree. 

For different values of D, NumSupmax are listed in Table 4. 

 Legal path: Legal path is a path whose NumSup(Path) is less or equal than 

NumSupmax. That is, Legal Path can be implemented by using CSA tree 

whose number of supports is not more than NumSupmax. 
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Table 4. Maximum numbers of supports of CSA tree. 

 

 Trim leading zero’s, TrimLZ(C): Trim the leading 0’s in C. For example, 

TrimLZ(01101)=1101, TrimLZ(000101101)=101101. 

 Trim MSB, TrimMSB(C): Trim the MSB in C. For example, 

TrimMSB(110110)=10110. 

 |C|: Bit-width of TrimLZ(C), where C is a binary number. For example, 

|1101|=4, |001101|=4, |11010|=5. 

 Difference of length, DOL(C, S): Return |C|-|S|, where C is a coefficient 

and S is a symbol. For example, DOL(11010, 11)=3, DOL(110101, 

1001)=2. 

 Residue(B, C): TrimLZ(B-C), where B and C are binary numbers. For 

example, Residue(110101, 100100)=TrimLZ(010001)=10001. 

4.3 Overall Flow 

The overall of our proposed algorithm is illustrated in Figure 12. The inputs of 

GOSM are a set of coefficient and an upper bound of level of CSA tree. GOSM 

consists of two main parts. In first part, we enumerate all possible legal paths and 

construct a Coefficient Assembly Tree (CAT) for each coefficient. In second part, we 

formulate the problem into an integer linear programming (ILP) problem and use 

ILP solver to find global optimal matches for coefficients. Finally, the output is a 

Verilog file of the FIR filter by GOSM method.  
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Figure 12. The overall flow of proposed algorithm. 

4.4 Coefficient Assembly Tree Construction 

In this section, we introduce the concept of CAT enumerator which is used to 

enumerate all possible paths and construct a CAT for a coefficient. The pseudo code 

of CAT enumerator is shown below. 

 

Initial: A=; 

CAT(Root, TrimLZ(C)) 

1 Symbol=; 

2 for num_1 from 0 to NZB(C)-1 

3 C’=TrimMSB(C); 

4 S=1; 

5 Sym_Enum(C’, S, num_1); 
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6 foreach S  Symbol 

7 d=DOL(C, S); 

8 create a child node r=F(S, d) for Root; 

9 add symbol S into alphabet A; 

10 CAT(r, Residue(C, S<<d)); 

End 

Sym_Enum(C’, S, num_1) 

1 if(num_1==0) 

2 add S to Symbol; 

3 return; 

4 if(MSB(C’)==0) 

5 Sym_Enum(TrimMSB(C’), S<<1, num_1); //skip current 0 

6 else //MSB(C’)==1 

7 if(NZB(C’)>num_1) //enough remaining 1’s? 

8 Sym_Enum(TrimMSB(C’), S<<1, num_1); //skip current 1 

9 Sym_Enum(TrimMSB(C’), S<<1+1, num_1-1); //pick current 1 

End 

 

Initially, the alphabet A is empty; the inputs of CAT enumerator are a root node 

and a coefficient without leading 0’s. The Symbol which is used to record all S 

generated from the first for loop in line 2 to line 5 is set as empty. The variable 

num_1 in line 2 indicates the number of 1’s which must be chosen in C’, where 

C’=TrimMSB(C). The first for loop in line 2 to line 5 is mainly used to enumerate all 

possible S which must include the MSB in C. For instance, assume C0=01011, the 

for loop runs from 0 to 2 because of NZB(C0)-1=2. The S1 is returned when num_1 
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equals 0. Similarly, the S5 and S9 are returned when num_1 equals 1, while the S11 is 

returned when num_1 equals 2. There are four different symbols 1(S1), 101(S5), 

1001(S9), 1011(S11) stored in a set Symbol. The second for loop in line 6 to line 10 is 

mainly used to create a fragment for each S in Symbol and take remaining part as a 

new coefficient to recursively call the same function CAT. For instance, the first 

node in Path0,0 in Figure 13, we create a child node r=F(S1, d) for Root where 

d=DOL(C0, S1) and add S1 into A. Finally, we call function CAT again and the inputs 

of function CAT are a node r and Residue(C0, S1<<3). The function CAT does not 

end until the Symbol is empty.  

 

Figure 13. A CAT(01011) example to illustrate the function CAT. 
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Figure 14. An example to illustrate the sub-function Sym_Enum when num_1=1. 

An example of the sub-function Sym_Enum for coefficient C0 when num_1 

equals 1 is depicted in Figure 14. The function Sym_Enum, which is also a 

recursive function, is used to find out all possible symbols when given a number 

num_1. In each recursion, we check whether the MSB in C’ is 1 or not. If the MSB 

in C’ is 0, we shift S left 1 bit and recursively call the same function Sym_Enum. If 

the MSB in C’ is 1, we let (S<<1)+1 and decrease the num_1 by 1. After that, we 

recursively call the same function Sym_Enum. In addition we also can regard this 

bit as 0 if number of 1’s in the remaining part is bigger than the num_1; we do the 

same operation with the situation of having 0 in the MSB of C’. The sub-function 

Sym_Enum does not return symbol until the num_1 equals 0. 

4.5 Tree Pruning 

In Section 4.4, we enumerate all possible paths for a coefficient but meanwhile 

all illegal paths are also enumerated in CAT. It causes extra time-consuming because 
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there is no chance to choose illegal path as a match for a coefficient. In order to 

avoid enumerating illegal paths in a CAT, we use branch-and-bound to modify CAT. 

The pseudo code of the modified CAT, called PCAT is shown below. 

 

Initial: A=; 

Pathmiddle=; 

PCAT(Root, TrimLZ(C), Pathmiddle) 

1 Symbol=; 

2 for num_1 from 0 to NZB(C)-1 

3 C’=TrimMSB(C); 

4 S=1; 

5 Sym_Enum(C’, S, num_1); 

6 foreach S  Symbol 

7 d=DOL(C, S); 

8 add F(S, d) to Pathmiddle; 

9 if(NumSup(Pathmiddle)<=NumSupmax) 

10 create a child node r=F(S, d) for Root; 

11 add symbol S into alphabet A; 

12 PCAT(r, Residue(C, S<<d), Pathmiddle); 

End 

 

 The pseudo code of PACT and CAT are very similar. We create a fragment set 

called Pathmiddle in PACT. In each recursion, we add a new fragment into Pathmiddle 

and then check if NumSup(Pathmiddle) is less or equal than NumSupmax. If this 

condition is true, we create a child node r=F(S, d) for Root and recursively call the 
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same function PCAT; otherwise, we skip it. An example of the function PCAT for 

coefficient C=1111101 when D=1(NumSupmax=3) is depicted in Figure 15. The 

NumSup(Pathmiddle) in third node equals NumSupmax, so its child nodes which are 

marked by dash circle in Figure 15 cannot be created. Thus, we construct a CAT for 

a coefficient quickly without enumerating illegal paths.  

 

Figure 15. An example to illustrate the function PCAT. 

4.6 ILP Formulation 

In Section 4.4 and Section 4.5, we introduce how to enumerate all possible 

legal paths for a coefficient. After that, in this section, we illustrate how to find 

global optimal matches for all coefficients by using Integer Linear Programming 

(ILP) solver. 
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4.6.1 Variables 

Two variables are defined for modeling the behavior of choosing a path in a 

CAT. One is VarS which indicates whether the symbol is selected into A or not. The 

other is VarPath which means whether the path is selected or not. The following 

equation lists the corresponding ILP formulations. 

         
                                        
                                    

   (2) 

 

             
                                             

                                         
  (3) 

 

4.6.2 Existence Constraint 

Each path in CAT(C) is a match for coefficient C; a math is composed of a set 

of fragments. Thus, if the Pathi,j is chosen, every symbol in SymSet(Pathi,j) must be 

chosen. However, when every symbol in SymSet(Pathi,j) is chosen, the Pathi,j may 

not be chosen. The existence constraint is used to ensure all symbols corresponding 

to the selected path are chosen into A. The formulation is as follows: 

                                                              (4) 

 

4.6.3 Uniqueness Constraint 

A CAT contains many paths while only one path should be chosen for a 

coefficient. It causes unnecessary area waste if more than one path is taken. The 

uniqueness constraint is used to make sure only one path to be decided in a 

coefficient. The uniqueness constraint should be accordingly formulated as: 

              
    
    (5) 

where ki is total number of legal paths for i
th

 coefficient. 
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4.6.4 Objective Function 

The objective of the ILP problem is to minimize total area including memory 

and CSA tree. Our proposed architecture has two-stage. First stage consists of a 

dual-port memory which stores all product values of the symbols in A. Since VarS is 

a 0-1 variable, we can calculate the area of memory by                  
   
   , 

where m is number of symbols in A and Area(Si) is area cost of symbol Si (more 

details will follow in Section 4.6.5). Similarly, VarPath is a 0-1 variable as well; 

then we determine the area cost of second stage by                  
    
   

   
   

           , where N is number of coefficients, ki is number of legal paths in i
th

 

coefficient, and Area(Pathi,j) is area cost of Pathi,j (more details will follow in 

Section 4.6.6). Finally, equation (6) is the cost function of the ILP problem. 

                                               
   
   

    
   

   
    (6) 

 

4.6.5 Area Cost of Path 

In a CAT, each different path has different area cost but the area cost of each 

path can easily estimate. In the beginning, we calculate the bit-width of each support 

in CSA tree and then rank them in ascending order. Table 5 shows the schemes for 

different numbers of supports from three to six and the width of each CSA in CSA 

tree. An n-bit CSA consists of n disjoint full adders. In addition, one full adder 

requires two 4-input LUTs on FPGA. Therefore, the area cost of path can be 

estimated by multiplication of the total CSA bit-width with two. 
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Table 5. Area cost for different numbers of supports. 

 

4.6.6 Area Cost of Symbol 

All product values of symbols in A are stored in dual-port memory. Two 4-input 

LUTs can be combined to a 32x1-bit memory, as shown in Figure 16. Therefore, a 

2
L
xW-bit dual-port memory is equivalent of  

  

        LUTs. For instance, a 

2
5
x7-bit dual-port memory and 28 LUTs are equivalent.   

 

Figure 16. An example of combining two LUTs into a 32x1 bit memory. 

4.6.7 ILP example 

In this section, we demonstrate an ILP example for coefficient set {1011, 

10111}. In the beginning, CAT(C0) and CAT(C1) are constructed by the function 
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PCAT when D equals two and shown in Figure 17. Assume input word length is 10. 

According to CAT(C0) and CAT(C1), two kinds of constraints are listed below: 

Existence constraint: 

 VarPath0,0≦min{VarS1};  VarPath0,1≦min{VarS1, VarS3}; 

 VarPath0,2≦min{VarS5, VarS1}; VarPath0,3≦min{VarS9, VarS1}; 

 VarPath0,4≦min{VarS11}; 

 VarPath1,0≦min{VarS1}; VarPath1,1≦min{VarS1, VarS3}; 

 VarPath1,2≦min{VarS1, VarS3}; VarPath1,3≦min{VarS1, VarS5}; 

 VarPath1,4≦min{ VarS1, VarS7}; VarPath1,5≦min{VarS5, VarS1}; 

 VarPath1,6≦min{VarS5, VarS3}; VarPath1,7≦min{VarS9, VarS1}; 

 VarPath1,8≦min{VarS9, VarS5}; VarPath1,9≦min{VarS17, VarS1}; 

 VarPath1,10≦min{VarS17, VarS3}; VarPath1,11≦min{VarS11, VarS1}; 

 VarPath1,12≦min{VarS21, VarS1}; VarPath1,13≦min{VarS19, VarS1}; 

 VarPath1,14≦min{VarS23}; 

Uniqueness constraint: 

               
                    

    

 Then, the objective which is shown in below is minimized. 

Objective: 

26VarPath0,0+26VarPath0,1+28VarPath0,2+28VarPath0,3+0VarPath0,4+52VarPath1,0+

52VarPath1,1+54VarPath1,2+54VarPath1,3+28VarPath1,4+50VarPath1,5+54VarPath1,6

+54VarPath1,7+56VarPath1,8+54VarPath1,9+56VarPath1,10+30VarPath1,11+30VarPath

1,12+60VarPath1,13+0VarPath1,14. 

Finally, the ILP problem is solved by using ILP solver named Gurobi [19]. 

VarPath0,4, VarPath1,11, and VarS11 are chosen by ILP solver. The total estimated area 

cost is 66 LUTs and the alphabet A contains S11. 
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Figure 17. ILP results for coefficient set {1011, 10111}.  
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Chapter 5  

Experimental Results 

5.1 Experimental Environment 

The proposed algorithm, GOSM, is implemented in C++/Linux environment. 

The experiments are run on a workstation with an Intel Xeon 2.4GHz CPU and 

48GB RAM. The ILP solver which is used to find global optimal matches for 

coefficients is Gurobi 5.0 [19]. The FIR filter by GOSM method is described at RTL 

level using Verilog HDL. Based on Altera Stratix III device EP3SL50F484C2, 

synthesis and post-simulation are conducted with Quartus II 11.0 and ModelSim SE 

6.3a. 

Table 6 shows 8 FIR filters with 14-bit coefficient word length and Table 7 

shows 8 FIR filters with 16-bit coefficient word length, where #tap is the number of 

coefficients and Width is the bit-width of filter coefficients. All filter coefficients are 

available in [20]. According to the bit-width of filter coefficients, we separate test 

cases into two groups. In each group, test cases are ranked in ascending order 

according to number of taps. Note that the minimum and maximum number of taps 

in Table 6 is 30 and 121, respectively. Similarly, the minimum and maximum 

number of taps in Table 7 is 20 and 279, respectively. 
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Table 6. FIR filters with14-bit coefficient word length. 

 

Table 7. FIR filters with 16-bit coefficient word length. 

 

5.2 Experimental Results for Different Width 

Table 8 and Table 9 present the implementation results of FIR filters achieved 

by OMS and GOSM method. In these tables, Delay denotes the delay in ns in the 

critical path, LUTs denotes the required number of LUTs, and Memory bits denotes 

the utilization of total memory bits. Moreover, Reduction rate is percentage of (cost 

by OMS-cost by GOSM)/cost by OMS. The input bit-width of FIR filter is assumed 

to be the same with coefficient bit-width number and D is set as two. The delay of 

OMS method does not include the delay of address encoder because Stratix III only 
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supports synchronous dual-port ROM. Thus, the actual delay of FIR filter by OMS 

method is larger. 

The results of area-minimized MCM block are obtained by the ILP solver. For 

coefficient bit-width is 14 and 16, the maximum ILP time was 1.6s and 44.87s, 

respectively. It indicates the generated ILP problem is easily to be solved. It is 

obvious that the ILP time is affected by coefficient bit-width since long coefficient 

bit-width has more possible legal paths than short coefficient bit-width. Therefore, 

the ILP time of 16-bit coefficient is much longer than the ILP time of 14-but 

coefficient. 

Observe from the results that FIR filter generated using GOSM clearly 

outperforms that by the exiting OMS method in terms of delay and area. As shown 

in Table 8, the maximum improvement of delay, LUTs, and memory bits are 21.34%, 

55.68%, and 82.98%, respectively. Similarly, in Table 9, the maximum improvement 

of delay, LUTs, and memory bits are 21.79%, 57.25%, and 81.77%, respectively. 

The GOSM method has significant improvement of delay and LUTs since it replaces 

the overhead in OMS architecture such as barrel shifters and control circuits with 

CSA tree. Sharing common symbols among coefficients is considered in GOSM 

method so that memory bits can be markedly reduced; the reduction rate of memory 

bits is more prominent with increasing number of constant coefficients. 

On average, the reduction rate of LUTs and memory bits in 14 bit-width do not 

have significant difference compared with in 16 bit-width while the reduction rate of 

delay tends to decline when bit-width changes from 14 to 16. The decline is caused 

by two factors. One is that the denominator of the reduction rate of delay will 

become large when bit-width increases because the delay of CPA is in positive 

correlation with coefficient bit-width. The other is that routing delay does not 
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consider in GOSM. When one symbol is simultaneously shared by several 

coefficients, it leads to the increase of the routing complexity degree.  

Table 8. Results for width=14. 

 

Table 9. Results for width=16. 

 

5.3 Experimental Results for Different D 

In this study, we compared the results of memory bits, LUTs, and delay for 

different D (from 1 to 3) as shown in Figure 18, Figure 19, and Figure 20, 

respectively. The bit-width of coefficient and input are 16-bit. The maximum 
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number of supports for a CSA tree grows as the number of D increases. It is easier to 

find common symbols among coefficients when the number of supports is big. Thus, 

the utilization of memory bits in all cases is in negative correlation with the number 

of D. On the other hand, delay in critical path and the required number of LUTs are 

in positive correlation with the number of D. Similarly, the required ILP time is 

affected by the number of D. When D equals 1, the maximum ILP time was 0.04s. 

However, the maximum ILP time was 447.14s when D equals 3. It is reasonable to 

expect that the ILP time tends to increase with increasing the number of D since 

CAT contains more legal paths. 

 

Figure 18. Results of memory bits for different D. 



 

34 

 

 

Figure 19. Results of LUTs for different D. 

 

Figure 20. Results of delay for different D. 
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Chapter 6  

Conclusion 

In this thesis, global optimal symbol match (GOSM) algorithm is proposed for 

minimizing the area of multiple constant multiplication (MCM) block. The key 

concept of GOSM is to share common symbols among coefficients. GOSM consists 

of two major parts. In the first part, we enumerate all possible legal paths and 

construct a coefficient assembly tree (CAT) for each coefficient. In order to find 

global optimal matches for coefficients, we formulate the problem using integer 

linear programming (ILP) and solve it by an ILP solver in the second part. Finally, 

memory only consists of product values of the symbols chosen by the ILP solver. 

FIR filter generated using GOSM clearly outperforms that by the existing OMS 

method in terms of delay and area. The experimental results show that on average, 

GOSM achieves a reduction of more than 10% and 50% in delay and area, 

respectively. Moreover, GOSM is more flexible than OMS since it offers an 

adjustable upper bound to the level of CSA tree, which can help well control the 

delay. Therefore, FIR filters generated by GOSM are very suitable for high-speed 

DSP applications.  
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