

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

應用設計空間探索於有限脈衝響應濾波器

之硬體最佳化

Design Space Exploration for Hardware-Efficient

FIR Filter Design

研 究 生：楊創任

指導教授：周景揚 教授

中 華 民 國 一 ○ 一 年 七 月

i

應用設計空間探索於有限脈衝響應濾波器之硬體最佳化

學生：楊創任 指導教授：周景揚 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

在這篇論文中，我們提出一個演算法，針對線性相位的有限脈衝響應濾波器選擇一

組符合規格的濾波器係數，此演算法的主要目的是最小化一個利用多重常數乘法器所實

作的有限脈衝響應濾波器中的加法器個數。在傳統的設計中，實作於有限脈衝響應濾波

器中的多重常數乘法器只會利用加法和左移(left-shift)這兩種運算，然而，我們的演

算法允許使用右移(right-shift)運算來擴展設計空間。我們也發展一個啟發式的分支

限界法(branch and bound method)，它可以使我們在擴展的設計空間中有效率的搜尋。

實驗數據顯示我們的演算法相較於目前存在最好的方法，在加法器個數上最多可以改善

30.6%且平均改善 13.8%。

ii

Design Space Exploration for Hardware-Efficient FIR

Filter Design

Student：Chuang-Ren Yang Advisor：Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

In this thesis, we propose an algorithm to determine coefficients for a specified linear

phase FIR filter design. The target of our algorithm is to minimize the adder cost as the FIR

filter is implemented through multiple constant multiplication (MCM). Traditionally, an

MCM block in an FIR filter design is implemented using addition and left-shift operations

only. Nevertheless, our algorithm allows the use of right-shift operations to further expand the

design space. We also develop a heuristic-based approximated branch and bound method to

search in broader design space efficiently. Experimental results show that our method can

reduce the adder cost by up to 30.6% and 13.8% on average as compared to an existing

state-of-the-art technique.

iii

Acknowledgements

I greatly appreciate my advisors, Dr. Jing-Yang Jou and Dr. Juinn-Dar Huang, for their

patient guidance, valuable suggestion, and encouragement during these years. I would like to

thank Bu-Ching Lin and Yung-Chun Lei for their discussion and help on my research.

Specially thank to all member of EDA Lab for their friendship and company. Finally, I would

like to express my sincerely acknowledgements to my family and my friends for their patient

and support.

iv

Contents

摘 要 ... i

ABSTRACT ... ii

Acknowledgements ... iii

Contents ... iv

List of Figures .. vi

List of Tables .. vii

Chapter 1 Introduction .. 1

1.1 FIR Filter .. 1

1.2 The Implementation of FIR Filter .. 1

1.3 Thesis Organization .. 5

Chapter 2 Background ... 6

2.1 The Specification of FIR Filter ... 6

2.2 Previous Works .. 7

Chapter 3 Motivation .. 9

3.1 Right-Shifter in MCM .. 9

3.2 Heuristic Pruning Condition ... 10

3.3 Lower Bound Analysis ... 11

3.4 Problem Formulation .. 12

Chapter 4 Our Proposed Method ... 13

4.1 Search of The Solutions .. 13

4.2 Boundary Computation .. 14

4.2.1 Linear Programming Formulation .. 14

4.2.2 The Selection of βl and βu ... 15

4.3 Cost Function and Zero-Crossing-Coefficient ... 15

v

4.4 Algorithm Flow .. 16

4.5 Branch and Bound Search .. 18

4.5.1 Decision Flow ... 18

4.5.2 Candidate Selection .. 19

4.5.3 LB and RIPPLE Computation .. 22

4.5.4 Pruning Conditions ... 24

4.5.5 Solution Record .. 26

4.5.6 The Example of B&B Search ... 27

4.6 Lower Bound Computation .. 28

Chapter 5 Experimental Results .. 29

5.1 Case Study I .. 30

5.2 Case Study II .. 31

5.3 Case Study III ... 32

5.4 Design Example .. 34

Chapter 6 Conclusions & Future Works ... 36

References .. 37

vi

List of Figures

Fig. 1 (a) An N-tap FIR filter architecture. (b) An N-tap FIR filter architecture with MCM. .. 3

Fig. 2 The specification of a low-pass filter. .. 7

Fig. 3 Example of cost reduction .. 10

Fig. 4 The B&B tree of the Type I 5-tap FIR filter... 14

Fig. 5 The algorithm flow ... 17

Fig. 6 The decision flow ... 19

Fig. 7 The flow of solution record .. 26

Fig. 8 The example of B&B search .. 27

Fig. 9 Runtime for the filters with different tap .. 33

vii

List of Tables

Table I The comparison for lower bound ... 11

Table II The specification of filter cases from [6] .. 29

Table III The analysis for L in Y2 and S2 .. 30

Table IV The results and comparisons for cases from [6] .. 31

Table V The specification of filter cases .. 32

Table VI The results and comparisons for the cases .. 33

Table VII The results of L2 .. 34

Table VIII The results of T5 ... 35

1

Chapter 1

Introduction

1.1 FIR Filter
In signal processing system, the finite impulse response (FIR) filter is usually an

important component because of its stability and linear phase properties. For an N-tap FIR

filter, the input data x[n] with different time scale are multiplied by corresponding constant

coefficients hk and then are summed up to output data y[n]. The equation is shown in the

following.

1

0

[] []
N

k

k

y n h x n k




  (1.1)

1.2 The Implementation of FIR Filter

Compared with its alternative – the infinite impulse response (IIR) filter, the FIR filter

has the advantage of stability. However, the hardware cost of an FIR filter is generally much

higher than that of an IIR filter. Therefore, it is an important design issue to minimize the

hardware cost when implementing a FIR filter.

As indicated in (1.1), a design of FIR filter is composed of constant multipliers, adders

and delay elements; and the constant multipliers occupy the most part of area. A trivial

implementation is to adopt general multipliers for carrying out those constant multiplications.

However, the general multiplier is an expensive functional unit in terms of hardware

implementation cost. Since the coefficients are all constants in filter design, in order to reduce

the cost, the constant multipliers are generally implemented by adders and shifters. For

example, the constant multiplication 5 * x can be computed as (x << 2) + x. The constant

multiplier can be replaced by a shifter and an adder. The cost of a constant multiplier is

2

roughly proportional to the number of required adders because those constant shifters are

accomplished by simply rewiring and thus are actually at no cost. That is, the cost of an FIR

filter basically depends on the total number of adders. Fig. 1(a) shows an architecture of a

transposed form N-tap FIR filter, which is functionally equivalent to (1.1). It is observed that

input data are multiplied by a set of constant coefficients. Moreover, while implementing

these constant multipliers all together at the same time, it has a very good chance to share

adders among them for cost reduction. A structure which effectively implements a set of

constant multipliers is also referred to as a multiple constant multiplication (MCM) block. Fig.

1(b) illustrates an N-tap FIR filter implemented by an MCM block. The adders in an

MCM-based filter can be classified into structural adders (SAs) and multiplier block adders

(MBAs). MBAs are adders residing in the MCM block, while SAs are those used to sum up

the outputs of the MCM block.

3

x x

x[n]

h0

Z-1 +

x x

Z-1 +… … Z-1 +

… …

(a)

x[n]

x·h0 x·h1

Z-1 +

x·hN/2 -2

Z-1 +

x·hN/2 -1

y[n]

… Z-1 +

… …

(b)

h1 hN/2 -2

+

+

+

+

Multiplier Block Adders (MBAs)

Delay Elements and Structural Adders (SAs)

<<
<<

<<

+ Z-1… Z-1 + Z-1+

y[n] + Z-1… … Z-1 + Z-1+

<<

hN/2 -1

Z-1 +

Z-1 +

Fig. 1 (a) An N-tap FIR filter architecture. (b) An N-tap FIR filter architecture with MCM.

 There are algorithms for the MCM problem, which generate the MCM design for the

given set of coefficients and minimize the number of adders. The MCM algorithms can

simply be divided into two classes: graph-based algorithms [1][2] and common subexpression

elimination (CSE) algorithms [3]. Graph-based algorithms construct the graph which can

represent the structure of MCM and iteratively extend the graph by a heuristic. CSE

4

algorithms find common subexpressions in a convenient representation of coefficients and

share as many the subexpressions as possible. The subexpression means that some part of an

expression. For example, 5*x equals to (x<<1) + 3*x, so x and 3*x are subexpressions of 5*x.

Graph-based algorithms can usually get a better solution than CSE algorithms, because they

are not restricted to a particular representation.

The characteristic of a filter is generally defined by the filter specification. Some of

conventional FIR filter design flows first determine a set of coefficients which satisfies the

given filter specification and then use the MCM algorithm to minimize the number of adders

required for the corresponding MCM block. However, because there is no cost information

available during the coefficient selection process, it is likely to find the other set of

coefficients that is implemented by fewer adders and also satisfies the specification. That is, it

can help minimize the adders cost if the cost can be properly estimated while selecting

coefficients. Several works [4-6][9] have addressed this issue and provided fairly good

outcomes. However, the solution space of this problem is simply too large so that it is

impractical to perform an exhaustive search for the exhaustive optimal solution due to limited

runtime.

In this thesis, we propose a new MCM-based FIR design methodology. Unlike previous

techniques, besides addition and left-shift operations, right-shift operations are also allowed

while construction the MCM block, which expands the design space. Moreover, we also

develop a branch and bound (B&B) strategy to make the solution exploration in that expanded

design space more efficiently and effectively. Experimental results show that the proposed

methodology is capable of producing better solutions in acceptable runtime when compared

with existing techniques.

5

1.3 Thesis Organization

 The remainder of this thesis is organized as follows. In Chapter 2, we introduce the

specification of the filter and the previous works. Chapter 3 explains the motivation of this

work. In Chapter 4, the proposed method is demonstrated. The experimental results are shown

in Chapter 5. Finally, Chapter 6 gives the conclusions and the future works.

6

Chapter 2

Background

2.1 The Specification of FIR Filter
 In this thesis, we consider the linear phase FIR filter. The frequency response of a Type I

linear phase FIR filter with N taps is written as

1

0

() 2 cos(())
M

M n

n

H h h M n 




   (2.1)

where

(1) / 2M N  .

The frequency response equations of Type II, III and IV linear phase FIR filters are similar to

this [14].

The frequency response of the filter can be classified into four types: low-pass, high-pass,

band-pass and band-stop. For the sake of convenience, we just illustrate the low-pass filter in

the following. Fig. 2 shows the specification of the low-pass filter. The parameters ωp, ωs, δp,

δs are the end of the pass-band, the beginning of the stop-band, the maximum allowable

pass-band ripple and the maximum allowable stop-band ripple, respectively. The specification

means that the frequency response must be inside the region. Thus, it can be expressed as the

formula in the following.

1 () / 1 for [0,]

 () / for [,]

p p p

s s s

H

H

     

      

    

   
 (2.2)

where

 
1

 max () min () for [0,]
2

pH H      

is the average pass-band gain.

7

|H(ω)|

1+δp

1–δp

ωp ωs

ω

δs

Fig. 2 The specification of a low-pass filter.

2.2 Previous Works

 In the FIR filter design, in order to efficiently minimize the number of adders, we need to

go back to the preceding process, that is, we must take account of the cost when determining a

set of coefficients which satisfies the specification. Some previous works solve this problem

[4-6][9], and they are briefly described here.

In [4], the work uses linear programming to derive the boundary of all coefficients which

can meet the specification and searches coefficients within the boundary. The search method

is the B&B that finds a better solution by first generating a look-up table containing all the

possible subexpressions for a given wordlength and a given maximum number of adders per

coefficient. It just considers the individual cost of each coefficient when generating the

look-up table, so it possibly loses the better solutions.

In [5], the work formulates the problem as a 0-1 integer linear programming to minimize

the number of adders. The formulation comprehensively considers the subexpression of each

coefficient, but it needs a large number of variables to decide which coefficients and

subexpressions are used, so it is very time consuming.

8

In [9], the work proposes a local search method and uses a common-subexpression-based

method to account for the sharable adders. The canonical signed digit (CSD) representation is

used. Although the representation can represent the coefficient with a minimum number of

non-zero bits, it does not guarantee having the fewer number of adders than other

representations.

In [6], the work uses the B&B search method in the boundary for each coefficient and

proposes a cost estimation to minimize the number of adders. The cost estimation simply

computes the required number of adders for generating a new coefficient by adding or shifting

the integers in the subexpression basis set which is dynamically expanded during the search

process. The experimental results show that the total number of adders in FIR design is fewer

than other previous works under the same filter specification.

 It is apparent that the scheme of first identifying a boundary and then performing a B&B

search is widely adopted in coefficient decision as shown in [4][6]. The boundary

computation can reduce the search space because we just need to search within the boundary

of each coefficient. The B&B search strategy can eliminate invalid searches based on the filter

specification and the total adder cost. We also adopt this B&B search and the boundary

computation in our algorithm.

9

Chapter 3

Motivation

3.1 Right-Shifter in MCM
 In the previous works [4-6][9], after the wordlength (WL) is decided, the value of every

coefficient must be an integer ranging from 2
WL

 to 2
WL
1 since an MCM block consists of

adders and left-shifters only. For example, if the given wordlength is 10-bit, the value of each

coefficient must be an integer between 1024 and 1023. However, we can reverse the sign of

coefficients by replacing the structural adders by subtractors, so the range of coefficients is

actually -1024~1024. If we consider the right-shifter, we can select the non-integers as the

coefficients in certain range. For example, assume that the input data is x and 2.5 is the

coefficient which we select, that is, the operation 2.5 * x is needed to be computed. This

constant multiplication can be computed as (5 * x) >> 1. Applying the right-shift operation,

we can select the non-integer 2.5 as the coefficient.

An example is given here. Assume the input data is x, and we select two coefficients, “3”

and “20”, for the given filter specification without right-shifter operation. The architecture is

shown as Fig. 3(a), and it needs two adders. However, we can select the non-integer as the

coefficient with the right-shifter operation. Assume that the coefficient “3” can be replaced by

“2.5” and the set of coefficients still satisfies the filter specification. In this case, an adder can

be replaced by a shifter, and the modified architecture is shown as Fig. 3(b). One adder can be

saved to reduce the cost.

In another similar case, assume that there is no integer which satisfies the specification

when determining the second coefficient. The previous works will return “no solution” in this

case. However, with the right-shift operation, we can select “2.5” if it can satisfy the

10

specification and thus a solution is available. In this way, applying right-shift can make it

easier to find a feasible solution.

(a) (b)

x

+ +

3·x 20·x

<<2<<1

<<2

+

20·x

<<2

<<2

x

2.5·x

>>1

Fig. 3 Example of cost reduction

3.2 Heuristic Pruning Condition
After applying right-shift operation, the search space of coefficient sets is expanded and

thus requires more time to find an exact solution from it. Similarly, the search space grows

exponentially to the wordlength, thus in the previous works the wordlength can only be set to

a value such that the run time is acceptable.

In this thesis, we introduce a heuristic pruning condition during the B&B search to

reduce the run time. This heuristic pruning is based on the ripple of the frequency response,

which implies the quality of current coefficient set. If the ripple is too large during B&B

search, it hardly can find a feasible solution.

Applying the heuristic pruning may miss the best solution when searching in the design

space. However, the run time is greatly reduced and thus it allows us to expand the search

space. We found that in most cases searching heuristically in a larger design space is more

effective than finding an exact solution in a smaller design space. Thus we apply this heuristic

pruning in our algorithm.

11

3.3 Lower Bound Analysis

 In order to illustrate that the right-shifter is beneficial for cost reduction, we compare the

lower bounds of the number of adders between the design with and without right-shifters. The

method for computing the lower bound will be explained in Section 4.6, and we just show the

results here. Table I lists ten filters and their lower bound with and without right-shifters. The

ten filters are randomly generated and their numbers of taps are lower, because the runtime of

computing the lower bound is very long, and the higher-tap filter leads to longer runtime.

Table I can show that the right-shifter is actually beneficial for cost reduction. However, the

improvement is not large because the number of taps is small.

Table I The comparison for lower bound

Filter Tap LB without right-shifters LB with right-shifters

M1 24 31 28

M2 23 28 26

M3 22 25 24

M4 24 28 27

M5 24 26 26

M6 23 31 30

M7 23 22 22

M8 22 26 24

M9 24 28 26

M10 24 26 25

12

3.4 Problem Formulation

 In this thesis, we address the problem of the linear phase FIR filter design based on the

MCM architecture. We are given:

 the wordlength of coefficients

 the specification of FIR filter: p ,
s , p and

s

Our goal is to generate a set of coefficients and minimize the total number of structural

adders (SA) and multiplier block adders (MBA) for the FIR filter design under the given filter

specification constraint.

13

Chapter 4

Our Proposed Method

In this chapter, we propose an algorithm to determine coefficients for a specified linear

phase FIR filter design. The target of our algorithm is to minimize the number of adders as the

FIR filter is implemented through MCM. Besides, our algorithm allows the use of right shift

operations in the MCM block to further expand the design space. Our method efficiently uses

the B&B search to find a set of coefficients which has lower cost and satisfies the

specification. The method uses the lower bound of MCM problem to estimate the cost and

applies a heuristic bound condition in the B&B search.

4.1 Search of The Solutions
 To find the set of coefficients which satisfy the specification and require fewer adders,

we use the B&B algorithm same as the previous work [6]. In this previous work, they

determine the coefficients from the smallest coefficient to the largest coefficient, that is, h0,

h1, … , hM in (2.1), because the larger coefficient can be composed of the smaller coefficients

by adders and left-shifters. However, we use the right-shift operation, so we determine the

coefficients in the reverse order. The reason is that the smaller coefficients can be derived by

right-shifting of the larger coefficients. Fig. 4 shows the B&B tree of the 5-tap FIR filter. The

coefficients are determined in the corresponding level, where each edge represents one

decision of the coefficient, and each path represents one set of coefficients. For example, the

Path 1 is a set of coefficients that contains h0 = 2, h1 = 4, and h2 = 7. Of course, we have some

pruning conditions to reduce the search time, and it is discussed in the following section.

14

… …

… … …

Level 0 : h2

Level 1 : h1

Level 2 : h0

Leaf : solution

7

4

2 3

Path 1

Pruning Lines

Fig. 4 The B&B tree of the Type I 5-tap FIR filter

4.2 Boundary Computation

 Assume that the given wordlength of coefficients is WL, so the coefficients can be

selected between – 2
WL

 and 2
WL

. The search space of B&B is very large. In order to reduce the

search space, it is needed to reduce the range of coefficients. In the FIR filter design, the set of

coefficients is not unique for the same filter design specification, but we can compute the

boundary for each coefficient according to the specification. The boundary means that the

coefficients outside the boundary never satisfy the filter specification. By computing the

boundary, we can reduce the search space and the runtime.

4.2.1 Linear Programming Formulation

To determine the boundary of the coefficient kh , we formulate a linear programming

(LP) model, and the formulation is written as

15

minimize:

subject to: 1 () / 1 for [0,]

 () / for [,]

 2 2 for i=0,1,...,

k

p p p

s s s

l u

WL WL

i

h

H

H

h M

     

      

  

    

   

 

  

 (4.1)

where ()H  are introduced in (2.1), the specification constraint is the same as (2.2), and l ,

u are two constants which specify the lower bound and the upper bound of  , respectively.

Using (4.1), we can derive the lower bound of kh . To derive the upper bound of kh , replace

minimize by maximize in (4.1). Using this LP model, we can derive the boundary of each

coefficient. Eventually, we use LP solver, named gurobi [15] to solve this LP problem.

4.2.2 The Selection of βl and βu

Assume the largest coefficient is Mh , where M is the same as (2.1). First, set l and

u as unity and compute the lower bound of Mh , denoted as ()M lowh . Secondly, set
u as

()2 /WL

M lowh because the maximum of the coefficient is 2WL in this design with the

wordlength WL. For FIR filter design in binary arithmetic, the lower bound of  is

unnecessary to be smaller than half of the upper bound [7], so l is set as / 2u .

4.3 Cost Function and Zero-Crossing-Coefficient

Fig. 1(b) shows an N-tap FIR filter architecture with MCM, and the adders can be

classified into SAs and MBAs. The goal of our work is minimizing the total number of adders

which include SAs and MBAs. Assume that the number of SAs and MBAs are NSA and NMBA,

respectively. The cost function can be written as NSA + NMBA. The SAs are used to sum up the

outputs of MCM, so NSA is related to the number of coefficients, that is, NSA = Tap – 1, where

16

Tap is the number of coefficients. However, if there is one coefficient whose value is zero, the

output of corresponding multiplication must be zero no matter what the multiplicand is.

Therefore, the corresponding adders can be removed. Besides, the linear phase FIR

coefficients are symmetric, so we can save two adders when one coefficient is fixed to zero.

Thus, the cost function can be further written as NMBA + Tap – 1 – 2*Nzero, where Nzero is the

number of the coefficients which equal to zero. Then, the cost function can be simplified as

NMBA – 2*Nzero, because Tap – 1 is constant.

In order to reduce the cost, Nzero should be as large as possible. Therefore, we determine

the zero-crossing-coefficients (ZCC) at first, and then the B&B search will determine the

remaining coefficients. The ZCC means that the boundary of the coefficient is crossing zero.

Moreover, the set of ZCCs which has more number of zeros are searched at first. For example,

assume that the feasible boundaries of 0h , 1h and 2h include zero. At first, three ZCCs are

fixed to zero, that is, { 0h , 1h , 2h }. Then, two ZCCs are fixed to zero, that is, { 0h , 1h }

or { 1h , 2h } or { 0h , 2h }. Then, one ZCC is fixed to zero, that is, { 0h } or { 1h } or

{ 2h }. Finally, no coefficient is fixed to zero.

4.4 Algorithm Flow

Fig. 5 shows the algorithm flow. First, the algorithm computes the boundary of each

coefficient according to the given specification. After this step, we can just search the

coefficients within the corresponding boundaries. Secondly, the algorithm uses the B&B

search to determine the coefficients. An important characteristic of the B&B search is that

finding a good solution as soon as possible will result in earlier bound, and can reduce the

runtime. Therefore, we create an iteration loop above the B&B search such that we can fix the

ZCCs to zero first. In this iteration loop, we first set Nzero as the number of ZCCs and fix Nzero

17

ZCCs to zero. Then we use the B&B search to determine the remaining coefficients. Making

more ZCCs to zero can save more SAs. However, it may cause the B&B search fail to find a

feasible solution. If failed, we will reduce the Nzero. This loop continues until all combination

of ZCCs will be tried or a feasible solution is obtained.

 The main stage of this algorithm is the B&B search. In this stage, the algorithm

determines the remaining coefficients by the B&B search. This thesis proposes a B&B search

strategy, and it is introduced in Section 4.5.

Specification

1. Feasible boundary computation

2. Find zero-crossing-coefficients (ZCC)

Nzero = #ZCC

Fix Nzero ZCCs to zero

B&B search:

Determine the remaining coefficients

Success?

Output the architecture of the filter

Nzero = Nzero - 1

Iteration loop

N

Y

Fig. 5 The algorithm flow

18

4.5 Branch and Bound Search

 After fixing the ZCCs to zero, we will determine the remaining coefficients by the B&B

search. In this section, we introduce the B&B search strategy to make the solution exploration

in that expanded design space more efficiently and effectively.

4.5.1 Decision Flow

Applying the B&B search method, we need to do the coefficient decision in each node

on the B&B tree. Fig. 6 shows the coefficient decision flow. Assume that the coefficient hk+1

is already determined, and the coefficient hk will be determined this time. If k is equal to -1,

the program already reaches the leaves of the B&B tree, so a satisfied set of coefficients is

found. Then, we can record the result and go back to fix hk+1 to another candidate. If k is not

equal to -1, the program will execute the following steps. Step 1, determine the candidate set,

denoted as C, containing some values within the boundary of the coefficient hk. Step 2,

compute LB and RIPPLE for each candidate, which are used to determine the priority of

search. Step 3, fix hk to some value which belongs to C, and the priority is by ascending LB.

When LBs are equivalent, the priority is by ascending RIPPLE. Step 4, check the pruning

conditions. The path is pruned when matching the pruning conditions. The Step 5, if the

pruning conditions are all not matched, the program goes to the decision of hk-1. Else, go back

to Step 4 to fix hk to another candidate until try all candidates which belongs to C. When all

candidates have been tried, if k does not equal to M, the program will go back to fix hk+1 to

another candidate. If k equals to M, which means that the whole branch tree has been searched,

the program is finished.

19

Initial: k = M

k = -1 ?

Generate candidates within

the boundary of h(k)

Compute LB and RIPPLE

for each candidate

Fix h(k) to the candidates

by ascending LB and

ascending RIPPLE

Such value

exists ?

Pruning

conditions

k = k - 1

k = k + 1

Solution record

Y

N

N

Y

N

Y

k = M?

End

Y

N

Fig. 6 The decision flow

4.5.2 Candidate Selection

 In this section, we explain about Step 2 in Fig. 6. The goal of Step 2 is determining the

candidate set of the coefficient hk. In Step 4, hk will be fixed to each value in the candidate set

in the certain order which was introduced in Section 4.5.1.

We will select values within the boundary of hk as the candidates, because the values

outside the boundary never satisfy the specification. However, the actual boundary of

20

coefficient is much tighter than the initial boundary when more and more coefficients are

fixed. Thus, if we want to derive the actual boundary, we must recompute the boundary by

running the LP solver. In [6], a method is proposed to search the values without unnecessary

LP runs, and we also adopt this method.

In order to reduce the number of running LP solver, we do not recompute the feasible

boundaries of coefficients but compute them in the beginning just once when no coefficient is

fixed. That is to say, use the LP model as (4.1) to compute the initial feasible boundaries of

coefficients. The actual boundary of coefficient is much tighter than the initial boundary, so it

is necessary to check whether a set of coefficients is satisfied. This problem can be solve by

using a LP model as

minimize:

subject to: () for [0,]

 () / () () / for [,]

 2 2

p

p

s p s p s

l u

WL WL

i

H

H

h

  

      

         

  

 

    

     

 

   for each is unfixed

 for each is fixed

i

i i i

h

h f h

 (4.3).

The model is proposed in [6].  is the pass-band ripple, and p is the maximum allowable

pass-band ripple. Therefore, if the objective function p    is larger than 0, it means that

no feasible solution satisfying the specification is available. Applying this LP model, we can

check the satisfaction and avoid the unnecessary LP runs in the candidates selection.

The candidates of a coefficient consist of two types. The first type candidates are integer

values within the coefficient boundary as in previous works. The second type candidates are

non-integer values which can be derived from the former determined coefficients by the

right-shift operation. Note that the right-shift operation is just applied at the output of the

MCM block, because we derive non-integer values by right-shifting the existent coefficients.

The right-shift operation may result in truncation error because of the non-integer property.

21

Extra fractional bits are required if no truncation error allowed. However, in the FIR filter

design, the right-shift operation may be feasible, because the architecture of the FIR filter

needs a series of adders to sum up the outputs of MCM that is shown as the SA of Fig. 1(b).

The series of adders usually lead to the truncation error because the sizes of adders are not

increased stage by stage in order to reduce hardware cost. Moreover, in fixed-point arithmetic,

keeping all less-significant-bits after a multiplication is not necessary because of the

quantization error already existed in input signals. Thus according to the output error

requirement, a truncation procedure is often required to reduce area as shown in [13]. If such

procedure is applied, the truncation error problem implied by right-shift operation can be

tolerated or considered on the quantization problem of the FIR filter design.

The pseudo code of candidates selection (CS) is as follows.

CS (ubk, lbk, FC, x)

1 C1=Ø ;

2 C2=Ø ;

3 for v from x   to lbk, v is an integer

4 hk = v;

5 if (LP (FC) ≤ 0)

6 add v to C1;

7 else

8 break;

9 for v from x   to ubk, v is an integer

10 hk = v;

11 if (LP (FC) ≤ 0)

12 add v to C1;

13 else

14 break;

15 foreach v  FC

16 while (v ≥ lbk)

17 if (v ≤ ubk)

18 hk = v;

19 if (LP (FC) < 0)

20 add v to C2;

21 v = v / 2;

22 return C1∪C2

End

22

Note that ubk, lbk are the initial upper bound and the initial lower bound of hk,

respectively. And FC is the fixed coefficient set containing the coefficients which are already

fixed. The x is a value which must satisfy the specification, and it can be derived when the LP

runs for hk+1. In line 1 and line 2, the integral candidate set C1 and non-integral candidate set

C2 are empty initially. Two for loop in line 3 to line 14 add the integers which satisfy the

specification to C1. The first for loop in line 3 to line 8 searches the integers and checks the

specification in one direction towards the initial lower bound or until unsatisfied; and the

second for loop in line 9 to line 14 searches the integers and checks the specification in the

other direction towards the initial upper bound or until unsatisfied. The third for loop in line

15 to line 21 searches the non-integers in the initial boundary. If the non-integer can satisfy

the specification and be derived from the former determined coefficients by the right-shift

operation, we add it to C2. The last line 22 returns the union of C1 and C2 as the candidate set.

The search space is already very large even if the non-integer is not considered. In order

to control the non-integral search space, we define a parameter L. We restrict the number of

bits after binary point within L. Therefore, we can control the non-integral search space by

modulating L. The experimental results show the performances with different L in Section 5.1.

4.5.3 LB and RIPPLE Computation

 In this section, we explain the Step 2 in Fig. 6. The search space of B&B is very large. In

order to speed up the search process, it is better to find a set of coefficients which satisfies the

specification and has the low cost as soon as possible, so that the search could be early

bounded. For this reason, we define two variables for each candidate in the candidate set, and

we determine the search priority according to the two variables. The first one is LB, and it

estimates the number of adders which is needed when fixing kh to some candidate. The

second one is RIPPLE, and it represents the quality of a candidate.

23

In order to reduce the time of cost computation, we use the lower bound of MCM design

to estimate the number of adders. In [8], the lower bound of the number of adders for MCM

design is proposed as

1

2
0

min{ log () } 1
N

i
i

LB S C N



     (4.4)

where Ci are positive odd unique coefficients, N is the number of coefficients, and S(Ci) is the

minimal number of non-zero bits of Ci. We compute the LB for each candidate in the

candidate set by (4.4), and the pseudo code is as follows.

LB_Compute(CS, FC)

1. foreach v  CS

2. C = FC;

3. add v to C;

4. lb = Lower_Bound(C);

5. if (lb > BEST_LB)

6. remove v from CS;

7. else

8. LB [v] = lb

9. return LB

End

 Note that, CS is the candidate set, and FC is the fixed coefficient set. In line 1 to line 8,

the program computes the lower bound for each candidate which is in the candidate set. In

line 5 and line 6, the program removes the candidate whose LB are not smaller than BEST_LB,

because it is very possible that the candidates result in worse cost than the best solution. In

order to reduce the search space, we remove them from the candidate set. The BEST_LB is the

minimal lower bound among the solutions which were already found.

 In the candidate selection, we solve the LP model (4.3) to check the satisfaction, and the

pass-band ripple δ actually can represent the quality of a set of coefficients. Because the

smaller ripple means that it is more flexible to select the unfixed coefficients under the

specification constraint. Therefore, we compute the RIPPLE for each candidate in the

24

candidate set by deriving the pass-band ripple in (4.3). Because the  may be different for

each candidate, we need to normalize the pass-band ripple as

 /RIPPLE   (4.5).

The RIPPLE for each candidate can be recorded when the LP model is solved in the candidate

selection, so no additional computation is needed.

4.5.4 Pruning Conditions

 In this section, we introduce the pruning conditions of the B&B search. The pruning

conditions are classified to two types: deterministic condition and heuristic condition. The

deterministic condition means that it does not obstruct the obtainment of the best solution in

the B&B search. On the contrary, the heuristic condition may lead to the loss of the

performance, but it can reduce the search time. In our method, there are one deterministic

condition: specification pruning condition, and two heuristic conditions: LB pruning

condition and ripple pruning condition.

 The specification pruning condition means that the set of fixed coefficients is unsatisfied

even if we have not fixed all other coefficients yet. Since it is unsatisfied, this path is pruned.

In fact, this condition check was done in the candidate selection, because we only add the

values which satisfy the specification to the candidate set.

The LB pruning condition means that the lower bound of the number of adders for the

fixed coefficients is not smaller than the minimal lower bound among the solutions which

were already found. Actually, this condition check was done in the LB computation.

The ripple pruning condition means that the RIPPLE of the candidate is larger than

RIPPLE_Threshold which is a dynamic value for each coefficient. We estimate that there is

no satisfied solution after fixing a coefficient to a candidate which matches the ripple

condition. The pseudo code of the B&B search is as follow, and it contains the ripple pruning.

25

Initial: RIPPLE_Threshold [i] = 0, for i = 0 ~ M

BandB (k, CB, RIPPLE_Threshold)

1. if (k == -1)

2. record the solution;

3. return TRUE;

4. C = CS (CB); //candidates selection

5. {LB, RIPPLE} = LandR (); //LB and RIPPLE computation

6. success = FALSE;

7. foreach v  C by ascending LB and ascending RIPPLE

8. if (RIPPLE[v] < RIPPLE_Threshold [k])

9. success = TRUE;

10. hk = v;

11. s = BandB(k-1, CB, RIPPLE_Threshold);

12. if (s == FALSE)

13. RIPPLE_Threshold [k] = RIPPLE[v];

14. return success;

End

The pseudo code is recursive, and the RIPPLE_Threshold for each hi is initially set as

infinity. Line 1 to line 3 is the terminal condition. Line 4 is the candidates selection, and line 5

is the LB and RIPPLE computation. Line 7 to line 13 fixes the coefficient hk to each candidate

and dynamically changes RIPPLE_Threshold. When determining a coefficient hk, if a

candidate of hk failed to find any feasible solution, its RIPPLE will be recorded as the

RIPPLE_Threshold of hk. Later in the search, when the RIPPLE of any candidate of hk is

larger than the RIPPLE_Threshold of hk, that branch will be pruned heuristically. The reason

is that we estimate that there may be no satisfied solution if the RIPPLE of a candidate is

larger than the RIPPLE_Threshold.

Applying the two heuristic pruning conditions may lose the best solution in the design

space. However, the run time is greatly reduced and thus allowing us to expand the search

space. We found that in most cases searching heuristically in a larger design space is more

effective than finding an exact solution in a smaller design space. Thus we apply these

heuristic pruning conditions in our method.

26

4.5.5 Solution Record

 When k = -1 in Fig. 6, it means that the program has reached the leaves of the B&B tree.

Therefore, we have a satisfied set of coefficients, and we can compute the real number of

adders for this coefficient set. In the Section 4.3, we already explain that the cost function is

NMBA – 2*Nzero. In this step, we use Hcub [1], which is a graph-based MCM algorithm, to

compute NMBA for this set of coefficients. The best solution of coefficient sets is kept until the

B&B tree is thoroughly searched and the filter architecture is obtained. The flow of solution

record is shown in Fig. 7.

LB <= BEST_LB ?

BEST_LB = LB

Compute NMBA by Hcub

NMBA <

BEST_NMBA ?

BEST_NMBA = NMBA

Record the set of coefficients

N

Y

N

Y

Fig. 7 The flow of solution record

27

N20

N10 N11 N12

N00 N01

L0 L1

h2

h1=0

h0

9(1,0.6)

0

4.5(1,0.7) 5(2,0.7)

10(1,0.7)
11(1,0.5)

0

Candidate(LB,RIPPLE)

RIPPLE_Spec = 0.8

LB pruning

2(1,0.9)

Fig. 8 The example of B&B search

4.5.6 The Example of B&B Search

In Fig. 8, we present an example showing how the B&B search works. This is a 5-tap

linear phase filter, with 3 coefficients h2, h1 and h0. The h1 is a ZCC and we decide to fix it to

zero in the iteration loop. Thus in the B&B search, h1 will be locked to zero and only h2 and

h0 will be determined.

Firstly, we consider h2 because it is the largest coefficient. This is the first coefficient and

only integer candidates are available. According to its boundary, the three available candidates

are “9”, “10” and “11”. Then we will compute the LB and RIPPLE of them, the values are

shown in Fig. 8. Note that the RIPPLE is computed with h1 being fixed to zero. Then we will

decide the priority of these candidates. According to the LB value, candidate “9” and “10” has

higher priority. And then according to the RIPPLE we decide to branch on candidate “9” first.

Because the h1 is fixed to zero, only one branch is allowed in the h1-level. Then we go to

the next level to determine h0. Here we have two candidates, “5” is an integer and “4.5” is a

non-integer by right-shifting “9”. These two candidates can generate two leaves L0 and L1.

28

The path reaching L0 has smaller cost, so we record it as the currently best solution.

Now the branch of N10 is finished, so we go to the next candidate “10”. When go down

to h0 at N01, we found that there is no candidate available. That means this branch is pruned

by the specification pruning condition.

Later in the third candidate “11”, the LB of “11” is 2, which is larger the LB of the

currently best solution and is pruned by the cost pruning condition. Now the whole B&B tree

is searched, and the path reaching L0 is the best solution, that is, “9”, “0”, and “4.5”.

4.6 Lower Bound Computation

 In order to tabulate Table I for illustrating the benefit of right-shifters, we need to

compute the lower bound of the number of adders for the filter design under the specification

constraint. The method is almost the same as our method excluding the ripple condition and

the cost computation by Hcub, because the ripple condition possibly leads to the loss of the

real lower bound. Finally, the BEST_LB which is introduced in Section 4.5.5 is the lower

bound of the number of adders for the filter design under the specification constraint. Without

the ripple condition, the runtime will significantly increase, and this is the reason that the

analysis restricts the low-tap filters.

29

Chapter 5

Experimental Results

 In this chapter, three case studies are given to demonstrate the improvement of our

algorithm. In Case Study I, the experimental results show the performances with different L.

In Case Study II, eight filter cases in [6] are designed by using our algorithm, and the results

are compared with the reported results of the best published work [6]. In Case Study III, we

implement the algorithm in [6] and generate 8 filter specifications with different taps. The 8

filter cases are designed by using our algorithm, and the results are compared with the results

by the algorithm in [6]. In this work, the algorithm is developed in C++/Linux environment,

and the platform is built in Intel Xeon at 2.53GHz with 50GB of main memory.

 Table II illustrates 8 filter specifications which are from [6]. In Table II, ωp, ωs, δp, δs

are the end of the pass-band, the beginning of the stop-band, the maximum allowable

pass-band ripple and the maximum allowable stop-band ripple, respectively.

Table II The specification of filter cases from [6]

Filter Tap ωp ωs
 δp δs

X1 15 0.2π 0.8π 0.0001 0.0001

G1 16 0.2π 0.5π 0.001 0.001

S1 24 0.3π 0.5π 0.0157 0.0066

Y1 30 0.3π 0.5π 0.00316 0.00316

Y2 38 0.3π 0.5π 0.001 0.001

A1 59 0.125π 0.225π 0.01 0.001

S2 60 0.042π 0.14π 0.012 0.001

L2 63 0.2π 0.28π 0.028 0.001

30

5.1 Case Study I
 In this case study, we compare the results with different L. Y2 and S2 are the test cases,

and their specifications are listed in Table II. In Table III, the FLB is the lower bound of the

number of adders for the filter design, and the Total #adders is the total number of adders for

the filter design by our algorithm. The experimental results show that the large L can reduce

the total number of adders and the runtime do not increase with L. That reason is that the

larger L means the larger search space, so it is more possible to find a better solution earlier.

Therefore, the search can be bounded earlier, and the runtime can be reduced.

 From this case study, we can know the larger L is better, so we set L as same as the

wordlength of the coefficients in the following case studies.

Table III The analysis for L in Y2 and S2

Y2 S2

L FLB Total #adders Runtime L Total #adders Runtime

1 39 39 4m49s 1 74 18m27s

2 38 39 5m30s 2 74 22m50s

3 37 38 4m35s 3 74 27m34s

4 37 38 4m47s 4 73 27m56s

5 37 38 4m53s 5 73 28m21s

6 37 38 4m54s 6 73 29m30s

7 36 38 4m53s 7 72 26m31s

8 36 38 4m54s 8 72 26m14s

9 36 38 4m53s 9 72 26m36s

10 36 38 4m54s 10 72 26m40s

31

5.2 Case Study II
 In this case study, there are 8 filters from [6], and their specifications are listed in Table

II. In [6], the experimental results show that their results are better than the best published

ones, so ours work is only compared with them. The design results of our algorithm and [6]

are listed in Table IV for comparison. Tap is the number of coefficients, and WL is the

wordlength of the coefficients excluding the sign bit. MBA is the number of multiplier block

adders, SA is the number of structural adders, and Total is the total number of adders. In

Table IV, the performances of ours and [6] are similar in the lower-tap filters. However, in the

higher-tap filters, the performances of ours are better, and the runtime of ours are shorter.

Table IV The results and comparisons for cases from [6]

Filter Tap WL
[6]

MBA / SA / Total

Ours

MBA / SA / Total

Runtime

[6] / Ours

X1 15 10 5 / 8 13 5 / 8 13 1s / 5s

G1 16

6 2 / 15 / 17 2 / 13 / 15 1s / 1s

7 2 / 13 / 15 2 / 13 / 15 1s / 1s

S1 24 7 4 / 19 / 23 4 / 19 / 23 1s / 3s

Y1 30

9 7 / 23 / 30 6 / 23 / 29 6s / 1m20s

10 6 / 23 / 29 6 / 23 / 29 5m9s / 4m2s

Y2 38

10 10 / 37 / 47 9 / 29 / 38 11s / 4m53s

11 10 / 27 / 37 10 / 27 / 37 40m46s / 2h31m

A1 59 10 14 / 54 / 68 14 / 52 / 66 50h34m / 3h24m

S2 60 10 17 / 59 / 76 15 / 57 / 72 16h42m / 24m18s

L2 63 10 17 / 56 / 73 13 / 56 / 69 16h28m / 8h47m

32

5.3 Case Study III
In order to compare the results of the filters with different taps, we generate 8 filters, and

the taps of these filters are from 39 to 89. Table V illustrates the 8 specifications of the filters.

Similarly, p ,
s , p and

s are the end of the pass-band, the beginning of the stop-band,

the maximum allowable pass-band ripple and the maximum allowable stop-band ripple,

respectively. The design results of our algorithm and [6] are listed in Table VI for comparison.

In this case study, WL is always set as 10. In Table VI, the Tap is the minimal tap that a

feasible solution can be found in the corresponding algorithm. The Improvement is derived

by ([6] - Ours) / ours. The experimental results show that our improvement can be up to

30.6% and on average 13.8% in the number of adders. Note that the improvements are lower

in the higher-tap filters. The reason is that there are more adders in SAs which dominate the

total number of adders, and the number of adders in SAs can only be reduced by selecting the

ZCCs.

Table V The specification of filter cases

Filter p
s p

s

T1 0.24π 0.43π 0.001 0.001

T2 0.32π 0.51π 0.001 0.001

T3 0.18π 0.3π 0.01 0.001

T4 0.24π 0.38π 0.0012 0.001

T5 0.28π 0.38π 0.01 0.001

T6 0.24π 0.34π 0.003 0.001

T7 0.08π 0.18π 0.001 0.0005

T8 0.04π 0.1π 0.02 0.001

33

Table VI The results and comparisons for the cases

Filter

Tap [6] Ours Improvement (%) Runtime

[6] ours MBA SA Total MBA SA Total MBA SA Total [6] ours

T1 40 39 10 39 49 8 26 34 20.0 33.3 30.6 3m9s 3m31s

T2 41 38 14 38 52 10 35 45 28.6 7.9 13.5 20s 1m38s

T3 48 48 18 47 65 13 45 58 27.8 4.3 10.8 4m36s 12m53s

T4 52 50 14 51 65 12 45 57 14.3 11.8 12.3 3m8s 10m24s

T5 56 56 18 55 73 12 51 63 33.3 7.3 13.7 18m28s 14m41s

T6 67 62 19 62 81 14 59 73 26.3 4.8 9.9 27m33s 29m12s

T7 78 75 23 77 100 17 72 89 26.0 6.5 11.0 4h35m 44m31s

T8 89 89 31 86 117 21 86 107 32.3 0.0 8.5 > 48h 3h3m

Avg. 26.1 9.5 13.8

Fig. 9 shows the runtimes for the 8 filters with sorted order by the taps of filters. Note

that the runtime of [6] in case T8 is more than 48 hours, and the best solution in the

incomplete search is reported. It can obviously illustrate that the runtime of [6] significantly

increases with the tap of the filter but ours do not.

Fig. 9 Runtime for the filters with different tap

0
500

1000

1500
2000

2500
3000

3500

T1 T2 T3 T4 T5 T6 T7 T8

R
u

n
ti

m
e

(m
in

)

[6]

Ours

34

5.4 Design Example
 In Table VII and Table VIII, we list the results of L2 and T5 by applying our algorithm.

These results include the coefficients and the implementations of coefficients. First, we use

adders, subtractors and left-shifters to design the basic subexpressions. Then, we implement

the coefficients by left-shifting or right-shifting the basic subexpressions. Note that, we only

construct the absolute value of coefficients in the MCM block. The negative coefficients are

implemented by replacing the corresponding SAs by subtractors, so it is unnecessary to use

negations.

Table VII The results of L2

Filter: L2

h(n) = h(62 – n) for 0 ≤ n ≤ 30

Pass-band gain: 4463.44

h(0) = 2.078125

h(1) = 4.75

h(2) = 6.71875

h(3) = 5.625

h(4) = 0

h(5) = – 9.5

h(6) = – 19

h(7) = – 23

h(8) = – 16.625

h(9) = 0

h(10) = 22.5

h(11) = 41

h(12) = 43.375

h(13) = 24

h(14) = – 10.84375

h(15) = – 46

133 >> 6

19 >> 2

215 >> 5

45 >> 3

– (19 >> 1)

– 19

– 23

– (133 >> 3)

– (45 >> 1)

41

347 >> 3

3 << 3

– (347 >> 5)

– (23 << 2)

h(16) = – 64

h(17) = – 48

h(18) = 0

h(19) = 61

h(20) = 103

h(21) = 96

h(22) = 29.1875

h(23) = – 79

h(24) = – 180

h(25) = – 215

h(26) = – 133

h(27) = 76

h(28) = 377

h(29) = 694

h(30) = 934

h(31) = 1024

– (1 << 6)

– (3 << 4)

61

103

3 << 5

467 >> 4

– 79

– (45 << 2)

– 215

– 133

19 << 2

377

347 << 1

467 << 1

1 << 10

Basic subexpressions

3 = 1<<2 – 1

19 = 1<<4 + 3

23 = 3<<3 – 1

45 = 3<<4 – 3

61 = 1<<6 – 3

41 = 1<<6 – 23

79 = 3 + 19<<2

103 = 61<<1 – 19

133 = 19<<3 – 19

215 = 3<<6 + 23

467 = 1<<9 – 45

347 = 19 + 41<<3

377 = 467 – 45<<1

35

Table VIII The results of T5

Filter: T5

h(n) = h(55 – n) for 0 ≤ n ≤ 27

Pass-band gain: 3310.29

h(0) = 2

h(1) = 2.875

h(2) = 0

h(3) = – 7.1875

h(4) = – 13

h(5) = – 9.25

h(6) = 2.875

h(7) = 16

h(8) = 15

h(9) = – 3.65625

h(10) = – 26

h(11) = – 27.625

h(12) = 0

h(13) = 37

1 << 1

23 >> 3

– (115 >> 4)

– 13

– (37 >> 2)

23 >> 3

16 = 1 << 4

15

– (117 >> 5)

– (13 << 2)

– (221 >> 3)

37

h(14) = 45

h(15) = 6.5

h(16) = – 52

h(17) = – 72

h(18) = – 18

h(19) = 76

h(20) = 120

h(21) = 46

h(22) = – 115

h(23) = – 221

h(24) = – 117

h(25) = 236

h(26) = 698

h(27) = 1024

45

13 >> 1

13 << 2

– (9 << 3)

– (9 << 1)

19 << 2

15 << 3

23 << 1

– 115

– 221

– 117

59 << 2

349 << 1

1 << 10

Basic subexpressions

9 = 1<<3 + 1

15 = 1<<4 – 1

13 = 1<<2 + 9

19 = 1 + 9<<1

23 = 1<<5 – 9

37 = 1 + 9<<2

45 = 9<<2 + 9

59 = 15<<2 – 1

115 = 1<<7 – 13

117 = 59<<1 – 1

221 = 13<<4 + 13

349 = 23<<4 – 19

36

Chapter 6

Conclusions & Future Works

 In this thesis, a design method of the FIR filter is proposed to minimize the total number

of adders on the architecture of the FIR filter. This method is based on the B&B search and

finds a set of coefficients which requires fewer adders to implement. Besides, this method

utilizes the right-shifter in the MCM design. The utilizing of the right-shifter expands the

search space to find a better solution. We also propose a heuristic pruning condition to make

the solution search in larger design space. The heuristic pruning condition is based on the

ripple of the frequency response and it can be used to effectively reduce the runtime and still

maintain the better performance.

 Compared to the best published work [6], our method can reduce up to 30.6% and on

average 13.8% in the number of adders. Besides, the runtime of our method is not

significantly increased with the tap of the filter as that of method proposed in [6].

 In this thesis, we explained that the right-shifter may cause the truncation error. In the

future, we can consider the truncation error from the right-shifter onto the quantization

problem of the FIR filter design.

37

References

[1] Y. Voronenko and M. Pu ̈schel, “Multiplierless multiple constant multiplication,” in ACM

Transactions on Algorithms, 2007, vol. 3, pp. 11.

[2] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier blocks in FIR

digital filters,” in IEEE Transactions on Circuits and Systems I, 1995, vol. 42, pp.

569-577.

[3] A. G. Dempster and M. D. Macleod, “Using all signed-digit representations to design

single integer multipliers using subexpression elimination,” in International Symposium

on Circuits and Systems, 2004, vol. 3, pp. III-165-8.

[4] J. Yli-Kaakinen and T. Saramaki, “A systematic algorithm for the design of multiplierless

FIR filters,” in International Symposium on Circuits and Systems, 2001, vol. 2, pp.

185-188.

[5] O. Gustafsson and L. Wanhammar, “Design of linear-phase FIR filters combining

subexpression sharing with MILP,” in Midwest Symposium on Circuits and Systems, 2002,

vol. 3, pp. III-9-III-12.

[6] S. Dong and Y. Y. Jun, “Design of linear phase FIR filters with high probability of

achieving minimum number of adders,” in IEEE Transactions on Circuits and Systems I,

2011, vol. 58, pp. 126-136.

[7] Y. C. Lim, “Design of discrete-coefficient-value linear phase FIR filters with optimum

normalized peak ripple magnitude,” in IEEE Transactions on Circuits and Systems, 1990,

vol. 37, pp. 1480-1486.

[8] O. Gustafsson, “Lower bounds for constant multiplication problems,” in IEEE

Transactions on Circuits and Systems II, 2007, vol. 54, pp. 974-978.

38

[9] X. Fei, C. C. Hong, and J. C. Chuen, “Design of low-complexity FIR filters based on

signed-powers-of-two coefficients with reusable common subexpressions,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, vol. 26,

pp. 1898-1907.

[10] Y. Y. Jun and L. Y. Ching, “Design of linear phase FIR filters in subexpression space

using mixed integer linear programming,” in IEEE Transactions on Circuits and Systems

I, 2007, vol. 54, pp. 2330-2338.

[11] Y. Yu and Y. Lim, “Optimization of linear phase FIR filters in dynamically expanding

subexpression space,” in Circuits, Systems, and Signal Processing, 2010, vol. 29, pp.

65-80.

[12] M. Aktan, A. Yurdakul, and G. Dundar, “An algorithm for the design of low-power

hardware-efficient FIR filters,” in IEEE Transactions on Circuits and Systems I, 2008,

vol.55, pp. 1536-1545.

[13] R. Guo, L. S. DeBrunner, and K. Johansson, “Truncated MCM using pattern

modification for FIR filter implementation,” in International Symposium on Circuits and

Systems, 2010, pp. 3881-3884.

[14] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discrete-time signal processing,” 2

ed. New Jersey: Prentice-Hall, 1989, pp. 297-300.

[15] Gurobi Optimization, Inc. “Gurobi Optimizer.” Internet: http://www.gurobi.com, 2012.

http://www.gurobi.com/

