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ABSTRACT

In this thesis, we propose an algorithm ‘to determine coefficients for a specified linear
phase FIR filter design. The target of our algorithm is'to minimize the adder cost as the FIR
filter is implemented through multiple ‘constant multiplication (MCM). Traditionally, an
MCM block in an FIR filter design is implemented using addition and left-shift operations
only. Nevertheless, our algorithm allows the use of right-shift operations to further expand the
design space. We also develop a heuristic-based approximated branch and bound method to
search in broader design space efficiently. Experimental results show that our method can
reduce the adder cost by up to 30.6% and 13.8% on average as compared to an existing

state-of-the-art technique.
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Chapter 1
Introduction

1.1 FIR Filter

In signal processing system, the finite impulse response (FIR) filter is usually an
important component because of its stability and linear phase properties. For an N-tap FIR
filter, the input data x[n] with different time scale are multiplied by corresponding constant
coefficients hg and then are summed up to output data y[n]. The equation is shown in the

following.

yInl= Y hx[n—k] (1.1)

1.2 The Implementation of FIR Filter

Compared with its alternative — the.infinite impulse response (IIR) filter, the FIR filter
has the advantage of stability. However, the hardware cost of an FIR filter is generally much
higher than that of an IIR filter. Therefore, it is an important design issue to minimize the
hardware cost when implementing a FIR filter.

As indicated in (1.1), a design of FIR filter is composed of constant multipliers, adders
and delay elements; and the constant multipliers occupy the most part of area. A trivial
implementation is to adopt general multipliers for carrying out those constant multiplications.
However, the general multiplier is an expensive functional unit in terms of hardware
implementation cost. Since the coefficients are all constants in filter design, in order to reduce
the cost, the constant multipliers are generally implemented by adders and shifters. For
example, the constant multiplication 5 * x can be computed as ( x << 2 ') + x. The constant

multiplier can be replaced by a shifter and an adder. The cost of a constant multiplier is
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roughly proportional to the number of required adders because those constant shifters are
accomplished by simply rewiring and thus are actually at no cost. That is, the cost of an FIR
filter basically depends on the total number of adders. Fig. 1(a) shows an architecture of a
transposed form N-tap FIR filter, which is functionally equivalent to (1.1). It is observed that
input data are multiplied by a set of constant coefficients. Moreover, while implementing
these constant multipliers all together at the same time, it has a very good chance to share
adders among them for cost reduction. A structure which effectively implements a set of
constant multipliers is also referred to as a multiple constant multiplication (MCM) block. Fig.
1(b) illustrates an N-tap FIR filter implemented by an MCM block. The adders in an
MCM-based filter can be classified into structural adders (SAs) and multiplier block adders
(MBASs). MBAs are adders residing in the MCM block, while SAs are those used to sum up

the outputs of the MCM block.
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Fig. 1 (a) An N-tap FIR filter architecture. (b) An N-tap FIR filter architecture with MCM.

There are algorithms for the MCM problem, which generate the MCM design for the
given set of coefficients and minimize the number of adders. The MCM algorithms can
simply be divided into two classes: graph-based algorithms [1][2] and common subexpression
elimination (CSE) algorithms [3]. Graph-based algorithms construct the graph which can

represent the structure of MCM and iteratively extend the graph by a heuristic. CSE
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algorithms find common subexpressions in a convenient representation of coefficients and
share as many the subexpressions as possible. The subexpression means that some part of an
expression. For example, 5*x equals to (x<<1) + 3*x, so x and 3*x are subexpressions of 5*x.
Graph-based algorithms can usually get a better solution than CSE algorithms, because they
are not restricted to a particular representation.

The characteristic of a filter is generally defined by the filter specification. Some of
conventional FIR filter design flows first determine a set of coefficients which satisfies the
given filter specification and then use the MCM algorithm to minimize the number of adders
required for the corresponding MCM block. However, because there is no cost information
available during the coefficient selection process, it is likely to find the other set of
coefficients that is implemented by fewer adders and also satisfies the specification. That is, it
can help minimize the adders cost if the cost can be properly estimated while selecting
coefficients. Several works [4-6][9] have addressedthis issue and provided fairly good
outcomes. However, the solution- space of this problem. is simply too large so that it is
impractical to perform an exhaustive search for the exhaustive optimal solution due to limited
runtime.

In this thesis, we propose a new MCM-based FIR design methodology. Unlike previous
techniques, besides addition and left-shift operations, right-shift operations are also allowed
while construction the MCM block, which expands the design space. Moreover, we also
develop a branch and bound (B&B) strategy to make the solution exploration in that expanded
design space more efficiently and effectively. Experimental results show that the proposed
methodology is capable of producing better solutions in acceptable runtime when compared

with existing techniques.



1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the
specification of the filter and the previous works. Chapter 3 explains the motivation of this
work. In Chapter 4, the proposed method is demonstrated. The experimental results are shown

in Chapter 5. Finally, Chapter 6 gives the conclusions and the future works.



Chapter 2
Background

2.1 The Specification of FIR Filter

In this thesis, we consider the linear phase FIR filter. The frequency response of a Type |

linear phase FIR filter with N taps is written as

M-1
H(w)=h,, +2)_h, cos(M —n)w) (2.1)
n=0
where
M=(N-1)/2.
The frequency response equations of Type 11, 111 and 1V linear phase FIR filters are similar to
this [14].

The frequency response of the filter can be classified into four types: low-pass, high-pass,
band-pass and band-stop. For the sake of‘convenience, we just illustrate the low-pass filter in
the following. Fig. 2 shows the specification of'the low-pass filter. The parameters wp, ws, Jp,
os are the end of the pass-band, the beginning of the stop-band, the maximum allowable
pass-band ripple and the maximum allowable stop-band ripple, respectively. The specification
means that the frequency response must be inside the region. Thus, it can be expressed as the

formula in the following.

1-6,<H(w)! p<1+6, for we[0,0,]

(2.2)
-0, <H(w)/ <o, for welw,, 7]
where

[max H () +min H(w)] for o €[0,,]

p=

N |-

is the average pass-band gain.



Fig. 2 The specification of a low-pass filter.

2.2 Previous Works

In the FIR filter design, in order to efficiently minimize the number of adders, we need to
go back to the preceding process, that is, we must take account of the cost when determining a
set of coefficients which satisfies the specification.-Some previous works solve this problem
[4-6][9], and they are briefly described here.

In [4], the work uses linear programming to derive the boundary of all coefficients which
can meet the specification and searches coefficients within the boundary. The search method
is the B&B that finds a better solution by first generating a look-up table containing all the
possible subexpressions for a given wordlength and a given maximum number of adders per
coefficient. It just considers the individual cost of each coefficient when generating the
look-up table, so it possibly loses the better solutions.

In [5], the work formulates the problem as a 0-1 integer linear programming to minimize
the number of adders. The formulation comprehensively considers the subexpression of each
coefficient, but it needs a large number of variables to decide which coefficients and

subexpressions are used, so it is very time consuming.



In [9], the work proposes a local search method and uses a common-subexpression-based
method to account for the sharable adders. The canonical signed digit (CSD) representation is
used. Although the representation can represent the coefficient with a minimum number of
non-zero bits, it does not guarantee having the fewer number of adders than other
representations.

In [6], the work uses the B&B search method in the boundary for each coefficient and
proposes a cost estimation to minimize the number of adders. The cost estimation simply
computes the required number of adders for generating a new coefficient by adding or shifting
the integers in the subexpression basis set which is dynamically expanded during the search
process. The experimental results show that the total number of adders in FIR design is fewer
than other previous works under the same filter specification.

It is apparent that the scheme of first identifying a boundary and then performing a B&B
search is widely adopted in coefficient decision -as shown in [4][6]. The boundary
computation can reduce the search space because we just need to search within the boundary
of each coefficient. The B&B search'strategy can eliminate invalid searches based on the filter
specification and the total adder cost. We also adopt this B&B search and the boundary

computation in our algorithm.



Chapter 3
Motivation

3.1 Right-Shifter in MCM

In the previous works [4-6][9], after the wordlength (WL) is decided, the value of every
coefficient must be an integer ranging from —2"* to 2"*—1 since an MCM block consists of
adders and left-shifters only. For example, if the given wordlength is 10-bit, the value of each
coefficient must be an integer between —1024 and 1023. However, we can reverse the sign of
coefficients by replacing the structural adders by subtractors, so the range of coefficients is
actually -1024~1024. If we consider the right-shifter, we can select the non-integers as the
coefficients in certain range. For. example, assume. that the input data is x and 2.5 is the
coefficient which we select, that-is, the operation 2.5 * x is needed to be computed. This
constant multiplication can be computed as (5 * x ) >> 1. Applying the right-shift operation,
we can select the non-integer 2.5 as the coefficient.

An example is given here. Assume the input data is x, and we select two coefficients, “3”
and “20”, for the given filter specification without right-shifter operation. The architecture is
shown as Fig. 3(a), and it needs two adders. However, we can select the non-integer as the
coefficient with the right-shifter operation. Assume that the coefficient “3” can be replaced by
“2.5” and the set of coefficients still satisfies the filter specification. In this case, an adder can
be replaced by a shifter, and the modified architecture is shown as Fig. 3(b). One adder can be
saved to reduce the cost.

In another similar case, assume that there is no integer which satisfies the specification
when determining the second coefficient. The previous works will return “no solution” in this

case. However, with the right-shift operation, we can select “2.5” if it can satisfy the



specification and thus a solution is available. In this way, applying right-shift can make it

easier to find a feasible solution.

X | | X |
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; 2.5x 20 x
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Fig. 3 Example of cost reduction

3.2 Heuristic Pruning Condition

After applying right-shift operation, the search space of coefficient sets is expanded and
thus requires more time to find an-exact solution from it. Similarly, the search space grows
exponentially to the wordlength, thus in the previous works the wordlength can only be set to
a value such that the run time is acceptable.

In this thesis, we introduce a heuristic pruning condition during the B&B search to
reduce the run time. This heuristic pruning is based on the ripple of the frequency response,
which implies the quality of current coefficient set. If the ripple is too large during B&B
search, it hardly can find a feasible solution.

Applying the heuristic pruning may miss the best solution when searching in the design
space. However, the run time is greatly reduced and thus it allows us to expand the search
space. We found that in most cases searching heuristically in a larger design space is more
effective than finding an exact solution in a smaller design space. Thus we apply this heuristic

pruning in our algorithm.
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3.3 Lower Bound Analysis

In order to illustrate that the right-shifter is beneficial for cost reduction, we compare the
lower bounds of the number of adders between the design with and without right-shifters. The
method for computing the lower bound will be explained in Section 4.6, and we just show the
results here. Table I lists ten filters and their lower bound with and without right-shifters. The
ten filters are randomly generated and their numbers of taps are lower, because the runtime of
computing the lower bound is very long, and the higher-tap filter leads to longer runtime.

Table | can show that the right-shifter is actually beneficial for cost reduction. However, the

improvement is not large because the number of taps is small.

Table | The comparison for lower bound

Filter Tap LB without right-shifters LB with right-shifters
M1 24 <t | 28
M2 23 28 26
M3 22 25 24
M4 24 28 27
M5 24 26 26
M6 23 31 30
M7 23 22 22
M8 22 26 24
M9 24 28 26

M10 24 26 25

11




3.4 Problem Formulation

In this thesis, we address the problem of the linear phase FIR filter design based on the
MCM architecture. We are given:

e the wordlength of coefficients

e the specification of FIR filter: w,, o,, 6, and &,

p H
Our goal is to generate a set of coefficients and minimize the total number of structural
adders (SA) and multiplier block adders (MBA) for the FIR filter design under the given filter

specification constraint.
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Chapter 4
Our Proposed Method

In this chapter, we propose an algorithm to determine coefficients for a specified linear
phase FIR filter design. The target of our algorithm is to minimize the number of adders as the
FIR filter is implemented through MCM. Besides, our algorithm allows the use of right shift
operations in the MCM block to further expand the design space. Our method efficiently uses
the B&B search to find a set of coefficients which has lower cost and satisfies the
specification. The method uses the lower bound of MCM problem to estimate the cost and

applies a heuristic bound condition in the B&B search.

4.1 Search of The Solutions

To find the set of coefficients which satisfy the specification and require fewer adders,
we use the B&B algorithm same as the previous work [6]. In this previous work, they
determine the coefficients from the smallest coefficient to the largest coefficient, that is, hy,
hi, ..., hm In (2.1), because the larger coefficient can be composed of the smaller coefficients
by adders and left-shifters. However, we use the right-shift operation, so we determine the
coefficients in the reverse order. The reason is that the smaller coefficients can be derived by
right-shifting of the larger coefficients. Fig. 4 shows the B&B tree of the 5-tap FIR filter. The
coefficients are determined in the corresponding level, where each edge represents one
decision of the coefficient, and each path represents one set of coefficients. For example, the
Path 1 is a set of coefficients that contains hy = 2, h; = 4, and h, = 7. Of course, we have some

pruning conditions to reduce the search time, and it is discussed in the following section.
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Level 0:hy

Levell:hy /() () e

Level 2 : hy

Pruning Lines
Leaf : solution

Fig. 4 The B&B tree of the Type | 5-tap FIR filter

4.2 Boundary Computation

Assume that the given wordlength of coefficients is WL, so the coefficients can be

2WL 2WL

selected between — and 2™". The search space of B&B is very large. In order to reduce the
search space, it is needed to reduce the range of ‘coefficients. In the FIR filter design, the set of
coefficients is not unique for the same filter design specification, but we can compute the
boundary for each coefficient according to the specification. The boundary means that the
coefficients outside the boundary never satisfy the filter specification. By computing the

boundary, we can reduce the search space and the runtime.

4.2.1 Linear Programming Formulation
To determine the boundary of the coefficient h, , we formulate a linear programming

(LP) model, and the formulation is written as

14



minimize: h,
subjectto:1-6, <H(w)/ f<1+6, for we[0,w,]

-0, <H(w)! p < for w e[w,, 7] (4.2)
B sp<p,
—2M<h <2 fori=0,1,..,M

where H(w) are introduced in (2.1), the specification constraint is the same as (2.2), and f,,
B, are two constants which specify the lower bound and the upper bound of £, respectively.

Using (4.1), we can derive the lower bound of h, . To derive the upper bound of h, , replace

minimize by maximize in (4.1). Using this LP model, we can derive the boundary of each

coefficient. Eventually, we use LP solver, named gurobi [15] to solve this LP problem.

4.2.2 The Selection of gyand g,

Assume the largest coefficient is h,, where M is the same as (2.1). First, set S, and
B, as unity and compute the lower.bound of h,, denoted as hy,,. Secondly, set g, as

2" I'hy oy because the maximum of the coefficient is 2™ in this design with the
wordlength WL. For FIR filter design in binary arithmetic, the lower bound of £ is

unnecessary to be smaller than half of the upper bound [7], so g, issetas g, /2.

4.3 Cost Function and Zero-Crossing-Coefficient

Fig. 1(b) shows an N-tap FIR filter architecture with MCM, and the adders can be
classified into SAs and MBAs. The goal of our work is minimizing the total number of adders
which include SAs and MBAs. Assume that the number of SAs and MBAs are Nsa and Nyga,
respectively. The cost function can be written as Nsa + Nyga. The SAs are used to sum up the

outputs of MCM, so Nsa is related to the number of coefficients, that is, Nsa = Tap — 1, where

15



Tap is the number of coefficients. However, if there is one coefficient whose value is zero, the
output of corresponding multiplication must be zero no matter what the multiplicand is.
Therefore, the corresponding adders can be removed. Besides, the linear phase FIR
coefficients are symmetric, so we can save two adders when one coefficient is fixed to zero.
Thus, the cost function can be further written as Nyga + Tap — 1 — 2*Nzero, Where Ny IS the
number of the coefficients which equal to zero. Then, the cost function can be simplified as
Nmea — 2*Nzero, because Tap — 1 is constant.

In order to reduce the cost, Nz, should be as large as possible. Therefore, we determine
the zero-crossing-coefficients (ZCC) at first, and then the B&B search will determine the
remaining coefficients. The ZCC means that the boundary of the coefficient is crossing zero.

Moreover, the set of ZCCs which has more number of zeros are searched at first. For example,

assume that the feasible boundaries'of h,, h, jand h, include zero. At first, three ZCCs are
fixed to zero, that is, { h,, h, h, }. Then, two ZCCs are fixed to zero, thatis, { h,, h, }
or{ h, h, or{ hy, h, } Then, one ZCC is fixed to zero, thatis, { h, Yor{ h }or

{ h, }. Finally, no coefficient is fixed to zero.

4.4 Algorithm Flow

Fig. 5 shows the algorithm flow. First, the algorithm computes the boundary of each
coefficient according to the given specification. After this step, we can just search the
coefficients within the corresponding boundaries. Secondly, the algorithm uses the B&B
search to determine the coefficients. An important characteristic of the B&B search is that
finding a good solution as soon as possible will result in earlier bound, and can reduce the
runtime. Therefore, we create an iteration loop above the B&B search such that we can fix the

ZCCs to zero first. In this iteration loop, we first set Nero as the number of ZCCs and fiX Ngero

16



ZCCs to zero. Then we use the B&B search to determine the remaining coefficients. Making
more ZCCs to zero can save more SAs. However, it may cause the B&B search fail to find a
feasible solution. If failed, we will reduce the Ngro. This loop continues until all combination
of ZCCs will be tried or a feasible solution is obtained.

The main stage of this algorithm is the B&B search. In this stage, the algorithm
determines the remaining coefficients by the B&B search. This thesis proposes a B&B search

strategy, and it is introduced in Section 4.5.

Specification

1. Feasible boundary computation
2. Find zero-crossing-coefficients (ZCC)

v Iteration loop
Ngero = #ZCC

<
h 4

Fix Nero ZCCs to zero

l Nzero =

B&B search:
Determine the remaining coefficients

zero ~ 1

> =

Success?
Y

v

Output the architecture of the filter

Fig. 5 The algorithm flow
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4.5 Branch and Bound Search

After fixing the ZCCs to zero, we will determine the remaining coefficients by the B&B
search. In this section, we introduce the B&B search strategy to make the solution exploration

in that expanded design space more efficiently and effectively.

45.1 Decision Flow

Applying the B&B search method, we need to do the coefficient decision in each node
on the B&B tree. Fig. 6 shows the coefficient decision flow. Assume that the coefficient hy.1
is already determined, and the coefficient hy will be determined this time. If k is equal to -1,
the program already reaches the leaves of the B&B tree, so a satisfied set of coefficients is
found. Then, we can record the result.and go back to fix hy.; to another candidate. If k is not
equal to -1, the program will execute the following steps. Step 1, determine the candidate set,
denoted as C, containing some ‘values within the boundary of the coefficient hy. Step 2,
compute LB and RIPPLE for each candidate, which are used to determine the priority of
search. Step 3, fix hy to some value which belongs to C, and the priority is by ascending LB.
When LBs are equivalent, the priority is by ascending RIPPLE. Step 4, check the pruning
conditions. The path is pruned when matching the pruning conditions. The Step 5, if the
pruning conditions are all not matched, the program goes to the decision of hy.;. Else, go back
to Step 4 to fix hy to another candidate until try all candidates which belongs to C. When all
candidates have been tried, if k does not equal to M, the program will go back to fix hy+; to
another candidate. If k equals to M, which means that the whole branch tree has been searched,

the program is finished.
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Initial: k=M
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the boundary of h(k)

!

Compute LB and RIPPLE
for each candidate

A 4
k=k+1 +

Fix h(k) to the candidates
by ascending LB and
ascending RIPPLE

h 4
Solution record

Fig. 6 The decision flow

45.2 Candidate Selection

In this section, we explain about Step 2 in Fig. 6. The goal of Step 2 is determining the
candidate set of the coefficient hy. In Step 4, hy will be fixed to each value in the candidate set
in the certain order which was introduced in Section 4.5.1.

We will select values within the boundary of hy as the candidates, because the values

outside the boundary never satisfy the specification. However, the actual boundary of
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coefficient is much tighter than the initial boundary when more and more coefficients are
fixed. Thus, if we want to derive the actual boundary, we must recompute the boundary by
running the LP solver. In [6], a method is proposed to search the values without unnecessary
LP runs, and we also adopt this method.

In order to reduce the number of running LP solver, we do not recompute the feasible
boundaries of coefficients but compute them in the beginning just once when no coefficient is
fixed. That is to say, use the LP model as (4.1) to compute the initial feasible boundaries of
coefficients. The actual boundary of coefficient is much tighter than the initial boundary, so it
is necessary to check whether a set of coefficients is satisfied. This problem can be solve by
using a LP model as

minimize: 6 -0, - B

subjectto: f—0<H(w)<f+0 for w€[0,0,]
—(0,-0)16, <H(w)<(6,-0) 16,  forwelw,n] “3)
B <B<p,
—2" <h <2"™ for each h, is unfixed
h =f, for.each h, is fixed

The model is proposed in [6]. & is the pass-band ripple, and &, is the maximum allowable

pass-band ripple. Therefore, if the objective function 6o, -4 is larger than 0, it means that

no feasible solution satisfying the specification is available. Applying this LP model, we can
check the satisfaction and avoid the unnecessary LP runs in the candidates selection.

The candidates of a coefficient consist of two types. The first type candidates are integer
values within the coefficient boundary as in previous works. The second type candidates are
non-integer values which can be derived from the former determined coefficients by the
right-shift operation. Note that the right-shift operation is just applied at the output of the
MCM block, because we derive non-integer values by right-shifting the existent coefficients.

The right-shift operation may result in truncation error because of the non-integer property.
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Extra fractional bits are required if no truncation error allowed. However, in the FIR filter
design, the right-shift operation may be feasible, because the architecture of the FIR filter
needs a series of adders to sum up the outputs of MCM that is shown as the SA of Fig. 1(b).
The series of adders usually lead to the truncation error because the sizes of adders are not
increased stage by stage in order to reduce hardware cost. Moreover, in fixed-point arithmetic,
keeping all less-significant-bits after a multiplication is not necessary because of the
quantization error already existed in input signals. Thus according to the output error
requirement, a truncation procedure is often required to reduce area as shown in [13]. If such
procedure is applied, the truncation error problem implied by right-shift operation can be
tolerated or considered on the quantization problem of the FIR filter design.

The pseudo code of candidates selection.(CS) is as follows.

CS ( Ubk, |bk, FC, X)

1 Clzg ;
2 CZZQ) ;
3 forvfrom | x| tolby visan integer
4 he=v;
5 if (LP (FC)<0)
6 add v to Cy;
7 else
8 break;
9 forvfrom [x]| touby visan integer
10 he=v;
11 if (LP (FC)<0)
12 add v to Cy;
13 else
14 break;
15 foreachv e FC
16 while (v>lby)
17 if (v<uby)
18 hg = v;
19 if (LP (FC)<0)
20 add v to Cy;
21 v=v/2;
22 return CLUCGC,
End
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Note that uby, Ibx are the initial upper bound and the initial lower bound of hy,
respectively. And FC is the fixed coefficient set containing the coefficients which are already
fixed. The x is a value which must satisfy the specification, and it can be derived when the LP
runs for hy.1. In line 1 and line 2, the integral candidate set C; and non-integral candidate set
C, are empty initially. Two for loop in line 3 to line 14 add the integers which satisfy the
specification to C;. The first for loop in line 3 to line 8 searches the integers and checks the
specification in one direction towards the initial lower bound or until unsatisfied; and the
second for loop in line 9 to line 14 searches the integers and checks the specification in the
other direction towards the initial upper bound or until unsatisfied. The third for loop in line
15 to line 21 searches the non-integers in the initial boundary. If the non-integer can satisfy
the specification and be derived from the former determined coefficients by the right-shift
operation, we add it to C,. The last line 22 returns the union of C; and C, as the candidate set.

The search space is already very:large even if the non-integer is not considered. In order
to control the non-integral search.space, we define a parameter L. We restrict the number of
bits after binary point within L. Therefore, we can-control the non-integral search space by

modulating L. The experimental results show the performances with different L in Section 5.1.

45.3 LB and RIPPLE Computation

In this section, we explain the Step 2 in Fig. 6. The search space of B&B is very large. In
order to speed up the search process, it is better to find a set of coefficients which satisfies the
specification and has the low cost as soon as possible, so that the search could be early
bounded. For this reason, we define two variables for each candidate in the candidate set, and

we determine the search priority according to the two variables. The first one is LB, and it
estimates the number of adders which is needed when fixing h, to some candidate. The

second one is RIPPLE, and it represents the quality of a candidate.
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In order to reduce the time of cost computation, we use the lower bound of MCM design
to estimate the number of adders. In [8], the lower bound of the number of adders for MCM

design is proposed as
N-1
LB =min{] log, S(C)) [+ N -1 (4.4)
where C; are positive odd unique coefficients, N is the number of coefficients, and S(C;) is the

minimal number of non-zero bits of C;. We compute the LB for each candidate in the

candidate set by (4.4), and the pseudo code is as follows.

LB_Compute(CS, FC)
1. foreachv e CS
2 C =FC;
3 add v to C;
4. b= Lower_Bound(C);
5. if (Ib>BEST_LB)
6 remove v from CS;
7 else
8 LB [v]=1b
9. return LB
End

Note that, CS is the candidate set, and FC is the fixed coefficient set. In line 1 to line 8,
the program computes the lower bound for each candidate which is in the candidate set. In
line 5 and line 6, the program removes the candidate whose LB are not smaller than BEST_LB,
because it is very possible that the candidates result in worse cost than the best solution. In
order to reduce the search space, we remove them from the candidate set. The BEST_LB is the
minimal lower bound among the solutions which were already found.

In the candidate selection, we solve the LP model (4.3) to check the satisfaction, and the
pass-band ripple ¢ actually can represent the quality of a set of coefficients. Because the
smaller ripple means that it is more flexible to select the unfixed coefficients under the

specification constraint. Therefore, we compute the RIPPLE for each candidate in the
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candidate set by deriving the pass-band ripple in (4.3). Because the B may be different for
each candidate, we need to normalize the pass-band ripple as

RIPPLE=6/p (4.5).
The RIPPLE for each candidate can be recorded when the LP model is solved in the candidate

selection, so no additional computation is needed.

4.5.4 Pruning Conditions

In this section, we introduce the pruning conditions of the B&B search. The pruning
conditions are classified to two types: deterministic condition and heuristic condition. The
deterministic condition means that it does not obstruct the obtainment of the best solution in
the B&B search. On the contrary, the heuristic' condition may lead to the loss of the
performance, but it can reduce the search time. In our method, there are one deterministic
condition: specification pruning- condition, and two heuristic conditions: LB pruning
condition and ripple pruning condition.

The specification pruning condition means that the set of fixed coefficients is unsatisfied
even if we have not fixed all other coefficients yet. Since it is unsatisfied, this path is pruned.
In fact, this condition check was done in the candidate selection, because we only add the
values which satisfy the specification to the candidate set.

The LB pruning condition means that the lower bound of the number of adders for the
fixed coefficients is not smaller than the minimal lower bound among the solutions which
were already found. Actually, this condition check was done in the LB computation.

The ripple pruning condition means that the RIPPLE of the candidate is larger than
RIPPLE_Threshold which is a dynamic value for each coefficient. We estimate that there is
no satisfied solution after fixing a coefficient to a candidate which matches the ripple

condition. The pseudo code of the B&B search is as follow, and it contains the ripple pruning.
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Initial: RIPPLE_Threshold [i]=0,fori=0~M
BandB ( k, CB, RIPPLE_Threshold )

1. if(k==-1)
2. record the solution;
3. return TRUE;
4. C=CS(CB); /[candidates selection
5. {LB, RIPPLE} = LandR (); //LB and RIPPLE computation
6. success = FALSE;
7. foreach v € C by ascending LB and ascending RIPPLE
8. if (RIPPLE[v] < RIPPLE_Threshold [k] )
9. success = TRUE;
10. hg = v;
11. s = BandB(k-1, CB, RIPPLE_Threshold);
12. if (s == FALSE)
13. RIPPLE_Threshold [K] = RIPPLE[V];
14. return success;
End

The pseudo code is recursive, and the RIPPLE .Threshold for each h; is initially set as
infinity. Line 1 to line 3 is the terminal condition. Line 4 is the candidates selection, and line 5
is the LB and RIPPLE computation. Line 7 to line 13 fixes the coefficient hy to each candidate
and dynamically changes RIPPLE_Threshold. When determining a coefficient hy, if a
candidate of hy failed to find any feasible solution, its RIPPLE will be recorded as the
RIPPLE_Threshold of hy. Later in the search, when the RIPPLE of any candidate of hy is
larger than the RIPPLE_Threshold of hy, that branch will be pruned heuristically. The reason
is that we estimate that there may be no satisfied solution if the RIPPLE of a candidate is
larger than the RIPPLE_Threshold.

Applying the two heuristic pruning conditions may lose the best solution in the design
space. However, the run time is greatly reduced and thus allowing us to expand the search
space. We found that in most cases searching heuristically in a larger design space is more
effective than finding an exact solution in a smaller design space. Thus we apply these

heuristic pruning conditions in our method.
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45.5 Solution Record

When k = -1 in Fig. 6, it means that the program has reached the leaves of the B&B tree.
Therefore, we have a satisfied set of coefficients, and we can compute the real number of
adders for this coefficient set. In the Section 4.3, we already explain that the cost function is
Nmea — 2*Nzro. In this step, we use Hcub [1], which is a graph-based MCM algorithm, to
compute Nyga for this set of coefficients. The best solution of coefficient sets is kept until the
B&B tree is thoroughly searched and the filter architecture is obtained. The flow of solution

record is shown in Fig. 7.

LB <=BEST_LB?

BEST LB =LB
Compute Nyga by Hcub

BEST_NMBA = NMBA
Record the set of coefficients

h

Fig. 7 The flow of solution record
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Candidate(LB,RIPPLE)
RIPPLE_Spec =0.8

hy

h;=0

ho

Fig. 8 The example of B&B search

45.6 The Example of B&B Search

In Fig. 8, we present an example showing how the B&B search works. This is a 5-tap
linear phase filter, with 3 coefficients hy, h; and hy. The h; is a ZCC and we decide to fix it to
zero in the iteration loop. Thus in the B&B search, h; will be locked to zero and only h, and
ho will be determined.

Firstly, we consider h, because it is the largest coefficient. This is the first coefficient and
only integer candidates are available. According to its boundary, the three available candidates
are “9”, “10” and “11”. Then we will compute the LB and RIPPLE of them, the values are
shown in Fig. 8. Note that the RIPPLE is computed with h; being fixed to zero. Then we will
decide the priority of these candidates. According to the LB value, candidate “9” and “10” has
higher priority. And then according to the RIPPLE we decide to branch on candidate “9” first.

Because the h; is fixed to zero, only one branch is allowed in the h;-level. Then we go to
the next level to determine ho. Here we have two candidates, “5” is an integer and “4.5” is a

non-integer by right-shifting “9”. These two candidates can generate two leaves Ly and L;.
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The path reaching Lo has smaller cost, so we record it as the currently best solution.

Now the branch of Ny is finished, so we go to the next candidate “10”. When go down
to hy at Noz, we found that there is no candidate available. That means this branch is pruned
by the specification pruning condition.

Later in the third candidate “11”, the LB of “11” is 2, which is larger the LB of the
currently best solution and is pruned by the cost pruning condition. Now the whole B&B tree

is searched, and the path reaching L is the best solution, that is, <“9”, “0”, and “4.5”.

4.6 Lower Bound Computation

In order to tabulate Table I for illustrating the benefit of right-shifters, we need to
compute the lower bound of the number of adders for the filter design under the specification
constraint. The method is almost the same as our method. excluding the ripple condition and
the cost computation by Hcub, because the ripple condition possibly leads to the loss of the
real lower bound. Finally, the BEST LB which is-introduced in Section 4.5.5 is the lower
bound of the number of adders for the filter design under the specification constraint. Without
the ripple condition, the runtime will significantly increase, and this is the reason that the

analysis restricts the low-tap filters.
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Chapter 5
Experimental Results

In this chapter, three case studies are given to demonstrate the improvement of our
algorithm. In Case Study I, the experimental results show the performances with different L.
In Case Study 1, eight filter cases in [6] are designed by using our algorithm, and the results
are compared with the reported results of the best published work [6]. In Case Study IlI, we
implement the algorithm in [6] and generate 8 filter specifications with different taps. The 8
filter cases are designed by using our algorithm, and the results are compared with the results
by the algorithm in [6]. In this work, the algorithm is developed in C++/Linux environment,
and the platform is built in Intel Xeon«at 2.53GHz with-50GB of main memory.

Table Il illustrates 8 filter specifications which are from [6]. In Table Il, wp, ws, Jp, Js
are the end of the pass-band, the beginning of the stop-band, the maximum allowable

pass-band ripple and the maximum allowable stop-band ripple, respectively.

Table 11 The specification of filter cases from [6]

Filter Tap wp s Op s
X1 15 0.2m 0.8m 0.0001 0.0001
Gl 16 0.2m 0.5m 0.001 0.001
s1 24 0.3m 0.51 0.0157 0.0066
Y1 30 0.3m 0.5m 0.00316 0.00316
Y2 38 0.3 0.51 0.001 0.001
Al 59 0.1251m 0.22511 0.01 0.001
S2 60 0.042m 0.14T 0.012 0.001
L2 63 0.2 0.28T 0.028 0.001
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5.1 Case Study |

In this case study, we compare the results with different L. Y2 and S2 are the test cases,

and their specifications are listed in Table II. In Table Ill, the FLB is the lower bound of the

number of adders for the filter design, and the Total #adders is the total number of adders for

the filter design by our algorithm. The experimental results show that the large L can reduce

the total number of adders and the runtime do not increase with L. That reason is that the

larger L means the larger search space, so it is more possible to find a better solution earlier.

Therefore, the search can be bounded earlier, and the runtime can be reduced.

wordlength of the coefficients in the following case studies.

Table I1I'The analysis for L in Y2 and S2

From this case study, we can know the larger L is better, so we set L as same as the

Y2 S2
L FLB Total #adders Runtime L Total #adders Runtime
1 39 39 4ma9s 1 74 18m27s
2 38 39 5m30s 2 74 22m50s
3 37 38 4m35s 3 74 27m34s
4 37 38 4m4T7s 4 73 27m56s
5 37 38 4m53s 5 73 28m21s
6 37 38 4mb54s 6 73 29m30s
7 36 38 4m53s 7 72 26m31s
8 36 38 4m>s4s 8 72 26m1l4s
9 36 38 4m53s 9 72 26m36s
10 36 38 4m54s 10 72 26m40s
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5.2 Case Study Il

In this case study, there are 8 filters from [6], and their specifications are listed in Table
Il. In [6], the experimental results show that their results are better than the best published
ones, so ours work is only compared with them. The design results of our algorithm and [6]
are listed in Table IV for comparison. Tap is the number of coefficients, and WL is the
wordlength of the coefficients excluding the sign bit. MBA is the number of multiplier block
adders, SA is the number of structural adders, and Total is the total number of adders. In
Table 1V, the performances of ours and [6] are similar in the lower-tap filters. However, in the

higher-tap filters, the performances of ours are better, and the runtime of ours are shorter.

Table IV The results and comparisons for cases from [6]

[6] Ours Runtime
Filter | Tap | WL
MBA/ SA/Total | MBA/SA/ Total [6] / Ours
X1 | 15 | 10 57813 5/813 1s/5s
6 2/15/17 2/13/15 1s/1s
Gl | 16
7 2/13/15 2/13/15 1s/1s
S1 | 24 | 7 4119/23 4119/23 1s/3s
9 7123/30 6/23/29 65/ 1m20s
Y1 | 30
10 6/23/29 6/23/29 5m9s / 4m2s
10 10/37/47 9/29/38 11s / 4m53s
Y2 | 38
11 10/27/37 10/27/37 40m46s / 2h31m
Al | 59 | 10 14/54 /68 14152/ 66 50h34m / 3h24m
s2 | 60 | 10 17/59/76 15/57/72 16h42m / 24m18s
L2 | 63 | 10 17156 /73 13/56 /69 16h28m / 8h47m
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5.3 Case Study 11

In order to compare the results of the filters with different taps, we generate 8 filters, and

the taps of these filters are from 39 to 89. Table V illustrates the 8 specifications of the filters.

a ,

Similarly, o 0, and ¢, are the end of the pass-band, the beginning of the stop-band,

D
the maximum allowable pass-band ripple and the maximum allowable stop-band ripple,
respectively. The design results of our algorithm and [6] are listed in Table VI for comparison.
In this case study, WL is always set as 10. In Table VI, the Tap is the minimal tap that a
feasible solution can be found in the corresponding algorithm. The Improvement is derived
by ( [6] - Ours ) / ours. The experimental results show that our improvement can be up to
30.6% and on average 13.8% in the number of adders. Note that the improvements are lower
in the higher-tap filters. The reason is that there are more adders in SAs which dominate the
total number of adders, and the number of-adders in SAs can only be reduced by selecting the

ZCCs.

Table V The specification of filter cases

Filter o, o, o, o,
Tl 0.241 0.431 0.001 0.001
T2 0.321 0.511 0.001 0.001
T3 0.18m 0.3m 0.01 0.001
T4 0.241 0.38m 0.0012 0.001
T5 0.281 0.381 0.01 0.001
T6 0.241 0.341 0.003 0.001
T7 0.081 0.18m 0.001 0.0005
T8 0.041 0.1m 0.02 0.001
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Table VI The results and comparisons for the cases

Tap [6] Ours Improvement (%) Runtime
Filter

[6] : ours [MBA| SA : Total [MBA! SA | Total [MBA! SA i Total| [6] | ours

T1 |40} 39 | 10 {39} 49 | 8 (26} 34 [20.0:33.3/30.6| 3m9s | 3m3ls

T2 |41 38 | 14 1381 52 | 10 (35! 45 286 7.9 | 135| 20s | 1m38s

T3 |48} 48 | 18 {47 65 | 13 (45 58 [27.8 | 4.3 |10.8 | 4m36s | 12m53s

T4 |52 50 | 14 51} 65 | 12 (45 57 |143 11.8}12.3| 3m8s :10m24s

T5 |56} 56 | 18 {55 73 | 12 (51} 63 [333 7.3 |13.7 |18m28s:14m4ls

T6 |67 62 | 19 (62| 81 | 14 (59| 73 263} 48 | 9.9 |27m33si29m12s

T7 |78 75 | 23 {77100 | 17 (72 89 [26.0 | 6.5 | 11.0 | 4h35m | 44m3ls

i

T8 |89} 89 | 31 |86 117 | .21 86 107/323 0.0 | 85 | >48h | 3h3m

Avg. 26,1 95138

Fig. 9 shows the runtimes for the .8 filters with.sorted order by the taps of filters. Note
that the runtime of [6] in case T8 is more than 48 hours, and the best solution in the
incomplete search is reported. It can obviously illustrate that the runtime of [6] significantly

increases with the tap of the filter but ours do not.

3500
— 3000
c
'S 2500 /f_
o 2000 /
£ 1500 ——1[6]
€ 1000 —B-0urs
2 500 /

0 +—m—m = 14"

TL T2 T3 T4 T5 T6 T7 T8

Fig. 9 Runtime for the filters with different tap
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5.4 Design Example

In Table VII and Table VIII, we list the results of L2 and T5 by applying our algorithm.
These results include the coefficients and the implementations of coefficients. First, we use
adders, subtractors and left-shifters to design the basic subexpressions. Then, we implement
the coefficients by left-shifting or right-shifting the basic subexpressions. Note that, we only
construct the absolute value of coefficients in the MCM block. The negative coefficients are

implemented by replacing the corresponding SAs by subtractors, so it is unnecessary to use

negations.
Table VII The results of L2
Filter: L2
h(n) =h(62 -n) for0<n <30
Pass-band gain: 4463.44
h(0)=2.078125  :133>>6 h(16) =64 i —(1<<6)
h(1) = 4.75 19>>2 h(a7) = . 48 ' (3<<4)
h(2)=6.71875 | 215>>5 h(18) =0 ;
h(3) = 5.625 L 45 >> 3 h(19) = 61 | 61
h(4) =0 h(20)= 103 103
h(5)=-9.5 —(19>>1) h(21) = 96 3<<5
h(6) = - 19 '~ 19 h(22) =29.1875 467 >>4
h(7) = - 23 23 h(23) = - 79 79
h(8)=-16625 | —(133>>3) h(24) = — 180 |~ (45<<2)
h(9) =0 h(25) = — 215 | —215
h(10) = 22.5 L~ (45>>1) h(26) = — 133 133
h(11) = 41 41 h(27) = 76 19 << 2
h(12) = 43.375 347>>3 h(28) = 377 377
h(13) = 24 1 3<<3 h(29) = 694 1347 <<1
h(14) =—10.84375 | —(347>>5) h(30) = 934 467 << 1
h(15) = — 46 | (23<<2) h(31) = 1024 1<<10
Basic subexpressions
3=1<<2-1 61 =1<<6-3 133 =19<<3-19 377 =467 — 45<<1
19=1<<4 +3 41 = 1<<6 — 23 215 = 3<<6 + 23
23=3<<3-1 79 =3 +19<<2 467 = 1<<9 — 45
45 =3<<4 -3 103=61<<1-19 | 347 =19 +41<<3
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Table VIII The results of T5

Filter: T5

h(n) =h(55—-n) for0<n <27
Pass-band gain: 3310.29

h(0) = 2 1<<1 h(14) = 45 45
h(1) = 2.875 1 23>>3 h(15) = 6.5 1 13>>1
h(2) = 0 h(16) = — 52 13<<2
h(3)=-7.1875 |- (115>>4) h(17)=—T72 |~ (9<<3)
h(4) = - 13 |13 h(18) =—18 | (9<<1)
h(5) = —9.25 _(37>>2) h(19) = 76 ' 19<<2
h(6) = 2.875 23>>3 h(20) = 120 15<<3
h(7) = 16 16=1<<4 h(21) = 46 23<<1
h(8) = 15 15 h(22) = - 115 i —115
h(9)=—3.65625 | —(117>>5) h(23) = - 221 221
h(10) = - 26 —(13<<2) h(24) = - 117 117
h(11) =—27.625 | —(221>>3) h(25) = 236 | 59 << 2
h(12) =0 h(26) =698 349 <<1
h(13) = 37 37 h(27) = 1024 ' 1<<10
Basic subexpressions
9=1<<3+1 19 = 1 +9<<1 45=9<<2+ 9 117 =59<<1 — 1
15=1<<4 1 23=1<<5-9 59 = 16<<2 1 221 = 13<<4 + 13
13=1<<2 +9 37=1+9<<2 115=1<<7 - 13  |349=23<<4 19
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Chapter 6
Conclusions & Future Works

In this thesis, a design method of the FIR filter is proposed to minimize the total number
of adders on the architecture of the FIR filter. This method is based on the B&B search and
finds a set of coefficients which requires fewer adders to implement. Besides, this method
utilizes the right-shifter in the MCM design. The utilizing of the right-shifter expands the
search space to find a better solution. We also propose a heuristic pruning condition to make
the solution search in larger design space. The heuristic pruning condition is based on the
ripple of the frequency response and it can be used- to effectively reduce the runtime and still
maintain the better performance.

Compared to the best published work [6], our method can reduce up to 30.6% and on
average 13.8% in the number of adders. Besides, the runtime of our method is not
significantly increased with the tap of the filter as that of method proposed in [6].

In this thesis, we explained that the right-shifter may cause the truncation error. In the
future, we can consider the truncation error from the right-shifter onto the quantization

problem of the FIR filter design.
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