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摘   要 

在這篇論文中，我們提出一個演算法，針對線性相位的有限脈衝響應濾波器選擇一

組符合規格的濾波器係數，此演算法的主要目的是最小化一個利用多重常數乘法器所實

作的有限脈衝響應濾波器中的加法器個數。在傳統的設計中，實作於有限脈衝響應濾波

器中的多重常數乘法器只會利用加法和左移(left-shift)這兩種運算，然而，我們的演

算法允許使用右移(right-shift)運算來擴展設計空間。我們也發展一個啟發式的分支

限界法(branch and bound method)，它可以使我們在擴展的設計空間中有效率的搜尋。

實驗數據顯示我們的演算法相較於目前存在最好的方法，在加法器個數上最多可以改善

30.6%且平均改善 13.8%。  
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ABSTRACT 

In this thesis, we propose an algorithm to determine coefficients for a specified linear 

phase FIR filter design. The target of our algorithm is to minimize the adder cost as the FIR 

filter is implemented through multiple constant multiplication (MCM). Traditionally, an 

MCM block in an FIR filter design is implemented using addition and left-shift operations 

only. Nevertheless, our algorithm allows the use of right-shift operations to further expand the 

design space. We also develop a heuristic-based approximated branch and bound method to 

search in broader design space efficiently. Experimental results show that our method can 

reduce the adder cost by up to 30.6% and 13.8% on average as compared to an existing 

state-of-the-art technique.  
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Chapter 1             

Introduction 

 

1.1 FIR Filter 
In signal processing system, the finite impulse response (FIR) filter is usually an 

important component because of its stability and linear phase properties. For an N-tap FIR 

filter, the input data x[n] with different time scale are multiplied by corresponding constant 

coefficients hk and then are summed up to output data y[n]. The equation is shown in the 

following. 

1

0

[ ] [ ]
N

k

k

y n h x n k




                                                      (1.1) 

 

1.2 The Implementation of FIR Filter 

Compared with its alternative – the infinite impulse response (IIR) filter, the FIR filter 

has the advantage of stability. However, the hardware cost of an FIR filter is generally much 

higher than that of an IIR filter. Therefore, it is an important design issue to minimize the 

hardware cost when implementing a FIR filter.  

As indicated in (1.1), a design of FIR filter is composed of constant multipliers, adders 

and delay elements; and the constant multipliers occupy the most part of area. A trivial 

implementation is to adopt general multipliers for carrying out those constant multiplications. 

However, the general multiplier is an expensive functional unit in terms of hardware 

implementation cost. Since the coefficients are all constants in filter design, in order to reduce 

the cost, the constant multipliers are generally implemented by adders and shifters. For 

example, the constant multiplication 5 * x can be computed as ( x << 2 ) + x. The constant 

multiplier can be replaced by a shifter and an adder. The cost of a constant multiplier is 
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roughly proportional to the number of required adders because those constant shifters are 

accomplished by simply rewiring and thus are actually at no cost. That is, the cost of an FIR 

filter basically depends on the total number of adders. Fig. 1(a) shows an architecture of a 

transposed form N-tap FIR filter, which is functionally equivalent to (1.1). It is observed that 

input data are multiplied by a set of constant coefficients. Moreover, while implementing 

these constant multipliers all together at the same time, it has a very good chance to share 

adders among them for cost reduction. A structure which effectively implements a set of 

constant multipliers is also referred to as a multiple constant multiplication (MCM) block. Fig. 

1(b) illustrates an N-tap FIR filter implemented by an MCM block. The adders in an 

MCM-based filter can be classified into structural adders (SAs) and multiplier block adders 

(MBAs). MBAs are adders residing in the MCM block, while SAs are those used to sum up 

the outputs of the MCM block. 
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Fig. 1 (a) An N-tap FIR filter architecture. (b) An N-tap FIR filter architecture with MCM. 

 

 There are algorithms for the MCM problem, which generate the MCM design for the 

given set of coefficients and minimize the number of adders. The MCM algorithms can 

simply be divided into two classes: graph-based algorithms [1][2] and common subexpression 

elimination (CSE) algorithms [3]. Graph-based algorithms construct the graph which can 

represent the structure of MCM and iteratively extend the graph by a heuristic. CSE 
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algorithms find common subexpressions in a convenient representation of coefficients and 

share as many the subexpressions as possible. The subexpression means that some part of an 

expression. For example, 5*x equals to (x<<1) + 3*x, so x and 3*x are subexpressions of 5*x. 

Graph-based algorithms can usually get a better solution than CSE algorithms, because they 

are not restricted to a particular representation. 

The characteristic of a filter is generally defined by the filter specification. Some of 

conventional FIR filter design flows first determine a set of coefficients which satisfies the 

given filter specification and then use the MCM algorithm to minimize the number of adders 

required for the corresponding MCM block. However, because there is no cost information 

available during the coefficient selection process, it is likely to find the other set of 

coefficients that is implemented by fewer adders and also satisfies the specification. That is, it 

can help minimize the adders cost if the cost can be properly estimated while selecting 

coefficients. Several works [4-6][9] have addressed this issue and provided fairly good 

outcomes. However, the solution space of this problem is simply too large so that it is 

impractical to perform an exhaustive search for the exhaustive optimal solution due to limited 

runtime.  

In this thesis, we propose a new MCM-based FIR design methodology. Unlike previous 

techniques, besides addition and left-shift operations, right-shift operations are also allowed 

while construction the MCM block, which expands the design space. Moreover, we also 

develop a branch and bound (B&B) strategy to make the solution exploration in that expanded 

design space more efficiently and effectively. Experimental results show that the proposed 

methodology is capable of producing better solutions in acceptable runtime when compared 

with existing techniques. 
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1.3 Thesis Organization 

 The remainder of this thesis is organized as follows. In Chapter 2, we introduce the 

specification of the filter and the previous works. Chapter 3 explains the motivation of this 

work. In Chapter 4, the proposed method is demonstrated. The experimental results are shown 

in Chapter 5. Finally, Chapter 6 gives the conclusions and the future works. 
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Chapter 2             

Background 

 

2.1  The Specification of FIR Filter 
    In this thesis, we consider the linear phase FIR filter. The frequency response of a Type I 

linear phase FIR filter with N taps is written as 

1

0

( ) 2 cos(( ) )
M

M n

n

H h h M n 




                                           (2.1) 

where 

( 1) / 2M N  .                                                  

The frequency response equations of Type II, III and IV linear phase FIR filters are similar to 

this [14].    

The frequency response of the filter can be classified into four types: low-pass, high-pass, 

band-pass and band-stop. For the sake of convenience, we just illustrate the low-pass filter in 

the following. Fig. 2 shows the specification of the low-pass filter. The parameters ωp, ωs, δp, 

δs are the end of the pass-band, the beginning of the stop-band, the maximum allowable 

pass-band ripple and the maximum allowable stop-band ripple, respectively. The specification 

means that the frequency response must be inside the region. Thus, it can be expressed as the 

formula in the following. 

1 ( ) / 1   for [0, ]

  ( ) /        for [ , ]

p p p

s s s

H

H

     

      

    

   
                                   (2.2) 

where  

 
1

 max ( ) min ( )  for [0, ]
2

pH H        

is the average pass-band gain.  
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Fig. 2 The specification of a low-pass filter. 

 

2.2  Previous Works 

    In the FIR filter design, in order to efficiently minimize the number of adders, we need to 

go back to the preceding process, that is, we must take account of the cost when determining a 

set of coefficients which satisfies the specification. Some previous works solve this problem 

[4-6][9], and they are briefly described here. 

In [4], the work uses linear programming to derive the boundary of all coefficients which 

can meet the specification and searches coefficients within the boundary. The search method 

is the B&B that finds a better solution by first generating a look-up table containing all the 

possible subexpressions for a given wordlength and a given maximum number of adders per 

coefficient. It just considers the individual cost of each coefficient when generating the 

look-up table, so it possibly loses the better solutions.  

In [5], the work formulates the problem as a 0-1 integer linear programming to minimize 

the number of adders. The formulation comprehensively considers the subexpression of each 

coefficient, but it needs a large number of variables to decide which coefficients and 

subexpressions are used, so it is very time consuming. 
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In [9], the work proposes a local search method and uses a common-subexpression-based 

method to account for the sharable adders. The canonical signed digit (CSD) representation is 

used. Although the representation can represent the coefficient with a minimum number of 

non-zero bits, it does not guarantee having the fewer number of adders than other 

representations.  

In [6], the work uses the B&B search method in the boundary for each coefficient and 

proposes a cost estimation to minimize the number of adders. The cost estimation simply 

computes the required number of adders for generating a new coefficient by adding or shifting 

the integers in the subexpression basis set which is dynamically expanded during the search 

process. The experimental results show that the total number of adders in FIR design is fewer 

than other previous works under the same filter specification.  

 It is apparent that the scheme of first identifying a boundary and then performing a B&B 

search is widely adopted in coefficient decision as shown in [4][6]. The boundary 

computation can reduce the search space because we just need to search within the boundary 

of each coefficient. The B&B search strategy can eliminate invalid searches based on the filter 

specification and the total adder cost. We also adopt this B&B search and the boundary 

computation in our algorithm. 
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Chapter 3              

Motivation 

 

3.1  Right-Shifter in MCM 
    In the previous works [4-6][9], after the wordlength (WL) is decided, the value of every 

coefficient must be an integer ranging from 2
WL

 to 2
WL
1 since an MCM block consists of 

adders and left-shifters only. For example, if the given wordlength is 10-bit, the value of each 

coefficient must be an integer between 1024 and 1023. However, we can reverse the sign of 

coefficients by replacing the structural adders by subtractors, so the range of coefficients is 

actually -1024~1024. If we consider the right-shifter, we can select the non-integers as the 

coefficients in certain range. For example, assume that the input data is x and 2.5 is the 

coefficient which we select, that is, the operation 2.5 * x is needed to be computed. This 

constant multiplication can be computed as ( 5 * x ) >> 1. Applying the right-shift operation, 

we can select the non-integer 2.5 as the coefficient.  

An example is given here. Assume the input data is x, and we select two coefficients, “3” 

and “20”, for the given filter specification without right-shifter operation. The architecture is 

shown as Fig. 3(a), and it needs two adders. However, we can select the non-integer as the 

coefficient with the right-shifter operation. Assume that the coefficient “3” can be replaced by 

“2.5” and the set of coefficients still satisfies the filter specification. In this case, an adder can 

be replaced by a shifter, and the modified architecture is shown as Fig. 3(b). One adder can be 

saved to reduce the cost.  

In another similar case, assume that there is no integer which satisfies the specification 

when determining the second coefficient. The previous works will return “no solution” in this 

case. However, with the right-shift operation, we can select “2.5” if it can satisfy the 
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specification and thus a solution is available. In this way, applying right-shift can make it 

easier to find a feasible solution. 

(a) (b)

x

+ +

3·x 20·x

<<2<<1

<<2

+

20·x

<<2

<<2

x

2.5·x

>>1

 

Fig. 3 Example of cost reduction 

 

3.2  Heuristic Pruning Condition 
After applying right-shift operation, the search space of coefficient sets is expanded and 

thus requires more time to find an exact solution from it. Similarly, the search space grows 

exponentially to the wordlength, thus in the previous works the wordlength can only be set to 

a value such that the run time is acceptable. 

In this thesis, we introduce a heuristic pruning condition during the B&B search to 

reduce the run time. This heuristic pruning is based on the ripple of the frequency response, 

which implies the quality of current coefficient set. If the ripple is too large during B&B 

search, it hardly can find a feasible solution.  

Applying the heuristic pruning may miss the best solution when searching in the design 

space. However, the run time is greatly reduced and thus it allows us to expand the search 

space. We found that in most cases searching heuristically in a larger design space is more 

effective than finding an exact solution in a smaller design space. Thus we apply this heuristic 

pruning in our algorithm. 
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3.3  Lower Bound Analysis 

 In order to illustrate that the right-shifter is beneficial for cost reduction, we compare the 

lower bounds of the number of adders between the design with and without right-shifters. The 

method for computing the lower bound will be explained in Section 4.6, and we just show the 

results here. Table I lists ten filters and their lower bound with and without right-shifters. The 

ten filters are randomly generated and their numbers of taps are lower, because the runtime of 

computing the lower bound is very long, and the higher-tap filter leads to longer runtime. 

Table I can show that the right-shifter is actually beneficial for cost reduction. However, the 

improvement is not large because the number of taps is small. 

 

Table I The comparison for lower bound 

Filter Tap LB without right-shifters LB with right-shifters 

M1  24  31  28  

M2  23  28  26  

M3  22  25  24  

M4  24  28  27  

M5  24  26  26  

M6  23  31  30  

M7  23  22  22  

M8  22  26  24  

M9  24  28  26  

M10  24  26  25  
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3.4  Problem Formulation 

    In this thesis, we address the problem of the linear phase FIR filter design based on the 

MCM architecture. We are given: 

 the wordlength of coefficients 

 the specification of FIR filter: p , 
s , p  and 

s  
 

Our goal is to generate a set of coefficients and minimize the total number of structural 

adders (SA) and multiplier block adders (MBA) for the FIR filter design under the given filter 

specification constraint.   
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Chapter 4                    

Our Proposed Method 

 
In this chapter, we propose an algorithm to determine coefficients for a specified linear 

phase FIR filter design. The target of our algorithm is to minimize the number of adders as the 

FIR filter is implemented through MCM. Besides, our algorithm allows the use of right shift 

operations in the MCM block to further expand the design space. Our method efficiently uses 

the B&B search to find a set of coefficients which has lower cost and satisfies the 

specification. The method uses the lower bound of MCM problem to estimate the cost and 

applies a heuristic bound condition in the B&B search. 

 

4.1  Search of The Solutions 
 To find the set of coefficients which satisfy the specification and require fewer adders, 

we use the B&B algorithm same as the previous work [6]. In this previous work, they 

determine the coefficients from the smallest coefficient to the largest coefficient, that is, h0, 

h1, … , hM in (2.1), because the larger coefficient can be composed of the smaller coefficients 

by adders and left-shifters. However, we use the right-shift operation, so we determine the 

coefficients in the reverse order. The reason is that the smaller coefficients can be derived by 

right-shifting of the larger coefficients. Fig. 4 shows the B&B tree of the 5-tap FIR filter. The 

coefficients are determined in the corresponding level, where each edge represents one 

decision of the coefficient, and each path represents one set of coefficients. For example, the 

Path 1 is a set of coefficients that contains h0 = 2, h1 = 4, and h2 = 7. Of course, we have some 

pruning conditions to reduce the search time, and it is discussed in the following section.  
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… … 

… … … 

Level 0 : h2

Level 1 : h1

Level 2 : h0

Leaf : solution

7

4

2 3

Path 1

Pruning Lines

 

Fig. 4 The B&B tree of the Type I 5-tap FIR filter 

 

4.2  Boundary Computation 

    Assume that the given wordlength of coefficients is WL, so the coefficients can be 

selected between – 2
WL

 and 2
WL

. The search space of B&B is very large. In order to reduce the 

search space, it is needed to reduce the range of coefficients. In the FIR filter design, the set of 

coefficients is not unique for the same filter design specification, but we can compute the 

boundary for each coefficient according to the specification. The boundary means that the 

coefficients outside the boundary never satisfy the filter specification. By computing the 

boundary, we can reduce the search space and the runtime.  

 

4.2.1 Linear Programming Formulation 

To determine the boundary of the coefficient kh , we formulate a linear programming 

(LP) model, and the formulation is written as 
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minimize: 

subject to: 1 ( ) / 1   for [0, ]

                   ( ) /        for [ , ]

                  

                  2 2                  for i=0,1,...,        

k

p p p

s s s

l u

WL WL

i

h

H

H

h M

     

      

  

    

   

 

  

                     (4.1) 

where ( )H   are introduced in (2.1), the specification constraint is the same as (2.2), and l , 

u  are two constants which specify the lower bound and the upper bound of  , respectively. 

Using (4.1), we can derive the lower bound of kh . To derive the upper bound of kh , replace 

minimize by maximize in (4.1). Using this LP model, we can derive the boundary of each 

coefficient. Eventually, we use LP solver, named gurobi [15] to solve this LP problem. 

 

4.2.2 The Selection of βl and βu 

Assume the largest coefficient is Mh , where M is the same as (2.1). First, set l  and 

u  as unity and compute the lower bound of Mh , denoted as ( )M lowh . Secondly, set 
u  as 

( )2 /WL

M lowh  because the maximum of the coefficient is 2WL  in this design with the 

wordlength WL. For FIR filter design in binary arithmetic, the lower bound of   is 

unnecessary to be smaller than half of the upper bound [7], so l  is set as / 2u . 

 

4.3  Cost Function and Zero-Crossing-Coefficient 

Fig. 1(b) shows an N-tap FIR filter architecture with MCM, and the adders can be 

classified into SAs and MBAs. The goal of our work is minimizing the total number of adders 

which include SAs and MBAs. Assume that the number of SAs and MBAs are NSA and NMBA, 

respectively. The cost function can be written as NSA + NMBA. The SAs are used to sum up the 

outputs of MCM, so NSA is related to the number of coefficients, that is, NSA = Tap – 1, where 
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Tap is the number of coefficients. However, if there is one coefficient whose value is zero, the 

output of corresponding multiplication must be zero no matter what the multiplicand is. 

Therefore, the corresponding adders can be removed. Besides, the linear phase FIR 

coefficients are symmetric, so we can save two adders when one coefficient is fixed to zero. 

Thus, the cost function can be further written as NMBA + Tap – 1 – 2*Nzero, where Nzero is the 

number of the coefficients which equal to zero. Then, the cost function can be simplified as 

NMBA – 2*Nzero, because Tap – 1 is constant.  

In order to reduce the cost, Nzero should be as large as possible. Therefore, we determine 

the zero-crossing-coefficients (ZCC) at first, and then the B&B search will determine the 

remaining coefficients. The ZCC means that the boundary of the coefficient is crossing zero. 

Moreover, the set of ZCCs which has more number of zeros are searched at first. For example, 

assume that the feasible boundaries of 0h , 1h  and 2h  include zero. At first, three ZCCs are 

fixed to zero, that is, { 0h , 1h , 2h  }. Then, two ZCCs are fixed to zero, that is, { 0h , 1h  } 

or { 1h , 2h  } or { 0h , 2h  }. Then, one ZCC is fixed to zero, that is, { 0h  } or { 1h  } or 

{ 2h  }. Finally, no coefficient is fixed to zero.  

 

4.4  Algorithm Flow 

Fig. 5 shows the algorithm flow. First, the algorithm computes the boundary of each 

coefficient according to the given specification. After this step, we can just search the 

coefficients within the corresponding boundaries. Secondly, the algorithm uses the B&B 

search to determine the coefficients. An important characteristic of the B&B search is that 

finding a good solution as soon as possible will result in earlier bound, and can reduce the 

runtime. Therefore, we create an iteration loop above the B&B search such that we can fix the 

ZCCs to zero first. In this iteration loop, we first set Nzero as the number of ZCCs and fix Nzero 
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ZCCs to zero. Then we use the B&B search to determine the remaining coefficients. Making 

more ZCCs to zero can save more SAs. However, it may cause the B&B search fail to find a 

feasible solution. If failed, we will reduce the Nzero. This loop continues until all combination 

of ZCCs will be tried or a feasible solution is obtained. 

 The main stage of this algorithm is the B&B search. In this stage, the algorithm 

determines the remaining coefficients by the B&B search. This thesis proposes a B&B search 

strategy, and it is introduced in Section 4.5.  

 

Specification

1. Feasible boundary computation

2. Find zero-crossing-coefficients (ZCC)

Nzero = #ZCC

Fix Nzero ZCCs to zero

B&B search:

Determine the remaining coefficients

Success?

Output the architecture of the filter

Nzero = Nzero - 1

Iteration loop

N

Y

 

Fig. 5 The algorithm flow 
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4.5  Branch and Bound Search 

 After fixing the ZCCs to zero, we will determine the remaining coefficients by the B&B 

search. In this section, we introduce the B&B search strategy to make the solution exploration 

in that expanded design space more efficiently and effectively. 

 

4.5.1 Decision Flow 

Applying the B&B search method, we need to do the coefficient decision in each node 

on the B&B tree. Fig. 6 shows the coefficient decision flow. Assume that the coefficient hk+1 

is already determined, and the coefficient hk will be determined this time. If k is equal to -1, 

the program already reaches the leaves of the B&B tree, so a satisfied set of coefficients is 

found. Then, we can record the result and go back to fix hk+1 to another candidate. If k is not 

equal to -1, the program will execute the following steps. Step 1, determine the candidate set, 

denoted as C, containing some values within the boundary of the coefficient hk. Step 2, 

compute LB and RIPPLE for each candidate, which are used to determine the priority of 

search. Step 3, fix hk to some value which belongs to C, and the priority is by ascending LB. 

When LBs are equivalent, the priority is by ascending RIPPLE. Step 4, check the pruning 

conditions. The path is pruned when matching the pruning conditions. The Step 5, if the 

pruning conditions are all not matched, the program goes to the decision of hk-1. Else, go back 

to Step 4 to fix hk to another candidate until try all candidates which belongs to C. When all 

candidates have been tried, if k does not equal to M, the program will go back to fix hk+1 to 

another candidate. If k equals to M, which means that the whole branch tree has been searched, 

the program is finished.  
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Y

N
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Y

N

Y

k = M?
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Y
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Fig. 6 The decision flow 

 

4.5.2 Candidate Selection 

 In this section, we explain about Step 2 in Fig. 6. The goal of Step 2 is determining the 

candidate set of the coefficient hk. In Step 4, hk will be fixed to each value in the candidate set 

in the certain order which was introduced in Section 4.5.1.  

We will select values within the boundary of hk as the candidates, because the values 

outside the boundary never satisfy the specification. However, the actual boundary of 



 

20 
 

coefficient is much tighter than the initial boundary when more and more coefficients are 

fixed. Thus, if we want to derive the actual boundary, we must recompute the boundary by 

running the LP solver. In [6], a method is proposed to search the values without unnecessary 

LP runs, and we also adopt this method. 

In order to reduce the number of running LP solver, we do not recompute the feasible 

boundaries of coefficients but compute them in the beginning just once when no coefficient is 

fixed. That is to say, use the LP model as (4.1) to compute the initial feasible boundaries of 

coefficients. The actual boundary of coefficient is much tighter than the initial boundary, so it 

is necessary to check whether a set of coefficients is satisfied. This problem can be solve by 

using a LP model as 

 

minimize: 

subject to: ( )                           for [0, ]

                ( ) / ( ) ( ) /        for [ , ]
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l u

WL WL

i

H

H

h

  

      
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 
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     

 

                              for each  is unfixed

                                                                    for each  is fixed

i

i i i

h

h f h

          (4.3). 

The model is proposed in [6].   is the pass-band ripple, and p  is the maximum allowable 

pass-band ripple. Therefore, if the objective function p     is larger than 0, it means that 

no feasible solution satisfying the specification is available. Applying this LP model, we can 

check the satisfaction and avoid the unnecessary LP runs in the candidates selection.  

The candidates of a coefficient consist of two types. The first type candidates are integer 

values within the coefficient boundary as in previous works. The second type candidates are 

non-integer values which can be derived from the former determined coefficients by the 

right-shift operation. Note that the right-shift operation is just applied at the output of the 

MCM block, because we derive non-integer values by right-shifting the existent coefficients. 

The right-shift operation may result in truncation error because of the non-integer property. 
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Extra fractional bits are required if no truncation error allowed. However, in the FIR filter 

design, the right-shift operation may be feasible, because the architecture of the FIR filter 

needs a series of adders to sum up the outputs of MCM that is shown as the SA of Fig. 1(b). 

The series of adders usually lead to the truncation error because the sizes of adders are not 

increased stage by stage in order to reduce hardware cost. Moreover, in fixed-point arithmetic, 

keeping all less-significant-bits after a multiplication is not necessary because of the 

quantization error already existed in input signals. Thus according to the output error 

requirement, a truncation procedure is often required to reduce area as shown in [13]. If such 

procedure is applied, the truncation error problem implied by right-shift operation can be 

tolerated or considered on the quantization problem of the FIR filter design.  

The pseudo code of candidates selection (CS) is as follows. 

 

CS ( ubk, lbk, FC, x ) 

1 C1=Ø ; 

2 C2=Ø ; 

3 for v from x    to lbk, v is an integer 

4   hk = v; 

5   if ( LP (FC) ≤ 0 ) 

6     add v to C1; 

7   else 

8     break; 

9 for v from x    to ubk, v is an integer 

10   hk = v; 

11   if ( LP (FC) ≤ 0 ) 

12     add v to C1; 

13   else 

14     break; 

15 foreach v  FC 

16   while ( v ≥ lbk ) 

17     if ( v ≤ ubk ) 

18       hk = v; 

19       if ( LP (FC) < 0 ) 

20         add v to C2; 

21     v = v / 2; 

22 return C1∪C2 

End 
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Note that ubk, lbk are the initial upper bound and the initial lower bound of hk, 

respectively. And FC is the fixed coefficient set containing the coefficients which are already 

fixed. The x is a value which must satisfy the specification, and it can be derived when the LP 

runs for hk+1. In line 1 and line 2, the integral candidate set C1 and non-integral candidate set 

C2 are empty initially. Two for loop in line 3 to line 14 add the integers which satisfy the 

specification to C1. The first for loop in line 3 to line 8 searches the integers and checks the 

specification in one direction towards the initial lower bound or until unsatisfied; and the 

second for loop in line 9 to line 14 searches the integers and checks the specification in the 

other direction towards the initial upper bound or until unsatisfied. The third for loop in line 

15 to line 21 searches the non-integers in the initial boundary. If the non-integer can satisfy 

the specification and be derived from the former determined coefficients by the right-shift 

operation, we add it to C2. The last line 22 returns the union of C1 and C2 as the candidate set. 

The search space is already very large even if the non-integer is not considered. In order 

to control the non-integral search space, we define a parameter L. We restrict the number of 

bits after binary point within L. Therefore, we can control the non-integral search space by 

modulating L. The experimental results show the performances with different L in Section 5.1. 

 

4.5.3 LB and RIPPLE Computation 

 In this section, we explain the Step 2 in Fig. 6. The search space of B&B is very large. In 

order to speed up the search process, it is better to find a set of coefficients which satisfies the 

specification and has the low cost as soon as possible, so that the search could be early 

bounded. For this reason, we define two variables for each candidate in the candidate set, and 

we determine the search priority according to the two variables. The first one is LB, and it 

estimates the number of adders which is needed when fixing kh  to some candidate. The 

second one is RIPPLE, and it represents the quality of a candidate. 
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In order to reduce the time of cost computation, we use the lower bound of MCM design 

to estimate the number of adders. In [8], the lower bound of the number of adders for MCM 

design is proposed as 

1

2
0

min{ log ( ) } 1 
N

i
i

LB S C N



                                         (4.4) 

where Ci are positive odd unique coefficients, N is the number of coefficients, and S(Ci) is the 

minimal number of non-zero bits of Ci. We compute the LB for each candidate in the 

candidate set by (4.4), and the pseudo code is as follows. 

 

LB_Compute(CS, FC) 

1. foreach v  CS 

2.   C = FC; 

3.   add v to C; 

4.   lb = Lower_Bound(C); 

5.   if ( lb > BEST_LB ) 

6.     remove v from CS; 

7.   else 

8.     LB [v] = lb 

9. return LB 

End  

 

 Note that, CS is the candidate set, and FC is the fixed coefficient set. In line 1 to line 8, 

the program computes the lower bound for each candidate which is in the candidate set. In 

line 5 and line 6, the program removes the candidate whose LB are not smaller than BEST_LB, 

because it is very possible that the candidates result in worse cost than the best solution. In 

order to reduce the search space, we remove them from the candidate set. The BEST_LB is the 

minimal lower bound among the solutions which were already found. 

 In the candidate selection, we solve the LP model (4.3) to check the satisfaction, and the 

pass-band ripple δ actually can represent the quality of a set of coefficients. Because the 

smaller ripple means that it is more flexible to select the unfixed coefficients under the 

specification constraint. Therefore, we compute the RIPPLE for each candidate in the 
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candidate set by deriving the pass-band ripple in (4.3). Because the   may be different for 

each candidate, we need to normalize the pass-band ripple as 

 /RIPPLE                                                   (4.5). 

The RIPPLE for each candidate can be recorded when the LP model is solved in the candidate 

selection, so no additional computation is needed.  

 

4.5.4 Pruning Conditions 

 In this section, we introduce the pruning conditions of the B&B search. The pruning 

conditions are classified to two types: deterministic condition and heuristic condition. The 

deterministic condition means that it does not obstruct the obtainment of the best solution in 

the B&B search. On the contrary, the heuristic condition may lead to the loss of the 

performance, but it can reduce the search time. In our method, there are one deterministic 

condition: specification pruning condition, and two heuristic conditions: LB pruning 

condition and ripple pruning condition.  

 The specification pruning condition means that the set of fixed coefficients is unsatisfied 

even if we have not fixed all other coefficients yet. Since it is unsatisfied, this path is pruned. 

In fact, this condition check was done in the candidate selection, because we only add the 

values which satisfy the specification to the candidate set.  

The LB pruning condition means that the lower bound of the number of adders for the 

fixed coefficients is not smaller than the minimal lower bound among the solutions which 

were already found. Actually, this condition check was done in the LB computation.  

The ripple pruning condition means that the RIPPLE of the candidate is larger than 

RIPPLE_Threshold which is a dynamic value for each coefficient. We estimate that there is 

no satisfied solution after fixing a coefficient to a candidate which matches the ripple 

condition. The pseudo code of the B&B search is as follow, and it contains the ripple pruning. 
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Initial: RIPPLE_Threshold [i] = 0, for i = 0 ~ M 

BandB ( k, CB, RIPPLE_Threshold )  

1. if ( k == -1 )  

2.    record the solution;  

3.    return TRUE;  

4. C = CS (CB);                     //candidates selection  

5. {LB, RIPPLE} = LandR ();         //LB and RIPPLE computation  

6. success = FALSE;  

7. foreach v  C by ascending LB and ascending RIPPLE  

8.    if ( RIPPLE[v] < RIPPLE_Threshold [k] )  

9.       success = TRUE; 

10.       hk = v; 

11.       s = BandB(k-1, CB, RIPPLE_Threshold);  

12.       if ( s == FALSE) 

13.         RIPPLE_Threshold [k] = RIPPLE[v]; 

14. return success;  

End  

 

The pseudo code is recursive, and the RIPPLE_Threshold for each hi is initially set as 

infinity. Line 1 to line 3 is the terminal condition. Line 4 is the candidates selection, and line 5 

is the LB and RIPPLE computation. Line 7 to line 13 fixes the coefficient hk to each candidate 

and dynamically changes RIPPLE_Threshold. When determining a coefficient hk, if a 

candidate of hk failed to find any feasible solution, its RIPPLE will be recorded as the 

RIPPLE_Threshold of hk. Later in the search, when the RIPPLE of any candidate of hk is 

larger than the RIPPLE_Threshold of hk, that branch will be pruned heuristically. The reason 

is that we estimate that there may be no satisfied solution if the RIPPLE of a candidate is 

larger than the RIPPLE_Threshold. 

Applying the two heuristic pruning conditions may lose the best solution in the design 

space. However, the run time is greatly reduced and thus allowing us to expand the search 

space. We found that in most cases searching heuristically in a larger design space is more 

effective than finding an exact solution in a smaller design space. Thus we apply these 

heuristic pruning conditions in our method. 
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4.5.5 Solution Record 

 When k = -1 in Fig. 6, it means that the program has reached the leaves of the B&B tree. 

Therefore, we have a satisfied set of coefficients, and we can compute the real number of 

adders for this coefficient set. In the Section 4.3, we already explain that the cost function is 

NMBA – 2*Nzero. In this step, we use Hcub [1], which is a graph-based MCM algorithm, to 

compute NMBA for this set of coefficients. The best solution of coefficient sets is kept until the 

B&B tree is thoroughly searched and the filter architecture is obtained. The flow of solution 

record is shown in Fig. 7. 

 

LB <= BEST_LB ?

BEST_LB = LB 

Compute NMBA by Hcub

NMBA < 

BEST_NMBA ?

BEST_NMBA = NMBA 

Record the set of coefficients

N

Y

N

Y

 

Fig. 7 The flow of solution record 
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Fig. 8 The example of B&B search 

 

4.5.6 The Example of B&B Search 

In Fig. 8, we present an example showing how the B&B search works. This is a 5-tap 

linear phase filter, with 3 coefficients h2, h1 and h0. The h1 is a ZCC and we decide to fix it to 

zero in the iteration loop. Thus in the B&B search, h1 will be locked to zero and only h2 and 

h0 will be determined. 

Firstly, we consider h2 because it is the largest coefficient. This is the first coefficient and 

only integer candidates are available. According to its boundary, the three available candidates 

are “9”, “10” and “11”. Then we will compute the LB and RIPPLE of them, the values are 

shown in Fig. 8. Note that the RIPPLE is computed with h1 being fixed to zero. Then we will 

decide the priority of these candidates. According to the LB value, candidate “9” and “10” has 

higher priority. And then according to the RIPPLE we decide to branch on candidate “9” first. 

Because the h1 is fixed to zero, only one branch is allowed in the h1-level. Then we go to 

the next level to determine h0. Here we have two candidates, “5” is an integer and “4.5” is a 

non-integer by right-shifting “9”. These two candidates can generate two leaves L0 and L1. 
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The path reaching L0 has smaller cost, so we record it as the currently best solution. 

Now the branch of N10 is finished, so we go to the next candidate “10”. When go down 

to h0 at N01, we found that there is no candidate available. That means this branch is pruned 

by the specification pruning condition. 

Later in the third candidate “11”, the LB of “11” is 2, which is larger the LB of the 

currently best solution and is pruned by the cost pruning condition. Now the whole B&B tree 

is searched, and the path reaching L0 is the best solution, that is, “9”, “0”, and “4.5”. 

 

4.6  Lower Bound Computation 

 In order to tabulate Table I for illustrating the benefit of right-shifters, we need to 

compute the lower bound of the number of adders for the filter design under the specification 

constraint. The method is almost the same as our method excluding the ripple condition and 

the cost computation by Hcub, because the ripple condition possibly leads to the loss of the 

real lower bound. Finally, the BEST_LB which is introduced in Section 4.5.5 is the lower 

bound of the number of adders for the filter design under the specification constraint. Without 

the ripple condition, the runtime will significantly increase, and this is the reason that the 

analysis restricts the low-tap filters.  
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Chapter 5                    

Experimental Results 
 

 In this chapter, three case studies are given to demonstrate the improvement of our 

algorithm. In Case Study I, the experimental results show the performances with different L. 

In Case Study II, eight filter cases in [6] are designed by using our algorithm, and the results 

are compared with the reported results of the best published work [6]. In Case Study III, we 

implement the algorithm in [6] and generate 8 filter specifications with different taps. The 8 

filter cases are designed by using our algorithm, and the results are compared with the results 

by the algorithm in [6]. In this work, the algorithm is developed in C++/Linux environment, 

and the platform is built in Intel Xeon at 2.53GHz with 50GB of main memory. 

 Table II illustrates 8 filter specifications which are from [6]. In Table II, ωp, ωs, δp, δs  

are the end of the pass-band, the beginning of the stop-band, the maximum allowable 

pass-band ripple and the maximum allowable stop-band ripple, respectively. 

 

Table II The specification of filter cases from [6] 

Filter Tap ωp ωs 
 δp δs 

X1 15 0.2π  0.8π  0.0001 0.0001 

G1 16 0.2π  0.5π  0.001 0.001 

S1 24 0.3π  0.5π  0.0157 0.0066 

Y1 30 0.3π  0.5π  0.00316 0.00316 

Y2 38 0.3π  0.5π  0.001 0.001 

A1 59 0.125π  0.225π  0.01 0.001 

S2 60 0.042π  0.14π  0.012 0.001 

L2 63 0.2π  0.28π  0.028 0.001 
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5.1  Case Study I 
 In this case study, we compare the results with different L. Y2 and S2 are the test cases, 

and their specifications are listed in Table II. In Table III, the FLB is the lower bound of the 

number of adders for the filter design, and the Total #adders is the total number of adders for 

the filter design by our algorithm. The experimental results show that the large L can reduce 

the total number of adders and the runtime do not increase with L. That reason is that the 

larger L means the larger search space, so it is more possible to find a better solution earlier. 

Therefore, the search can be bounded earlier, and the runtime can be reduced. 

 From this case study, we can know the larger L is better, so we set L as same as the 

wordlength of the coefficients in the following case studies.  

 

Table III The analysis for L in Y2 and S2 

Y2 S2 

L FLB Total #adders Runtime L Total #adders Runtime 

1 39 39 4m49s  1 74 18m27s  

2 38 39 5m30s  2 74 22m50s  

3 37 38 4m35s  3 74 27m34s  

4 37 38 4m47s  4 73 27m56s  

5 37 38 4m53s  5 73 28m21s  

6 37 38 4m54s  6 73 29m30s  

7 36 38 4m53s  7 72 26m31s  

8 36 38 4m54s  8 72 26m14s  

9 36 38 4m53s  9 72 26m36s  

10 36 38 4m54s  10 72 26m40s  
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5.2  Case Study II 
 In this case study, there are 8 filters from [6], and their specifications are listed in Table 

II. In [6], the experimental results show that their results are better than the best published 

ones, so ours work is only compared with them. The design results of our algorithm and [6] 

are listed in Table IV for comparison. Tap is the number of coefficients, and WL is the 

wordlength of the coefficients excluding the sign bit. MBA is the number of multiplier block 

adders, SA is the number of structural adders, and Total is the total number of adders. In 

Table IV, the performances of ours and [6] are similar in the lower-tap filters. However, in the 

higher-tap filters, the performances of ours are better, and the runtime of ours are shorter. 

 

Table IV The results and comparisons for cases from [6] 

Filter Tap WL 
[6] 

MBA / SA / Total 

Ours 

MBA / SA / Total 

Runtime 

[6] / Ours 

X1 15 10 5 / 8 13 5 / 8 13 1s / 5s  

G1 16 

6 2 / 15 / 17 2 / 13 / 15 1s / 1s  

7 2 / 13 / 15 2 / 13 / 15 1s / 1s  

S1 24 7 4 / 19 / 23 4 / 19 / 23 1s / 3s  

Y1 30 

9 7 / 23 / 30 6 / 23 / 29 6s / 1m20s  

10 6 / 23 / 29 6 / 23 / 29 5m9s / 4m2s  

Y2 38 

10 10 / 37 / 47 9 / 29 / 38 11s / 4m53s  

11 10 / 27 / 37 10 / 27 / 37 40m46s / 2h31m  

A1 59 10 14 / 54 / 68  14 / 52 / 66 50h34m / 3h24m  

S2 60 10 17 / 59 / 76 15 / 57 / 72 16h42m / 24m18s  

L2 63 10 17 / 56 / 73 13 / 56 / 69 16h28m / 8h47m  
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5.3  Case Study III 
In order to compare the results of the filters with different taps, we generate 8 filters, and 

the taps of these filters are from 39 to 89. Table V illustrates the 8 specifications of the filters. 

Similarly, p , 
s , p  and 

s  are the end of the pass-band, the beginning of the stop-band, 

the maximum allowable pass-band ripple and the maximum allowable stop-band ripple, 

respectively. The design results of our algorithm and [6] are listed in Table VI for comparison. 

In this case study, WL is always set as 10. In Table VI, the Tap is the minimal tap that a 

feasible solution can be found in the corresponding algorithm. The Improvement is derived 

by ( [6] - Ours ) / ours. The experimental results show that our improvement can be up to 

30.6% and on average 13.8% in the number of adders. Note that the improvements are lower 

in the higher-tap filters. The reason is that there are more adders in SAs which dominate the 

total number of adders, and the number of adders in SAs can only be reduced by selecting the 

ZCCs. 

 

Table V The specification of filter cases  

Filter p  
s  p  

s  

T1  0.24π  0.43π  0.001  0.001  

T2  0.32π  0.51π  0.001  0.001  

T3  0.18π  0.3π  0.01  0.001  

T4  0.24π  0.38π  0.0012  0.001  

T5  0.28π  0.38π  0.01  0.001  

T6  0.24π  0.34π  0.003  0.001  

T7  0.08π  0.18π  0.001  0.0005  

T8  0.04π  0.1π  0.02  0.001  
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Table VI The results and comparisons for the cases  

Filter 

Tap [6] Ours Improvement (%) Runtime 

[6]  ours  MBA  SA  Total  MBA  SA  Total  MBA  SA  Total  [6]  ours  

T1  40  39  10  39  49  8  26  34  20.0  33.3  30.6  3m9s  3m31s  

T2  41  38  14  38  52  10  35  45  28.6  7.9  13.5  20s  1m38s  

T3  48  48  18  47  65  13  45  58  27.8  4.3  10.8  4m36s  12m53s  

T4  52  50  14  51  65  12  45  57  14.3  11.8  12.3  3m8s  10m24s  

T5  56  56  18  55  73  12  51  63  33.3  7.3  13.7  18m28s  14m41s  

T6  67  62  19  62  81  14  59  73  26.3  4.8  9.9  27m33s  29m12s  

T7  78  75  23  77  100  17  72  89  26.0  6.5  11.0  4h35m  44m31s  

T8  89  89  31  86  117  21  86  107  32.3  0.0  8.5  > 48h  3h3m  

Avg.  26.1 9.5 13.8  

 

Fig. 9 shows the runtimes for the 8 filters with sorted order by the taps of filters. Note 

that the runtime of [6] in case T8 is more than 48 hours, and the best solution in the 

incomplete search is reported. It can obviously illustrate that the runtime of [6] significantly 

increases with the tap of the filter but ours do not.  

 

 

Fig. 9 Runtime for the filters with different tap 
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5.4  Design Example 
 In Table VII and Table VIII, we list the results of L2 and T5 by applying our algorithm. 

These results include the coefficients and the implementations of coefficients. First, we use 

adders, subtractors and left-shifters to design the basic subexpressions. Then, we implement 

the coefficients by left-shifting or right-shifting the basic subexpressions. Note that, we only 

construct the absolute value of coefficients in the MCM block. The negative coefficients are 

implemented by replacing the corresponding SAs by subtractors, so it is unnecessary to use 

negations. 

Table VII The results of L2  

Filter: L2 

h(n) = h(62 – n) for 0 ≤ n ≤ 30 

Pass-band gain: 4463.44 

h(0) = 2.078125 

h(1) = 4.75 

h(2) = 6.71875 

h(3) = 5.625 

h(4) = 0 

h(5) = – 9.5 

h(6) = – 19 

h(7) = – 23 

h(8) = – 16.625 

h(9) = 0 

h(10) = 22.5 

h(11) = 41 

h(12) = 43.375 

h(13) = 24 

h(14) = – 10.84375 

h(15) = – 46 

133 >> 6 

19 >> 2 

215 >> 5 

45 >> 3 

 

– ( 19 >> 1 ) 

– 19 

– 23 

– ( 133 >> 3 ) 

 

– ( 45 >> 1 ) 

41 

347 >> 3 

3 << 3 

– ( 347 >> 5 ) 

– ( 23 << 2 ) 

h(16) = – 64 

h(17) = – 48 

h(18) = 0 

h(19) = 61 

h(20) = 103 

h(21) = 96 

h(22) = 29.1875 

h(23) = – 79 

h(24) = – 180 

h(25) = – 215 

h(26) = – 133 

h(27) = 76 

h(28) = 377 

h(29) = 694 

h(30) = 934 

h(31) = 1024 

– ( 1 << 6 ) 

– ( 3 << 4 ) 

 

61 

103 

3 << 5 

467 >> 4 

– 79 

– ( 45 << 2 ) 

– 215 

– 133 

19 << 2 

377 

347 << 1 

467 << 1 

1 << 10 

Basic subexpressions 

3 = 1<<2 – 1 

19 = 1<<4 + 3 

23 = 3<<3 – 1 

45 = 3<<4 – 3 

61 = 1<<6 – 3 

41 = 1<<6 – 23 

79 = 3 + 19<<2 

103 = 61<<1 – 19 

133 = 19<<3 – 19 

215 = 3<<6 + 23 

467 = 1<<9 – 45 

347 = 19 + 41<<3 

377 = 467 – 45<<1 
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Table VIII The results of T5  

Filter: T5 

h(n) = h(55 – n) for 0 ≤ n ≤ 27 

Pass-band gain: 3310.29 

h(0) = 2 

h(1) = 2.875 

h(2) = 0 

h(3) = – 7.1875 

h(4) = – 13 

h(5) = – 9.25 

h(6) = 2.875 

h(7) = 16 

h(8) = 15 

h(9) = – 3.65625 

h(10) = – 26 

h(11) = – 27.625 

h(12) = 0 

h(13) = 37 

1 << 1 

23 >> 3 

 

– ( 115 >> 4 ) 

– 13  

– ( 37 >> 2 ) 

23 >> 3 

16 = 1 << 4 

15  

– ( 117 >> 5 ) 

– ( 13 << 2 ) 

– ( 221 >> 3 ) 
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h(14) = 45 

h(15) = 6.5 

h(16) = – 52 

h(17) = – 72 

h(18) = – 18 

h(19) = 76 

h(20) = 120 

h(21) = 46 

h(22) = – 115 

h(23) = – 221 

h(24) = – 117 

h(25) = 236 

h(26) = 698 

h(27) = 1024 

45  

13 >> 1 

13 << 2 

– ( 9 << 3 ) 

– ( 9 << 1 ) 

19 << 2 

15 << 3 

23 << 1 

– 115  

– 221 

– 117 

59 << 2 

349 << 1 

1 << 10 

Basic subexpressions 

9 = 1<<3 + 1 

15 = 1<<4 – 1 

13 = 1<<2 + 9 

19 = 1 + 9<<1 

23 = 1<<5 – 9 

37 = 1 + 9<<2 

45 = 9<<2 + 9 

59 = 15<<2 – 1 

115 = 1<<7 – 13 

117 = 59<<1 – 1 

221 = 13<<4 + 13 

349 = 23<<4 – 19 
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Chapter 6                    

Conclusions & Future Works 
 

 

 In this thesis, a design method of the FIR filter is proposed to minimize the total number 

of adders on the architecture of the FIR filter. This method is based on the B&B search and 

finds a set of coefficients which requires fewer adders to implement. Besides, this method 

utilizes the right-shifter in the MCM design. The utilizing of the right-shifter expands the 

search space to find a better solution. We also propose a heuristic pruning condition to make 

the solution search in larger design space. The heuristic pruning condition is based on the 

ripple of the frequency response and it can be used to effectively reduce the runtime and still 

maintain the better performance. 

 Compared to the best published work [6], our method can reduce up to 30.6% and on 

average 13.8% in the number of adders. Besides, the runtime of our method is not 

significantly increased with the tap of the filter as that of method proposed in [6].  

 In this thesis, we explained that the right-shifter may cause the truncation error. In the 

future, we can consider the truncation error from the right-shifter onto the quantization 

problem of the FIR filter design. 
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