AT Y Bl RJIEE L KGO SRR 2
o T EEES 2
An Architecture-Aware Thread Mapping Method-

ology for Fuzzy Neural Networks on GPGPUs

SRR By

R Y R R

SEHE TR AIEE RO R 2 R i
%’r\?’f& = éﬁ]ﬁt‘ R
An Architecture-Aware Thread Mapping

Methodology for Fuzzy Neural Networks on
GPGPUs

MyodiRiR Student : Hao-Yuan Tseng
pERE PR £L Advisor : Dr. Jing-Yang Jou

A Thesis
Submitted to Department of Electronics Engineering and
Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in

Electronics Engineering

September 2012

Hsinchu, Taiwan, Republic of China

SEVR- O & 4

"

R SRR FEE R
f . qﬁaﬁ’% 7§

ErEHE Y WA R E

ENR 1. hE¥E P RPEL

® &

WA S A SRR (FNN) LR MR * A BE Y R + > 4ok 3F - %ﬁ“g& B
SHE Y o 0 E AR A e R DR T R g - BRSO PR
Fol AR & 4e 0 F Y §ARRAREEF o o - OFNN T RGN R B b
A o L E A FNN TR heniaey 20 ol AT R RS BRFEY
@%#ﬁﬁwﬁﬁoﬁiﬁﬁé’ﬂWﬁmﬂ—% FEHESRFEpEET 2 (AT
30T 17 FNN ek 34 AR o ATM &7 b #Fr ek A e fEanfiin T 7 5 - B

gl (7 e 0 K TR Mg g o LR SRIA 0 St ko A ik qpit

An Architecture-Aware Thread Mapping Methodology for
Fuzzy Neural Networks on GPGPUs

Student : Hao-Yuan Tseng Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

ABSTRACT

The fuzzy neural network (FNN) is-extensively used in machine learning applications,
such as classifications. It uses structure and parameter learning phases to create a network
according to the correlation between. input training samples and network outputs. Since the
learning phases are getting more time consuming when number of input attributes of training
samples increases, some parallel FNN designs are proposed to speed up the learning
procedure. While designing an efficient parallel FNN, the thread mapping and the architecture
scalability should be taken into consideration to achieve efficient hardware utilization. In this
thesis, we present a parallel FNN design flow including architecture-aware thread mapping
(ATM) methodology. The proposed ATM efficiently utilizes the hardware resource on
GPGPUs by finding a good thread mapping using different training samples and architectures
with different characteristics. The experimental results show that our approach can achieve

significant performance improvement in some common cases as compared with the prior art.

II

Acknowledgements

| greatly appreciate my advisors Dr. Jing-Yang Jou. Not only did he made many beneficial
suggestions for me but also provide a resource-intensive environment. | am also really
thankful to Dr. Bo-Cheng Lai for his guidance, valuable suggestions, and encouragement
during these years. | would like to thank Hsien-Kai Kuo for his discussion and help on my
research. Specially thank to all member of EDA Lab for their friendship and company. Finally,

I would like to express my sincerely acknowledgements to my family and my friends for their

patient and support.

I

Contents

TSSOSO TE PSP TP POPPTRTPRTPPPRPRON I
AAB ST RA T ettt ettt et b e bt bt R bR bt bt b e bt e b e e b et Rb e e be e nbe e nhe e nae e b 1
ACKNOWIEAGEIMENTSecviiiticiecie sttt ettt et e s te e e st e e te e besbeessesbesseestesteeneesteateentenres I
(O3 P o] (=1 I oo [1Tod (o ISR 1
1.1 MACKING LBAMING ...c.viviiie ettt st st et e et e st e eseesbesre e besteesaesreeneenbenre s 1
1.2 FUZZY NEUFal NEIWOIKcviiiiiiecit ettt s be et s te et esbe e e sbeene e benre s 2
1.3 PAAIIE] FININ ..ot bbbt et n e e e 4
1.4 TNESIS OrQANIZATION ...ttt bbbttt b ettt n e 5
Chapter 2 Background & PreliMiNary ..o 6
2.1 GPGPU COMPULING ..vevieiiitiiie et sttt a e s reste e steesa e beste et e s beaseesbestaebesreentesteeneeseeates 6
2.1.1 FErmi ATCRITECTUIEviiitiiee bbb 7
2.1.2 CUDA Programming MOGEL ... ettt st sre e 8
2.2 The Self-Constructing Neural Fuzzy NetwWork (SONFINYccooviiiriniiiecce e 10
2.3 REIAIEA WOTK ... o sk 6kt btttk ettt n e 13
WAV R LA o] o S o e PSSP 15
Chapter 3 Our PropoSed ADPPIOACK i iecummastiansssa e veseeeeseesessessessessessessessessesesse e ssessessessensenes 17
3.1 BOttleneCK ANAIYSIS.o 18
3.2 GPGPU Partitioning..........cooiiiii e 20
3.3 Fine-Grain Task DecoOmMPOSItION.............oiiiii e, 22
3.4 Special Function Transformation & Memory Coalescing..............cccooveiieiiiiiiiiiiiiieen, 23
3.5 TASK COAISENING.e ittt e e e e e 25
3.6 Task to Thread Binding.............ooomiiiii e, 29
Chapter 4 EXPerimental RESUITS ..ottt st see e 31
4.1 EXPEriment ENVIFONMENT........ccoiiiiiiiiieiii ettt 31
4.2 Comparison between Different Optimizations.............oooiiiiiiiiii e 33
4.3 Discussion of Input Scalability.............ooiiiii i 34
4.4 Discussion of Architecture scalability...............coooiiiiii 41
4.5 Total RUNTIME. ... e 42
Chapter 5 Conclusions & FULUIE WOTKSooiiiieiice ettt st 44
RETEIENCES ...ttt h bbb bbbt n e 45

List of

Table | Kernel time with different number of rules

Table Il Kernel time of different number of dim....

Table I Total runtime............coooiiiii

Tables

List of Figures

Fig. 1 The structure of a three-layer fuzzy neural network................................ 3
Fig. 2 NVIDIA Fermi architeCture.................oo e 6
Fig. 3 CUDA programming model.................oo 8
Fig. 4 Device code and device fuNCtion Call..............ccccoueeiiiicccccs e 9
Fig. 5 Modified structure of the SONFIN.coooiiiiieeeee e, 10
Fig. 6 Flow chart of the SONFIN ..., 12
Fig. 7 Design flow of a parallel SONFIN ona GPGPU....................coooiiiiiiiiiiii i, 18
Fig. 8 Flow chart of the SONFIN ..., 19
Fig. 9 Pseudo code of (a) gaussian member function and (b) update parameter..................... 20
Fig. 10 GPGPU partitioning of the SONFIN ... oo e, 21
Fig. 11 Task Matrix of the SONFIN with3 dimand 3ruleS.........................oooiiiiiiiiiiiiei 22

Fig. 12 Coalesced memory access.(a) non-coalesced memory access. (b) coalesced memory

s (00 = JURRRNURRRIINE. £ 4 » === v '\ S 24
Fig. 13 Data layout of parallel SONFIN................ e 24
Fig. 14 Task COAISENING.ovieeee e 25

Fig. 15 Two schemes of task coarsening. (a) column-based coarsening. (b) row-based

COAISENING. e, 27
Fig. 16 TM t0 TH DINGING. ... 30
Fig. 17 Timing distribution for parallel SONFIN.................ooooii e 30
Fig. 18 Kernel time comparison between each optimizations.........................ccccooieeeeeiii, 32
Fig. 19 Kernel time comparison between GPU-FNN and our approach.............................. 36
Fig. 20 Kernel time trend of different number of rules......................oooooo 39
Fig. 21 Kernel time with three different architectures......................ccoooviiiiiiii 40

VI

Fig. 22 Kernel time of our approach using four different architectures

VII

Chapter 1

Introduction

1.1 Machine Learning

Machine learning is a popular technique over the past two decades, and it is applied to
many applications including weather forecast and image recognition. And many researchers
think it is the best way progress towards human-level Al (artificial intelligence). Machine
learning is so pervasive today that you probably use it many times a day without knowing it.
The most important feature of machine learning is the generalization, which lets a machine
learning algorithm be able to perform accurately on new, -unseen examples after training on a
data set. And this feature makes ‘machine learning so powerful and popular. Along with the
increasing requirement of machine automation, ‘machine learning will be widely used in
human’s daily life. Therefore, due to the potential of development of machine learning, many
approaches of machine learning have been proposed in the two decades: decision tree learning,
association rule learning, artificial neural networks, genetic programming and fuzzy neural
network. In this thesis, the fuzzy neural network is used because it takes advantages of
artificial neural network which employs the concept of neural network and fuzzy logic system

with human-like reasoning ability.

1.2 Fuzzy Neural Network

Fuzzy neural networks (FNNs) have been applied in many areas including classification
[1] and pattern recognition and so on. A fuzzy neural network is a hybrid system which
combines the features of artificial neural networks (ANNSs) and fuzzy logic systems (FLSS).
These two techniques have particular computational properties including advantages and
disadvantages. For example, ANNSs are good at recognizing patterns, but they are not good at
specifying the source cause of the decisions. On the contrary, FLSs are good at identifying the
source behind the decisions using fuzzy if-then rules, but they cannot automatically generate
the rules. Furthermore, a fuzzy logic system consists of lots of fuzzy rules, but it is difficult
for human to find the proper number of rules which are related to a great deal of training
samples and network outputs of a complex system. A fuzzy neural network (FNN) is then
emerged to break these limitations: An ENN contains the advantages of an ANN and a FLS,
such as learning ability, easy generalization, fault tolerance-and flexibility.

The major learning structures of FNNs can be represented as a three-layer learning
structure. During the learning process, a set of training samples are passed though the three
learning layers as shown in Fig. 1. The first layer corresponds to fetch the training samples
and perform the corresponding pre-procedures. The second layer performs the fuzzy logic
according to a set of fuzzy rules. Finally, the third layer generates the output results. However,
the implementation of each layer can be extended to several layers based on the concept of the
three-layer FNN structure. Note that every training sample has many attributes, and we use

dim(dimension) to denote the total number of attributes in this thesis.

Output

Fuzzy rules

Input

Fig. 1. The structure of a three-layer fuzzy neural network.

The learning ability is the main feature which enables an FNN to change its structure
based on fuzzy rules and update the parameters to adapt to the application characteristics. In
general, FNNs consist of two learning phases, structure learning and parameter learning.
Structure learning modifies the FNN structure to build the correlation of training samples and
fuzzy rules, while the parameter learning tunes the parameters within the network to provide a
more accurate model. Many variations of FNNs have been proposed during the past two
decades [2] ~[16]. However, most of the FNNs focus mainly on building an accurate network
model while putting the runtime of learning as low priority in the tradeoff between accuracy
and learning time. The long learning phases are fine if they are performed off-line. However,
it becomes a serious concern for applications that demand fast learning and model
development, such as stock prediction and weather forecast. These applications require not
only a high quality network model, but also fast learning phases. To address this issue, the

Self-Constructing Neural Fuzzy Inference Network (SONFIN) was proposed in 1998 [3].

3

Different from most conventional FNNs, the SONFIN is designed to be an on-line self-
constructing neural inference network. The SONFIN is a general connectionist model of a
fuzzy logic system, which can find its optimal structure and parameters automatically. The
conventional FNNs perform the structure leaning and the parameter learning sequentially. The
substantial runtime makes FNNs with sequential learning scheme only suitable for off-line
operations. Nevertheless, the SONFIN does the structure learning and the parameter learning
simultaneously so that the SONFIN is suitable for fast on-line learning. Moreover, because
the conventional way of grid type partition [2] of the input space increases the number of
rules exponentially with the dim. The SONFIN uses the clustering type partition of the input
spaces which can reduce the number of generated fuzzy rules compared to the grid type

partition.

1.3 Parallel FNN

To construct a more accurate-model, users would try to increase the number of fuzzy
rules. This approach could significantly aggravate the runtime of learning phases. It may take
several days to train an FNN with a large number of rules and high dim on a high performance
Central Processing Unit (CPU). For example, it takes more than one day to train a widely
used FNN, ANFIS(an adaptive-network-based fuzzy inference system) with 81 rules on a
CPU with Mackey-Glass test bench [5]. Fortunately, due to the nature of a distributed network,
FNNs are usually inherent massive computing parallelism. This feature makes an FNN
suitable to be implemented on many-core systems. In fact, parallel computing has been
proved to be effective to reduce the training time during the learning phases. The
experimental results of GPU-FNN [17] showed up to 78.51x speedup on a handwritten

recognition bench.

1.4 Thesis Organization

The rests of this thesis are organized as follow. Chapter 2 introduces the background of
FNNs which is used in this thesis. The proposed methodology is introduced in chapter 3.
Chapter 4 shows our experimental results and chapter 5 concludes the contribution of this

thesis.

Chapter 2

Background & Preliminary

This chapter introduces the background and motivation of this work. Section 2.1
introduces the GPGPU computing platform, NVIDIA Fermi architecture and its programming
environment CUDA. Section 2.2 introduces SONFIN, which is a classical type of FNN and

widely used in many domains.

2.1 GPU Computing

‘ Block scheduler

Streaming Multiprocessor Streaming Multiprocessor
L1 cache/share memory L1 cache/share memory
L2 cache L2 cache

| |

Global memory

Fig. 2. NVIDIA Fermi architecture.

Graphic Processing Unit (GPU) is originally designed for computer graphics only. The
computations in graphic based applications are often independent, massive and regular. Hence,
the designs of GPUs architecture always focus on computations. On the other hand, the CPU
needs to handle more complicated controls. So the major difference between CPU and GPU is
that, GPU issues a lot of simple processing elements but CPU consists of few complex
processing units. However, due to the increasing complexity of general applications, the
runtime of CPU is getting longer. For this reason, GPU has been applied to various algorithms

in many areas, and this kind of GPU is called general purpose GPU (GPGPU).

2.1.1 Fermi Architecture

NVIDIA is one of the companies that focus on-the design of GPGPU. An architecture
announced by NVIDIA Corporation [18]-is named Fermi. The Fermi architecture is a single-
instruction-multiple-thread (SIMT) system as shown in Fig. 2; it contains several streaming
multiprocessors (SMs). At the same time, all the SMs can share a unified L2 Cache and
DRAM. There are 32 cores, four special function units and a 64KB local memory which is
only shared among all the CUDA cores in a SM. Each of these cores can be launched in
parallel with a huge amount of threads. For example, NVIDIA Tesla C2050 can launch up to
1536 threads per SM. Meanwhile, NVIDIA provides programmers with the CUDA
programming Model [19] so that the programmers can control thousands of threads on the

GPGPUs through defining the thread hierarchy in the CUDA programming model.

2.1.2 CUDA Programming Model

CUDA is a parallel programming model that can be run on any number of processors
without recompiling. As shown in Fig. 3, parallel portions of an application are executed on
the device as CUDA kernels. In a CUDA kernel, programmers have to define the CUDA
thread hierarchy. The right hand side of Fig. 3 shows the CUDA thread hierarchy which
contains three levels, grid, block and thread. A CUDA kernel is executed by an array of
threads, and all the threads run the same code. Each thread has its own ID that is used to
compute memory addresses and make control decisions. Fig. 4 shows an example of device
code which is executed in every thread, and the device function call which is used in the main
to launch the CUDA kernel. While using a device function call, the configuration of each
CUDA kernel is defined in the “<<< >>>”-CUDA supports several standard languages and

APIs, such as C, OpenCL, Fortran-and DX compute, and'we use CUDA C to implement our

Serial code
Grid1

MR Ry o e

Parallel kernel

Device

Block(0,2) | Block(1,2) | Block(2,1)

Thread(0,0) | Thread(1,0) | Thread(2,0)

Thread(0,1) | Thread(1,1) | Thread(2,1)

l[l[lJ ‘/ J H/ jw ll lJ H Thread(0,2) | Thread(1,2) [Thread(2,2)
Parallel kernel CUDA thread hierarchy

|

Heterogeneous programming

Fig. 3. CUDA programming model.

int main()

{

dim3 dimBlock(blocksize);
dim3 dimGrid(block number);
mul_gpu<<<dimGrid, dimBlock>>>(float* a, float* b, float* c);

__global__ void mul_gpu(float* a, float* b, float™ c)

{

int index = blockldx.x*blockDim.x + threadldx.x;
c[index] = a[index] * b[index];

}

Fig. 4. Device code and device function call.

program in this thesis. And CUDA is supported on.-common operation system, such as
Windows, Mac OS and Linux.

During the execution of a CUDA kernel, block scheduler issues several thread blocks to
each SM, and each SM further divides thread blocks into warps, which consist of 32 threads,
to carry out a fully parallel execution on the cores. In the Fermi architecture, there are several
restrictions on the maximum number of blocks, warps and threads on each SM which are
different with different computing capability. For example, on a NVIDIA Tesla C2050 graphic
card, the maximum number of thread blocks, warps and threads are 8, 48 and 1533
respectively.

According to the official CUDA programming guide [20], occupancy shows how
effective the hardware is kept busy. It is a ratio of active warps to limit warps which is the
maximum number of warps on a SM. The definition of occupancy is

0 active warps
ccupancy = ———————
pancy limit warps

When defining the CUDA thread hierarchy, the size of thread blocks highly influences the

9

occupancy. For example, limit warps is 48, maximum number of thread blocks is 8, block size
is 32, than there will be 8 thread blocks and 8 warps issued on a SM, so the occupancy is
0.0667. Another example, limit warps is 48, block size is 192, than there will be 8 blocks and
48 warps issued on a SM, so the occupancy is 1. Although higher occupancy does not always
equate to higher performance, low occupancy always interferes with the ability to hide

memory latency, resulting in performance degradation [21].

2.2 The self-constructing neural fuzzy network (SONFIN)

Fig. 5 shows the modified structure of the SONFIN. The original SONFIN structure has
six layers. In order to make the comparison between serial and parallel version easier, we
reduce the number of layers from six to four. The form of each fuzzy rule in the SONFIN is:
Rule R:if X; isAx And, ..., And X, iSAx Thenygiswy, k=1, ...,r
where Ayjis a fuzzy set. wy is a real number, and r-is the total number of rules.

The SONFIN is a general connectionist model of a fuzzy logic system, which can find its

Layer 4

Layer 3

Layer 2

Layer 1
Xy X3 X3

Fig. 5. Modified structure of the SONFIN.

10

optimal structure and parameters automatically. The function of each layer is described below.

Layer 1:

One node corresponds to one dim. No computation is done in this layer, and each
node transmits input values to the next layer.
Layer 2:

Each node corresponds to one fuzzy set and calculates a membership value. That is,
the membership value which specifies the degree to which input value belongs a fuzzy set
is calculated in this layer. The fuzzy set Ay; is employed with the Gaussian membership

function:

)

where my;is the center of the fuzzy set and the c,;denotes the width of the fuzzy set. So
the number of fuzzy sets in each dim s equal to the number of fuzzy rules.
Layer 3:

Anode in this layer represents one fuzzy rule and performs antecedent matching of a

rule. The following AND operation is performed for each node in layer 3:

dim

pr(X) = HMkj(xj)

j=1
where X = [Xy, ... , Xgim]. The number of fuzzy nodes in this layer is equal to the number
of rules.

Layer 4:

This layer contains many output nodes, and the number of output nodes is equal to the
number of output dimension. Each output node performs as a defuzzifier by using a

weighted average operation:

11

Yes

Input

\V

Gaussian member
function

l

Rule firing strength
calculation

Create a new
fuzzy rule node

<G>

No
v

Compute output

)

Update

parameters

Next data?

No
v

End

Fig. 6. Flow chart of the SONFIN

D=1 Wil
N=—~r

r

where L is the number of output dimension.

Fig. 6 shows the flow chart of the SONFIN. The flow chart includes the structure learning

functions are:

12

J=1,.

oL

and parameter learning. In the structure learning, there are no rules initially, and rules are
constructed by the structure learning. The firing strength, u;(X), in layer 3 is used to decide
whether a new fuzzy rule is generated. If uy < up, K = argmaxy<x<r) Ux(X) , @ new rule
is generated, where the u;, is a prespecified threshold that decays with training iteration

number. If a new rule is generated, the center and width of corresponding membership

Me@+n) = % ()

o+ =B IIX — Mgll?
where S is a coefficient which determines the overlapping between two rules in the input
space.

The parameter learning tunes all the parameters by using a gradient descent algorithm.

The parameters are updated using the equation below:

0E
Wi (t+1) = wy(t) - wn

0E
mkj(t+ 1) = mkj(t) - Tamkl

0E
O'kj(t+ 1) = mkj(t) —Tﬁkl

L
1
E = 52(}/1 = yH?
1=1

where T is a learning constant which influences the converging speed of the gradient decent

algorithm.

2.3 Related Work

FNNs have been studied for decades, and many FNNs with different propertied have
been proposed. ANFIS (Adaptive Neuro-Fuzzy Inference Systems) was proposed in 1993 [2].
It is a widely used FNN which only performs parameter learning. ANFIS uses a hybrid
learning procedure to build the connection between training samples and network output
based on both human knowledge and stipulated input-output data pairs. However, the number
of fuzzy rules of FNNs with only parameter learning increases exponentially with the

dimension of input space. FNNs with structure learning ability [3]~[16] have been proposed

13

to reduce the number of generated rules.

Recently, there are some researches focusing on parallel neural networks [22][23] and
parallel fuzzy neural networks [17][24]. [22] implemented the parallel neural network by
mapping the inner-product operation into a matrix multiplication operation. [23] provided an
implementation of the back-propagation algorithm on CUDA, and the author claimed that the
number of threads should be as large as possible to enable the CUDA scheduler to better
utilize the available computational power. The first adaptation of the Fuzzy ARTMAP neural
network on a GPGPU was proposed in [24]. Juang and Chen [17] proposed an
implementation of a zero order Takagi-Sugeno-Kang-type fuzzy neural network on GPU. To
our best knowledge, Juang is the first work which gives a detailed SONFIN design on a
GPGPU. This paper uses this work as the baseline design to compare the experimental results.

However, the performance of a parallel-application on the GPGPU heavily depends on
how the developer manages blocks of threads and how effective the GPGPU hardware
resource is used. The thread mapping in- NVIDIA CUDA kernel determines how much
parallelism can be exploited by a GPGPU. The thread mapping of the GPU-FNN [17] was
partitioned based on fuzzy rules. In this way, each fuzzy rule in a FNN is mapped on a thread
block. GPU-FNN can make good use of the parallel fuzzy rules in some cases, for example,
192~768 dim with NVIDAI Tesla C2050. However, the range of dim of different applications
can vary significantly. For example, an artificial detection might have tens of dim [25], while
the protein mutant data set could involve more than five thousand dim [26]. The design of a
parallel FNN needs to cover all the possible range of dim from different applications.
Moreover, the current version of CUDA programming model limits a thread block to
accommodate up to 1,024 threads. Therefore, the mapping method proposed in [17] cannot

support the application when dim is too high, such as the protein mutant application [26].

14

2.4 Motivation

With the approaches of [22] and [24], the efficiency of the hardware utilization is not
considered. The author of [23] claimed that the number of threads should be as large as
possible to enable the CUDA scheduler to better utilize the available computational power.
However, this approach does not take how effective the threads could exploit the GPGPU
architecture into account. In the [17], blocks of threads are partitioned based on fuzzy rules so
that the hardware is not efficiently used with some training samples. In summary, the thread
mapping mechanism of these works cannot adapt to training samples with different
characteristics and architecture with different features.

The performance of a parallel application on a GPGPU is highly dependent on how
effective the created threads could exploit the- GPGPU architecture. The decisive factor is the
thread mapping mechanism, which connects a multi-thread application to the underlying
many-core system. This becomes-a non-trivial problem when implementing an FNN onto a
GPGPU. The main design concerns can be characterized as follows:

(1) Parallelism and coordination. The way an application is parallelized and how the
concurrent computation is coordinated also plays important roles in the GPGPU computing. A
well parallelized application can reduce the computation burden on GPGPUs and achieve
superior performance enhancement. However, an inappropriate design may ignore important
design issues, such as insufficient parallelism or severe resource contention, and cause
degraded performance.

(2) Thread mapping. Although FNNs have massive computation parallelism, the thread
mapping must be well designed because it could significantly influence the efficiency of
hardware utilization. However, an efficient thread mapping design of a parallel FNN is not
straightforward, it must take many factors into concern, such as compute capability of the

used GPGPU, version of CUDA and the dim and number of rules of the learning FNN.

15

(3) Adaptability and scalability. It is predicted that the number of cores in a GPGPU will
scale with the advances of semiconductor technology. The performance of a multi-threaded
FNN should automatically scale with the enormous cores provided by the future GPGPUs
without redesign overhead. Moreover, the design should also be adaptable to the changing
number of fuzzy rules and dim of an FNN.

Because of these design concerns abovementioned, we propose an architecture-aware
thread mapping methodology for FNNs on GPGPUs which can create efficient coordination
between concurrent computations and hardware on GPGPUs based on the training samples

with different characteristics and the architecture of GPGPUs with different features.

16

Chapter 3

Our Proposed Approach

Fig. 7 shows a design flow to parallelize and optimize FNNs on a GPGPU. This thesis
uses the modified SONFIN as the main application to demonstrate the effectiveness of the
proposed design flow. This flow considers several important issues of FNNs using GPGPU
computing. The design flow starts from a sequential FNN application. The first stage shown
in the Fig. 7 is necessary in every parallel design to decide which parts of the program should
be parallelized and executed on GPGPUSs. The shaded block on the right hand side of Fig. 7 is
the Architecture-Aware Thread Mapping (ATM). The ATM performs optimizations for each
CUDA kernel, and contains four stages, 1) fine-grain task decomposition, 2) special function
transformation and memory coalescing,. 3) task coarsening and 4) task to thread binding. The

detail of the design flow will be discussed in the following sections.

17

for each kernel

Task
decomposition
)
Sequential Special function Memory
FNN transformation coalescing
|
GPGPU Task coarsening
partitioning l
L |
Task to thread
binding

Architecture-Aware Thread Mapping |

End

Fig. 7. Design flow of a parallel SONFIN on a GPGPU

3.1 Bottleneck Analysis

The first stage of the ATM is the bottleneck analysis. This stage is almost the most
important and essential stage while designing a parallel program. The bottleneck analysis is to
find out bottlenecks that dominate the runtime of the total program. According to Amdahl’s

law, if a fraction f is accelerated by a factor of S, the overall performance speedup is:

Speedup(f ,S) = —f
A-f+3

In the parallel computing, the f is the fraction that can be parallel in a sequential program.
And the f fraction can be accelerated S times after parallelization. Factor S is decided by how
much parallelism of the f part and how well the GPGPU architecture can be exploited. Larger
f could increase the impact of S on the overall performance. So it is important to find out

which parts have the greatest f through the bottleneck analysis.

18

Because the conformation of an FNN is fixed no matter how many dim and number of
rules. So the easiest and the most efficient way to catch the computation behavior is to profile
the timing information of an FNN with a small bench which has small dim and little number
of rules. Fig. 8 shows the flow chart of the SONFIN, and we found two bottlenecks, the
gaussian member function and the update parameter, by bottleneck analysis. And their pseudo
code is shown in Fig. 9. Through our profiler, the gaussian member function takes about 80%

and the update parameter takes about 15% of the total runtime.

» Input

-
-«

y
Gaussian member
function

i Create a new

Rule firing strength fuzzy rule node
calculation

Yes @ Yes

No
v

Compute output

i

Update
parameters

Next data?

No
v

End

Fig. 8. Flow chart of the SONFIN

19

gaussian member function()

{

for each rule node i
for each input dimension j

update parameter()

{

for each rule node i
for each input dimension j

L2;= M,(x) C’;=updateC(C; V; x))
end V’,= updateV (C; V; x))
end end
} end

(a) Gaussian member function (b) update parameter

Fig. 9. Pseudo code of (a) gaussian member function and (b) update parameter

3.2 GPGPU Partitioning

Using the result of bottleneck analysis, we can have a initial partitioning. The gaussian
member function and the update parameter have been recognized as the two bottlenecks that
should be parallelized as CUDA kernels‘on GPGPU. However, in addition to the execution
time of individual function block, the partitioning of GPGPU and CPU should also consider
issues such as the effectiveness of parallel part of a program and data transfer between a
device and a host. However, we perform the partitioning based on the rule of thumb. Besides
the two bottlenecks of the SONFIN, the rule firing strength calculation is also moved to the
GPGPU in our partitioning. This is because the amount of data transfer between Gaussian
member function and rule firing strength calculation is larger than the amount of data transfer
between rule firing strength calculation and new rule decision. Based on the above analysis,
the final partitioning is shown in Fig. 10. The following subchapter will use this partitioning

scheme to perform optimizations in the ATM methodology.

20

~/ Input

GPGPU CPU

¢ Datatransfe
Gaussian member
function

}

Rule firing strength
calculation
L patatransfe

liData transfe

Update
parameters
\

Fig. 10. GPGPU partitioning of the SONFIN

21

3.3 Fine-Grain Task Decomposition

The first stage of the ATM is decomposition. It defines how the computations executed
simultaneously on the GPGPUs. Recall that the pseudo codes of the two bottlenecks are
shown in Fig. 9, and it can be seen that they have two nested for loop. So in each CUDA
kernel, we use a 2-D matrix, Task Matrix (TM), to represent the overall computation. The
definition of TM is:

Definition 1 (Task Matrix) A Task Matrix is a 2-D matrix which is used to stand for the
overall computation of a CUDA kernel. It is a r X dim matrix, where r is total number of
rules and dim is total number of input attributes. And each element in a TM is named Task
which is defined in the definition 2.

Definition 2 (Task) A task is a computation-of-one input dimension of one rule. Therefore, Tj;
is the computation of rule and input attribute pair (i, j). For example, T3 is the computation
of the 2th rule to the 3th input attribute.

We decompose the parallelism of each CUDA kernel in the most fine-grained way by

defining the TM and the Tasks. The reason is that the fine-grained decomposition extends the

Xy X, X3
Task Task Task
Layer 4 rule, 11 12 13
rule, Task, , | Task,, | Task,
Layer 3 rule, | Tasks, | Tasky, | Task;,

Layer 2 Task Matrix

Layer 1

Fig. 11. Task Matrix of the SONFIN with 3 dim and 3 rules

22

space of configuration of each CUDA kernel. We later use the task coarsening to search the
configuration space of each CUDA kernel. So the configuration with better performance can
be easily found. The searching procedure will be discussed in the section3.5. For the parallel
SONFIN, Fig. 11 shows an example of Task Matrix with 3 dim and 3 rules, and the Task

Matrix is a 3x3 Matrix.

3.4 Special Function Transformation & Memory Coalescing

The second stage of the ATM contains two optimizations, special functions
transformation, and memory coalescing. Because these two optimizations are independent,
they are designed in the same stage, and can be performed simultaneously. The purpose of
special function transformation is to utilize the special function hardware which is faster than
the compiled ptx code to speed-up the mathematical operations. The special functions
transformation uses the library. supported by CUDA, such as addition, subtraction,
multiplication, division and other -mathematical operations. The special functions units are
faster than the standard functions because the special functions directly use the special
function units on the GPGPU. However, the number of special function units on the GPGPU
is limited, so the number of special functions which are changed from standard functions is
limited. This problem is like an simple version bin packing problem, so we can use the first fit
algorithm which is a straightforward approach to select the most effective special function
transformation.

Memory subsystem had been always identified as a crucial bottleneck in the GPGPU
computing. There is an optimization of memory access which is called coalesced memory
coalesced access. The coalesced memory access is a technique to combine multiple data
accesses into one single memory transaction. In an SIMT architecture, the memory access

pattern of the warp threads should be adjacent so that the accesses can be packed into one

23

memory transaction. As an example shown in Fig. 12 (a), assume the data which are needed
by the half warp is scattered to memory, so there require total sixteen memory accesses. Fig.

12 (b) illustrates the case that the data needed by the half warp is stored adjacently in the

Memory address
0 8 16 24 32 40 48 52 60 68 72 80 88 96104112

LIPS]]

‘ ‘ ‘ | |Ha|fwarpofthreads

(a) non-coalesced memory access

Memory address
012345678910111213141516 ...

e

| I | | | | | | ‘ |Ha|fwarp0fthreads

(b) coalesced memory access

Fig. 12. Coalesced memory access. (a)-non-coalesced memaory access. (b) coalesced memory

access.

X, X5 X3 X4

rule, Tasll<11 Ta/sk12 /TaskB Task,

rule, Tagk,, /gSkzz T% %skm
rule, -yéSkfﬂ Ta/‘k/gz Ta %3 | Tasks,

rule, Ta%l /T}s/}/ Task,s | Tasks,
N
[

%

Memory address

Fig. 13. Data layout of parallel SONFIN

memory, so all the memory access will be packed into only one memory transaction.
According to the regular data structure of FNN, the memory coalescing can be done by

24

designing the data layout. Generally there are two styles of data layout which are used in
regular data, row-wise and column-wise. According to the introduction of memory coalescing
before, as long as the data of adjacent threads are stored in the adjacent memory address, the
memory access is optimized by memory coalescing. However, the number of rules will
change during the learning, so the data layout is limited by the direction of dim. Fig. 13 shows

our data layout of the parallel SONFIN.

3.5 Task Coarsening

The third stage of the ATM is task coarsening. The coarsening is an optimization
technique to fine-tune the parallelism decomposition. Fig. 14 shows the concept of task
coarsening. A single block represents.a computation; a task is composed of three common
computations and one unique computation. There are four tasks which are executed

simultaneously, and the amount_ of total computations Is 4 X 4 X 3 = 48 after three time

|
|
L —
/
L
L —
"

Common computation

Unique computation

Fig. 14. Task coarsening.

25

stamps. If we coarsen two tasks into one task, the common computations are just executed
once and stored into registers. So a task becomes a task’ which is consist of three common
computations and two unique computations. Therefore, the amount of total computations is
reduced to 2 X 5 x 3 = 30 after the task coarsening. Moreover, because the number of
common computations is decreased, so the memory accesses in the common computations are
also decreased. However, there are some overheads to perform task coarsening: the indexing
will cost extra computation in our last stage, task to thread binding.

In summary, there are two benefits of the task coarsening, 1) reduce the total amount of
computation 2) reduce the data access from memory. However, in the task coarsening
optimization we have to decide which tasks should be coarsened together and how many tasks
should be coarsened so that we can strike.a balance between parallelism and amount of
computation. We define two schemes to coarsen-tasks, column-based coarsening and row-
based coarsening. The row-based coarsening coarsens tasks within a rule and the column-
based coarsening coarsens tasks-in different rules. Fig. 15 (a) shows the column-based
coarsening. To maintain the memory coalescing,-the stripe width should be the number of
thread in a warp. Fig. 15 (b) shows the row-based coarsening. The Task Matrix is transformed
into Task Matrix’ after the task coarsening. We can use one of these two schemes to do the
task coarsening.

TM = coarsen_column(TM, n)
TM”: Task’j; = Taskij U Taskij+w U Taskijow U ... U TasK;j+nw, W < dim

TM’= coarsen_row(TM, n)

TM”: Task i = Taski; U Taskispj U Taskiszpj U ... U Taskinp;, p = 2amberof rutes

n

Where n is the coarsen number, and w is the coarsen width. And there is a property to

determine the upper bound of n.

26

Property: While determining the n, the parallelism should be considered. Therefore, we

assume the hardware on GPGPUs is fully utilized if each core has at least one tasks to

execute, that is, @ > N_ore; Where dim is the total number of input attributes and r is the

number of rules.

(b) row-based coarsening

Fig. 15. Two schemes of task coarsening. (a) column-based coarsening. (b) row-based

coarsening.

27

We can know the upper bound of n by the property above, and then we extract each
CUDA kernel in the SONFIN to find the optimal configuration of task coarsening by the
coarsen configuration search which is shown below. The Conf,r is a configuration pair
{ coarsen scheme, coarsen number }, and it decides which coarsen scheme should be used and
how many tasks should be coarsened. The evaluation(C(TM, i)) function returns the CUDA
kernel time of a CUDA kernel using the coarsen scheme C with i coarsened tasks. The
coarsen configuration search scans the design space for the two coarsen schemes and for the
reasonable coarsen number, and choices the best one. Then we use the returned coarsen

scheme and coarsen number to perform the tasks coarsening.

Coarsening Configuration Search(Confeoar, TM, n)

I. Confcoar 0
2. best <o

3. for O<i<n

4. for C<—{ coarsen_raw, coarsen_column }
5. if(evaluation(C(TM, i)) <‘best)

6. best <— evaluation(C(TM, 1))

7. Confeoar < (C, 1)

8. end if

9. end for

10. end for

11. return Confegar

28

3.6 Task to Thread Binding

The last stage of the ATM is task to thread binding. It creates the connection between the
tasks and the CUDA thread hierarchy. We use a matrix, Thread Hierarchy (TH), to stand for
the thread hierarchy in the CUDA. TH is a N}, X N, matrix, which Ny is the number of thread
block and N is the size of a thread blocks. There are three hints to follow to have a good task
to thread binding: First, define the TH with N; that can make occupancy 100%. There are
many choices of N;that can make occupancy 100%, however, we chose the smallest one to
avoid the load balancing issue. Second, the task bound within the same block should be
adjacent to maintain memory coalescing. Third, easier computation of the indexing in each
CUDA kernel is better. Based on the three hints, Fig. 16 shows a simple example of our task
to thread mapping. Actually, the tasks to thread binding becomes very easy after the first three
stages of the ATM. We just need to design-the Ny which can make occupancy 100%, then map
the TM’ to TH according to the data layout direction. In this way, the hardware on GPGPUs
can be utilized efficiently, and- the memory accesses are coalesced; moreover, the
computations are simple to calculate the indexes.

After the ATM, each kernel has been optimized. And then we profile the parallel SONFIN
to get the timing information, which is shown in Fig. 17. We can see how many percentage of
each function block takes in Fig. 17. In the Fig. 10, the gaussian member function originally
takes 85% total runtime, but it takes 25% after parallelization. The update parameter takes
13%, but it takes 4.62% after parallelization. As a result, the original bottlenecks are
accelerated. However, there are three data transfer overhead, they takes 0.015%, 23% and

19% respectively.

29

thread; thread, thread; thread,

Task’; ,

parameters

Fig. 17. Timing distribution for parallel SONFIN

30

Chapter 4

Experimental Results

4.1 Experimental Environment

In this thesis, all the experiments are conducted in a workstation with Intel Xeon CPU
E5640, 64 GB RAM. The experiments in section 4.1~4.3 and section 4.5 are evaluated with
the NVIDIA Tesla C2050. And the following four architectures are used in the section 4.4,
NVIDIA GeForce 9800 GT, Tesla C1060, Tesla C2050 and GeForce GTX 680. Note that the
parallelization does not change the original algorithm. Hence, the error rate should be the

same across CPU and GPGPU version.

31

50

=

()

E

- m GPU-FNN

N

p mC

g -

O B C+Binding

32 128 224 320 416 512 608 704 800 896 992
number of rules
(a) Kernel time of 32 dim and scaled number of rules

250
< 200
)]
E
= 150
z = GPU-FNN
¢ 100
-
p mC
a
D 50 A H C+Binding
o

O -
32 128 224 320 416 512 608 704 800 896 992
number of rules
(b) Kernel time of 512 dim and scaled number of rules

700
= 600
£ 500
3 400
€ m GPU-FNN
g 300

|
< 200 ¢
3 100 - W C+Binding
0 .

32 128 224 320 416 512 608 704 800 896 992

number of rules

(c) Kernel time of 1024 dim and scaled number of rules

Fig. 18. Kernel time comparison between each optimizations

32

4.2 Comparison Between Different Optimizations

This section discusses the effects of each optimization technique. In this section, we use
NVIDIA Tesla C2050 as the default architecture. And we directly set the dimension and
number of rules to get the kernel time in the experiments in section 4.2~4.4. All the kernel
time is extracted and accumulated to see impacts on each CUDA kernels of each optimization.
Fig. 18 compares the kernel time with fixed dim using two optimizations, task coarsening and
task to thread binding. The term C means task coarsening and the term Bind stand for task to
thread binding. Because the GPU-FNN has done the special function transformation and
memory coalescing, so we just compare these two optimizations.

Fig. 18(a) shows the 32 dim case. The task coarsening gains almost no benefit with any
number of rules. This is because the task coarsening decreases the parallelism. On the other
hand, the task to thread binding significantly decreases the kernel time when the number of
rules is larger than 224. When the-number of rule goes'to 992, task to thread binding gains up
to 45% performance improvement.

In the case of 512 and 1024 dim in Fig. 18(b)(c), the task coarsening gets about 15%
performance improvement when the number of rules is 992. Because the dim is large enough,
so the parallelism after task coarsening is still large enough for parallel computation. The task
to thread binding delivers a limited improvement in the 512 dim case, because the hardware
utilization rate of GPU-FNN and ours are approaching maximum. But in the case of 1024 dim,
the task to thread binding has up to 20% improvement when the number of rules is 992. The
main reason is because a thread block only supports up to 1024 threads in the CUDA
programming model. Then only one thread block can be issued on a SM, and occupancy of a
SM is 32/48 = 0.6667 by using the GPU-FNN. However, The occupancy is still 100% by

using our task to thread binding.

33

4.3 Discussion of Input Scalability

This section discusses the kernel behavior using training samples with different
characteristics. We first fix the dim of training samples and change the number of rules. Table
I shows the kernel time of 32, 512 and 1024 dim with varying number of rules, and Fig. 19
shows the bar charts. The occupancy are 0.1667, 1 and 0.6667 for these three cases
respectively. In the 32 dim case which is shown in Fig. 19(a), our approach cannot gain
benefit when the number of rules is smaller than 224. However, when the number of rules is
larger than 224, our approach starts to have advantage and the advantage is larger when the
number of rules increases. Fig. 19(b) shows the case of 512 dim, but the performance
improvement of our approach is not impressive. This is because the SM occupancy rate of
GPU-FNN is almost 100% in 192~768 dim, so there is no room for us to gain benefit.
Nevertheless, when the dim is fixed to 1024 which is.shown in Fig. 19(c), the SM occupancy
rate of GPU-FNN is not 100%.-Therefore, our approach can gain improvement from the
occupancy. If the dim is larger than 1024, the GPU-FNN cannot work because a thread block
can only support up to 1024 threads. Our approach can works normally by dynamically

adjusting the configuration of each kernel to fit the limitation.

34

Table | Kernel time with different number of rules

number of dim32 dim512 dim1024
rules GPU-FNN(us)| our{us) Jmprovement|GPU-FNN({us){ our{us) |improvementGPU-FNN{us)| our(us) |improvement]
32 10.72 10.72 0% 18.24 17.952 1.58% 30.496 22.816 25.18%
64 10.88 10.88 0% 25.152 23.424 6.87% 48.64 35.52 26.97%
56 11.104 11.104 0% 32.256 30.624 5.06% 69.6 50.976 26.76%
128 13.92 13.92 0% 40.96 37.376 8.75% 52.384 63.072 31.73%
160 14.464 14.464 0% 48.352 43.264 10.52% 111.008 75.104 32.34%
192 14.784 14.784 0% 56.672 50.368 11.12% 129.824 88.352 31.94%
224 15.008 15.008 0% 64.992 57.408 11.67% 148.384 101.024 31.92%
256 17.6 15.264 13.27% 72.128 62.816 12.91% 168.672 112.288 33.43%
288 17.952 15.968 11.05% 77.28 68.096 11.88% 182.144 121.728 33.17%
320 18.144 16.064 11.46% 83.36 73.376 11.98% 200.32 133.152 33.53%
352 20.672 16.448 20.43% 90.464 78.656 13.05% 220.704 146.272 33.72%
384 22.432 16.8 25.11% 97.344 84 13.71% 237.664 157.344 33.80%
416 22.592 16.864 25.35% 105.76 50.784 14.16% 253.6 168.672 33.49%
448 22.88 17.536 23.36% 112.96 56.736 14.36% 271.712 181.888 33.06%
480 24.032 17.536 27.03% 119.968 101.6 15.31% 288.192 192.192 33.31%
512 24.576 18.112 26.30% 125.92 108.128 14.13% 300.96 203.136 32.50%
544 24.8 18.112 26.97% 132.608 112.8 14.94% 324.224 216.256 33.30%
576 27.776 18.08 34.91% 141.696 119.712 15.51% 343.04 227.84 33.58%
608 28.064 20 28.73% 147.936 125.76 14.99% 358.432 238.656 33.42%
640 28.128 19.968 29.01% 154.624 131.616 14.88% 373.632 249.888 33.12%
672 28.864 20 30.71% 161.472 137.6 14.78% 397.344 264.544 33.42%
704 30.4 20.192 33.58% 170.144 143.488 15.67% 415.264 275.68 33.61%
736 30.88 20.64 33.16% 177.248 149.696 15.54% 431.296 286.4 33.60%
768 31.36 20.672 34.08% 182.944 154.816 15.38% 446.08 298.528 33.08%
800 33.216 21.536 35.16% 191.424 160.672 16.06% 477.344 311.424 34.76%
832 33.728 22.208 34.16% 198.816 167.072 15.97% 490.432 323.776 33.98%
864 34.272 21.76 36.51% 204.576 172.64 15.61% 504.768 334.784 33.68%
896 35.008 21.856 37.57% 211.52 179.552 15.11% 519.488 345.568 33.48%
928 36.704 22.176 39.58% 220.224 185.28 15.87% 548.928 359.104 34.58%
960 37.344 21.856 41.47% 227.04 189.984 16.32% 562.912 370.304 34.22%
992 37.696 23.04 38.88% 233.408 197.728 15.29% 578.56 381.664 34.03%
1024 39.488 23.648 40.11% 24224 203.104 16.16% 592.736 394.08 33.52%

35

IS
o

w
o

N
o

o

rrrfijFFF[EW

number of rules

CUDA kernel time (us)
[y
o

(a) Kernel time of 32 dim and scaled number of rules

__250
(2]
2
= 200
£
S 150
T
£ 100 GPU-FNN
Q
-2
7l rrFF "
() 0 _ I
320 416 704
number of rules
(b) Kernel time of 512 dim and scaled number of rules

700
— 600
2
o 500 -
E
= 400
£
5 300 GPU-FNN
<
< 200 mours
2
o L] r f

0 A Tmm .
32 224 416 704 800

number of rules

(c) Kernel time of 1024 dim and scaled number of rules

Fig. 19. Kernel time comparison between GPU-FNN and our approach

36

Besides, we fix the number of rule with varying dim. Table 11 shows the kernel time of
256, 512, 768 and 1024 rules with varying dim, and Fig. 20 shows the timing charts. Note that
the GPU-FNN cannot work if the dim is larger than 1024. The speedup of our approach is
about 1.5X in these four cases when the dim is 1024. One can find that the kernel time of
GPU-FNN increases extremely when the dim is 768. Because a SM can issue two thread
blocks when the dim is 768. When the dim increased, only one thread block is issued on a SM.
Then the performance degrades because occupancy is decreased. This problem will happen
when 768< dim <1024 in Tesla C2050. However, our approach does not have this issue.

It can be seen that the trend of the kernel time of the four cases are similar. It is
reasonable to inference that the percentage of performance improvement is fixed no matter

how many rules only if the number of rules is large enough.

37

Table Il Kernel time of different number of dim

dim 256 rules 512 rules
FNN-GPU(us) our{us) improvement|FNN-GPU({us) our{us) improvement
32 14.24 13.76 3.37% 21.824 13.888 36.36%
64 15.808 16.992 -7.49% 24.032 19.072 20.64%
96 18.144 20.192 -11.29% 30.368 25.6 15.70%
128 20.416 21.824 -6.90% 38.368 31.264 18.52%
160 25.6 23.744 7.25% 47.264 39.456 16.52%
192 28.48 29.76 -4.49% 55.456 45.504 17.95%
224 33.248 31.648 4.81% 64.128 52.16 18.66%
256 36.032 34.56 4.09% 70.816 57.632 18.62%
288 42.208 38.496 8.79% 78.88 64.352 18.42%
320 48.192 41.312 14.28% 85.856 69.312 19.27%
352 50.656 45.728 9.73% 92.64 74.24 19.86%
384 55.2 47.648 13.68% 99.328 80.992 18.46%
416 62.208 51.104 17.85% 112.32 86.624 22.88%
448 65.472 54.432 16.86% 118.112 92.96 21.30%
480 68.928 57.216 16.99% 124.96 98.24 21.38%
512 73.568 61.056 17.01% 131.84 104.288 20.90%
544 82.88 63.552 23.32% 151.68 109.984 27.49%
576 87.008 65.6 24.60% 157.728 115.872 26.54%
608 90.272 69.696 22.79% 163.104 121.984 25.21%
640 93.376 71.872 23.03% 170.144 126.816 25.47%
672 97.76 74.624 23.67% 180.352 133.184 26.15%
704 102.816 79.2 22.97% 186.432 139.136 25.37%
736 104.832 80.832 22.89% 193.92 145.44 25.00%
768 110.784 84.864 23.40% 201.44 151.168 24.96%
800 145.216 86.56 40.39% 270.88 157.312 41.93%
832 148.864 90.496 39.21% 272.64 162.944 40.23%
864 153.408 9342 39.30% 284.096 168.768 40.59%
896 159.68 96.32 39.68% 284.32 176.064 38.08%
928 163.84 98.72 39.75% 300.288 181.312 39.62%
960 166.656 101.664 39.00% 301.088 186.848 37.94%
992 171.648 104.544 39.09% 314.304 193.568 38.41%
1024 172.544 107.584 37.65% 313.504 198.848 36.57%
dim 768 rules 1024 rules
FNN-GPU(us) our(us) improvement [FNN-GPU(us) our(us) improvement

32 29.248 20.768 28.99% 37.248 19.264 48.28%
64 33.504 30.72 8.31% 44.8 33.728 24.71%
96 44512 41.952 5.75% 56.704 46.176 18.57%
128 55.456 50.624 8.71% 72 57.92 15.56%
160 67.2 61.056 9.14% 87.392 71.968 17.65%
192 79.456 69.568 12.44% 103.104 85.6 16.98%
224 93.024 79.808 14.21% 120.672 97.312 19.36%
256 103.488 89.056 13.95% 136.768 109.664 19.82%
288 113.536 94.688 16.60% 149.12 117.824 20.99%
320 126.048 103.616 17.80% 166.56 130.144 21.86%
352 136.224 111.456 18.18% 179.776 139.488 22.41%
384 146.912 119.456 18.69% 194.784 150.944 22.51%
416 164.704 130.912 20.52% 218.24 165.152 24.33%
448 174.08 138.272 20.57% 229.888 176.384 23.27%
480 185.248 146.784 20.76% 244.768 187.04 23.58%
512 194.752 155.104 20.36% 258.496 199.296 22.90%
544 225.376 166.752 26.01% 297.184 212.736 28.42%
576 233.952 174.816 25.28% 309.184 225.248 27.15%
608 241.376 182.144 24.54% 323.136 235.04 27.26%
640 253.216 190.496 24.77% 334.688 246.016 26.49%
672 265.152 201.152 24.14% 353.12 260.704 26.17%
704 279.296 210.112 24.77% 367.616 271.52 26.14%
736 285.056 217.504 23.70% 381.472 283.104 25.79%
768 296.288 227.104 23.35% 395.616 295.392 25.33%
800 401.248 237.088 40.91% 535.392 308.672 42.35%
832 405.664 245.152 39.57% 538.016 318.816 40.74%
864 420.64 254.592 39.48% 560 331.552 40.79%
896 423.776 262.112 38.15% 564.896 341.28 39.59%
928 447.968 272.8 39.10% 597.248 355552 40.47%
960 449.792 282.112 37.28% 598.496 367.328 38.62%
992 469.056 290.048 38.16% 621.28 377.856 39.18%
1024 466.272 298.56 35.97% 623.264 389.856 37.45%

38

(]
£
= 150 ‘f/-
[
£ $100 —===- ——GPU-FNN
g2
g 50 ours
=)
© 0
N O O & 00 &N VU O g 0 N O O < o0 o
N OO O N 0 1N = 0 I O K~ n O O o O
A N N MmO g .0 ©O O N 0 0 O O
input dimension
(a) Kernel time trend of 256 rule
400
€ =300 —
§3 /—
S g 2 — ———GPU-FNN
S % 100 ——
O ours
0 .
N O O < 0 &N O O & 0 N O O < 00 o
N OO O N 0 1N «+ 00 g O N ;n O VW o O
— N &N N < n O c0 0 O O
input dimension
(b) Kernel time trend of 512 rules
500
)]
E 400
Lo
E 300 /
E é 200 / FNN-GPU
< 100 = our
a —
=] 0
© N O O < 0 &N O O < 00 N O O S 0 o
Mm O O N 0 1N « 0 < O N o O O o O
- N N 0N < - N O O N 0 0 OO O
input dimension
(c) Kernel time trend of 768 rules
800
:‘._:’ — 600 //__.
L3
=g L —— o
3 © 200 / ours
0 .

(c) Kernel time trend of 1024 rules

Fig. 20. Kernel time trend of different number of rules

39

700

3 600 —
()]
£ 500 —
2 400
g
5 300 GPU-FNN
-
g 200 mour
Fie—s & &
0 __-_.
32 128 224 320 41 08 704 800 896 992
rule number
(a) Kernel time of 512 dim using Tesla C1060
__ 4000
(%]
2
@ 3000 —
E
< 2000
£ GPU-FNN
Q
£ a b -
o
224 416 704 800 992
rule number
(b) Kernel time of 512 dim using GeForce 9800 GT
__ 150
(%]
CA
()
£ 100
=
T
& GPU-FNN
: r r
< M our
[a)
3 o lom l I I
224 416

32

number of rules

704 800

(c) Kernel time of 512 dim using

GeForce GTX 680

Fig. 21. Kernel time with three different architectures

40

4.4 Discussion of Architecture Scalability

In this section, we discuss the architecture scalability of our approach using the other
three GPGPU architectures, NVIDIA GeForce 9800 GT, NVIDIA Tesla C1060 and NVIDIA
GeForce GTX680. Note that the GPU-FNN can only support up to 512 dim when using
NVIDIA GeForce 9800 GT and NVIDIA Tesla C1060. Therefore, we show the results of 512
dim which are shown in Fig. 21. Remind that we had experiment for kernel time of 512 dim
with changing number of rules in section4.2 using NVIDIA Tesla C2050, the reduction of
kernel time is up to 16 %. In Fig. 21, largest reduction of kernel time is 28%, 30% and 20%
for 9800GT, C1060 and GTX680 respectively.

To show the scalability of number of cores using our approach, Fig. 22 compares the
kernel time using different graphic cards with 512 dim test bench. Note that the sequence of
number of cores is: GTX680>C2050>C1060>9800GT. As in Fig. 22, it can be seen that the
performance can be further improved by using the GPGPU with more cores, that is saying,

our approach has scalability for number of cores which is the architectural trend in the future.

10000
g 1000
()
£
= 9800 GT
g 100 L
£ C1060
<
= = C2050
D 10 4
o B GTX 680

32 128 224 320 416 512 608 704 800 896 992

number of rules

Fig. 22. Kernel time of our approach using four different architectures

41

4.5 Total Runtime

Table 111 shows the comparison of total runtime. In Table 11l (a), we use random uniform
generated benches, and we generate four benches with different dim. The 32, 256, 1024 and
2048 dim can be used to represent the low, medium, high and very high dim respectively. In
the cases of 32 and 1024 dim, our implementation reduce the total runtime up to 19% when
comparing with the GPU-FNN implementation. The main reason is that GP-FNN cannot
achieve a good hardware utilization of GPGPU in these two cases. But the ATM in our
approach can always control the hardware utilization in a very high level. However, the
performance improvement in the case of 256 dim is only 6%, because the hardware utilization
of GPU-FNN is also really high, so there is no room to gain benefit from the hardware
utilization. The 2048 dim is a special case. In this.case, the GPU-FNN cannot handle the very
high dim. However, our approach: still-works normally,”and has 443x speedup over CPU
implementation. Table 111 (b) shows real cases, and the improvement can be up to 11.96%
with isolet5 bench compared to GPU-FNN. We can notice that the improvements of total
runtime are smaller than the improvements of the kernel time experiments before. The main
reason is the number of rules is increasing from 0, and the parallelism is not large enough to
have massive improvement with small number of rules. As a result, the overall performance

improvement degrades to about 50% of the kernel time improvement in average.

42

Table Il Total runtime

Input CPU (s) GPU-FNN (s) Qur(s) CPU/Our Performance improvement
Dim. % of over GPU-FNN
rules
32 2888.82 38.34 34.78 85.01X 11.37%
525
256 33338.7 99.95 93.49 356.6X 6.46%
512
1024 48523.9 129.97 104.74 463.28X 19.41%
276
2048 53501.6 Doesn’t 120.91 442 .5X NA
152 work
Avg. 336.845X 12.41%
(a) Synthetic benches
Name Input CPU (s) GPU-FNN (s) Qur (s) CPU/Our Performance improvement
Dim ¥ of from GPU-FNN
rules
Letter-rec 16 o 6699.74 165.87 146.42 45X 11.72%
Penbased 16 < 2224.31 60.19 54.6 40.7X 9.28%
ZIP 256 38838.6 112.92 101.66 382X 9.97%
608
Madelon | 500 0 26049.6 90.93 83.81 310X 7.83%
isolet5 617 59 32062.7 119.86 105.52 303X 11.96%
gisette 5000 162721 Doesn't 1588.38 102X NA
949 work
Avg. 216.14X 10.15%

(b) Real benches

43

Chapter 5

Conclusions & Future Works

In this thesis, we present a design flow for parallel FNNs on GPGPUs. In the design flow,
we propose the architecture-aware thread mapping (ATM) methodology to optimize each
CUDA kernel. The task decomposition and coarsening scheme scans the design space of a
parallel FNN. By considering different characteristics of FNNs and training samples, the
proposed scheme can find appropriate parallelism which can fully exploit the computing
capability of GPGPUs. Moreover, the task to thread binding maps the high level tasks to the
concurrent threads. This binding methodology concerns not only the architectural features of
GPGPUs, but also the characteristics—of ‘FNNs -such- as dim. The proposed binding
methodology from tasks to thread provides performance scalability with the increasing
number of cores of GPGPUs and changing dim and rules of FNNs.

Experimental results show that the kernel time can be reduced by 20%~40%, and the
reduction of total runtime is up to 20% compared with the GPU-FNN. Compared with the
CPU implementation, the total runtime speedup can be up to 460X. As a result, the proposed
ATM methodology makes it more practical to apply an FNN to solve different problems. And

the ATM methodology further accelerates the performance over the GPU-FNN in some cases.

44

References

[1] Y. Caiand H. K. Kwan, “A fuzzy neural classifier for pattern classification,” in Proc. Int. Symp.
Circuits Systems, Chicago, IL, May 3-6, pp. 2367-2370, 1993.

[2] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. Syst.,
Man, Cybern., vol. 23, no. 3, pp. 665-685, May 1993.

[3] C.F. Juang and C.T. Lin, “An on-line self-constructing neural fuzzy inference network and its
applications,” IEEE Trans. Fuzzy System, vol. 6, no. 1, February 1998.

[4] D. Kukolj and E. Levi, “Identification of complex systems based on neural and Takagi—
Sugeno fuzzy model,” IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 34, no. 1, pp.
272-282, February 2004.

[5] N. K. Kasabov and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy inference system
and its application for time-series prediction,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp.
144-154, April 2002.

[6] P.P. Angelov and D. P. Filev, “An approach to online identification of Takagi—Sugeno
fuzzy models,” IEEE Trans. Syst., Man Cybern., B, Cybern., vol. 34, no. 1, pp. 484-498,
February 2004.

[7] P. P. Angelov and D. P. Filev, “Simpl_eTS: A simplified method for learning evolving
Takagi—Sugeno fuzzy models,” in Proc. Int. Conf. Fuzzy Syst., pp. 1068-1072 , 2005.

[8] H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, “Sequential adaptive
fuzzy inference system (SAFIS) for nonlinear system identification and prediction,” Fuzzy
Sets Syst., vol. 157, no. 9, pp. 1260-1275, 2006.

[9] P. Angelov and X. Zhou, “Evolving fuzzy systems from data streams in real-time,” in
Proc. Symp. Evolving Fuzzy Syst., pp. 29-35, 2006.

[10] C.F.Juangand Y. W. Tsao, “A self-evolving interval type-2 fuzzy neural network

45

with on-line structure and parameter learning,” IEEE Trans Fuzzy Syst., vol. 16, no. 6, pp.
1411-1424, December 2008.

[11] J. D. Rubio, “SOFMLS: Online self-organizing fuzzy modified leastsquares network,”
IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1296-1309, December 20009.

[12] J. A. M. HernandezmF.G. Castaneda and J. A. M. Cadenas, “An evolving fuzzy neural
network based on the mapping of similarities,” IEEE Trans Fuzzy Syst., vol. 17, no. 6, pp.
1379-1396, December. 2009.

[13] J.J. Rubio and J. Pacheco, “A stable online clustering fuzzy neural network for
nonlinear systems identification,” Neural Comput. Appl., vol. 18, no. 6, pp. 633-641,
2009.

[14] J. A. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, “Evolving classification of
agents’ behavior: A general approach,” Evolving Syst:, vol. 1, no. 3, pp. 161-171, 2010.

[15] J.J. Rubio, D. M. V’azquez, and J. Pacheco, “Backpropagation to train an evolving
radial basis function neural network,” Evolving Syst., vol. 1, no. 3, pp. 173-180, 2010.

[16] J. J. Rubio Avila, “Stability ‘analysis for-an online evolving neuro-fuzzy recurrent
neural network,” in Evolving Intelligent Systems: Methodology and Applications, P.
Angelov, D. P. Filev, and N. Kasabov, Eds. New York: Wiley-lIEEE Press, ch. 8, pp. 173—
198, 2010.

[17] C.F. Juang and T.C. Chen, “Speedup of implementation fuzzy neural networks with high-
dimensional inputs through parallel processing on graphic processing units,” IEEE Trans.
Fuzzy System, vol. 19,no. 4, August 2011.

[18] NVIDIA. “NVIDIA ‘s next generation CUDA compute architecture: Fermi,” Available:
http://www.nvidia.com.tw/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_A
rchitecture_Whitepaper.pdf

[19] NVIDIA. CUDA. (2011). [Online]. Available at

46

http://www.nvidia.com.tw/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com.tw/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

http://www.nvidia.com/object/cuda home new.html

[20] NVIDIA. “CUDA C Programming Guide,” Available: http://developer.nvidia.com/nvidia-

gpu-computing-documentation

[21] NVIDIA. “CUDA C best practices guide,” Available: http://developer.nvidia.com/nvidia-

gpu-computing-documentation

[22] K.S Kyong and K. Jung. “GPU implementation of neural network”, Pattern
Recognition, Vol. 37, Issue 6, pp. 1311-1314, 2004.

[23] X. Sierra-Canto,F. Madera-Ramirez and V. “Parallel training of a back-propagation
neural network using CUDA,” Proceedings - 9" International Conference on Machine
Learning and Applications, ICMLA 2010, pp 307-312, 2010.

[24] Mart'inez-Zarzuela, M., D"1az Pernas, F., D "1ez Higuera, J., Ant’on Rodr’iguez, M.
“Fuzzy ART neural network parallel computing on the gpu,” Sandoval, F. (ed.) IWANN
2007. LNCS, vol. 4507, pp. 463-470. Springer, Heidelberg, 2007.

[25] Machine Learning data set: “Attificial characters” Available:

http://archive.ics.uci.edu/ml/datasets/Attificial+Characters

[26] Machine Learning data set “p53 mutants” Available:

http://archive.ics.uci.edu/ml/datasets/Artificial+Characters

47

http://www.nvidia.com/object/cuda_home_new.html
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://archive.ics.uci.edu/ml/datasets/Artificial+Characters
http://archive.ics.uci.edu/ml/datasets/Artificial+Characters

