

應用多重區域條件式成組縮放法於快速傅利葉

轉換處理器之面積最小化技術

Area Minimization for FFT Processor Using Multi-Region

Conditional Block Scaling

研 究 生：陳柏霖 Student：Po-Lin Chen

指導教授：周景揚 Advisor：Jing-Yang Jou

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering and Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

September 2012

Hsinchu, Taiwan, Republic of China

中華民國一○一年九月

I

應用多重區域條件式成組縮放法於快速傅利葉轉換處理器

之面積最小化技術

學生：陳柏霖 指導教授：周景揚 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

快速傅利葉轉換處理器是正交分頻多工系統的計算核心，並且在過去幾十年間可以

找到許多研究資料。為了提升定字元長度傅利葉轉換處理器的訊號對量化雜訊比，動態

縮放法在執行運算時適應性地決定其縮放行為以避免不必要的精確度流失。當訊號對量

化雜訊比的要求提高時，傳統上是去增加字元長度以得到更高的精確度。然而增加字元

長度在面積上會付出許多代價，再者，有時候其實並不需要將精確度提升這麼多去滿足

要求。在這篇論文裡，我們提出了一個利用了條件式縮放法及成組縮放法的優點的動態

縮放法。此方法擁有非常經濟地使用面積去提升訊號對量化雜訊比的能力而不只是單純

地去增加字元長度。因此，此方法的目標是在滿足訊號對量化雜訊比的要求下得到最小

化的快速傅利葉轉換處理器的面積。實驗結果顯示在最佳的情形下，我們的方法相較於

原本的條件式縮放法可以對 8192點的快速傅利葉轉換處理器省下約 13% 的面積。

II

Area Minimization for FFT Processor Using Multi-Region

Conditional Block Scaling

Student：Po-Lin Chen Advisor：Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

The Fast Fourier Transform (FFT) processor is the key component of OFDM-base

systems, and many literatures of FFT can be found in the past decades. To improve the SQNR

in fixed-wordlength FFT, dynamic scaling methods adaptively determine the scaling behavior

in run time to avoid the unnecessary loss of data information. Traditionally, increasing the

wordlength is the way to acquire higher precision if the SQNR constraint is tighter. However,

the increased wordlength results in a large amount of area cost. Moreover, sometimes we do

not have to increase SQNR so much to meet the constraint. In this thesis, we proposed a

dynamic scaling scheme which utilizes the profits of conditional scaling method and block

scaling method. Our approach has the ability to economize the usage of area rather than

increase the wordlength for SQNR improvement and the target is to minimize the area of FFT

under the SQNR constraint. Experimental results show that our approach can reduce the area

cost by about 13% in the best case for 8192-point FFT as compared to the existing conditional

scaling method.

III

Acknowledgements

I would like to express my sincere gratitude to my advisors, Dr. Jing-Yang Jou for his

patient guidance and valuable suggestion during these years. I am also grateful to Dr.

Juinn-Dar Huang for his help on my research. Besides, I have many thanks to my seniors

Bu-Ching Lin, Yung-Chun Lei and my lab-mate Chuang-Ren Yang for their gentle teaching,

directing, and beneficial discussion. Moreover, I greatly appreciate all members of NCTU

EDA Lab. All of you are so nice that I will remember the happy time during the past two

years with you. Finally, I wish to give my deepest acknowledgements to my family and my

girlfriend, Pei-Chen Wu for their love, support, and encouragement.

IV

Contents

摘 要………………………….....…………………………………………………………..I

ABSTRACT .. II

Acknowledgements .. III

Contents………………………………………………………………………………………IV

List of Figures ... VI

List of Tables ... VIII

Chapter 1 Introduction ... 1

Chapter 2 Preliminaries ... 4

2.1 The FFT Algorithms ... 4

2.1.1 Basic Concepts of FFT Algorithms .. 4

2.1.2 Radix-2 DIT FFT Algorithm .. 6

2.1.3 Radix-4 DIT FFT Algorithm .. 8

2.1.4 Radix-r DIT FFT Algorithm .. 9

2.2 The FFT Architectures.. 9

2.2.1 Memory-Based Architectures ... 9

2.2.2 Pipeline-Based Architectures ... 10

2.3 Scaling Operation ... 11

2.4 Scaling Method ... 14

2.4.1 Forced Scaling .. 14

2.4.2 Block Floating Point Scaling .. 15

2.4.3 Conditional Scaling .. 17

Chapter 3 Motivation ... 20

3.1 Multi-Region Detection .. 20

3.2 Convergent Block Scaling .. 21

3.3 Our Strategy .. 23

3.4 Problem Formulation .. 23

V

Chapter 4 The Proposed Approach .. 24

4.1 Scheduling of Butterfly Computation... 24

4.2 Multi-Region Conditional Block Scaling ... 25

4.2.1 Region Detector .. 27

4.2.1.1 Circular-Type Detector .. 27

4.2.1.2 Square-Type Detector .. 31

4.2.2 Overflow Predictor ... 33

4.2.3 Exponent Unit ... 36

4.3 Restricted Number of Blocks ... 38

Chapter 5 Experimental Results .. 40

5.1 The Solution Generated by MRCBS .. 41

5.1.1 Performance Pair of the Forced Scaling FFT ... 42

5.1.2 Improvement from Multi-Region Detection... 42

5.1.3 Improvement from Convergent Block Scaling ... 43

5.1.4 Performance Pair Combination .. 45

5.2 Area Minimization under SQNR Constraint .. 47

Chapter 6 Conclusions and Future Works ... 50

References .. 51

VI

List of Figures

Fig. 1 Simplified architecture of OFDM system .. 1

Fig. 2 Symmetric property of twiddle factor .. 5

Fig. 3 First stage of the DIT FFT algorithm for 8-point FFT... 6

Fig. 4 The butterfly unit of a radix-2 DIT FFT algorithm.. 7

Fig. 5 The reorganized signal flow graph of the 8-point DIT FFT algorithm 8

Fig. 6 A simple architecture of memory-based FFT .. 10

Fig. 7 The R2SDF architecture for 16-point pipeline-based FFT .. 11

Fig. 8 An example of scaling operation ... 12

Fig. 9 An example of scaling operation with scaling flag ... 13

Fig. 10 The area occupancy of each component in memory-based 16-bit FFT 13

Fig. 11 The architecture of the forced scaling method ... 14

Fig. 12 Floating point representation ... 15

Fig. 13 An example of 8-point FFT with 4 blocks BFP scaling .. 16

Fig. 14 A data block example with block size = 4 ... 16

Fig. 15 The architecture of the BFP scaling method .. 16

Fig. 16 The architecture of the conditional scaling method ... 17

Fig. 17 The particular region of the complex plane in conditional scaling method 18

Fig. 18 The complex plane with (a) two regions (b) four regions are divided 21

Fig. 19 An example of 8-point FFT with convergent block scaling 22

Fig. 20 Detection of the two data in the same butterfly of next stage 25

Fig. 21 The architecture of the proposed MRCBS ... 26

Fig. 22 The regions of the circular-type detectors (a) C2 (b) C4 (c) C6 28

Fig. 23 The simulation result of SQNR with different t-1 .. 30

Fig. 24 The block diagram of the circular-type detector .. 30

Fig. 25 The regions of the square-type detectors (a) S2 (b) S4 (c) S6.................................. 32

Fig. 26 The simulation result of SQNR with different h-1 ... 32

Fig. 27 The block diagram of the square-type detector ... 33

Fig. 28 Overflow Prediction based on the region information of the inputs........................ 34

Fig. 29 The block diagram of the overflow predictor .. 35

Fig. 30 The exponent array with the exponent unit ... 36

Fig. 31 The block diagram of the exponent unit .. 37

VII

Fig. 32 The usage of the exponent array for convergent block scaling with 8 blocks 37

Fig. 33 The convergent block scaling with (a) Bmax = 1 (b) Bmax = 2 (c) Bmax = 4 38

Fig. 34 The SQNR and area cost with different Bmax ... 39

Fig. 35 The PP
T
s for 1024-point FFT generated by MRCBS .. 46

Fig. 36 The PP
T
s for 2048-point FFT generated by MRCBS .. 46

Fig. 37 The PP
T
s for 4096-point FFT generated by MRCBS .. 47

Fig. 38 The PP
T
s for 8192-point FFT generated by MRCBS .. 47

VIII

List of Tables

Table 1 The value of the thresholds in circular-type detectors .. 29

Table 2 The value of the thresholds in square-type detectors .. 31

Table 3 The value of region information P and Q according to the data locations 34

Table 4 Scaling decision according to the summation of P and Q 35

Table 5 The PP
Base

 determined by (N, WL) (a)SQNR
Base

 (dB) (b)AREA
Base

 (µm
2
) 42

Table 6 The xSQNR (dB) of the PPx

 for (a)1024 (b)2048 (c)4096 (d)8192 -point FFT ... 43

Table 7 The xAREA (µm
2
) of the PPx

 ... 43

Table 8 The PPy

(dB, µm

2
) for (a) 1024 (b)2048 (c)4096 (d) 8192 -point FFT 45

Table 9 The solutions under the SQNR constraints for 1024-point FFT 48

Table 10 The solutions under the SQNR constraints for 2048-point FFT 49

Table 11 The solutions under the SQNR constraints for 4096-point FFT 49

Table 12 The solutions under the SQNR constraints for 8192-point FFT 49

1

Chapter 1

Introduction

In recent years, research and development on high-data-rate wireless communications

have attracted great attention. Orthogonal frequency-division-multiplexing (OFDM) is the

modulation technique which is a favorable choice for many new and emerging broadband

communication applications, such as local area networks (WLAN) [1], high definition

television (HDTV) [2], digital video broadcasting-terrestrial (DVB-T) [3], and digital audio

broadcasting (DAB). The simplified architecture of OFDM system is shown in Fig.1.

Fig. 1 Simplified architecture of OFDM system

In those applications, Fast Fourier Transform (FFT) is the most widely used algorithms for

calculating the Discrete Fourier Transform (DFT) because of its efficiency in reducing

computation time. Therefore, it is one of the most important processing blocks to meet the

design constraints. In [4], the authors showed that in such high-data-rate systems, the most

computationally intensive part is the FFT core. Therefore, there have been many literatures

reported on the design of FFT processors nowadays.

2

Based on the hardware cost and the required throughput, there are two main categories of

FFT architectures. One is called memory-based architectures, which consist of a butterfly unit

and certain number of memory blocks. The other is called pipeline-based architecture, which

consists of multiple stages to provide higher throughput. In general, memory-based

architectures are suitable for long-size and low hardware design [5]. And pipeline-based

architectures are feasible for short-size and high throughput design. In this thesis, we focus on

the long-size FFT design with memory-based architecture where the wordlength WL of the

output in every stage is the same as that of the input.

Taking the practical design into consideration, the precision of FFT module in terms of

Signal to Quantization Noise Ratio (SQNR) is a significant design factor of system

performance. In reality, an FFT cannot be implemented exactly since the algorithm is

implemented by fixed-point arithmetic. All signals and coefficients have to be represented

with finite number of bits in binary format. Therefore, conducting the addition and subtraction

operations in butterfly unit may cause overflow during the FFT computations. For this reason,

the wordlength should be increased stage by stage to avoid possible overflow after butterfly

computations. The increasing wordlength can be used to avoid accuracy loss and increase the

precision [6], but the hardware cost and the critical-path delay are increased accordingly and it

is unsuitable for memory-based architecture. Consequently, rounding or truncation operations

introduce noise which is referred as quantization noise and result in accuracy loss.

Furthermore, the wordlength may also affect the accuracy. Longer wordlength may be used to

achieve better SQNR with larger area, and shorter wordlength may be chosen to maintain a

lower hardware cost at the sacrifice of the precision. Therefore, many scaling methods have

been proposed to meet SQNR requirement with the fixed-wordlength constraint [7-12].

Oppenheim et al. [7] proposed a basic scaling method which scales the results by a factor

of 1/2 for each stage. That is, the results are divided by two after each butterfly calculation.

Since it is trivial to implement, the approach is the simplest but the least accurate scaling

3

method called the forced scaling method. Another is called the Block Floating Point (BFP)

scaling [11] which employs intermediate buffers to store the output data, and detects the

largest value to decide the output format appropriately which gets better SQNR. However, this

kind of method results in a large amount of area overhead and power consumption. Besides,

there is another approach which is called conditional scaling [13, 14]. The idea of the method

is to predetermine whether to scale in next stage according to the magnitude of the results in

current stage. That is to say, after each butterfly computation, the magnitudes of the results are

compared to a threshold and the results can be written back to the memory instantly after the

comparisons. After all comparisons are finished, it will be judged that overflow will occur in

next stage if one or more values exceed 0.5. Thus, after each computation of the butterfly in

next stage, the results will be scaled to avoid overflow. Although the conditional scaling

method acquires less SQNR than BFP, it saves much area since it does not need the buffers to

store internal results.

In this thesis, we propose a dynamic scaling method combining the concepts of BFP

scaling and conditional scaling with memory-based architecture to acquire higher SQNR in an

area-efficient way. Our method not only improves the previous conditional scaling method to

predict overflow more precise but also modifies BFP scaling to divide data into blocks

appropriately. Moreover, our method can minimize the area with given FFT size and SQNR

constraint.

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review the

fundamentals of FFT algorithms, architectures and previous scaling methods. Chapter 3

explains the motivation of this work. The proposed method is demonstrated in Chapter 4. Our

experimental results are shown in Chapter 5. Finally, Chapter 6 gives the concluding remarks

of this thesis.

4

Chapter 2

Preliminaries

In this chapter, we will review basic FFT algorithms, FFT architectures, the scaling

considerations and previous scaling methods in FFT hardware design.

2.1 The FFT Algorithms

The Discrete Fourier Transform (DFT) plays an important role in the region of digital

signal processing (DSP) and communications. However, the computation complexity of

directly evaluating an N-point DFT is O(N
2
), which costs a lot amount of computation time

and power consumption. Therefore, a fast algorithm to evaluate DFT is required.

FFT algorithm is a decomposition of an N-point DFT into successively smaller DFT

transform which was proposed by Cooley and Turkey [15] in 1965. It is very popular because

it reduces the complexity of DFT from O(N
2
) to 2(log)O N N , and makes it suitable for VLSI

implementation due to the regularity of the algorithm. Besides, many similar algorithms have

been developed to further reduce the computational complexity of FFT [16-18]. Owing to

these algorithms, FFT computes the DFT efficiently and produces exactly the same result as

evaluating the DFT equation.

2.1.1 Basic Concepts of FFT Algorithms

FFT algorithms are approaches to evaluate DFT. The formulation of N-point DFT is

defined as

1

0

() () , 0, 1, ..., 1
N

nk

N

n

X k x n W k N

 (2.1)

5

Where X(k), x(n) and
nk

NW are complex numbers. X(k) is in frequency domain, and x(n) is in

time domain. The coefficient
nk

NW is defined as (2.2) and is called the twiddle factor which

the symmetric property is shown in Fig. 2.

2
2 2

cos() sin()
j nk

nk N
N

nk nk
W e j

N N

 (2.2)

Decimation-in-time (DIT) FFT algorithm is to decompose the input sequence x(n) into

smaller and smaller sequence. Alternatively, decimation-in-frequency (DIF) FFT algorithm is

to decompose the output sequence X(k) in the same way. Both of these two algorithms are

similar in nature, the DIT FFT algorithm is chosen to illustrate in this thesis.

 Fixed-radix algorithms include the radix-2, radix-4, radix-8, etc. We will review the

radix-2 and radix-4 DIT FFT algorithms and the general form, that is, radix-r DIT FFT

algorithm in the following subsections. Among them, the radix-2 algorithm has the simplest

form and is popular in FFT processor design. In this thesis, we implement radix-2 DIT FFT

algorithms to explain our thought.

Fig. 2 Symmetric property of twiddle factor

6

2.1.2 Radix-2 DIT FFT Algorithm

The raidx-2 algorithm is using the divide-and-conquer approach which divides the

problem of N-point FFT by a factor of 2, where N is power-of-2. Radix-2 DIT FFT Algorithm

divides x(n) into its even-numbered points and odd-numbered points, and uses 2r to substitute

n for n is even, 2r+1 to substitute n for n is odd.

2 2

2 2

1 1

2 12

0 0

1 1

2 2

0 0

() (2) (2 1)

 (2) (2 1)

N N

N N

r krk

N N

r r

rk k rk

N N N

r r

X k x r W x r W

x r W W x r W

 (2.3)

Since
2

2N NW W , (2.3) can be rewritten to (2.4).

2 2

1 1

2 2

0 0

() (2) (2 1)

N N

rk k rk

N N N

r r

X k x r W W x r W

 (2.4)

 Each of the sums in (2.4) is recognized as an N/2-point DFT. As shown in Fig. 3, the first

term is the N/2-point DFT of the even-numbered points of the original sequence, and the

second term is the odd-numbered point of the original sequence.

Fig. 3 First stage of the DIT FFT algorithm for 8-point FFT

7

Then we divide the original k into two new parts k and 2
Nk , for k = 0, 1, …, 2

1N .

Since
 2

2/2 1
N

N
jN j

NW e e

 and

2 /2r N r N r

N N N NW W W W , (2.4) can be rewritten to

(2.5). Through log2N-time recursive decompositions, the complete radix-2 DIT FFT algorithm

can be obtained.

2
1

2

0

() (2) (2 1)

N

k r k

N N

r

X k x r W x r W

2
1

2

0

() (2) (2 1)
2

N

k rk

N N

r

N
X k x r W x r W

 (2.5)

The decomposition can be mapped to a butterfly unit which is an essential arithmetic

component in an FFT processor shown in Fig. 4. The butterfly unit operates complex

multiplications, additions and subtractions. Fig. 5 illustrates the reorganized signal flow graph

of 8-point radix-2 DIT algorithm. From (2.1), we know that the computational complexity of

DFT is N
2
. However, after the decompositions of FFT, the computational complexity of

multiplications is 22
(log 1)N N and the complexity of additions and subtractions is

2logN N , which is much less than the original DFT equation.

Fig. 4 The butterfly unit of a radix-2 DIT FFT algorithm

8

Fig. 5 The reorganized signal flow graph of the 8-point DIT FFT algorithm

2.1.3 Radix-4 DIT FFT Algorithm

Radix-4 FFT algorithm uses 4-point DFT to decompose N-point FFT. The original input

sequence of radix-4 FFT algorithm is divided into four parts, x(4r), x(4r+1), x(4r+2), and

x(4r+3), where r = 0, 1, 2, …, 4
1N . Substituting these four subsequence for x(n) into (2.1)

and dividing X(k) into four parts, we can get (2.6).

4

4

4

1

2 3

4

0

1

2 3

44

0

1

2 3

2

0

 () (4) (4 1) (4 2) (4 3)

() (4) (4 1) (4 2) (4 3)

() (4) (4 1) (4 2) (4 3)

N

N

N

k k k rk

N N N N

r

k k k rkN
N N N N

r

k k kN
N N N

r

X k x r W x r W x r W x r W

X k x r jW x r W x r jW x r W

X k x r W x r W x r W x r W

4

4

1

2 33
44

0

() (4) (4 1) (4 2) (4 3)

N

rk

N

k k k rkN
N N N N

r

X k x r jW x r W x r jW x r W

 (2.6)

Although the complexity of multiplications in the radix-4 FFT algorithm is equal to

3
44

(log 1)N N , which is lower than radix-2, the complexity of additions and subtractions is

still 2logN N , which is equal to that in the radix-2 FFT algorithm.

9

2.1.4 Radix-r DIT FFT Algorithm

Larger r can much further reduce the complexity of multiplications. For general cases, we

derive the radix-r DIT FFT algorithm, where r is 2
S
, and S is any positive integer. For N-point

FFT, the general form is

11

0 0

() ()
N rr

pq pk nk

r N N r

p n

qN
X k W W X rn p W

r

 (2.7)

where q = 0, 1, …, r-1. And the complexity of multiplications is
(1)

(log 1)
S N

SS
N

 .

2.2 The FFT Architectures

The FFT is one of the most widely used DSP algorithms. Generally speaking, there are

two kinds of popular FFT architectures to implement FFT algorithms. One is memory-based

architectures and the other is pipeline-based architectures. Memory-based architectures are

suitable for low throughput, low hardware cost, and long-size FFT designs whose size is not

smaller than 512 [5]. On the other hand, pipeline-based architectures are suitable for high

throughput, high hardware cost and short-size FFT designs. In this thesis, we focus on

long-size FFT design with memory-based architecture. The details of those two architectures

are introduced in the following subsections.

2.2.1 Memory-Based Architectures

 The memory-based architecture is the simplest FFT architecture. It consists of one

memory device and one radix-r processing element (PE) which contains one or few butterfly

units to operate all computations in the signal flow graph. The basic components of

memory-based architecture are shown in Fig. 6. Data are read from the memory and

computed in the PE. After the computations, the output data are written back to the memory

10

and occupy the same storage locations as input data. For radix-2 FFT algorithm, there are

2log N stages for the N-point FFT computations, and the number of butterflies in the PE can

be chosen freely to meet the throughput rate requirement. The generalized conflict-free

addressing schemes for memory-based FFT architectures presented in [19, 20] solve the

problem of the memory bandwidth. In this work, we implement the memory-based FFT

architecture with one butterfly unit in the PE block for simplification.

Fig. 6 A simple architecture of memory-based FFT

2.2.2 Pipeline-Based Architectures

The pipeline-based FFT architecture is regular, modular, local connection, and often

adopted for high-throughput-rate applications with high hardware complexity [21]. It can be

generally divided into two kinds of architectures depending on the design of register. One is

the Single-path Delay Feedback (SDF) architecture [22, 23] and the other is the Multi-path

Delay Commutator (MDC) architecture [24]. SDF architecture has higher hardware usage and

lower hardware cost. On the other hand, MDC architecture has higher throughput than SDF

architecture. Here we only introduce the radix-2 SDF architecture as below since we do not

take the pipeline-based architecture into account in this work.

11

Take the radix-2 SDF (R2SDF) architecture as an example and the architecture is shown

in Fig. 7. The R2SDF uses the registers efficiently by storing the output of the butterfly into

the shift registers. When doing addition operation, the butterfly unit passes the output to the

next stage. On the contrary, the butterfly unit stores the output into the shift registers when

doing subtraction operation. Thus, there is only one output passes to the next stage in each

cycle, and the utilization of the memory is 100%.

Fig. 7 The R2SDF architecture for 16-point pipeline-based FFT

2.3 Scaling Operation

Butterfly unit in PE shown in Fig. 4 operates on two complex numbers and produces two

new complex numbers which replace the original ones in the sequence. Let Xm(p) and Xm(q)

be the original complex numbers in tage m, the new pair Xm+1(p) and Xm+1(q) in stage m+1 are

given as (2.8).

1

1

() () ()

() () ()

nk

m m m N

nk

m m m N

X p X p X q W

X q X p X q W

 (2.8)

The coefficient
nk

NW is the twiddle factor and substantially is the complex root of unity.

For this reason, (2.9) shows that the multiplication with twiddle factor in the butterfly does

not change the magnitude of the result. Hence, the magnitude of outputs can never be larger

than twice the maximum magnitude of inputs as (2.10) explains.

12

() () ()nk nk

m N m N mX q W X q W X q (2.9)

 1() () () () () 2 max () , ()nk

m m m N m m m mX p X p X q W X p X q X p X q (2.10)

 From (2.10), we know that the range of data is increased from stage to stage. Thus, there

is possibility of overflow during computation of butterflies if the data wordlength does not

increase. Naturally, increasing the wordlength is a solution to avoid possible overflow [6].

However, the increased wordlength requires a larger storage to store the data which increases

both area and power. Moreover, increasing wordlength is unacceptable for memory-based

FFT architecture because the wordlength is fixed and cannot allow different wordlength from

stage to stage. Therefore, it needs to scale the data for overflow prevention with the

fixed-wordlength constraint.

Basically, the principle of scaling operation is dividing the data value by a factor of 2

before written back to the storage. That is, the data is shifted right by one bit after butterfly

computations to avoid overflow as shown in Fig. 8.

Fig. 8 An example of scaling operation

However, the truncation in scaling operation introduces noise and influences the accuracy.

Longer wordlength will be needed to meet the required performance. As a result, the decision

of whether to scale affects the accuracy very much. As shown in Fig. 9, a one-bit scaling flag

is being defined to decide whether to truncate the least significant bit of the result or not. If

the scaling flag is set to one, the result of the butterfly will be scaled. Otherwise, the result

13

keeps its original value without scaling. When the scaling operation is finished, results are

written back to the memory device.

Fig. 9 An example of scaling operation with scaling flag

As we know, the wordlength affects the area and precision. Longer wordlength achieves

higher precision but costs more chip area. The memory storage dominates the area of the FFT

core as Fig. 10 shows. Besides, if long-size FFT is chosen, longer wordlength is needed to

maintain the same required precision [8]. Therefore, it is demanded to design an efficient

scaling algorithm in FFT which satisfy the SQNR requirement with shorter wordlength.

Fig. 10 The area occupancy of each component in memory-based 16-bit FFT

14

2.4 Scaling Method

The scaling method with a constant scaling flag of each stage is called static scaling

method such as forced scaling [7] where the scaling flag is always set to one. Conversely, the

scaling method determining the scaling factor of each stage at run-time is called dynamic

scaling method, like BFP scaling [12] and conditional scaling [13, 14]. Each kind of scaling

method has its advantages and disadvantages respectively. Static scaling is the simplest in

hardware implementation as well as dynamic scaling greatly improves accuracy by ultimately

avoiding unnecessary truncations. We will introduce these scaling schemes in

fixed-wordlength FFT design as follows.

2.4.1 Forced Scaling

Oppenheim [7] proposed a scaling method which is the easiest to understand and the

simplest to implement. The idea of this algorithm of preventing overflow is to scale the results

after each butterfly for each stage, as shown in Fig. 11. That is, the scaling flag in each stage

is set to one. This kind of scaling strategy is called forced scaling. In such case, the hardware

is very simple to implement but the SQNR may not be very good. Actually, most data values

need not to be scaled in every stage to avoid overflow. As a result, precision is unnecessarily

lost by forced scaling method.

Fig. 11 The architecture of the forced scaling method

15

2.4.2 Block Floating Point Scaling

The floating point representation is shown in Fig. 12. The bit width of the floating point

contains exponent bits, mantissa bits, and one sign bit. The magnitude of the value which is

stored in the mantissa part is always smaller than one, and the value in the exponent part is an

integer which is larger or equal to zero. BFP scaling method [12] uses a shared-exponent

concept which groups the floating-point data into blocks with a common exponent to reduce

the wordlength. An example of BFP with four blocks is shown in Fig. 13 where the capital

letter “E” stands for the shared exponent of each block. The data only keep their own sign bit

and mantissa bits, and each block has its own shared exponent as shown in Fig. 14. And the

block size and the number of blocks are fixed through all stages.

Fig. 12 Floating point representation

Compared to the regular scaling such as forced scaling, BFP acquires higher performance

of SQNR by avoiding unnecessary loss of data information. The idea is to scale only if we

found the necessity of that. Thus, BFP employs intermediate buffers to store the output data of

a certain block, as shown in Fig. 15. After all data in this block are computed and stored into

the buffer, a detector will detect them to find out the largest value. If the magnitude of the

largest value is larger than one, the scaling flag of this block is set to one. Then all the data are

scaled and written back to the memory as the shared exponent is increased by one. On the

other hand, if the largest value does not cause overflow, scaling will not be performed.

Therefore, the least significant bit for each data value is preserved.

16

Fig. 13 An example of 8-point FFT with 4 blocks BFP scaling

Fig. 14 A data block example with block size = 4

Fig. 15 The architecture of the BFP scaling method

Unlike the forced scaling, BFP scales data only when it is necessary. By adaptively

determining the scaling flag to avoid accuracy loss, BFP acquires better precision than forced

scaling method. Hence, BFP uses shorter wordlength to achieve the required SQNR and saves

the area of memory device. Unfortunately, the inputs of the butterfly in BFP scaling method

17

will come from different data blocks, that is, their exponent may not be the same. Therefore,

the floating point arithmetic of addition and subtraction operation needs an alignment unit to

align two input data. It needs to shift the mantissa bits to represent them with the same

exponent. Since the exponent bits have to be checked and mantissa bits have to be shifted, it

will be more complicated than fixed point arithmetic in hardware implementation. Moreover,

the buffer accesses and data detections introduce the additional processing latency and power

consumption. Also, the intermediate buffers, detectors and the storage of shared exponents

cause a large amount of additional area overhead.

2.4.3 Conditional Scaling

Instead of storing results in the buffers and detecting the largest value to decide the scaling

flag, the conditional scaling method using the concept of prediction is another way to avoid

overflow but saves the area overhead of buffers. Fig. 16 shows the architecture of conditional

scaling method. In details, conditional scaling predetermines the scaling flag of current stage

by the detections in previous stage. Then the detections in current stage will predetermine the

scaling flag of next stage. Therefore, conditional scaling does not need buffers to store

intermediate results. Moreover, there is only one shared-exponent in conditional scaling

because it uses the fixed point representation. As a result, the alignment unit is unnecessary.

We can directly operate additions and subtractions on the two inputs of butterfly.

Fig. 16 The architecture of the conditional scaling method

18

The criterion for deciding the scaling flag of next stage is based on the observation of

whether any value in current stage is outside a particular region on the complex plane [13].

Besides, (2.10) tells us that 1 1() , () () ()m m m mX p X q X p X q . If ()mX p and

()mX q are both smaller than 0.5, 1()mX p and 1()mX q will be smaller than one.

Therefore, the region with which to compare the data in current stage is the circle of radius

0.5. As shown in Fig. 17, the circle of radius 0.5 is the idealized threshold for deciding the

scaling flag of next stage.

Fig. 17 The particular region of the complex plane in conditional scaling method

The magnitudes of the results are checked during the butterfly computations. If all output

data in current stage are inside the region with radius 0.5, it guarantees that there will not be

any data with magnitude larger than one to cause overflow in next stage. Thus, the scaling

flag will not be set and the exponent will be kept. On the contrary, if there is at least one data

outside the circular region with radius 0.5, it may cause overflow through butterfly

computation in next stage. As a result, when computing the butterflies of next stage, the

results should be scaled and the exponent should be increased by one.

19

Because conditional scaling predicts the necessity of scaling, the SQNR performance of

conditional scaling is much higher than that of forced scaling but a little lower than that of

BFP scaling. However, calculating the magnitude of a complex number needs to compute the

square of real part and imaginary part. The required multipliers and adders will cost area.

Alternatively, for hardware concern, the maximal cyclic quadrilateral which is the square with

dotted line in Fig. 17 is chosen to define the particular region [14]. As a result, only

comparators are needed to detect the region information of data.

In this thesis, we will combine the concepts of BFP scaling method and the conditional

scaling method and utilize the profits of them.

20

Chapter 3

Motivation

To satisfy the required SQNR performance, we will choose a scaling approach which

produces SQNR higher enough with less area. However, once the constraint is tighter and the

original design does not satisfy the requirement, using longer wordlength is the only way to

further increase the accuracy. Based on the experience of simulations, increasing wordlength

by one will acquire about 6 dB improvement for SQNR but about 6% area penalty in addition.

However, sometimes we do not have to increase SQNR so much to meet the constraint. Thus,

by the improvements of conditional scaling and modifications of block floating point scaling,

we will acquire SQNR improvement in demand with the corresponding area overhead.

3.1 Multi-Region Detection

With the approaches of [13, 14], the complex plane has been divided into two regions to

detect the region information of the outputs of the butterfly. Traditional conditional scaling

method avoids overflow in current stage by ensuring the data in previous stage are all in the

internal region with radius 0.5. However, overflow comes from the addition and subtraction

operations in butterfly which result in the growth of data magnitude. And the computation

only has relations with the two input data. That is to say, restricting all data in the same region

to avoid overflow is excessively severe. In order to avoid overflow, we only need to ensure

that () ()m mX p X q is smaller than one as (2.10) says.

We assume that we are now computing butterflies in stage m-1, and the complex plane is

divided into two regions as Fig. 18(a) shows. The Xm(q) is inside R0 and Xm(p) is outside R0

and they are both the inputs of the same butterfly in stage m. In previous conditional scaling

21

method, it is judged that overflow will be produced in stage m and the scaling flag of stage m

will be set. However, overflow can also be avoided as long as ()mX q is small enough.

Therefore, we try to divide the complex plane into more regions. Fig. 18(b) shows the idea of

which four regions are divided. In such case, Xm(p) is inside R+1 and Xm(q) is inside R-1 where

the radius of R+1 is 0.7 and the radius of R-1 is 0.2. By ensuring the summation of the radii of

R+1 and R-1 is less than unity, we can judge that the butterfly computation in stage m which

operates on these two data will not cause overflow. That is to say, dividing the complex plane

into more regions will further prevent the unnecessary scaling operations and produce better

SQNR performance. And we can expect that the more regions the complex plane is divided,

the higher precision can be obtained.

 (a) (b)

Fig. 18 The complex plane with (a) two regions (b) four regions are divided

3.2 Convergent Block Scaling

The hardware of floating point arithmetic is more complicated than that of fixed point

arithmetic. As mentioned in 2.4.2, one part of the area overhead of BFP scaling method is the

alignment unit because the floating point representation is used. Since the inputs of butterfly

22

may come from different blocks and their exponent may be different, we cannot operate these

two mantissas directly without alignment. However, figuring out the larger exponent and

shifting the smaller mantissa introduces area and processing latency. If we want to save the

hardware of alignment unit, we must ensure that the two inputs of butterfly are come from the

same block which means their exponent is always the same one.

It can be observed in Fig. 5 that during the decomposition of FFT algorithms, a k-point

DFT in stage m will be separated to two k/2-point DFT in stage m+1. And the computation of

the first k/2 data in stage m+1 only depends on the first k/2 data in stage m. Thus we group the

data into blocks in a convergent way mentioned in [25] and the idea is shown in Fig. 19. In

first stage, all data are grouped into one block. That is, the number of blocks and shared

exponents in first stage are both equal to one. Afterwards, the number of blocks and shared

exponents are doubled as the size of the block is one half from stage to stage. In this way,

inputs of butterfly for each stage are surely come from the same block with the same

exponent.

Fig. 19 An example of 8-point FFT with convergent block scaling

23

Through the convergent block scheme, the data will be represented in different dynamic

ranges with different exponents so the SQNR is higher than forced scaling scheme where the

data are all in the same dynamic range. Besides, the number of blocks is a key factor for

SQNR improvement. Larger number of blocks results in better SQNR performance. However,

such kinds of block scaling methods require the additional area of storage to store the shared

exponents. By the way, since the conditional scaling is assumed that the data are all in the

same dynamic range with the same exponent, the convergent block scheme is naturally

suitable for implementation with conditional scaling in fixed point representation.

3.3 Our Strategy

We are informed that the SQNR performance can be improved by two ways. One is the

multi-region conditional scaling and the other is the convergent block scaling. Therefore, we

propose the multi-region conditional block scaling (MRCBS) method which combines these

two methods mentioned above to obtain many solutions of hardware architecture for SQNR

improvement. As a result, by searching those solutions, we can figure out the solution which

has the minimum area cost with the required SQNR performance.

3.4 Problem Formulation

Given FFT size and required SQNR, our goal is to minimize the area of memory-based

radix-2 FFT under the given SQNR constraint by applying our MRCBS method.

24

Chapter 4

The Proposed Approach

In this chapter, we present the proposed MRCBS method for memory-based FFT which

utilizes the profits of conditional scaling and the convergent block scaling to improve SQNR

performance. The first section describes the scheduling of the butterfly computation in order

to predict overflow precisely and save the additional storage. The second section illustrates

the MRCBS and its architecture. Finally, in the third section, we will discuss the MRCBS

with different number of blocks and the relationship between the number of blocks and the

performance of area and SQNR. MRCBS generates many solutions for improving SQNR, and

the purpose of this thesis is to find out the architecture of scaling method for FFT which meets

the SQNR requirement and has the smallest area.

4.1 Scheduling of Butterfly Computation

In order to precisely predict the overflow and prevent the unnecessary scaling, we should

detect the magnitude of the two data which are the inputs of the same butterfly in next stage.

As Fig. 20 shows where BU is abbreviated from butterfly unit, BU1 and BU2 are in current

stage and other two butterflies BU3 and BU4 are in next stage. In such case, X0 and X1 should

be detected overflow together because they are both the inputs of BU3. However, X0 is

computed by BU1 and X1 is computed by BU2. We cannot get them at the same time. Therefore,

when we get the results of BU1, we have to store them and wait for the results of BU2. For this

reason, we will schedule the computational order of butterfly computations to save the

required storage.

The concept of the scheduling is that when the computation of BU1 is finished, the

computation of BU2 is followed. After BU1 and BU2 are finished, X0 and X1 are both available,

25

we can predict overflow and determine the scaling flag for BU3. Fortunately, X2 and X3 are

both available as well. We can predict overflow for BU3 and BU4 simultaneously. That is,

while two butterflies are finished in current stage, we can predict two butterflies in next stage

smoothly. As a result, only four registers are required to store the results of BU1 and BU2 for

overflow predictions. When the predictions of BU3 and BU4 are finished and the scaling flags

are determined, those four registers can be reset for storing the results of other butterflies.

Furthermore, compared to the original order, just small extra control circuits are required to

schedule the computation of butterflies as we wish.

Fig. 20 Detection of the two data in the same butterfly of next stage

4.2 Multi-Region Conditional Block Scaling

Since the thought of conditional scaling is to predict the overflow and predetermine the

scaling flag for next stage, it does not need intermediate buffers to store the output data to

determine the scaling flag of current stage. Therefore, we develop the architecture for our

scaling method which is shown in Fig. 21. The memory block is the original part of the

traditional memory-based FFT architecture shown in Fig. 6 and there is one butterfly unit in

the PE block in our work. The detector is to detect the region information and the predictor is

to predict possible overflow. The shared exponents and the scaling flags of each block are

stored in the exponent array.

26

Fig. 21 The architecture of the proposed MRCBS

When evaluating the FFT, two data are read from the memory for each cycle and

computed in BU. The scaling flag predetermined in previous stage will be read from exponent

array to scale the results of butterfly in current stage. After computation of the butterfly is

finished, the results will be straightly written back to the memory. In the meanwhile, the

results are passed to the detector to define their region information by detecting their

magnitudes. Then the predictor receives the region information of the results from the

detector to judge whether overflow will occur in next stage or not. After the prediction is

finished, the predetermined scaling flags and the shared exponents of next stage will be stored

into the exponent array. Moreover, the detector and predictor are worked in parallel with the

computation of butterfly unit since the results of butterfly can be written back to the memory

without waiting for the results of them. Thus, such kind of architecture will not produce large

amount of processing latency. The details of detector, predictor, and exponent array will be

described in the following subsections.

27

4.2.1 Region Detector

Because we divide the complex plane into many regions, the overflow detector consists of

comparators in order to determine the region information of the data by comparing the outputs

of butterfly with several thresholds. The detector dividing the complex plane into many

circular regions with different radii is called circular-type detector. On the other hand,

dividing the complex plane into many square regions with different side lengths is called

square-type detector. Because the square region is the maximal cyclic quadrilateral of each

circular region, the area is smaller and the prediction is severer. As a result, the square-type

detector improves less SQNR than the circular-type one but increases less area.

The purpose of the multi-region detection is to handle the situation shown in Fig. 18

where Xm(p) is outside the internal region but Xm(q) is deeply inside and they are actually

overflow-free in next stage. Therefore, we should define an additional pair of regions that one

region is larger and the other is smaller. As a result, the case with larger Xm(p) and smaller

Xm(q) or vice versa will possibly be judged to be overflow-free. And that is why we divide the

complex plane into even number of regions. In our work, we divide the complex plane into

two regions, four regions, and six regions and implement circular-type and square-type

detectors respectively. That is, there are six different detectors in total with different area

overhead and different SQNR performance.

After the detection of the detector is finished, the region information which indicates the

region where the data is located will be output.

4.2.1.1 Circular-Type Detector

First we discuss the region detector which divides the complex plane into two regions as

Fig. 22(a) shows. This type of detector is named “C2”. The internal region R0 is defined as the

circle of radius 0.5 and the threshold t0 representing the radius of R0 is equal to 0.5.

28

Next we divide the complex plane into four regions. This type of detector is named “C4”.

Additional regions R-1 and R+1 are defined as shown in Fig. 22(b). The R-1 is the circle of

radius t-1 and R+1 is the annulus with inner radius t0 and outer radius t+1, and we have to ensure

that t-1 plus t+1 is less than one. Because the threshold t-1 is absolutely larger than the

magnitude of Xm(q) and t+1 is larger than that of Xm(p), the addition and subtraction operations

of those two complex data will not be larger than one to cause overflow. Therefore, once Xm(p)

is outside R0 but is inside R+1 while Xm(q) is inside R-1, it will be judged that the butterfly

computing Xm(p) and Xm(q) in next stage is overflow-free.

(a) (b)

 (c)

Fig. 22 The regions of the circular-type detectors (a) C2 (b) C4 (c) C6

29

Finally we further divide the complex plane into six regions as shown in Fig. 22(c) and

this type of detector is named “C6”. With the existed four regions on the complex plane in the

C4 detector, the regions R-2 and R+2 are defined additionally. In C6 detector, R-2 is the circle of

radius t-2, R+2 is the annulus with inner radius t+1 and outer radius t+2, and R-1 becomes the

annulus with inner radius t-2 and outer radius t-1. For the same idea in C4, the summation of t-2

and t+2 should also be less than one.

As mentioned above, we have known that t-k plus tk where k = 1 or 2 should be less than

one to avoid overflow. And if t-k is larger, tk will become smaller. In the meanwhile, the area of

R-k becomes larger as the area of Rk becomes smaller. Since our purpose is to avoid the

unnecessary scaling as accurate as possible, the area of the two regions should be larger and

the possibility of data in R-k should be equal to the possibility of data in Rk. As a result, we

have two conditions as (4.1) and (4.2) to determine the thresholds tk in detectors. And the

results of thresholds are shown in Table 1.

1k kt t (4.1)

 () = ()k kArea R Area R (4.2)

Table 1 The value of the thresholds in circular-type detectors

Here we sweep t-1 from 0 to 0.5 to simulate the SQNR performance and the result is

shown in Fig. 23. As we can see, SQNR is almost the highest when t-1 is equal to 0.375 and t1

is equal to 0.625 as we expect.

30

Fig. 23 The simulation result of SQNR with different t-1

Because the regions are all circles in the complex plane, we are required to calculate the

magnitude of the complex data by computing its summation of the square of the real part and

the imaginary part. As a result, multipliers, adders, and comparators are introduced which are

required to compare the thresholds as shown in Fig. 24. It is intuitive that C6 has the best

performance and the largest area of comparators since there are six thresholds to be compared

while C2 has the smallest area of comparators and the performance is relatively worst.

Fig. 24 The block diagram of the circular-type detector

31

However, the bit width BW of multipliers, adders and comparators influences the area and

the accuracy as well. That is to say, the arithmetic unit with longer bit width will produces

better accuracy and cost more area. In our work, we implement 10-bit comparators, BW-bit

multipliers, and 2*BW-bit adders where BW is an integer and can be chosen from 5 to 10.

4.2.1.2 Square-Type Detector

Although the circular-type region detectors make precise predictions, they cost a lot of

area for introducing the multipliers and adders. For hardware concern, there are alternative

ways which are the square-type region detectors [14]. That is, we can simplify those circular

regions to their maximal cyclic quadrilaterals. The square regions are described in Fig. 25. As

the circular-type detectors, “S2” is the square-type detector which divides the complex plane

into two square regions and “S4” is the detector dividing the complex plane into four square

regions. The detector dividing the complex plane into six squares is therefore named “S6”.

Because each square region shown in Fig. 25 is the maximal cyclic quadrilateral of the

circular region shown in Fig. 22, the thresholds in square-type detectors will be defined as

(4.3) where k = -2, -1, 0, 1, and 2. And the thresholds hk of the square-type detectors are listed

in Table 2.

2 2k kh t (4.3)

Table 2 The value of the thresholds in square-type detectors

32

(a) (b)

 (c)

Fig. 25 The regions of the square-type detectors (a) S2 (b) S4 (c) S6

Also we sweep h-1 from 0 to 0.354 to simulate the SQNR performance of S4-type detector.

And the result is shown in Fig. 26. The SQNR is almost the highest when h-1 is equal to 0.265

and h1 is equal to 0.442 as we expect.

Fig. 26 The simulation result of SQNR with different h-1

33

To detect the region information for the data in square-type detectors, we only need to

compare the absolute value of the real part and imaginary part with the half of the side lengths

of those squares. The block diagram of square-type detector is shown in Fig. 27. The only

difference between circular type and square type is that square type does not need the

multipliers and adders to calculate the magnitude. As a result, the circuits of the square-type

detectors are much simpler than the circuits of the circular-type detectors. However, the bit

width of the comparators influences the accuracy as we have mentioned. Thus, in our work

we implement BW-bit comparators where BW is an integer and can be chosen from 5 to 10.

Fig. 27 The block diagram of the square-type detector

4.2.2 Overflow Predictor

With the region information of the data come from the region detector, we will predict

overflow of the butterflies of next stage. As shown in Fig. 28, X0 and X2 are computed by BU1

as X1 and X3 are computed by BU2. After the computations of BU1 and BU2 are finished, we

will get the four results from X0 to X3. Then we will predict whether X4 to X7 may cause

overflow or not. Here we define two variables P and Q to represent the region information.

For the prediction of BU3, PBU3 is the region information of X0 and QBU3 is the region

34

information of X1. And for the prediction of BU4, PBU4 is the region information of X2 and

QBU4 is the region information of X3. The values of P and Q are decided according to the data

locations of X0 to X3. The region information is equal to k as the data is inside the region Rk

where k = -2, -1, 0, 1, and 2 as Table 3 shows.

Fig. 28 Overflow Prediction based on the region information of the inputs

Table 3 The value of region information P and Q according to the data locations

Taking the prediction of BU3 with the C6-type detector as an example, PBU3 is set to -2

while X0 is inside the region R-2 and QBU3 is set to 2 while X1 is inside the region R+2. As we

know, X4 and X5 will cause overflow if the summation of the magnitude of X0 and X1 is larger

than one. As a result, we will sum up the variable PBU3 and QBU3 and compare to a constant

zero. If the result of PBU3 plus QBU3 is larger than 0, it implies that the magnitude of X0 plus the

magnitude of X1 is larger than one and the outputs of the BU3 should be scaled to avoid

overflow. Table 4 shows the decisions of scaling which are based on the result of the

summation of P and Q.

35

Table 4 Scaling decision according to the summation of P and Q

The block diagram of the predictor is shown in Fig. 29. There are four registers to

temporarily store the region information. After the computation of BU1 in Fig. 28 is finished,

we store PBU3 and PBU4 and wait for the results of BU2. After BU2 is finished, we will get QBU3

and QBU4 and store them into the registers. While the four variables are getting ready, we will

calculate PBU3 plus QBU3 and PBU4 plus QBU4 and then compare the results to zero.

Fig. 29 The block diagram of the overflow predictor

36

Besides, there are two special flags in the predictor which memorize the scaling flags in

next stage. It is because that the convergent block scaling method will separate the data block

in current stage to two smaller blocks in next stage. Once the result of P plus Q in the new

smaller blocks is larger than zero, the special flag will be set and held. After the computations

of the data in a certain block are all finished, the two flags will determine the scaling flags of

the new two blocks and will be stored in the exponent array.

4.2.3 Exponent Unit

The block scaling method needs exponent units to store the shared exponents and the

scaling flags of the blocks. As shown in Fig. 30, the exponent units are stored in the exponent

array. Each exponent unit consists of a k-bit shared exponent and a one-bit scaling flag where

k is depending on the FFT size N and is equal to 2 2log log N .

Fig. 30 The exponent array with the exponent unit

The shared exponent is shared for all data of a certain block, and the scaling flag is to

decide whether to scale the results of the butterfly when the data in this block are being

computed. After all computations in one block are finished, the two new scaling flags and

shared exponents will be stored in the corresponding exponent units as shown in Fig. 31. If

the flag is set, the shared exponent will be increased by one. Otherwise, if the flag is unset, the

shared exponent will keep its original value.

37

Fig. 31 The block diagram of the exponent unit

As we know, each block has its own exponent unit. Here we define Bn as the tag of the

block and En as the tag of the corresponding exponent unit where n is an integer. If there are m

blocks, n is from 0 to m-1. Besides, during the computations of the convergent block scaling,

the block in current stage will be divided into two blocks in next stage. Therefore, after the

computations of the block Bx in stage s are finished, the new two shared exponents and

scaling flags will be stored in the exponent units Ex and Ey where y = x + m / 2
s
. The usage of

the exponent array for each stage is shown in Fig. 32.

Fig. 32 The usage of the exponent array for convergent block scaling with 8 blocks

38

4.3 Restricted Number of Blocks

As the convergent block scaling method we have mentioned, the dynamic scaling

method only scales when it is necessary to avoid the loss of accuracy. And the concept of

grouping data into several blocks improves the SQNR since there are lots of exponents to

represent the data with different dynamic range. Therefore, it is easy to expect that the larger

number of blocks will acquire higher precision. However, the convergent block scaling

method will divide one block into two blocks from the first stage to the last stage. That is, the

number of blocks and the area of the exponent storage will be doubled through one stage. For

an N-point FFT, there will be N/2 blocks in the last stage and N/2 exponent units are required.

As a result, it will cost a lot amount of storage. Therefore, we define Bmax = 2
s-1

 which is the

total number of blocks in convergent block scaling and the number of blocks is doubled until

the stage s. Fig. 33 shows the convergent block scaling with different Bmax.

(a) (b)

 (c)

Fig. 33 The convergent block scaling with (a) Bmax = 1 (b) Bmax = 2 (c) Bmax = 4

39

Taking the 8192-point 16-bit wordlength FFT with MRCBS as an example which uses

the S2-type detector with 10-bit comparators, the performance of SQNR and area are shown

in Fig. 34. It can be observed that the area of the storage is getting increased yet SQNR is

getting saturated while the Bmax is getting larger. It implies that in deeper stages, we are failed

to get the SQNR we expect even if we double the area of the exponent storage. As we can see,

if we divide the blocks until stage 11 which requires only 1024 exponent units, the area

overhead of exponent storage is only 1/4 of that we divide until stage 13. However, the SQNR

is just 0.13 dB lower than before. Thus, through doubling the number of blocks until a certain

stage rather than doubling the number of blocks incessantly until the last stage, we can

economize the usage of exponent storage to acquire the SQNR improvement we want.

Although the SQNR performance is not the ultimately highest if we restrict the number of

blocks, we can still get the acceptable SQNR and reduce area cost consequently.

Fig. 34 The SQNR and area cost with different Bmax

40

Chapter 5

Experimental Results

 The proposed MRCBS method is to generate many hardware solutions for SQNR

improvement and find out the one which meets the SQNR constraint with minimum area cost.

Here we define the performance pair (PP): (SQNR, AREA) which indicates the SQNR

performance with the corresponding area cost. Thus, each solution obtained by MRCBS has

its own PP defined as PP
T
: (SQNR

T
, AREA

T
) where the SQNR

T
 represents the total SQNR

performance and the AREA
T
 represents the minimized total area cost.

The PP
T
 is determined by the quintuple (N, WL, Type, BW, Bmax) where N is the given FFT

size and WL is the wordlength of storage from 14 bits to 18 bits. The Type indicates different

type of the detectors. Type = Cj implies the circular-type detectors and Type = Sj implies the

square-type ones where j = 2, 4, and 6. The Cj detector includes four multipliers with bit

width = BW, two adders with bit width = 2*BW and 2j comparators with fixed bit width = 10

while the Sj detector includes 2j comparators with bit width = BW. The BW can be chosen

from 5 to 10. And the total number of blocks Bmax can be 2
s-1

 where s is from 1 to log2N.

In this work, we choose radix-2 FFT for implementation, and the FFT size and SQNR

constraint are user defined. We present the FFT size N = 1024, 2048, 4096, and 8192 in our

experimental results as the SQNR constraint is in the range from 50 dB to 70 dB. Given the

FFT size, we apply MRCBS method and build some tables for PPs by simulations and

syntheses. And we will obtain many solutions by combining those tables. Consequently, for

the given FFT size, we can find out the solution among them which meets the SQNR

constraint and has the minimum area overhead. In addition to our MRCBS scheme, the

traditional forced scaling method [7] and the conditional scaling method [14] are implemented

as well and will be compared to our approach.

41

The fixed-point FFT model is built by C++, and the SQNR performance is obtained by

simulations with random input signals. And the circuit area is implemented with TSMC 90 nm

cell library and using Synopsys DesignWare to synthesize under 100MHz clock rate. Finally,

the platform for both C++ and Synopsys DesignWare are built in Intel dual Pentium Xeon at

2.53GHz with 50GB of main memory.

5.1 The Solution Generated by MRCBS

The MRCBS scheme improves the SQNR by two ways. One is dividing data into blocks

with additional exponent storage, and the other is adding the multi-region detector to the basic

memory-based FFT design proposed in [7] which is implemented with forced scaling.

Therefore, the total performance is the combinations of PP
+
 and the PP

Base
 as shown in (5.1).

And the operation of combining two PPs is shown in (5.2).

The PP
Base

: (SQNR
Base

, AREA
Base

) is the basic SQNR performance and original area cost

obtained by the traditional memory-based FFT. On the other hand, the PP
+
 is the SQNR

improvement and the additional area overhead obtained from the multi-region detection and

convergent block scaling. PPx

 : (xSQNR , xAREA) is the additional SQNR performance

obtained by the multi-region detection with the extra area cost of the detector and predictor.

And the PPy

: (ySQNR

, yAREA
) indicates the additional SQNR performance obtained by the

block scaling with the extra area cost of the exponent array. Therefore, we can obtain those

three performance pairs respectively and combine them to acquire the PP
T
s. We will present

the simulation results of these PPs in the following subsections.

PP PP PP PPT Base

x y

 (5.1)

1 2 1 2 1 2PP PP (,)SQNR SQNR AREA AREA (5.2)

42

5.1.1 Performance Pair of the Forced Scaling FFT

 We define the PP
Base

: (SQNR
Base

, AREA
Base

) which is the performance pair of the

traditional FFT design [7]. By SQNR simulation and hardware synthesis, the PP
Base

s are

shown in Table 5 which are determined by (N, WL).

(a) (b)

Table 5 The PP
Base

 determined by (N, WL) (a)SQNR
Base

 (dB) (b)AREA
Base

 (µm
2
)

5.1.2 Improvement from Multi-Region Detection

To know the effects on the performance of SQNR and area by the detector and predictor,

we fix the numbers of blocks Bmax = 1 and wordlength WL = 16 to get PPs. That is, those PPs

are determined by (N, WL = 16, Type, BW, Bmax = 1) by simulations and syntheses. Since we

want to realize the improvement of SQNR and area called PP sx

 produced by multi-region

detection compared to the traditional FFT, those PPs will be offset by PP
Base

s (N, WL = 16)

which can be obtained by Table 5. We present the sxSQNR for N = 1024, 2048, 4096 and

8192 in Table 6(a), (b), (c), and (d) respectively. Since the area of the detector and predictor

are all the same with different N, we only show the sxAREA of those PP sx

 once in Table 7.

By simulations, the xSQNR is getting saturated while BW is larger than 10, so we have BW

only from 5 to 10 to choose for six types of detectors.

43

 (a) (b)

 (c) (d)

Table 6 The xSQNR (dB) of the PPx

 for (a)1024 (b)2048 (c)4096 (d)8192 -point FFT

Table 7 The xAREA (µm
2
) of the PPx

5.1.3 Improvement from Convergent Block Scaling

To realize the relationship between total number of blocks Bmax and the performance of

area and SQNR, we fix BW = 10 and WL = 16 to get PPs by simulations and synthesis. Those

PPs will be offset by Bmax = 1 to obtain the additional SQNR and area cost produced by the

44

block scaling scheme with shared exponents which are defined as PP sy

. That is, the PPy

 is

obtained by (N, WL = 16, Type, BW = 10, Bmax). Table 8 (a), (b), (c), and (d) shows the

ySQNR of PPy

 for N = 1024, 2048, 4096 and 8192 respectively. Because the yAREA

consists of the exponent storage and the control circuits of exponent accesses, it only depends

on the Bmax and N. Therefore, we only show the yAREA
 once in the second row of each table.

The larger Bmax implies the more storage of the exponents so the area is larger. And the control

circuit accessing the exponent units is more complicated while N is larger, so yAREA
 of

8192-point FFT is larger than that of 1024-point with the same Bmax.

(a)

(b)

45

(c)

(d)

Table 8 The PPy

 (dB, µm

2
) for (a) 1024 (b)2048 (c)4096 (d) 8192 -point FFT

5.1.4 Performance Pair Combination

To get the result of total area and total SQNR performance PP
T
, we have to combine PPx

 ,

PPy

, and PP

Base
 as (5.1) shows. The PP

Base
 can be figure out in Table 5. And the PPx

 can be

obtained in Table 6 and Table 7 as PPy

 can be obtained in Table 8. Although WL in PPx

and PPy

 is fixed to 16, we found that the WL does not affect the results so much and assume

different WL will have the same results. As a result, given FFT size N, we will combine PPx

 ,

PPy

, and PP

Base
 with WL from 14 to 18 to get 5(WL) * 6(Type) * 6(BW) * log2N(Bmax) PP

T
s.

In these PP
T
s, there may be some ones producing the same SQNR

T
 but the AREA

T
s are

different. Therefore, we will delete the PP
T
 which has the larger AREA

T
 but lower SQNR

T
 to

46

reserve the irreplaceable PP
T
s. Consequently, in each 6 dB range, we have 40 PP

T
s to be

chosen to satisfy the SQNR constraint.

Besides, our PP
T
s include the solutions obtained by conditional scaling scheme in [14].

Those solutions are the special cases determined by (N, WL, Type = S2, BW = 10, Bmax = 1).

As shown in Fig. 35, Fig. 36, Fig. 37, and Fig.38, the black dots are the PP
T
s obtained by the

proposed MRCBS method, the gray diamonds are the solutions obtained by the scheme in

[14], and the triangles are the solutions obtained by the scheme in [7] which are the PP
Base

s for

N = 1024, 2048, 4096, and 8192.

Fig. 35 The PP
T
s for 1024-point FFT generated by MRCBS

Fig. 36 The PP
T
s for 2048-point FFT generated by MRCBS

47

Fig. 37 The PP
T
s for 4096-point FFT generated by MRCBS

Fig. 38 The PP
T
s for 8192-point FFT generated by MRCBS

5.2 Area Minimization under SQNR Constraint

In those irreplaceable PP
T
s for certain FFT size, the AREA

T
 is definitely larger while the

SQNR
T
 is higher. Therefore, we sort the PP

T
s by SQNR

T
 from small to large, and then search

the SQNR
T
 which is just satisfying the requirement. As a result, the PP

T
 we find out will be the

solutions which has the smallest AREA
T
.

Table 9, Table 10, Table 11, Table 12 show 8 different SQNR requirements with FFT size

N = 1024, 2048, 4096, and 8192, respectively. Under different constraints, the solutions will

tell us the required wordlength, the type of the detector, the bit width in the detector, and the

48

total number of blocks. The exact SQNR is obtained by simulations and is almost equal to the

the SQNR
T
 estimated by MRCBS method. And if previous work has area cost K, the area

reduction is derived by (K - AREA
T
) / K. Compared to the traditional FFT implemented with

forced scaling, our method can reduce the area cost by 12.61% for N = 1024 and 23.57% for

N = 8192 in the best case.

Besides, we know that conditional scaling has better performance compared to the forced

scaling. However, if the conditional scaling scheme just meets the constraint in some cases,

our method can reduce one bit of wordlength to save the area of memory storage. And if the

constraint becomes tighter so that the previous conditional scaling scheme has to increase one

bit to meet the constraint, our method will uses more blocks or more precise detector to meet

the requirement and still maintain the wordlength. Therefore, we will reduce 2 bits of

wordlength. That is, with larger-size FFT, the area occupancy of 2-bit memory wordlength

will become larger. As we can see, we can reduce the area cost by 6.34% for N = 1024 but

reduce 12.84% for larger N = 8192.

Table 9 The solutions under the SQNR constraints for 1024-point FFT

49

Table 10 The solutions under the SQNR constraints for 2048-point FFT

Table 11 The solutions under the SQNR constraints for 4096-point FFT

Table 12 The solutions under the SQNR constraints for 8192-point FFT

50

Chapter 6

Conclusions and Future Works

 In this thesis, a scaling scheme for the memory-based FFT design is proposed which

improves SQNR in an area-efficient way. This method takes advantage of both conditional

scaling and convergent block scaling. By implementing with different detectors and using

different number of the shared exponents, it will generate many solutions with different

SQNR and area performance. Moreover, we can satisfy the SQNR requirement by increasing

the area economically by applying this method.

 The experimental results show that it will save at least one bit of wordlength to reduce

about 5.6% area from previous conditional scaling method. And if the constraint is just a little

tighter, our method can satisfy the required SQNR by increasing small area rather than

increasing one bit of wordlength in previous approaches. As a result, the proposed scheme

will save 2 bits of wordlength to bring about 13% area reduction from the conditional scaling

scheme for 8192-point FFT in the best case.

In the future, the multi-region detection and the convergent block scaling method can be

improved to optimize the SQNR and the area of the FFT core for different architectures and

different algorithms.

51

References

[1] C. T. Lin, Y. C. Yu, L. D. Van, “A low-power 64-point FFT/IFFT design for IEEE

802.11a WLAN application,” IEEE International Symposium on Circuits and Systems,

pp. 4 pp. -4526, 2006.

[2] R. V. Nee, R. Prasad, OFDM for Multimedia Communications, Artech House, 2000.

[3] ETSI, “Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and

Modulation for Digital Terrestrial Television,” ETSI EN 300 744 v1.4.1, 2001.

[4] E. Grass, K. Tittelbach, U. Jagdhold, A. Troya, G. Lippert, O. Kruger, J. Lehmann, K.

Maharatna, K. Dombrowski, N. Fiebig, R. Kraemer, P. Mahonen, “On the single-chip

implementation of a Hiperlan/2 and IEEE 802.11a capable modem,” IEEE Personal

Communications, vol. 8, no. 6, pp. 48-57, 2001.

[5] S. Li, H. Xu, W. Fan, Y. Chen, X. Zeng, “A 128/256-point pipeline FFT/IFFT

processor for MIMO OFDM system IEEE 802.16e,” IEEE International Symposium

on Circuits and Systems, pp. 1488-1491, 2010.

[6] C. Y. Wang, C. B. Kuo, J. Y. Jou, “Hybrid Wordlength Optimization Methods of

Pipelined FFT Processors,” IEEE Transactions on Computers, vol.56, no.8, pp.

1105-1118, 2007.

[7] A. V. Oppenheim, C. J. Weinstein, “Effects of finite register length in digital filtering

and the fast Fourier transform,” Proceedings of the IEEE , vol. 60, no. 8, pp. 957-976,

1972.

[8] Y. W. Lin, H. Y. Liu, C. Y. Lee, “A dynamic scaling FFT processor for DVB-T

applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 2005-2013,

2004.

[9] S. N. Tang, J. W. Tsai, T. Y. Chang, “A 2.4-GS/s FFT Processor for OFDM-Based

WPAN Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 57, no. 6, pp. 451-455, 2010.

[10] Y. Chen, Y. C. Tsao, Y. W. Lin, C. H. Lin, C. Y. Lee, “An Indexed-Scaling Pipelined

FFT Processor for OFDM-Based WPAN Applications,” IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 55, no. 2, pp. 146-150, 2008.

[11] S. Ramakrishnan, J. Balakrishnan, K. Ramasubramanian, “Exploiting signal and noise

statistics for fixed point FFT design optimization in OFDM systems,” National

Conference on Communications (NCC), pp. 1-5, 2010.

[12] E. Bidet, D. Castelain, C. Joanblanq, P. Senn, “A fast single-chip implementation of

8192 complex point FFT,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp.

300-305, 1995.

52

[13] R. R. Shively, “A Digital Processor to Generate Spectra in Real Time,” IEEE

Transactions on Computers, vol. C-17, no. 5, pp. 485-491, 1968.

[14] R. Koutsoyannis, P. Milder, C. R. Berger; M. Glick, J. C. Hoe; M. Puschel,

“Improving Fixed-point Accuracy of FFT Cores in O-OFDM Systems,” IEEE

International Conference on Acoustics, Speech and Signal Processing, 2012.

[15] J. W. Cooley, J. W. Turkey, “An algorithm for machine computation of complex

Fourier series,” Math. Computation, vol. 19, pp. 291-301, 1965.

[16] W. C. Yeh; C. W. Jen, “High-speed and low-power split-radix FFT,” IEEE

Transactions on Signal Processing, vol. 51, no. 3, pp. 864-874, 2003.

[17] Y. W. Lin, H. Y. Liu, C. Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB applications,”

IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1726-1735, 2005.

[18] R. C. Agarwal, J. W. Cooley, “Vectorized mixed radix discrete Fourier transform

algorithms,” Proceedings of the IEEE , vol. 75, no. 9, pp. 1283-1292, 1987.

[19] P. Y. Tsai, C. Y. Lin, “A Generalized Conflict-Free Memory Addressing Scheme for

Continuous-Flow Parallel-Processing FFT Processors With Rescheduling,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 12, pp.

2290-2302, 2011.

[20] D. Reisis, N. Vlassopoulos, “Conflict-Free Parallel Memory Accessing Techniques for

FFT Architectures,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 55, no. 11, pp. 3438-3447, 2008.

[21] Y. W. Lin, “The study of FFT processors for OFDM systems,” Ph. D. thesis, Dept. of

Electronic Engineering, National Chiao Tung University, Hsinchu, R.O.C., 2004.

[22] S. Lee, S. C. Park, “Modified SDF Architecture for Mixed DIF/DIT FFT,” IEEE

International Symposium on Circuits and Syatems, pp. 2590-2593, 2007.

[23] A. Cortes, I. Velez, J. F. Sevillano, “Radix r
k
 FFTs: Matricial Representation and

SDC/SDF Pipeline Implementation,” IEEE Transactions on Signal Processing, vol. 57,

no. 7, pp. 2824-2839, 2009.

[24] B. C. Lin, Y. H. Wang, J. D. Huang, J. Y. Jou, “Expandable MDC-based FFT

architecture and its generator for high-performance applications,” IEEE International

SOC Conference (SOCC) , pp. 188-192, 2010.

[25] E. Bidet, D. Castelain, C. Joanblanq, P. Senn, “A fast single-chip implementation of

8192 complex point FFT,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp.

300-305, 1995.

