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ABSTRACT

The Fast Fourier Transform (FFT) processor is the key component of OFDM-base
systems, and many literatures of FFT can be found in the past decades. To improve the SQNR
in fixed-wordlength FFT, dynamic scaling methods adaptively determine the scaling behavior
in run time to avoid the unnecessary loss of data information. Traditionally, increasing the
wordlength is the way to acquire higher precision if the SQNR constraint is tighter. However,
the increased wordlength results in a large amount of area cost. Moreover, sometimes we do
not have to increase SQNR so much to meet the constraint. In this thesis, we proposed a
dynamic scaling scheme which utilizes the profits of conditional scaling method and block
scaling method. Our approach has the ability to economize the usage of area rather than
increase the wordlength for SQNR improvement and the target is to minimize the area of FFT
under the SQNR constraint. Experimental results show that our approach can reduce the area
cost by about 13% in the best case for 8192-point FFT as compared to the existing conditional

scaling method.
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Chapter 1
Introduction

In recent years, research and development on high-data-rate wireless communications
have attracted great attention. Orthogonal frequency-division-multiplexing (OFDM) is the
modulation technique which is a favorable choice for many new and emerging broadband
communication applications, such as local area networks (WLAN) [1], high definition

television (HDTV) [2], digital video broadcasting-terrestrial (DVB-T) [3], and digital audio

broadcasting (DAB). The simplified architecture of OFDM system is shown in Fig.1.
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Serial
Data P/S
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In those applications, Fast Fourier Transform (FFT) is the most widely used algorithms for
calculating the Discrete Fourier Transform (DFT) because of its efficiency in reducing
computation time. Therefore, it is one of the most important processing blocks to meet the
design constraints. In [4], the authors showed that in such high-data-rate systems, the most

computationally intensive part is the FFT core. Therefore, there have been many literatures
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Fig. 1 Simplified architecture of OFDM system

reported on the design of FFT processors nowadays.
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Based on the hardware cost and the required throughput, there are two main categories of
FFT architectures. One is called memory-based architectures, which consist of a butterfly unit
and certain number of memory blocks. The other is called pipeline-based architecture, which
consists of multiple stages to provide higher throughput. In general, memory-based
architectures are suitable for long-size and low hardware design [5]. And pipeline-based
architectures are feasible for short-size and high throughput design. In this thesis, we focus on
the long-size FFT design with memory-based architecture where the wordlength WL of the
output in every stage is the same as that of the input.

Taking the practical design into consideration, the precision of FFT module in terms of
Signal to Quantization Noise Ratio (SQNR) is a significant design factor of system
performance. In reality, an-FFT cannot be implemented exactly since the algorithm is
implemented by fixed-point arithmetic. All signals and coefficients have to be represented
with finite number of bits in binary format. Therefore, conducting the addition and subtraction
operations in butterfly unit may cause overflow during the FFT computations. For this reason,
the wordlength should be increased stage by stage to avoid possible overflow after butterfly
computations. The increasing wordlength can be used to avoid accuracy loss and increase the
precision [6], but the hardware cost and the critical-path delay are increased accordingly and it
is unsuitable for memory-based architecture. Consequently, rounding or truncation operations
introduce noise which is referred as quantization noise and result in accuracy loss.
Furthermore, the wordlength may also affect the accuracy. Longer wordlength may be used to
achieve better SQNR with larger area, and shorter wordlength may be chosen to maintain a
lower hardware cost at the sacrifice of the precision. Therefore, many scaling methods have
been proposed to meet SQNR requirement with the fixed-wordlength constraint [7-12].

Oppenheim et al. [7] proposed a basic scaling method which scales the results by a factor
of 1/2 for each stage. That is, the results are divided by two after each butterfly calculation.

Since it is trivial to implement, the approach is the simplest but the least accurate scaling
2



method called the forced scaling method. Another is called the Block Floating Point (BFP)
scaling [11] which employs intermediate buffers to store the output data, and detects the
largest value to decide the output format appropriately which gets better SQNR. However, this
kind of method results in a large amount of area overhead and power consumption. Besides,
there is another approach which is called conditional scaling [13, 14]. The idea of the method
Is to predetermine whether to scale in next stage according to the magnitude of the results in
current stage. That is to say, after each butterfly computation, the magnitudes of the results are
compared to a threshold and the results can be written back to the memory instantly after the
comparisons. After all comparisons are finished, it will be judged that overflow will occur in
next stage 1f one or more values exceed 0.5. Thus, after each computation of the butterfly in
next stage, the results will-be scaled to avoid overflow. Although the conditional scaling
method acquires less SQNR than BFP, it saves much area since it does not need the buffers to
store internal results.

In this thesis, we propose a dynamic scaling method combining the concepts of BFP
scaling and conditional scaling with- memory-based architecture to acquire higher SQONR in an
area-efficient way. Our method not only improves the previous conditional scaling method to
predict overflow more precise but also modifies BFP scaling to divide data into blocks
appropriately. Moreover, our method can minimize the area with given FFT size and SQNR
constraint.

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review the
fundamentals of FFT algorithms, architectures and previous scaling methods. Chapter 3
explains the motivation of this work. The proposed method is demonstrated in Chapter 4. Our
experimental results are shown in Chapter 5. Finally, Chapter 6 gives the concluding remarks

of this thesis.



Chapter 2
Preliminaries

In this chapter, we will review basic FFT algorithms, FFT architectures, the scaling

considerations and previous scaling methods in FFT hardware design.

2.1 The FFT Algorithms

The Discrete Fourier Transform (DFT) plays an important role in the region of digital
signal processing (DSP) and. communications. However, the computation complexity of
directly evaluating an N-point- DFT is O(N?), which costs a lot amount of computation time
and power consumption. Therefore, a fast algorithm to evaluate DFT is required.

FFT algorithm is a decomposition of an N-point DFT into successively smaller DFT

transform which was proposed by Cooley and Turkey [15] in 1965. It is very popular because
it reduces the complexity of DFT from O(N®) to O(N log, N), and makes it suitable for VLSI
implementation due to the regularity of the algorithm. Besides, many similar algorithms have
been developed to further reduce the computational complexity of FFT [16-18]. Owing to

these algorithms, FFT computes the DFT efficiently and produces exactly the same result as

evaluating the DFT equation.

2.1.1 Basic Concepts of FFT Algorithms

FFT algorithms are approaches to evaluate DFT. The formulation of N-point DFT is

defined as

X(k)=§x(n)wgk, k=0,1, .., N-1 (2.1)



Where X(k), x(n) and W,\j‘k are complex numbers. X(Kk) is in frequency domain, and x(n) is in

time domain. The coefficient Whj‘k is defined as (2.2) and is called the twiddle factor which

the symmetric property is shown in Fig. 2.

—j2znk

W —e W :COS(Zﬁnk 27nk

) — jsin(

) (2.2)

Decimation-in-time (DIT) FFT algorithm is to decompose the input sequence x(n) into
smaller and smaller sequence. Alternatively, decimation-in-frequency (DIF) FFT algorithm is
to decompose the output sequence X(k) in the same way. Both of these two algorithms are
similar in nature, the DIT FFT algorithm is chosen to illustrate in this thesis.

Fixed-radix algorithms include the radix-2, radix-4, radix-8, etc. We will review the
radix-2 and radix-4 DIT FFT algorithms and the general form, that is, radix-r DIT FFT
algorithm in the following subsections. Among them, the radix-2 algorithm has the simplest
form and is popular in FFT processor design. In this thesis, we implement radix-2 DIT FFT

algorithms to explain our thought.

Fig. 2 Symmetric property of twiddle factor



2.1.2 Radix-2 DIT FFT Algorithm

The raidx-2 algorithm is using the divide-and-conquer approach which divides the
problem of N-point FFT by a factor of 2, where N is power-of-2. Radix-2 DIT FFT Algorithm
divides x(n) into its even-numbered points and odd-numbered points, and uses 2r to substitute

n for n is even, 2r+1 to substitute n for n is odd.

N N
N Ng

X (k)= x@r W%+ 3 x(@r £nw
7 (2.3)

=S X@OWE +WE S x(2r W
r=0 r

=0
Since W =W, 12+ (2.3) can be rewritten to (2.4).

Nt o
X(K) =2 X(2rWy, +Wis >~ x(2r +)Wyif, (2.4)

r=0 r=0
Each of the sums'in (2.4) is recognized as an N/2-point DFT. As shown in Fig. 3, the first
term is the N/2-point DFT of the even-numbered points of the original sequence, and the

second term is the odd-numbered point of the original sequence.

x(0) > X(0)
X(2) —— _ X(1)
x(4) N/2-point DFT X(2)
x(6) ——— X(3)
x(1) > X(4)
X)) — X()
¥(3) N/2-point DFT X(6)
X(7) — X(7)

Fig. 3 First stage of the DIT FFT algorithm for 8-point FFT



Then we divide the original k into two new parts k and k+%, fork =0, 1, ..., §-1.

2

Since W' —e ) _ei =1 and WIV2 =W W2 =W (2.4) can be rewritten to
(2.5). Through log;N-time recursive decompositions, the complete radix-2 DIT FFT algorithm
can be obtained.

N1

X (k )=Z[x (WX re2 |xn)

N

N < k rk
X (K +?) = ;[X(Zr)—WN X(2r +1) [ Wy, (2.5)

The decomposition can-be-mapped to a butterfly unit which is an essential arithmetic
component in an FFT processor-shown in Fig. 4. The butterfly unit operates complex
multiplications, additions and subtractions. Fig. 5 illustrates the reorganized signal flow graph
of 8-point radix-2 DIT algorithm. From (2.1), we know that the computational complexity of

DFT is N2 However, after the decompositions of FFT, the computational complexity of

multiplications is % x(log, N-1) and the complexity of-additions and subtractions is

N log, N, which is much less than the original DFT equation.

Xm (p) i Xm-i—l (p)
stage stage
m m+1
W, ;
Xm (Q) ® - Xm“‘l (q)

Fig. 4 The butterfly unit of a radix-2 DIT FFT algorithm
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Fig. 5 The reorganized signal flow graph of the 8-point DIT FFT algorithm

2.1.3 Radix-4 DIT FFT Algorithm

Radix-4 FFT algorithm uses 4-point DFT to decompose N-point FFT. The original input

sequence of radix-4 FFT algorithm is divided into four parts, x(4r), x(4r+1), x(4r+2), and

X(4r+3), where r = 0, 1, 2, ..., % —1. Substituting these four subsequence for x(n) into (2.1)

and dividing X(k) into four parts, we can get (2.6).

N
e

X (K) = D0 [X(40) + Wi X(4r +1) W X(4r +2) +Wx(4r +3) [xW,(5,
r=0

N
X (k+2) = > x(dr) = JWyx(4r +1) - W x(4r=2) + jWigx(4r +3) |x W,
r=0
(2.6)
N

X (k+5) = [ X(4r) =W X(4r +1) + W, x(4r +2) ~W x(4r +3) [xW,(F,
r=0

N
N

X (k+28) =3[ X(Ar)+ JWiX(4r +1) =W X(4r +2) = W X(4r +3) [xW,(5,
r=0

Although the complexity of multiplications in the radix-4 FFT algorithm is equal to

3N x(log, N —1), which is lower than radix-2, the complexity of additions and subtractions is

still Nlog, N, which is equal to that in the radix-2 FFT algorithm.

8



2.1.4 Radix-r DIT FFT Algorithm

Larger r can much further reduce the complexity of multiplications. For general cases, we
derive the radix-r DIT FFT algorithm, where r is 2°, and S is any positive integer. For N-point
FFT, the general form is

aN, _ $ T "
X (k +T) = ;W,pq\NNp D X(m+p)W (2.7)

n=0

where q =0, 1, ..., r-1.And the complexity of multiplications is ©2" x (logs N -1).

2.2 The FFT Architectures

The FFET is one of the most-widely used DSP algorithms. Generally speaking, there are
two kinds of popular FFT architectures to implement FFT algorithms. One is memory-based
architectures and the other is pipeline-based architectures. Memory-based architectures are
suitable for low throughput, low hardware cost, and long-size FFT designs whose size is not
smaller than 512 [5]. On the other hand, pipeline-based architectures are suitable for high
throughput, high hardware cost and short-size FFT designs. In this thesis, we focus on
long-size FFT design with memory-based architecture. The details of those two architectures

are introduced in the following subsections.

2.2.1 Memory-Based Architectures

The memory-based architecture is the simplest FFT architecture. It consists of one
memory device and one radix-r processing element (PE) which contains one or few butterfly
units to operate all computations in the signal flow graph. The basic components of
memory-based architecture are shown in Fig. 6. Data are read from the memory and

computed in the PE. After the computations, the output data are written back to the memory

9



and occupy the same storage locations as input data. For radix-2 FFT algorithm, there are

log, N stages for the N-point FFT computations, and the number of butterflies in the PE can

be chosen freely to meet the throughput rate requirement. The generalized conflict-free
addressing schemes for memory-based FFT architectures presented in [19, 20] solve the
problem of the memory bandwidth. In this work, we implement the memory-based FFT

architecture with one butterfly unit in the PE block for simplification.

Control Unit

A
<
G
>

Memory

A4

A4

PE

Fig. 6 A simple architecture of memory-based FFT

2.2.2 Pipeline-Based Architectures

The pipeline-based FFT architecture is regular, modular, local connection, and often
adopted for high-throughput-rate applications with high hardware complexity [21]. It can be
generally divided into two kinds of architectures depending on the design of register. One is
the Single-path Delay Feedback (SDF) architecture [22, 23] and the other is the Multi-path
Delay Commutator (MDC) architecture [24]. SDF architecture has higher hardware usage and
lower hardware cost. On the other hand, MDC architecture has higher throughput than SDF
architecture. Here we only introduce the radix-2 SDF architecture as below since we do not

take the pipeline-based architecture into account in this work.

10



Take the radix-2 SDF (R2SDF) architecture as an example and the architecture is shown
in Fig. 7. The R2SDF uses the registers efficiently by storing the output of the butterfly into
the shift registers. When doing addition operation, the butterfly unit passes the output to the
next stage. On the contrary, the butterfly unit stores the output into the shift registers when
doing subtraction operation. Thus, there is only one output passes to the next stage in each

cycle, and the utilization of the memory is 100%.

8 4 2 1
Radix-2 Radix-2 Radix-2 Radix-2
BU @ BU L@ BU L <@ BU

Fig. 7 The R2SDF architecture for 16-point pipeline-based FFT

2.3 Scaling Operation

Butterfly unit in PE shown in Fig. 4 operates on two complex numbers and produces two
new complex numbers which replace the original ones in the sequence. Let X (p) and Xn(q)
be the original complex numbers in tage m, the new pair Xn+1(p) and Xm+1(q) in stage m+1 are

given as (2.8).

X (P) = X, (P) + X, () xW¥

k (2.8)
Xt (@) = X (p) = X, (@) x Wy

The coefficient Wh',‘k is the twiddle factor and substantially is the complex root of unity.

For this reason, (2.9) shows that the multiplication with twiddle factor in the butterfly does
not change the magnitude of the result. Hence, the magnitude of outputs can never be larger

than twice the maximum magnitude of inputs as (2.10) explains.
11



X ()XW, =|X,.(a)] (2.9)

=|X, (@] x W

Xt ()] =X (9) + X, (@) x W

<X (P)]+[X, (@) < 2-max {| X, (p)].| X, ()]} (2.10)

From (2.10), we know that the range of data is increased from stage to stage. Thus, there
is possibility of overflow during computation of butterflies if the data wordlength does not
increase. Naturally, increasing the wordlength is a solution to avoid possible overflow [6].
However, the increased wordlength requires a larger storage to store the data which increases
both area and power. Moreover, increasing wordlength is unacceptable for memory-based
FFT architecture because the wordlength is fixed and cannot allow different wordlength from
stage to stage. Therefore,-it-needs to scale the data for overflow prevention with the
fixed-wordlength constraint.

Basically, the principle of scaling operation is dividing the data value by a factor of 2
before written back to the storage. That is, the data is shifted right by one bit after butterfly

computations to avoid overflow as shown in Fig. 8.

X, (p) X,.4(p)

Scaling
Buttertly Operation

v
A 4

A 4

Fig. 8 An example of scaling operation

However, the truncation in scaling operation introduces noise and influences the accuracy.
Longer wordlength will be needed to meet the required performance. As a result, the decision
of whether to scale affects the accuracy very much. As shown in Fig. 9, a one-bit scaling flag
is being defined to decide whether to truncate the least significant bit of the result or not. If

the scaling flag is set to one, the result of the butterfly will be scaled. Otherwise, the result

12



keeps its original value without scaling. When the scaling operation is finished, results are

written back to the memory device.

¥

X, (p) [ et Shifter X,a(p)

—~— 5| Butterfly > B

Scaling Operation

Scaling Flag ———

Fig. 9. An example of scaling operation with scaling flag

As we know, the wordlength-affects the area and precision. Longer wordlength achieves
higher precision but costs more chip area. The memory storage dominates the area of the FFT
core as Fig. 10 shows. Besides, if long-size FFT is chosen, longer wordlength is needed to
maintain the same required precision [8]. Therefore, it iIs demanded to design an efficient

scaling algorithm in FFT which satisfy the SQNR requirement with shorter wordlength.

100% -
90%

N — B
80%
70%
60% -
50% - m CTRL
40% - PE
30% - = MEM
20% -
10% -
0% - \ \ \

1024 2048 4096 8192
FFT Size

Fig. 10 The area occupancy of each component in memory-based 16-bit FFT
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2.4 Scaling Method

The scaling method with a constant scaling flag of each stage is called static scaling
method such as forced scaling [7] where the scaling flag is always set to one. Conversely, the
scaling method determining the scaling factor of each stage at run-time is called dynamic
scaling method, like BFP scaling [12] and conditional scaling [13, 14]. Each kind of scaling
method has its advantages and disadvantages respectively. Static scaling is the simplest in
hardware implementation as well as dynamic scaling greatly improves accuracy by ultimately
avoiding unnecessary truncations. We will introduce these scaling schemes in

fixed-wordlength FFT design as follows.

2.4.1 Forced Scaling

Oppenheim [7] proposed a scaling method which is the easiest to understand and the
simplest to implement. The idea of this algorithm of preventing overflow is to scale the results
after each butterfly for each stage, as shown in Fig. 11. That is, the scaling flag in each stage
is set to one. This kind of scaling strategy is called forced scaling. In such case, the hardware
is very simple to implement but the SQNR may not be very good. Actually, most data values
need not to be scaled in every stage to avoid overflow. As a result, precision is unnecessarily

lost by forced scaling method.

I I

Fig. 11 The architecture of the forced scaling method

i Stage m-1 i Stage m ]
1 1 1
1 1 1
i Scaling i A Scaling i
e o ¢ —> Butterfly . {1 Butterfly S > eee
! Operation | 1 Operation | 1
| | i
| | i
| | :
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2.4.2 Block Floating Point Scaling

The floating point representation is shown in Fig. 12. The bit width of the floating point
contains exponent bits, mantissa bits, and one sign bit. The magnitude of the value which is
stored in the mantissa part is always smaller than one, and the value in the exponent part is an
integer which is larger or equal to zero. BFP scaling method [12] uses a shared-exponent
concept which groups the floating-point data into blocks with a common exponent to reduce
the wordlength. An example of BFP with four blocks is shown in Fig. 13 where the capital
letter “E” stands for the shared exponent of each block. The data only keep their own sign bit
and mantissa bits, and each block has its own shared exponent as shown in Fig. 14. And the

block size and the number of blocks are fixed through all stages.

Sign Exponent Mantissa

Fig. 12 Floating point representation

Compared to the regular scaling such as forced scaling, BFP acquires higher performance
of SQNR by avoiding unnecessary loss of data information. The idea is to scale only if we
found the necessity of that. Thus, BFP employs intermediate buffers to store the output data of
a certain block, as shown in Fig. 15. After all data in this block are computed and stored into
the buffer, a detector will detect them to find out the largest value. If the magnitude of the
largest value is larger than one, the scaling flag of this block is set to one. Then all the data are
scaled and written back to the memory as the shared exponent is increased by one. On the
other hand, if the largest value does not cause overflow, scaling will not be performed.

Therefore, the least significant bit for each data value is preserved.
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Fig. 13 An example of 8-point FFT with 4 blocks BFP scaling

Exponent storage Exponent storage

.| Data 1
Shared Exponent .l Data 2
.l Data 3
. Data 4
Sign Mantissa
Fig. 14 A data block example with block size = 4
i Stage m-1 i Stage m i
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1 (] ]
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Fig. 15 The architecture of the BFP scaling method

Unlike the forced scaling, BFP scales data only when it is necessary. By adaptively
determining the scaling flag to avoid accuracy loss, BFP acquires better precision than forced
scaling method. Hence, BFP uses shorter wordlength to achieve the required SQNR and saves

the area of memory device. Unfortunately, the inputs of the butterfly in BFP scaling method
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will come from different data blocks, that is, their exponent may not be the same. Therefore,
the floating point arithmetic of addition and subtraction operation needs an alignment unit to
align two input data. It needs to shift the mantissa bits to represent them with the same
exponent. Since the exponent bits have to be checked and mantissa bits have to be shifted, it
will be more complicated than fixed point arithmetic in hardware implementation. Moreover,
the buffer accesses and data detections introduce the additional processing latency and power
consumption. Also, the intermediate buffers, detectors and the storage of shared exponents

cause a large amount of additional area overhead.

2.4.3 Conditional Scaling

Instead of storing results-in-the buffers and detecting the largest value to decide the scaling
flag, the conditional scaling method using the concept of prediction is another way to avoid
overflow but saves the area overhead of buffers. Fig. 16 shows the architecture of conditional
scaling method. In details, conditional scaling predetermines the scaling flag of current stage
by the detections in previous stage. Then the detections in current stage will predetermine the
scaling flag of next stage. Therefore, conditional scaling does not need buffers to store
intermediate results. Moreover, there is only one shared-exponent in conditional scaling
because it uses the fixed point representation. As a result, the alignment unit is unnecessary.

We can directly operate additions and subtractions on the two inputs of butterfly.

i Stage m-1 : Stage m !
! ! !
oo _i_) Butterfly || Scaling i Butterfly | Scaling i cee
! y Operation ) Y Operation !
1 1 1
1 1‘~ 1 1“ 1
i i i
i i i
i L 1 L i
—i— Detector : Detector :
1 1 1
1 1 1

Fig. 16 The architecture of the conditional scaling method
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The criterion for deciding the scaling flag of next stage is based on the observation of

whether any value in current stage is outside a particular region on the complex plane [13].
Besides, (2.10) tells us that [X,.(P), |Xua(@)| <X, (P)|+|X,(@)]. I |X,(p) and
|X,(a)] are both smaller than 0.5, |X,.(p)| and |X,.(a)| will be smaller than one.

Therefore, the region with which to compare the data in current stage is the circle of radius
0.5. As shown in Fig. 17, the circle of radius 0.5 is the idealized threshold for deciding the

scaling flag of next stage.

Imaginary

_ Maximal Cyclic
Quadrilateral

] Real

f
-

Fig. 17 The particular region of the complex plane in conditional scaling method

The magnitudes of the results are checked during the butterfly computations. If all output
data in current stage are inside the region with radius 0.5, it guarantees that there will not be
any data with magnitude larger than one to cause overflow in next stage. Thus, the scaling
flag will not be set and the exponent will be kept. On the contrary, if there is at least one data
outside the circular region with radius 0.5, it may cause overflow through butterfly
computation in next stage. As a result, when computing the butterflies of next stage, the

results should be scaled and the exponent should be increased by one.
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Because conditional scaling predicts the necessity of scaling, the SQNR performance of
conditional scaling is much higher than that of forced scaling but a little lower than that of
BFP scaling. However, calculating the magnitude of a complex number needs to compute the
square of real part and imaginary part. The required multipliers and adders will cost area.
Alternatively, for hardware concern, the maximal cyclic quadrilateral which is the square with
dotted line in Fig. 17 is chosen to define the particular region [14]. As a result, only
comparators are needed to detect the region information of data.

In this thesis, we will combine the concepts of BFP scaling method and the conditional

scaling method and utilize the profits of them.
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Chapter 3
Motivation

To satisfy the required SQNR performance, we will choose a scaling approach which
produces SQNR higher enough with less area. However, once the constraint is tighter and the
original design does not satisfy the requirement, using longer wordlength is the only way to
further increase the accuracy. Based on the experience of simulations, increasing wordlength
by one will acquire about 6 dB improvement for SQNR but about 6% area penalty in addition.
However, sometimes we do.-not have to increase SQNR so much to meet the constraint. Thus,
by the improvements of conditional scaling and medifications of block floating point scaling,

we will acquire SQNR improvement in demand with the corresponding area overhead.

3.1 Multi-Region Detection

With the approaches of [13, 14], the complex plane has been divided into two regions to
detect the region information of the outputs of the butterfly. Traditional conditional scaling
method avoids overflow in current stage by ensuring the data in previous stage are all in the
internal region with radius 0.5. However, overflow comes from the addition and subtraction
operations in butterfly which result in the growth of data magnitude. And the computation
only has relations with the two input data. That is to say, restricting all data in the same region

to avoid overflow is excessively severe. In order to avoid overflow, we only need to ensure

that |X,,(p)|+|X,(q)| issmaller than one as (2.10) says.

We assume that we are now computing butterflies in stage m-1, and the complex plane is
divided into two regions as Fig. 18(a) shows. The Xn(q) is inside Ry and Xy (p) is outside Ry

and they are both the inputs of the same butterfly in stage m. In previous conditional scaling
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method, it is judged that overflow will be produced in stage m and the scaling flag of stage m

will be set. However, overflow can also be avoided as long as |Xm(q)| is small enough.

Therefore, we try to divide the complex plane into more regions. Fig. 18(b) shows the idea of
which four regions are divided. In such case, X (p) is inside R+; and Xn(q) is inside R-1 where
the radius of Ry1 is 0.7 and the radius of R-1is 0.2. By ensuring the summation of the radii of
R:1and R-;is less than unity, we can judge that the butterfly computation in stage m which
operates on these two data will not cause overflow. That is to say, dividing the complex plane
into more regions will further prevent the unnecessary scaling operations and produce better
SQNR performance. And we can expect that the more regions the complex plane is divided,

the higher precision can be obtained.

X,.(q) X, (p) X,(q) X, (p)

<

(a) (b)

Fig. 18 The complex plane with (a) two regions (b) four regions are divided

3.2 Convergent Block Scaling
The hardware of floating point arithmetic is more complicated than that of fixed point
arithmetic. As mentioned in 2.4.2, one part of the area overhead of BFP scaling method is the

alignment unit because the floating point representation is used. Since the inputs of butterfly
21



may come from different blocks and their exponent may be different, we cannot operate these
two mantissas directly without alignment. However, figuring out the larger exponent and
shifting the smaller mantissa introduces area and processing latency. If we want to save the
hardware of alignment unit, we must ensure that the two inputs of butterfly are come from the
same block which means their exponent is always the same one.

It can be observed in Fig. 5 that during the decomposition of FFT algorithms, a k-point
DFT in stage m will be separated to two k/2-point DFT in stage m+1. And the computation of
the first k/2 data in stage m+1 only depends on the first k/2 data in stage m. Thus we group the
data into blocks in a convergent way mentioned in [25] and the idea is shown in Fig. 19. In
first stage, all data are grouped.into one block. That is, the number of blocks and shared
exponents. in first stage are both-equal to one. Afterwards, the number of blocks and shared
exponents are doubled as the size of the block is one half from stage to stage. In this way,
inputs_of butterfly for each stage are surely come from the same block with the same

exponent.
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Fig. 19 An example of 8-point FFT with convergent block scaling
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Through the convergent block scheme, the data will be represented in different dynamic
ranges with different exponents so the SQNR is higher than forced scaling scheme where the
data are all in the same dynamic range. Besides, the number of blocks is a key factor for
SQNR improvement. Larger number of blocks results in better SQNR performance. However,
such kinds of block scaling methods require the additional area of storage to store the shared
exponents. By the way, since the conditional scaling is assumed that the data are all in the
same dynamic range with the same exponent, the convergent block scheme is naturally

suitable for implementation with conditional scaling in fixed point representation.

3.3 Our Strategy

We are informed that the-SQNR performance can be improved by two ways. One is the
multi-region conditional scaling and the other is the convergent block scaling. Therefore, we
propose the multi-region conditional block scaling (MRCBS) method which combines these
two methods mentioned above to obtain many solutions of hardware architecture for SQNR
improvement. As a result, by searching those solutions, we can figure out the solution which

has the minimum area cost with the required SQNR performance.

3.4 Problem Formulation

Given FFT size and required SQNR, our goal is to minimize the area of memory-based

radix-2 FFT under the given SQNR constraint by applying our MRCBS method.
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Chapter 4
The Proposed Approach

In this chapter, we present the proposed MRCBS method for memory-based FFT which
utilizes the profits of conditional scaling and the convergent block scaling to improve SQNR
performance. The first section describes the scheduling of the butterfly computation in order
to predict overflow precisely and save the additional storage. The second section illustrates
the MRCBS and its architecture. Finally, in the third section, we will discuss the MRCBS
with different number of blocks and the relationship between the number of blocks and the
performance of area and SQNR.-MRCBS generates many solutions for improving SQNR, and
the purpose of this thesis is‘to find out the architecture of scaling method for FFT which meets

the SQONR requirement and has the smallest area.

4.1 Scheduling of Butterfly Computation

In order to precisely predict the overflow and prevent the unnecessary scaling, we should
detect the magnitude of the two data which are the inputs of the same butterfly in next stage.
As Fig. 20 shows where BU is abbreviated from butterfly unit, BU; and BU, are in current
stage and other two butterflies BUs and BU, are in next stage. In such case, Xy and X; should
be detected overflow together because they are both the inputs of BU;s. However, Xq is
computed by BU; and X; is computed by BU,. We cannot get them at the same time. Therefore,
when we get the results of BU;, we have to store them and wait for the results of BU,. For this
reason, we will schedule the computational order of butterfly computations to save the
required storage.

The concept of the scheduling is that when the computation of BU; is finished, the

computation of BUy is followed. After BU; and BU; are finished, X, and X; are both available,
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we can predict overflow and determine the scaling flag for BU3. Fortunately, X, and X3 are
both available as well. We can predict overflow for BU; and BU, simultaneously. That is,
while two butterflies are finished in current stage, we can predict two butterflies in next stage
smoothly. As a result, only four registers are required to store the results of BU; and BU, for
overflow predictions. When the predictions of BU3; and BU, are finished and the scaling flags
are determined, those four registers can be reset for storing the results of other butterflies.
Furthermore, compared to.the original order, just small extra control circuits are required to

schedule the computation of butterflies as we wish.

Fig. 20 Detection of the two data in the same butterfly of next stage

4.2 Multi-Region Conditional Block Scaling

Since the thought of conditional scaling is to predict the overflow and predetermine the
scaling flag for next stage, it does not need intermediate buffers to store the output data to
determine the scaling flag of current stage. Therefore, we develop the architecture for our
scaling method which is shown in Fig. 21. The memory block is the original part of the
traditional memory-based FFT architecture shown in Fig. 6 and there is one butterfly unit in
the PE block in our work. The detector is to detect the region information and the predictor is
to predict possible overflow. The shared exponents and the scaling flags of each block are

stored in the exponent array.
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Fig. 21 The architecture of the proposed MRCBS

When evaluating the FET, two data are read from the memory for each cycle and
computed.in BU. The scaling flag predetermined in previous stage will be read from exponent
array to scale the results of butterfly in current stage. After computation of the butterfly is
finished, the results will be straightly written back to the memory. In the meanwhile, the
results are passed to the detector to define their region information by detecting their
magnitudes. Then the predictor receives the region information of the results from the
detector to judge whether overflow will occur in next stage or not. After the prediction is
finished, the predetermined scaling flags and the shared exponents of next stage will be stored
into the exponent array. Moreover, the detector and predictor are worked in parallel with the
computation of butterfly unit since the results of butterfly can be written back to the memory
without waiting for the results of them. Thus, such kind of architecture will not produce large
amount of processing latency. The details of detector, predictor, and exponent array will be

described in the following subsections.
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4.2.1 Region Detector

Because we divide the complex plane into many regions, the overflow detector consists of
comparators in order to determine the region information of the data by comparing the outputs
of butterfly with several thresholds. The detector dividing the complex plane into many
circular regions with different radii is called circular-type detector. On the other hand,
dividing the complex plane into many square regions with different side lengths is called
square-type detector. Because the square region is the maximal cyclic quadrilateral of each
circular region, the area is smaller and the prediction is severer. As a result, the square-type
detector improves less SQNR than the circular-type one but increases less area.

The purpose of the multi-region detection iIs_to handle the situation shown in Fig. 18
where Xn(p) 1s outside the-internal region but Xy (q) is deeply inside and they are actually
overflow-free in next stage. Therefore, we should define an additional pair of regions that one
region is larger and the other is smaller. As a result, the case with larger Xn(p) and smaller
Xm(q) or vice versa will possibly be judged to be overflow-free. And that is why we divide the
complex plane into even number of regions. In our work, we divide the complex plane into
two regions, four regions, and. six regions and implement circular-type and square-type
detectors respectively. That is, there are six different detectors in total with different area
overhead and different SQNR performance.

After the detection of the detector is finished, the region information which indicates the

region where the data is located will be output.

4.2.1.1 Circular-Type Detector
First we discuss the region detector which divides the complex plane into two regions as
Fig. 22(a) shows. This type of detector is named “C2”. The internal region Ry is defined as the

circle of radius 0.5 and the threshold t, representing the radius of Ry is equal to 0.5.
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Next we divide the complex plane into four regions. This type of detector is named “C4”.
Additional regions R.; and Ry, are defined as shown in Fig. 22(b). The R is the circle of
radius t.; and R4 is the annulus with inner radius toand outer radius t.1, and we have to ensure
that t; plus ti; is less than one. Because the threshold t; is absolutely larger than the
magnitude of X,(q) and t.; is larger than that of Xn(p), the addition and subtraction operations
of those two complex data will not be larger than one to cause overflow. Therefore, once Xm(p)
is outside Ro but is inside Ryy while X (g) Is inside R, it will be judged that the butterfly

computing Xm(p) and Xn(q) in next stage is overflow-free.

(@) (b)

Fig. 22 The regions of the circular-type detectors (a) C2 (b) C4 (c) C6
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Finally we further divide the complex plane into six regions as shown in Fig. 22(c) and
this type of detector is named “C6”. With the existed four regions on the complex plane in the
C4 detector, the regions R; and R, are defined additionally. In C6 detector, R.; is the circle of
radius t, Ry is the annulus with inner radius t.; and outer radius t:», and R.; becomes the
annulus with inner radius t, and outer radius t.;. For the same idea in C4, the summation of t.,
and t;, should also be less than one.

As mentioned above, we have known that t plus tx where k = 1 or 2 should be less than
one to avoid overflow. And If t is larger, tx will become smaller. In the meanwhile, the area of
R becomes larger as the area of Ry becomes smaller. Since our purpose is to avoid the
unnecessary scaling as accurate as possible, the area of the two regions should be larger and
the possibility of data in Ry should be equal to the possibility of data in R¢. As a result, we
have two conditions as (4.1) and (4.2) to determine the thresholds ty in detectors. And the

results of thresholds are shown in Table 1.

L+t =1 (4.1)
Area R, ) Area R | (4.2)
C2 0.5
4 0375 05 | 0.625
c6 0.305 | 0375 | 05 | 0.625 | 0.695

Table 1 The value of the thresholds in circular-type detectors

Here we sweep t; from 0 to 0.5 to simulate the SQNR performance and the result is
shown in Fig. 23. As we can see, SQONR is almost the highest when t.; is equal to 0.375 and t;

is equal to 0.625 as we expect.
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Fig. 23 The simulation result of SQNR with different t

Because the regions are all circles in the complex plane, we are required to calculate the
magnitude of the complex data-by-computing its summation of the square of the real part and
the imaginary part. As a result, multipliers, adders, and comparators are introduced which are
required to compare the thresholds as shown in Fig. 24. It is intuitive that C6 has the best
performance and the largest area of comparators since there are six thresholds to be compared

while C2 has the smallest area of comparators and the performance is relatively worst.
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Fig. 24 The block diagram of the circular-type detector
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However, the bit width BW of multipliers, adders and comparators influences the area and
the accuracy as well. That is to say, the arithmetic unit with longer bit width will produces
better accuracy and cost more area. In our work, we implement 10-bit comparators, BW-bit

multipliers, and 2*BW-bit adders where BW is an integer and can be chosen from 5 to 10.

4.2.1.2 Square-Type Detector

Although the circular-type region detectors make precise predictions, they cost a lot of
area for introducing the multipliers and adders. For hardware concern, there are alternative
ways which are the square-type region detectors [14]. That is, we can simplify those circular
regions to their maximal cyclic quadrilaterals. The square regions are described in Fig. 25. As
the circular-type detectors, <S2”is the square-type detector which divides the complex plane
into two square regions and “S4” is the detector dividing the complex plane into four square
regions. The detector dividing the complex plane into six squares is therefore named ““S6”.

Because each square region shown in Fig. 25 is the maximal cyclic quadrilateral of the
circular region shown in Fig. 22, the thresholds in square-type detectors will be defined as

(4.3) wherek=-2, -1, 0, 1, and 2. And the thresholds hy of the square-type detectors are listed

in Table 2.
h, =t x/2/2 (4.3)
Type h, | h, h, h, h,
52 0.354
54 0.265 | 0.354 | 0.442
S6 0215 | 0265 | 0354 | 0.442 | 0.492

Table 2 The value of the thresholds in square-type detectors
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Also we sweep h. : ) of S4-type detector.
And the resu i when h_; is equal to 0.265

and hy is equal to O

0 01 02 03 04

hy

Fig. 26 The simulation result of SQNR with different h_;
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To detect the region information for the data in square-type detectors, we only need to
compare the absolute value of the real part and imaginary part with the half of the side lengths
of those squares. The block diagram of square-type detector is shown in Fig. 27. The only
difference between circular type and square type is that square type does not need the
multipliers and adders to calculate the magnitude. As a result, the circuits of the square-type
detectors are much simpler than the circuits of the circular-type detectors. However, the bit
width of the comparators influences the accuracy as we have mentioned. Thus, in our work

we implement BW-bit comparators where BW is an integer and can be chosen from 5 to 10.

hy .. hy... Iy
Memory
Comparators —l
B — Scaling | .
utterfly ‘ Predictor
—| Operation |

Comparators

T T T Detector | | Fxponent
hy ... hy... h Array

Fig. 27 The block diagram of the square-type detector

4.2.2 Overflow Predictor

With the region information of the data come from the region detector, we will predict
overflow of the butterflies of next stage. As shown in Fig. 28, X, and X, are computed by BU;
as X; and Xz are computed by BU,. After the computations of BU; and BU, are finished, we
will get the four results from X, to Xs. Then we will predict whether X, to X; may cause
overflow or not. Here we define two variables P and Q to represent the region information.

For the prediction of BUj;, Pgys; is the region information of X, and Qgus IS the region
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information of X;. And for the prediction of BU,, Pgu, is the region information of X, and
Qsus is the region information of Xs. The values of P and Q are decided according to the data
locations of X, to X3 The region information is equal to k as the data is inside the region Ry

where k =-2, -1, 0, 1, and 2 as Table 3 shows.

’ ~
- 3
AL WENNNNEES B W R e M . WS X,

BU, B,

Fig. 28 Overflow Prediction based on the region information of the inputs

R—Z R—l RO Rl RZ
1 e el

Table 3 The value of region information P and Q according to the data locations

Taking the prediction of BU; with the C6-type detector as an example, Pgys; is set to -2
while X, is inside the region R.; and Qgys IS Set to 2 while Xj is inside the region Ri,. As we
know, X4 and Xs will cause overflow if the summation of the magnitude of X, and X; is larger
than one. As a result, we will sum up the variable Pgy; and Qgus and compare to a constant
zero. If the result of Pgy; plus Qgus is larger than 0, it implies that the magnitude of X, plus the
magnitude of X; is larger than one and the outputs of the BU3 should be scaled to avoid
overflow. Table 4 shows the decisions of scaling which are based on the result of the

summation of P and Q.
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Table 4 Scaling decision according to the summation of P and Q

The block diagram of the predictor is shown in Fig. 29. There are four registers to
temporarily store the region-information. After the computation of BU; in Fig. 28 is finished,
we store Pgys and Pgy, and wait for the results of BU,. After BUs; is finished, we will get Qgus
and Qgu, and store them into the registers. While the four variables are getting ready, we will

calculate Pgus plus Qgus and Pgy, plus Qgus and then compare the results to zero.

02
Predictor

_|__) PBU3 Qb’(,f}

Memory

Scaling

. Detector
— Operation

Butterfly

K PBU4 qu

051

Exponent Array
|

Fig. 29 The block diagram of the overflow predictor
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Besides, there are two special flags in the predictor which memorize the scaling flags in
next stage. It is because that the convergent block scaling method will separate the data block
in current stage to two smaller blocks in next stage. Once the result of P plus Q in the new
smaller blocks is larger than zero, the special flag will be set and held. After the computations
of the data in a certain block are all finished, the two flags will determine the scaling flags of

the new two blocks and will be stored in the exponent array.

4.2.3 Exponent Unit

The block scaling method needs exponent units to store the shared exponents and the
scaling flags of the blocks..As.shown in Fig. 30, the exponent units are stored in the exponent

array. Each exponent unit consists-of a k-bit shared exponent and a one-bit scaling flag where

k is depending on the FFT size N and is equal to [ log, log, N |.

_ ' Shared Exponent Scaling Flag

k bits 1 bit

; Exponent Unit
Exponent Array

Fig. 30 The exponent array with the exponent unit

The shared exponent is shared for all data of a certain block, and the scaling flag is to
decide whether to scale the results of the butterfly when the data in this block are being
computed. After all computations in one block are finished, the two new scaling flags and
shared exponents will be stored in the corresponding exponent units as shown in Fig. 31. If
the flag is set, the shared exponent will be increased by one. Otherwise, if the flag is unset, the

shared exponent will keep its original value.
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As we know, each block has-its own exponent unit. Here we define B, as the tag of the
block and E;, as the tag of the corresponding exponent unit where n is an integer. If there are m
blocks, n is from 0 to m-1. Besides, during the computations of the convergent block scaling,
the block in current stage will be divided into two blocks in next stage. Therefore, after the
computations of the block B, in stage s are finished, the new two shared exponents and

scaling flags will be stored in the exponent units Ex and E, where y = x + m/ 2°. The usage of

Fig. 31 The block diagram of the exponent unit

the exponent array for each stage is shown in Fig. 32.

Fig. 32 The usage of the exponent array for convergent block scaling with 8 blocks

Stage 1 ~ Stage 2 Stage 3 Stage 4
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
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4.3 Restricted Number of Blocks

As the convergent block scaling method we have mentioned, the dynamic scaling
method only scales when it is necessary to avoid the loss of accuracy. And the concept of
grouping data into several blocks improves the SQNR since there are lots of exponents to
represent the data with different dynamic range. Therefore, it is easy to expect that the larger
number of blocks will acquire higher ‘precision. However, the convergent block scaling
method will divide one block into two blocks from the first stage to the last stage. That is, the
number of blocks and the area of the exponent storage will be doubled through one stage. For
an N-point FFT, there will be N/2 blocks in the last stage and N/2 exponent units are required.
As a result, it will cost a lot amount of storage. Therefore, we define Bnax = 251 which is the
total number of blocks in convergent block scaling and the number of blocks is doubled until

the stage s. Fig. 33 shows the convergent block scaling with different Bpax.

B E . RS 74| [ I s
\20%: ——— m y ¥ e
RN BB IFAES
3 i — AN ™~ ——
(@) (b)
(] 1IN S | B
il Hl = X
XX, Al =)
XXX |
XX B] > B =)
N =
N I | =
(©)

Fig. 33 The convergent block scaling with (a) Bnax=1 (b) Brax=2 (C) Bmax=4
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Taking the 8192-point 16-bit wordlength FFT with MRCBS as an example which uses
the S2-type detector with 10-bit comparators, the performance of SQNR and area are shown
in Fig. 34. It can be observed that the area of the storage is getting increased yet SQNR is
getting saturated while the Bnax IS getting larger. It implies that in deeper stages, we are failed
to get the SQNR we expect even if we double the area of the exponent storage. As we can see,
if we divide the blocks until stage 11 which requires only 1024 exponent units, the area
overhead of exponent storage is only 1/4 of that we divide until stage 13. However, the SQNR
is just 0.13 dB lower than before. Thus, through doubling the number of blocks until a certain
stage rather than doubling the number of blocks incessantly until the last stage, we can
economize the usage of exponent storage to acquire the SQNR improvement we want.
Although the SQNR performance-is not the ultimately highest if we restrict the number of

blocks, we can still get the acceptable SQNR and reduce area cost consequently.

8192-point FFT (WL=16, Type=S2, BW=10)
64 49

x 10000

63 ...".'_A. ....... g——-‘-—_‘ 48

AREA
(pm?)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
B

max

Fig. 34 The SQNR and area cost with different Bpax
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Chapter 5
Experimental Results

The proposed MRCBS method is to generate many hardware solutions for SQNR
improvement and find out the one which meets the SQNR constraint with minimum area cost.
Here we define the performance pair (PP): (SQNR, AREA) which indicates the SQNR
performance with the corresponding area cost. Thus, each solution obtained by MRCBS has
its own PP defined as PP": (SQNR', AREA") where the SONR' represents the total SQNR
performance and the AREAT represents the minimized total area cost.

The PP is determined by the quintuple (N, WL, Type, BW, Bina) Where N is the given FFT
size and WL is the wordlength of storage from 14 bits to 18 bits. The Type indicates different
type of the detectors. Type = Cj implies the circular-type detectors and Type = Sj.implies the
square-type ones where j = 2, 4, and 6. The Cj detector includes four multipliers with bit
width = BW, two adders with bit width = 2*BW and 2j comparators with fixed bit width = 10
while the Sj detector includes 2j comparators with bit width = BW. The BW can be chosen
from 5 to 10. And the total number of blocks Bmay can be 25 where s is from 1 to logzN.

In this work, we choose radix-2 FFT for implementation, and the FFT size and SQNR
constraint are user defined. We present the FFT size N = 1024, 2048, 4096, and 8192 in our
experimental results as the SQNR constraint Is in the range from 50 dB to 70 dB. Given the
FFT size, we apply MRCBS method and build some tables for PPs by simulations and
syntheses. And we will obtain many solutions by combining those tables. Consequently, for
the given FFT size, we can find out the solution among them which meets the SQNR
constraint and has the minimum area overhead. In addition to our MRCBS scheme, the
traditional forced scaling method [7] and the conditional scaling method [14] are implemented

as well and will be compared to our approach.
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The fixed-point FFT model is built by C++, and the SQNR performance is obtained by
simulations with random input signals. And the circuit area is implemented with TSMC 90 nm
cell library and using Synopsys DesignWare to synthesize under 100MHz clock rate. Finally,
the platform for both C++ and Synopsys DesignWare are built in Intel dual Pentium Xeon at

2.53GHz with 50GB of main memory.

5.1 The Solution Generated by MRCBS

The MRCBS scheme improves the SQNR by two ways. One is dividing data into blocks
with additional exponent storage, and the other is adding the multi-region detector to the basic
memory-based FFT design. proposed in [7] which is implemented with forced scaling.

B
P ase

Therefore, the total performance-is-the combinations of PP* and the P as shown in (5.1).

And the operation of combining two PPs is shown in (5.2).
The PP®®®: (SQNR®®¢ AREA®**) is the basic SQNR performance and original area cost
obtained by the traditional memory-based FFT. On the other hand, the PP" is the SQNR

improvement and the additional area overhead obtained from the multi-region detection and
convergent block scaling. PP : (SQNR;, AREA ) is the additional SQNR. performance
obtained by the multi-region detection with the extra area cost of the detector and predictor.

And the PP;: (SQNRJ, AREA)) indicates the additional SQNR performance obtained by the

block scaling with the extra area cost of the exponent array. Therefore, we can obtain those
three performance pairs respectively and combine them to acquire the PP's. We will present

the simulation results of these PPs in the following subsections.

PP" =PP; +PP; +PP™* (5.1)

PP, +PP, = (SQNR + SQNR,, AREA + AREA,) (5.2)
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5.1.1 Performance Pair of the Forced Scaling FFT

We define the PP®®°: (SQNR®*, AREA®®*) which is the performance pair of the
traditional FFT design [7]. By SQNR simulation and hardware synthesis, the PP®**s are

shown in Table 5 which are determined by (N, WL).

WL N 1024 | 2048 | 4096 | 8192 Wi y 1024 | 2048 | 4096 | 8192
14 4797 | 46.75 | 4485 | 44.17 14 67961 | 108890 | 208288 | 370549
15 53.96 | 52.75 | 50.85 | 50.18 15 72892 | 116783 | 222544 | 394919
16 60.00 | 58.78 | 56.87 | 56.20 16 77131 | 1239831236109 | 418597
17 66.01 | 64.78 | 62.89 | 62.23 17 80143 129931 | 249202 | 450454
18 72.01 | 70.81+|68.92 | 68.25 18 84500 | 137225 | 263639 | 483656
(a) (b)

Table 5 The PP determined by (N, WL) (a)SQNR®*® (dB) (b)AREAP™® (um?)

5.1.2 dmprovement from Multi-Region Detection

To know the effects on the performance of SQNR and area by the detector and predictor,
we fix the numbers of blocks Bmax = 1 and wordlength WL = 16 to get PPs. That is, those PPs

are determined by (N, WL = 16, Type, BW, Bnax = 1) by simulations and syntheses. Since we
want to realize the improvement of SQNR and area called PP;'s produced by multi-region
detection compared to the traditional FFT, those PPs will be offset by PP®*s (N, WL = 16)
which can be obtained by Table 5. We present the SQNR's for N = 1024, 2048, 4096 and
8192 in Table 6(a), (b), (c), and (d) respectively. Since the area of the detector and predictor

are all the same with different N, we only show the AREA/s of those PP,'s once in Table 7.

By simulations, the SQNR; is getting saturated while BW is larger than 10, so we have BW

only from 5 to 10 to choose for six types of detectors.
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Tipe BW 5 6 7 8 9 10 Tipe Bw 5 6 7 8 9 10
52 8.49 9.12 9.12 9.29 9.29 9.34 52 1020 | 10.95 [ 1095 | 11.13 | 11.13 | 11.19
54 10.02 | 10.37 | 10.50 | 10.57 | 10.59 | 10.61 54 11.87 | 12,11 | 12,22 | 1230 | 12.34 | 12.34
56 10.15 | 10.54 | 10.72 | 10.80 | 10.80 | 10.83 S6 12.05 | 1244 | 12.62 | 12.67 | 12.69 | 12.70
Cc2 10.59 | 10.99 | 11.19 | 11.27 | 11.30 | 11.31 C2 12.44 | 12.81 | 13.11 | 13.16 | 13.21 | 13.23
4 11.69 | 12.20 | 12.45 | 12.57 | 12.61 | 12.64 4 13.53 | 13.98 | 14.34 | 1442 | 14.50 | 14.52
C6 11.73 | 12.30 | 1258 | 12.68 | 12.72 | 12.76 C6 13.65 | 14.12 | 14.47 | 14.54 | 14.62 | 14.63

(a) (b)

Fpe Bw 5 6 7 8 9 10 Bipe ¢ 5 6 7 8 9 10
52 11.29 | 12.20 | 12.20 | 12.32 | 12.32 | 1241 S2 1359 | 14.66 | 14.66 | 1483 | 14.83 | 14.88
S4 1275 | 13.24 | 1338 | 1345 | 13.47 | 13.53 S4 1522 | 15.65 | 15.72 | 15.78 | 15.80 | 15.81
56 12.83 | 13.37 | 13.61 | 13.68 | 13.69 | 13.74 S6 1531 | 1599 | 16.15 | 16.18 | 16.19 | 16.24
c2 13.63 | 14.02 | 1424 | 14.35 | 14.40 | 1442 (=2, 1591 1641 | 16.66 | 16.79 | 16.84 | 16.88
4 14.68 | 15.15 | 1535 | 1544 | 15.50 [ 15.54 C4 17.32 | 17.68 | 17.85 | 17.91 | 17.96 | 17.98
c6 1472 | 1523 | 1545 ] 15.55 | 15.61 | 15.64 Co6 1737 | 17.72 | 1791 | 17.99 | 18.05 | 18.07

(©) (d)

Table 6 The SQNR, (dB)ofthe PP, for (a)1024 (b)2048 (c)4096 (d)8192 -point FFT

Tpd 5 5 6 7 8 9 10
S2 92 107 122 138 159 176
S4 288 295 353 402 493 507
S6 461 502 620 732 763 804
c2 875 1320 | 2002 | 2669 | 3465 | 4270
C4 1057 | 1509 | 2187 | 2817 | 3633 | 4402
(6} 1226 [ 1705 | 2404 | 3023 | 3834 | 4660

Table 7 The AREA' (um?®) ofthe PP’

5.1.3 Improvement from Convergent Block Scaling

To realize the relationship between total number of blocks Byax and the performance of
area and SQONR, we fix BW = 10 and WL = 16 to get PPs by simulations and synthesis. Those

PPs will be offset by Bnax = 1 to obtain the additional SQNR and area cost produced by the
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block scaling scheme with shared exponents which are defined as PP/'s. That is, the PP/ is
obtained by (N, WL = 16, Type, BW = 10, Bnay). Table 8 (a), (b), (c), and (d) shows the
SQNRy+ of PPy+ for N = 1024, 2048, 4096 and 8192 respectively. Because the AREA;
consists of the exponent storage and the control circuits of exponent accesses, it only depends
on the Bmax and N. Therefore, we only show the  AREAS once in the second row of each table.
The larger Bmax implies the more storage of the exponents so the area is larger. And the control
circuit accessing the exponent units is more complicated while N is larger, so AREAS of

8192-point FFT is larger than that of 1024-point with the same Biax.

B 1 2 4 8 16132 | 64 | 128 [.256 | 512
AREA | 0 | 782 | 1033 | 1359 | 1947 | 3015 | 4967 | 6165 | 7690 | 9588
s21 o [ 126 | 192 ] 251 | 306 | 354 | 409 | 440 | 450 | 464
s4] o 124 | 188 | 251 | 3.04 [ 349 | 397 | 423 | 439 | 445
o S6 0 [ 133 1206 [ 273 328 [ 371 [ats | 438 | 455 |45
YPEreol 0 | 131 | 198 | 2.60 | 3.10 | 3.53 | 405 | 432 | 448 | 4.53
c4| o | 130] 194 248 ] 2096 | 335|380 | 406 | 421 | 426
ce| o [ 132] 200 255 305|344 [ 387 ] 412|427 432
(a)
Bax 1 2 4 8 16 | 32 | 64 | 128 | 256 | 512 | 1024
AREA: | 0 | 845 | 1090|1426 | 2003 | 3074.[-5035 | 6231 | 7746 | 9636 |15093
s21 o 140 [ 2n 271 [ 328 [ 378 | 422 | 464 | 489 [ 5.02 | 507
s4] o [ 140216 [ 279 | 333 | 380 | 419 | 459 | 484 | 497 | 502
i SE] 0 [ 139 | 221 [285T] 541 [T387 1428 | 465 | 489 | 501 | 505
YPEroal 0 | 136 | 213 | 274 | 326 | 3.70 | 4.12 | 452 | 477 | 490 | 4.04
c4] o [ 139 ] 208 266|319 363 | 401|437 458471475
c6l o | 140212274 [ 328 [ 374 | 410 | 445 | 465 | 477 | 481

(b)
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B 1 2 4 8 16 32 64 128 | 256 | 512 | 1024 | 2048
AREA; 0 894 | 1120 | 1461 | 2049 | 3122 | 5086 | 6282 | 7795 | 9711 |15132|30712
S2 0 1.57 | 234 | 297 | 356 | 407 | 454 | 518 | 549 | 570 | 5.81 | 585
S4| 0 1.62 | 242 | 3.08 | 3.66 | 420 | 466 | 521 | 549 | 5.67 | 5.77 | 5.81
T S6| 0 1.65 | 251 | 3.24 | 3.89 | 443 | 488 [ 5.37 | 563 | 580 | 5.90 | 593
ypPe c2| 0 1.55 1 236 | 3.03 | 3.63 | 415 | 459 | 5.19 | 548 | 5.67 | 5.78 | 5.82
C4| 0 1.78 | 2.59 | 323 | 3.76 | 426 | 465 | 5.16 | 541 | 559 | 5.69 | 5.73
co| 0O 1.77 | 2.61 | 328 | 3.85 | 435 | 474 | 523 | 547 | 5.65 | 5.74 | 5.78
(©)
B 1 2 4 8 16 32 64 | 128 | 256 | 512 | 1024 | 2048 | 4096
AREA’ 0 953 | 1177 | 1537 | 2130 | 3206 | 5156 | 6357 | 7874 | 9776 |15220|30787 | 62096
S2 0 148 | 221 | 2.84 | 343 | 395 | 441 | 483 | 524 | 550 [ 5.67 | 577 | 5.81
S4| 0 1.73 | 256 | 320 | 3.75 | 426 | 470 | 508 | 546 | 570 | 5.86 | 595 | 599
T S6| 0 1.66 | 252 | 3.17 [ 375 | 427 | 471 | 508 [ 544 | 567 | 583 | 591 | 594
ype c2| O 1.55 | 230 [ 296 | 3.50 | 4.02 | 445 | 483 | 524 | 549 [ 5.66 | 5.75 | 5.78
c4| O 1.72 | 256 [ 3.19 | 3.71 | 417 | 459 | 495 | 534 | 557 | 5.71 | 580 | 5.83
c6| 0 1.75 | 2.62 [ 3.25 | 3.79 | 428 | 471 | 508 | 545 | 5.67 | 5.81 | 5.89 | 592

(d)

Table 8 The PP, (dB, pm?) for (a) 1024 (b)2048 (c)4096 (d) 8192 -point FET

5.1.4 Performance Pair Combination

To get the result of total area and total SQNR performance PP', we have to combine PP,
PP, , and PP as(5.1) shows. The PP®** can be figure out in Table 5. And the PP, can be
obtained in Table 6 and Table 7 .as PP can be obtained in Table 8. Although WL in PP/
and PP is fixed to 16, we found that the WL does not affect the results so much and assume
different WL will have the same results. As a result, given FFT size N, we will combine PP,

PP;", and PP®** with WL from 14 to 18 to get 5(WL) * 6(Type) * 6(BW) * 10g2N(Brax) PP's.

In these PP's, there may be some ones producing the same SQNR' but the AREA's are

different. Therefore, we will delete the PPT which has the larger AREA" but lower SQNR' to
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reserve the irreplaceable PP's. Consequently, in each 6 dB range, we have 40 PP's to be
chosen to satisfy the SQNR constraint.

Besides, our PP's include the solutions obtained by conditional scaling scheme in [14].
Those solutions are the special cases determined by (N, WL, Type = S2, BW = 10, Bpax = 1).
As shown in Fig. 35, Fig. 36, Fig. 37, and Fig.38, the black dots are the PP's obtained by the
proposed MRCBS method, the gray diamonds are the solutions obtained by the scheme in
[14], and the triangles are the solutions obtained by the scheme in [7] which are the PP?**s for

N = 1024, 2048, 4096, and 8192.
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Fig. 85 The PP's for 1024-point FFT generated by MRCBS
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Fig. 36 The PP's for 2048-point FFT generated by MRCBS
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Fig. 37 The PP's for 4096-point FFT generated by MRCBS
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Fig. 38 The PP's for 8192-point FFT generated by MRCBS

5.2 Area Minimization under SQNR Constraint

In those irreplaceable PP's for certain FFT size, the AREA is definitely larger while the
SQNR? is higher. Therefore, we sort the PP's by SQNR' from small to large, and then search

the SQNR" which is just satisfying the requirement. As a result, the PP™ we find out will be the

solutions which has the smallest AREA.

Table 9, Table 10, Table 11, Table 12 show 8 different SQNR requirements with FFT size
N = 1024, 2048, 4096, and 8192, respectively. Under different constraints, the solutions will

tell us the required wordlength, the type of the detector, the bit width in the detector, and the
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total number of blocks. The exact SQNR is obtained by simulations and is almost equal to the
the SQNR' estimated by MRCBS method. And if previous work has area cost K, the area
reduction is derived by (K - AREAT) / K. Compared to the traditional FFT implemented with
forced scaling, our method can reduce the area cost by 12.61% for N = 1024 and 23.57% for
N = 8192 in the best case.

Besides, we know that conditional scaling has better performance compared to the forced
scaling. However, if the conditional scaling scheme just meets the constraint in some cases,
our method can reduce one bit of wordlength to save the area of memory storage. And if the
constraint becomes tighter so that the previous conditional scaling scheme has to increase one
bit to meet the constraint, our method will uses more blocks or more precise detector to meet
the requirement and still ‘maintain the wordlength. Therefore, we will reduce 2 bits of
wordlength. That is, with larger-size FFT, the area occupancy of 2-bit memory wordlength
will become larger. As we can see, we can reduce the area cost by 6.34% for N.= 1024 but

reduce 12.84% for larger N = 8192.

Area Area
Exact |[SQNR | Area . |SQNR| Area .
WL Tope | BW| B SONR”|AREA" Q 71 |Reduction Q Reduction

(dB) ipe mas |5 : [SQNR| [71 | [7] (14] | [14]

- WBY By | @By | (umd) (7] {dB) | Ngumd) [14]

Constraint H (%) Z (%)
5 77039 72892

50 14| 54 8 1 5004 | 68271 | 50.00 | 5151 | o TR0 11.38 53967 il 6.34
4 80050 72892

53 14 e |5 4 118307 | 69959 | 53.25 | 575540t a0 12.61 5396 | iy | 402
: 80050 77131

55 14 | C6 7 16 | 55.11 7221? 5511|5755 | L 9.78 60.00 | o) 6.37
84407 77131

58 15 | 56 7 4 |758.10 f 74452 | 5794 f 6354 | LT | 1179 | 6000 | o0 3.47
. 2 84407 80143

61 15| C6 | 7 | 16 | 6110 | 77150 | 6115 | 6354 | TN | 8.60 | 6601 | DU 3.73
. 84407 80143

63 16 | 4 5 1 63.19 | 78096 | 63.19 | 63.54 VL 18) 7.48 66.01 | 02 2.55
88764 80143

66 16| C4 | 6 | 8 | 6621 | 79906 | 6626 | 69.57 | R0 9.98 66.01 | L 70 | 0.30
88764 84450

68 17 | 54 7 1 68.02 | 80403 | 6791 | 6957 | TMOC| 9.42 7200 | T | 485

Table 9 The solutions under the SQNR constraints for 1024-point FFT
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. Area Area
@ 2| e | e SR ARES G | 77 [Resttion Y| 157 Rt
Constraint (dB) | (dB) (um?) ©%) (dB) | (um) %)
50 14| ca | s | 1| 5009 | 109855 | 5000 | sass | 129839 1539 | s275 | 6781 503
53 4| ca |6 | s | s32s (1733 | 5337 | sass | 1298301 1304 | ss7s | 1239931 g g8
55 14| ca | 7 |64 | ssan | 116020 | 5494 | eo61 | 1371321 1540 | ss7s | 129831 642
58 15| ca | s | a4 | ss20 | 118837 | 5841 | 60.61 (‘fg_’?sz) 13.34 | 5878 (‘rff?f; 4.15
61 15 ca | 7 | 64 | 6112 | 123912 | 6095 | 6663 (‘ #j%g 14.20 | 64.78 “é"i’?l) 4.63
63 16| s4 | o | 4 | 6302 | 125473 | 6305 | 6663 | 1A4420 | 1302 | ea7s | M1 343
66 16| ca | 7 | 16 16621 | 128080 | 66.11 | 66.63 (1"‘;4:‘%96) 11.32 | 7081 (13;2%3 6.66
68 17| ca |5 1|82 | 130896 683 | T2ea | DITIY| 9372 | 7081 | 1372251 461
Table 10 The solutions under the SQNR constraints for 2048-point FFT
‘ A Area ‘ Area
. W e | B SR AREL SO [ 7). [Reion i i) [Roductin
Constrdili fes) g |t || @l | L
50 14 | s4 | 10717815005 | 2101630 50.05 |is160 | A1) 15,63 | soss | SEMAEL 556
53 14 cs |7 132 L5308 | 213721 | 53,36 | 5763 | 363547 148,91 | ses7 [36M08 0 48
55 15| s | 6 | 4 | ssa3 | 223867 | ss31 | s7e3 | 63T | 1506 | ses7 | 2010|518
58 15| ca | Ve | 16 | 5827 | 226009 | 5825 | 6365 [STPRNY 187 | ease | M9ARTTG 31
61 16 s4 | 6 | 4 | 6116 | 237431 | 6133 | 6365 | STPON) | 14,59 | e2so | ST A7
63 16| c4 | 5 | 8| 6323 [238534 | 6355 | 6365 | BTN 14.19 | es.02 | SO3O 9 52
66 16 | 4 |17 |28 | 66,12 | 244485 | 6603 | 69.69 | 2242 | 16.39 | 6302 | 230 727
68 17 s+ |8 | 8| 6803 [25097 | 6812 | co69 [ 224211 94,17 | 6592 [ 203639 4.80
Table 11 The solutions under the SQNR constraints for 4096-point FFT
Area Area
(dB) WL | Tipe | BW | Bias S%’;;{T A(Iji';)ir SEQX;C;{ S([);;R AﬁE,e]a RedEl—iction S[?T:]R ?;:T Redlllztion
Constraint ) L™ (%:)I (4B) | (uon’) [(%)]
50 14| ca | s |4 15002 [ 372600 | 5032 | saes | SHIONE 2293 | sous | 9991 563
53 14| ca | 6 [ 128 5309 | 378322 | 5315 | saes | GMOH) 2176 | se2o | G187 9.62
55 15| s4 | 6 | 8 | 5508 | 396658 | 5543 | 60.67 | 519790 | 2324 | se20 | 41897 524
58 15| ¢4 | 6 | 32| 5822 | 399541 | 5840 | 6067 |S16760 1 2268 | 6223 | BT 11,30
61 16 s4 | 6 | 8 | 6110 [420336 | 6145 | 6670 | S48 | 2357 | 6223 | 041 6.69
63 16| ¢4 | 6 | 8 | 6313 | 421550 | 6344 | 6670 | S99 | 2335 | es2s | A83630 | 12,84
66 16| €6 | 7 |s512| 6603 | 430685 | 6619 | 6670 | 34998 | 21,69 | 6825 | 28363 | 10.95
68 17 ca | s | 4| esas 452506 | 6838 | 7273 | SRUT0 | 2239 | 625 | 4836301 642

Table 12 The solutions under the SQNR constraints for 8192-point FFT
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Chapter 6
Conclusions and Future Works

In this thesis, a scaling scheme for the memory-based FFT design is proposed which
improves SQNR in an area-efficient way. This method takes advantage of both conditional
scaling and convergent block scaling. By implementing with different detectors and using
different number of the shared exponents, it will generate many solutions with different
SQONR and area performance. Moreover, we can satisfy the SQNR requirement by increasing
the area economically by applying this method.

The experimental results-show-that it will save at least one bit of wordlength to reduce
about 5.6% area from previous conditional scaling method. And if the constraint is just a little
tighter, our method can satisfy the required SQNR by increasing small area rather than
increasing one bit of wordlength in previous approaches. As a result, the proposed scheme
will save 2 bits of wordlength to bring about 13% area reduction from the conditional scaling
scheme for 8192-point FFT in the best case.

In the future, the multi-region detection and the convergent block scaling method can be
improved to optimize the SQNR and the area of the FFT core for different architectures and

different algorithms.
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