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I 

 

應用多重區域條件式成組縮放法於快速傅利葉轉換處理器

之面積最小化技術 

學生：陳柏霖   指導教授：周景揚 博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

 

摘   要 

快速傅利葉轉換處理器是正交分頻多工系統的計算核心，並且在過去幾十年間可以

找到許多研究資料。為了提升定字元長度傅利葉轉換處理器的訊號對量化雜訊比，動態

縮放法在執行運算時適應性地決定其縮放行為以避免不必要的精確度流失。當訊號對量

化雜訊比的要求提高時，傳統上是去增加字元長度以得到更高的精確度。然而增加字元

長度在面積上會付出許多代價，再者，有時候其實並不需要將精確度提升這麼多去滿足

要求。在這篇論文裡，我們提出了一個利用了條件式縮放法及成組縮放法的優點的動態

縮放法。此方法擁有非常經濟地使用面積去提升訊號對量化雜訊比的能力而不只是單純

地去增加字元長度。因此，此方法的目標是在滿足訊號對量化雜訊比的要求下得到最小

化的快速傅利葉轉換處理器的面積。實驗結果顯示在最佳的情形下，我們的方法相較於

原本的條件式縮放法可以對 8192點的快速傅利葉轉換處理器省下約 13% 的面積。 
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ABSTRACT 

The Fast Fourier Transform (FFT) processor is the key component of OFDM-base 

systems, and many literatures of FFT can be found in the past decades. To improve the SQNR 

in fixed-wordlength FFT, dynamic scaling methods adaptively determine the scaling behavior 

in run time to avoid the unnecessary loss of data information. Traditionally, increasing the 

wordlength is the way to acquire higher precision if the SQNR constraint is tighter. However, 

the increased wordlength results in a large amount of area cost. Moreover, sometimes we do 

not have to increase SQNR so much to meet the constraint. In this thesis, we proposed a 

dynamic scaling scheme which utilizes the profits of conditional scaling method and block 

scaling method. Our approach has the ability to economize the usage of area rather than 

increase the wordlength for SQNR improvement and the target is to minimize the area of FFT 

under the SQNR constraint. Experimental results show that our approach can reduce the area 

cost by about 13% in the best case for 8192-point FFT as compared to the existing conditional 

scaling method. 
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Chapter 1  

Introduction 
 

In recent years, research and development on high-data-rate wireless communications 

have attracted great attention. Orthogonal frequency-division-multiplexing (OFDM) is the 

modulation technique which is a favorable choice for many new and emerging broadband 

communication applications, such as local area networks (WLAN) [1], high definition 

television (HDTV) [2], digital video broadcasting-terrestrial (DVB-T) [3], and digital audio 

broadcasting (DAB). The simplified architecture of OFDM system is shown in Fig.1.  

 

 

Fig. 1 Simplified architecture of OFDM system 

 

In those applications, Fast Fourier Transform (FFT) is the most widely used algorithms for 

calculating the Discrete Fourier Transform (DFT) because of its efficiency in reducing 

computation time. Therefore, it is one of the most important processing blocks to meet the 

design constraints. In [4], the authors showed that in such high-data-rate systems, the most 

computationally intensive part is the FFT core. Therefore, there have been many literatures 

reported on the design of FFT processors nowadays. 
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Based on the hardware cost and the required throughput, there are two main categories of 

FFT architectures. One is called memory-based architectures, which consist of a butterfly unit 

and certain number of memory blocks. The other is called pipeline-based architecture, which 

consists of multiple stages to provide higher throughput. In general, memory-based 

architectures are suitable for long-size and low hardware design [5]. And pipeline-based 

architectures are feasible for short-size and high throughput design. In this thesis, we focus on 

the long-size FFT design with memory-based architecture where the wordlength WL of the 

output in every stage is the same as that of the input. 

Taking the practical design into consideration, the precision of FFT module in terms of 

Signal to Quantization Noise Ratio (SQNR) is a significant design factor of system 

performance. In reality, an FFT cannot be implemented exactly since the algorithm is 

implemented by fixed-point arithmetic. All signals and coefficients have to be represented 

with finite number of bits in binary format. Therefore, conducting the addition and subtraction 

operations in butterfly unit may cause overflow during the FFT computations. For this reason, 

the wordlength should be increased stage by stage to avoid possible overflow after butterfly 

computations. The increasing wordlength can be used to avoid accuracy loss and increase the 

precision [6], but the hardware cost and the critical-path delay are increased accordingly and it 

is unsuitable for memory-based architecture. Consequently, rounding or truncation operations 

introduce noise which is referred as quantization noise and result in accuracy loss. 

Furthermore, the wordlength may also affect the accuracy. Longer wordlength may be used to 

achieve better SQNR with larger area, and shorter wordlength may be chosen to maintain a 

lower hardware cost at the sacrifice of the precision. Therefore, many scaling methods have 

been proposed to meet SQNR requirement with the fixed-wordlength constraint [7-12].  

Oppenheim et al. [7] proposed a basic scaling method which scales the results by a factor 

of 1/2 for each stage. That is, the results are divided by two after each butterfly calculation. 

Since it is trivial to implement, the approach is the simplest but the least accurate scaling 
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method called the forced scaling method. Another is called the Block Floating Point (BFP) 

scaling [11] which employs intermediate buffers to store the output data, and detects the 

largest value to decide the output format appropriately which gets better SQNR. However, this 

kind of method results in a large amount of area overhead and power consumption. Besides, 

there is another approach which is called conditional scaling [13, 14]. The idea of the method 

is to predetermine whether to scale in next stage according to the magnitude of the results in 

current stage. That is to say, after each butterfly computation, the magnitudes of the results are 

compared to a threshold and the results can be written back to the memory instantly after the 

comparisons. After all comparisons are finished, it will be judged that overflow will occur in 

next stage if one or more values exceed 0.5. Thus, after each computation of the butterfly in 

next stage, the results will be scaled to avoid overflow. Although the conditional scaling 

method acquires less SQNR than BFP, it saves much area since it does not need the buffers to 

store internal results. 

In this thesis, we propose a dynamic scaling method combining the concepts of BFP 

scaling and conditional scaling with memory-based architecture to acquire higher SQNR in an 

area-efficient way. Our method not only improves the previous conditional scaling method to 

predict overflow more precise but also modifies BFP scaling to divide data into blocks 

appropriately. Moreover, our method can minimize the area with given FFT size and SQNR 

constraint. 

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review the 

fundamentals of FFT algorithms, architectures and previous scaling methods. Chapter 3 

explains the motivation of this work. The proposed method is demonstrated in Chapter 4. Our 

experimental results are shown in Chapter 5. Finally, Chapter 6 gives the concluding remarks 

of this thesis. 

 

 



 

4 

 

Chapter 2  

Preliminaries 
 

In this chapter, we will review basic FFT algorithms, FFT architectures, the scaling 

considerations and previous scaling methods in FFT hardware design. 

 

2.1  The FFT Algorithms 

The Discrete Fourier Transform (DFT) plays an important role in the region of digital 

signal processing (DSP) and communications. However, the computation complexity of 

directly evaluating an N-point DFT is O(N
2
), which costs a lot amount of computation time 

and power consumption. Therefore, a fast algorithm to evaluate DFT is required.  

FFT algorithm is a decomposition of an N-point DFT into successively smaller DFT 

transform which was proposed by Cooley and Turkey [15] in 1965. It is very popular because 

it reduces the complexity of DFT from O(N
2
) to 2( log )O N N , and makes it suitable for VLSI 

implementation due to the regularity of the algorithm. Besides, many similar algorithms have 

been developed to further reduce the computational complexity of FFT [16-18]. Owing to 

these algorithms, FFT computes the DFT efficiently and produces exactly the same result as 

evaluating the DFT equation.  

 

2.1.1 Basic Concepts of FFT Algorithms 

FFT algorithms are approaches to evaluate DFT. The formulation of N-point DFT is 

defined as  

1

0

( ) ( ) ,  0,  1,  ...,  1
N

nk

N

n

X k x n W k N




                        (2.1) 
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Where X(k), x(n) and 
nk

NW  are complex numbers. X(k) is in frequency domain, and x(n) is in 

time domain. The coefficient 
nk

NW  is defined as (2.2) and is called the twiddle factor which 

the symmetric property is shown in Fig. 2. 

 

2
2 2

cos( ) sin( )
j nk

nk N
N

nk nk
W e j

N N


 



                    (2.2) 

 

Decimation-in-time (DIT) FFT algorithm is to decompose the input sequence x(n) into 

smaller and smaller sequence. Alternatively, decimation-in-frequency (DIF) FFT algorithm is 

to decompose the output sequence X(k) in the same way. Both of these two algorithms are 

similar in nature, the DIT FFT algorithm is chosen to illustrate in this thesis. 

   Fixed-radix algorithms include the radix-2, radix-4, radix-8, etc. We will review the 

radix-2 and radix-4 DIT FFT algorithms and the general form, that is, radix-r DIT FFT 

algorithm in the following subsections. Among them, the radix-2 algorithm has the simplest 

form and is popular in FFT processor design. In this thesis, we implement radix-2 DIT FFT 

algorithms to explain our thought. 

 

 

Fig. 2 Symmetric property of twiddle factor 
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2.1.2 Radix-2 DIT FFT Algorithm 

The raidx-2 algorithm is using the divide-and-conquer approach which divides the 

problem of N-point FFT by a factor of 2, where N is power-of-2. Radix-2 DIT FFT Algorithm 

divides x(n) into its even-numbered points and odd-numbered points, and uses 2r to substitute 

n for n is even, 2r+1 to substitute n for n is odd. 

 
2 2

2 2

1 1

2 12

0 0

1 1

2 2

0 0

( ) (2 ) (2 1)

        (2 ) (2 1)

N N

N N

r krk

N N

r r

rk k rk

N N N

r r

X k x r W x r W

x r W W x r W

 



 

 

 

  

  

 

 

                 (2.3) 

Since 
2

2N NW W , (2.3) can be rewritten to (2.4). 

              
2 2

1 1

2 2

0 0

( ) (2 ) (2 1)

N N

rk k rk

N N N

r r

X k x r W W x r W

 

 

                    (2.4) 

   Each of the sums in (2.4) is recognized as an N/2-point DFT. As shown in Fig. 3, the first 

term is the N/2-point DFT of the even-numbered points of the original sequence, and the 

second term is the odd-numbered point of the original sequence.  

 

 

Fig. 3 First stage of the DIT FFT algorithm for 8-point FFT 
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Then we divide the original k into two new parts k and 2
Nk  , for k = 0, 1, …, 2

1N  . 

Since 
 2

2/2 1
N

N
jN j

NW e e


    
 and 

2 /2r N r N r

N N N NW W W W     , (2.4) can be rewritten to 

(2.5). Through log2N-time recursive decompositions, the complete radix-2 DIT FFT algorithm 

can be obtained. 

    

2
1

2

0

( ) ( 2 ) ( 2 1 )

N

k r k

N N

r

X k x r W x r W





       

2
1

2

0

( ) (2 ) (2 1)
2

N

k rk

N N

r

N
X k x r W x r W





                       (2.5) 

 

The decomposition can be mapped to a butterfly unit which is an essential arithmetic 

component in an FFT processor shown in Fig. 4. The butterfly unit operates complex 

multiplications, additions and subtractions. Fig. 5 illustrates the reorganized signal flow graph 

of 8-point radix-2 DIT algorithm. From (2.1), we know that the computational complexity of 

DFT is N
2
. However, after the decompositions of FFT, the computational complexity of 

multiplications is 22
(log 1)N N   and the complexity of additions and subtractions is 

2logN N , which is much less than the original DFT equation. 

 

 

Fig. 4 The butterfly unit of a radix-2 DIT FFT algorithm 
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Fig. 5 The reorganized signal flow graph of the 8-point DIT FFT algorithm 

 

2.1.3 Radix-4 DIT FFT Algorithm 

Radix-4 FFT algorithm uses 4-point DFT to decompose N-point FFT. The original input 

sequence of radix-4 FFT algorithm is divided into four parts, x(4r), x(4r+1), x(4r+2), and 

x(4r+3), where r = 0, 1, 2, …, 4
1N  . Substituting these four subsequence for x(n) into (2.1) 

and dividing X(k) into four parts, we can get (2.6). 

4

4

4

1

2 3

4

0

1

2 3

44

0

1

2 3

2

0

       ( ) (4 ) (4 1) (4 2) (4 3)

( ) (4 ) (4 1) (4 2) (4 3)

( ) (4 ) (4 1) (4 2) (4 3)

N

N

N

k k k rk

N N N N

r

k k k rkN
N N N N

r

k k kN
N N N

r

X k x r W x r W x r W x r W

X k x r jW x r W x r jW x r W

X k x r W x r W x r W x r W













         

          

          







4

4

1

2 33
44

0

( ) (4 ) (4 1) (4 2) (4 3)

N

rk

N

k k k rkN
N N N N

r

X k x r jW x r W x r jW x r W





          

    (2.6) 

Although the complexity of multiplications in the radix-4 FFT algorithm is equal to 

3
44

(log 1)N N  , which is lower than radix-2, the complexity of additions and subtractions is 

still 2logN N , which is equal to that in the radix-2 FFT algorithm. 
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2.1.4 Radix-r DIT FFT Algorithm 

Larger r can much further reduce the complexity of multiplications. For general cases, we 

derive the radix-r DIT FFT algorithm, where r is 2
S
, and S is any positive integer. For N-point 

FFT, the general form is  

11

0 0

( ) ( )
N rr

pq pk nk

r N N r

p n

qN
X k W W X rn p W

r



 

                  (2.7) 

where q = 0, 1, …, r-1. And the complexity of multiplications is 
( 1)

(log 1)
S N

SS
N


  . 

 

2.2  The FFT Architectures 

The FFT is one of the most widely used DSP algorithms. Generally speaking, there are 

two kinds of popular FFT architectures to implement FFT algorithms. One is memory-based 

architectures and the other is pipeline-based architectures. Memory-based architectures are 

suitable for low throughput, low hardware cost, and long-size FFT designs whose size is not 

smaller than 512 [5]. On the other hand, pipeline-based architectures are suitable for high 

throughput, high hardware cost and short-size FFT designs. In this thesis, we focus on 

long-size FFT design with memory-based architecture. The details of those two architectures 

are introduced in the following subsections. 

 

2.2.1 Memory-Based Architectures 

 The memory-based architecture is the simplest FFT architecture. It consists of one 

memory device and one radix-r processing element (PE) which contains one or few butterfly 

units to operate all computations in the signal flow graph. The basic components of 

memory-based architecture are shown in Fig. 6. Data are read from the memory and 

computed in the PE. After the computations, the output data are written back to the memory 
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and occupy the same storage locations as input data. For radix-2 FFT algorithm, there are 

2log N stages for the N-point FFT computations, and the number of butterflies in the PE can 

be chosen freely to meet the throughput rate requirement. The generalized conflict-free 

addressing schemes for memory-based FFT architectures presented in [19, 20] solve the 

problem of the memory bandwidth. In this work, we implement the memory-based FFT 

architecture with one butterfly unit in the PE block for simplification. 

 

 

Fig. 6 A simple architecture of memory-based FFT 

 

2.2.2 Pipeline-Based Architectures 

The pipeline-based FFT architecture is regular, modular, local connection, and often 

adopted for high-throughput-rate applications with high hardware complexity [21]. It can be 

generally divided into two kinds of architectures depending on the design of register. One is 

the Single-path Delay Feedback (SDF) architecture [22, 23] and the other is the Multi-path 

Delay Commutator (MDC) architecture [24]. SDF architecture has higher hardware usage and 

lower hardware cost. On the other hand, MDC architecture has higher throughput than SDF 

architecture. Here we only introduce the radix-2 SDF architecture as below since we do not 

take the pipeline-based architecture into account in this work.  
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Take the radix-2 SDF (R2SDF) architecture as an example and the architecture is shown 

in Fig. 7. The R2SDF uses the registers efficiently by storing the output of the butterfly into 

the shift registers. When doing addition operation, the butterfly unit passes the output to the 

next stage. On the contrary, the butterfly unit stores the output into the shift registers when 

doing subtraction operation. Thus, there is only one output passes to the next stage in each 

cycle, and the utilization of the memory is 100%. 

 

 

Fig. 7 The R2SDF architecture for 16-point pipeline-based FFT 

 

2.3  Scaling Operation 

Butterfly unit in PE shown in Fig. 4 operates on two complex numbers and produces two 

new complex numbers which replace the original ones in the sequence. Let Xm(p) and Xm(q)  

be the original complex numbers in tage m, the new pair Xm+1(p) and Xm+1(q) in stage m+1 are 

given as (2.8). 

1

1

( ) ( ) ( )

( ) ( ) ( )

nk

m m m N

nk

m m m N

X p X p X q W

X q X p X q W





  

  
                       (2.8) 

The coefficient 
nk

NW  is the twiddle factor and substantially is the complex root of unity. 

For this reason, (2.9) shows that the multiplication with twiddle factor in the butterfly does 

not change the magnitude of the result. Hence, the magnitude of outputs can never be larger 

than twice the maximum magnitude of inputs as (2.10) explains. 
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( ) ( ) ( )nk nk

m N m N mX q W X q W X q                    (2.9) 

 1( ) ( ) ( ) ( ) ( ) 2 max ( ) , ( )nk

m m m N m m m mX p X p X q W X p X q X p X q         (2.10) 

 

 From (2.10), we know that the range of data is increased from stage to stage. Thus, there 

is possibility of overflow during computation of butterflies if the data wordlength does not 

increase. Naturally, increasing the wordlength is a solution to avoid possible overflow [6]. 

However, the increased wordlength requires a larger storage to store the data which increases 

both area and power. Moreover, increasing wordlength is unacceptable for memory-based 

FFT architecture because the wordlength is fixed and cannot allow different wordlength from 

stage to stage. Therefore, it needs to scale the data for overflow prevention with the 

fixed-wordlength constraint.  

Basically, the principle of scaling operation is dividing the data value by a factor of 2 

before written back to the storage. That is, the data is shifted right by one bit after butterfly 

computations to avoid overflow as shown in Fig. 8. 

 

 

Fig. 8 An example of scaling operation 

 

However, the truncation in scaling operation introduces noise and influences the accuracy. 

Longer wordlength will be needed to meet the required performance. As a result, the decision 

of whether to scale affects the accuracy very much. As shown in Fig. 9, a one-bit scaling flag 

is being defined to decide whether to truncate the least significant bit of the result or not. If 

the scaling flag is set to one, the result of the butterfly will be scaled. Otherwise, the result 
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keeps its original value without scaling. When the scaling operation is finished, results are 

written back to the memory device. 

 

 

Fig. 9 An example of scaling operation with scaling flag 

 

As we know, the wordlength affects the area and precision. Longer wordlength achieves 

higher precision but costs more chip area. The memory storage dominates the area of the FFT 

core as Fig. 10 shows. Besides, if long-size FFT is chosen, longer wordlength is needed to 

maintain the same required precision [8]. Therefore, it is demanded to design an efficient 

scaling algorithm in FFT which satisfy the SQNR requirement with shorter wordlength. 

 

 

Fig. 10 The area occupancy of each component in memory-based 16-bit FFT 
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2.4  Scaling Method 

The scaling method with a constant scaling flag of each stage is called static scaling 

method such as forced scaling [7] where the scaling flag is always set to one. Conversely, the 

scaling method determining the scaling factor of each stage at run-time is called dynamic 

scaling method, like BFP scaling [12] and conditional scaling [13, 14]. Each kind of scaling 

method has its advantages and disadvantages respectively. Static scaling is the simplest in 

hardware implementation as well as dynamic scaling greatly improves accuracy by ultimately 

avoiding unnecessary truncations. We will introduce these scaling schemes in 

fixed-wordlength FFT design as follows. 

 

2.4.1 Forced Scaling 

Oppenheim [7] proposed a scaling method which is the easiest to understand and the 

simplest to implement. The idea of this algorithm of preventing overflow is to scale the results 

after each butterfly for each stage, as shown in Fig. 11. That is, the scaling flag in each stage 

is set to one. This kind of scaling strategy is called forced scaling. In such case, the hardware 

is very simple to implement but the SQNR may not be very good. Actually, most data values 

need not to be scaled in every stage to avoid overflow. As a result, precision is unnecessarily 

lost by forced scaling method. 

 

 

Fig. 11 The architecture of the forced scaling method 



 

15 

 

2.4.2 Block Floating Point Scaling 

The floating point representation is shown in Fig. 12. The bit width of the floating point 

contains exponent bits, mantissa bits, and one sign bit. The magnitude of the value which is 

stored in the mantissa part is always smaller than one, and the value in the exponent part is an 

integer which is larger or equal to zero. BFP scaling method [12] uses a shared-exponent 

concept which groups the floating-point data into blocks with a common exponent to reduce 

the wordlength. An example of BFP with four blocks is shown in Fig. 13 where the capital 

letter “E” stands for the shared exponent of each block. The data only keep their own sign bit 

and mantissa bits, and each block has its own shared exponent as shown in Fig. 14. And the 

block size and the number of blocks are fixed through all stages. 

 

 

Fig. 12 Floating point representation 

 

Compared to the regular scaling such as forced scaling, BFP acquires higher performance 

of SQNR by avoiding unnecessary loss of data information. The idea is to scale only if we 

found the necessity of that. Thus, BFP employs intermediate buffers to store the output data of 

a certain block, as shown in Fig. 15. After all data in this block are computed and stored into 

the buffer, a detector will detect them to find out the largest value. If the magnitude of the 

largest value is larger than one, the scaling flag of this block is set to one. Then all the data are 

scaled and written back to the memory as the shared exponent is increased by one. On the 

other hand, if the largest value does not cause overflow, scaling will not be performed. 

Therefore, the least significant bit for each data value is preserved.  
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Fig. 13 An example of 8-point FFT with 4 blocks BFP scaling 

 

 

Fig. 14 A data block example with block size = 4 

 

 

Fig. 15 The architecture of the BFP scaling method 

 

Unlike the forced scaling, BFP scales data only when it is necessary. By adaptively 

determining the scaling flag to avoid accuracy loss, BFP acquires better precision than forced 

scaling method. Hence, BFP uses shorter wordlength to achieve the required SQNR and saves 

the area of memory device. Unfortunately, the inputs of the butterfly in BFP scaling method 
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will come from different data blocks, that is, their exponent may not be the same. Therefore, 

the floating point arithmetic of addition and subtraction operation needs an alignment unit to 

align two input data. It needs to shift the mantissa bits to represent them with the same 

exponent. Since the exponent bits have to be checked and mantissa bits have to be shifted, it 

will be more complicated than fixed point arithmetic in hardware implementation. Moreover, 

the buffer accesses and data detections introduce the additional processing latency and power 

consumption. Also, the intermediate buffers, detectors and the storage of shared exponents 

cause a large amount of additional area overhead. 

 

2.4.3 Conditional Scaling 

Instead of storing results in the buffers and detecting the largest value to decide the scaling 

flag, the conditional scaling method using the concept of prediction is another way to avoid 

overflow but saves the area overhead of buffers. Fig. 16 shows the architecture of conditional 

scaling method. In details, conditional scaling predetermines the scaling flag of current stage 

by the detections in previous stage. Then the detections in current stage will predetermine the 

scaling flag of next stage. Therefore, conditional scaling does not need buffers to store 

intermediate results. Moreover, there is only one shared-exponent in conditional scaling 

because it uses the fixed point representation. As a result, the alignment unit is unnecessary. 

We can directly operate additions and subtractions on the two inputs of butterfly. 

 

 

Fig. 16 The architecture of the conditional scaling method 
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The criterion for deciding the scaling flag of next stage is based on the observation of 

whether any value in current stage is outside a particular region on the complex plane [13]. 

Besides, (2.10) tells us that 1 1( ) ,  ( ) ( ) ( )m m m mX p X q X p X q    . If ( )mX p  and 

( )mX q  are both smaller than 0.5, 1( )mX p  and 1( )mX q  will be smaller than one. 

Therefore, the region with which to compare the data in current stage is the circle of radius 

0.5. As shown in Fig. 17, the circle of radius 0.5 is the idealized threshold for deciding the 

scaling flag of next stage.  

 

 

Fig. 17 The particular region of the complex plane in conditional scaling method 

 

The magnitudes of the results are checked during the butterfly computations. If all output 

data in current stage are inside the region with radius 0.5, it guarantees that there will not be 

any data with magnitude larger than one to cause overflow in next stage. Thus, the scaling 

flag will not be set and the exponent will be kept. On the contrary, if there is at least one data 

outside the circular region with radius 0.5, it may cause overflow through butterfly 

computation in next stage. As a result, when computing the butterflies of next stage, the 

results should be scaled and the exponent should be increased by one.  
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Because conditional scaling predicts the necessity of scaling, the SQNR performance of 

conditional scaling is much higher than that of forced scaling but a little lower than that of 

BFP scaling. However, calculating the magnitude of a complex number needs to compute the 

square of real part and imaginary part. The required multipliers and adders will cost area. 

Alternatively, for hardware concern, the maximal cyclic quadrilateral which is the square with 

dotted line in Fig. 17 is chosen to define the particular region [14]. As a result, only 

comparators are needed to detect the region information of data. 

In this thesis, we will combine the concepts of BFP scaling method and the conditional 

scaling method and utilize the profits of them. 
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Chapter 3  

Motivation 

 
To satisfy the required SQNR performance, we will choose a scaling approach which 

produces SQNR higher enough with less area. However, once the constraint is tighter and the 

original design does not satisfy the requirement, using longer wordlength is the only way to 

further increase the accuracy. Based on the experience of simulations, increasing wordlength 

by one will acquire about 6 dB improvement for SQNR but about 6% area penalty in addition. 

However, sometimes we do not have to increase SQNR so much to meet the constraint. Thus, 

by the improvements of conditional scaling and modifications of block floating point scaling, 

we will acquire SQNR improvement in demand with the corresponding area overhead. 

 

3.1  Multi-Region Detection 

With the approaches of [13, 14], the complex plane has been divided into two regions to 

detect the region information of the outputs of the butterfly. Traditional conditional scaling 

method avoids overflow in current stage by ensuring the data in previous stage are all in the 

internal region with radius 0.5. However, overflow comes from the addition and subtraction 

operations in butterfly which result in the growth of data magnitude. And the computation 

only has relations with the two input data. That is to say, restricting all data in the same region 

to avoid overflow is excessively severe. In order to avoid overflow, we only need to ensure 

that ( ) ( )m mX p X q  is smaller than one as (2.10) says. 

We assume that we are now computing butterflies in stage m-1, and the complex plane is 

divided into two regions as Fig. 18(a) shows. The Xm(q) is inside R0 and Xm(p) is outside R0 

and they are both the inputs of the same butterfly in stage m. In previous conditional scaling 
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method, it is judged that overflow will be produced in stage m and the scaling flag of stage m 

will be set. However, overflow can also be avoided as long as ( )mX q  is small enough. 

Therefore, we try to divide the complex plane into more regions. Fig. 18(b) shows the idea of 

which four regions are divided. In such case, Xm(p) is inside R+1 and Xm(q) is inside R-1 where 

the radius of R+1 is 0.7 and the radius of R-1 is 0.2. By ensuring the summation of the radii of 

R+1 and R-1 is less than unity, we can judge that the butterfly computation in stage m which 

operates on these two data will not cause overflow. That is to say, dividing the complex plane 

into more regions will further prevent the unnecessary scaling operations and produce better 

SQNR performance. And we can expect that the more regions the complex plane is divided, 

the higher precision can be obtained. 

 

    

                  (a)                                  (b) 

Fig. 18 The complex plane with (a) two regions (b) four regions are divided 

 

3.2  Convergent Block Scaling 

The hardware of floating point arithmetic is more complicated than that of fixed point 

arithmetic. As mentioned in 2.4.2, one part of the area overhead of BFP scaling method is the 

alignment unit because the floating point representation is used. Since the inputs of butterfly 
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may come from different blocks and their exponent may be different, we cannot operate these 

two mantissas directly without alignment. However, figuring out the larger exponent and 

shifting the smaller mantissa introduces area and processing latency. If we want to save the 

hardware of alignment unit, we must ensure that the two inputs of butterfly are come from the 

same block which means their exponent is always the same one. 

It can be observed in Fig. 5 that during the decomposition of FFT algorithms, a k-point 

DFT in stage m will be separated to two k/2-point DFT in stage m+1. And the computation of 

the first k/2 data in stage m+1 only depends on the first k/2 data in stage m. Thus we group the 

data into blocks in a convergent way mentioned in [25] and the idea is shown in Fig. 19. In 

first stage, all data are grouped into one block. That is, the number of blocks and shared 

exponents in first stage are both equal to one. Afterwards, the number of blocks and shared 

exponents are doubled as the size of the block is one half from stage to stage. In this way, 

inputs of butterfly for each stage are surely come from the same block with the same 

exponent. 

 

 

Fig. 19 An example of 8-point FFT with convergent block scaling 
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Through the convergent block scheme, the data will be represented in different dynamic 

ranges with different exponents so the SQNR is higher than forced scaling scheme where the 

data are all in the same dynamic range. Besides, the number of blocks is a key factor for 

SQNR improvement. Larger number of blocks results in better SQNR performance. However, 

such kinds of block scaling methods require the additional area of storage to store the shared 

exponents. By the way, since the conditional scaling is assumed that the data are all in the 

same dynamic range with the same exponent, the convergent block scheme is naturally 

suitable for implementation with conditional scaling in fixed point representation. 

 

3.3  Our Strategy 

We are informed that the SQNR performance can be improved by two ways. One is the 

multi-region conditional scaling and the other is the convergent block scaling. Therefore, we 

propose the multi-region conditional block scaling (MRCBS) method which combines these 

two methods mentioned above to obtain many solutions of hardware architecture for SQNR 

improvement. As a result, by searching those solutions, we can figure out the solution which 

has the minimum area cost with the required SQNR performance. 

 

3.4  Problem Formulation 

Given FFT size and required SQNR, our goal is to minimize the area of memory-based 

radix-2 FFT under the given SQNR constraint by applying our MRCBS method. 
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Chapter 4  

The Proposed Approach 
 

In this chapter, we present the proposed MRCBS method for memory-based FFT which 

utilizes the profits of conditional scaling and the convergent block scaling to improve SQNR 

performance. The first section describes the scheduling of the butterfly computation in order 

to predict overflow precisely and save the additional storage. The second section illustrates 

the MRCBS and its architecture. Finally, in the third section, we will discuss the MRCBS 

with different number of blocks and the relationship between the number of blocks and the 

performance of area and SQNR. MRCBS generates many solutions for improving SQNR, and 

the purpose of this thesis is to find out the architecture of scaling method for FFT which meets 

the SQNR requirement and has the smallest area. 

 

4.1  Scheduling of Butterfly Computation 

In order to precisely predict the overflow and prevent the unnecessary scaling, we should 

detect the magnitude of the two data which are the inputs of the same butterfly in next stage. 

As Fig. 20 shows where BU is abbreviated from butterfly unit, BU1 and BU2 are in current 

stage and other two butterflies BU3 and BU4 are in next stage. In such case, X0 and X1 should 

be detected overflow together because they are both the inputs of BU3. However, X0 is 

computed by BU1 and X1 is computed by BU2. We cannot get them at the same time. Therefore, 

when we get the results of BU1, we have to store them and wait for the results of BU2. For this 

reason, we will schedule the computational order of butterfly computations to save the 

required storage. 

The concept of the scheduling is that when the computation of BU1 is finished, the 

computation of BU2 is followed. After BU1 and BU2 are finished, X0 and X1 are both available, 
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we can predict overflow and determine the scaling flag for BU3. Fortunately, X2 and X3 are 

both available as well. We can predict overflow for BU3 and BU4 simultaneously. That is, 

while two butterflies are finished in current stage, we can predict two butterflies in next stage 

smoothly. As a result, only four registers are required to store the results of BU1 and BU2 for 

overflow predictions. When the predictions of BU3 and BU4 are finished and the scaling flags 

are determined, those four registers can be reset for storing the results of other butterflies. 

Furthermore, compared to the original order, just small extra control circuits are required to 

schedule the computation of butterflies as we wish. 

 

 

Fig. 20 Detection of the two data in the same butterfly of next stage 

 

4.2  Multi-Region Conditional Block Scaling 

Since the thought of conditional scaling is to predict the overflow and predetermine the 

scaling flag for next stage, it does not need intermediate buffers to store the output data to 

determine the scaling flag of current stage. Therefore, we develop the architecture for our 

scaling method which is shown in Fig. 21. The memory block is the original part of the 

traditional memory-based FFT architecture shown in Fig. 6 and there is one butterfly unit in 

the PE block in our work. The detector is to detect the region information and the predictor is 

to predict possible overflow. The shared exponents and the scaling flags of each block are 

stored in the exponent array.  
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Fig. 21 The architecture of the proposed MRCBS 

 

When evaluating the FFT, two data are read from the memory for each cycle and 

computed in BU. The scaling flag predetermined in previous stage will be read from exponent 

array to scale the results of butterfly in current stage. After computation of the butterfly is 

finished, the results will be straightly written back to the memory. In the meanwhile, the 

results are passed to the detector to define their region information by detecting their 

magnitudes. Then the predictor receives the region information of the results from the 

detector to judge whether overflow will occur in next stage or not. After the prediction is 

finished, the predetermined scaling flags and the shared exponents of next stage will be stored 

into the exponent array. Moreover, the detector and predictor are worked in parallel with the 

computation of butterfly unit since the results of butterfly can be written back to the memory 

without waiting for the results of them. Thus, such kind of architecture will not produce large 

amount of processing latency. The details of detector, predictor, and exponent array will be 

described in the following subsections. 
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4.2.1 Region Detector 

Because we divide the complex plane into many regions, the overflow detector consists of 

comparators in order to determine the region information of the data by comparing the outputs 

of butterfly with several thresholds. The detector dividing the complex plane into many 

circular regions with different radii is called circular-type detector. On the other hand, 

dividing the complex plane into many square regions with different side lengths is called 

square-type detector. Because the square region is the maximal cyclic quadrilateral of each 

circular region, the area is smaller and the prediction is severer. As a result, the square-type 

detector improves less SQNR than the circular-type one but increases less area. 

The purpose of the multi-region detection is to handle the situation shown in Fig. 18 

where Xm(p) is outside the internal region but Xm(q) is deeply inside and they are actually 

overflow-free in next stage. Therefore, we should define an additional pair of regions that one 

region is larger and the other is smaller. As a result, the case with larger Xm(p) and smaller 

Xm(q) or vice versa will possibly be judged to be overflow-free. And that is why we divide the 

complex plane into even number of regions. In our work, we divide the complex plane into 

two regions, four regions, and six regions and implement circular-type and square-type 

detectors respectively. That is, there are six different detectors in total with different area 

overhead and different SQNR performance. 

After the detection of the detector is finished, the region information which indicates the 

region where the data is located will be output.  

 

4.2.1.1 Circular-Type Detector 

First we discuss the region detector which divides the complex plane into two regions as 

Fig. 22(a) shows. This type of detector is named “C2”. The internal region R0 is defined as the 

circle of radius 0.5 and the threshold t0 representing the radius of R0 is equal to 0.5. 
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Next we divide the complex plane into four regions. This type of detector is named “C4”. 

Additional regions R-1 and R+1 are defined as shown in Fig. 22(b). The R-1 is the circle of 

radius t-1 and R+1 is the annulus with inner radius t0 and outer radius t+1, and we have to ensure 

that t-1 plus t+1 is less than one. Because the threshold t-1 is absolutely larger than the 

magnitude of Xm(q) and t+1 is larger than that of Xm(p), the addition and subtraction operations 

of those two complex data will not be larger than one to cause overflow. Therefore, once Xm(p) 

is outside R0 but is inside R+1 while Xm(q) is inside R-1, it will be judged that the butterfly 

computing Xm(p) and Xm(q) in next stage is overflow-free.  

 

           

(a)                                (b) 

  

 (c) 

Fig. 22 The regions of the circular-type detectors (a) C2 (b) C4 (c) C6 
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Finally we further divide the complex plane into six regions as shown in Fig. 22(c) and 

this type of detector is named “C6”. With the existed four regions on the complex plane in the 

C4 detector, the regions R-2 and R+2 are defined additionally. In C6 detector, R-2 is the circle of 

radius t-2, R+2 is the annulus with inner radius t+1 and outer radius t+2, and R-1 becomes the 

annulus with inner radius t-2 and outer radius t-1. For the same idea in C4, the summation of t-2 

and t+2 should also be less than one.  

As mentioned above, we have known that t-k plus tk where k = 1 or 2 should be less than 

one to avoid overflow. And if t-k is larger, tk will become smaller. In the meanwhile, the area of 

R-k becomes larger as the area of Rk becomes smaller. Since our purpose is to avoid the 

unnecessary scaling as accurate as possible, the area of the two regions should be larger and 

the possibility of data in R-k should be equal to the possibility of data in Rk. As a result, we 

have two conditions as (4.1) and (4.2) to determine the thresholds tk in detectors. And the 

results of thresholds are shown in Table 1. 

 

1k kt t                                 (4.1) 

          ( )  =   ( )k kArea R Area R                         (4.2) 

 

 

Table 1 The value of the thresholds in circular-type detectors 

 

Here we sweep t-1 from 0 to 0.5 to simulate the SQNR performance and the result is 

shown in Fig. 23. As we can see, SQNR is almost the highest when t-1 is equal to 0.375 and t1 

is equal to 0.625 as we expect. 
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Fig. 23 The simulation result of SQNR with different t-1 

 

Because the regions are all circles in the complex plane, we are required to calculate the 

magnitude of the complex data by computing its summation of the square of the real part and 

the imaginary part. As a result, multipliers, adders, and comparators are introduced which are 

required to compare the thresholds as shown in Fig. 24. It is intuitive that C6 has the best 

performance and the largest area of comparators since there are six thresholds to be compared 

while C2 has the smallest area of comparators and the performance is relatively worst.  

 

 

Fig. 24 The block diagram of the circular-type detector 
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However, the bit width BW of multipliers, adders and comparators influences the area and 

the accuracy as well. That is to say, the arithmetic unit with longer bit width will produces 

better accuracy and cost more area. In our work, we implement 10-bit comparators, BW-bit 

multipliers, and 2*BW-bit adders where BW is an integer and can be chosen from 5 to 10.  

 

4.2.1.2 Square-Type Detector 

Although the circular-type region detectors make precise predictions, they cost a lot of 

area for introducing the multipliers and adders. For hardware concern, there are alternative 

ways which are the square-type region detectors [14]. That is, we can simplify those circular 

regions to their maximal cyclic quadrilaterals. The square regions are described in Fig. 25. As 

the circular-type detectors, “S2” is the square-type detector which divides the complex plane 

into two square regions and “S4” is the detector dividing the complex plane into four square 

regions. The detector dividing the complex plane into six squares is therefore named “S6”. 

Because each square region shown in Fig. 25 is the maximal cyclic quadrilateral of the 

circular region shown in Fig. 22, the thresholds in square-type detectors will be defined as 

(4.3) where k = -2, -1, 0, 1, and 2. And the thresholds hk of the square-type detectors are listed 

in Table 2. 

        
2 2k kh t                               (4.3) 

 

 

Table 2 The value of the thresholds in square-type detectors 



 

32 

 

         

(a)                                (b) 

 

                (c) 

Fig. 25 The regions of the square-type detectors (a) S2 (b) S4 (c) S6 

 

Also we sweep h-1 from 0 to 0.354 to simulate the SQNR performance of S4-type detector. 

And the result is shown in Fig. 26. The SQNR is almost the highest when h-1 is equal to 0.265 

and h1 is equal to 0.442 as we expect. 

 

Fig. 26 The simulation result of SQNR with different h-1 
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To detect the region information for the data in square-type detectors, we only need to 

compare the absolute value of the real part and imaginary part with the half of the side lengths 

of those squares. The block diagram of square-type detector is shown in Fig. 27. The only 

difference between circular type and square type is that square type does not need the 

multipliers and adders to calculate the magnitude. As a result, the circuits of the square-type 

detectors are much simpler than the circuits of the circular-type detectors. However, the bit 

width of the comparators influences the accuracy as we have mentioned. Thus, in our work 

we implement BW-bit comparators where BW is an integer and can be chosen from 5 to 10.  

 

 

Fig. 27 The block diagram of the square-type detector 

 

4.2.2 Overflow Predictor 

With the region information of the data come from the region detector, we will predict 

overflow of the butterflies of next stage. As shown in Fig. 28, X0 and X2 are computed by BU1 

as X1 and X3 are computed by BU2. After the computations of BU1 and BU2 are finished, we 

will get the four results from X0 to X3. Then we will predict whether X4 to X7 may cause 

overflow or not. Here we define two variables P and Q to represent the region information. 

For the prediction of BU3, PBU3 is the region information of X0 and QBU3 is the region 
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information of X1. And for the prediction of BU4, PBU4 is the region information of X2 and 

QBU4 is the region information of X3. The values of P and Q are decided according to the data 

locations of X0 to X3. The region information is equal to k as the data is inside the region Rk 

where k = -2, -1, 0, 1, and 2 as Table 3 shows. 

 

 

Fig. 28 Overflow Prediction based on the region information of the inputs 

 

 

Table 3 The value of region information P and Q according to the data locations 

 

Taking the prediction of BU3 with the C6-type detector as an example, PBU3 is set to -2 

while X0 is inside the region R-2 and QBU3 is set to 2 while X1 is inside the region R+2. As we 

know, X4 and X5 will cause overflow if the summation of the magnitude of X0 and X1 is larger 

than one. As a result, we will sum up the variable PBU3 and QBU3 and compare to a constant 

zero. If the result of PBU3 plus QBU3 is larger than 0, it implies that the magnitude of X0 plus the 

magnitude of X1 is larger than one and the outputs of the BU3 should be scaled to avoid 

overflow. Table 4 shows the decisions of scaling which are based on the result of the 

summation of P and Q. 
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Table 4 Scaling decision according to the summation of P and Q 

 

The block diagram of the predictor is shown in Fig. 29. There are four registers to 

temporarily store the region information. After the computation of BU1 in Fig. 28 is finished, 

we store PBU3 and PBU4 and wait for the results of BU2. After BU2 is finished, we will get QBU3 

and QBU4 and store them into the registers. While the four variables are getting ready, we will 

calculate PBU3 plus QBU3 and PBU4 plus QBU4 and then compare the results to zero. 

 

 

Fig. 29 The block diagram of the overflow predictor 

 



 

36 

 

Besides, there are two special flags in the predictor which memorize the scaling flags in 

next stage. It is because that the convergent block scaling method will separate the data block 

in current stage to two smaller blocks in next stage. Once the result of P plus Q in the new 

smaller blocks is larger than zero, the special flag will be set and held. After the computations 

of the data in a certain block are all finished, the two flags will determine the scaling flags of 

the new two blocks and will be stored in the exponent array. 

 

4.2.3 Exponent Unit 

The block scaling method needs exponent units to store the shared exponents and the 

scaling flags of the blocks. As shown in Fig. 30, the exponent units are stored in the exponent 

array. Each exponent unit consists of a k-bit shared exponent and a one-bit scaling flag where 

k is depending on the FFT size N and is equal to 2 2log log N   .  

 

 

Fig. 30 The exponent array with the exponent unit 

 

The shared exponent is shared for all data of a certain block, and the scaling flag is to 

decide whether to scale the results of the butterfly when the data in this block are being 

computed. After all computations in one block are finished, the two new scaling flags and 

shared exponents will be stored in the corresponding exponent units as shown in Fig. 31. If 

the flag is set, the shared exponent will be increased by one. Otherwise, if the flag is unset, the 

shared exponent will keep its original value. 
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Fig. 31 The block diagram of the exponent unit 

 

As we know, each block has its own exponent unit. Here we define Bn as the tag of the 

block and En as the tag of the corresponding exponent unit where n is an integer. If there are m 

blocks, n is from 0 to m-1. Besides, during the computations of the convergent block scaling, 

the block in current stage will be divided into two blocks in next stage. Therefore, after the 

computations of the block Bx in stage s are finished, the new two shared exponents and 

scaling flags will be stored in the exponent units Ex and Ey where y = x + m / 2
s
. The usage of 

the exponent array for each stage is shown in Fig. 32. 

 

 

Fig. 32 The usage of the exponent array for convergent block scaling with 8 blocks 
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4.3  Restricted Number of Blocks 

As the convergent block scaling method we have mentioned, the dynamic scaling 

method only scales when it is necessary to avoid the loss of accuracy. And the concept of 

grouping data into several blocks improves the SQNR since there are lots of exponents to 

represent the data with different dynamic range. Therefore, it is easy to expect that the larger 

number of blocks will acquire higher precision. However, the convergent block scaling 

method will divide one block into two blocks from the first stage to the last stage. That is, the 

number of blocks and the area of the exponent storage will be doubled through one stage. For 

an N-point FFT, there will be N/2 blocks in the last stage and N/2 exponent units are required. 

As a result, it will cost a lot amount of storage. Therefore, we define Bmax = 2
s-1

 which is the 

total number of blocks in convergent block scaling and the number of blocks is doubled until 

the stage s. Fig. 33 shows the convergent block scaling with different Bmax.  

 

    

(a)                                (b) 

 

                                    (c) 

Fig. 33 The convergent block scaling with (a) Bmax = 1 (b) Bmax = 2 (c) Bmax = 4 
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Taking the 8192-point 16-bit wordlength FFT with MRCBS as an example which uses 

the S2-type detector with 10-bit comparators, the performance of SQNR and area are shown 

in Fig. 34. It can be observed that the area of the storage is getting increased yet SQNR is 

getting saturated while the Bmax is getting larger. It implies that in deeper stages, we are failed 

to get the SQNR we expect even if we double the area of the exponent storage. As we can see, 

if we divide the blocks until stage 11 which requires only 1024 exponent units, the area 

overhead of exponent storage is only 1/4 of that we divide until stage 13. However, the SQNR 

is just 0.13 dB lower than before. Thus, through doubling the number of blocks until a certain 

stage rather than doubling the number of blocks incessantly until the last stage, we can 

economize the usage of exponent storage to acquire the SQNR improvement we want. 

Although the SQNR performance is not the ultimately highest if we restrict the number of 

blocks, we can still get the acceptable SQNR and reduce area cost consequently. 

 

 

Fig. 34 The SQNR and area cost with different Bmax 
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Chapter 5  

Experimental Results 

 

   The proposed MRCBS method is to generate many hardware solutions for SQNR 

improvement and find out the one which meets the SQNR constraint with minimum area cost. 

Here we define the performance pair (PP): (SQNR, AREA) which indicates the SQNR 

performance with the corresponding area cost. Thus, each solution obtained by MRCBS has 

its own PP defined as PP
T
: (SQNR

T
, AREA

T 
) where the SQNR

T
 represents the total SQNR 

performance and the AREA
T
 represents the minimized total area cost.  

The PP
T
 is determined by the quintuple (N, WL, Type, BW, Bmax) where N is the given FFT 

size and WL is the wordlength of storage from 14 bits to 18 bits. The Type indicates different 

type of the detectors. Type = Cj implies the circular-type detectors and Type = Sj implies the 

square-type ones where j = 2, 4, and 6. The Cj detector includes four multipliers with bit 

width = BW, two adders with bit width = 2*BW and 2j comparators with fixed bit width = 10 

while the Sj detector includes 2j comparators with bit width = BW. The BW can be chosen 

from 5 to 10. And the total number of blocks Bmax can be 2
s-1

 where s is from 1 to log2N. 

In this work, we choose radix-2 FFT for implementation, and the FFT size and SQNR 

constraint are user defined. We present the FFT size N = 1024, 2048, 4096, and 8192 in our 

experimental results as the SQNR constraint is in the range from 50 dB to 70 dB. Given the 

FFT size, we apply MRCBS method and build some tables for PPs by simulations and 

syntheses. And we will obtain many solutions by combining those tables. Consequently, for 

the given FFT size, we can find out the solution among them which meets the SQNR 

constraint and has the minimum area overhead. In addition to our MRCBS scheme, the 

traditional forced scaling method [7] and the conditional scaling method [14] are implemented 

as well and will be compared to our approach. 



 

41 

 

The fixed-point FFT model is built by C++, and the SQNR performance is obtained by 

simulations with random input signals. And the circuit area is implemented with TSMC 90 nm 

cell library and using Synopsys DesignWare to synthesize under 100MHz clock rate. Finally, 

the platform for both C++ and Synopsys DesignWare are built in Intel dual Pentium Xeon at 

2.53GHz with 50GB of main memory. 

 

5.1  The Solution Generated by MRCBS 

The MRCBS scheme improves the SQNR by two ways. One is dividing data into blocks 

with additional exponent storage, and the other is adding the multi-region detector to the basic 

memory-based FFT design proposed in [7] which is implemented with forced scaling. 

Therefore, the total performance is the combinations of PP
+
 and the PP

Base
 as shown in (5.1). 

And the operation of combining two PPs is shown in (5.2).  

The PP
Base

: (SQNR
Base

, AREA
Base

) is the basic SQNR performance and original area cost 

obtained by the traditional memory-based FFT. On the other hand, the PP
+
 is the SQNR 

improvement and the additional area overhead obtained from the multi-region detection and 

convergent block scaling. PPx

 : ( xSQNR , xAREA ) is the additional SQNR performance 

obtained by the multi-region detection with the extra area cost of the detector and predictor. 

And the PPy


: ( ySQNR

, yAREA
) indicates the additional SQNR performance obtained by the 

block scaling with the extra area cost of the exponent array. Therefore, we can obtain those 

three performance pairs respectively and combine them to acquire the PP
T
s. We will present 

the simulation results of these PPs in the following subsections. 

 

PP PP PP PPT Base

x y

                             (5.1) 

1 2 1 2 1 2PP PP ( ,  )SQNR SQNR AREA AREA                  (5.2) 



 

42 

 

5.1.1 Performance Pair of the Forced Scaling FFT 

   We define the PP
Base

: (SQNR
Base

, AREA
Base

) which is the performance pair of the 

traditional FFT design [7]. By SQNR simulation and hardware synthesis, the PP
Base

s are 

shown in Table 5 which are determined by (N, WL).  

 

    

(a)                                  (b) 

Table 5 The PP
Base

 determined by (N, WL) (a)SQNR
Base

 (dB) (b)AREA
Base

 (µm
2
) 

 

5.1.2 Improvement from Multi-Region Detection 

To know the effects on the performance of SQNR and area by the detector and predictor, 

we fix the numbers of blocks Bmax = 1 and wordlength WL = 16 to get PPs. That is, those PPs 

are determined by (N, WL = 16, Type, BW, Bmax = 1) by simulations and syntheses. Since we 

want to realize the improvement of SQNR and area called PP sx

  produced by multi-region 

detection compared to the traditional FFT, those PPs will be offset by PP
Base

s (N, WL = 16) 

which can be obtained by Table 5. We present the sxSQNR  for N = 1024, 2048, 4096 and 

8192 in Table 6(a), (b), (c), and (d) respectively. Since the area of the detector and predictor 

are all the same with different N, we only show the sxAREA  of those PP sx

  once in Table 7. 

By simulations, the xSQNR  is getting saturated while BW is larger than 10, so we have BW 

only from 5 to 10 to choose for six types of detectors.  
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                    (a)                                  (b) 

  

                    (c)                                  (d) 

Table 6 The xSQNR  (dB) of the PPx

  for (a)1024 (b)2048 (c)4096 (d)8192 -point FFT 

 

 

Table 7 The xAREA  (µm
2
) of the PPx

  

 

5.1.3 Improvement from Convergent Block Scaling  

To realize the relationship between total number of blocks Bmax and the performance of 

area and SQNR, we fix BW = 10 and WL = 16 to get PPs by simulations and synthesis. Those 

PPs will be offset by Bmax = 1 to obtain the additional SQNR and area cost produced by the 
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block scaling scheme with shared exponents which are defined as PP sy


. That is, the PPy


 is 

obtained by (N, WL = 16, Type, BW = 10, Bmax). Table 8 (a), (b), (c), and (d) shows the 

ySQNR  of PPy


 for N = 1024, 2048, 4096 and 8192 respectively. Because the yAREA

 

consists of the exponent storage and the control circuits of exponent accesses, it only depends 

on the Bmax and N. Therefore, we only show the yAREA
 once in the second row of each table. 

The larger Bmax implies the more storage of the exponents so the area is larger. And the control 

circuit accessing the exponent units is more complicated while N is larger, so yAREA
 of 

8192-point FFT is larger than that of 1024-point with the same Bmax.  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Table 8 The PPy


 (dB, µm

2
) for (a) 1024 (b)2048 (c)4096 (d) 8192 -point FFT 

 

5.1.4 Performance Pair Combination 

To get the result of total area and total SQNR performance PP
T
, we have to combine PPx

 , 

PPy


, and PP

Base
 as (5.1) shows. The PP

Base
 can be figure out in Table 5. And the PPx

  can be 

obtained in Table 6 and Table 7 as PPy


 can be obtained in Table 8. Although WL in PPx

  

and PPy


 is fixed to 16, we found that the WL does not affect the results so much and assume 

different WL will have the same results. As a result, given FFT size N, we will combine PPx

 , 

PPy


, and PP

Base
 with WL from 14 to 18 to get 5(WL) * 6(Type) * 6(BW) * log2N(Bmax) PP

T
s. 

In these PP
T
s, there may be some ones producing the same SQNR

T
 but the AREA

T
s are 

different. Therefore, we will delete the PP
T
 which has the larger AREA

T
 but lower SQNR

T
 to 
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reserve the irreplaceable PP
T
s. Consequently, in each 6 dB range, we have 40 PP

T
s to be 

chosen to satisfy the SQNR constraint. 

Besides, our PP
T
s include the solutions obtained by conditional scaling scheme in [14]. 

Those solutions are the special cases determined by (N, WL, Type = S2, BW = 10, Bmax = 1). 

As shown in Fig. 35, Fig. 36, Fig. 37, and Fig.38, the black dots are the PP
T
s obtained by the 

proposed MRCBS method, the gray diamonds are the solutions obtained by the scheme in 

[14], and the triangles are the solutions obtained by the scheme in [7] which are the PP
Base

s for 

N = 1024, 2048, 4096, and 8192. 

 

 

Fig. 35 The PP
T
s for 1024-point FFT generated by MRCBS 

 

 

Fig. 36 The PP
T
s for 2048-point FFT generated by MRCBS 
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Fig. 37 The PP
T
s for 4096-point FFT generated by MRCBS 

 

 

Fig. 38 The PP
T
s for 8192-point FFT generated by MRCBS 

 

5.2  Area Minimization under SQNR Constraint 

In those irreplaceable PP
T
s for certain FFT size, the AREA

T
 is definitely larger while the 

SQNR
T
 is higher. Therefore, we sort the PP

T
s by SQNR

T
 from small to large, and then search 

the SQNR
T
 which is just satisfying the requirement. As a result, the PP

T
 we find out will be the 

solutions which has the smallest AREA
T
.  

Table 9, Table 10, Table 11, Table 12 show 8 different SQNR requirements with FFT size 

N = 1024, 2048, 4096, and 8192, respectively. Under different constraints, the solutions will 

tell us the required wordlength, the type of the detector, the bit width in the detector, and the 
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total number of blocks. The exact SQNR is obtained by simulations and is almost equal to the 

the SQNR
T
 estimated by MRCBS method. And if previous work has area cost K, the area 

reduction is derived by (K - AREA
T
) / K. Compared to the traditional FFT implemented with 

forced scaling, our method can reduce the area cost by 12.61% for N = 1024 and 23.57% for 

N = 8192 in the best case.  

Besides, we know that conditional scaling has better performance compared to the forced 

scaling. However, if the conditional scaling scheme just meets the constraint in some cases, 

our method can reduce one bit of wordlength to save the area of memory storage. And if the 

constraint becomes tighter so that the previous conditional scaling scheme has to increase one 

bit to meet the constraint, our method will uses more blocks or more precise detector to meet 

the requirement and still maintain the wordlength. Therefore, we will reduce 2 bits of 

wordlength. That is, with larger-size FFT, the area occupancy of 2-bit memory wordlength 

will become larger. As we can see, we can reduce the area cost by 6.34% for N = 1024 but 

reduce 12.84% for larger N = 8192. 

 

 

Table 9 The solutions under the SQNR constraints for 1024-point FFT 
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Table 10 The solutions under the SQNR constraints for 2048-point FFT 

 

 

Table 11 The solutions under the SQNR constraints for 4096-point FFT 

 

 

Table 12 The solutions under the SQNR constraints for 8192-point FFT 
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Chapter 6  

Conclusions and Future Works 
 

   In this thesis, a scaling scheme for the memory-based FFT design is proposed which 

improves SQNR in an area-efficient way. This method takes advantage of both conditional 

scaling and convergent block scaling. By implementing with different detectors and using 

different number of the shared exponents, it will generate many solutions with different 

SQNR and area performance. Moreover, we can satisfy the SQNR requirement by increasing 

the area economically by applying this method.  

   The experimental results show that it will save at least one bit of wordlength to reduce 

about 5.6% area from previous conditional scaling method. And if the constraint is just a little 

tighter, our method can satisfy the required SQNR by increasing small area rather than 

increasing one bit of wordlength in previous approaches. As a result, the proposed scheme 

will save 2 bits of wordlength to bring about 13% area reduction from the conditional scaling 

scheme for 8192-point FFT in the best case.  

In the future, the multi-region detection and the convergent block scaling method can be 

improved to optimize the SQNR and the area of the FFT core for different architectures and 

different algorithms. 
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