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Subgraph Error-Correcting Isomorphisms for 
Syntactic Pattern Recognition 

WEN-HSIANG TSAI, MEMBER, IEEE, AND K ING-SUN FU, FELLOW, IEEE 

Abstract—The structure-preserved error-correcting graph isomorphism 
proposed by Tsai and Fu [1] for matching patterns represented by attri­
buted relational graphs is extended to the case of subgraphs. The resulting 
subgraph error-correcting isomorphism, which includes the structure-pre­
served error-correcting graph isomorphism as a special case, is useful for 
recognizing partially viewed or structurally distorted patterns. After for­
mulating a subgraph error-correcting isomorphism as a state-space 
tree-search problem, heuristic information useful for speeding up the 
search is suggested and an ordered-search algorithm is proposed for finding 
an optimal subgraph error-correcting isomorphism. 

I. INTRODUCTION 

THIS PAPER will try to extend the structure-preserved 
error correcting isomorphism of attributed relational 

graphs proposed by Tsai and Fu [1] for pattern analysis. 
Their work is first briefly reviewed, followed by a discus­
sion on the limitation of the structure-preserved error-cor­
recting graph isomorphism to more practical applications 
which motivates this study of subgraph error-correcting 
isomorphisms, to be proposed in the following sections. 

Attributed relational graphs are defined [1] for represent­
ing both structural and semantic information contained in 
given patterns. In an attributed relational graph, the un­
derlying graph consisting of unlabeled nodes and branches 
represents the global structure of the pattern. The labels of 
the nodes and the branches specify the local structures and 
the local properties of the primitives and relations in the 
pattern. Each label of a node or a branch is a pair (s, x) 
where s, called a syntactic symbol, is used to denote the 
structure of the primitive or the relation represented by the 
node or the branch, and x, called a semantic vector, con­
sists of a set of numerical a n d / o r logical attributes of the 
primitive or the relation. Possible primitive structures may 
be a line segment or a small square region with the length 
of the segment or the area of the region as the attributes, 
respectively. Possible relation structures may be "above," 
"left," etc., with the distance between the two related 
primitives as the relation attribute. 

A pattern deformational model is also proposed [1] to 
model a kind of so-called structure-preserved graph de­
formations, which transform pure or noise-free patterns 
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into observed or deformed patterns by locally corrupting 
only the structures and the properties of the primitives and 
the relations without changing the global structures of both 
the pure and the observed patterns. In terms of relational-
graphic terminologies, a structure-preserved deformation 
only changes the labels of some nodes or branches in a 
relational graph, but does not delete any nodes or branches. 
Based on this structure-preserved deformational model, the 
probability or density value of an observed pattern de­
formed from a pure pattern is then computed in terms of 
the deformation probability or density values of the primi­
tives, and relations in the observed pattern under some 
assumptions on the interdependency of primitive and rela­
tion deformations. 

To recognize an observed pattern which is transformed 
from a pure pattern through a structure-preserved defor­
mation, one approach is to match the relational graph of 
the former with that of the latter. This is a graph isomor­
phism problem. But conventional graph isomorphism pro­
cedures are discrete and exact in nature [4]-[7], and can 
only be used for matching two symbolically identical graphs 
without attributes. For matching attributed relational 
graphs whose labels of nodes and branches may be differ­
ent, structure-preserved error-correcting graph isomor­
phisms are then defined [1]. The pattern deformation prob­
ability or density value of an observed pattern from a pure 
pattern is used naturally as the likelihood of a structure-
preserved error-correcting isomorphism between the two 
patterns, which specifies the goodness of the matching 
defined by the error-correcting isomorphism. Since there 
may exist more than one isomorphism between two rela­
tional graphs, the structure-preserved error-correcting iso­
morphism with the maximum likelihood is suggested as the 
desired matching of the two graphs. 

To determine the maximum-likelihood structure-pre­
served error-correcting isomorphism between two rela­
tional graphs, the graph isomorphism problem can be 
formulated as a state-space tree-search problem [3], [4]. 
Since the negative logarithms of the primitive and relation 
deformation probability or density values can be used as 
the path costs for the search of an optimal path in the 
state-space tree, blind search methods can be avoided, and 
a uniform-cost search method can be applied [3]. Tsai and 
Fu [1] furthermore propose a more efficient ordered-search 
algorithm for finding the maximum-likelihood structure-
preserved error-correcting graph isomorphism after sug­
gesting several ways of using heuristic information to speed 
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up the search procedure. Finally they propose a decision 
rule for classifying unknown patterns, based on the maxi­
mum likelihood computed by the ordered-search algorithm 
after the maximum-likelihood error-correcting isomor­
phism is determined. 

From the previous review of Tsai and Fu's work, we see 
a limitation of their approach. That is the structure-pre­
served property of the proposed error-correcting isomor­
phism which is based on the structure-preserved pattern 
deformational model. The resulting pattern analysis capa­
bility, though powerful enough for a variety of practical 
problems, is insufficient for more general applications. For 
example when the observed patterns are just partial views 
or distorted parts of some pure patterns, the resulting 
attributed relational graphs of the former will just be the 
subgraphs of those of the latter. In such cases subgraph 
isomorphisms are needed for recognizing the observed 
patterns. On the other hand subgraph isomorphisms also 
find quite a few applications other than pattern analysis 
[8]- [ l l ] . 

Inexact subgraph matching of weighted relational graphs 
has been investigated by Shapiro and Haralick [12] and 
Kitchen [13] using the relaxation method, and by 
Ghahraman et al. [14] in terms of the subgraphs of the 
Cartesian graph product. We propose subgraph error-cor­
recting isomorphisms of probabilistic attributed relational 
graphs as an extension of structure-preserved error-correct­
ing graph isomorphisms, with the latter being the special 
cases of the former. The extension is based on a modifi­
cation of the structure-preserved graph deformational 
model to include the deletions of primitives or relations in 
an observed pattern. The state-space formulation for the 
search of structure-preserved graph isomorphisms is also 
modified for the search of subgraph isomorphisms. Corre­
sponding heuristic information contained in the graphs is 
extracted for speeding up the search. An ordered-search 
algorithm for finding maximum-likelihood subgraph 
error-correcting isomorphisms is finally proposed, accom­
panied by an illustrative example. 

II. A SUBGRAPH DEFORMATIONAL M O D E L FOR 

ATTRIBUTED RELATIONAL GRAPHS 

In this section the definition of attributed relational 
graphs is reviewed [1], [2]. Subgraph deformations are then 
defined as an extension of structure-preserved graph defor­
mations. After decomposing a pattern deformation into 
primitive and relation deformations, primitive and relation 
deletions and substitutions are then investigated and their 
occurrence probability or density values are defined. Pat­
tern deformation probability or density values are finally 
computed in terms of these primitive and relation deforma­
tion probability or density values. 

A. Definitions of Attributed Relational Graphs and Subgraph 
Deformations 

Definition 1: An attributed relational graph (ARG) over 
VN U VB is a 4-tuple ω = (Ν, Β, μ, e) where 

Ν is a finite nonempty set of elements called 
nodes; 

Β ο Ν Χ Ν is a set of distinct ordered pairs of dis­
tinct elements in Ν called branches; 

VN is a finite nonempty set of node labels 
(as primitive descriptions), each of which 
is denoted as a pair (s, x) as explained 
in the Introduction; 

VB is a set of branch labels (as relation 
descriptions), each of which is also 
denoted as a pair (s , x) as explained in 
the Introduction; 

μ : TV -> VN is a function called node interpreter; 
c : Β -> VB is a function called branch interpreter; 
G w = (Ν, B), which denotes the unlabelled graph ob­

tained from co by deleting all the node 
and branch labels, is called the underly­
ing graph of co. 

Definition 2: Let ω = (Ν, Β, μ, c) over VN U VB be the 
A R G for a given pure pattern, called a pure ARG, and 
co' = (N\ B\ μ', €') over VN, U VB, be the A R G for one of 
the observed patterns deformed from co, called an observed 
A R G . When Ή' c Ν and B' c B, i.e., when Gu. is just a 
subgraph of Gu, then we say that there exists a subgraph 
deformation from co into co'. 

Note that a subgraph deformation includes a struc­
ture-preserved graph deformation [1] as a special case, which 
occurs when B' = Β and N' = N. In a subgraph deforma­
tion, not only the underlying global graphic structure of co 
is affected because N' c Ν and B' c B, but the labels of 
co, which specify both the local structures and the local 
properties contained in co, are also subject to changes 
because in general μ' μ and c' €. More specifically if 
node a' in N' corresponds to node a in N, then it is 
possible that the label μ'(α') is not identical to the label 
μ (α ) . Similarly for the corresponding branches γ ' in B' and 
γ in B, it may be true that e'(y') =*= c(y) . On the other hand 
since N' c Ν and Bf c B, some nodes and branches in ω 
may be deleted when co is transformed into co'. This means 
that some primitives or relations in an observed pattern 
may be missing when the observed pattern is compared 
with its corresponding pure pattern. In the rest of this 
paper, for discussion convenience, the notations ω and co', 
previously used to denote ARG's , will also be used to 
denote the patterns represented by the ARG's . Similarly 
the label of a node or a branch will also be used to denote 
the primitive or the relation itself represented by the node 
or the branch, respectively. For simplicity we will also call 
either a primitive or a relation a terminal. 

B. Primitive Deformations 

To investigate the details of a pattern deformation, Tsai 
and Fu [1], [2] decompose a pattern deformation into a set 
of primitive and relation deformations. In this paper we 
discuss primitive and relation deformations from the view­
point of subgraph deformations. Primitive deformations 
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are investigated in this section, followed by relation de­
formations in the next section. 

Let a = ( ί , i ) be a pure primitive in a pure pattern ω, 
and let the deformation from ω into one of its observed 
version ω' be a subgraph deformation. Then a may be 
deleted or it may be transformed into an observed primi­
tive c = (r, z), when ω is deformed into ω'. Either of these 
two cases will be called a primitive deformation. When a is 
deleted, we denote 

deletion 

where λ, a null symbol, is used to represent the deletion of 
a terminal, and rD(X\a) =*= 0 is the probability for a to be 
deleted, called the deletion probability of a. For simplicity 
rD(X\a) is also denoted as rD(a). For the other case, where 
a is substituted by c, we denote 

^ ( Φ ) 
substitution 

where rs(c\a) =*= 0 is the probability or density value for a 
to be transformed into c, called the substitution probability 
or density of a by c. Either rD(X\a) or rs(c\a) will be called 
the deformation probability or density of a. Let Ds(a) 
denote the set of all possible observed versions of a. By 
convention [15], [16] a pure primitive is assumed to be a 
possible observed version of itself, so a e Ds(a) and rs(a\a) 
is not always equal to one. Also, we use rs(a) to denote 
^<c(=Ds(a)rs(c\a) w h e n ζ in all c = (t, z) is discrete, or 
fc<=Ds(a)rs(c\a) when ζ in all c = (r, z) is continuous. Then 
we have the equality 

rD{a)^rs(a) = 1. 

Notice that in the above discussion we have made im­
plicitly an assumption that each primitive is deformed 
independently of any other terminals in ω. 

On the other hand, following Tsai and Fu [1], [2], we can 
further decompose a substitution of α = (s, x) by c = (t, z) 
into two steps as follows: 

a = (s, x) Ρ(Φ) 
syntactic 

substitution 

b-(t,y) q i z l t \ s ) c-(t,z), semantic v 7 

substitution 

Τ 
pure 

primitive 

Τ 
semi-pure 
primitive 

Τ 
observed 
primitive 

where the first step, a syntactic substitution, transforms the 
syntactic symbol s of a into another symbol / with discrete 
probability p(t\s), called syntactic substitution probability, 
with y being a representative semantic vector for t. The 
second step, a semantic substitution, further transforms y 
into an observed semantic vector ζ with probability or 
density q(z\t, s) , called semantic substitution probability or 
density. Therefore the substitution probability or density of 
a by c can be computed as 

rs(c\a)=p(t\s)q(z\t,s). 

Note that Jzq(z\t, s) dz = 1 when all ζ are continuous, or 
Hzq{z\t, s) = 1 when all ζ are discrete, and that rs(a) = 
Ltp(t\s). (For illustrative examples see [16].) 

C. Relation Deformations 

As to relation deformations the situations are much 
more complicated, because a relation deformation usually 
will be affected by the deformations induced on the two 
primitives at the ends of the relation. For example a 
relation obviously should be deleted if either or both of its 
two end primitives are deleted. Other cases exist and will 
be discussed subsequently. 

Let e = (u, x) be a pure relation between two pure 
primitives a and b all in a pure pattern ω. As in [1], [2] we 
assume in the following discussions that e is deformed 
independently of any other terminals (primitives or rela­
tions) except its two end primitives a and b\ it deforms 
according to how a, b are deformed in ω', an observed 
pattern of ω. Totally, three different kinds of deformations 
induced on e can be identified, each of which will be called 
a relation deformation: 

1) e is deleted in ω' due to the deletion of either or both 
of its two end primitives a and b. By taking a d ei etion^ 
o r / a n d b d e l e t i o ; f t as a condition, the conditional probability 
for e to be deleted obviously is one because no relation will 
ever exist when either or both of the end primitives are 
missing. For this case, we denote 

1.0 
deletion 

λ . 

2) e is deleted in ω' while its two end primitives a and b 
are transformed into observed primitives c and d, respec­
tively. For this case we denote 

rD(X\e,c,d) 
deletion 

where rD(X\e, c, d) is the deletion probability of e under the 
conditions a s u b s t i t u t i o ' n c , b s u b s t i t u t i o ^ . For simplicity we also 
use rD(e\c, d) to denote rD(X\e, c, d). 

3) e is transformed into an observed relation g in ω' 
while both of its two end primitives a and b are trans­
formed into c and d, respectively. For this case we denote 

rs(g\e,c,d) 

e— ^2 

substitution 
where rs(g\e, c, d) is the substitution probability or density 

\d. 
of e by g under the conditions a s u b s t i t u t i o ^ c , ^ i t u t i o n < 
Similar to the case of primitive substitutions, e can also be 
substituted by itself—that is, e is assumed to be an ob­
served version of itself. Each of the conditional probability 
or density values defined previously will be called the 
relation deformation probability or density of e. Let 
Ds(e\c, d) denote the set of all possible observed versions 
of e under the condition that the two end primitives a and 
b of e are substituted by c and d, respectively, in ω'. If we 
use rs(e\c,d) to denote LgGDs(e^d)rs(g\e, c, d) for dis­
crete ζ in all g = (v, z) , or fgeDs(e^d)rs(g\e, c, d) for 
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continuous ζ in all g = (t), Z ) , then we have the following 
equality: 

rD(e\c, d) + rs(e\c9 d) = 1. 

Again, a substitution of e = (w, x) by g = (t>, z) can be 
decomposed into two steps [1] as follows: 

. ,p(v\u,c,d) ( χ ? ( φ , u,c,d) f ν 
v y syntactic y v J ' semantic d v 7 

substitution substitution 

^sz> = {1\Ίι = (« / , , α / 2 ) e 5 , and λ while 

Τ 
pure 

relation 
semipure 
relation 

Τ 
observed 
relation 

where the interpretations of all notations are analogous to 
those for the primitive substitution except that the proba­
bility or density values ρ and q now depend further on the 
observed primitives c and d at the two ends of g. The 
substitution probability or density of e by g therefore is 

rs(g\e,c,d) = p(v\u,c,d)q(z\v, u,c, d). 

Similar to the case of primitive substitutions, we have 
Jzq(z\v9 w, c, d) dz = 1 for continuous z, or Lzq(z\v9 

w, c, d) = 1 for discrete ζ and finally, rs(e\c, d) = 
LOp(v\u, c, d). 

D. Pattern Deformation Probabilities or Densities 

We are now ready to compute the deformation probabil­
ity or density Ρ (ω ' |ω) of an observed pattern ω' from a 
pure pattern ω with ω = (Ν, Β, μ, c ) over VN U VB and 
ω' = (N\ B\ μ', c') over VN U where 

# ' = { « ; i / = 1,2, · · · , « „ , } , 

tf={«/L/= 1 , 2 , · · · , ^ } , 

^ R = {̂ LR>C = < 2 ) , * = 1,2, · . · , , ! * , } , 

B = {Υ/ΙΥ/ = («/,» ° 0 > / = 1,2, · · · , 

= {*K = μ'(Α,') = (*,', χ,'), / — 1 , 2 , - - - , Λ ^ } , 

vn = {*/l*y = = (sj> * / ) > 7 = 1 , 2 , · · · , n ^ } , 

Vw = = = 4 ) . Λ - 1,2, · • · , #i B ,} , 

^ 5 = {*/!*/ = «(Υ/) = (W/> Zl)> / = 1,2, · · · , Α2 Β } . 

In the above notations note that nN, < nN and nB, < «B 

because F c i V and B' <z B. Also notice that a y = μ ( α 7 ) is 
the pure primitive on node a y and that al{ = μ ( α / ( ) and 
al2 = μ (« / 2 ) are two pure primitives at the ends of pure 
relation et = €(yt% where Υ/(a/,, « / 2 ) . For discussion con­
venience we define the following notations: 

Ms-{j\«jeN**°j s u b s t i tu t ion a U' 

= ( / | γ 7 = ( α , , α, ) e and — u . .—*e'ki while 

"'deletion 

substitution α ^ > ' β ' 2 substitution a f c ' ^ ' 

λ because ^ z , = {/|γ, = ( « , , , Α , , ) e 5 , and 

* « / ·, ι — " " λ o r / a n d α, , . . » λ | , 
deletion / / 2 deletion / 

where Ms specifies the set of indices of the nodes in ω 
whose corresponding primitives are substituted in ω', and 
other sets are similarly interpreted. Note that Ms U MD = 
{i\\ < i < nN) and that Ass U ASD U ADD = {i|l < i < 

Also let a—f[a ' ] denote a primitive deformation 
where [α'] is either a label a ' for a primitive substitution or 
a null symbol λ for a primitive deletion, and let e^f[e'] 
denote a relation deformation with [e'] being similarly 
interpreted. Then recalling the assumptions we made previ­
ously regarding the interdependency of primitive and rela­
tion deformations, we can compute 
P(a/ |co) as follows: 

Ρ ( ω ' | ω ) = P{(ajVx[a^]j = 1 , 2 , · · · , nN), (elTz[e'k]9 

/ = 1,2, • · - , * , ) } 

= p{aJpZ:[a'ij]> j = 1 ' 2 ' " * '^^ν) 

• ^ { e / T X K J * / = 1 , 2 , · · · , 

; = 1,2, · · · , « „ } 

= [ P { f l > ; S i ^ ; y for ally € A f s ) 

• P { W \ f o r a l l j G M D } ] 

a / 2 subs t* a A: / > 2 } 

^ λ f o r a 1 1 G ^ s D k / , I I I B I R « ^ V 

• ^ { ^ ^ Γ λ f o r A 1 1 ' G ^ D D ^ / . d d T ^ or / and α^λ}] 

Π ^ ( ^ Κ ) · Π ^ ( Λ Κ ) 

Π rD{\\eha'kl^a'kJ- Π (LO) 

= Π ^ ( < Κ ) · Π rD(\\aj) 

' Π rs{e^ehaf

kix,af

kii) 

where "del ." and "subst ." are abbreviations for deletion β / ι substitution 1 ' a ' 2 substitution Q k ' 
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and substitution, respectively. If syntactic and semantic 
substitution probability or density values are available, 
rs(al\aj) m a v b e substituted by p(sl\Sj) · q(x\\s'i9 sf)9 

a n d ' rs(e'ki\eh a'k/ x,a'kl 2 ) by p(u'kjuha'khl9 a'k[t) · 
q(zk\uk9 w7, ak/19 ak/ 2 ) , according to the notations defined 
previously. Note that in some cases decomposition of a 
pure primitive or relation substitution into two steps may 
not be obvious, then the total substitution probability or 
density values, r^a^aj) and rs(e'ki\eh a'k/y a'k/ 2 ) , should 
be inferred and used directly. Ρ(ω ' |ω) as usual will be 
called the pattern deformation probability or density of ω' 
from ω [1]. 

Π Ι . SUBGRAPH ERROR-CORRECTING ISOMORPHISMS OF 

ATTRIBUTED RELATIONAL GRAPHS 

As pointed out in the Introduction graph isomorphisms 
are useful for pattern matching. In this section we define 
subgraph error-correcting isomorphisms for matching 
ARG's . The error-correcting capability of the defined iso­
morphisms allows two terminals with nonidentical labels to 
be matched. In addition attributes contained in the primi­
tives and relations expressed in terms of semantic vectors 
can also be handled. These two features are the advantages 
of error-correcting isomorphisms over conventional graph 
isomorphism [1], [2]. An illustrative example is included. 

A. Definition of Subgraph Error-Correcting Isomorphisms 

To facilitate the description of the definition to be 
proposed, we review or define the following notations, 
using all symbols given in Section II-D. 

1) Ds(aj) = Wij\cij^^'a,

ij) which, as mentioned in Sec­
tion II-B, is the set of all possible observed versions 
in ω' of primitive tfy in ω. 

2) Ds(et\a'kii9 a'kf 2) = {e'kl\el7^-e'ki w h i l e 
ail^:akly ai2J^r.aktJ w h i c h is the set of all possi­
ble observed versions in ω' of relation e in ω, con­
strained by the two end primitive substitutions, as 
mentioned in Section II-C. 

3) D(aj) = 
Ds(aj)u{\)9 

iirD{X\aj) = 09 

IFR D ( \ |<i y )*0. 

a. and its corresponding node a y are called deletable if 

4) D(et\a'kLl9a'kJ = 

(Ds{ei\a>kiya'kii) 

i f r Z ) ( X | e / , ^ / i , f l ; / 2 ) = 0 

05(^\αίιι9α',ΐ2)υ{λ) 

itrD(\\el9a'kii9a'kiJ * 0. 

et and its corresponding branch γ, are called deletable 
iiX^D(ei\af

kiyaf

ki2). 

Definition 3: Let ω' = (N'9 B\ μ', c') over VN. U VB> be 
an observed ARG, and ω = (TV, Β, μ, c) over VN U VB be a 
pure ARG. A function h: N' -+ Ν is called a subgraph 

error-correcting isomorphism (SGECI) from ω' to ω, de­
noted as h: ω' -» ω, if the following conditions are satis­
fied: 

1) Λ is one-to-one, i.e., for any two nodes a i , a ' 2 e 
N'9 h(a\) = h(a'2) implies a\ = a' 2. Note that h is not 
onto when N' Ν because N' c N. 

2) Let Ml = {j\aj es N9 Λ(α') = α, for some a ' e N') 
which, similar to Ms defined in Section II-D, is the 
set of the indices of all the nodes in the range of 
function A. Let Af£ = {j\j = 1 , 2 , · · · , nN) — M% 
which, similar to MD, is the set of the indices of the 
nodes in ω which are not mapped to by any node in 
ω'. We also define the inverse function h " 1 of A such 
that h~~\<Xj) = a; if and only if Α(α · ) = a y for all 
j e W s * . Then, 

a) for each j e Μ*, μ ^ Α " 1 ^ ) ) e D ^ ) ) 
should be true; and 

b) for each j e Λί£, λ e Ζ)(μ(α 7 )) should be 
true. 

3) Let Ah

ss = </|γ, = (α,,, a , 2 ) e i , / , ε M 5 \ l2 e M$, 
and A " \ y { ) = (A " '(<*/,). A " ι(α,2)) e B'} which, sim­
ilar to Ass defined previously, is the set of the indices 
of all the branches in ω whose corresponding branches 
in ω' are existing. Let Ah

SD = {l\y( = ( a , , at ) e B, lx 

e M 5 * , / 2 e M * , but Α - 1 ( γ / ) = ( Α - 1 ( α / ι ) , Α - , ( α / 2 ) ) 
£ B'} which, similar to ASD9 is the set of the indices 
of all the branches in ω whose corresponding branches 
in ω' do not exist. Then, 

a) for each / e Ah

ss, c ' i A - ' i y , ) ) ^ Ζ)(€(γ/) | 
μ Χ Α - 1 ^ / , ) ) , μ ' ( Α _ 1 ( α / 2 ) ) ) should be true; 
and 

b ) f o r e a c h / e Ah

SD9 λ e Z> (c (γ,) | 
μ ^ Α ' ^ α ^ ) ) , μ ' ( Α _ 1 ( α / 2 ) ) ) should be true. 

Following the notation used previously we define or 
review the following notations: 

* - ' ( « , ) = « · , / , - • ( « , , ) = «*,, , 

α, = μ ί α ^ , α ^ = M'(«i y). 

Then it is easy to derive for an SGECI h: ω' -» ω its 
corresponding pattern deformation probability or density 
of ω' from ω as 

Λ ( « Ί « ) - Π ' . Κ Κ ) · Π RD(X|EY) 

Π Θ)(ΛΚ,<Μ,ίΐ;Λ 2), 

which specifies a measure of goodness for the matching 
defined by the SGECI A, and will be called the likelihood 
of A. 
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Now given two ARG's ω' and co, since there may t exist 
several SGECI's from co' to co due to a variety of node and 
branch mappings from co' to co, it is desirable to determine 
an SGECI h0: co' -> co such that 

Ρ Λ ο ( ω ' | ω ) = maxP,(co' |co). 

h0 will be called the maximum-likelihood SGECI (MLS­
GECI). The pattern matching problem now is reduced to 
the search of an MLSGECI among all possible SGECI 's 
from co' to co. This is the topic of Section IV. 

B. An Illustrative Example 

To illustrate the definition of SGECI, let Figs. 1 and 2 
be a pure graph ω = (Ν, Β, μ,€) and an observed graph 
ω' = (N\ B'9 μ', c'), respectively, where 

N' = {a'l9 a'l9 Α ' 3 } , Ν = {<xl9 A 2 , A 3 , A 4 } , 
* ' « < γ ί - ( α ί , α ' 2 ) , Y i « ( a ' , , a ' 2 ) ) f 

Γ 4 = ( A 3 , A 2 ) , Γ 5 = ( A 4 , A 3 ) } . 

All labels a\ = μ ' « ) , α, = μ (α , ) , e£ = c'(y^), and e, = 
c(y 7) are as shown in the figures. Suppose that we have the 
following deformations and probabilities: 

D(ax) = D(cx) = {c, α, λ ) 1 

with rs(c\cx) = 0.6, ^ ( a l c j ) = 0.3, rD(X\cx) = 0.1; 

D(a2) = Z)(c 2 ) = <c, a9 fc}1 

w i t h r 5 ( c | c 2 ) = 0.7, rs(a\c2) = 0.2, r s ( 6 | c 2 ) = 0.1; 

D(a3) = Z>(*) = {b9 a9 X) 

with r s (* |f t) = 0.7, rs(a\b) = 0.1, rD(X\b) = 0.2; 

D ( a 4 ) = D(a) = <<*} 
withr 5 (a |cz) = 1.0; 

D(ex\c9 c) = D(x\c9 c) = {x9 X) 

with rs(x\x9 c, c) = 0.9, rD(X\x9 c, c) = 0.1; 

D(ex\b9 c) = D(x\b9 c) = {x, λ} 
with rs(x\x9 b9 c) = 0.8, rD(X\x9 b9 c) = 0.2; 

D(e2\a9 c) = D(z\a9 c) = {z} 

with r 5 ( z | z , a, c) = 1.0 

D(e2\a9 b) = D(z\a9 b) = {z, 7 } 

with rs(z\z9 a9 b) = 0.8, rs(y\z9 a9 b) = 0.2; 

D(e3\a9 c) = D(z\a9 c) = (z) 

w i t h r s ( z | z , a9 c) = 1.0; 

D(e4\b9 c) = D(z\b9c) = {z9X) 

with r 5 ( z | z , b9 c) = 0.9, r D ( \ | z , b9 c) = 0.1; 

Z)(e4|Z>, b) = Z)(z|6, Z>) = {z} 

w i t h r 5 ( z | z , 6, Z>) = 1.0; 

D(e5\a9b) = D(y\a9 b) = {y9x) 

with r 5 (>; |7, a9 b) = 0.9, r 5 (x | .y, a, 6) = 0.1 

'Subscriptions 1,2 in c, and c 2 are used to indicate that they are on 
different nodes so that rs(cx\c2) =*= rs{c2\c2). 

Fig. 2. Observed graph ω'. 

We want to show the following one-to-one function h is an 
SGECI from ω' to ω: 

Here we have 

M * = {2 ,3 ,4} , M* = {1}, 

Ah

ss = (2 ,5) because γ 2 and γ 5 correspond to y2 and γ,', 

Ah

SD = {4} because γ 4 corresponds to ( α 2 , a 3 ) which is 

missing in ω'. 

Now, we check conditions 2a), 2b), 3a), and 3b) in order: 

2a) for j = 2, ^(h~l(a2)) = Μ ' ( Α 3 ) = c e Ζ ) ( Μ ( Α 2 ) ) = 

D(a2) = {c, 0 , b)\ 

for 7 = 3 , M ' ( / | - 1 ( a 3 ) ) = M , ( « 2 ) = f c ^ 
Ζ ) ( Μ ( Α 3 ) ) = Ζ ) ( Α 3 ) = <Ί>, a9 Λ } ; 

for j = 4, Μ ' ( Λ - 1 ( Α 4 ) ) = Μ'(«ί) = ^ ^ 
Ζ ) ( Μ ( Α 4 ) ) = Z ) ( A 4 ) = < A } ; 

2b) fory = 1, λ €Ξ Ζ>(μ(α,)) = Z ) ( f l l ) = {c, α, λ} ; 
3a) for / = 2, c ' ^ " 1 ^ ) ) = € ' ( (Α- ' ( 8α 4 ) , n~\a2)) = 

c'((ai, α' 3)) = €'(γ^) = ζ <Ξ Ζ ) ( € ( Γ 2 ) | Μ ' ( Α - > 
( α 4 ) ) , Μ ' ( Λ " 1 ( α 2 ) ) ) = / ) ( ^ | α , c) = (z) ; 

for / = 5, €'(h-\y5)) = € ' ( ( / * " ' Κ Χ Α - ' ( α 3 ) ) = 
€'((«;, α' 2)) = e ' ( r i ' ) = y G Z)(c(y 5) |M ' (A " 1 

( Α 4 ) ) , Μ ' ( Λ - Ι ( Α 3 ) ) ) = Ζ ) ( β 5 μ , 6) = 

*}; 
3b) for / = 4, λ <= D i e i y . ^ X / i - ^ a , ) ) , Μ Χ ^ - ^ α , ) ) ) = 

D(e4\b9 c) = {ζ, λ}. 

Therefore h is an SGECI from ω' to ω. It is now easy to 
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compute the likelihood Ρ Α (ω ' |ω) of h as 

Ρ„(ω' |ω) = [rs(c\c2) • rs(b\b) • r s ( a | a ) ] · [ r 0 ( X | c , ) ] 

• [rs(z\z,a,c) • rs(y\y,a,b)] 

• [rD(X\z,b,c)] 

= (0.7 X 0.7 X 1.0) X (0.1) 

X (1.0 X 0.9) X (0.1) 

= 0.00441. 
Actually it can be shown that there exists another SGECI 

W from ω' to ω: 

l «Ί -* « 4 

h': < a'2 -> a2 

I « 3 - * «1 

with a smaller likelihood 

Ρ„,(ω' |ω) = [ r s s ( c | c , ) · rs(b\c2) · • 

' - r 5 ( z | z , f l , c ) ] 

• [rD(\\x,b,c)] 

= (0.6 X 0.1 X 1.0) X (0.2) 

X (0.2 X 1.0) X (0.2) 

= 0.00048. 

IV. DETERMINATION OF A MLSGECI AS A 
STATE-SPACE SEARCH PROBLEM 

In this section we discuss the search of a MLSGECI 
from an observed A R G co' to a pure A R G ω. An error-cor­
recting graph isomorphism (ECI) problem has been for­
mulated by Tsai and Fu [1] as a state-space tree-search 
problem [3]. The negative logarithms of terminal deforma­
tion probability or density values are interpreted as path 
costs in the tree-search procedure, and a uniform-cost 
algorithm can be applied for finding a MLSGECI. But 
Tsai and Fu [1] further propose a more efficient ordered-
search algorithm for finding a structure-preserved ECI 
after proposing a set of estimation rules for extracting 
heuristic information from the terminal deformation prob­
ability or density values to speed up the search. Here we 
extend that algorithm for the purpose of determining a 
MLSGECI from co' to ω. The essence of an ordered-search 
procedure is first reviewed [3]. A SGECI problem is again 
formulated as a state-space search problem. New estima­
tion rules for extracting heuristic information to speed up 
the search is proposed, followed by the ordered-search 
algorithm for determining an MLSGECI from an observed 
A R G co to a pure A R G co. 

A. Ordered-Search Algorithms for Finding ECI's 

In a state-space tree search problem each state descrip­
tion is called a node. Applicable operators are defined and 
applied to nodes to obtain their successors. If a sequence of 
operators leads a start node to one of the goal nodes, a 

corresponding path through the state-space will then be 
defined and is called the solution path of the search prob­
lem. The process of generating all successors of a node is 
called expanding the node. Then an ordered-search algo­
rithm uses an evaluation function to order nodes for ex­
pansion [3]. For a node Nt in the state space, an evaluation 
function is usually taken as 

where g\(Nt) is the minimum total path cost from the start 
node to TV, computed during the search, and g 2 (Af) is a 
consistent lower-bounded estimate, using any heuristic infor­
mation available, of g2(Nt) which is the optimal path cost 
from Nt to a goal node. Then as long as g2(Nt) < g2(Nt) 
for all Niy a corresponding ordered-search algorithm will 
expand fewer nodes, compared with a search algorithm 
using no heuristic information (i.e., g2(Nf) set 0) such as a 
uniform-cost search algorithm. The ordered-search algo­
rithm will still be guaranteed to find a minimum cost 
solution path in the state-space search. 

For the case of finding MLSGECI from an observed 
A R G co' to a pure A R G co during matching the nodes and 
branches in co' with those in co, it is natural to consider the 
negative logarithms of all the corresponding primitive and 
relation probability or density values as partial path costs. 
Both g, and g 2 values therefore can be computed from 
these negative logarithm values. An ordered-search algo­
rithm then becomes possible for finding a MLSGECI from 
co' to ω. Before proposing such an algorithm, we have to 
formulate the search of an SGECI as a state-space tree-
search problem. 

B. State-Space Formulation for Finding SGECVs 

To find a SGECI from ω' = (N\ B\ μ', c') over VN. U 
VB, to ω = (Ν, Β, μ, c) over VN U VB, we first add to N' a 
set of null nodes (denoted as λ ) so that the augmented N\ 
denoted as N", has the same number (nN) of nodes as Ν 
has. Note that n N ^ n N since N' c N. Next we number 
the nodes in N" in such a way that the first nN, nodes are 
all those in N\ and the rest are all the null nodes added. 
That is α· e N' for all 1 < i < nN, and α· = λ for all 
nN, + 1 ^ / < nN. We also number those nodes in Ν in an 
arbitrary order. The state-space formulation for finding a 
SGECI h: ω' -> ω is as follows. 

C. State-Space Formulation of a SGECI Problem 

1) State Description: A state is described by a collection 
Μ of 2-tuples (/, y), each of which denotes a pair of 
matched nodes α· e TV" and a y e TV found so far. When 
nN, + 1 < / < nN, α J is λ as defined, which means that a y 

is matched with no node in N\ or that the primitive μ(α^) 
in ω is deleted when ω is deformed into ω'. The initial state 
is Μ = 0 , the empty set. 

2) Operators: Let Mx = {/|(/, j) e M) and M2 = 
{j\(i, j) e Μ}, then an operator performs the following 
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actions to a state Af. Pick up a node a'k e N" with k £ Af,, 
and a node al ^ Ν with / i M 2 , and form a 2-tuple (A:, / ) . 
Check the validity of (A:, / ) with the following conditions 
which are derived from the definition of SGECI (Defini­
tion 3): 

(a) When 1 < k < nN, (i.e., when ak e W) , 
(1> it should be true that μ'(α\) e Ζ)(μ(α 7 )) , i.e., 

/χ'(α^) should be an observed version of μ ( α 7 ) 
and 

(2 ) for each (/, j) e Af, if 1 < / < Λ ^ , , then the 
following applies. 
(i) If y'm = « , « ; ) e 5 ' (or γ ; = («; , < e 

Z?'), it should be true that yn = (al9 <Xj) e 
5 (or γ„ = ( α 7 , α 7 ) < Ξ £ ) and € ' ( γ ; ) e 
Z ) ( € ( Y j | / i ' « ) , / i ' ( a ; ) ) (or t\y'm) e Z)(c 
( γ „ ) | μ ' « ) , μ ' « ) ) ) , i.e., c , (y;) should be 
an observed version of c(y w ) . 

(ii) If y'm = « , a]) £ W (or γ ; = («; , < ) « 
5 0 , but yn = ( a „ a , ) e 5 (or γ„ = 
( a y , a 7 ) e /?), then it should be true that 
λ e Ζ ) ( € ( γ , ) | μ ' « ) , μ ' («;)) (or λ e 
£ (*(Y„) l /* '« ) , / * ' « ) ) ) , i.e., γ„ should be 
deletable. 

(b) When + 1 ^ k ^ nN (i.e., when is a null 
node), it should be true that λ e Ό(μ(αι))9 i.e., a 7 

should be deletable. 
Add ( / : , / ) to Af if it is valid. Otherwise try any other 
2-tuple (k\ /'). 

3) 77ie Go<z/ State: A state Af is a goal state if its 
corresponding Af, includes the indices of all the nodes in 
N". With this formulation the evaluation function for an 
ordered-search algorithm now can be written as 

where NM is a node in the state space with a state descrip­
tion Af. To facilitate the computation of gx(NM) in the 
algorithm, we define the cost for adding a valid 2-tuple 
(k9 /) to Af, c(k9 / ) , as follows, 

(a) When 1 < k < nN.9 let 

R\ = {y'mWm = («Ι·*,·) G B\i e Af, ,and 1 < / < 

* 2 = {y'mWm = («ί> «*) G < e Af„ and 1 < / < nN.)9 

R 3 = {ϊηΙϊιί, = * ' e M l > a n d 1 < ' < nN"> 
but γ„ = ( α 7 , α,) e 5 , with (/, y ) e Af}, 

^ 4 = {yn\y'm = («ί» «*) * 5 ' > ' G M , , and 1 < / < nN>, 

but γ π = (aj9 a , ) e 5 , with (/ , j) e Af}. 

and Λ 2 together denote the set of all those branches in 
B\ each of which connects a'k and a matched node a] in W. 
Note that each branch y'm in Rx and Λ 2 is corresponded to 
by a branch γ„ in B. Also f? 3 and R4 above together denote 
the set of all those branches in B9 each of which connects al 

and a matched node a y in iV but corresponds to a nonex-

isting branch in Β'. Then we define 

c(kj)= - l n r S ( M ' K ) | M ( a , ) ) 

+ Σ [ - l n r S ( € ' ( Y ; ) | € ( Y J , ^ ( A I ) , ^ ( A ; ) ) ] 

+ Σ [ - I n r s ( € ' ( T ; ) | € ( y J , ^ ( a ; ) f M ' « ) ) ] 

+ Σ [ - l n r D ( X | € ( y J , M , ( a ; ) , i i , ( a ; ) ) ] 

+ Σ [ - l n r D ( X | € ( Y j , ^ ( a ; ) , / i ' « ) ) ] . 

(b) When nN, + 1 < A: < we define 

< : ( * , / ) = - l n r D ( X | / i ( a , ) ) . 

Then for a node in the state space with Af = 
(0Ί, JMi2> Ji\ ' ' ' »0'L» Λ)) W H E R E ( ' L . A ) = (k, I) is the 
most recently added 2-tuple to Af, g\(NM) is set as 

g i ( ^ W ) = Σ c(ik9jk)9 

k=\ 

which is computed during the search in the following way. 
First set j£x(NM) = 0 at the start node NMq = 0 . Then 
whenever a 2-tuple (A:, / ) is added to Af at node NM9 add 
c(k91) to gx(NM). 

Z). Heuristic Information for Speeding up the Search 

As to the computation of g2(NM) which, in the case of 
finding an MLSGECI here, is a consistent estimate of the 
total cost g2(NM) for matching all the remaining nodes in 
ω' and ω after a'k and at are matched (i.e., after (A:, / ) is 
added to Af), quite an amount of heuristic information 
useful for estimating g2(NM) is found to lie in two partial 
graphs, one in ω' consisting of all the nodes related to ak9 

and the other in ω consisting of all the nodes related to a{. 
The following estimation rules for computing g2(NM) re­
veals this point. 

Recall Af, = {/|(/, j) e Af), M 2 = {j\(i9 j) e Af}. 
Define Af31 = {i\Ym = « a'k) e B'9 i £ Mx) with n2X 

elements; 
^ 3 2 = {'lY; = « . « ; ) e ^ , , ^ ^ i } with n,2 

elements; 
Af3 = Af31 U Af32 which is the set of the indices 
of unmatched nodes in ω' related to a'k9 

M*\ = U\yn = «/) e B> J' & Mi) with n4X 

elements; 
M42 = U\yn = (<*h aj) ^B9j^ M2) with n42 

elements; 
Af4 = Af41 U Af42 which is the set of the indices 
of unmatched nodes in ω related to at\ 
Μ5λ = {j\j e Af4 l, yn = (aj9 a,)9 λ e Ζ)(μ(α,.)) 
a n d / o r λ e Z>(c(y n)| · , with A751 ele­
ments, where the dot " · " means the label of any 
node α· in ω' with / £ Af, U Af31; 
M52 = e Af42, γ Λ = ( a 7 , a y ) , λ e />(μ(α,·)) 
a n d / o r λ e / > ( € ( γ Λ ) | μ , « ) , ·)} with w 5 2 ele-
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merits, where the dot " · " means the label of any 
node a] in ω' with / £ M, U M32; 
Μ = M 5 1 U M52 which is the set of the indices 
of deletable nodes related to ah or of the nodes 
the relations between which and a, are deleta­
ble. 

The rules are as follows: 
(1) If n3X > n4X or n32 > n42 then set g 2 (AW) = 0 0 · This 

means that a'k cannot match a{ because the number of 
nodes directionally related to in ω' is larger than the 
number of nodes directionally related to a, in ω. Otherwise 
check the next rule. 

(2) If n4X - n5X > n3X or n42 - n52 > n32 then set 
g2(NM) = oo. This means that a'k cannot match ah because 
after deleting all deletable nodes directionally related to a, 
and those nodes whose relations with a, are deletable, the 
number of remaining nodes directionally related to af is 
still larger than the number of nodes directionally related 
to a'k in ω'. Otherwise check the next rule. 

(3) For each / G M 3 I try to find at least one j G M4X 

such that μ ' « ) G Ζ ) (μ(α,) ) and t\y'm) G D(€(yn)\ 
μ'(α,'), μ ' « ) ) , where y'm = (α,', a'k) and yn = (a , , a ,) . Simi­
larly for each / G M32, try to find at least one j G M 4 2 such 
t h a t μ ' Κ ) G Ζ ) ( μ ( α , ) ) a n d £ ' ( Γ ; ) G Z>(c (γ Λ ) | 
μ' (α; ) , μ'(α,')), where γ;, = ( < , a]) and γ„ = (α, , a y ) . If no 
suchy G M 4 exists for some ι e M 3 , then set g2(N\f) = oo. 
This means that cannot match a, because the labels of 
the neighboring nodes and branches of al cannot be sub­
stituted by the labels of the neighboring nodes and branches 
of a'k. 

Rules ( l ) - (3) above essentially check the possibility for 
a'k to match al according to the properties of the subgraph 
error-correcting isomorphisms defined previously. Setting 
g2{NM) = oo when the matching is impossible is to stop 
further tree expansion from node NM. Actual estimation of 
g2(NM) is to be performed in Rule (4) described after the 
following observation is pointed out. First each node a,' 
related to a'k in ω' should be matched with a node a-
related to a, in ω so as to guarantee a successful match of 
a'k with a,. That is each / G M 3 1 should be matched with a 
j G M 4 1 , and each / G M 3 2 should be matched with a 
j G M42. Then since there are n4X + n42 nodes related to a{ 

in co and there are n3X + n32 nodes related to a'k in ω', 
exactly (n4X + n42) - (n3x + n32) nodes related to a, 
should be removable from a,. Here a node α · related to a, is 
said to be removable from a,, either if a y is deletable or if 
the relation between α. and a, is deletable A/W/ there exists 
at least one unmatched node a'h not related to a'k in ω' (i.e., 
h £ M, U M 3 ) such that a), can be matched with (Xj in ω. 
Note that removable nodes from a{ are all contained in M5. 

(4) Let « 3 , = H 4 1 - A?31 and w 3 2 = n42 - n32. Add a set 
of Λ 3 1 null nodes M3X to M 3 I so that the augmented set 
Λ/3" = M 3 I U M 3 I has an identical number of nodes as 
M 4 1 . Define M32 and M 3 2 similarly. Let M3 = M3X U M 3 2 . 
Then try to find a mapping from M 3" to M 4 in the 
following ways. 

(1) For each / G A/ 3 1 find ay G M 4 1 such that the cost 
< Ί Ι « . «;) = ~ Ι η ^ ί μ Χ ο Ο Ι μ ί α , · ) ) - 1ηΑ·5(£'(γ;,)|£(γ„), 

μ'(α;), μ'(α^)) is minimized among all possible j , where 

YM = K > < ) > YN = «/)· T h a t i s Λ/ 4^ί 1 ( « > ) i s 

the minimum cost for a node α· related to in ω' to be 
matched with a node a 7 related to <x{ in ω. 

(2 ) For each ι G M 3 2 find ay G M 4 2 such that the cost 
c ' M , « j ) = -1ηΑ · 5 ( μ ' ( α ; ) | μ ( α 7 ) ) - l n r s ( c ' ( Y ; ) | e ( Y J , 
μ'(α^), M r(«-)) is minimized among all possible j , where 
γ ; = « , α}), γ„ = (α„ α,). m i n y € 5 A # 4 / 1 2 ( α > 7 ) is interpret­
ed similarly to m i n y e A f 4 c ' n ( a ; , a y ) . 

Note that mappings defined in (1 ) and (2 ) may be 
many-to-one. 

(3 ) For each y G Af5, define 

C 2 \ \ ( * j ) = ^ />(λ |μ(α 7 ) ) 

which is the cost for a y to be deleted, and define 

c2\i(aj) = m i n [ - l n r D ( \ | c ( y M ) , ^ ( a A ) , ^ ( a ; ) ) 

- 1 η Γ 5 ( μ ' « ) | μ ( α 7 . ) ) ] 

which is the minimum cost for the relation yn = ( a ·, a{) to 
be deleted while a y is matched with an unmatched node a!h 

not related to a!k in ω'. Note that all unmatched nodes 
related to a'k have been mapped in (1 ) and (2 ) above. 
If no h exists, set c 2 J 2 ( a y ) = oo. Also define c2X(aj) = 
m i n i o n , C2T2) w h i c h is the minimum cost for a y to be 
removed from a{. Then for the added null set M3X, try to 
find a subset M'5X c M5X with nf

3X indices such that the total 
cost c 2 | ( M 3 1 , M 5 ' ,) = £JeM> c'2\(ctj) is minimized among all 
possible M'5X. That is m i n ^ c A / 5 | c 2 1 ( M 3 1 , M'5X) is the 
minimum cost for n3X = w 4 1 - « 3 1 nodes related to a, to be 
removed from a(. 

(4 ) For each j G M 5 2 define 

c22i(«y) = - 1 η ^ ( λ | μ ( α 7 ) ) 
and 

^ 2 2 2 = m i n [ _ l n r o ( ^ | c ( Y j , μ ' ( < ) , μ ' « ) ) 
J h € Mx U Mn

 L 

- 1 η ^ ( μ ' ( α ; ) | μ ( α 7 ) ) ] 

where γ Λ = (α,, a y ) . Define c ^ ( a y ) = min (c^ ; , c'2'2'2). 
c22\, c222, c22 are all interpreted similarly to c2XX, c2X2, c2X. 
Then for the null set M 3 2 , try to find a subset M 5 ' 2 c M52 

with n32 indices such that the total cost c22(M32, A/ 5 ' 2) = 
^jG\fS2

c22(aj)ls ininimized among all possible M 5 ' 2 . That is 
m i n ^ c ^ c22(M32, M'52) is the minimum cost for n'32 = 
n42 _ n32 nodes related to at to be removed from a,. 

Note that the mappings from M 3 1 to Μ'5λ and from M32 

to M'52 defined in (3 ) and (4 ) are one-to-one, but while 
defining the costs c2X2 and c222, the chosen a'h (an un­
matched nodes not related to a'k in ω') for all y G M 5 1 or 
M52 may not be all different (i.e., the mapping from j to h 
may be many-to-one). 

The total cost for the mapping from M 3" to M4 now can 
be summed up as 

c'(kj)= Σ m i n
 cn(<*% aj) + Σ ™ n €'\2{a'n aj) 

+ min c 2 1 ( M 3 1 , + min c 2 2 ( M 3 2 , M'52), 
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which is a lower-bounded cost for all the nodes related to 
a'k in ω' to be matched with all the nodes related to at in ω. 
Finally set g2(NM) = c'(/c, / ) as an estimate of g2(NM). 

Rule (4 ) provides a consistent lower bound of g2(NM). 
Other lower bounds, either looser or tighter, can also be 
derived. A looser lower bound has been derived in [17]. A 
tighter bound for matching structure-preserved graphs is 
derived in [1]. 

E. An Ordered-Search Algorithm for Finding MLSGECFs 

We are now ready to propose an ordered-search algo­
rithm for determining a MLSGECI from an A R G ω' to 
another A R G ω. The algorithm essentially is similar to the 
one proposed in [1] for finding maximum-likelihood struc­
ture-preserved ECI's. Both follow that given in [3]. 

MLSGECI Algorithm: 

Input: An observed A R G ω' = (N\ B\ μ', c') over 
VN, U VB, and a pure A R G ω = (N9 Β, μ, e) 
over VN U VB with nN, < nN and nB, < nB, 
where nA means the number of the elements in 
set A. 

Output: A MLSGECI h: ω' -> ω with likelihood 
Ρ Λ (ω ' |ω) if h exists; otherwise the output 
Ρ(ω ' |ω) = 0. 

Steps: In the following steps, notations M, NM, 
Mu N'\ computations of gx(NM\ g2(NM), and 
f(NM), and operations for node expansion are 
all as defined in the previous sections. 
(1) Put the start node NMq with M 0 = 0 on a 

list called OPEN, a n d ° s e t / ( ^ M o ) = 0. 
(2) If OPEN is empty, then no MLSGECI 

exists; set Ρ (ω ' |ω) = 0 and exist. 
(3) Remove from OPEN the node NM with a 

smallest / value and put it on a list called 
CLOSED. 

(4) If the Μ! of this node NM is equal to the 
set of the indices of all the nodes in TV", 
then an MLSGECI h represented by 
Μ is found whose likelihood is given by 
Ρ Λ ( ω ' | ω ) = EX?[ - gx(NM)]. Otherwise 
continue. 

(5) Expand node NM using all operators appli­
cable to M. Compute the value f{NM,) = 
£ι(ΝΜ') + Sii^M') f ° r e a c h successor NM, 
of NM. Put these successors on OPEN. 

(6) G o to Step (2). 
In the above algorithm if g2(NM,) is always set zero, the 

algorithm reduces to a uniform-cost search algorithm which, 
though guaranteeing a MLSGECI, expands more nodes in 
general in the search than an ordered-search algorithm like 
the one just proposed. 

F. An Illustrative Example 

We continue the example given in Section III-B. After 
performing the proposed MLSGECI algorithm to find a 
MLSGECI from ω' to ω, where ω' and ω are as shown in 

' l ) MQ=J3 ( S t a r t node) 

M5={ (1 ,4 ) , ( 2 ,2 ) } @ M 6 = { ( 1 , 4 ) , ( 2 , 3 ) } 

^ / / ^ ^ 0 ' 0 0 4 4 1 

M?={ (1 ,4 ) , ( 2 , 3 ) , ( 3 ,1 )} (Γ) M g = { ( 1 , 4 ) , ( 2 ,3 ) , ( 3 , 2 ) } 

-iln 0 .00441 

Μ ={ (1 ,4 ) , ( 2 ,3 ) , (3 ,2 ) , ( 4 , 1 ) } 

(Goal node) 

Fig. 3. State-space search tree. 

Figs. 1 and 2, respectively, the resulting state-space search 
tree is shown in Fig. 3. Due to the small-sized ARG's ω' 
and ω we have, and the speedup the algorithm offers, the 
resulting search tree as shown is quite small in size. The 
circled numbers besides the nodes specify the expansion 
order of the nodes. The values besides the arcs are the 
f(NM) values. The solution path is indicated by the dark 
arcs, which corresponds, as specified by the goal node 
{(1,4), (2,3), (3,2), (4,1)}, to the following mapping: 

ia\ -> a4 

« 2 - > " 3 

a 3 a2 

λ -> a{ 

where λ -* α, means that a, is deleted. In the following we 
compute selectively the / values for nodes NMi, NMa, and 
NM for illustrative purpose. 

(A) At ΝΜχ where (kj) = (1,1): 
(a) = tf2 = tf3 = tf4 = 0 , g, = c ( l , 1) = 

— In rs{a\cx) = —ln0.2. 
(b) M 3 1 = 0 , M 3 2 = {2,3}, , i 3 1 = 0, n32 = 2, M 4 1 = 

{ 2 , 4 } , M 4 2 = 0 , / i 4 1 = 2 , * 4 2 = 0. 
In Rule (1) set g 2 = oo since n32 > n42. 

(c) / = gi + g 2 = oo. 
(B) At NMa where (fc,/) = (1,4) 

(a) R{ = R2 = R3 = R4 = 0 , g , = c ( l , 4 ) = 
- I n rs{a\\a4) = -\nrs(a\a) = - I n 1.0. 
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(b) (1) M 3 1 = 0 , M 3 2 = (2,3), « 3 1 = 0, « 3 2 = 2, 
M 4 1 - 0 , M 4 2 = {1,2,3}, « 4 1 = 0, n42 = 3. 
Since « 4 , = n 3 1 , and w 4 2 > « 3 2 , we check Rule 
(2). 

(2) M 5 1 = 0 , M 5 3 = {1 ,3} ,« 5 1 = 0 , * 5 2 = 2. 
Since n4l - n5] = λ 3 Ι , az4 2 - a? 5 2 < A2 3 2, we 
check Rule (3). 

(3) For / = 2 e M 3 2 , choose _/" = 3 e M 4 2 such 
that 
a 2 = 6 e = {6, Α , λ} and 
ej = >> e D(e 5 | i i ; , a 2 ) = D(e5\a, b) = {y, x\ 
where 
Λ = *'(Ym) for y'm = (« ; , α' 2) = γ[ and 
e5 = €(γ„) for yn = ( α 4 , a 2 ) = γ 2 . For / = 3 e 
M 3 2 , choose 7 = 2 e Af42 such that 

^ ( ^ 2 ) = ( c > a * ° ) a n c * 
D ( e 2 | a i , ^ ) = Z ) ( e 2 | a , 0 = <*>, 

a3 = c 
e'2 = z< 
where 
2̂ = f ° r = ( « 1 * α 3> = Y2 a n d 

2̂ = * (Υ Λ ) f ° r Yn = («4* «2) = Y2-
Therefore, we can check Rule (4). Note that 
here we can also choose 7* = 2 for / = 2 and 

7* = 1 for / = 3. This fact is used in Rule (4) 
below. 

(4) n\3 = n4] - n3] = 0, n'3 32 *32 - « 4 = 1 
Μ 3 ' 2 = Μ 3 2 υ { λ } = {2,3, λ} 
<2> For / = 2 G M 3 2 , if 7 = 3 e A/ 4 2 is cho­

sen, then 

c ; 2 ( a ' 2 , a 3 ) = - l n r 5 ( a 2 | ^ 3 ) 

- l n r 5 ( e ; | e 5 , F L 5 , f l ,

2 ) 

= - l n r s ( f t | f l 3 ) 

- I n rs(y\y, a, b) 

= - l n 0 . 7 - ln0 .9 . 

If j = 2 e M 4 2 is chosen, then 

c i 2 ( a 2 » « 2 )
 = - l n r 5 ( ^ 2 | ^ 2 ) 

-\nrs(e\\e2,a\<a'2) 

= - 1 η Γ 5 ( 6 | α 2 ) 

- I n λ> ( . y ^ , a, b) 
= - I n O . l - ln0.2. 

S i n c e - I n 0 . 7 - In 0 . 9 < - l n 0 . 1 - l n 0 . 2 , 
we choose j = 3, a n d min > € Ξ Α / 4 Ι * Ί 2 ( Α Ί '

 aj) 
= - ln(0.7 X 0.9) for / = 2. 
For I ' = 3 g M 3 2 , ^ ( α , ' , a . ) are com­
puted, for 7 = 2 and 1, to be c', 2(a' 3 , a 2 ) 
= - I n 0.7 - In 1.0, and c\2(a'3, a , ) = 
- I n 0 . 6 - In 1.0. Therefore we choose 7 
= 2 and m i n , . e M 4 c ; 2 ( a ; , a,.) = - ln (0 .7 
X 1.0) for / = 3. 

<4> For7 = 1 e M 5 2 , 
c22\(a\)= - 1 η ^ ( λ | μ ( α , ) ) = - l n r D ( X | 
ax) = - I n O . l . 

To compute c 2 2 2 ( a , ) , since A/, U A/ 3 2 = 
(1) U {2, 3}, no h exists and c 2 2 2 ( a , ) is set 
0 0 . So c 2 2 ( a , ) = - I n O . l . 

For 7 = 3 e M 5 2 , similarly, 
c 2 2 ( a 3 ) = c 2 2 ; ( a 3 ) = - I n r D ( X ^ ( a 3 ) ) = 
-\nrD(X\a3) = - l n 0 . 2 . 
Since c 2 2 ( a 3 ) = - I n 0.2 < - I n O . l = 
c'22(a{), we choose A/^ = {3} c M 5 2 such 
that 

min c 2 2 ( M ' 3 2 , M ' 5 2 ) = c 2 2 ( a 3 ) = - I n 0.2. 
M;2czM52 

Then g 2 is set to be 

c'(kj)= £ min c ; 2 ( « ; , α 7 ) 

+ min c'22 ( M 3 2 , ) 

= - l n ( 0 . 7 X 0.9) 

- l n ( 0 . 7 X 1 . 0 ) - I n 0 . 2 
= - l n ( 0 . 7 X 0.9 X 0.7 X 0.2) 
= - I n 0.0882. 

And so / = g, + g 2 = - I n 1.0 - In 
0.0882 = - I n 0.0882. 

(C)AtNMH where (kj) = (3,2) 
(a) tf, = 0 , Λ 2 = {γ^}, / ? 3 = 0 , / ί 4 = {γ 4 } where 

= (α ' , , α 3 ) , γ 4 = ( α 4 , α 2 ) . 

c ( 3 , 2 ) = - 1 η Γ 5 ( μ ' Κ ) | μ ( α , ) ) 

+ Σ [ - l n r s ( c ' ( y ; ) | € ' ( Y j , 

· μ , ( α ; ) , μ ' ( α ; ) ) ] 

+ Σ [-lnr D (A|e(VJ, 

· μ ' ( « ; ) , μ ' « ) ) ] 

= - I n rs(a3\a2) - In r 5 ( ^ | e 2 , A J , α'3) 

' - ln r D ( \ | e 4 , α 2 , α'3) 
= - I n 0 . 7 - In 1.0 - InO.l 
= - I n 0.07. 

g, = c ( l , 4 ) + c (2 ,3 ) + c (3 ,2 ) 

= - I n 1.0 - In0.63 - In0.07 
= - I n 0.0441 

where c(2, 3) = - In 0.63 is computed at HM (not 
shown here). 

(b) A/ 3 1 = M 3 2 = 0 

A/41 = 0 , ^ 4 2 = {1} 
A/51 = 0 , M 5 2 = (1} 
Since (i) w 4 I = n3] = 0, « 4 1 = 1 > 0 = a? 3 2 , 

(ii) rt41 - « 5 1 = n3X = 0, A? 4 2 - « 5 2 = 1 - 1 
= 0 = a? 3 2 , and 
(iii) A/ 3 I = M 3 2 = 0 , 

we can check Rule (4) below. 
(4) <4> For7 = 1 e M 5 2 , 

c 2 2 l ( « i ) = - 1 η Γ β ( λ | μ ( α , ) ) = - I n O . l 

and since M, U M 3 2 = {1,2,3} U 0 = {1,2,3}, Λ 
does not exist. So c 2 2 2 ( a , ) = 0 0 and c 2 2 ( a j ) = 
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- I n 0 . 1 . Therefore 

g 2 = c '(/c,/) = min c'22(M;2, M;2) 
M'52aM52 

= c 2 2 ( a , ) = - I n O . l . 

And so / = g, + g 2 = - I n 0 . 0 4 4 1 - In0.1 = 
- lnO.00441 . 

G. Complexity Analysis of MLSGECI Problem 

Unfortunately the MLSGECI problem, like the sub­
graph isomorphism problem is an NP-complete problem 
[18], and the search of a MLSGECI needs exponential time 
in the worst case. But in practice most subgraph isomor­
phism algorithms behave quite well for graphs encountered 
in real applications, scarcely showing the exponential time 
requirement [19]. In particular we make the same assump­
tion as that made in [20] for graph homomorphism com­
plexity analysis that the resulting state-space search tree 
usually will, with the help of heuristic information, reduce 
to just a single line (i.e., the solution path) or at most a few 
branches at tree level. The resulting search tree shown in 
Fig. 3 is a justification of this assumption. A typical search 
tree with several branches at each tree level contains ap­
proximately an2 generated nodes, where α is a constant 
taking care of the branches [20] and η is the number of 
nodes in the pure graph. What remains is to analyze the 
complexity of the work required to generate each node in 
the search tree. Such work is specified in Step (5) of the 
proposed MLSGECI algorithm. The total complexity of 
the MLSGECI algorithm will then be an2 times the com­
plexity for such work. 

Generation of a node NM, while expanding its predeces­
sor NM in Step (5) of the proposed MLSGECI algorithm, 
can be further divided into two major parts—validity 
checking of (k91) and computation of f(NM,). In the 
following we assume Μ = {(/, , (z' 2, y 2 ) , · · · , 

Λ - ι ) > and Μ' = Μ U <(/ L , jL) = (k, /)}. 
Validity checking of (k91): This is Step (2) in the state-

space formulation of an SGECI problem. When 1 < k < 
nN,, an appropriate search technique like hashing is used to 
check if μ'(α*) e ϋ(μ(αι)) requires approximately a con­
stant time c,. Next for each (i , J ' ) G M , we first have to 
check if γ^ = ( α ^ , α · ) or (α · , ak) is in B'. If so then 
we have to check further if yn = (ah a y ) or ( a y , a ,) is in 
Β and if t\y'm) is in Ζ ) ( € ( γ Μ ) | μ ' « ) , μ'(α,')) or in 
Ζ)(€(γΜ)|μ'(α·), μ'(α^)). If y'm is not in B' then we check 
further if yn = (ah a.) or (α-, α,) is in Β or not. If so we 
have to check if λ is in Ζ>(€(γΛ)|μ'(α^), μ'(α·)) or in 
Ζ)(€(γΜ)|μ'(α·), μ\α^)). Let m, b\ b be the number of ele­
ments in Μ (or Mx or Af 2), B\ 2?, respectively. Then for 
either case above (γ^ in B' or not in B'\ we need time 
m(bc2 + b'c2 + c 3) where c2 is a constant time for compar­
ing the identicalness of two branches in B' or in B, and c 3 

is a constant time for checking if an edge label e'(y^) or λ 
is in β ( € ( γ Λ Μ « ί ) , μ ' ( α ; ) ) o r I N J > ( « ( Y » M « i ) > /*'(«*))· 
When nN, + 1 < k < nN, to check if λ is in Ό(μ(αι)) also 
requires time c,. In summary we need time no more than 

/, = c, + m(bc2 + b'c2 + c3) for validity checking of 
( * , / ) · 
Computation off{NM,)\ Recall that 

* . 0 V ) + & 0 V ) 

where 

L 

S i ( ^ V ) = Σ c(ik9jk) 
k=\ 

= * ι ( * * ) + * ( Μ ) , 

and g2(NM,) is computed according to the four estimation 
rules. g\(NM) is already computed at node NM. To com­
pute c(k, I) we first have to find out the four sets Rx, R2, 
R3, and R4. This can be accomplished by checking for all / 
in AT, with 1 < / < nN, if y'm = (ak9 a]) or (α ; ', a'k) is in B\ 
and if not, checking further if yn = (ah a,) or (a , , a,) is in 
B. This requires time no more than m(c4 + b'c2 + bc2) 
where c4 is a constant time for number comparison (to 
check if / is no greater than nN,). Next according to the 
definition of c(k, / ) , and noting that the total number of 
the elements in R}, R2, R3, and R4 is less than m (the 
number of elements in Μ,), we see that the computation of 
c(k, I) requires time no more than m(c5 + c 6). c 5 is the 
time to take the logarithm of each ys or yD value and c 6 is 
the time for subtraction (or addition). Therefore to com­
pute 

g ^ ) = g,(NM) + c(kJ) 

requires time no more than 

t2 = m(c4 + b'c2 + bc2) + m ( c 5 + c6) + c5 

= m(c4 + b'c2 + bc2 + c 5 + c 6 ) + c5. 

On the other hand to compute g2(NM,\ we first have to 
find the sets Af31, M 3 2 , M 4 1 , Af4 2, M 5 1 , and M 5 2 . One way 
to find M 3 1 and M32 is to check, for all those i £ Mx, if 
YM = (α/> αΑ:) Ο Γ a i ) is in 5 ' or not. Since there are 
n' — m indices not included in M, , this requires time equal 
to ( « ' - m)b'c2. Similarly to compute M 4 1 and M42 re­
quires time equal to (n — m)bc2. Here we use n\ n9 b\ and 
b to denote the numbers of the elements in N\ N9 B\ and 
B, respectively. c2 is, as defined previously, the time for 
comparing two branches in B' or B. To compute M 5 1 and 
M52 we have to check, for all j in M 4 1 or in M 4 2 , if the node 
Oy, which is connected to a 7 by γ Λ = (aj9 a() or ( a / ? a y ) , is 
removable from at. That is, if λ is in Ό{μ{α])) a n d / o r in 
£ ( « ( Y „ ) I * ^ μ ' « ) ) or in Ζ)(€(γ Λ ) |μ , (αί) , · ), where the dot 
" · " means μ\α\) with any / not in Mx U Af31 or not in 
Af, U M 3 2 . To check if λ is in Ζ)(μ(α 7 )) requires time cv 

One way to check if λ is in Z)(c(yM)| · ,μ ' (α^) ) or in 
^ ( € ( Υ Μ ) Ι/ Α( αΑ:)'' ) * s t o check, for all / not in Μχ U M 3 1 or 
not in Af, U Af32, if λ is in / ^ ( γ ^ μ ^ α - ) , μ'(α^.)) or in 
D(e(yn)\^(a'k), μ'(α;)). This requires time (n' - m -
n3X)cx or time ( « ' — m — « 3 2 )cj , where « 3 1 and « 3 2 are the 
numbers of the elements in Af31 and Af32. So to compute 
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Af 5 1 and M 5 2 requires time no more than 

n4][cl 4 (ri - m- n3l)cx] 

+ n42[cx 4 (ri - m- n32)cx] 

< (n - m)[cx 4 (ri - m)c]] 

4 (« - 4 (ri - m)cx] 

= 2(n - m)(n' — m)cx 4 2(n — m ) c , , 

where # 4 1 and /* 4 2 , both no more than η — m, are the 
numbers of the elements in M 4 1 and M 4 2 , respectively. In 
summary to compute all the sets M 3 1 , M 3 2 , A / 4 1 , M 4 2 , Af51, 
and M 5 2 requires time no more than / 3 = (ri — m)b'c2 4-
(« — tti)fec2 4 2(h — m)(ri — m)cx 4 2(h - m)cx. 

To compute g2(NM,) we next have to analyze the time 
needed in using the four estimation rules ( l ) - (4 ) : 

(1) We have to count η3λ, h 3 2 , w 4 1 , and « 4 2 , followed by 
comparisons of h 3 1 with n4] and of h 3 2 with n42. This 
requires time 

(n3l 4 a? 3 2 4 / i 4 1 4 n42)c7 4 2c4 

< [(ri — m) + (n — m)]c7 4 2 c 4 = / 4 , 

where c 7 is the constant time for a number increment 
operation and c4 is the constant time for number compari­
son. 

(2) This steps require time 

(n5] 4 n52)c7 4 2c6 4 2 c 4 < ( «41 + «42 ) c 7 + 2 c 6 4 2 c 4 

< (n - m)c7 4 2 c 6 4 2 c 4 

= 's> 

where c 6 is the constant time for addition. 

(3) It is not difficult to see that this step requires time 

n3ln4l(c] 4 c 2 ) 4 n32n42(cx 4 c 2 ) < 

• (ri - m)(n - m)(c] + c2) = t6. 

(4)(1) In this step, for each i in A f 3 1 , we have to compute 
the cost c\x(a], a , ) for all j in M 4 1 and then choose one j 
with the minimum c\ λ value. This requires time 

Λ 3 ΐ [ Λ 4 ΐ ( ^ 5 + ^ + Ca)] 

< (/*' - - m)(c5 -4 c 6 4 c 4 ) = / 7 . 

(4)(2> Similar to ( 4 ) ( 1 ) , this step requires no more time 
than t7. 

(4)(3> For each j in M 5 1 we first have to compute c2\\ 
and c'2"2 and then set c2\(a.j) as the smaller of c2X\ and c2l2. 
To compute c2\\ we need time c5. To compute c 2 J 2 we need 
time (ri - m - n3X) · (2c 5 4 c 6 4 c 4 ) . To compute c 2 1 ( a 7 ) 
we need time c 4 . Therefore we need time 

n5l[c5 + (ri - m- n3l)(2c5 4 c 6 4 c 4 ) 4 c 4 ] 

< "4 l [ ( " ' - m ~ «3l)( 2 ^5 + 6̂ + Ca) + 5̂ + C4] 

< - "?)[(/? ' - w ) ( 2 c 5 + c 6 + c 4 ) -4 c 5 4 c 4 ] . 

Next, we have to find a subset M 5 ', c M 5 1 with « 3 1 

indices such that the cost 

c'2x(M3\,M'5,)= Σ c'2\{aj) 

is minimized. This can be done by first sorting the costs 
c2](aj) for all j in M 5 1 and then choosing those ri3X indices 
whose corresponding c'2\(aj) values are the smallest in the 
n5X ones. This requires time Kn\x at most for sorting and 
time ri3](c4 4 c 6 ) for summing the ri3X smallest c2\(aj) 
values, or together 

Kn\x 4 ri3](c4 4 c 6 ) < Kn\x + ( , i 4 1 - n3X)(c4 4 c 6 ) 

< A^(ai - w ) 2 4- (n - m)(c4 4 c 6 ) , 

where A' is a constant and ri3x = n4X — n3X < n4X < w — m. 
Totally, in this step we need time no more than 

/8 = (n - m)[(ri - m)(2c5 4 c6 4 c2) 4 c 5 4 c2] 

+ K(n - mf + (n - m)(c4 4- c 6 ) . 

(4)<4> Similar to (4)(3> the time needed for this step is 
also no more than t%. 

In summary the total time needed for estimation rules 
( l ) - (4 ) above is no more than t4 4 t5 4 t6 4 t7 4 t7 4- ts 

4- / 9 which, after simplification, is equal to 

t9 = 2K(n - mf 4 (c , 4 3 c 2 4 2 c 4 4 6c 5 4 4 c 6 ) 

• (ri — m)(n — m) 

4 ( 2 c 2 4 2 c 4 4 2c 5 4 2 c 6 4 2 c 7 ) 

- (n — m) + c7(ri — m ) 4- 4 c 4 4 2 c 6 . 

Now to compute c'(k, I) we need the following time for 
additions: 

("31 + "32 + "31 + Λ32 Κ < ("31 + "32 + "41 + " 4 2 K 
< [ ( π ' - m ) 4 (n - m)]c6 

= ^ιο· 
Therefore the total time to generate a node NM in the 
state-space is 

t = t} 4 r 2 4 ( / 3 + t9 4 r I 0 ) 

which, after simplification, is 

/ = m(bc2 4 fe'c2 4 c 3 4 c 4 4 c 5 4 c 6 ) 4 rib'c2 4- «Z?c2 

4 2 A : ( w - w ) 2 4 ( « ' - m)(n - m) 

- (3c 1 4 3 c 2 4 2 c 4 4- 6c 5 4 4 c 6 ) 4 - m) 

• (2c, 4 2 c 2 4- 2 c 4 4 2c 5 4 3c 6 4 2 c 7 ) 

+ ("' ~ "0(^6 + Cl) + (Cl + 4 Q + 5̂ + 2 ί , 6 ) · 

Since w is the number of the elements in Af, it is not 
greater than ri which in turn is not greater than η because 
N' c N. Also, V < b because B' c B. Therefore the time 
complexity for t above can be reduced to 

t ~ Kxnb + K2n2 

for large a?, where Kx and K2 are two constants. When the 
connectivity of nodes in the pure graph ω is low such that 
b < η the term K2n2 dominates in /. Otherwise Kxnb 
dominates. Actually b can be as large as to the order of n2 

when almost every two nodes in iV are connected to each 
other with a branch. Since approximately an2 nodes will 
normally be generated in the state space (see previous 
discussions), we conclude that the time complexity of the 



TSAI AND FU: ISOMORPHISMS FOR SYNTACTIC PATTERN RECOGNITION 61 

(a) 

(c) 

Fig. 4. Shape analysis by primary graphs constructed from decomposed 
polygonal approximations of given shapes, (a) Decomposed polygonal 
approximation of three English letters A, E, and Y. (b) Primary graphs 
for (a). Smaller letters and numbers specify node indices; they are not 
node labels, (c) Distorted A and its corresponding primary graph. 

proposed MLSGECI algorithm is to the order of n3b when 
node connectivity is high (b > n) in the pure graph ω, or 
to the order of n4 otherwise, where η and b are the numbers 
of nodes and branches in ω, respectively. 

H. An Application Example 

Pavlidis [21] proposed an approach to shape analysis 
which consists of the approximation of given shapes by 
polygons, the decomposition of polygons into smaller con­
vex sets, and the description of the convex sets in terms of 
a special kind of labeled graphs, called primary graphs. 
Each node of a primary graph represents a simple shape 
primitive (labeled by Ρ) or the intersection of two primi­
tives (labeled by N). Nodes of different labels correspond­
ing to intersecting sets are connected by branches. Fig. 4(a) 
shows the decomposed polygonal approximations of three 
English letters A, E, and Y. The corresponding primary 
graphs are shown in Fig. 4(b). To describe further the 
nodes in a primary graph, Pavlidis [21] proposed, in addi­
tion to the labels Ρ and Ν mentioned above, the following 
set of node attributes: 

(1) number of vertices, 
(2) area, 
(3) direction of major axis of inertia, and 
(4) coordinates of center of gravity. 

Quantities specifying different types of primitive intersec­

tions are also defined to describe the branches in a primary 
graph. Such quantities can be regarded as branch attri­
butes. Obviously primary graphs so defined are just a 
special type of attributed relational graphs. Consequently 
the proposed subgraph error-correcting isomorphism is 
applicable for the recognition of shapes represented by 
such graphs. For example Fig. 4(c) shows a distorted A and 
its corresponding primary graph, which is a subgraph of 
the reference primary graphs of both A and Ε shown in 
Fig. 4(b). With the help of node and branch attributes and 
the use of the proposed MLSGECI algorithm, the graph of 
the distorted A, when matched with that of the noise-free 
A, will yield the maximum likelihood value and so can be 
classified as a letter A. More detailed development of 
matching primary graphs for shape analysis using the 
proposed SGECI is left for further investigation. 

V . CONCLUDING REMARKS 

In this paper the structure-preserved graph deformation 
model, the structure-preserved error-correcting graph iso­
morphism, and the ordered-search algorithm for finding 
such isomorphisms [1], [2] are successfully and nontrivially 
extended to subgraphs. These subgraph ECFs can be used 
to match attributed relational graphs which not only cover 
the conventional symbolic labeled graphs but also can 
include numerical attributes. As a result, the proposed 
MLSGECI algorithm is very useful for matching patterns 
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represented by attributed relational graphs, which usually 
include structures and attributes. The error-correcting and 
subgraph-handling capability of the isomorphism also 
makes inexact matchings of occluded, partially viewed, or 
structurally distorted patterns possible. Further researches 
may be directed to applying the proposed approach to real 
world problems. 
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Generation of a Pseudothesaurus for Information 
Retrieval Based on Cooccurrences and Fuzzy 

Set Operations 
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Abstract—A thesaurus in bibliographic information retrieval is a list of 
technical terms with relations among them, enabling generic retrieval of 
documents having different but related keywords. Since the construction 
of a thesaurus is resource consuming an automatic generation method of a 
thesauruslike structure is needed. A set-theoretical model of an abstract 
thesaurus is developed which is related to an automatic generation method 
based on cooccurrences of terms in the set of texts. Replacement of a basis 
set in the model and transformation of cooccurrence frequencies into fuzzy 
sets enables the transition from the abstract mathematical model to an 
actual procedure of automatic generation. The generated structure is called 
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a pseudothesaurus. An algorithm to generate the pseudothesaurus from a 
large amount of data is developed. Moreover, two examples based on a 
dictionary of scientific usage and on an actual bibliographic database are 
given. 

I. I N T R O D U C T I O N 

R ECENT D E V E L O P M E N T of on-line information 
retrieval systems has stimulated various types of data 

organization methods such as automatic indexing [1] and 
document clustering [2]. Association retrieval using a 
thesaurus [3] or citations [2] has been also studied. A 
thesaurus is a standard tool of bibliographic information 
retrieval, and some databases, e.g., Educational Resources 
Information Center (ERIC) [4], are accompanied by 
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