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 I 

即時 1080P 30Hz高斯混合模型之去背景設計 

研究生: 許碩文                                  指導教授: 張添烜 博士 

國立交通大學 

電子工程學系電子研究所碩士班 

摘  要 

以高斯混合模型(GMM)方式設計的去背景演算法效果不錯，但是它往往受限

於計算量，以及更新每個畫面的每個像素時對記憶體頻寬的要求。 

為了處理這些問題，我們提出了一個基於區塊處理、同時使用平行概念的

VLSI 硬體架構。原本的 GMM 演算法需要很高的記憶體頻寬，這點可以用內部

記憶體來克服，但這同時會需要很大的面積來儲存，我們提出了以區塊分別處理

畫面的方式來避免儲存整個畫面的資料，如此就可以節省內部記憶體的面積，同

時又可以重覆使用外部記憶體的資料，藉以節省外部記憶體的頻寬，每個區塊所

產生的結果會傳到之後的區塊，目的是使區塊處理的結果盡可能接近原使演算

法；另外，GMM 有相當多互相獨立的參數時常需要處理，為了節省這部份的計

算量，我們利用它獨立的特性，加入了多套硬體平行處理這些參數。 

此設計以 TSMC 90nm 的製程實現，可支援 1080P的影像並且可用 30Hz 的速

度執行，執行在內頻速度 125MHz，邏輯閘數為 553.5K。 
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A Real Time 1080P 30FPS GMM Based Background 

Subtraction Design  

Student: Shuo-Wen Hsu                          Advisor: Tian-Sheuan Chang 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 

 Real time background subtraction design with Gaussian Mixture Model (GMM) 

provides good performance but suffers from heavy computational complexity and 

memory bandwidth due to parameters updates per pixel per frame.  

To solve above issues while meet real time demand, this thesis proposed a VLSI 

hardware design with block based processing and parallel hardware. Original GMM 

operates on a whole frame, which demands high memory bandwidth. This bandwidth 

can be reduced by internal buffer but suffers large size. In this thesis, we propose to 

operate GMM on a block instead of whole frame to avoid whole frame buffer while 

reuse parameter data to save bandwidth. The corresponding result will be passed to 

neighboring blocks to keep our GMM result similar to that by the whole frame based 

GMM. The high computation cost is tackled by parallel processing for speedup by 

exploiting independent operations in GMM. 

 The design is implemented on TSMC 90nm process, which supports 1080P at 

30FPS. The gate counts is 553.5 K gates at 125MHz.  
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Chapter 1 Introduction 

 

1.1 Background and Motivations 

Intensive Care Unit (ICU) is built to take care of severe injured or illness people. 

However, ICU is facing the problem of shortage of medical personnel. It would be a 

fetal problem for patient not treats carefully due to the shortage. Our goal in this 

project is to find solutions by intelligent video analysis. After investigation, we found 

a fact: they are hard to concentrate on a patient due to the time spent on regular ward 

round.  

In order to shoulder the burden of medical personnel, the technique such as 

Motion Vector Analysis or Background Subtraction is included to analyze the 

information around the sickbed. For example, the trembling or rolling of a patient 

should be aware at the first moment. Using mentioned techniques can help people be 

aware of them as soon as possible. 

To analysis the real time information of the video, the key is background 

subtraction. We apply Gaussian Mixture Model (GMM) based algorithm to do 

background subtraction. However, due to the heavy computation and other issues like 

inefficient memory bandwidth, software based implementation are not capable to 

implement GMM in real-time. In the previous tests, the software implementation 

could only process up to 25 FPS in the VGA resolution. However, the system requires 

at least 30 FPS in the VGA resolution and would possibly increase with the progress. 
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Besides, there will be many cameras being used in the ICU, so our design has to deal 

with videos as many as possible. In order to implement GMM with the requirements, 

this thesis proposed a modified version of GMM algorithm and implemented by 

Application-specific integrated circuit (ASIC) design. We will implement the 

algorithm under both Full-HD resolution and VGA resolution. The former is the 

fastest speed under the architecture of this thesis and the later is the minimum 

requirement of the project. 

1.2 Thesis Organization 

This thesis is organized with five chapters. Chapter 1 gives the introduction and 

motivations of this work. Then, in chapter 2, a brief overview of GMM and related 

algorithms is given. Chapter 3 introduces the targeted algorithm to realize in the ASIC. 

Chapter 4 proposes a modified version of GMM algorithm in chapter 3 for hardware 

implementation, and demonstrated the hardware design. In the end, a conclusion 

remark is given in chapter 5. 
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Chapter 2 Related Algorithms 

 

2.1 Background Subtraction Overview 

 Despites of minor differences, most background subtraction methods share a 

common framework: they make the hypothesis that the observed video sequence I is 

made of a fixed background with moving foreground objects in front of it. With the 

assumption that a moving object at frame n has a color different from the background, 

the principle of background subtraction methods can be summarized by the following 

formula:  

                                        (2-1) 

 The function d(.) is the distance between input in(n) and background B(n), in a 

given space. τ is a fixed constant. 

 Various types of background subtraction algorithm are performed on the basic 

framework. For example, in [11], the d(.) is taken from Mahalanobis distance and 

background of next frame is predicted by the feature vector model. In [24], the pixel 

based background model record the maximum value M, minimum value N and the 

largest interframe difference in the pixel D in the initialization. A location is marked 

as foreground if |M-I(x)|>D or |N-I(x)|>D. GMM is another popular background 

subtraction method, which records multiple sets of background information in every 

location and matches new coming input set by set. 
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There are yet more background subtraction techniques being proposed, and further 

introductions could be found in [5][6]and[7]. In this thesis, we select an algorithm 

generalized from GMM as our background subtraction technique. Therefore, 

following discussions will focus on GMM. The reason why GMM is selected as 

targeted algorithm will be shown after more details being introduced in the section 

2.3. 

2.2 Gaussian Mixture Model 

Gaussian Mixture Model (GMM) is a clustering method commonly used in the 

field of machine learning and image processing. In some conditions, Gaussian 

distribution is not enough for modeling the probability of an event while the GMM 

methods provide good results. Take the handwriting recognition as example, the input 

of this system could be a digit from 0 to 9, and the system is built to recognize the 

digits. After the training, the model would likely to be the sum of 10 independent 

Gaussian distribution with different mean and variance. The Gaussian Mixture Model 

is built to model such distributions. 

2.2.1 Gaussian Mixture Model 

The GMM assumed a targeted distribution could be modeled as the sum of 

multiple Gaussian distribution. That is: 

 

                                              (2-2) 

 To modeling a distribution, we start from its log likelihood function, and then 

maximize it. 
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                                       (2-3) 

 The function is hard to derive a closed form, so we usually evaluate it with 

iterative methods. We will apply the Expectation–Maximization(EM) algorithm in the 

GMM for online learning process. More details of EM algorithm will be shown in the 

next section. 

 Each Gaussian distribution is a group. The first step of EM is to find the 

probability of a given xi is produced by a particular group k: 

Assume we apply a model with K groups, and models N data. 

1.                         (2-4) 

This step is called expectation, the original data is divided into k groups and the 

distribution probability is also given. The next step is maximization, which 

maximized the likelihood under the result from expectation step. Because of we 

already knew the probabilities of a given data xi is belong to a particular group, so the 

maximization step is simply evaluating the means and variance from weighted sum of 

data. 

2.             (2-5) 

         (2-6) 

                                     

                          (2-7) 

Where  

3. Iteratively repeat above two steps until convergence. 
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 In this section, a distribution model GMM and steps of updating are given. In the 

next section, more detailed explanations of EM algorithm will be shown. And we will 

discuss how to apply GMM model in our problem, after the EM model. 

2.2.2 EM Algorithm[2] 

Suppose we are going to evaluate the parameter maximizes , and we 

suppose it is hard to evaluate directly. Sometimes, with the assumption of latent 

variable, hence the evaluation of  is much easier. Z is latent variables of 

function p. The EM algorithm is used to solve this problem. 

Start from the log likelihood function , where  is the parameters of 

the current model. In the meanwhile, we define the latent variable Z as follow. Z is a 

K-dimensional vector where the k-th entry is 1 when the k-th group has been selected 

and other entries are 0. 

 

 

,  is the parameters from last iteration. 

 

 

     (2-8) 
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Note the inequality on the fifth row is Jensen’s inequality[3]. The inequality is the 

key of this problem, because it cancels the tedious log of sum term.  

 So far, we have derived an inequality from the log likelihood function. The next 

is how to do optimization under the inequality. 

Let’s define a new variable: 

 

 

 const                                                        (2-9) 

 The later term is a constant because all of the parameters are known. The 

previous term is the expected value of log likelihood function, and can be considered 

as a function of . 

  is the lower bound of . In the EM algorithm, the 

expectation step is to evaluate  of current parameter  and the 

maximization step is to find . The EM algorithm 

maximizes  by maximizing , which is much easier in 

comparison to solve it directly. Note that this relies on the fact that increase  

will simultaneously increase . It can be proved mathematically in 

[4] and will be skipped in this thesis. 
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2.3 Applying Gaussian Mixture Model on 

Background Subtraction 

 Many machine learning technique had been applied to background subtraction, 

GMM is a popular one[8][9][10]. Because of the distribution of received input 

intensity on a location is closed to GMM model. 

 The illumination or the movement of camera changes the scene gradually, while 

the background of the algorithm should capable to handle these changes. Single 

Gaussian modeling is proposed in [11] to deal with them, but the real world 

sometimes more complex than single Gaussian can hold. For example, the test scene 

is waving trees in front of the sky that the two are both the background at the location 

alternatively. If single Gaussian model is applied, the background will adapt to the 

mean of them. On the other hand, mixture of Gaussian can handle that well by setting 

tree and sky to independent group of Gaussian. 

The background subtraction in the ICU will face following problems. The first 

problem is the illumination sometimes changes. The second, the shadow of the bed 

and the cloth on the patient causes false detection. The third, the flicker on the 

monitor of equipments causes false detection. The GMM model can deal with these 

problem because the following reasons. The Gaussian model can deal with the 

illumination changes and multiple Gaussian distribution models the repeated changed 

background well. 

Generally, GMM algorithm is composed of two main steps, the first is 

classification and the next is updating. In the classification step, the algorithm 

determines where on the frame foreground is, and where is background. The selecting 

criterion is similar to last section. 
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                                       (2-10) 

 The feature of GMM is multiple sets of background. So the output function will 

be:                       (2-11) 

The d(.) functions in GMM are usually defined with the aid of variance in the Gaussian 

model:                                      (2-12) 

 Update is the next step. In our application, the online learning is necessary. [12] 

and [13] proposed online GMM updating methods, which emitted the  term. 

The method updates the closest group with input and the following functions: 

                                           (2-13) 

                                  (2-14) 

                                                         (2-15) 

 If a location finds no group matching the input, then the least important group 

(group with smallest wn) will be replaced by the input with mean set to in(n) and 

setting weight and variance to reasonable initial value.  

 In summary, the reason why we use GMM in the background subtraction is 

discussed. And a modification to GMM algorithm that implemented GMM online is 

provided. This is the typical form of GMM algorithm. In the next chapter, we will 

introduce a GMM algorithm is selected to be implemented in hardware in detail. 

2.4 Relative GMM Based Architecture 

A lot of GMM background subtraction algorithms have been proposed, but most 

of them are software based approach. Peng proposed an algorithm based on 
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Multi-Model Background Maintenance GMM and a hardware based labeling 

algorithm24]. The MBM algorithm has a unique background update method that 

could be speeded up by hardware. It doesn’t utilize the result of foreground labeling 

on background update and only provides CIF resolution. In [26], a FPGA based 

algorithm has been proposed. This algorithm consists of basic GMM background and 

simple denoising. It provides Full-HD resolution by its simplicity on the algorithm.
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Chapter 3 The Targeted 

Algorithm 

3.1 Overview 

 GMM is a common algorithm in background subtraction for the capability of 

adapting to background variations. However, GMM algorithms suffer from the trade 

off between robustness of background and sensitivity to new objects (foreground). [14] 

suggests a formulation of GMM using different learning rate to different type of 

object, and works well on the balance of sensitivity and robustness. 

In our ICU application, the result of detection on the patient must keep stable. In 

the meanwhile, this system must raise the alarm at the first moment of accidents 

happened on the patents. Due to the feature of targeted algorithm, it is capable for 

dealing with these issues. 

A sophiscated system is required to adaptively change its learning rate to contents 

in the video, so this paper dealt with the issue through in-frame information feedback 

of object detection and classification. The algorithm classifies the objects in a frame 

to background, moving foreground and still(stationary) foreground, and gives each 

type different learning rate. The update phase then updates the background according 

to its object type with the learning rate from in-frame feedback. 
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3.2 Background Model Maintenance 

The main steps of background maintain is shown in Fig 3-1[1414]. 

 

Fig 3-1 main steps of background maintain [14] 

The row 1 to row 7 finds the best match group in the Gaussian Mixture Model. If 

a group is chosen, l(t,x) indicates the index of best match group. The row 8 updates 

the weight with the learning rate η, where η is derived from the foreground object 

classification. If any match group is found, then the algorithm will update the match 

group with steps from row 10 to row 12. If no group is found to be match, then row 

14 to row 17 replaces the least important group with the newly received input. 

The algorithm roughly match the typical GMM algorithm, and differences 

between them are listed. 

In the row 6, the criteria applies is simpler than some other works like [8]. In 

addition to save computational efforts, the experiment has proved that the group 

chooses by this criteria match the whole algorithm better. 
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To achieve better performance, some GMM algorithm like [15] uses more 

complicated update methods. The update phase ( row 10 to row 12 ) is rather simple 

because the author believed this is enough for the algorithm. In the simulation, the 

result is still good even ρ is intentionally set to a constant for testing, and this proved 

simple update method is enough. 

The update of weighting ( row 8 ) is the key modification from typical GMM. The 

learning rate of weighting-η is independent from the learning rate of model update-ρ. 

Without such independency, the selection of ρ has to trade off between sensitivity and 

robustness. In this algorithm, the model can adjust to new objects quickly benefit from 

setting ρ to a high value, in the meanwhile, the η value could still be really low to 

prevent from objects being eliminated too fast. The decision of η is sent from 

feedback after the object classification. 

3.3 Foreground Object Recognition 

In order to get the learning rate of foreground weighting (row 8 of Fig[3-1] ), the 

operations performs by the algorithm will be discussed in this chapter. 

3.3.1 Erosion 

Erosion[16][17] is a basic nonlinear operation in the morphological image 

processing. To perform erosion on an image A, we have to define structuring element 

B in the same time. If B can be completely contained by A in a location, than the 

output of this location will be logical 1, otherwise, the output will be 0. This is shown 

in Fig 3-2. 
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Fig 3-2 Erosion 

In the GMM algorithm, the defined structuring element will be a 3x3 cross. The 

purpose of erosion is to smoothen sharp spikes on the object edge and eliminate noise. 

The 3x3 erosion is performed as following. 

 

Fig 3-3 3x3 erosion 

3.3.2 Dilation 

On the other hand, dilation is another basic operation in morphological image 

processing, having a nearly opposite effect to erosion, which adds the pixels being 

eliminated back. 



 

 15 

Again, start from structuring element, if a location of A can be covered by any part 

of B, then the output of this location will be logical 1, otherwise, the output will be 0. 

This is shown in Fig 3-4. 

 

Fig 3-4 dilation 

The dilation is connect on the after stage of erosion to recover the area was “eroded” 

by erosion. The selected dilation structural element of dilation is 3x3 cross same as 

erosion, same as erosion. The 3x3 dilation is performed as below. 

 

Fig 3-5 3x3 dilation 

3.3.3 Connected Component Labeling 

After erosion and dilation, the noise is filtered and the objects are smoother on the 

edge. Then we assume that region enclosed by a line is an object. Connected 

Component Labeling(CCL) labels same number on the pixels of same region, and thus 

we can process these objects separately.  
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In the field of computer vision, the fast methods realizing CCL has been a popular 

researching topic[18][19], because the realization needs tedious pixel scans and they 

are intensive in computational costs. In the Chapter 4, we proposed an alternative 

method to replace CCL to meets the requirements and fit the hardware design better. 

3.3.4 Object Classification 

The binary images are being partitioned to several regions after CCL, and we will 

assume those regions are individual objects. The next step in the foreground object 

recognition is to classify each object. In the implemented version, there will be only 

moving or still object type available, but extra type such as shadow could be added. 

For an object in the current frame, if we can find an object on the same location in 

the last frame, the object will be classified to a still object. In contrast, if nothing can be 

found on the location, which indicates the object may be moved or disappeared, then 

the objects will thus be labeled as a moving object. 

3.4 The Pseudo C-Code 

The details of each stage of the algorithm has been shown. This section will list the 

main flow in pseudo C-code. 

Pseudo C-code: 

//phase 1: check match condition 

for(x=0;x<IMAGE_WIDTH;x++){ 

  for(y=0;y<IMAGE_HEIGHT;y++){ 

    for(g=0;g<GROUP_NUMBER;g++){ 

      for(ch=0;ch<CHANNEL_NUMBER;ch++){ 

        check_match(model(x,y,g,ch),in(x,y,ch), match(g,ch)); 
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        //the match condition has been discussed in section 2.3 and section 3.2 

      } 

    } 

    foreground(x,y)=check_pixel_match(match); 

  } 

} 

//phase 2: object extraction and type classification 

erosion(foreground); //do erosion and dilation twice to reduce the noise 

erosion(foreground); 

dilation(foreground); 

dilation(foreground); 

connected_component_labeling(foreground); //connect the foreground pixel 

invalidate_small_object(foreground); 

type_classification(foreground,type(x,y)); 

//phase 3: update 

for(x=0;x<IMAGE_WIDTH;x++){ 

  for(y=0;y<IMAGE_HEIGHT;y++){ 

    for(g=0;g<GROUP_NUMBER;g++){ 

      for(ch=0;ch<CHANNEL_NUMBER;ch++){ 

         model(x,y,g,ch)=model_update(model(x,y,g,ch), 

                                   in(x,y,ch),type(x,y)); 

      } 

    } 

  } 

} 
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//phase 4: output results 

out=foreground; //section 2.3 
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Chapter 4 Hardware 

Implementation 

 

4.1 Hardware Oriented Algorithm 

 The targeted algorithm is a software based algorithm and not realistic to be 

implemented in the ASIC design. We made some modifications to the algorithm in the 

sense of hardware implementation. 

 

4.1.1 Block based method in GMM background subtraction 

 Because the size of video is increasing rapidly, memory bus bandwidth is a 

bottleneck that most video algorithm must to deal with it. Insufficiency of memory 

bus bandwidth between chip and external memory, buffered data are stuck when store 

to and load from memory. In order to decrease the frequency of accessing, we cache 

the data are soon to be reused in the chip instead of storing back to external memory 

and load it back. There is another advantage to include such internal memory in the 

design. Irregular memory assessing increases the delay of each accessing to memory. 

The addresses have become regular after include such internal memory .The original 

and modified version of accessing is shown in Fig 4-1 and Fig 4-2.  
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Fig 4-1 original timing of memory 

 

Fig 4-2 modified version of timing in the memory 

 Internal memories are major part of chip area. By reducing the internal memory 

capacitance, the area of memory can also be reduced and thus reduce the size of 

whole chip. In our original algorithm, temporal data have to be buffered for until end 

of whole frame, requires a large memory area. For above reason, we partition the 

frame to blocks, all data have to be buffered until a block finishes instead of a frame. 
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 The input was read in the raster scan order in the original algorithm. In the 

modified version, the input was read block by block and in raster scans order in each 

block. In the original version, the object information was buffered until the end of the 

frame. In the modified version, object information had to be concluded and pass to 

next block in the end of every block. There might be some error occurs in this early 

determination step. Fig 4-3 and Fig 4-4 briefly explain the difference between the 

original version and the modified block based version algorithm. 

 The block size is an important parameter that affects performance of the 

algorithm and size of the chip. Generally, the choosing of block size depends on the 

type of input pattern. Because in the step of small object invalidation, the chip has to 

distinguish noise from object, so block edge width must larger than the smallest object 

in the input pattern. The following table shows the relationship between internal 

memory needed and block size. We will discuss this topic again in the section 4.1.5. 

 

Block 

Size 

Without 

Block (HD) 

Without 

Block(VGA) 
64x36 32x24 20x15 

Memory 

Size 

132.7Mbi

t 
19.7Mbit 

147.46

Kbit 

49.2Kb

it 

19.2Kb

it 

 

To summarize, the modification regulates the address for a better memory 

bandwidth and the chip area can still be small thanks to the block partition. Following 

sections will discuss how to modify the algorithm to block based version and  in the 

meanwhile minimize the loss. 



 

 22 

 

Fig 4-3 pixel processing order in the original algorithm 

 

Fig 4-4 pixel processing order in the modified algorithm 

4.1.2 Erosion and Dilation 

Reading operations are easier than write operations in memory scheduling, 

because changes in the reading order would not change the result. The dilation 

operation introduced in the Chapter 3 was writing based process. It is desirable to 
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modify such writing based process to reading based process. The following figure 

shows the difference between these two processes. 

 

Fig 4-5 writing based and reading based dilation 

 In the writing based dilation, because later pixels (i.e., the right and bottom 

pixels) have to write back to previous pixels, and this is hazardous that previous pixels 

being read before last write (RAW, read after write hazard). When it comes to the 

reading based dilation, every pixel is ready for reading request from next operation, 

which reduced the RAW hazards. There’s an extra advantage to implement reading 

based dilation. After the modification, dilation is closer to erosion in terms of 

hardware. Both of them read information from 4 neighbor pixels, make decision and 

write to the center pixel. The similarity makes it easier to schedule the data and 

keeping the flexibility of pipeline operation of them in the same module. 
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The erosion and dilation step needs only information of left, right, top and bottom 

pixel, not whole frame. As a result, it is easier to split erosion and dilation into blocks. 

The only change is the need of buffer to store the information at the edge of blocks. 

The following figure shows how this is block based implemented. 

 

Fig 4-6 new erosion and dilation order 

4.1.3 Block Connected Component Labeling 

Different from erosion and dilation in block based implementation, connected 

component labeling needs information from pixels in whole frame. Buffering 

temporal information of whole frame is costly in hardware. The usage of connected 

component labeling in this algorithm is to determine the objects in the frame are 

moving or still. In the block based implementation, object must being distinguished at 

the end of each block rather than end of a frame. This requires a method to determine 

the object type before the shape of the object is completely received. Fig 4-7 shows 

what the method should do. 
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Fig 4-7 problem encountered in the connected component labeling 

 For the ellipses object in the figure, the original algorithm could make decision 

after the ellipses is completely received. In the block based algorithm, the chip has to 

make decision with incomplete object information (the black area). We proposed a 

method to solve this problem by mark the left and right edge of the object in the 

blocks. When compare to previous frame, if one of the edges moved more than a 

given threshold (this threshold value is pattern dependent and selected by experiment), 

then this block will be marked as a moving block. In the other hand, if the difference 

is less then the threshold, this block would be marked as a still block. Fig 4-8 shows 

the method. 
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Fig 4-8 modified version of connected component labeling in a block 

 Because our block is so small comparing to objects, there are a lot of blocks fully 

covered by object. Our algorithm proposed will be failed to deal with such blocks.  

Because the left edge and right edge of the object in the block will always be same as 

the block edges(Fig 4-9). In order to deal with this condition, the block will tell 

neighbor blocks if there is an object on the edge (having more than a given number of 

pixels lie on the edge). If on the both edge of neighbor blocks have an object, these 

two blocks are called connected. Connected blocks share the same block type. Fig 

4-10 shows the modifications. Fig 4-11 shows how this problem can be solved by this 

modification. 
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Fig 4-9 problem encountered in the modified version of connected component labeling  

 

Fig 4-10 blocks that will and will not connect to each other 
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Fig 4-11 type inherit in the connected blocks 

 If the object to deal with is simple (like the ellipses shape), this method goes well. 

When it comes to more complex shape or moving direction of objects, this method 

might be failed. Here’s some example. 

 1) More than 1 object appears in a block. 

 

Fig 4-12 more than 1 object in a block 

 Take Fig 4-12 for example, this is a connected block that connect left and right 

neighbor. The type of this block will be same as its left block, and wrongfully classify 

the right block. This will result in wrong type decision in the right object and blocks 

connect to the block. 
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 Generally, isolated object moves toward different direction, indicate the 

condition of “more than one object appears” will not take effect for too long. Once 

they can be separated to two different blocks, this problem then diminished. This 

problem indeed causes the instability to the system. Wrong type decision causes 

wrong background updating speed. In some test condition, it would be really fetal, but 

it is not a general condition in a day life as well as in our application. 

 2) Blocks failed to connect because of lacking of “future pixels” 

It is shown in Fig 4-13, all of the blocks occupied by the object should be 

connected and shares same block type.  

 

Fig 4-13 object in the different blocks but those blocks failed to connect 

The information of whether to connect is received after the top-right block’s 

decision making, and then the system fails in this case. This appears when both 

condition holds: 

The object is not rigid that having different moving speed at different part. 
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Only the top-right blocks will be affected. 

The edge with sharp spikes. 

Apparently, these conditions would not hold for too long, we might take this 

problem optimistically. Most of time, the condition holds because the noise from the 

previous stage or simply from the video source, so they would not exist for too long, 

and most of all they are not removable in the Connect Component Labeling stage.  

 3) Object edge goes to a direction hard to connecting. 

 

Fig 4-14 a direction of object hard to connect 

In the Fig 4-14, these three blocks should have been connected but failed. Because 

when the decision making of top right block, it lacks the information of other two 

blocks that is necessary for correct decision. When type1 and type2 are different, the 

controversy exists in bottom right block. 
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 This is a variant version of bug from example 2), previous blocks lacks the 

information of future pixels. The difference is example 3) exists whenever object edge 

goes the direction from top-right to bottom-left – very common in any type of video. 

Worst of all, this phenomena appears most in large objects indicates that the later 

blocks will connect to this wrongfully decide block, and propagate to the end of this 

object. However, this condition exists not at certain part of the object but exist 

randomly, because even if the algorithm has the chance to face the controversy, it still 

has the chance to make a right guess of type, eliminating the controversy. So such 

phenomenon will be well distributed to whole object. Whole object shares the same 

error is much better than only some certain part of object suffers. In our application, 

we have not seen major drawbacks at the output from this phenomenon. Here is a 

possible modification for other applications that really suffers from this phenomenon. 

First, the system should detect the possibility of such phenomenon and skip this block. 

Then, while the future pixels this block needed is ready, the system will goes back to 

the skipped blocks. This may be work to fix this problem, but it changes the data 

schedule pull the memory I/O speed down and increased the hardware complexity. So 

we will not use it in our algorithm. 

 In this section, we proposed an algorithm as an alternative to classical Connect 

Component Labeling, did some modification, and found some problem of it. It works 

in most conditions and needs only some corrections in certain patterns. 

 The last part of this section will be a test sample from ICU video. It is a man on 

the sickbed struggling to pull the equipment out of his body. 
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Fig 4-15 example of a frame of comparison between two versions 

 The black areas are object detection mismatched part with the original algorithm, 

the gray one are matched. The numbers means that the black area near by is caused by 

the examples of error of the number. As mentioned above, the 1)’s appears when 

multiple object exists in same blocks. They are most noise caused by the pattern of the 

cloth, by the way. 2) appears at the top right part of the object, the object is not a 

realistic object but a residue shadow left by his moving head. Real object will be 

smoother at the edge. For 3)’s it appears at the top-right to bottom-left edge, and 

propagate to the end of the block, and as mentioned above, the black area will change 

with other part of the object alternatively with frame change. As the result, the 

phenomenon is not obvious at the output stage. 
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4.1.4 Model Data Compression 

The aim of this block-based version algorithm is to increase the memory I/O speed, 

it is also important to reduce the data transmit through the memory. Videos are usually 

highly spatially correlated. It is feasible to take advantage from this feature to reduce 

the size of data. From a previous research[23], the precision of model data is 32 bits 

or above is the best for performance. We will stay in 32 bit data for computations in 

chip, but when it comes to memory I/O, 32 bits are a large number not realistic to 

transmit. To deal with this, we take advantage from the correlation of data and reduce 

the data size for transmitting through data compression technique. We choose a fixed 

length compression algorithm “Minimum-Maximum Scalar 

Quantization”(MMSQ)[20] for simplicity. It is a general purposed data compression 

algorithm highlighted low computation requirement and fix length coding with decent 

compression performance. With those features above, MMSQ is really feasible to be 

an assisting part of a system[21]. With these features of MMSQ, we select it as model 

data compression algorithm. 

Weighting data are the hardest part in the whole flow because of the longest data 

path and irregular timing. In the meanwhile, the weighting data size is only 16% in 

total model data. Therefore, we will not compress the weighting for hardware 

simplicity. 

The following paragraph will introduce main ideas and steps of MMSQ[21]. 

Despite of the fact that model data requires 32 bits to process, because of the 

spatial correlation, the difference between neighbor pixels are usually extremely small 

in comparing to the magnitude of itself. If we find the range of the values in a given 

area ( i.e., find the Maximum value and Minimum value), and this range is small 
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enough that we can store this value with shorter code length but reach same precision, 

thus the shorter output code length. This is the key idea of MMSQ. Fig 4-16 shows 

the idea about MMSQ. It is clear that the dynamic range of inputs are phenomenally 

decreased by only store the difference between input and the group minimum. The 14 

bits in the figure is the compressed code length we selected will be discussed later. 

 

Fig 4-16 dynamic range of original and compressed version 

Minimum-Maximum Scalar Quantization(MMSQ) encodes inputs in following 

steps: 

1) divide successive inputs into groups ( 16 inputs as one group in the original 

paper). 

2) for a group, find the minimum and maximum sample and the difference 

between them. 

3) the quantization factor is defined as 
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Q = (maximum-minimum) / 2n  

where n is the output size for each input. 

4) divide the difference between input and the minimum value by Q. 

Quantized input difference = (input-minimum)/ Q  

5) transmit quotients in 3. and necessary headers. 

 

We select 14 bits as quantized output size because the system was scheduled to 

load all data in a pixel within 2 load operations. Each load operation in the memory 

loads 64bits data from the memory. We have 3 color channels and 3 group of color to 

load from the memory, 9 numbers in total. As a result, the compressed size of data is 

set to: 

222.14
3(groups)*)3(channels

2(times) * load)per  64(bits
                               (4-1) 

The output size in bits after rounding off : 14bits. 

 

 Decoder is the reverse of the encoder and only steps will be listed. 

Steps of MMSQ decoding: 

1) load the Q-factor and the minimum. 

2) get a input and multiply by Q, the result is the difference in the original scale. 

3) add the difference from 2) to the minimum. 3) is the decoded number for the 

input. 
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4) load next input until a group is decoded, back to 2). 

5) after a group complete, go to 1) for next group. 

4.1.5 Invalidation of Small Objects 

There is always noise in the video being recognized as objects ( Generally, they 

are moving objects), cause false alarm in the output stage. In the original algorithm, it 

invalidates small objects with the information of object size from Connected 

Component Labeling. When it comes to the block based version, we can no longer do 

such invalidation after complete object information because we have to finish at the 

end of blocks. The block size was same as the smallest object allowed, in order to 

distinguish object from noise. Unfortunately, objects will not always locate at the 

center of the block. They locate cross the block edge most of the time, so we can’t 

conclude all of the objects at the end of a block. So after the block based Connected 

Component Labeling, the result return to the system will buffer for the length of next 

block, check if the object is long enough to be validated. 

In summary, this is a simplified version of the original algorithm, for the timing 

requirement of hardware. In the original version, because objects can be any arbitrary 

length, it is not realistic for system to wait for the result from Connected Component 

Labeling. On the other hand, data from only one block is not capable to invalidate 

noisy objects, we thus buffer for one more block. 

When blocks are horizontally connected, they changes the information to 

determine whether the object is an object or noise. Note that the size of smallest 

allowed object depends on the test pattern, and the maximum size allowed is same as 

block edge width. Fig 4-17 shows the processes in this section. 
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Fig 4-17 demonstration of small object invalidation 

In our medical monitoring application, we will apply the system to process a video 

of whole human body. The following figure analyses which block size is feasible 

under this application. 

 

Fig 4-18 the being divided the frame into 30*30 blocks 
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In this example, the frame is being divided into 30*30 blocks. The dimension of 

each block is 64*36 pixels. The example is filtered by the original algorithm that 

small objects are invalidated. Remaining objects are equal to are slightly bigger than 

the block size under this configuration. When we set the invalidation threshold equals 

to the block size, the block based version can provide similar function to the original 

one.  

4.2 Simulation Results 

In the last chapter, a series of modifications for hardware implementation has been 

proposed. A comparison between the original algorithm and the proposed algorithm 

on the sickbed video will be shown in this chapter. (Fig 4-19, Fig 4-20, Fig 4-21 and 

Fig 4-22) The meaning of each block in the video is shown below: 

Test Video Block Based 

Original Algorithm XOR(Block Based , Original Algorithm) 
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Fig 4-19 result (FRAME=175, 5.83sec) 

 

Fig 4-20 result (FRAME=195, 6.5sec) 
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Fig 4-21 result (FRAME=215, 7.16sec) 

 

Fig 4-22 result (FRAME=235, 7.83sec)  
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The video is recorded in 30 fps, VGA resolution. In Fig 4-19 the patient suddenly 

moves his hand, causing a series of alarm (white area in the binary images). Generally, 

sudden actions of a patient indicate potential dangerous accidents, such as the patient 

feels discomfort or attempts to pull the plugs and should be aware by people. 

The alarms in this video are mostly ghost images left by body and the movement 

of strip on the shirts is hard to tell which algorithm is better. Some important 

observations are given below: 

1) The modified algorithm is more sensitive to new objects, and lower miss rate is 

desired in the field of hospital surveillances for safety. 

2) The modified algorithm is noisier. This drawback is caused because of block 

operation and is hard to eliminate. Fortunately, a major part of these false-positive are 

from the edge of body, and these false-positive will not severely affect the 

performance. 

3) The false-positives are eliminated in the almost same speed of both versions. 

None of the defects will last for too long in the modification. 

4) The shadow of the pillow causes a large area of false detection. This is mainly 

because of the removing of shadow detection. The shadow detection had been 

removed to reduce the complexity. It is needed to take care of the impact on the 

successive stage and find corresponding solution.  

In conclusion, we simplify the original tedious algorithm both in timing and in 

hardware costs. The modified version still meets the requirements despites of the 

defects. 
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4.3 Architecture 

So far, we introduced an algorithm for medical monitoring, and made 

modifications for hardware implementation and compared the results. The next 

section will be the architecture of a hardware design about the modified version of 

GMM background subtraction algorithm. 

4.3.1 Top Level 

Fig 4-23 is the block diagram of whole design. 

 

Fig 4-23 top level design 
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This design can be separate to two parts. They are the background part and the 

foreground part. The background part includes the DRAM at the top, MMSQ decoder, 

the update and MMSQ encoder. The rest is the foreground part, include classification, 

erosion and dilation, Connected Component Labeling (CCL) and weight update. The 

background part is only responsible for adapting the system to the input video as most 

of GMM algorithm do. It is simple in the scheduling thanks to the short data path. 

Unfortunately, this part is hardware heavy because it processes the raw 32bits model 

data. The divider and the multiplier account for about 70% area of the system. The 

foreground part, on the other hand, has only a few gates in hardware, but more 

complexes in the scheduling.  

 At the beginning, all of the data of current pixel will be load from DRAM and 

decoding. The next, do classify to decide this is a foreground or background pixel. 

The background part can start update and store to DRAM after classification stage. 

For the foreground part, the weighting will be stored in internal SRAM and the 

foreground/background information will be sent to the erosion, dilation and 

Connected Component Labeling to find the detail information about the foreground 

(i.e. objects). After the CCL stage, the learning rate of current pixel is determined, and 

then the buffered weighting will load from internal SRAM for update, and then store 

to weighting DRAM. 

4.3.2 The DRAM Configuration 

The model data are stored in 3 different memory banks. The mean, variance and 

the weighting will be stored individually. Under this configuration, both reading and 

writing of this memory will be in burst mode. The memory bandwidth will increase 

rapidly under burst mode. The arrangement of pixel in the memory is block based 

order. 
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4.3.3 Erosion and Dilation 

The input of erosion and dilation is 1 for foreground and 0 for background. The 

section 4.1.2 mentioned the need of buffering the block edges for erosion and dilation 

in the neighbor block. Thus, Erosion or Dilation core is wrapped with a buffer. The 

wrapper is responsible for the switch of input and data buffer. Fig 4-24 shows the 

Erosion and Dilation with corresponding wrapper. 
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Fig 4-24 top of erosion and dilation 

Because of the modification of dilation in section 4.1.2, both Erosion and Dilation 

shares same wrapper and scheduling. Fig 4-25 and Fig 4-26 shows the schedule of 

pixels in blocks and Fig 4-27 and Fig 4-28 shows the architecture of the core. 
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Fig 4-25 erosion/dilation wrapper (1) 

 

Fig 4-26 erosion/dilation wrapper (2) 

 

 Because of the lacking of data at the block edge, the size of input data of the core 

should be two columns and two rows more. The extra data needed is fed from the 

buffer(shown in Fig 4-25), and thus the amount of input data is same as output 
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data(Fig 4-26)—easier in hardware design, no buffers needed between stages. The 

gray region of Fig 4-26 are data needed to be buffered for block at next column and 

next row. 

 

Fig 4-27 architecture of erosion/dilation core 

 

Fig 4-28 data in the buffer of erosion and dilation 

 Fig 4-27 is the architecture of the core. It consists of a shift register having a 

length equals to two rows in block (Fig 4-28). There will not be any output until the 

DFFs are filled with inputs. After the DFFs are filled, the core takes data from the five 

pixels marked on Fig 4-27(Q1 to Q5) and do the corresponding bit operation (AND 

operation for Erosion and or operation for Dilation). 

4.3.4 Connected Component Labeling 
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Connected Component Labeling consists of two parts: the CCL_main and the 

CCL_ buffer. The CCL_main counts the length of object in pixels, get the position of 

object edge and make decisions about the type of objects and the CCL_Buffer buffers 

the output from CCL_Main for the period of one more block to wait for the final 

decision by CCL_Main. Fig 4-29 shows the architecture. 

 

Fig 4-29 architecture of connected component labeling 

 The output and type output will connect to weight update, the weight update 

chooses corresponding learning rate from the block type, and do the update from the 

result of output. 

4.3.5 Compression 

The MMSQ algorithm needs a buffer to keep a period of data, controls to find the 

maxima and the minima, and a divider, which really large in area, to do the 

quantization. 
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Fig 4-30 architecture of MMSQ encoder 

There are 18 sets of MMSQ_ENC and MMSQ_DEC in the top level, Fig 4-30 is 

only one set of MMSQ_ENC for simplicity. 

The DFFs buffers the inputs in the first state of FSM. In the next, the 

combinational circuit will find the maximum and the minimum from the buffer then 

evaluate the Q-factor. The minimum and the Q-factor will be outputted as soon as 

evaluated. The Q-factor will be sent to the divider as divisor, too. The final state is to 

load the inputs from buffer in order, send to divider as dividend. The quotient is the 

output. 

In order to meet the timing requirement, the compression used three 6-latency 

sequential divider, which generates an output for every 2 cycles in the encoder. 

The design of decoder is easier, no input buffer required for decoder. In the mean 

while, the multiplier in the decoder is fast enough on the timing, no parallel nor 
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sequential buffering required, so the area of decoder is much smaller than encoder. Fig 

4-31 shows the design of decoder. 

 

Fig 4-31 architecture of MMSQ decoder 

4.3.6 Update 

Updating is a series of multiplication and addition, thus the block diagram will not 

be shown here. The hardest work in updating is to determine the bitwise precision of 

each variable. The 32 bits precision is suggested in the previous section, so the work 

here is to guarantee the correctness of the 32-th bit. 

Here is a method to estimate the precision needed for each variable. We can 

consider a variable A’ with infinite precision as a finite precision variable A with a 

random noise n from bitwise truncation. 

A=A’+n , n<2
-bits

 

If a product P=A*B needs a precision of first k bits, we can get the function: 

P = P’+np = A*B = (A’+na)*(B’+nb) = A’B’ + A’*nb + B’*na + na*nb 

And np <2
-32 
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P’=A’B’ is the original multiplication without any loss, will be eliminate from 

both side of the equation, the na*nb is much smaller than other terms and will also be 

eliminated. Then the equation after elimination will be: 

A’*nb + B’*na = np<2
-32 

If the information of A’ or B’ is known (by experiment or any method), then we 

can find max na and nb allowed by equation above. Since the upper bound of na and 

nb is set, the precision needed for A and B then determined. 

 For example, if we performed the multiplication: mean *α, where α=0.025 is the 

learning rate of mean. Note that we still need to represent α in finite digital variable, 

so there will also be an error in this process. 

Start with the equation: 

 P’+np = m * α    (m=mean) 

Then perform the steps as above: 

 P’+np = ( m’ + nm ) * ( α’ + nα ) 

   = m’α’ + m’nα + α’nm + nmnα 

Eliminate in the both side of equation: 

 m’nα + α’nm = np < 2
-32

 

then 

 m’nα < 2
-32

 and α’nm<2
-32

 

Start with the latter, α’ will be really close to α with only a finite error, and α’ ≈0.025 

 nm< (2
-32

 /α’) = 2
-26.678

 

A variable with 26 bits guarantees a precision of 2-27 , we can select 26 bits for 

variable mean. 
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And the former: 

Since we know the input will be an integer less than 256: 

 m’nα
 
< 255*nα < 2

-32
 

and 

nα < 2
-39.994

 

same as mean, we then select 39 bits for α. 

The precision of other variables can be derived in same technique. 

There’s a difference between the multiplier in updating(i.e., the learning rates) and 

in MMSQ_DEC, because the multiplier in update are known , so it is simply bit 

shifting and additions, not real multipliers as in MMSQ_DEC.  

4.4 Gate-Counts 

The design has been implemented under TSMC 90nm process by Verilog 

Hardware Description Language. Both VGA and Full-HD resolution have been tested 

on 30 FPS. The following table shows the area of each part. 

List of Chip Area (in k-gates) 

 VGA Full-HD 

Memory Encoder 275.13 276.51 

Memory Decoder 35.61 35.66 

Total(Compression) 310.74 312.17 

Erosion 23.59 72.01 

Dilation 23.59 72.01 

Update 16.03 16.03 

Weight Update 4.77 4.77 

Total(Design) 67.98 164.82 

Total 378.72 476.99 

SRAM 4KByte 4KByte 
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The pipelines and the hardware parallelism are applied under the specification of 

Full-HD version. As a result, downscaling the same design to implement VGA version 

will only slightly reduce the area. The major area change between the versions is the 

row buffer in the Erosion and Dilation, which do not have much to do with clock 

speed. 

The next table compares our proposal to other similar approaches. 

The proposed algorithm provides Full-HD resolution and utilizes the foreground 

information in background update that outperforms other algorithms in terms of 

resolution and performance. However, the gate count is much lager than MBM 

algorithm because of the frame size. The increased stableness and the sensitivity are 

worth the high gate count.

 Peng[4] 
Genovese & 

Napoli [5] 
Proposed 

Algorithm MBM GMM+Denoising Block-GMM 

Technology 

(Board) 
TSMC 0.18um Xilinx xc5vlx50 TSMC 90nm 

Gate count(Slices) 14.4K 1179+291Register 168.42K 

Resolution CIF Full HD Full HD 

Clock Rate 30MHz N/A 125MHz 
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In the future, the design will be downloaded to XUPV5[22] and integrate with PC 

for real test. 

 

Chapter 5 Conclusion 

 There are two major contribution of this thesis. In the first half of chapter 4, a 

modification of the algorithm in chapter 3 has proposed. Another half of chapter 4 

proposed an architecture implement the whole algorithm. 

 The algorithm is not feasible to be implemented directly without any 

modification because hardware difficulties, thus, hardware oriented version being 

proposed. We divide the frame into blocks to avoid extra delays from the memory, and 

a series of modification has been done to the original algorithm. A block based erosion 

and dilation with wrapper is proposed to replace the original erosion and dilation. In 

the meanwhile, a block based connected component labeling is proposed to replace 

the original one, and the results of simulations show the block based CCL fits our 

application as well. In addition, a compressor has been added between the chip and 

memory to save the memory bandwidth further. 

 The requirement of the chip is work on VGA resolution and 30fps. Higher 

resolution Full-HD is also tested. Further requirement on the resolution or one chip 

for multiple camera are possible in the future. 
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