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使用敏捷式基因探勘與隨機最佳化來改善類比電路合

成的效率	 

學生:	 林建志	 	 	 	 	 指導教授:	 陳宏明教授	 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 江蕙如教授	 

國立交通大學	 	 電子工程學系	 	 電子研究所	 	 碩士班	 

	 

摘	 	 	 	 	 要	 

	 

	 	 此篇論文提出了一個在類比電路的階層合成框架上的性能探勘技術和一個

動態非均勻的模擬技巧。不同於規格針對性的設計，這篇研究主要是透過平行化

的基因演算法探勘類比電路效能的極限，以達到尋找出比人為所不易找到的類比

電路設計結果。不同於其他基於演化的拓撲探勘，這個方法能夠把性能視為基因

組合來用在演化上且利用多人口群的特點來解決多目標的問題。在人口群裡所選

擇的性能能夠利用重新針對的技巧轉換為器件參數。基於把器件參數正規化，一

個概率動態模擬顯著地減少找到電路性能全域最佳解的收斂時間。這個演算法發

展於分散式的 OpenMp。實驗結果顯示出我們提出的類比電路合成方法在不同製

程上的 RFDA 和 Op-Amp 電路能夠得到更好的運行時間且有更高的品質。	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 



On Improving Analog Synthesis Efficiency via Agile Genetic

Exploration and Stochastic Optimization

Student: Chien-Chih Lin Advisor: Prof. Hung-Ming Chen
and Prof. Hui-Ru Jiang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

This thesis presents a performance exploration technique and a stochastic non-

uniform simulation in hierarchical synthesis framework for analog circuit. Different

from spec targeted designs, this proposed approach can help to search the solu-

tions better than designers’ expectation. A parallel genetic algorithm method is

employed for performance exploration. Unlike other evolution-based topology ex-

plorations, this is a method that regards performance constraints as input genome for

evolution and resolves the multiple-objective problem with the multiple-population

feature. Populations of selected performance are transfered to device variables by

re-targeting technique. Based on a normalization of device variable distribution,

a probabilistic stochastic simulation significantly reduces the convergence time to

find the global optima of circuit performance. This algorithm is developed and run

on distributed OpenMP. Experimental results show that our approach on radio-

frequency distributed amplifier (RFDA) and folded cascode operational amplifier

(Op-Amp) in different technologies can obtain better runtime and higher quality in

analog synthesis.
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Chapter 1

Introduction

Nowadays, analog circuit block in a SoC design is often critical. Analog com-

ponents are heavily influenced by nonlinear physical effects, which create a great

barrier for analog automation. Overall, the analog synthesis process consists of

topology generation [15, 13, 14], circuit sizing [7] and layout synthesis. As topology

generation are fully illustrated in [15, 13, 14], the circuit sizing methodologies also

take the indispensable role. Comparing to digital system, the development for ana-

log design automation is still in development. Either topology selection or circuit

sizing methodologies are considered in time complexity and the accuracy caused by

process variation, parasitics effect and operation conditions.

There are plenty of works which are already well-developed on how to find opti-

mal design parameters for a prior selected topology. However, as many performance

specifications need to be considered, finding the optima solution for multi-objective

performance at sizing stage as a priori problem is still uncertain. It seems that

deterministic optimization for circuit sizing still has space to improve. Since deter-

ministic optimization keeps the efficiency and full-circuit SPICE-based simulation

maintains the accuracy, selecting methodology for analog circuit sizing is beyond

trade-off.

It is therefore essential to have an agile multi-objective synthesizer which explores
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the limitation towards required technology. Moreover, it is capable of searching the

performance space and re-targeting to design parameters with accuracy and effi-

ciency for analog circuit design perspectives. One such searching method is genetic

programming. Genetic algorithm is a single objective optimization algorithm that

mimics the process of natural evolution[8]. In genetic algorithm, several genes encode

to a chromosome and a group of chromosomes forms population. In each iteration of

genetic algorithm, chromosomes of the population are evolved by way of one or more

operation such as reproduction, crossover and mutation. These evolutionary opera-

tion terminated when termination condition is met. If the algorithm has terminated,

a satisfactory solution may have been reached. In spite that genetic algorithm is

able to find good solutions in optimization problem, but as time passes, the scale of

optimization problem becomes bigger and bigger. We massive population to obtain

good solution, so the time consumption is getting critical. Usually traditional ge-

netic algorithm just maintain one population. Actually, the environment of natural

evolution maintain many groups and with higher diversity. It is possible to achieve

this environment by parallel genetic algorithm. Parallel genetic algorithm is not

just a parallel version of traditional genetic algorithm. Parallel genetic algorithm

actually reaches the ideal goal of having a good parallelism and maintains the over-

all diversity via parameters setting. That makes parallel genetic algorithm a better

search and optimization algorithm than traditional genetic algorithm.

1.1 Previous Works

In algorithm of [20], one of the earliest GA-based analog synthesizer has been

proposed. In the proposed algorithm, chromosomes encoded as a list of circuit topol-

ogy and transistor size. By the way, [12] also elaborates the genetic programming on

topology selection generation and parameters optimization. Similar to [20], where

each chromosome is encoded as circuit topology, McConaghy et al. [14] propose a

2



method to generate templet-free symbolic performance models of analog circuits. In

this thesis, McConaghy et al. have shown the usage of multi-objective genetic algo-

rithm to solve the problem. Another analog synthesizer has been proposed in [4].

Conca et al. introduce a algorithm, that is able to synthesize an analog circuit using

industrial components and design better circuits in terms of frequency response and

number of components.

State-of-the-art analog synthesis methodologies were formulated as a numerical

problem which relies on macro-modeling. Usually a complete circuit schematic and

the circuit’s performance spec are given, then the sizes and biasing value of all

devices have to be determined. As a result, the optimal values meet the specs of the

required circuit. This kind of optimization engine determines these optimal values

and there exists an evaluation engine to assess the performance. It is very likely

that the initial sizing result in a near-optimal design, therefore, a further fine-tuning

follows for improving yield and design robustness [18].

In all, due to the requirement for more probability on performance metrics, we

believe that it is important to have mechanism at the early design stage in exploring

the performance limitation before optimization. Meng et al.[16] provide a hierarchi-

cal performance Pareto-front mapping methodology to acquire performance metrics

before circuit optimization stage. Unlike traditional optimization approaches which

put emphasis on design variables as input, [16] first traverses the performance specs

as constraints in a set of convex problem. Therefore, a combination of performance

space is generated. Moreover, the corresponding design variables can be obtained

according to the design equation. Labrak et al. [10] perform a hybrid optimizer with

a multi-objective optimization problem(MOOP) for a CMOS Op-Amp. Our method

integrates the hierarchical synthesis strategy with a performance mapping method-

ology and a non-uniform circuit simulation approach to meet the multi-objective

performance requirement wisely.
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Figure 1.1: While traditional sizing strategy iteratively search the solution beyond
the fixed spec, a performance constraints exploration approach unfolds the utmost of
performance space. Moreover, an evolutionary methodology application elaborates
exploration faster and more precise.

1.2 Our Contributions

According to the trade-off among performance specs on analog designs, it is rarely

possible to find an optimal solution for all metrics (ex: voltage gain, bandwidth, out-

put power or power dissipation). Therefore, it is practical to search the performance

limitation with agile and accurate synthesis procedure. Referring to [16], Meng et al.

attempt to search the performance space by re-targeting back to the corresponding

design variables, in iterative manner. Nevertheless, the strategy which costs time

complexity up to O(NK)(N stands for the performance range in discrete number and
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K represents the number of performance specification), which is time-consuming and

will lose the effective prediction of performance metrics. The proposed work em-

ploys a coarse-grained parallel genetic algorithm for traversing performance space

as optimization constraints. A parallel genetic algorithm like [3, 1, 11] can produces

a more realistic model of nature. The classic parallel genetic algorithm is to di-

vide the target population into several sub-populations. With variations in model ,

parameter and topology settings,the evolution environment would be more flexible.

According to these features, a parallel genetic algorithm can divide the target pop-

ulation into several sub-populations with particular performance specs and reunion

after evolution. The obtained populations resulted from genetic exploration can be

re-targeted to the non-uniform stochastic circuit simulation. Fig. 1.1 illustrates the

comparison among the traditional optimization on performance specification, the it-

erative performance exploration by [16]. The proposed work achieves two principle

contributions as follows:

• Parallel genetic algorithm based multi-objective performance explo-

ration. A multi-objective evolutionary methodology like parallel genetic algo-

rithm not only performs evolution in parallel for diverse performance metrics,

but also migrates chromosome by interleaving among populations. Parallel

genetic algorithm brings out a population of potential solution for selected

performance among metrics. Such population is also projected to the feasi-

ble design parameters so that we affirm the global optimal solution is located

nearby this optimization result by exploration.

• Non-uniform stochastic circuit simulation. The performance space not

only stands for the potential optimum, but also represents the possibility of

suitable design parameters which cause better performance. This work inte-

grates each design variables to analyze the possibility distribution. Other than

uniformly swapping the values of design variables in stochastic searching, a in-
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terval with higher possibility earns more searching resources. A non-uniform

step searching for circuit SPICE simulation is proposed.

The rest of this thesis is organized as follows, Chapter 2 first defines problem for-

mulation and introduction a hierarchical performance Pareto-front mapping method-

ology [16]. In Chapter 3, we apply our parallel genetic algorithm to improve the

performance exploration and introduction a probabilistic multi-objective stochastic

optimization. Finally, we draw a conclusion in Section 5.
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Chapter 2

Preliminaries

2.1 Problem Description

State-of-the-art acknowledges a collection of Pareto-fronts which sketch the per-

foramnce sapce, later an optima point is selected for local search problem which

didn’t mention that how to define optima point among the space. Instead of collect-

ing the performance space information, this thesis aggresively define performance

limit as exploration main objective:

Definition 1 Circuit Performance: A circuit performance is consisted of multi-

ple values, such as DC voltage gain, 3dB gain bandwidth and power consumption.

Different circuit has different circuit performance target.

Definition 2 Performance limit exploration for global search problem:

Given a circuit design equation in posynomial forms with a set of feasible circuit-

level design variables and a set of circuit performance constraints, perform convex

optimization with different performance value to traverse the utmost performance

space of the given circuit.1

1Here, the maximum and minimum performance values are investigated whether feasible or not.
Therefore, it can tell that the global search process generates a space of feasible performances and
each represents a set of optimal design variables. Although the global search obatins a space of
performance, it is not the exact optimal solution. The global search is a preparation for later local
search. This work proposes a flexible non-uniform stochastic simulation as local search for optimal
sizing solution.
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Figure 2.1: The Complete Performance Exploration Flow.

Definition 3 Stochastic simulation for local search: A set of feasible perfor-

mance is re-targeted to corresponding design variables. The local search practices a

stochastic SPICE simulation w.r.t. these selected design variables.

2.2 Hierarchical Performance Pareto-front Map-

ping Methodology

2.2.1 Overview

The framework of overall methodology is summarized in Fig. 2.1. Here, the

process to find solutions for multiple performance targets can be divided into bi-

direction search stages. The bottom-up global search stage begins from device model

level to feasible performance limitation, and the top-down local search starts from

the performance optima to re-target back to design variables, and then perform-

ing a guided stochastic simulation for optimality. A series of technology candidate

are prepared in Device F itting. As the feasible design parameters are collected ,

Performance Space Exploration attempts to search the performance space. In

8



Geometric Design Re − targeting step, geometry-biasing-level design variables of

devices are determined. Then the Stochastic F ineTuning process takes the opti-

mization results of previous steps as an initial guess. Moreover, we can tell that the

global optimal is close to such optimization result.

2.2.2 Device Fitting

At the begin of synthesis framework, we have an abstraction from device model

to circuit-level variables is performed. Given the required device of the target circuit

design, the foundry device models provide such device characteristics with SPICE

modeling. Inspired by [16], a set of analytical design equations are capable to map

device-level variables into circuit-level design variables by modeling techniques such

as symbolic analysis or curve fitting like [9, 6, 5]. Two steps of technique accomplish

the abstraction for design variables. First of all, it is necessary to discover feasible

variable values for each attendant device. In other words, all design variable values

which cause device failed should be exclusive at this stage. By SPICE simulator,

a matrix of accessible device level variable value are generated. Secondly, such

matrix of device-level variables are further mapped into circuit-level variables by

curve fitting. An vivid example for design variable mapping is shown in Fig.2.2.

2.2.3 Performance Space Exploration

The second step is a circuit-level performance space exploration. From previous

step, the design equations of the devices, along with the parasitic effects and fitting

parameters, are integrated into circuit-level design equations for performance space

exploration of the circuit. Note that the parasitic effects of the devices are included

so as to explore the trade-off between each aspect of performance metrics and circuit-

level design variables. A set of specification are swept as the constraints for an

optimization performance to get performance metrics iteratively.

9



Figure 2.2: Mapping device-level variables of one NMOS(number of fingers, device
channel width/length and current) to circuit-level variables (Gm, Ro, CD, CG and
Σ)

2.2.4 Design Re-targeting

After generating specialized populations by parallel genetic algorithm evolution,

this step is a reverse interpolation from a series of performance specifications through

circuit-level design variables to device-level design variables. Hence, K groups of

optimal-potential performance spaces of the circuit under chosen technology are

traversed. Since a set of performance metrics directly represents the limitation

of specifications, such group of optimal performance specification is locked from

optimal performance. Ideally, the optimization engine should be capable of directly

finding the geometry-biasing-level design variables.

Next, we want to find the optimal candidates of device-level design variables.

From previous stage, the circuit-level design variables are obtained. Here the dis-

tribution of the device-level design variables are also obtained through this design

re-targeting stage.

10



Figure 2.3: Given merged populations of performance specs, a reversed process is
to retrieve the corresponding design variables of each device (PMOS) in the circuit
for optimal sizing values.

2.2.5 Stochastic Fine Tuning

The final step performs a refinement on these potential device-level design pa-

rameters. The design variables w.r.t. the Pareto Front of performance metrics are

collected by previous step. By employing global optimization algorithm, such as

simulated annealing, the entire circuit is fed into SPICE simulator using real models

and parameters from the foundry. Therefore the stochastic simulation searches the

global optimized value.

11



Chapter 3

Utmost Performance Space
Exploration via Multi-objective
Parallel Genetic Algorithm and
Stochastic Optimization

In analog circuit synthesis, resolving optimization problem is a complex problem

which may result in time-consuming and inextricable. Unlike performance explo-

ration iteratively and uniform distribution stochastic fine-tuning in Meng et al.[16],

this chapter presents two efficient algorithm for analog circuit synthesis via resolving

multi-objective optimization problem.

3.1 Introduction to Parallel Genetic Algorothm

Different from traditional genetic algorithm, the basic idea of parallel genetic

algorithm is divide-and-conquer based, and can be applied to genetic algorithm

in many different variations. Alba et al. [1] and Cant-Paz [3] classify the parallel

genetic algorithm into three main types: (1) master-slave genetic algorithm, (2)

fine-grained genetic algorithm, and (3) coarse-grained genetic algorithm. Master-

slave genetic algorithm still maintain a big population, but each slave processes

evaluate and calculate the fitness value. Fine-grained genetic algorithm suited for

12
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Figure 3.1: Three different model of parallel genetic-algorithm: (A) master-slave,
(B) coarse-grained, and (C) fine-grained.

enormous amount parallel computers since each sub-population contains of one in-

dividual and assigned to one processor. Coarse-grained genetic algorithm divide a

major population to several sub-population and evolve independently. The local

reproduction, crossover and mutation operation allow the sub-population to evolve

locally, and diversity is enhanced by migration. Fig. 3.1 shows three types parallel

genetic-algorithm as mentioned above.

In coarse-grained genetic algorithm, migration is a important communication

mechanism and has three main parameter to set: (A) migration topology, (B) mi-

gration rate, and (C) migration gap. As with the animal migration, migration

topology determines the environment where animal migrates. Fig. 3.2 shows two

examples of migration topology. More complex topology lead to more communica-

13
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Figure 3.2: Two different environment of migration topology: (A) network topology,
and (B) ring topology.

tion overhead and vice versa. Each sub-population exchange their individuals with

migration rate and every migration interval called migration gap.

Coarse-grained genetic algorithm homogeneity is classed into two types. In ho-

mogeneous coarse-grained genetic algorithm, every sub-population has same pa-

rameters (population size, crossover rate, mutation rate, migration interval, etc.),

genetic operators, objective functions, and encoding methods, but the heterogeneous

coarse-grained genetic algorithm allow the sub-populations have different parame-

ters [11]. Multi-objective optimization problem can achieved via different parameter

and exchange their individuals between each sub-population.

Parallel genetic algorithm is just not parallel versions of traditional genetic al-

gorithm, parallel genetic algorithm can actually reach the ideal goal via various

parameters setting. For each of the parallel genetic algorithm type, there are mul-

tiple variations proposed by researchers to improve its performance or to suite a

particular problem.
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3.2 Parallel Genetic Algorithm on Performance

Space Exploration

From DeviceF itting step, as mention previous, the design equations of the de-

vices, along with the parasitic effects and mapping parameters are integrated into

circuit-level design equations for the circuit. An optimization problem in Eq.(3.1)

describes a unit performance optimization step.

V ariables : vi
C |1 ≤ i ≤ |V C | V C : circuit variables

pk|1 ≤ k ≤ |P | P : parasitics
fk|1 ≤ k ≤ |F | F : fitting parameters
rk|1 ≤ k ≤ |R| R : performance result

minimize fOBJ(vi
C , pk, fk)

subject to r1 = Perf1(V C , P, F ) ≥ z1

r2 = Perf2(V C , P, F ) ≥ z2
...
rk = Perfk(V

C , P, F ) ≥ zk

(3.1)

Each optimization result in a set of performance value (r1, . . . , rk) corresponding

to the given specification of performance(z1, . . . , zk). Therefore, according to the

same design equation for optimization, it is a one-by-one mapping relationship from

spec to result of performance and the corresponding circuit-level design variables.

As a result, it is similar to a set of chromosome. An evolutionary computing with

genetic algorithm for traversing solution space is employed.

3.2.1 Overview

Our paralle approach is summarized as shown in Algorithm 1. According to [1],

our approach selects the coarse-grained genetic algorithm in order to low connec-

tivity than fine-grained genetic algorithm and simply to achieve. In coarse-grained

genetic algorithm, Each sub-population contains a large number of individuals so

the migration time between sub-populations is typically smaller than fine-grained

15
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Figure 3.3: Illustration of performance characteristic (e.g., Av, Pdc, Pout, BW,
Fcent, etc.) for each circuit.

genetic algorithm. Because this analog sizing is a multi-objective problem as illus-

trated in Fig. 3.3, so we use heterogeneous coarse-grained genetic algorithm to solve

this multi-objective optimization problem. Each sub-population has its own fitness

function and evolve independently. By special migration strategy, the diversity can

be enhanced. Through these evolution operation, the optimal population can be

obtained with respect to technology candidates.

3.2.2 Chromosome Encoding

A set of performance boundaries, {[Zmin, ZMAX ] = {zkmin, zkmax|1 ≤ k ≤ K},

on the performance are swept as the constraints for an optimization problem in [16].

Here we expand the performance space as an S ×N matrix in Eq.(3.2). Moreover,

each performance spec from constraints is is encoded as chromosome G from maxi-

mal to minimal in a set of G = {gk|1 ≤ k ≤ |G|}. For example, gi ∈ G randomly

obtains value of the kth spec from zk,1 to zk,S.

16



Algorithm 1 PGA(ZK×S, NP , S, k, T, C,MP )

Input:

ZK×S : Performance Space Matrix.
NP : Number of Individuals in major population.
S: Sampling number for each performance spec zk
k: Number of Performance spec type
T: Technology type.
C: Circuit type.
MP : Migration rate.

Output:
RK×S : The result performance space
P : The population of performance specs after PGA

1: for i = 1→ NP do
2: for j = 1→ k do
3: Gi ← RandGetSpec(Zj×S) {Randomly generate spec value from Z}
4: end for
5: P ← Gi
6: end for
7: for i = 1→ k do
8: Pi ← Partition(P, i)
9: end for
10: while Convergence criterion satisfied do
11: for all i = 1→ k do in parallel
12: Ri ← Evaluate(Pi, T, C)
13: Pooli ← Reproduction(Pi, F itness(T,C, i, Ri))
14: Pi ← Crossover(Pi, Pooli)
15: Pi ←Mutation(Pi)
16: end for
17: for i = 1→ k do
18: Migration(Pi, exclusive(P, Pi),MP )
19: end for
20: end while
21: P ←Merge(P1, P2, . . . , Pk)
22: return P,RK×S

ZK×S =


z11 z12 . . . z1S

z21 z22 . . . z2S
...

...
...

...
zK1 . . . . . . zKS

 (3.2)

where

• K: the number of performance specification types. (eg: Av, BW,...,etc.)

• [Zmin, ZMAX ]k, k = 1, . . . , K is the kth type specification range of the perfor-

mance space.

• S is the sampling number for each ZS between Zkmin and ZkMAX .

• ∀zki ∈ ZK×S, if i = 1, zki = ZSmin and if i = S, zki = ZSMAX
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Algorithm 2 Migration(Pi, exclusive(P, P i),MP )

Input:
Pi: The population which want to migration, where i = 1...k
exclusive(P, Pi): Return a population set except Pi .
MP : Migration rate.

1: for j = 1→ k do
2: if j 6= i then
3: RP ← rand(0, 1)
4: if RP ≤MP then
5: IS = bestIndividual(Pi, fitness(T,C, j, Ri))
6: IR = worstIndividual(Pj , fitness(T,C, j, Rj))
7: replaceIndividual(Pi, Pj , IS , IR)
8: end if
9: end if
10: end for
11: P ←Merge(P1, P2, . . . , Pk)

3.2.3 Initialization

As algorithm 1 described in Input, a set of performance space matrix ZK×S

is given. At the beginning of parallel genetic algorithm, a major population is

constructed according to ZK×S. Algorithm 1 Line 1 to Line 6 illustrate the pro-

cess to assign performance specs as chromosome for each individual of the major

population iteratively. Because we want to achieve multi-objective optimization, k

sub-populations are generated and evolved independently. Therefore, a major pop-

ulation P is generated. According to the size of sub-population k, master processor

allocates individuals to each slave processor uniformly as sub-population P1 . . . Pk.

3.2.4 Evolution

An evolution is executed between algorithm 1 Line 10 and Line 20. Because

the Evaluate, Reproduction, Crossover and Mutation parts are independent, the

parallel parts can be performed from algorithm 1 Line 11 to Line 16. Hence, in each

sub-population, each location of gene in one individual is fed into Evaluate(P, T, C)

as target constraints for performance to the design equation(shown in Eq.(3.1)) and

a corresponding result Ri is obtained. However, if one combination of performance

metrics produces the solution space which is not convex, such individual would

be failed by Evaluate. Then, a random generated individual replaces and redoes
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Figure 3.4: The Coarse-grained parallel genetic approach from major population P
to partitioned population Pi for parallel evolution. The migration step benefits each
sub-population on diversity every iteration.

Evaluate again until each chromosome G has obtained its corresponding result

R = {rk|1 ≤ k ≤ |R|}.

Fig. 3.4 shows the flow of the parallel genetic evolution from random performance

space matrix(ZK×S) to convergence. Each sub-population experiences a evolution

with Evaluate, Reproduction, Crossover and Mutation. Between algorithm 1 Line

12 to Line 15, parallel genetic algorithm utilizes a fitness function to determine the

suitability for each Gi. In our algorithm, we use the Heterogeneous Island archi-

tecture [11]. According to our requirement, we tend to specialize the particular spec,

such as voltage gain(Av). A set for fitness function is given, Fitness = {fitnessi|1 ≤

i ≤ k} as kind of objective function to determine how important each individual
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is with the Evaluate result. Each sub-population Pi applies one particular fitness

function which is related to the required performance result Rk of Evaluate value.

Therefore, the fitness function determines the qualified individuals to be preserved

to the crossover pool in a weighted ratio, and the others should be extinct. In

Crossover of algorithm 1 Line 14, the Crossover step selects each two genes Gi

and Gj ,where {Gi, Gj ∈ Pool; 1 < i < j < N} for copulation. Since each individual

has K types of spec, these two individuals exchange c specs and reserve K− c specs

with each other. In the end of parallel sub-level evolution, the Mutation step picks

up one individual with mutation rate and then replaces one gene value by one slot

of ZK .

3.2.5 Migration

For each sub-population Pi, we perform Mutation and obtain an updated Pi.

Migration is summarized as shown in Algorithm 2 aims to exchange individuals in

the population network shown in the bottom of Fig. 2.1. We use the complete net-

work migrated topology illustrated in Fig.3.2 (a). Therefore, each Pi should operate

Migration with the others. From algorithm 2 Line 5 to Line 7, each Migration

between Pi and Pj, Pi exchanges its best individual with respect to fitnessj, and

Pj replaces its worst individual with respect to own fitnessj with migration rate

MP in algorithm 2 Line 4. Different sub-population owns its fitness function and

uses the particular migration strategy can close to natural evolution. An example of

a migration operation between two sub-populations is shown in Fig.3.5. After the

Migration is executed, the composition of each Pi is updated with higher diversity.

3.2.6 Merge

After all, while the termination condition meets, all the sub-populations are

generated. These sub-populations not only have good solution with respect to all
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Figure 3.5: When sub-population P2 and sub-population P4 perform migration oper-
ation with migration rate MP , P2 sends its best individual with respect to spec type
P4, and the receiving sub-population P4 replaces its worst individual with respect
to its own spec type P4.

spec, but also enhance diversity. All individuals in each sub-population merge to

a main population one after another. After merge, main population has all the

individuals generated from evolution.

3.3 Probabilistic Stochastic Circuit Simulation

This step performs a full-circuit stochastic simulation. After design re-targeting

step, a set of overall device level variable values are collected, Ψ = {V D
j |1 ≤ j ≤

NV D} from populations. NV D collects the number of all device variables type. Since

these design variables are transformed from performance populations by parallel

genetic algorithm, each population of performance metrics directly projects to a set
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of variable distribution. A basic multi-objective SA based stochastic simulation is

implemented in Meng et al.[16]. After performance exploration, a Pareto front and

a Pareto point can be founded and regard the Pareto point as a good initial solution

fed into multi-objective SA based simulation. In [16], each swap is according to a

uniform manufacturable range with respect to each device variable. Since the range

of each device variable is wide, the solution set becomes bigger and bigger. Even if

multi-objective SA has a good initial solution, the full range stochastic simulation

leads enormous computing time to converge.
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Figure 3.6: Compared with different distribution for stochastic simulation. (a)
Population samplings for each device level variable from population and the global
optimum location. (b) Normal distributions for each device level variable after
normalize and the global optimum location.

After performing multi-objective genetic exploration, an evolved population will

be generated. These sampling sets from population form distributions with respect

to each device variable. Different from the uniform manufacturable range, these
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distributions have several valleys. Theoretically, the global optimum should locates

among these valleys with respect to each device variable. However, every perfor-

mance result should be quite close to real circuit simulation results such as SPICE.

In other words, every prediction result from genetic based performance exploration

projects to a device variable set, but every variable set feeds into circuit simulator

to get real simulation result just closes to the prediction result from genetic based

exploration. As illustrated in Fig. 3.6 (a), when swapping according to population

sampling in SA, these valleys may can not determine the real global optimum result

accurately. In our methodology, a normal distribution for each device variable gen-

erated is fed into SA. Fig. 3.6 (b) shows that based on a probabilistic mathematical

model, the nearest point to the mean not only quite close to global optimum but the

normal distribution PDF also ensure the probability of every point in feasible man-

ufacturable range. The PDF also describes the population sampling distribution. In

the ends of normal distribution, the probability becomes smaller and smaller. Thus,

the nearby point of the ends of normal distribution means bad solution with respect

to the population after performing genetic exploration. Since all of samplings have

equal probability in uniform distribution, SA based simulation spends more time on

bad solution set.

After performance exploration stage, given the variable sets, normalized dis-

tributions for each design variable are generated by calculating the mean values

and standard deviations. In other words, it represents the probability distribu-

tion function (PDF) for that device-level variable. The Box-Muller method [2] uses

two independent random number, then generates two standard normal distribution

variables. As Eq.(3.3) illustrated, two independent random numbers U and V dis-

tributed uniformly on (0,1), then the two standard normal distribution variables X

and Y are generated. Furthermore, two normal distribution variables X ′ and Y ′ are

transformed, µ is the mean and σ2 is the variance. A set of PDF between for each
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device-level variable is generated after divide all of samplings into several intervals

and calculate the number of interval sampling to get the pdf from V D
max to V D

min.

PDF = {pdfk|1 ≤ k ≤ |Ψ|}.

∃ U ∼ U(0, 1) and V ∼ U(0, 1)

⇒
{
X =

√
−2lnU cos(2πV )

Y =
√
−2lnU sin(2πV )

X, Y ∼ N (0, 1)

Extend :{
X ′ =

√
−2lnU cos(2πV )× σ + µ

Y ′ =
√
−2lnU sin(2πV )× σ + µ

X, Y ∼ N (µ, σ2)

(3.3)

Algorithm 3 MOSA(T,Ψ, r, Ns)

Input:

T : A initial temperature, T > 0.
Ψ: A set of overall device variable values from main population.
r: A factor to reduce temperature T.
Ns: Number of normal distribution sampling.

1: for j = 1→ |Ψ| do
2: meanj = CalculateMean(V Dj )

3: stdj = CalculateV ariance(V Dj )

4: pdfj = normalPDFGenerator(meanj , stdj)
5: end for
6: R = Evaluate(mean)
7: while T not yet frozen do
8: for j = 1→ |Ψ| do
9: S′j = Swap(pdfj)

10: end for
11: R′ = Evaluate(S′)
12: if R′ ≺ R then
13: R′ ← R
14: else
15: R′ ← R with probability min(1, exp{− δE(R′,R)

T
})

16: end if
17: T ← rT
18: end while
19: return R

We assign maximum and minimum values for each V D from technology design

rules, and apply stochastic circuit simulation among these variable boundaries with

an multi-objective SA based search. Our multi-objective SA is summarized as shown

in Algorithm 3. Algorithm 3 Line 1 to Line 4 illustrate the PDF generates process

for each device variable and the sub-function normalPDFGenerator using Box-

Muller method is shown in Algorithm 4. After evaluation via circuit simulator to

get initial solution R, Line 7 to Line 18 in Algorithm 3 is the main function of

MOSA. Each normal distribution consist of sampling with respect to each device
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Algorithm 4 normalPDFGenerator(M,Std,Ns)

Input:

M : Mean of population sampling.
Std: Standard deviation of population sampling.
Ntotal: Number of Box-Muller method sampling.
Np: Number of division of the manufacturable range

1: for j = 1→ Ntotal do
2: U = rand(0, 1)
3: V = rand(0, 1)
4: X =

√
−2lnU cos(2πV )× Std+M

5: Y =
√
−2lnU sin(2πV )× Std+M

6: end for
7: Z ← X,Y
8: for i = 1→ Np do

9: pdfi ← NumberOfSampling(Z,i,i−1)
Ntotal

10: end for
11: return pdf

variable via Box-Muller method. The Swap function selects a point between V D
max

to V D
min randomly, then determined according to the pdf of such VD. Fig. 3.7 shows

an example of Swap operation step by step. After Swap operation in Algorithm 4

Line 9, the set of device variables S ′ is fed into circuit simulator to get result R′.

If R′ dominates R, the new solution R′ accepted and the dominate relation defined

in Definition 1. Engrand et al.[17] provide a composite function method to get the

combined cost of multi-objective values in Definition 2. The accept method when R′

non-dominate R is shown in algorithm 3 Line 15 and then reduce the temperature

T by a factor. The MOSA stopped when the temperature reach frozen then return

a Pareto point result R.

Definition 1 x ≺ y called x dominates y iff Ei(x) ≤ Ei(y), for i=1,. . . ,K and Ej(x)

≤ Ej(y) for least one objective function Ej.

Definition 2 The composite objective function is defined, E =
K∑
n=1

ln(wifi(x)),

where f1, . . . ,fK are K objectives to be optimized and wi is normalized weighting

value corresponding to each objective result, for i=1, . . . ,k.

A hierarchical synthesis for circuit sizing strategy is accomplished after the opti-

mal solution is converged when stochastic simulator or the termination requirement
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Figure 3.7: Illustration an example of swap function in MOSA step by step.

is met. Based on a probabilistic stochastic fine-tuning, the convergence time less

than non-probabilistic approach because the times of sweep are become fewer.
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Chapter 4

Experimental Results

Table 4.1: Device statistics of RFDA and OpAmp

Device Number
circuits MOS Capacitor Resistor Inductor Total
RFDA 12 30 0 30 72
Spec Av(

v
v
) Pdc(µW ) Pout(mW ) Fcent(GHz) BW (GHz)

≥ 5 ≤ 0.5 ≥ 2 ≥ 5 ≥ 10
Op-Amp 18 1 0 0 19

Spec Av(
v
v
) Pdc(µW ) Pout(µW ) BW (MHz) Phase Margin

≥ 40 ≤ 100 ≥ 0.1 ≥ 60 ≥ 50

As demonstration of our methodology, we obtain a radio-frequency distributed

amplifier(RFDA) in [16] and another folded cascode operational amplifier to be syn-

thesized automatically by our framework through three technology processes: umc

65nm, umc 90nm and tsmc 90nm. Table 4.1 shows the statistics of the two circuits,

including the components of each and the original performance specifications. Our

methodology is implemented by GCC version 4.3.4, Matlab R2011a, and the cvx

optimization package. This algorithm is run on openMP and Matlab distributed

computing toolbox. Since we rewrite the Matlab cvx package with our design equa-

tions of RFDA and OP-Amp into our C++ based parallel genetic algorithm, the

interpretation is accomplished by Matlab Runtime Compiler 4.15 on Intel Xeon

E5620 2.4GHz with 72GB memory.
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Table 4.2: The population results and genetic exploration runtimefor RFDA and
Op-Amp circuit with umc 65nm, umc 90nm and tsmc 90nm technologies on GA256,
PGA120 and PGA256 based performance exploration.

RFDA Algorithm Runtime(s) Av(
v
v ) Pdc(µW ) Pout(mW ) Fcent(GHz) BW (GHz)

GA256 4122 4 - 5.2143 0.368 - 0.997 20.9 - 21.2 11.0 - 13.56 18.92 - 24.10
umc 65nm PGA120 3416 4 - 5.2143 0.354 - 0.990 20.9 - 21.2 11.04 - 13.56 19.07 - 24.10

PGA256 8053 4 - 5.2298 0.002 - 1.019 20.9 - 27.8 11.12 - 13.52 19.23 - 23.94

Op-Amp Algorithm Runtime(s) Av(
v
v ) Pdc(µW ) Pout(µW ) Fcent BW

GA256 5958 10 - 65.71 2.24 - 33 0.90 - 1.53 4183 - 5461 5019 - 6553
umc 65nm PGA120 1855 10 - 65.71 2.24 - 33 0.91 - 1.53 4183 - 5461 5019 - 6553

PGA256 7992 10 - 65.71 2.24 - 33 0.90 - 1.53 4183 - 5461 5019 - 6553

GA256 5836 10 - 400 1.28 - 30 0.31 - 0.88 2442 - 4159 2930 - 4990
umc 90nm PGA120 1813 10 - 400 1.28 - 30 0.35 - 0.89 2605 - 4159 3126 - 4990

PGA256 4037 10 - 400 1.28 - 30 0.25 - 0.89 2112 - 4158 2654 - 4990

GA256 5918 10 - 74.29 0.05 - 29.7 0.12 - 1.03 1323 - 4535 1215 - 5370
tsmc 90nm PGA120 2805 10 - 74.29 0.14 - 28.68 0.18 - 1.03 1158 - 4431 1390 - 5317

PGA256 7108 10 - 74.29 0.13 - 29.69 0.17 - 0.96 1144 - 4311 1373 - 5174

4.1 Performance Exploration Stage

Here we implement genetic algorithm at performance exploration stage as follows:

1. GA256, a master-slave genetic algorithm based performance exploration with

total population size of 256 and 8 number of threads.

2. PGA120, a multi-objective parallel genetic algorithm based performance ex-

ploration with total population size of 120 and 5 number of threads.

3. PGA256, a multi-objective parallel genetic algorithm based performance ex-

ploration with total population size of 256 and 5 number of threads.

Fig.4.1, Fig.4.2, Fig.4.3 and Fig.4.4 are illustrations of population results dis-

tribution after genetic exploration. When implement with PGA or increase PGA

population size, the PDC point distribution will gradually decrease. Table 4.2 and

Table 4.3 show each of population result ranges and best performance result in

population set respectively. The population result ranges in umc 65nm RFDA and

umc 90nm Op-Amp, all ranges on GAP120 and GAP256 have better quality than the

GA256. In tsmc 90nm Op-Amp, GAP120 has better performance in BW and Pout.

For the best result in population, in RFDA and Op-Amp tsmc 90nm, GAP120 has
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Table 4.3: Best performance of population results for RFDA and Op-Amp circuit
with umc 65nm, umc 90nm and tsmc 90nm technologies on GA256, PGA120 and
PGA256 based performance exploration.

RFDA Algorithm Av(
v
v ) Pdc(µW ) Pout(mW ) Fcent(GHz) BW (GHz)

GA256 5.2143 0.7218 21.2 11.2 19.2
umc 65nm PGA120 5.2143 0.7465 21.2 11.3 20.0

PGA256 5.2285 0.002 26.9 13.5 23.0

Op-Amp Algorithm Av(
v
v ) Pdc(µW ) Pout(µW ) Fcent BW

GA256 65.71 33 0.90 4183 5019
umc 65nm PGA120 65.71 33 0.90 4180 5020

PGA256 65.71 33 0.90 4183 5109

GA256 65.71 7.09 0.57 3338 4006
umc 90nm PGA120 65.71 7.03 0.61 3455 4146

PGA256 65.71 7.09 0.57 3338 4006

GA256 35.71 7.6 0.587 3387 4064
tsmc 90nm PGA120 48.57 12.18 0.54 3244 3892

PGA256 35.71 8.81 0.68 3644 4373

better performance result than GA256. Big population size and multi-objective GA

implementation lead to good results. In general, PGA based performance explo-

ration and population size increase lead to better quality in performance result

ranges and performance result.

Table 4.4 also shows the genetic exploration runtime. Since genetic exploration

spend more time on evaluate and migration operation in parallel GA, master-slave

architecture GA has better efficiency than parallel GA exploration in same popula-

tion size.

4.2 Stochastic Fine-tuning Stage

Here we implement overall hierarchical mapping frameworks as follows:

1. Suman et al. in [19], a multi-objective simulated annealing method.

2. Meng et al. in [16], an exhaustive performance exploration method with a

basic stochastic circuit simulation.

3. GAP256, a master-slave genetic algorithm based performance exploration with

total population size of 256 and 8 number of threads plus probabilistic stochas-

29



(a) Population distribution via GA256 (b) Population distribution via GA256

(c) Population distribution via PGA120 (d) Population distribution via PGA120

(e) Population distribution via PGA256 (f) Population distribution via PGA256

Figure 4.1: Population distribution of the RFDA design instance using UMC65nm
after genetic exploration. (a), (c) and (e) are plotted with respect to coordinates
of PDC, Pout, and Av. (b), (d) and (f) are plotted with respect to coordinates of
PDC, fcent and BW.
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(a) Population distribution via GA256 (b) Population distribution via GA256

(c) Population distribution via PGA120 (d) Population distribution via PGA120

(e) Population distribution via PGA256 (f) Population distribution via PGA256

Figure 4.2: Population distribution of the Op-Amp design instance using UMC65nm
after genetic exploration. (a), (c) and (e) are plotted with respect to coordinates
of PDC, Pout, and Av. (b), (d) and (f) are plotted with respect to coordinates of
PDC, fcent and BW.
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(a) Population distribution via GA256 (b) Population distribution via GA256

(c) Population distribution via PGA120 (d) Population distribution via PGA120

(e) Population distribution via PGA120 (f) Population distribution via PGA256

Figure 4.3: Population distribution of the Op-Amp design instance using UMC90nm
after genetic exploration. (a), (c) and (e) are plotted with respect to coordinates
of PDC, Pout, and Av. (b), (d) and (f) are plotted with respect to coordinates of
PDC, fcent and BW
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(a) Population distribution via GA256 (b) Population distribution via GA256

(c) Population distribution via PGA120 (d) Population distribution via PGA120

(e) Population distribution via PGA256 (f) Population distribution via PGA256

Figure 4.4: Population distribution of the Op-Amp design instance using
TSMC90nm after genetic exploration. (a), (c) and (e) are plotted with respect
to coordinates of PDC, Pout, and Av. (b), (d) and (f) are plotted with respect to
coordinates of PDC, fcent and BW
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tic circuit simulation framework.

4. PGAP120, a multi-objective parallel genetic algorithm based performance

exploration with total population size of 120 and 5 number of threads plus

probabilistic stochastic circuit simulation framework.

5. PGANP120, a multi-objective parallel genetic algorithm based performance

exploration with total population size of 120 and 5 number of threads plus

basic stochastic circuit simulation framework.

6. PGAP256, a multi-objective parallel genetic algorithm based performance

exploration with total population size of 256 and 5 number of threads plus

probabilistic stochastic circuit simulation framework.

7. PGANP256, a multi-objective parallel genetic algorithm based performance

exploration with total population size of 256 and 5 number of threads plus

basic stochastic circuit simulation framework.

Table 4.4 shows the comparison among above frameworks for analog circuit syn-

thesis. By definition, parallel GA can search the limitation of performance met-

rics and also find the performance Pareto-fronts with particular populations. Since

genetic algorithm has ability to traverse different combination with crossover and

mutation wisely, our approach can collect a bunch of potential spec combinations

as a population, and transfer them to re-target back to the desired design vari-

ables. Not only obtaining a good initial performance metric population is impor-

tant, also a design equation which can precisely sketch out the circuit characteristic

is necessary. However, we tend to keep the stochastic simulation for a final search,

but also using an evolutionary methodology to reduce the convergent resource. As

we can see, GAP256 already earns runtime improvement at umc65-RFDA, umc65-

OPAmp, umc90-OpAmp and tsmc90-Opamp with 398% , 227%, 174% and 224%
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than the exhaustive performance exploration method way respectively. Moreover,

the PGAP120 earns even better quality by simultaneously explore the performance

space with 617%, 568%, 427% and 419% than [16] respectively. When increase pop-

ulation size and with migration each sub-population in parallel GA based perfor-

mance exploration, PGAP120 still earns runtime at umc65-RFDA, umc65-OPAmp,

umc90-OpAmp and tsmc90-Opamp with 330% , 161%, 190% and 186% than [16].

The runtime report from each GA-based experiment shows the good quality in effi-

ciency.

For the target performance result, in umc 65nm RDFA, all performance require-

ments have better quality than the exhaustive way and [19]. GAP120 explores the

unprecedented results on BW and Pout, while PGAP120 has obvious improvement on

Av and Fcent. On first umc65 folded cascode Op-Amp, although [16] has good quality

on Av and BW , the PM and Pout are sacrificed. GAP256 and PGAP120 have good

performance than [19] except PM . On the other hands, GAP256 and PGAP120 come

to the quality on each performance target. We can tell that genetic-algorithm based

approach can balance the multi-objective optimization via evolution. For umc90-

Opamp case, [16] generated the results far from optimal region with Av and BW

to earn the better output power Pout. Although [19] has better quality on Pdc and

Pout, but Av, BW and PM greater than [19]. As well as the tsmc90-Opamp case,

Av, Pdc and PM are poor while such approach searched into optimal region of Pout

and BW . The quality for exhaustive methodology is uncertain and time-consuming.

On the contrary, as the lower part of Table 4.4, GAP256 successfully searches the op-

timal region of all target performances than [16] and has better performance on BW

and PM than [19]. Moreover, PGAP120 reaches the better quality on Av, Pdc and

Pout for umc90-Opamp case respectively than [16]. Likewise, PGAP120 also explores

new limitation for Av, Pdc and PM at tsmc90-OpAmp as different technology im-

plementation. As a result, the exhaustive approach for performance exploration and
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MOSA method needs more timing resource to explore the Pareto-fronts but the un-

certainty is indispensable. In contrast, the parallel genetic-algorithm based approach

for performance exploration with the probabilistic stochastic simulation resolves the

problem efficiently and effectively, although the population size of PGAP120 is less

than the population size of GAP256.

For the comparison among non-uniform stochastic simulation and uniform dis-

tribution based stochastic simulation, in umc 65nm RFDA, no matter whether

PGANP120 and PGANP256, all performance have worse quality than PGAP120 or

PGAP256. In Op-Amp, all of the non-uniform stochastic simulation have better

BW , but the Av, Pdc, PM and Pout are sacrificed. In general, the normal distribu-

tion based stochastic simulation has better quality than uniform distribution based

SA simulation.

Table 4.4 also shows the performance results among different population size with

parallel GA implementation. In umc 65nm RFDA, all the performance have obvious

improvement except Av. On umc 65nm cascade Op-Amp and umc 90nm cacode Op-

Amp, although PGAP120 has good quality on Av, Pdc and PM , the Pdc and Pout

are sacrificed. In tsmc 90nm cascode Op-Amp, PGAP256 leads better quality on each

performance target except Av. As a while, large size of population shows trade-off

between effective on performance exploration and computing efficiency.
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Table 4.4: The performance exploration results for RFDA and Op-Amp circuit with
umc 65nm, umc 90nm and tsmc 90nm technologies on [16], GAP256, PGAP120,
PGANP120,PGAP256 and PGANP256 framework.

RFDA Algorithm Runtime(s) Improv.(%) Av(
v
v ) Pdc(µW ) Pout(mW ) Fcent(GHz) BW (GHz)

[16] 38880 - 6.4322 0.23 2.65 9.85 17.48
GAP256 9756.02 398% 7.38 0.175 23.3 20.9 40.2

umc 65nm PGAP120 6300.15 617% 8.505 0.183 18.8 22.5 40.4
PGANP120 - - 1.1843 3.88 1.74 8.95 5.0
PGAP256 11772 330% 6.1852 0.141 28.9 24 42.8
PGANP256 - - 2.2818 11.83 3.43 5.53 10.54

Op-Amp Algorithm Runtime(s) Improv.(%) Av(
v
v ) Pdc(µW ) Pout(µW ) BW (MHz) Phase Margin

[19] 4699 - 42.96 93.75 0.27 97 76.8
[16] 19432 - 45.73 102 0.21 144 45.7
GAP256 8568 227% 44.88 93.76 0.428 102 67.84

umc 65nm PGAP120 3424 568% 44.17 93.94 0.527 102 67.7
PGANP120 - - 43.641 88.652 0.263 57 87.5
PGAP256 12051 161% 43.107 105.5 1.159 114.3 58.7
PGANP256 - - 44.075 88.779 0.3723 57.7 77.9

[19] 6023 - 40.68 90.96 2.64 56 65.56
[16] 15285 - 33.16 95.6 1.72 78.58 65.872
GAP256 8797 174% 44.247 96.36 0.38 111 74.45

umc 90nm PGAP120 3583.6 427% 44.981 95.11 0.763 110 74.4
PGANP120 - - 44.075 88.779 0.37 57.7 77.9
PGAP256 8054 190% 41.785 104.16 2.40 145.3 87.7
PGANP256 - - 45.715 91.732 0.296 85.3 73.7

[19] 17860 - 41.88 89.584 1.39 58 121.5
[16] 19488 - 38.42 111 1.2 284 50
GAP256 8703 224% 40.46 100.1 0.27 100 82

tsmc 90nm PGAP120 4651 419% 45.734 97.75 0.22 129 87.4
PGANP120 - - 39.282 91.1 0.43 64 86.07
PGAP256 10496 186% 40.365 95.5 0.66 114.4 143.56
PGANP256 - - 28.858 87.21 2.90 28.02 91.17
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Chapter 5

Conclusion

In this thesis, we have proposed a performance utmost exploration framework

for analog synthesis framework with a parallel genetic algorithm based approach

to efficiently explore a potential performance space for optimal solution. Unlike

exhaustive search the performance space which is time-consuming, this work first

transforms the problem set as chromosome and then implements a parallel evo-

lutionary algorithm to resolve multi-objective performance optimization. After a

re-targeting transformation between performance and design variables, we also im-

plement a probabilistic stochastic simulation with respect to the design variable

distribution. Our methodology also minimizes time to converge the global optima

with accuracy. As demonstration for our methodology, a RFDA circuit and an

Op-Amp are practiced via 3 different technologies to show that our proposed per-

formance exploration approach and probabilistic stochastic simulation are effective

and efficient for analog circuit synthesis.
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