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應用於數位微流體生物晶片中達到反應物及 

廢液最小化之多目標濃度樣本製備程序 

 

 

研究生：林惠珊 指導教授：黃俊達  博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

摘    要 

樣本製備程序(sample preparation)為各種生化反應中不可或缺的步驟。原始生物樣

本或反應試劑必須在此程序中進行稀釋或混合，以達到反應所需的目標濃度(target 

concentration)。一般來說，一個生化反應通常需要某一樣本的多重目標濃度。但是，大

部分現有的樣本製備程序規劃相關演算法，都是針對單一目標濃度的製備而設計。因此，

當需要製備多目標濃度時，會採用依序製備的方式，這種方式被認為較無效率與耗時。

若所需的多目標濃度在此過程中可以同時製備，那麼稀釋/混合反應的次數與反應物的使

用量都可以再降低。本篇論文提出一個廢液回收再利用的演算法，簡稱 WARA，來解

決在數位微流體生物晶片(digital microfluidic biochips, DMFBs)上，多目標濃度樣本製備

程序規劃(multi-target sample preparation)的問題。WARA的主要概念為，將樣本製備程

序中的副產物－廢液滴回收後再利用。藉由這個概念，反應物的使用量與廢液滴的生成

量都可以大幅降低。實作上，WARA 透過液滴共享與液滴置換的方法來回收廢液。實

驗結果顯示，與現行成效最好的多目標濃度樣本製備程序演算法相比，當目標濃度數目

為十的時候，WARA 產生的廢液數量較其減少了 48%，而所需要的稀釋/混合反應次數

則減少了 37%；當目標濃度數目持續增加，此降低程度更是顯著─最多可減少 97%的廢

液生成量與 73%的稀釋/混和反應次數。  
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Abstract 

Sample preparation is an essential process in biochemical reactions. Raw reactants are 

diluted to reach the given target concentrations. Typically, a bioassay may require several 

different target concentrations of a reactant. However, most of existing algorithms are 

designed for single-target sample preparation only. When they are applied to prepare multiple 

target concentrations, these target concentrations are prepared separately one by one, which is 

inefficient and time-consuming. If all these target concentrations are produced simultaneously 

during sample preparation, both the dilution operation count and the reactant usage can be 

further minimized. In this thesis, we propose a waste recycling algorithm, WARA, to tackle 

the multi-target sample preparation problem on digital microfluidic biochips (DMFBs). The 

main idea of WARA is to recycle waste droplets in the dilution process and turn them into 

usable ones for reactant and waste minimization. WARA achieves waste recycling through 

droplet sharing and droplet replacement. Experimental results show that WARA can reduce 

the waste and operation count by 48% and 37% respectively as compared to an existing 

state-of-the-art multi-target sample preparation method when the number of target 

concentrations is ten. The reduction can be up to 97% and 73% when the number of target 

concentrations goes even higher. 
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Chapter 1 Introduction 

Lab-on-a-chip (LoC), a kind of biochip, is one of the most popular research topics in 

recent years [1]. An LoC is an analysis system that integrates many biochemical functions in a 

small chip, such as injection, mixing, separation, and detection [2]. Compared with 

conventional biochemical systems in labs, hospitals, or research centers, which are always 

bulky and expensive, LoCs offer many advantages like portability, reagent volume reduction, 

automation, mass production, fast analysis, high throughput, and low power consumption [3]. 

As the technology has been advancing in recent years, a new type of LoC, Digital 

Microfluidic Biochip (DMFB), has been developed. Figure 1(a) illustrates a real DMFB 

design, and Figure 1(b) shows a typical structure based on 2D array. A DMFB can be used to 

carry out various bioassays by precisely controlling some discrete and small volume fluidic 

droplets containing biochemical samples or reagents. Since all the reactants are dispensed as 

discrete droplet, we called this kind of biochip “digital” one. 

 

 

(a) A real case of DMFB [6]. 

Electrodes 

(2D array)

 

Droplet

Detector

Dispensing port
 

(b) A typical 2D array-based structure of DMFBs. 

Figure 1. Digital Microfluidic Biochip. 
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The electrowetting-on-dielectrics (EWOD) effect is utilized as an electrostatic actuation 

method to dispense, transport, split, merge, and mix droplets on DMFBs. Through applying 

control voltage on the electrodes below the chip, the surface tension of droplets can be 

changed. The induced force is used to move these droplets, as shown in Figure 2 [4]–[7]. 

Therefore, a biochemical assay can be conducted via a series of basic droplet operations.  

 

High voltage

dropelt

 

(a) Top view. 

Glass

Glass

Droplet

High voltage
 

(b) Side view. 

Figure 2. Electrowetting-on-dielectrics (EWOD) effect. 

 

Recently, lots of on-chip laboratory procedures, such as immunoassay, protein 

crystallization, and DNA sequencing, have been successfully demonstrated on DMFBs [8].  

Because the demand for various applications continuously grows, the design complexity of 

DMFBs is certainly increased. Therefore, a series of automation algorithms are necessary for 

speeding up the process, reducing the manual effort, and improving the design quality. In the 

past few years, lots of design automation algorithms are proposed to tackle problems in 

DMFB design flow, such as synthesis, placement, routing, control pin assignment, and chip 

testing [9]–[20]. Undoubtedly, the design automation for DMFB is one of the most emerging 

topics nowadays, and the related research works are proliferating. 

Sample preparation problem is one of the critical issues in DMFB design automation. 

Reactants (sample or reagent) must be diluted to the specific concentration, which is called 

target concentration, in the process. There are some factors may affect the quality of whole 

dilution process, they are: 

(1) Usage of valuable reactants: it is the major cost for a biochemical reaction. The usage 

of valuable reactant which is very expensive or is limited in amount, like costly reagents or 

infant’s blood, should be minimized. An analysis would fail if the preparation process does 

not consider reactant minimization. 
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(2) Number of waste droplets: since the number of waste reservoirs on a given DMFB is 

fixed, the capacity for waste handling is accordingly limited. The excessive waste count may 

lead to long preparation time. Furthermore, keeping too much waste droplets on DMFB is not 

propitious for droplet routing. That is, it makes the routing more complicated and may require 

much extra transportation time to drive waste droplets into reservoirs. 

(3) Number of dilution operations: it basically represents the preparation time, and thus 

should be minimized. A long preparation process may be a fatal in some urgent clinical 

incidents. 

Several algorithms which tackle the sample preparation problem on DMFBs have been 

proposed [24]–[31]. Most of them address on single-target sample preparation. That is, they 

generate each target CV through an individual dilution process. If multiple target CVs are 

required, different target concentrations must be produced one-by-one and is thus 

time-consuming. Moreover, since those methods do not consider reactant sharing among 

different dilution process, they may lead to higher reactant usage and waste count. 

Intermediate droplet sharing algorithm (IDSA) [29] is the first work that deals with the 

concurrent preparation for multiple target concentrations. It reduces waste amount by means 

of minimizing the number of intermediate concentrations in dilution process. However, this 

strategy does not always lead to a better result. Furthermore, in our opinion, minimizing the 

usage of valuable reactant is as important as waste reduction. Thus, an approach which can 

achieve both reactant and waste minimization in multi-target sample preparation is necessary. 

In this thesis, we propose a waste recycling algorithm (WARA) for multi-target sample 

preparation on DMFBs. WARA adopts a tree-based dilution strategy. It generates a mixing 

tree for each target concentration at beginning, and recycles the waste droplets among those 

trees by droplet sharing and droplet replacement. Experimental results show that WARA 

reduces the amount of (waste, operations) by (48%, 37%) on average as compared to IDSA if 

the number of targets is ten
1
. The reduction can be up to (97%, 73%) as the number of target 

concentrations grows to 100. The results suggest that WARA should be a better solution for 

multi-target sample preparation on DMFBs. 

The rest of this thesis is organized as follows. Chapter 2 describes the sample preparation 

process. Chapter 3 briefly introduces previous works. In Chapter 4, we identify our 

motivation and the problem formulation. Our multi-target sample preparation algorithm, 

                                                

1 Since IDSA reported its results by means of bar charts, we have done our best to compare 

our work with IDSA as accurate as possible. 
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WARA, is elaborated in Chapter 5. The experimental results are reported and discussed in 

Chapter 6. Finally, Chapter 7 concludes this paper. 

  



 

 5 

Chapter 2 Sample Preparation  

2.1 Dilution Procedures 

The goal of sample preparation is to prepare specific target concentrations (Ct) through a 

series of dilution operations. On biochips, both linear dilution and serial dilution procedures 

are commonly used [21][22]. However, the serial dilution is more suitable than the linear one 

on DMFBs because reactants are dispensed as discrete droplets instead of continuous flows. 

The serial dilution process dilutes a reactant droplet repeatedly using a fixed mixing ratio, like 

1:1. For example, if Ct = 75%, the serial dilution procedure first dilutes a reactant droplet with 

a buffer droplet to produce two resultant droplets with the same concentration of 50%. One of 

the resultant droplet, or called intermediate droplet, is again diluted with a reactant droplet to 

achieve the target concentration (i.e., 75%); the other resultant droplet, which remains unused 

in the following dilution process, is called waste droplet. In this case, two dilution operations 

are required, as shown in Figure 3. Note that numerous individual dilution operations in a 

whole serial dilution process may happen [22]. Therefore, a smaller dilution operation count 

usually implies a faster sample preparation process. 

 

 

Figure 3. The serial dilution process. 
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2.2 Mixing Models 

There are different mixing models that can be performed on various DMFB architectures. 

Three kinds of mixing models are commonly adopted in previous works. Suppose the ratio 

between two substances for mixing is (x: y), the three mixing models can be expressed as: 

(1)      ; (2)      ; (3)    . The second model is adopted in previous works 

[27]–[29] through a special designed rotary mixer. However, the rotary mixer occupies much 

chip area and is not an essential block of DMFB. For most general DMFBs, only the first 

mixing model can be easily performed through linear or array mixers [5]. Hence, we adopt the 

first mixing model, named (1:1) mixing model, in this work, just as the previous works 

[26][30][31] do. Accordingly, the number of (1:1) dilution operations is then used to estimate 

the sample preparation time. 

However, an inherent error between the target concentration and the value can be 

achieved may exist no matter which mixing model is adopted. The inherent error is 

unavoidable if the denominator of the target concentration is not a power of two or even not a 

rational number, like 3 or √ . Even through, it can be minimized to an acceptable range if the 

precision level is high enough [26][27]. A precision level n implies that n fractional bits are 

used to represent the target concentration and the error is limited to 
 

     accordingly. Users 

can determine a proper precision level to make this error acceptable. 
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2.3 Exponential and Interpolated Dilution 

Under the (1:1) mixing model, a dilution operation first mixes two source droplets into a 

mixture and then splits it into two resultant droplets [22]. The two resultant droplets have the 

same concentration value (CV for short). The relation between these droplets can be 

expressed as: 

 

   
     

 
 (1) 

 

Where C1 and C2 represent the CVs of two source droplets and Cr is the CV of the 

resultant droplets.  

A dilution operation can be further classified as two types: exponential dilution and 

interpolated dilution [22]. An exponential dilution is a dilution operation which one of its 

source droplets is buffer. For example, if a droplet with CV = C is diluted with a buffer 

droplet, the CV of the resultant droplet is 
 

 
; if n exponential dilution operations are applied 

consecutively, the CV of the final two resultant droplets finally becomes  
 

  . In this thesis, a 

CV is called a prime concentration value (PCV) if it is equal to 1 or can be produced through 

a series of exponential dilutions starting from a raw reactant droplet (i.e., CV = 1), for 

example, 
 

  
. That is, a PCV contains only one bit ‘1’ in its binary representation. On the 

other hand, for an interpolated dilution, neither two source droplets is buffer. Both the two 

kinds of dilution operations are necessary to prepare an arbitrary target CV. Figure 4 

illustrates the two types of dilution processes. 
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(a) Exponential dilution. 
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(b) Interpolated dilution. 

Figure 4. Exponential and Interpolated Dilution. 
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Chapter 3 Previous Works 

3.1 Single-Target Sample Preparation Algorithms 

3.1.1 BS 

The bit-scanning (BS) approach [26] is the first work for dilution process optimization. In 

BS, the target concentration is represented in binary format, and is utilized to guide the whole 

dilution process. Each bit ‘1’ in the binary string implies that a raw reactant droplet should be 

dispensed for mixing, and a bit ‘0’ implies a buffer droplet instead. For example, given 

Ct  
   

    
              , the dilution process follows the binary string from the least 

significant bit (LSB) to the most significant bit (MSB), as shown in Figure 5. The total 

number of operations is equal to the length of binary string. It is the minimal operation count 

required for a given Ct, and is no more than n (precision level). During each operation, only 

one of the two resultant droplets is kept, and becomes the source droplet in the next operation. 

The other resultant droplet which remains unused in the overall dilution process will be 

discarded. Therefore, a waste droplet is produced after each operation. That is the major 

reason that BS consumes more reactants and buffers as well as produces more waste than 

other approaches. 
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Figure 5. A dilution process using BS. 
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3.1.2 DMRW and IDMA 

The algorithm for dilution and mixing with reduced wastage (DMRW) [27] is the first 

approach aiming at waste minimization by means of droplet sharing. The authors of DMRW 

claim that waste minimization is good for reducing reactant usage as well as droplet routing 

time. DMRW achieves target concentrations based on a binary search strategy. It 

continuously updates the lower and upper bounds during the searching process. The two 

bounds are initially set as 0 and 1, which stand for buffer and raw reactant. The lower/upper 

bound is replaced by the average of them if the target CV is larger/smaller than the average. 

The process is terminated when the target CV is achieved. The dilution process for    
   

    
 

using DMRW is shown in Figure 6, where the number beside an edge indicates the amount of 

required droplets. Compared with BS, DMRW consumes fewer reactant and buffer droplets 

and generates less waste. However, DMRW results in more operation count; that is, it requires 

longer period for sample preparation. 
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Figure 6. A dilution process using DMRW. 

 

The improved dilution/mixing algorithm (IDMA) [28] is an improved version of DMRW. 

For some target CVs, such as 
   

    
 and 

   

    
, the dilution graph produced by DMRW is 

extremely unbalanced. In such cases, one of the two bounds varies frequently, and much 

waste droplets are thus produced. IDMA moderately relaxes the bound under certain 

conditions to make the dilution graph more balanced. For example, IDMA turns the dilution 

graph in Figure 7(a) into the one in Figure 7(b) by relaxing the lower bound from 
   

    
 to 0. 

It makes the graph more balanced and reduces number of waste droplets. However, only few 
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cases can be improved by IDMA. In most cases, IDMA even consumes more reactants, 

produces more waste droplets, and needs more operation counts than DMRW. Moreover, 

IDMA may lead to imprecise target CV, such as 
     

    
 under Ct = 

   

    
. It indicates that IDMA 

may induce a larger error than other approaches. 
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(a) An unbalanced dilution graph produced by DMRW. 
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(b) The dilution graph improved by IDMA 

Figure 7. A dilution process using IDMA. 
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3.1.3 REMIA 

The reactant minimization algorithm (REMIA) [31] is the first algorithm which focuses 

on reactant minimization. For a given target CV, REMIA constructs a reactant-minimized 

mixing tree to guide the dilution process. Besides, REMIA utilizes essential reactant usage 

(ERU) of a mixing tree to estimate reactant usage, which gives a lower bound for reactant 

consumption. REMIA is a two-phased algorithm, including interpolated dilution phase and 

exponential dilution phase. In the interpolated dilution phase, REMIA decomposes the binary 

string of target CV in a top-down manner to construct the mixing tree with minimized ERU. 

In the exponential dilution phase, all leaf nodes of the mixing tree are generated through 

reactant-minimal exponential dilution process. This process guarantees minimal reactant 

usage. Figure 8 illustrates an example of REMIA for    
   

    
. The two phases are identified 

in Figure 8(a) and Figure 8(b) respectively.  

 

# of waste droplets: 6

# of operations: 6

ERU: 1.8125

CV=0.10010111112

CV=12 CV=0.012

CV=0.000111112

CV=0.0012

CV=0.00011112CV=0.0010111112

CV=0.0012

CV=0.0001112

CV=0.0012

CV=0.000112

CV=0.0012

CV=0.00012

PCV

607

1024

124

1024

120

1024

112

1024

190

1024

96

1024

64

1024

128

1024

128

1024

128

1024

128

1024

256

1024

1024

1024

 

(a) A mixing tree produced by REMIA. 
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(b) The reactant-minimal exponential dilution process. 

# of reactant droplets: 0 + 2 = 2 

# of buffer droplets: 0 + 7 = 7

# of waste droplets: 6 + 2 = 8

# of operations: 6 + 7 = 13

ERU: 1.8125

(c) Total result. 

Figure 8. A dilution process using REMIA. 
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REMIA can also be extended to deal with multi-target sample preparation problem. The 

extended version uses optimal unified exponential dilution process (OUED) to produce all 

leaf nodes required by the mixing trees for each Ct simultaneously, and further minimizes the 

reactant usage. The details of mixing tree, ERU, reactant-minimal exponential dilution 

process, and optimal unified exponential dilution process (OUED) will be discussed in the 

following section. 
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3.2 Multi-Target Sample Preparation Algorithm 

Intermediate droplet sharing algorithm (IDSA) [29] is the first algorithm to ensure 

concurrent preparation for multiple target CVs. The primary goal of IDSA is to minimize the 

number of waste droplets. More specifically, IDSA focuses on minimizing the number of 

intermediate CVs utilized in dilution process for waste and operation count reduction. In other 

words, the authors of IDSA believe that the number of waste droplets can be reduced through 

minimizing the number of intermediate CVs. 

IDSA is a two-phased algorithm. In the first phase, an initial dilution graph is generated, 

as shown in Figure 9. In a dilution graph, a node with in-degree of 0 is associated with a raw 

reactant droplet or a buffer droplet; a node with out-degree of 0 is associated with a target CV; 

other nodes are intermediate CVs; the number beside edges represents the amount of required 

droplets; a black dot beside a node represents a waste droplet. The initial dilution graph is 

generated with dynamic programming. In IDSA, a pair of CV that can generate a CV through 

a dilution operation, for example, (
 

 
 

 

 
) or (  

 

 
) for 

 

 
, is named as a preceding pair of it. To 

generate the initial dilution graph, IDSA enumerates all possible preceding pairs for every 

CV. Then it traces all feasible preceding pairs recursively starting from every target CV, and 

randomly selects the intermediate CVs to construct the initial dilution graph. 
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Figure 9. An initial dilution graph produced by IDSA. 
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The second phase of IDSA tries to minimize the number of intermediate CVs. Two 

strategies are adopted: 1) combining intermediate nodes and 2) utilizing intermediate nodes. 

Firstly, IDSA combines the intermediate nodes in initial dilution graph if they have the same 

CV. For example, it shares the common modes of CV = 
   

    
 

   

    
 

   

    
 

   

    
 and 

    

    
 in 

Figure 9, and the result is shown in Figure 10. Next, IDSA reduces the number of 

intermediate nodes through utilizing intermediate nodes. For example, the preceding pair 

(
   

    
 

   

    
) are used to replace (

   

    
 

   

    
) for the node of CV =  

   

    
, and the node of CV = 

   

    
 can thus be eliminated, as illustrated in Figure 11. 
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Figure 10. The dilution graph produced by IDSA after combining intermediate nodes. 

 

However, minimizing the count of intermediate nodes cannot always lead to a better 

result. This process may even increase the waste count, operation count and reactant usage. 

Figure 11 proves our concern that minimizing the number of intermediate nodes is not 

necessary reducing the waste amount. Therefore, a better indicator instead of intermediate CV 

count is required. 
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Figure 11. The dilution graph produced by IDSA after utilizing intermediate nodes. 
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Chapter 4 Problem Description 

4.1 Mixing Tree 

Unlike DMRW [27], IDMA [28], and IDSA [29] based on the dilution graph, another 

dilution strategy, mixing tree, is adopted by BS [26], RMA [29], and REMIA [31]. Here, we 

introduce mixing tree in detail. Two mixing trees produced by REMIA for    
  

  
 and 

  

  
 

are shown in Figure 12. A mixing tree looks like a dilution graph, but there are some 

differences between them. A node with in-degree of 0 (i.e., leaf node) in a mixing tree is a 

PCV node instead of a reactant or a buffer droplet. A PCV node, defined by REMIA, is a 

node associated with PCV. Moreover, a mixing tree must be a full binary tree, that is, every 

branch node has exactly two children since a dilution operation requires two source droplets. 

However, only one of the two resultant droplets is utilized in the next dilution operations. As 

a result, a waste droplet must be produced at each branch node. The relation between the 

number of dilution operations, branch nodes, and waste droplets in a mixing tree T can be 

expressed as: 

 

 bran   no e( )   operation( )    aste( ) (2) 

 

Note that there is a little difference between Equation (2) and the previous works like 

DMRW and IDMA, which define their equation as:  operation( )      aste( ) . 

Previous works indicate that both two resultant droplets of target CV are useful and should 

not be considered as waste droplets. Nevertheless, we regard that only one of them s required; 

that is another one should be viewed as a waste droplet. 
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Figure 12. Two mixing trees produced by REMIA. 

 

The overall reactant consumption for a mixing tree is unknown because the process about 

how to produce the leaf nodes is not determined yet. However, the minimal reactant usage can 

still be estimated from a mixing tree. Since the CV of a node implies the amount of reactant it 

contains, which gives a lower bound for the reactant usage. Therefore, the summation of CVs 

of all leaf nodes, defined as essential reactant usage (ERU), is utilized to estimates the total 

reactant usage. The minimal number of required reactant droplets can be accordingly 

calculated by rounding up the ERU. That is, let CV(v) denote the CV of a node v, the relation 

between the minimal number of reactant droplets and the ERU can be described as: 

 

         ( )               ( )  ⌈   ( )⌉  ⌈∑   ( )
      ( )

⌉ (3) 

 

REMIA adopts a reactant-minimal exponential dilution process that produces all required 

leaf nodes of a mixing tree T with the minimal reactant usage. That is,          ( )  

             ( ) . This process is very similar to the well-known Huffman encoding 

algorithm [32]. Figure 13 illustrates this process for the mixing trees presented in Figure 12, 

where          (  )  ⌈   (  )⌉    and          (  )  ⌈   (  )⌉   . 

 



 

 18 

64

64

32

64

16

64

32

64

16

64

16

64

16

64

8

64

PCVs of T1

# of reactant droplets: 1

# of buffer droplets: 4

# of waste droplets: 1

# of operations: 4

Reactant-minimal 

exponential dilution

 

(a) The reactant-minimal exponential dilution process for T1. 
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(b) The reactant-minimal exponential dilution process for T2. 

Figure 13. Reactant-minimal exponential dilution process for Figure 12. 

 

Suppose there are more than one target concentration, REMIA can be extended by 

adopting an optimal unified exponential dilution (OUED) process to produce the leaf nodes of 

all mixing trees simultaneously. This process can further reduce reactant usage because: 

 

⌈∑   ( )

 

⌉  ∑⌈   ( )⌉

 

 (4) 

For example, the two individual reactant-minimal exponential dilution processes in Figure 

13 is replaced by an optimal unified dilution process (OUED) shown in Figure 14, the number 

of required reactant droplets is thus reduced from 3 to 2. The amount of buffers, wastes, and 

operations are also reduced. Therefore, extended-REMIA provides a good initial solution for 

multi-target sample preparation. Moreover, it guarantees that the overall wasted reactant is 

less than one droplet because: 

 

⌈∑   ( )

 

⌉  ∑   ( )

 

   (5) 
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Figure 14. Optimal unified exponential dilution process (OUED). 
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4.2 Motivation 

The major problem of a mixing-tree-based dilution process is excessive waste because 

every branch node always implies one waste droplet. The situation has become worse when 

multiple target CVs are considered. However, if one waste droplet produced in a mixing tree 

is useful for the other mixing tree while preparing multiple target CVs, it can be saved 

accordingly. For example, if the two mixing trees shown in Figure 15(a) share the same 

branch node with CV = 
  

  
, the overall ERU can be reduced from 2 to 1.375 and the number 

of waste droplets is decreased from 6 to 3, as depicted in Figure 15(b). The operation is 

named as droplet sharing, and it can effectively minimize both the reactant usage and the 

waste amount.  
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(a) Two mixing trees for    
  

  
 and 

  

  
. 
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(b) After sharing 
  

  
. 

Figure 15. A motivational example of droplet sharing. 

 

In addition to droplet sharing, another strategy can also help to reduce the waste count. 

For example, Figure 16(a) illustrates the result after droplet sharing for three mixing trees for 

   
  

  
 

  

  
 and 

  

  
. Among this graph, we find that the node with CV = 

  

  
 can be produced 

through recycling the waste droplets with CV = 
  

  
 and 

  

  
 respectively and applying an 

extra interpolated dilution. Therefore, the newly droplet with CV  
  

  
 produced by the 
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interpolated dilution can thus replace the original one as shown in Figure 16(b). This 

recycling-then-replacing optimization strategy is called droplet replacement. 
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(a) The result after droplet sharing  
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(b) The result after the branch node with  

CV = 
  

  
 is replaced. 

Figure 16. A motivational example of droplet replacement. 

 

The above two strategies show that both of them are useful for minimizing the reactant 

usage and the waste amount. More specifically, they turn the waste droplets into useful ones 

for reactant and waste minimization in multi-target sample preparation problem. 
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4.3 Problem Formulation  

The multi-target sample preparation problem is formulated as follows. Given a set of 

target CVs, determine a dilution process under the (1:1) mixing model such that the reactant 

usage and the waste amount can be both minimized.  

The proposed algorithm, WARA, which extensively exploits both droplet sharing and 

droplet replacement, is elaborated in the next chapter.  
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Chapter 5 Proposed Algorithm 

In this chapter, we detail our multi-target sample preparation algorithm, waste recycling 

algorithm (WARA). Section 5.1 roughly describes the algorithm flow of WARA, which is 

composed of three consecutive phases. From Section 5.2 to section 5.4, we elaborate how the 

three phases work exactly. 

5.1 Algorithm Overview 

WARA divides a dilution process into three consecutive phases: Tree generation, droplet 

sharing, and droplet replacement. In the tree generation phase, WARA adopts the output of 

extended-REMIA [31] as its initial solution. In the second phase, WARA performs droplet 

sharing among all mixing trees for waste and reactant minimization. The dilution process is 

further refined via droplet replacement in the third phase. Finally, the optimal unified 

exponential dilution process (OUED) is followed to produce all required PCV nodes. The 

overall algorithm flow is illustrated in Figure 17. 
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Figure 17. The overall algorithm flow of WARA. 
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5.2 Tree Generation 

Tree generation is the first phase of WARA. In this phase, WARA generates a set of 

mixing trees with minimized ERU using REMIA [31] as initial dilution process. Each mixing 

tree is associated with a given target CV. According to the property of REMIA, all the 

produced mixing trees are skewed. The two mixing trees for    
  

  
 and 

  

  
 are shown in 

Figure 18. We adopt REMIA to produce initial mixing trees because REMIA is proven an 

effective method for reactant minimization in single-target sample preparation. Besides, other 

tree-based sample preparation methods like BS [26] can also be applied for tree generation in 

terms of different optimization goals, such as operation minimization. The comparison 

between experimental results obtained from different tree generation algorithms is shown in 

Chapter 6. 
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Figure 18. Tree generation. 
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5.3 Droplet Sharing 

A branch node associated with a waste droplet is defined as a reusable node. For example, 

in Figure 18, the nodes with CV = 
  

  
 

  

  
 

  

  
   and 

  

  
 are all reusable nodes. In contrast, a 

branch node with no waste droplet is a reused node. For instance, the node with CV = 
  

  
 in 

Figure 19(a) is a reused node. The waste droplet of a reusable node can be utilized by another 

dilution operation through droplet sharing or droplet replacement. Note that each branch node 

is a reusable node in the initial mixing trees. 

The first step of droplet sharing is identifying all sharable node pairs. A node pair (x, y) is 

sharable if both nodes are reusable nodes and CV(x) = CV(y). Assume (x, y) is a sharable 

node pair and node z represents the dilution operation which taking y as one of its source 

droplets, then z can take x as its source droplet instead of y since CV(x) = CV(y). As a 

consequence, x becomes a reused node since it is utilized at two different operations. At the 

same time, the subtree rooted at y can thus be safely eliminated. It is obvious that droplet 

sharing can effectively minimize both the reactant usage as well as the waste amount.  

Suppose there exist more than one sharable node pairs at the same time, the order of pair 

selection does not affect the final result. That is, the outcome of droplet sharing is eventually 

identical no matter which node pair is selected first. For example, there are two sharable node 

pairs in Figure 18, one is with CV = 
  

  
 and the other is with CV = 

  

  
. Figure 19(a) shows the 

intermediate result as the node pair with CV = 
  

  
 is selected for sharing first. Since there is 

still one sharable node pair with CV = 
  

  
 left in Figure 19(a), the succeeding operation can 

thus be further performed. The final result is shown in Figure 19(b). On the other hand, if 

CV = 
  

  
 is selected first, it still leads to the identical outcome in Figure 19(b). According to 

the example, it is clear that the order of pair selection has no effect on the outcome of droplet 

sharing.  
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(a) The intermediate result of droplet sharing. 
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(b) The final result of droplet sharing. 

Figure 19. Droplet sharing. 

 

However, although the order of pair selection does not affect the final result, it does 

impact the runtime efficiency. For example, if the node pair with CV = 
  

  
 instead of 

  

  
 is 

selected first, only one sharing step is required to complete the droplet sharing process. It 

indicates that the farther a sharable node pair is from PCV nodes, the higher priority it should 

own because it can potentially eliminate the possible sharing for those sharable node pairs 

resided in larger fanin cone. This order decision strategy can improve the runtime efficiency 

and is exactly what Figure 18 and Figure 19 jointly demonstrate.  

Furthermore, we find that for a node v, the number of nonzero bits in the binary 

representation of CV(v), denoted as nzb(v), can help us for deciding the sharing order. If x and 

y are two children nodes of node z, then the relation between their nzb number can be 

expressed as: 

   ( )     ( )     ( ) (6) 
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In other words, a node a must be farther from PCV nodes than the node b, if nzb(a) is 

larger than nzb(b). Therefore, in order to speed up the whole sharing procedure, the sharing 

must start from the pair with largest nzb to another with the smallest. The process of droplet 

sharing is not terminated until no sharable node pairs can be found. Figure 20 outlines the 

proposed droplet sharing flow. 

 

DROPLET-SHARING(F)

// F is a forest containing a set of mixing trees

// every branch node in F is initially labeled as a reusable node

1. while (there is a sharable node pair)

2. identify a sharable node pair (x, y) with the largest nzb

3. for y’s fanout no e z, substitute y with x as z’s fanin no e

4. remove the subtree rooted at y

5. label x as a reused node

6. return the resultant dilution graph G
 

Figure 20. The pseudo code of droplet sharing. 
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5.4 Droplet Replacement 

In the end of droplet sharing phase, no sharable node pairs can be found anymore. 

However, some unpaired reusable nodes may still exist. Therefore, we further propose a 

method, which can keep recycling those remaining reusable nodes. Assume x and y are two 

reusable nodes and z is a node residing at neither x’s fanin cone nor y’s fanin cone; then the 

pair (x, y) is defined as a replacement candidate pair (RCP) of z if  

 

  ( ) 
  ( )      

 
 (7) 

 

The resultant droplet of mixing the two waste droplets of x and y, denoted by w, can be 

utilized to replace z because CV(w) = CV(z). If this replacement happens, z and its exclusive 

fanin cone can thus be eliminated. Figure 21 illustrate the main concept of droplet 

replacement. It is clear that droplet replacement can also reduce the reactant usage as well as 

the waste amount simultaneously. 

 

 

Figure 21. Droplet Replacement. 

 

Unlike droplet sharing, the result of droplet replacement is order dependent. For example, 

for three reusable nodes x, y, and z, there may exist up to three feasible RCPs (x, y), (y, z), and 

(x, z). Nevertheless, no matter which RCP is selected for droplet replacement, it would make 

other two RCPs no longer feasible. For example, selecting (x, y) would make (y, z) and (x, z) 

no longer feasible because x and y become reused nodes, as illustrated in Figure 22. 
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Figure 22. Droplet replacement is order dependent. 

 

Since the reactant minimization is the primary optimization objective of WARA, the 

strategy for RCP ordering should be a good idea to sort RCPs by total ERU saving. That is, an 

RCP with more ERU saving should be selected first for droplet replacement. Assume G/G’ 

are the graph before/after an RCP p is selected for droplet replacement, the gain of p is 

defined as: 

    ( )     ( )     (  ) (8) 

 

The droplet replacement process selects RCPs from the largest gain to the smallest one to 

achieve a maximal possible reactant reduction. 

In the original definition, both two nodes within an RCP must be reusable nodes. 

However, feasible RCPs may be few if only the reusable nodes are considered, and the 

possibility of droplet replacement is thus limited. Consider the case illustrated in Figure 23(a), 

no feasible RCPs can be found for reactant minimization. However, if an additional PCV 

node is allowed while creating an RCP, it is likely that the overall ERU can be further 

minimized, just as Figure 23(b) shows. Therefore, the original definition of RCP is relaxed – 

for an RCP p, at most one of the two nodes can be a PCV node as long as gain(p) is positive. 

A loose upper bound on the number of maximum possible RCPs in a dilution graph G is   
 , 

where k is the number of all branch and PCV nodes in G. 
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(b) The result after droplet replacement. 

Figure 23. An additional PCV node is allowed while creating an RCP. 

 

If two or more RCPs are with the same largest gain, which is not uncommon, a 

tie-breaking score is required for a better result. As mentioned, if an RCP (x, y) is selected for 

droplet replacement, neither x nor y can appear in other RCPs later on since x and y are 

already reused. Suppose that RCP p = (x, y), RCP q = (x, z), RCP r = (z, w), and 

gain(p) = gain(q) > gain(r), the RCP p should have higher priority over the RCP q because 1) 

p is the only one chance for y to be reused and 2) z still has another chance (i.e., the RCP r) to 

be reused later even though the selection of p automatically invalidates q due to x, just as 

Figure 24 shows. 
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Figure 24. The tie-breaking score (uniqueness) for droplet replacement. 

 

To better formulate the above effect, we define the appearance count of node x, denoted 

as ac(x), as below 

 

  ( )  {
                                                 
|{ |   is an     an        }|  

     if   is a     no e
  ot er ise           

 (9) 



 

 31 

Obviously, the smaller the value of ac(x) is, the fewer chances (i.e., RCPs) x gets for being 

reused. Then, the uniqueness of RCP p(x, y), denoted as uniq(p), is accordingly defined as: 

 

    ( )      {   ( )    ( ) } (10) 

 

As mentioned, the smaller the value of uniq(p) is, the higher priority p has. Hence, the 

uniqueness of RCP is used as the secondary key during RCP ordering. That is to say, an RCP 

is selected in decreasing order of gain(p) first, and then in the increasing order of uniq(p). 

Figure 25 demonstrates an example of droplet replacement utilizing two different types of 

RCPs. Figure 25(a) gives an output right after droplet sharing. In the first iteration, the best 

RCP (i.e., the one with the highest precedence), which consists of two reusable nodes, is 

selected and the outcome is shown in Figure 25(b). In the next iteration, the new best RCP, 

which consists of a reusable node and a newly introduced PCV node, is chosen and the result 

is reported in Figure 25(c). The process of droplet replacement is not terminated until no RCP 

can be identified. Figure 26 outlines the proposed droplet replacement flow. 
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# of waste droplets: 8

# of operations: 8

ERU: 3.5625
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(a) Initial graph G. 

# of waste droplets: 8 à 6

# of operations: 8 à 8

ERU: 3.5625 à 2.9375
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(b) After the first replacement. 

# of waste droplets: 6 à 4

# of operations: 8 à 7

ERU: 2.9375 à 2.4375
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(c) After the second replacement. 

Figure 25. An example of droplet replacement. 
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DROPLET-REPLACEMENT(G)

// G is a dilution graph right after droplet sharing

1. while (there is a replacement candidate pair (RCP) )

2. find all RCPs

3. calculate ac(v) for every node v in RCPs

4. calculate gain(p) and uniq(p) for every RCP p

5. sort all RCPs – primary: gain, secondary: uniq

6. identify RCP q(x, y) with the highest precedence

7. apply droplet replacement using q; update G accordingly

8. label x and y as reused nodes if not PCV nodes

return the resultant dilution graph G’
 

Figure 26. The pseudo code of droplet replacement. 
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Chapter 6 Experimental Results 

To further evaluate our algorithm, WARA, two sets of experiments are conducted in this 

chapter. In the former experiment, three consecutive phases within WARA are compared with 

each other. In the later, WARA is compared with a state-of-the-art multi-target sample 

preparation method. Furthermore, we discuss the effect of adopting different tree generation 

method in WARA. 

 

6.1 Environment Setup 

WARA has been implemented in C++/Linux environment. We compare WARA with an 

existing state-of-the-art method for multi-target preparation, IDSA [29]. In order to make the 

comparisons appropriate, the same experimental environment setup reported in IDSA is 

adopted. Various numbers of target CVs, ranging from 1 to 100, are considered, and every 

target CV is randomly selected between 
 

    
 and 

    

    
 (i.e., precision level = 10). To make 

the results more convincing, every reported value is an average of 1000 random cases in this 

paper instead of 20 in IDSA. 
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6.2 Results and Analyses 

6.2.1 Three Consecutive Optimization Phases  

Figure 27 illustrates the experimental flow and Table 1 shows the results after three 

consecutive optimization phases respectively. An optimal unified exponential dilution process 

(OUED) is followed by each phase. To evaluate our result, four counts for reactant (#R), 

buffer (#B), waste (#W), and operation (#OP), are reported. 

 

Phase 1:

Tree

 Generation

Phase 2:

Droplet

 Sharing

Phase 3:

Droplet 

Replacement

Interpolated dilution

Exponential dilution

OUED OUED OUED

Target 

CVs

OUED: optimal unified 

exponential dilution

Result of 

Phase 1

Result of 

Phase 2

Final 

Result

Waste Recycling Algorithm (WARA)

 

Figure 27. The experimental flow. 

 

In Table 1, each row is associated with the results for a specified number of target CVs 

(#Ct). Note that the first row represents a special case, which is actually the result for 

single-target sample preparation problem. In that case, WARA makes no improvement and 

performs the same with REMIA. However, it is absolutely correct because it can find neither 

a pair of branch nodes x and y in a skewed mixing tree with CV(x) = CV(y) nor a feasible 

RCP. Hence, it is undoubted that REMIA performs very well in single-target sample 

preparation. Besides, the remaining rows (i.e., multi-target cases) show a trend that the 

improvement due to droplet sharing and droplet replacement becomes more significant as #Ct 

increases. 
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Table 1. Reactant/Buffer/Waste/Operation counts after the three optimization phases. 

 Tree Generation Droplet Sharing Droplet Replacement 

#Ct #R #B #W #OP #R #B #W #OP #R #B #W #OP 

1 2.38 6.11 7.49 10.08 2.38 6.11 7.49 10.08 2.38 6.11 7.49 10.08 

2 4.17 9.19 11.36 17.23 4.14 9.10 11.24 17.03 3.98 8.50 10.48 15.92 

3 5.97 12.49 15.46 24.57 5.90 12.11 15.01 23.88 5.40 10.37 12.77 20.76 

10 18.62 35.17 43.79 74.98 17.76 30.18 37.94 66.36 12.59 18.13 20.72 44.30 

20 36.92 67.15 84.07 147.05 33.84 50.94 64.77 118.43 18.89 24.29 23.18 68.36 

50 92.09 162.74 204.83 363.27 77.28 99.06 126.33 246.63 31.78 38.08 19.86 127.07 

100 184.10 321.24 405.36 722.02 138.72 158.47 197.19 413.42 52.92 59.70 12.62 214.86 

 

Figure 28 turns the data in Table 1 into Figures in terms of per-target basis. Reported data 

of tree generation are generally saturated at #Ct = 20, which indicates the saturation point of 

the optimal unified exponential dilution process (OUED). However, both droplet sharing and 

droplet replacement constantly improve the outcome as #Ct gradually grows to 100. 

Furthermore, the contribution of droplet replacement is more than droplet sharing in both 

reactant and waste minimization. Overall, WARA reduces #R/#W/#OP by 10%/17%/16% 

when #Ct is merely 3. As #Ct increases to 100, the reduction of reactant usage is 71%; the 

reduction of operation count is 70%, which is notable since WARA does not pay extra 

attention on minimizing the operation count. More significantly, the waste amount is reduced 

by 97%, which concludes that WARA is very effective in waste minimization. 
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(a) Reactant count. 

 

(b) Buffer count. 

 

(c) Waste count. 

 

(d) Operation count. 

Figure 28. The reactant/buffer/waste/operation count per target for various #Ct. 
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6.2.2 Sample Preparation with Different Tree Generation Techniques 

Figure 29 presents the results among the three phases of WARA and IDSA in four 

different counts. Since IDSA only reports the waste and operation counts, reactant and buffer 

usage of IDSA is omitted in Figure 29. Note that the outcome of WARA’s first phase (i.e., 

tree generation) achieves almost the same quality as IDSA, which implies that the 

combination of the mixing trees and the optimal unified exponential dilution (OUED) 

technique (i.e., REMIA) is already a fairly good solution for multi-target preparation. 

Moreover, suppose we compare the outcome of WARA (i.e., the outcome after droplet 

replacement) with IDSA, WARA significantly outperforms IDSA as #Ct increase. 

Specifically, WARA produces 48% less waste and requires 37% fewer operations than IDSA 

when #Ct = 10; the reduction further increases to 97% and 73% when #Ct grows to 100. 

 

(a) Total reactant count. 

 

 (b) Total buffer count. 

 

(c) Total waste count. 

 

(d) Total operation count. 

Figure 29. Comparisons among the three phases of WARA and IDSA. 
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Figure 30 illustrates the results of three different multi-target sample preparation 

techniques, including WARA, WARA with BS (WARA-BS), and IDSA [29]. WARA-BS is a 

variant of WARA, which adopts mixing trees produced by BS [26] instead of REMIA in the 

first phase. BS is the approach which guarantees the minimal number of dilution operations 

for dealing with single-target sample preparation problem.  

In Figure 30, we can find that WARA-BS consumes more reactant and buffer than WARA, 

which implies that adopting the mixing tree produced by REMIA as the initial dilution 

process is a better starting point than the one produced by BS in reactant minimization. On the 

contrary, WARA-BS requires fewer operations than WARA. The main reason is that the 

mixing trees produced by BS guarantee the minimal number of operations; it provides a better 

start point for operation minimization. Figure 30 also demonstrates that WARA-BS 

outperforms IDSA as well. We can conclude that the contribution jointly from droplet sharing 

and droplet replacement, which are the essential parts of WRA, is much more significant than 

that from initial tree generation. Finally, the experimental results also suggest that WARA is 

very time-efficient. It can finish the case with #Ct = 100 in just few seconds. 
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(a) Total reactant count. 

 

(b) Total buffer count. 

 

(c) Total waste count. 

 

(d) Total operation count. 

Figure 30. Comparisons among WARA, WARA-BS, and IDSA. 
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Chapter 7 Conclusion 

Sample preparation is an essential process in biochemical reactions, and many techniques 

have been proposed to address this issue recently. However, only one of them, IDSA, focuses 

on the multi-target sample preparation problem. In this thesis, we propose a new algorithm, 

WARA, which concentrates on reactant and waste minimization in multi-target sample 

preparation. WARA first generates a set of mixing trees for all required target concentrations 

as an initial solution, and then recycles waste droplets through droplet sharing and droplet 

replacement. For the droplet sharing, WARA uses number of nonzero bits (nzb) in the binary 

representation of CVs to speed up sharing process. During the droplet replacement, the 

replacement candidate pair (RCP) is proposed to guarantee that the count of waste droplets 

decreases monotonously. Two factors, gain and uniqueness, are used to determine the 

replacement order for better reactant usage and waste count. The experimental results 

demonstrate that all the three phases of WARA have their own contributions during 

optimization. Furthermore, WARA outperforms the existing state-of-the-art algorithm IDSA 

in terms of waste amount and operation count. WARA reduces the waste and operation count 

by 48% and 37% respectively when the number of target concentrations is ten. The reduction 

is increased to 97% and 73% when the number of target concentrations goes to hundred. 

Moreover, WARA is also very efficient in runtime. As a consequence, it is conclusive that 

WARA is currently the best method for multi-target sample preparation on digital 

microfluidic biochips. 
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