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Reactant and Waste Minimization
in Multi-Target Sample Preparation
on Digital Microfluidic Biochips

Student: Huei-Shan Lin  Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Sample preparation is an-essential process in biochemical reactions. Raw reactants are
diluted to reach the given target concentrations. Typically, a bioassay may require several
different target concentrations of a reactant. However, most of existing algorithms are
designed for single-target sample preparation only. When they are applied to prepare multiple
target concentrations, these target concentrations are prepared separately one by one, which is
inefficient and time-consuming. If all these target concentrations are produced simultaneously
during sample preparation, both the dilution operation count and the reactant usage can be
further minimized. In this thesis, we propose a waste recycling algorithm, WARA, to tackle
the multi-target sample preparation problem on digital microfluidic biochips (DMFBs). The
main idea of WARA'is to recycle waste droplets in the dilution process and turn them into
usable ones for reactant and waste minimization. WARA achieves waste recycling through
droplet sharing and droplet replacement. Experimental results show that WARA can reduce
the waste and operation count by 48% and 37% respectively as compared to an existing
state-of-the-art multi-target sample preparation method when the number of target
concentrations is ten. The reduction can be up to 97% and 73% when the number of target

concentrations goes even higher.
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Chapter 1 Introduction

Lab-on-a-chip (LoC), a kind of biochip, is one of the most popular research topics in
recent years [1]. An LoC is an analysis system that integrates many biochemical functions in a
small chip, such as injection, mixing, separation, and detection [2]. Compared with
conventional biochemical systems in labs, hospitals, or research centers, which are always
bulky and expensive, LoCs offer many advantages like portability, reagent volume reduction,
automation, mass production, fast analysis, high throughput, and low power consumption [3].

As the technology has been advancing in recent years, a new type of LoC, Digital
Microfluidic Biochip (DMFB), has been developed. Figure 1(a) illustrates a real DMFB
design, and Figure 1(b) shows a typical structure based on 2D array. A DMFB can be used to
carry out various bioassays by precisely controlling some discrete and small volume fluidic
droplets containing biochemical samples or reagents. Since all the reactants are dispensed as
discrete droplet, we called this kind.of biochip “digital” one.

(o

(@) A real case of DMFB [6].

Droplet

Electrodes
(2D array) Dispensing port

(b) A typical 2D array-based structure of DMFBs.
Figure 1. Digital Microfluidic Biochip.

1



The electrowetting-on-dielectrics (EWOD) effect is utilized as an electrostatic actuation
method to dispense, transport, split, merge, and mix droplets on DMFBs. Through applying
control voltage on the electrodes below the chip, the surface tension of droplets can be
changed. The induced force is used to move these droplets, as shown in Figure 2 [4]-[7].

Therefore, a biochemical assay can be conducted via a series of basic droplet operations.

Glass

dropelt

>\‘ )» < Droplet>->

X Glass h

High voltage \
High voltage
(@) Top view. (b) Side view.

Figure 2. Electrowetting-on-dielectrics (EWOD) effect.

Recently, lots of on-chip laboratory procedures, such as Immunoassay, protein
crystallization, and DNA sequencing, have been successfully demonstrated on DMFBs [8].
Because the demand for various applications continuously grows, the design complexity of
DMFBs is certainly increased. Therefore, a series of automation algorithms are necessary for
speeding up the process, reducing the manual effort, and improving the design quality. In the
past few years, lots of design automation algorithms are proposed to tackle problems in
DMFB design flow, such as synthesis, placement, routing, control pin assignment, and chip
testing [9]-[20]. Undoubtedly, the design automation for DMFB is one of the most emerging
topics nowadays, and the related research works are proliferating.

Sample preparation problem is one of the critical issues in DMFB design automation.
Reactants (sample or reagent) must be diluted to the specific concentration, which is called
target concentration, in the process. There are some factors may affect the quality of whole
dilution process, they are:

(1) Usage of valuable reactants: it is the major cost for a biochemical reaction. The usage
of valuable reactant which is very expensive or is limited in amount, like costly reagents or
infant’s blood, should be minimized. An analysis would fail if the preparation process does

not consider reactant minimization.



(2) Number of waste droplets: since the number of waste reservoirs on a given DMFB is
fixed, the capacity for waste handling is accordingly limited. The excessive waste count may
lead to long preparation time. Furthermore, keeping too much waste droplets on DMFB is not
propitious for droplet routing. That is, it makes the routing more complicated and may require
much extra transportation time to drive waste droplets into reservoirs.

(3) Number of dilution operations: it basically represents the preparation time, and thus
should be minimized. A long preparation process may be a fatal in some urgent clinical
incidents.

Several algorithms which tackle the sample preparation problem on DMFBs have been
proposed [24]-[31]. Most of them address on single-target sample preparation. That is, they
generate each target CV through an individual dilution process. If multiple target CVs are
required, different target concentrations must be produced one-by-one and is thus
time-consuming. Moreover, since those methods do not consider reactant sharing among
different dilution process, they - may lead to higher reactant usage and waste count.

Intermediate droplet sharing algorithm (IDSA) [29] is the first work that deals with the
concurrent preparation for multiple target concentrations. It reduces waste amount by means
of minimizing the number of intermediate concentrations in dilution process. However, this
strategy does not always lead to a better result. Furthermore, in our opinion, minimizing the
usage of valuable reactant is as important as waste reduction. Thus, an approach which can
achieve both reactant and waste minimization in multi-target sample preparation is necessary.

In this thesis, we propose a waste recycling algorithm (WARA) for multi-target sample
preparation on DMFBs. WARA adopts a tree-based dilution strategy. It generates a mixing
tree for each target concentration at beginning, and recycles the waste droplets among those
trees by droplet sharing and droplet replacement. Experimental results show that WARA
reduces the amount of (waste, operations) by (48%, 37%) on average as compared to IDSA if
the number of targets is ten'. The reduction can be up to (97%, 73%) as the number of target
concentrations grows to 100. The results suggest that WARA should be a better solution for
multi-target sample preparation on DMFBs.

The rest of this thesis is organized as follows. Chapter 2 describes the sample preparation
process. Chapter 3 briefly introduces previous works. In Chapter 4, we identify our
motivation and the problem formulation. Our multi-target sample preparation algorithm,

1 Since IDSA reported its results by means of bar charts, we have done our best to compare
our work with IDSA as accurate as possible.
3



WARA, is elaborated in Chapter 5. The experimental results are reported and discussed in
Chapter 6. Finally, Chapter 7 concludes this paper.




Chapter 2 Sample Preparation

2.1 Dilution Procedures

The goal of sample preparation is to prepare specific target concentrations (C;) through a
series of dilution operations. On biochips, both linear dilution and serial dilution procedures
are commonly used [21][22]. However, the serial dilution is more suitable than the linear one
on DMFBs because reactants are dispensed as discrete droplets instead of continuous flows.
The serial dilution process dilutes a reactant droplet repeatedly using a fixed mixing ratio, like
1:1. For example, if C; = 75%, the serial dilution procedure first dilutes a reactant droplet with
a buffer droplet to produce two resultant droplets with the same concentration of 50%. One of
the resultant droplet, or called intermediate droplet, is again diluted with a reactant droplet to
achieve the target concentration (i.e., 75%); the other resultant droplet, which remains unused
in the following dilution process, is called waste droplet. In this case, two dilution operations
are required, as shown in Figure 3. Note that numerous individual dilution operations in a
whole serial dilution process may happen [22]. Therefore, a smaller dilution operation count

usually implies a faster sample preparation process.

/ Intermediate droplet
Ci
(1)

waste drople

Figure 3. The serial dilution process.



2.2 Mixing Models

There are different mixing models that can be performed on various DMFB architectures.
Three kinds of mixing models are commonly adopted in previous works. Suppose the ratio
between two substances for mixing is (X: y), the three mixing models can be expressed as:
WDx=y=1; 2)x=y*1; (3)x #y. The second model is adopted in previous works
[27]-[29] through a special designed rotary mixer. However, the rotary mixer occupies much
chip area and is not an essential block of DMFB. For most general DMFBs, only the first
mixing model can be easily performed through linear or array mixers [5]. Hence, we adopt the
first mixing model, named (1:1) mixing model, in this work, just as the previous works
[26][30][31] do. Accordingly, the number of (1:1) dilution operations is then used to estimate
the sample preparation time.

However, an inherent error-between the target concentration and the value can be
achieved may exist no matter which mixing model is adopted. The inherent error is

unavoidable if the denominator-of the target concentration is not a power of two or even not a
rational number, like 3 or v/3. Even through, it can be minimized to an acceptable range if the

precision level is high enough [26][27]. A precision level n implies that n fractional bits are

1
2n+1

used to represent the target concentration and the error is limited to

accordingly. Users

can determine a proper precision level to make this error acceptable.



2.3 Exponential and Interpolated Dilution

Under the (1:1) mixing model, a dilution operation first mixes two source droplets into a
mixture and then splits it into two resultant droplets [22]. The two resultant droplets have the
same concentration value (CV for short). The relation between these droplets can be

expressed as:

C;+C
c =1 2

e (1)

Where C; and C, represent the CVs of two source droplets and C; is the CV of the
resultant droplets.

A dilution operation can be further classified as two types: exponential dilution and
interpolated dilution [22]. An_exponential dilution is a dilution operation which one of its

source droplets is buffer. For example, if a droplet with CV = C is diluted with a buffer

droplet, the CV of the resultant droplet is %; if n exponential dilution operations are applied

consecutively, the CV of the final two resultant droplets finally becomes 2% In this thesis, a

CV is called a prime concentration value (PCV) if it is equal to 1 or can be produced through
a series of exponential dilutions starting from a raw reactant droplet (i.e., CV =1), for
example, 1—16. That is, a PCV contains only one bit ‘1’ in its binary representation. On the
other hand, for an interpolated dilution, neither two source droplets is buffer. Both the two

kinds of dilution operations are necessary to prepare an arbitrary target CV. Figure 4

illustrates the two types of dilution processes.

+ 0.00001, 0.0001, 0.001, 0.01, 0.1,

e ee 0o

(@) Exponential dilution. (b) Interpolated dilution.
Figure 4. Exponential and Interpolated Dilution.



Chapter 3 Previous Works

3.1 Single-Target Sample Preparation Algorithms

3.11BS

The bit-scanning (BS) approach [26] is the first work for dilution process optimization. In
BS, the target concentration is represented in binary format, and is utilized to guide the whole
dilution process. Each bit ‘1’ in the binary string implies that a raw reactant droplet should be

dispensed for mixing, and a bit ‘0’ implies a buffer droplet instead. For example, given

Ci= 160% = 0.1001011111,, the dilution process follows the binary string from the least

significant bit (LSB) to the most significant bit (MSB), as shown in Figure 5. The total
number of operations is equal to the length of binary string. It is the minimal operation count
required. for a given C;, and-is-no-more than n (precision level). During each operation, only
one of the two resultant droplets is kept, and becomes the source droplet in the next operation.
The other resultant droplet which remains unused in the overall dilution process will be
discarded. Therefore, a waste droplet is produced after each operation. That is the major
reason that BS consumes more reactants and buffers as well as produces more waste than

other approaches.

# of reactant droplets: 7
# of buffer droplets: 4
# of waste droplets: 10
# of operations: 10

Figure 5. A dilution process using BS.



3.1.2 DMRW and IDMA

The algorithm for dilution and mixing with reduced wastage (DMRW) [27] is the first
approach aiming at waste minimization by means of droplet sharing. The authors of DMRW
claim that waste minimization is good for reducing reactant usage as well as droplet routing
time. DMRW achieves target concentrations based on a binary search strategy. It
continuously updates the lower and upper bounds during the searching process. The two
bounds are initially set as 0 and 1, which stand for buffer and raw reactant. The lower/upper

bound is replaced by the average of them if the target CV is larger/smaller than the average.

607

The process is terminated when the target CV is achieved. The dilution process for C, = o

using DMRW is shown in Figure 6, where the number beside an edge indicates the amount of
required droplets. Compared with BS, DMRW consumes fewer reactant and buffer droplets
and generates less waste. However, DMRW results in more operation count; that is, it requires

longer period for sample preparation.

# of reactant droplets: 6
# of buffer droplets: 4
# of waste droplets: 9 LN
# of operations: 19

Figure 6. A dilution process using DMRW.

The improved dilution/mixing algorithm (IDMA) [28] is an improved version of DMRW.

For some target CVs, such as % and 150%, the dilution graph produced by DMRW is

extremely unbalanced. In such cases, one of the two bounds varies frequently, and much
waste droplets are thus produced. IDMA moderately relaxes the bound under certain
conditions to make the dilution graph more balanced. For example, IDMA turns the dilution

graph in Figure 7(a) into the one in Figure 7(b) by relaxing the lower bound from % to 0.

It makes the graph more balanced and reduces number of waste droplets. However, only few
9



cases can be improved by IDMA. In most cases, IDMA even consumes more reactants,

produces more waste droplets, and needs more operation counts than DMRW. Moreover,

IDMA may lead to imprecise target CV, such as %Zj under C;= % It indicates that IDMA

may induce a larger error than other approaches.

# of reactant droplets: 6
# of buffer droplets: 5
# of waste droplets: 10
# of operations: 14

(a) An unbalanced dilution graph produced by DMRW.

# of reactant droplets: 6 > 2 N
# of buffer droplets: 5 > 2 -
# of waste droplets: 10 > 3
# of operations: 14 > 10

(b) The dilution graph improved by IDMA

Figure 7. A dilution process using IDMA.
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3.1.3 REMIA

The reactant minimization algorithm (REMIA) [31] is the first algorithm which focuses
on reactant minimization. For a given target CV, REMIA constructs a reactant-minimized
mixing tree to guide the dilution process. Besides, REMIA utilizes essential reactant usage
(ERU) of a mixing tree to estimate reactant usage, which gives a lower bound for reactant
consumption. REMIA is a two-phased algorithm, including interpolated dilution phase and
exponential dilution phase. In the interpolated dilution phase, REMIA decomposes the binary
string of target CV in a top-down manner to construct the mixing tree with minimized ERU.
In the exponential dilution phase, all leaf nodes of the mixing tree are generated through

reactant-minimal exponential dilution process. This process guarantees minimal reactant

usage. Figure 8 illustrates an example of REMIA for C; = % The two phases are identified

in Figure 8(a) and Figure 8(b) respectively.

CVv=0.001011111, CV=0.0001111, CV=0.0001
CVv=0.1001011111, CV=0.00011111, CV=0.000111,

# of waste droplets: 6
# of operations: 6
ERU: 1.8125

(a) A mixing tree produced by REMIA.

# of reactant droplets: 0 + 2 =2
# of buffer droplets: 0+ 7 =7

# of reactant droplets: 2 # of waste droplets: 6 +2 =8

# of buffer droplets: 7 # of operations: 6 + 7 =13

# of waste droplets: 2 ERU: 1.8125

# of operations: 7

(b) The reactant-minimal exponential dilution process. (c) Total result.

Figure 8. A dilution process using REMIA.
11



REMIA can also be extended to deal with multi-target sample preparation problem. The
extended version uses optimal unified exponential dilution process (OUED) to produce all
leaf nodes required by the mixing trees for each C; simultaneously, and further minimizes the
reactant usage. The details of mixing tree, ERU, reactant-minimal exponential dilution
process, and optimal unified exponential dilution process (OUED) will be discussed in the

following section.




3.2 Multi-Target Sample Preparation Algorithm

Intermediate droplet sharing algorithm (IDSA) [29] is the first algorithm to ensure
concurrent preparation for multiple target CVs. The primary goal of IDSA is to minimize the
number of waste droplets. More specifically, IDSA focuses on minimizing the number of
intermediate CVs utilized in dilution process for waste and operation count reduction. In other
words, the authors of IDSA believe that the number of waste droplets can be reduced through
minimizing the number of intermediate CVs.

IDSA is a two-phased algorithm. In the first phase, an initial dilution graph is generated,
as shown in Figure 9. In a dilution graph, a node with in-degree of 0 is associated with a raw
reactant droplet or a buffer droplet; a node with out-degree of 0.is associated with a target CV;
other nodes are intermediate CVs; the number beside edges represents the amount of required
droplets; a black dot beside a node represents a waste droplet. The initial dilution graph is

generated with dynamic programming. In IDSA, a pair of CV that can generate a CV through
a dilution operation, for example, (%, i) or (0, Z) for%, is named as a preceding pair of it. To

generate the initial dilution graph, IDSA enumerates all possible preceding pairs for every
CV. Then it traces all feasible preceding pairs recursively starting from every target CV, and

randomly selects the intermediate CVs to construct the initial dilution graph.

# of reactant droplets: 9

# of buffer droplets: 11

# of waste droplets: 17

# of operations: 22

# of intermediate nodes: 18

Figure 9. An initial dilution graph produced by IDSA.
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The second phase of IDSA tries to minimize the number of intermediate CVs. Two
strategies are adopted: 1) combining intermediate nodes and 2) utilizing intermediate nodes.

Firstly, IDSA combines the intermediate nodes in initial dilution graph if they have the same

352 192 384 768 512
, , , and
1024° 1024 ° 1024 1024 1024

CV. For example, it shares the common modes of CV = in
Figure 9, and the result is shown in Figure 10. Next, IDSA reduces the number of

intermediate nodes through utilizing intermediate nodes. For example, the preceding pair

960 384 928 656

(ﬂ, ——) are used to replace (——, ——) for the node of CV = —, and the node of CV =
1024° 1024 1024° 1024 1024

92

ﬁ can thus be eliminated, as illustrated in Figure 11.

1

@ (0)

) o= R

@ 1Al R\ ®
11

! ©

# of reactant droplets: 9 > 4

1 (656 A
102 # of buffer droplets: 11 =5
1
(o) s

# of waste droplets: 17 = 6

r 896 # of operations: 22 > 12
) # of intermediate nodes: 18 > 9
960 1
1 1024 Al
1 ‘H’ ‘H'

Figure 10. The dilution graph produced by IDSA after combining intermediate nodes.

However, minimizing the count of Intermediate nodes cannot always lead to a better
result. This process may even increase the waste count, operation count and reactant usage.
Figure 11 proves our concern that minimizing the number of intermediate nodes is not
necessary reducing the waste amount. Therefore, a better indicator instead of intermediate CV

count is required.

14



# of reactant droplets: 9 > 4 > 5
it of buffer droplets: 11 > 5> 7
te droplets: 17 > 6 > 9
ons: 22 > 12 > 14
ate nodes: 18 > 9 > 8
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Chapter 4 Problem Description

4.1 Mixing Tree

Unlike DMRW [27], IDMA [28], and IDSA [29] based on the dilution graph, another
dilution strategy, mixing tree, is adopted by BS [26], RMA [29], and REMIA [31]. Here, we

26

introduce mixing tree in detail. Two mixing trees produced by REMIA for C; = z—iand ”

are shown in Figure 12. A mixing tree looks like a dilution graph, but there are some
differences between them. A node with in-degree of O (i.e., leaf node) in a mixing tree is a
PCV node instead of a reactant or a buffer droplet. A PCV node, defined by REMIA, is a
node associated with PCV. Moreover, a mixing tree must be a full binary tree, that is, every
branch node has exactly two children since a dilution operation requires two source droplets.
However, only one of the two resultant droplets is utilized in the next dilution operations. As
a result, a waste droplet must-be-produced at each branch node. The relation between the
number of dilution operations, branch nodes, and waste droplets in a mixing tree T can be

expressed as:
#branch node(T) = #operation(T) = #waste(T) 2

Note that there is a little difference between Equation (2) and the previous works like
DMRW and IDMA, which define their equation as: #operation(T) — 1 = #waste(T).
Previous works indicate that both two resultant droplets of target CV are useful and should
not be considered as waste droplets. Nevertheless, we regard that only one of them s required,;

that is another one should be viewed as a waste droplet.

16



# of waste droplets: 3 # of waste droplets: 2
# of operations: 3 # of operations: 2
ERU: 0.875 ERU: 1.125

Figure 12. Two mixing trees produced by REMIA.

The overall reactant consumption for a mixing tree is unknown because the process about
how to produce the leaf nodes is not determined yet. However, the minimal reactant usage can
still be estimated from a mixing tree. Since the CV of a node implies the amount of reactant it
contains, which gives a lower bound for the reactant usage. Therefore, the summation of CVs
of all leaf nodes, defined as essential reactant usage (ERU), is utilized to estimates the total
reactant usage. The minimal number of required reactant droplets can be accordingly
calculated by rounding up the ERU. That is, let CV(v) denote the CV of a node v, the relation

between the minimal number of reactant droplets and the ERU can be described as:

#reactant(T) = min#_reactant(T) = [ERU(T)] = [Z CV(v)l (3)

veleaf(T)

REMIA adopts a reactant-minimal exponential dilution process that produces all required
leaf nodes of a mixing tree T with the minimal reactant usage. That is, #reactant(T) =
min#_reactant(T). This process is very similar to the well-known Huffman encoding
algorithm [32]. Figure 13 illustrates this process for the mixing trees presented in Figure 12,
where #reactant(T;) = [ERU(T;)] = 1 and #reactant(T,) = [ERU(T,)] = 2.

17



Reactant-minimal

exponential dilution I

# of reactant droplets: 1
# of buffer droplets: 4

# of waste droplets: 1

# of operations: 4

() The reactant-minimal exponential dilution process for T.

Reactant-minimal )
exponential dilution # Of reactant droplets: 2

# of buffer droplets: 4
# of waste droplets: 3
# of operations: 4

PCVs of T

(b) The reactant-minimal exponential dilution process for To.

Figure 13. Reactant-minimal exponential dilution process for Figure 12.

Suppose there are more than one target concentration, REMIA can be extended by
adopting an optimal unified exponential dilution (OUED) process to produce the leaf nodes of
all mixing trees simultaneously. This process can further reduce reactant usage because:

[Z ERU(T)

For example, the two individual reactant-minimal exponential dilution processes in Figure

< ZIERU(TN (4)

T

13 is replaced by an optimal unified dilution process (OUED) shown in Figure 14, the number
of required reactant droplets is thus reduced from 3 to 2. The amount of buffers, wastes, and
operations are also reduced. Therefore, extended-REMIA provides a good initial solution for
multi-target sample preparation. Moreover, it guarantees that the overall wasted reactant is

less than one droplet because:

ERU(T)‘ — ) ERU(T) < 1 5
2. 2. ©)
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# of reactant droplets: 3 > 2
# of buffer droplets: 8 > 5

# of waste droplets: 4 > 0

# of operations: 8 > 5

PCVsof T7and 75
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4.2 Motivation

The major problem of a mixing-tree-based dilution process is excessive waste because
every branch node always implies one waste droplet. The situation has become worse when
multiple target CVs are considered. However, if one waste droplet produced in a mixing tree
is useful for the other mixing tree while preparing multiple target CVs, it can be saved
accordingly. For example, if the two mixing trees shown in Figure 15(a) share the same

branch node with CV = g, the overall ERU can be reduced from 2 to 1.375 and the number

of waste droplets is decreased from 6 to 3, as depicted in Figure 15(b). The operation is
named as droplet sharing, and it can effectively minimize both the reactant usage and the

waste amount.

# of waste _droplets: 6 # of waste droplets: 6 > 3
# of operations: 6 # of operations: 6 > 4
ERU: 2 ERU: 2 > 1.375
. 14
(a) Two mixing trees for Cp = g and 2- (b) After sharing .

Figure 15. A motivational example of droplet sharing.

In addition to droplet sharing, another strategy can also help to reduce the waste count.

For example, Figure 16(a) illustrates the result after droplet sharing for three mixing trees for

C; = g, g and g. Among this graph, we find that the node with CV = g can be produced

through recycling the waste droplets with CV = Z—z and g respectively and applying an

extra interpolated dilution. Therefore, the newly droplet with CV =2—j produced by the
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interpolated dilution can thus replace the original one as shown in Figure 16(b). This
recycling-then-replacing optimization strategy is called droplet replacement.

# of waste droplets: 6 # of waste droplets: 6 2 4
# of operations: 7 # of operations: 7 =2 7
ERU: 3.1875 ERU: 3.1875 > 2.625
(a) The result after droplet sharing (b) The result after the branch node with
5 .
for C; = g,g and %. CV = g is replaced.

Figure 16. A motivational example of droplet replacement.

The above two strategies show that both of them are useful for minimizing the reactant
usage and the waste amount. More specifically, they turn the waste droplets into useful ones

for reactant and waste minimization in multi-target sample preparation problem.
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4.3 Problem Formulation

The multi-target sample preparation problem is formulated as follows. Given a set of
target CVs, determine a dilution process under the (1:1) mixing model such that the reactant
usage and the waste amount can be both minimized.

The proposed algorithm, WARA, which extensively exploits both droplet sharing and
droplet replacement, is elaborated in the next chapter.




Chapter 5 Proposed Algorithm

In this chapter, we detail our multi-target sample preparation algorithm, waste recycling
algorithm (WARA). Section 5.1 roughly describes the algorithm flow of WARA, which is
composed of three consecutive phases. From Section 5.2 to section 5.4, we elaborate how the

three phases work exactly.

5.1 Algorithm Overview

WARA divides a dilution process into three consecutive phases: Tree generation, droplet
sharing, and droplet replacement. In the tree generation phase, WARA adopts the output of
extended-REMIA [31] as its initial solution. In the second phase, WARA performs droplet
sharing among all mixing trees for waste and reactant minimization. The dilution process is
further refined via droplet replacement in the third phase. Finally, the optimal unified
exponential dilution process (OUED) is followed to produce all required PCV nodes. The

overall algorithm flow is illustrated in Figure 17.

Target
CVs

Phase 1:
Tree
Generation

\ 4

Phase 2:
Droplet
Sharing

4

Phase 3:
Droplet
Replacement

Interpolated dilution

Exponential dilution Y

OUED: optimal unified OUED
exponential dilution

______________ - — — —
Final
Result
Figure 17. The overall algorithm flow of WARA.
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5.2 Tree Generation

Tree generation is the first phase of WARA. In this phase, WARA generates a set of
mixing trees with minimized ERU using REMIA [31] as initial dilution process. Each mixing
tree is associated with a given target CV. According to the property of REMIA, all the

.. .. 15 23 .
produced mixing trees are skewed. The two mixing trees for C, = ” and o, are shown in

Figure 18. We adopt REMIA to produce initial mixing trees because REMIA is proven an
effective method for reactant minimization in single-target sample preparation. Besides, other
tree-based sample preparation methods like BS [26] can also be applied for tree generation in
terms of different optimization goals, such as operation minimization. The comparison
between experimental results obtained from different tree generation algorithms is shown in

Chapter 6.

@ &

_8 _8
64 64

# of waste droplets: 6
# of operations: 6

ERU: 2

Figure 18. Tree generation.
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5.3 Droplet Sharing

A branch node associated with a waste droplet is defined as a reusable node. For example,

. . . 12 14 15 23
in Figure 18, the nodes with CV S T and o, are all reusable nodes. In contrast, a

branch node with no waste droplet is a reused node. For instance, the node with CV = g in

Figure 19(a) is a reused node. The waste droplet of a reusable node can be utilized by another
dilution operation through droplet sharing or droplet replacement. Note that each branch node
is a reusable node in the initial mixing trees.

The first step of droplet sharing is identifying all sharable node pairs. A node pair (X, y) is
sharable if both nodes are reusable nodes and CV(x) = CV(y). Assume (X, y) is a sharable
node pair and node z represents the dilution operation which taking y as one of its source
droplets, then z can take x as its source droplet instead of y since CV(x) = CV(y). As a
consequence, X becomes a reused node since it is utilized at two different operations. At the
same time, the subtree rooted at y can thus be safely eliminated. It is obvious that droplet
sharing can effectively minimize both the reactant usage as well as the waste amount.

Suppose there exist more than one sharable node pairs at the same time, the order of pair
selection does not affect the final result. That is, the outcome of droplet sharing is eventually

identical no matter which node pair is selected first. For example, there are two sharable node

pairs in Figure 18, one is with CV = g and the other is with CV = g. Figure 19(a) shows the
intermediate result as the node pair with CV = g is selected for sharing first. Since there is

still one sharable node pair with CV = g left in Figure 19(a), the succeeding operation can
thus be further performed. The final result is shown in Figure 19(b). On the other hand, if
Cv= g is selected first, it still leads to the identical outcome in Figure 19(b). According to

the example, it is clear that the order of pair selection has no effect on the outcome of droplet

sharing.
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reusable

# of waste droplets: 4
# of operations: 5
_____________ ERU: 1.625

reused
node

(a) The intermediate result of droplet sharing.

# of waste droplets: 3
# of operations: 4
ERU: 1.375

(b) The final result of droplet sharing.
Figure 19. Droplet sharing.

However, although the order of pair selection does not affect the final result, it does
impact the runtime efficiency. For example, if the node pair with CV = g instead of g is

selected first, only one sharing step is required to.complete the droplet sharing process. It
indicates that the farther a sharable node pair is from PCV nodes, the higher priority it should
own because it can potentially eliminate the possible sharing for those sharable node pairs
resided in larger fanin cone. This order decision strategy can improve the runtime efficiency
and is exactly what Figure 18 and Figure 19 jointly demonstrate.

Furthermore, we find that for a node v, the number of nonzero bits in the binary
representation of CV(v), denoted as nzb(v), can help us for deciding the sharing order. If x and
y are two children nodes of node z, then the relation between their nzb number can be
expressed as:

nzb(z) = nzb(x) + nzb(y) (6)
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In other words, a node a must be farther from PCV nodes than the node b, if nzb(a) is
larger than nzb(b). Therefore, in order to speed up the whole sharing procedure, the sharing
must start from the pair with largest nzb to another with the smallest. The process of droplet
sharing is not terminated until no sharable node pairs can be found. Figure 20 outlines the

proposed droplet sharing flow.

DROPLET-SHARING(F)

/I F is a forest containing a set of mixing trees

/Il every branch node in F is initially labeled as a reusable node
1. while (there is a sharable node pair)

2 identify a sharable node pair (x, y) with the largest nzb
3. fory’s fanout node z, substitute y with x as z’s fanin node
4, remove the subtree rooted at y

5 label x as a reused node

6. return the resultant dilution graph G

Figure 20. The pseudo code of droplet sharing.
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5.4 Droplet Replacement

In the end of droplet sharing phase, no sharable node pairs can be found anymore.
However, some unpaired reusable nodes may still exist. Therefore, we further propose a
method, which can keep recycling those remaining reusable nodes. Assume x and y are two
reusable nodes and z is a node residing at neither x’s fanin cone nor y’s fanin cone; then the
pair (X, y) is defined as a replacement candidate pair (RCP) of z if

CV(x)+CV(y)

> ()

CV(2)=

The resultant droplet of mixing the two waste droplets of x and y, denoted by w, can be
utilized to replace z because CV(w) = CV(2). If this replacement happens, z and its exclusive
fanin cone can thus be eliminated. Figure 21 illustrate the main concept of droplet
replacement. It is clear that droplet replacement can also reduce the reactant usage as well as

the waste amount simultaneously.

;

2
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Figure 21. Droplet Replacement.

Unlike droplet sharing, the result of droplet replacement is order dependent. For example,
for three reusable nodes X, y, and z, there may exist up to three feasible RCPs (X, y), (y, z), and
(X, z). Nevertheless, no matter which RCP is selected for droplet replacement, it would make
other two RCPs no longer feasible. For example, selecting (x, y) would make (y, z) and (X, z)

no longer feasible because x and y become reused nodes, as illustrated in Figure 22.
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RCPs RCPs RCPs RCPs

(X’ y) (X’ y) (X’_y) (X,—y}
v.2) | ™ o | [0 ] [
(x, 2) Lz 23 (x, Z)

Figure 22. Droplet replacement is order dependent.

Since the reactant minimization is the primary optimization objective of WARA, the
strategy for RCP ordering should be a good idea to sort RCPs by total ERU saving. That is, an
RCP with more ERU saving should be selected first for droplet replacement. Assume G/G’
are the graph before/after an RCP p is selected for droplet replacement, the gain of p is
defined as:

gain(p) = ERU(G) — ERU(G") (8)

The droplet replacement process selects RCPs from the largest gain to the smallest one to
achieve a maximal possible reactant reduction.

In the original definition, both two nodes within an RCP must be reusable nodes.
However, feasible RCPs may be few if only the reusable nodes are considered, and the
possibility of droplet replacement is thus limited. Consider the case illustrated in Figure 23(a),
no feasible RCPs can be found for reactant minimization. However, if an additional PCV
node is allowed while creating an RCP, it is likely that the overall ERU can be further
minimized, just as Figure 23(b) shows. Therefore, the original definition of RCP is relaxed —
for an RCP p, at most one of the two nodes can be a PCV node as long as gain(p) is positive.
A loose upper bound on the number of maximum possible RCPs in a dilution graph G is C¥,

where k is the number of all branch and PCV.nodes in G.
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# of waste droplets: 5 # of waste droplets: 5 > 3

# of operations: 5 # of operations: 5 > 4
ERU: 1.9375 ERU: 1.9375 - 1.4375
(a) Two mixing trees for. €, = Z_Z and z_Z, (b) The result after droplet replacement.

Figure 23. An additional PCV node is allowed while creating an RCP.

If two or more RCPs are with the same largest gain, which is not uncommon, a
tie-breaking score is required for a better result. As mentioned, if an RCP (X, y) is selected for
droplet replacement, neither x nor y can appear in other RCPs later on since x and y are
already reused. Suppose that RCP p=(x, y), RCP. g=(x, 2, RCP r = (z, w), and
gain(p) = gain(q) > gain(r), the RCP p should have higher priority over the RCP g because 1)
p is the only one chance for y to be reused and 2) z still has another chance (i.e., the RCP r) to
be reused later even though the selection of p automatically invalidates q due to X, just as

Figure 24 shows.

RCPs RCPs RCPs

NPl (xy) pl(X,y) p| 65

Largest gaiNir o T (x, 2) [ m.lq (e 2) | © [q] (x. 2)
ri(z, w) ri(z, w) P {2

v X

Figure 24. The tie-breaking score (uniqueness) for droplet replacement.

To better formulate the above effect, we define the appearance count of node x, denoted

as ac(x), as below

(x) = © , if x is a PCV node 9
A = U{plpisanRCPandxep}| , otherwise ©)
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Obviously, the smaller the value of ac(x) is, the fewer chances (i.e., RCPs) x gets for being
reused. Then, the uniqueness of RCP p(x, y), denoted as uniq(p), is accordingly defined as:

uniq(p) = min{ ac(x) ,ac(y) } (10)

As mentioned, the smaller the value of uniq(p) is, the higher priority p has. Hence, the
uniqueness of RCP is used as the secondary key during RCP ordering. That is to say, an RCP
is selected in decreasing order of gain(p) first, and then in the increasing order of unig(p).

Figure 25 demonstrates an example of droplet replacement utilizing two different types of
RCPs. Figure 25(a) gives an output right after droplet sharing. In the first iteration, the best
RCP (i.e., the one with the highest precedence), which consists of two reusable nodes, is
selected and the outcome is shown in Figure 25(b). In the next iteration, the new best RCP,
which consists of a reusable node and a newly introduced PCV node, is chosen and the result
is reported in Figure 25(c). The process of droplet replacement is not terminated until no RCP
can be identified. Figure 26 outlines the proposed droplet replacement flow.
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8\ #ofwaste droplets: 8 8
64 /) # of operations: 8 64

ERU: 3.5625

(@) Initial graph G.

# of waste droplets: 8 > 6 # of waste droplets: 6 > 4
# of operations: 8 > 8 # of operations: 8 > 7
ERU: 3.5625 > 2.9375 ERU: 2.9375 > 2.4375
(b) After the first replacement. (c) After the second replacement.

Figure 25. An example of droplet replacement.
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DROPLET-REPLACEMENT(G)
/I G is a dilution graph right after droplet sharing
while (there is a replacement candidate pair (RCP) )
find all RCPs
calculate ac(v) for every node v in RCPs
calculate gain(p) and uniq(p) for every RCP p
sort all RCPs — primary: gain, secondary: unig
identify RCP q(x, y) with the highest precedence
apply droplet replacement using g; update G accordingly
label x and y as reused nodes if not PCV nodes

Nk~ E

return the resultant dilution graph G’

. The peudo code of doplet e

I'E
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Chapter 6 Experimental Results

To further evaluate our algorithm, WARA, two sets of experiments are conducted in this
chapter. In the former experiment, three consecutive phases within WARA are compared with
each other. In the later, WARA is compared with a state-of-the-art multi-target sample
preparation method. Furthermore, we discuss the effect of adopting different tree generation
method in WARA.

6.1 Environment Setup

WARA has been implemented in C++/Linux environment. We compare WARA with an
existing state-of-the-art method for multi-target preparation, IDSA [29]. In order to make the
comparisons appropriate, the same experimental environment setup reported in IDSA is

adopted. Various numbers of target CVs, ranging from 1 to 100, are considered, and every

target CV is randomly selected between 101? and % (i.e., precision level = 10). To make

the results more convincing, every reported value is an average of 1000 random cases in this
paper instead of 20 in IDSA.
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6.2 Results and Analyses

6.2.1 Three Consecutive Optimization Phases

Figure 27 illustrates the experimental flow and Table 1 shows the results after three
consecutive optimization phases respectively. An optimal unified exponential dilution process
(OUED) is followed by each phase. To evaluate our result, four counts for reactant (#R),
buffer (#B), waste (#W), and operation (#OP), are reported.

Waste Recycling Algorithm (WARA)

Phase 1: Phase 2: Phase 3:
Tree Droplet Droplet -
Generation Sharing Replacement

Interpolated dilution

h 4
h 4

Exponential dilution v v
OUED: optimal unified OUED OUED OUED
exponential dilution * l— $
Result of Result of Final
Phase 1 Phase 2 Result

Figure 27. The experimental flow.

In Table 1, each row is associated with the results for a specified number of target CVs
(#Cy). Note that the first row represents a special case, which is actually the result for
single-target sample preparation problem. In that case, WARA makes no improvement and
performs the same with REMIA. However, it is absolutely correct because it can find neither
a pair of branch nodes x and y in a skewed mixing tree with CV(x) = CV(y) nor a feasible
RCP. Hence, it is undoubted that REMIA performs very well in single-target sample
preparation. Besides, the remaining rows (i.e., multi-target cases) show a trend that the
improvement due to droplet sharing and droplet replacement becomes more significant as #C;

increases.
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Table 1. Reactant/Buffer/Waste/Operation counts after the three optimization phases.

Tree Generation Droplet Sharing Droplet Replacement
#Ct #R #B #W #OP #R #B #W #OP #R #B #W #OP
1 2.38 6.11 7.49 10.08 2.38 6.11 7.49 10.08 2.38 6.11 7.49 10.08
2 4.17 9.19 11.36 17.23 4.14 9.10 11.24 17.03 3.98 8.50 | 10.48 15.92
3 5.97 12.49 15.46 24.57 5.90 1211 15.01 23.88 5.40 10.37 | 12.77 20.76
10 18.62 35.17 43.79 74.98 17.76 30.18 37.94 66.36 | 12.59 18.13 | 20.72 44.30
20 36.92 67.15 84.07 | 147.05 33.84 50.94 64.77 | 118.43 | 18.89 24.29 | 23.18 68.36
50 92.09 | 162.74 | 204.83 | 363.27 | 77.28 | 99.06 | 126.33 | 246.63 | 31.78 | 38.08 | 19.86 | 127.07
100 | 184.10 | 321.24 | 405.36 | 722.02 | 138.72 | 158.47 | 197.19 | 41342 | 5292 | 59.70 | 12.62 | 214.86

Figure 28 turns the data in Table 1 into Figures in terms of per-target basis. Reported data

of tree generation are generally saturated at #C; = 20, which indicates the saturation point of

the optimal unified exponential dilution process (OUED). However, both droplet sharing and

droplet replacement constantly improve the outcome as #C; gradually grows to 100.

Furthermore, the contribution of droplet replacement is more than droplet sharing in both
reactant and waste minimization. Overall, WARA reduces #R#W/H#OP by 10%/17%/16%

when #C; is merely 3. As #C; increases to 100, the reduction of reactant usage is 71%; the

reduction of operation count IS 70%, which is notable since WARA does not pay extra

attention on minimizing the operation count. More significantly, the waste amount is reduced

by 97%, which concludes that WARA is very effective in waste minimization.
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6.2.2 Sample Preparation with Different Tree Generation Techniques

Figure 29 presents the results among the

three phases of WARA and IDSA in four

different counts. Since IDSA only reports the waste and operation counts, reactant and buffer
usage of IDSA is omitted in Figure 29. Note that the outcome of WARA'’s first phase (i.e.,

tree generation) achieves almost the same quality as IDSA, which implies that the

combination of the mixing trees and the optimal unified exponential dilution (OUED)

technique (i.e., REMIA) is already a fairly
Moreover, suppose we compare the outcome

replacement) with

good solution for multi-target preparation.
of WARA (i.e., the outcome after droplet

IDSA, WARA significantly outperforms IDSA as #C; increase.

Specifically, WARA produces 48% less waste and requires 37% fewer operations than IDSA

when #C; = 10; the reduction further increases to 97% and 73% when #C; grows to 100.
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(c) Total waste count.

(d) Total operation count.

Figure 29. Comparisons among the three phases of WARA and IDSA.
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Figure 30 illustrates the results of three different multi-target sample preparation
techniques, including WARA, WARA with BS (WARA-BS), and IDSA [29]. WARA-BS is a
variant of WARA, which adopts mixing trees produced by BS [26] instead of REMIA in the
first phase. BS is the approach which guarantees the minimal number of dilution operations
for dealing with single-target sample preparation problem.

In Figure 30, we can find that WARA-BS consumes more reactant and buffer than WARA,
which implies that adopting the mixing tree produced by REMIA as the initial dilution
process is a better starting point than the one produced by BS in reactant minimization. On the
contrary, WARA-BS requires fewer operations than WARA. The main reason is that the
mixing trees produced by BS guarantee the minimal number of operations; it provides a better
start point for operation minimization. Figure 30 also demonstrates that WARA-BS
outperforms IDSA as well. We can conclude that the contribution jointly from droplet sharing
and droplet replacement, which are the essential parts of WRA, is much more significant than
that from initial tree generation. Finally, the experimental results also suggest that WARA is

very time-efficient. It can finish the case with #C; =100 in just few seconds.
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Figure 30. Comparisons among WARA, WARA-BS, and IDSA.
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Chapter 7 Conclusion

Sample preparation is an essential process in biochemical reactions, and many techniques
have been proposed to address this issue recently. However, only one of them, IDSA, focuses
on the multi-target sample preparation problem. In this thesis, we propose a new algorithm,
WARA, which concentrates on reactant and waste minimization in multi-target sample
preparation. WARA first generates a set of mixing trees for all required target concentrations
as an initial solution, and then recycles waste droplets through droplet sharing and droplet
replacement. For the droplet sharing, WARA uses number of nonzero bits (nzb) in the binary
representation of CVs to speed up sharing process. During the droplet replacement, the
replacement candidate pair (RCP) is proposed to guarantee that the count of waste droplets
decreases monotonously. Two.  factors, gain and uniqueness, are used to determine the
replacement order for better reactant usage and waste count. The experimental results
demonstrate that all the three phases of WARA have their own contributions during
optimization. Furthermore, WARA outperforms the existing state-of-the-art algorithm IDSA
in terms of waste amount and operation count. WARA reduces the waste and operation count
by 48% and 37% respectively when the number of target concentrations is ten. The reduction
is increased to 97% and 73% when the number of target concentrations goes to hundred.
Moreover, WARA is also very efficient in runtime. As a consequence, it IS conclusive that
WARA s currently the best method for multi-target sample preparation. on digital

microfluidic biochips.
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