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1. INTRODUCTION 

In this paper we investigate the existence of a solution of a so-called 
resonance problem, that is, for an equation of the type 

Au = F(x, 24) in Q, (1.1) 

where the linear (differential) operator A is self-adjoint with a nontrivial 
kernel on L,(O) and the nonlinear map F(x, 0 satisfies some growth 
conditions for large values of ]r]. The starting of the problem is the well- 
known paper of Landesman and Lazer [ 11. They assume that F(x, <) = 
f(x) + h(x) with f(t) +f(+m> as t -+ *a, and ./X-co) <f(T) <f(+a>, 
and are able to prove necessary and sufficient conditions for (1.1) to be 
solvable. Since then, many works have been done on the programs. We refer 
to the extensive bibliographies of the paper by Brezis and Nirenberg ] 2 ] and 
the survey paper by Fucik [3]. 

This paper is stimulated by the work of Amann and Mancini 14 ]. In [4 ], 
they present a very general existence theorem for the case where the 
nonlinearity “does not cross an eigenvalue,” that is, F satisfies 

j < F(x, t3 < ;z _ 6 

‘7’ 
or X+64y<2 (I.21 

-  1 

for all large values of I<(, where 6 > 0 and 2 < 1 are two consecutive 
eigenvalues of A. In this paper, we assume F satisfies 

(1.3) 
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the case could be regarded as the most general case, where nonlinearity does 
not cross eigenvalues. As in [4], we study (1.1) by the perturbation method, 
but different from [ 41, we consider the following perturbed equation of (1.1) 

Au = FJX’ u) in 0, (1.4) 

where F,(x, c) = @(x, {) + r&, q = (6 - ~)/(a + E), E > 0, and 6 = I- j. 
In Section 2 we recall an abstract existence theorem of a nonresonance 

problem established by Amann and Mancini [4] by using the well-known 
existence theorem for coercive pseudomonotone mappings. 

In Section 3 we obtain some a priori estimates of the projections of 
solutions u, of (1.4) on ker(A - j), ker(A - I), and (ker(A - 1) 0 
ker(A - I)}‘. These estimates enable us to prove that either uJ]]uJ -+ 
4 E ker(A -I) or uj/i]uj]] -+ w E ker(A - 1) if ]]uI]] + 03 asj-, co. Then, the 
existence theorems of a nonresonance problem are immediate by standard 
proof. 

In Section 4 we consider the resonance case. We decompose F into two 
parts which are easier to handle. The approach results from De Figueiredo 
[S] and is simplified by Amann and Mancini [4]. By the estimates obtained 
in Section 3, we are able to obtain an existence theorem which generalizes 
most of the known results, where the nonlinearity does not cross eigenvalues. 

2. NOTATION AND PRELIMINARIES 

In this section, we recall a perturbation lemma and an existence theorem 
of a nonresonance problem given by Amann and Mancini [4]. 

Throughout the paper we denote by H a real Hilbert space and by 

A: D(A)cH+H 

a self-adjoint linear operator with dense domain D(A) and closed range 
R(A). Let N(A) be the kernel of A. Then R(A) = N(A)‘, which implies that 

A-’ := [AID(A)nN(A)i]-l:N(A)l~N(A)l 

is a continuous linear operator. We always assume that A -’ is compact. 
From these hypotheses, the spectrum a(A) of A is a pure point spectrum. 
More precisely, every ,l E a(A) - {0} is an eigenvalue of finite multiplicity, 
and a(A) - (0) has no finite cluster point. Hence c(A) is countable and can 
be enumerated in the following way: 

. ..<~_.</1_,<~,:=0<~,<~,<.... 

409/53!2 IY 
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Clearly, A,, E a(A) iff A is not invertible. In this case, & is an eigenvalue of 
finite or infinite multiplicity. In the case Ai E a(A) - (O), we denote Ni = 
ker(A -Ail) as finite dimensional. We note that the number of positive or 
negative eigenvalues can be infinite, finite, or zero. 

Recall that a nonlinear operator is called bounded if it maps bounded 
sets into bounded sets. A map M: H + H is called monotone if 

(M(u) - M(v), u - v) > 0 for all U, u E H. 

We shall state two existence theorems given in [4] to the nonlinear 
operator equation 

Au = B(u), (2.1) 

where we assume that B: H + H is continuous and bounded. 
We first recall a perturbation lemma which is essentially well known and a 

complete proof is given in [4]. 

LEMMA 1. Suppose that either 

(i) N is finite dimensional, or 

(ii) B or -B is monotone. 

Moreover, suppose that there exist a bounded map g: H--t H and a null 
sequence (ej) in R such that 

(a) for every jE N, there exists a ui E D(A) such that Au,~ = 
B(uj) + Ej g(uj), and 

Cal 
suP lI”jll < O”. (2.2) 
jcN 

Then Eq. (2.1) is solvable. 

By applying Lemma 1 and a well-known existence theorem for coercive 
pseudomonotone mappings (in the sense of Browder and Hess [6]), Amann 
and Mancini [4] prove the following existence theorem in the case that the 
nonlinearity “lies between two consecutive eigenvalues.” 

LEMMA 2. Suppose that there exis,t twc consecutive eigenvalues 1 < 2 of 
A and positive constants y,, and y < (A - A)/2 such that 
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for all u E H. Moreover, let a := sign(l + 1) and suppose that either 

(i) N is finite dimensional, or 

(ii) aB is monotone. 

Then Eq. (2.1) is solvable. 

3. THE NONRESONANCE CASE 

Throughout the remainder of the paper, we work on H = L,(R), where 0 
is a finite measure space with measure m. Moreover, we suppose that 

B(u)(x) := F(x, u(x)) for a.a. x E a, 

where F: 0 x R + R is a Carathedory function, that is, F(x, r) is continuous 
in <E R for a.a. x E J2 and measurable in x E 0 for every r E R. 

Amann and Mancini [4] give a sufficient condition (N) for F, which 
guarantees that B satisfies the hypotheses of Lemma 2 and so resonance is 
excluded. 

(N) There exist two consecutive eigenvalues i < 1 of A and numbers 
6 > 0 and a,p>O such that 

and 

1% <)I< 0 ItI + a(x) 

where a E L,(R). 

for all r E R and a.a. x E 0, 

To the situation where resonance may occur, they impose the following 
hypotheses: 

(H) F(x, r) = J,c+f(x, r) for some ,lk E o(A), where I, # 0 if 
dim N = 00, and info(A) < ;1, < sup o(A), and 

W + > (0 4% <I > -c(x) ItI - d(x), 
(9 If(x, 0 G (A+ l - A, - S) ((1 +&(x) for a.a. x E R and all 

CER, 

where f,, c, d E L*(Q) are nonnegative functions, and 6 > 0. 
In the case dim N < 03, the perturbed equation 

Au = B(u) + EU (3.1) 

has a solution U, if 0 ( E < E, := 6/2. To ensure the existence of a priori 
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bounds on U, and so Au = B(u) is solvable, they impose a Landesman-Lazer 
type condition 

(II,) (iii) i,(f+~‘-~-_)>Oforall~EN,-(O}, 

where f,(x) := lim infL, * &(x, <) and f*(x) := lim sup,, * oc f(x, 0, and 
4’ :=max{d(x),O} f or a.a. x E 0 and & := 4’ - 4. The dual set of 
hypotheses (H,) has the form 

(K) 0) @Xx, 0 G 0) Ill + d(x), 

(ii) If(x, <)I < (A, - A,-, - 8) 1 <I + f,(x) for a.a. x E R and 
CE R, and 

(iii) J,(f+#‘-f-#-)<Oforall#EN,-{O}, 

and the corresponding perturbed equation is 

with 0 < E < .sO = 6/2. 

Au = B(u) - EU (3.1’) 

In the case dim N = co, to ensure aB is monotone, a := sign(k), they 
impose some kind of monotone conditions onf, namely, either 

(M) (i) a((&, <) - f(x, v))/(( - V) + &) > 0 for a.a. x E R and all 
it+ II, or 

(ii) there exists a number c > 0 such that 

for a.a. x E Q and all r# II, 

Then (2.1) is solvable if any one of the following sets of conditions is 
satisfied: 

(1) (M(i)), a = 1 and (H,); 

(2) (M(i)), a = -1 and (HJ or 

(3) (M(ii)) and either (H,), or (H-). 

In this paper, we relax the restrictions (H, (ii)) and (H_(ii)) by assuming 
the following hypotheses: 

W- 1) Q-(x, t) > -c(x) I <I - 4x1, 

(H-2) I./(x, <)I < (&+i - 1,) lrl + Jo(x) for a.a. x E D and all <E R, 
where fO, c, d E L,(Q) are nonnegative. 

Condition (H-2) allows that the nonlinearity “can touch but not cross two 
eigenvalues” and then causes some difficulties to find solutions U, of (3.1) or 
(3.1’) and to obtain a priori bounds on them. Instead of investigating the 



SEMILINEAR DIFFERENTIAL EQUATIONS 579 

perturbed equation (3.1) or (3.1’) of (2.1), we consider the perturbed 
equations 

Au = A/$ + nf(u) + qEU, (3.2) 

where n = (6 - e)/(6 + E), E > 0, 6 = A,, , - Ak and f(u)(x) :=f(x, u(x)) for 
a.a. x E Q. 

We first prove the following existence theorem of solution for (3.2). 

LEMMA 3. Let hypotheses (H), (H-l), and (H-2) be satisJied. Then there 
exists q, > 0 such that (3.2) has a solution u, for all 0 < E < E, $dim N < co 
or dim N = 03 and (M(i)) holds. 

Proof: We note that (H-l) and (H-2) imply that 

-f, (xl < f(x9 4 < x + fi (x> for a.a. x E B and < > 0,(3.3) 

and 

at - f, (xl G f(x, a < fi (x) for a.a. x E S and r< 0, (3.4) 

where f, E L,(Q) is nonnegative (for example, f, = 6 + f, + c + d). 
Conversely, (3.3) and (3.4) imply (H-l) and (H-2) with c = f,, d = 0, and 
fo=f*. 

Let FE(x, 0 = A,{ + rf(x, c) + q&r. Then (3.3) and (3.4) imply 

IfdimN=co, 

a(F,(x, 4 -F&x, c))(r - 0 

a{(1 - u) 1k + re) = & {-(A,+, + A,) + &} > 0. 

Hence aB,(u), B,(u)(x) := F,(x, u(x)), is monotone. Therefore, Lemma 3 
follows from Lemma 2. 

In the remainder of the paper, we always assume that hypotheses (H), 
(H-l), and (H-2) are satisfied. If dim N = co, we also assume Ak+, # 0 and 
(M(i)) holds. 
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Before we can derive a priori bounds on solutions U, of (3.2), we need the 
following estimates: 

LEMMA 4. supOCEGEO E ]( u,]] < co, where U, is n solution of (3.2). 

Prooj By decomposing u into u = v + z with v E N, and z E Ni n D(A ), 
(3.2) takes the form 

Lz = qf(u) + &-U, (3.5) 

where L := A - I$. 
Recall that for every u E D(A), 

IlLu II2 > &k, u); 

for the proof see [4]. 

(3.6) 

Then, following a device of BrCzis and Nirenberg [2], (H-l) implies 

~;f(~~r)=I~lf(~~r)+clrl+~l-clrl-~ 

> I tl LO., 0 - 2~ I <I - 2d. 

Moreover, (H-2) implies 

U-(-v 0 > a-’ I.f(., 01’ - a-!A If(., <>I- 2~ ltl - 2d. 

Therefore 

and 

Il.mIl G fJ II 24 II + Y, (3.7) 

cm>, u) 2 J- ’ Ilft~Il’ - Y(II u II + 113 (3.8) 

for all u E H, where y is a generic constant, independent of E but not 
necessarily the same in different formulas. Hence 

11 LzlJ2 > d(Lz, z) = 6(Lz, u) 

= &u(u)3 u) + 6rl& 11412 

a rl ll.0Il’ + h& 11412 - r(llull + 1). 

On the other hand, 

lILzl12 G v2 IlfWl12 + 2V2& Ilull Ilf(u)ll + V2E2 ll~l12. (3.9) 

Therefore 

r(ll 24 II + 1) a Ir(l - rl) IlfWll’ - 2V2& II 24 II Ilf(u)ll + I?&(J - WI II UII 2. 
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By dividing the last inequality by E 11 u/l*, we have 

Y/E Ilull + Y/E 11412 

2 (W t &I) Ilf(~)ll’/ll u II2 - 2rl Ilf(~>ll/ll f.4 II t (6 - WI* 

Suppose that there exists a sequence (uj) in D(A) such that 

Ejll”jll+ C0 and cj+c’>O as j+co 

and 

L"j = Vj.ft"j) + VjEjfCUj)* 

Let a = lim infj+, Ilf(“jIllll ujlle If - a - co, a contradiction is obvious. If 
a < co, then 

02 &{(a-S)'t(atc')*} >O, 

a contradiction. Lemma 4 is proved. 

We further decompose u into 

u=vtwty, 

wherevEN,,wEN,+,, andyE (NR@N,+,)inD(A). 
We note that for all y E (Nk @ Nk+ J’ f7 D(A), 

lILYlIZ >/WY, Yh (3.10) 

where /3 := A.,, 2 -I,. In fact, let Pi be the orthogonal projection of H onto 
eigenspace Nj, Nj = ker(A - Ajl). Then for all y E (Nk @ Nk+ ,)‘n D(A) 

lILYlIz= C (nj-nk)2 IIpjYI12 
j#k,k+ 1 

> x (Aj-Ak)2 IIpjYI12 
j>k+2 

2 @k+2 -nk> j>T+2 (Aj-nk>IlPjyl12 

> @k+2 - nk> 1 (dj-nk)(IPjy1)* t 2: (nj-ik)llpjYl12~ 
j>k+2 jck 

=(IEk+2-Ak) 2 (nj-‘k)IIPjY\12 
j#k,k+ I 
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Since for all w E Nk+ , , 

Lw=(A-~k+,)W+(;lk+,-~k)W=~U’, 

(3.5) takes the form 

Ly + 6w = d(u) + ?jEU. (3.11) 

The following estimates play a crucial role in deriving a priori bounds on 
solutions U, of (3.2). 

LEMMA 5. If u is a solution of (3.1 l), then 

IlLYll < Y(/Iw* + l), 

and 

IV(u) - w G r(ll u II I’* + 11, 

where y is a generic constant, independent of E. 

ProoJ By (3.10) and (3.11), we have 

lILYlIZ >WYT Y> =Mf(u>, u> +Pw 11412 -Pa llwl12~ 

Furthermore, by (3.7), (3.8), and Lemma 4, we obtain 

IILYll*>P~-’ Ilf(4l’-P~ IIwl12 - Y(ll4l + 1). 

On the other hand, by (3.7), (3.1 l), and Lemma 4, 

lILYlIZ 6 r* Ilf(~)ll’ + a*& Ilull Ilf(uIl + V2E2 11412 - a2 llwI12 

,< Il.f(~I12 - fz?* IIwl12 + Y(llUll + 1). 

Therefore 

IlfWll’ - 6* 1/412 G V(ll~II + 1). 

(3.12) 

(3.13) 

Hence 

lILYlIZ < Y(llUll + 1). 

Finally, (3.13) follows from the last estimate and Lemma 4. 
Now suppose that (2.2) is false. Then there exist a null sequence (cl) in 

(0, E,,] and a sequence (uj) in D(A) such that 

II ujll + co as j+co, 

and 

LYj + 6Wj = ~jf(Uj) + ‘Ij&jUj, (3.14) 
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where uj=uj+wj+yj with ujENk, wjENk+,, and yjE(Nk@Nk+,)‘fl 

w >- 
We note that there exists a constant c > 0 such that 

IILYII a c IIYII (3.15) 

forallyE(N,@N,+,)‘nD(A).SincedimN,<az anddimN,+,<oo,we 
can assume (by passing to an appropriate subsequence if necessary) that 

uj/ll ujll = uj/ll ujll + wj/ll ujll + Yj/lI”jll 

-4+ vENkONk+, - (01, 

and that 

uj/ll”jll --) 4 + V almost everwhere in 0. (3.16) 

Moreover, we can prove that the limit does not mix in Nk @ Nk+, , that is, 
either 4 = 0 or IJI = 0, if the following condition (E) is satisfied: 

(E) For all #EN,--(O) and YEN,+,-{O), rn(x~QI 

$%f> v(x) + 01 > 0. 

LEMMA 6. Let condition (E) be satisJied. rf II ujll -+ co as j-1 co, then 
either 

Proof. Let ~~/ll~~ll = #j and w~/IIu~[I = vj. Then, (3.13) implies 

(3.17) 

Suppose that w # 0, we shall prove 4 = 0. 
We first prove that 

Iv > 01 = [w > 0, w + # > 01 and [w~ol=[w<o, w+#<Ol, 

where Iw > 01 = {x E Q I V(X) > O}, [W > 0, w + 4 > o] = (X E B I v(X) > o, 
and V(X) + 4(x) > 0). Since 

lw>01=[w>0, w+#>O]U[yl>O, w+#<O]. 
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Suppose that m[ w > 0, w + 4 ,< 01 > 0. By using Egoroffs theorem, there 
exist a subset a’ of [w > 0, v + 4 < 0] with m(Q’) > 0, and numbers N > 0 
and y > 0 such that for all j > N and a.a. x E Q’, 

and u/jCx) > Y, 

If uj(x) > 0, by (3.3), 

6y/j(x) -fCx9 uj(x>>lll ujll > h - 6uj(x)lll ujll -fI(x>lll ujll 

> 6Y/2 -f~(x>lllujll 

and if uj(x) < 0, by (3.4), 

6Vj(x) -fCx, uj(x>>lll ujlI > h -fI(x>lll ujll 

for all j > N and a.a. x E 0’. Hence 

lim 
I j+m IO>O,~~+~GOI 

16~j-f(uj>lllujlllZ 2 m(n’)(6Y/2)2 > O3 

which contradicts (3.17). Similarly, we can prove [w < 01 = [w < 0, 
v + Q < 0] by (3.3) and (3.4). 

We next prove that condition (E) implies that 4 = 0 if m[t,~ > 0, 4 ( O] = 0 
and m[ v < 0, 4 > 0] = 0. In fact, 

= I’ v4+ j VA 
l@>O.rn>Ol le<o.m<ol 

if m[V > 0, $ < 0] =O and m[w > 0, 4 < 0] = 0. Hence 

if (E) holds and 4 # 0, which contradicts j, WQ = 0. 
Now suppose.that ##to. Then m(v>O, #<O]>O or m(yl<O, 

4 > 0] > 0. Assume m[ w > 0, Q < 0] > 0. Since 

Iv > O,# < 01 = Iv > 01 = [w > 0, I// + 4 > 01, 

by (3.16) and by using EgoroB’s theorem, there exist a subset 0’ of [ I,U > 0, 
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4 < 0] with m(Q’) > 0, and numbers N > 0 and y > 0 such that for all j > N 
and a.a. x E Q’, 

uj(x) > O and 4jCx> G --Y* 

BY (3.3), 

ftx, uj(x>>lll ujll - 6V$(x) 

G @jtx) + fI(x)lll ujll G + + fi(x)lll ujll, 

for all j > N and a.a. x E Q’. Hence 

lim 
1 i-00 IU>OI 

If("j)/llujll - BWj12 2 m(n’)(6Y)2 > ‘3 

which contradicts (3.17). 
Similarly, if m[w < 0, 4 > 0] > 0, by (3.4) it leads to a contradiction to 

(3.17). 
Hence, if v # 0, then 4 = 0. Lemma 6 is proved. 

In application, condition (E) should not cause severe restriction. In the 
remainder of the paper, we always assume that condition (E) holds. 

Let 

I,(X) := lim infv and 
I-i00 

h,(x) := lim supv. 
I-*cc 

We can now prove an existence theorem where resonance is excluded, by 
only considering the limiting functions 1, and k, . 

THEOREM 1. Let hypotheses (H), (H-l), (H-2), and (E) be satisfied. Zf 

I (Z+#+)’ + (IL#-)2 > 0 and I [@-k+)w+]2+[(6-k~)w-]2>0, 
0 R 

for aZE 4 E Nk - {O) and w E Nk+, - {0}, then (2.1) is solvable. 

Proof: Suppose that I/uj]l -+ co as j-+ co. Then it leads to a contradiction 
as follows: By Lemma 6, either Uj/llUjI] -+ 4 E N, - {O} or uj/l]uj]l + 
V/EN/f+1 - PI* 

. 

If Uj/]lUj]] + # E N, - {O}, by (3.13), 

lim Ilf(“j)ll/ll ujll = 0. j+m 
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On the other hand, by applying Fatou’s lemma, 

lim Ilf("j>ll'lllujll' >!,l@$flf(x, uj(x~)12111u,jl12 j-m 

= I ,m>ol liz_“ff(xY uj(x))2111 ujl12 

+ I ,mio, liE$ff(x, uj(x>>2111 u,jl12 

> I [e>o, (I+@+)* + j,,<o, ([-6)* > 03 

a contradiction. 

If uj/IIujII + v E N/c+, - {O), by (3.13), 

;it Ilf(“j)lll ujl/ - 6yill = O- 

Again, by applying Fatou’s lemma, 

)+z Ilf(“j)/ll ujll - 6Vjl12 

> I ,rao, liE$f Iftx9 uj(x>>lll~,jll - 61//,(X)1* 

+ !;@<O, .i-m lim inf I.@, uj(x))/ll ujJI -  6Vj(x)12 

> 
1 

,~I>ol liEkf(d -f(% uj(x>>Iuj(x))2 V'(X) 

+ J~WOI j-c 
lim inf (6 - f(x, uj(x))/uj(x))* v’(x) 

a I R [(~-k+)y/+]Z+ [(d-k-)li/-]* >o, 

a contradiction. 
Hence ~~~~~~~~~ II 41 < co, the theorem follows from Lemma 1. 

COROLLARY. Suppose that constants do not being to Nk @ Nk+ , - (0). 
Then (2.1) is solvable if 

(i) m[Z+ = 0] = 0 or m[EL = 0] = 0, and 

(ii) m[k+ = 6]= 0 or m[k_ = Sl = 0. 



SEMILINEAR DIFFERENTIAL EQUATIONS 587 

Theorem 1 generalizes the result of Amann and Mancini [4] in the case 
where F satisfies condition (N). 

Let J;(x) := lim infl+ fa, f(x, <) and f*(x) := lim supr+* a f(x, r). 
Moreover, let 

w 0 := & - f(-u, r>, 

and let h, and 6, be defined as above. 
To prove the existence theorem for (2.1) by considering the limiting 

functions f, , we need the following estimates which complement Lemma 5. 

LEMMA 7. Suppose that llujjl -+ co as j-+ co. Then 

(9 ifujllujlI+#EN~- {O), then IIWjll<Y(lujl/“2, and 

09 if~,i/ll~jll~wE~~+~-(OJr then Il~jll~YIl~,~ll”2~ 
where Uj = vj + wj + yj with ui E N, , wi E Nk+ I and Yj E 
(N,ON,+,YnW). 

ProoJ (i) If Uj/ll Ujll--+ Q E Nk - {O), and suppose that 

suP ]I wjll/ll ujll I” = C0* 
j 

By (3.12) we can assume (by passing to an appropriate subsequence if 
necessary) that 

‘Yj/IIW.jII-IJEN,+,-(OJ and LYj/ll wjll + O9 

and that the convergences are almost everywhere in R. 
Divided (3.14) by ]] wj]], by Lemma 4, for a.a. x E Q, 

lim f(X, uj(x))/ll wjll = fiz dwj(x)/I( wj(l = d?(X). &cc 

On the other hand, by (3.3) and (3.4) for a.a. x E Q, 

lim inff(x, uj(x)) @(X)/II wj(l Z 0. j+m 

Hence 

4(x) $6) 2 0 for a.a. x E Q, 

a contradiction j, 41~7 = 0 if (E) holds. 
Condition (ii) can be proved by a similar argument. 

THEOREM 2. Let hypotheses (H), (H-l), (H-2), and (E) be satisJied. Zf 
.I”0 tf+s+ -.w)= co and 1, (6, y’+ - h^- ym) = 03 for all $ E N, - (0) 
and I,V E Nk+, - (O), then (2.1) is solvable. 
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ProoJ Suppose that I( ujll + co as j + co. We may assume that for a.a. 
xE0 andjEN 

I uj(x)lll ujll I G f2Cx) 

with an appropriate fi E L,(G). If u~/I]u~I] + 4 E Nk - (O}, then 

“P UX”j>, uj/ll ujll) < O3 .i 

by Lemmas 4, 5, and 7. On the other hand, for a.a. x E 0 

uj(x)f(x, uj(x>>lll ujll > -c(x> I uj(xMluill - d(x)lll ujll 
> -c(xIf*(x> - d(x)lll ujll. 

By applying Fatou’s lemma, 

lim inf (f(“j)T uj/ll ujll> > il, li,tn~fUj(X).OX, uj(x))/ll ujll j+cc 

a contradiction. 
If ~j/llujll+ vENk+l - (O}, then 

suP Cauj -fC”jh u.j/ll u.jll) < 03. 
i 

A similar argument leads to a contradiction 

1 
(h, ly+ - h^- y-) = co. 

R 

The theorem is proved. 

We remark that Theorem 2 generalizes Theorem 1. 

4. THE RESONANCE CASE 

We are now in a position to study the resonance problem in the case 
I‘, CJ+#’ -L-I< co or I, (h, W+ - h^- w-) < co. We shall decompose 
the function f into two parts, which are easier to handle. The approach relies 
on a device of De Figueiredo [5] and simplified by Amann and Mancini [4 ]. 

We first recall some notation and statements in [4, Appendix, (iii)]. 
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We note that Eq. (3.2) can be written as 

Lu = nf(z.4) + q&U, (4.1) 

or 

Mu = qdf(u) - du) - EU, (4.2) 

where L=A-&I and IM=A--J.~+,I, and 

for all u E D(A), (see [4, (A.l)]). 
If uj are solutions of (4.1) and /I ujll -+ co as j-+ co. Then, by Lemma 6, 

either uj/llujll -+ Q E Nk - (0} or uj/lluj[l + v E Nk+, - (O}. Equation (4.1) is 
used in the former case and (4.2) in the latter. Let G(x, <) =f(x, <) and 
a’ = 1 if (4.1) is used, and G(x, <) = f(x, l) - St and a’ = -1 if (4.2) is 
used. We also remark that (3.3) and (3.4) imply that 

(H-1’) W-(x, 4 -JO <f,(x) ItI, 
(H-2’) I.%, 0 - 64 < 6 ItI +.fi(x). 

For every fixed r > 0, we define functions 

f,(.> 4 = (3.7 0, if <>l and a’G(., <) < r, 

= a’r, if l>l and a’G(., <) > r, 

= G(-, t-1, if (G-1 and a’G(.,<)>-r, 

= -a’r, if << -1 and a’G(., l) < -r, 

and G,: QxR-+R by 

GA.7 0 = G(., 4 - c&C-, 0, for ItI > 1, 
= t[G(-, 1) - $,(a, 111, for O<Y< 1, 

= t[G(-, -1) - 8,(-, -111, for -1 <r<O, 

and let g,=G-G,. 
Then G,. and g, are Carathtdory functions, and 

a’&,(., 4 > 0 for all r E R. (4.4) 
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Moreover, 

sup II g,(., u(.))ll < Yr < 03, 
UEII 

(4.5 ) 

where constant yr depends only on r, (see [4, (A.17)]). 
We shall prove the following estimate on (cr’g,(u), u), which is bounded 
above by assuming [4, (H + (ii)) or (HP(ii)) 1. 

LEMMA 8. For every fixed r > 0, 

(a’gr(u), u> G CA G(u)ll + 1) 
for all solution u of (4.1) (and (4.2)), where C, depends only on r. 

Proof Since 

(art&>, u> = @‘G(u), u> - @‘G,(u), u>, 

we shall give an upper bound on (a’G(u), u) and a lower bound on 
(a’Gr(u), u). 

It is easy to verify that 

I G,(x, 01 G 6 ItI + X 6) 

for all r E R and a.a. x E Q. By (4.4), 

(a’G,@h ~1) = 1, I G,(u)1 I u I 

> (l/S> II C@>ll’ - Y IIG,@>ll 

for all u E H. Since 

II W412 = II G(u) - g,(u)l12 

> II Wdl’ - 2 II G@)ll II g,@)ll + II d412 

2 II G(u)ll’ - Qr II WII 
and 

II Gr(u)ll G II G(u)ll + II g,@Il 

G II W)/l + yr 

by (4.5). Hence 

(a’G,(u>, u) 2 (l/S> II W)l12 - Ci(ll G(u>ll + I>? 

where constant CL depends only on yr and so on r. 
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We next give an upper bound on (a'G(u), u). If a’ = 1, by (4. l), 

@‘G(u), ~1 = (f(u), u) 

= (L% 24) - w  II u II2 + (1 - rlKf(uh u) 

< (l/S) PII + (1 - 9) II 41 Ilf(u)ll 

< (l/S) IlfWll’ + rw(~)ll + 1) 

by (4.3), (3.9), and Lemma 4. Similarly, if a’ = -1, by (4.2), 

(a/G(u), u) = -(f(u) - 6u, u) 

= -(Mu, u) - E 11 .u II2 - (1 - q)(f(u) - au, U) 

< (l/4 lW412 + (1 -v> Ilull IIf - dull 

< u/4 Ilf(u> - dull2 + Yw-(~) - dull + 1). 

Hence, in both cases, we have 

Therefore, 

(a”W), u> G (l/4 II GWI’ + HII W>ll + 1). 

@‘g,(u), ~1 Q CAlI W)ll + 11, 

where constant C, depends only on r. 

THEOREM 3. Let hypotheses (H), (H-l), (H-2), (E), and 

(H-3) ~n(J;#+-.?e#-)>Oand~,(h+t/+ -6-w-)>0 

foralZ~EN,-{O}andWEN,+,- (O}, be satis$ed. Then (2.1) is solvable. 

Proof. Suppose that )I uill + co as j -+ co. It is easy to see that 

II G(uj>ll G dll ujll”* + 1). 

In fact, if uj/ll ujll + 4 E Nk - {O), 

Ilf(“j)ll G Y(II ujl11’2 + l), 

and, if uj/ll~jll+ w E Nk+, - (O}, 

Ilft”j) - 6ujll G Ilf(uj) - 6wjll + 6 II vjll + 6 II Yjll 

G Y(lI”jl11’2 + l) 

409/93/2-20 
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by Lemmas 5 and 7. By Lemma 8, 

Moreover, by the construction of g, and by assuming j uj(x)j/jj ujjJ < fi(x) for 
a.a. x E Q, all j E N, and an appropriate f, E L,(Q), a’~,~g,.(~~~)/ll u,~!I is 
bounded below by an integrable function, see [4] for details. Therefore, by 
applying Fatou’s lemma, 

I lim inf a’g,(u,J u,~/I[ ujll < 0. 
12 j+m 

By letting r+ co and using B. Levi’s theorem, we have 

and 

i (h+w+ -LJ-)<O if a/=-l, 
R 

which contradict (H-3). The theorem is proved. 

We remark that the results obtained in this paper can be applied to 
semilinear elliptic boundary value problems as in [ 2, 4, 5 ] and semilinear 
wave equations as in [ 2, 41. 
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