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Fig. 1. Plots of the energy of a quantum bouncer as a function of the
distance to the upper boundary. The dots indicate the predictions of the
Schrodinger equation (taken from Ref. 1). The energy is in units of mg/
and the distance is in units of [ = (#/2m?g)"/.

those shown in Table 1. The largest error, for the transition
n = 2—n = 1, is less than 6%. ‘

Equation (2) may be rewritten in terms of / to yield a
relation between the energy and the height L, i.e.,

e — (e, —AP?=3mm/2, (4)

where A =L /1.

The energy levels €, for the first three states as functions
of A are shown in Fig. 1. If e <4 the particle cannot reach
the upper boundary and the presence of this boundary is
irrelevant. Eigenvalues obtained from the Schrddinger
equation’ are shown as dots in the figure. Again, while the
predictions of the Bohr-Sommerfeld-Wilson quantization
are too large, the error decreases with increasing quantum
number # for all values of L.

As noted by Aguilera-Navarro et al., in the limit that L
becomes small, the energy levels are those of a particle in a
box. Thus, in the limit A /e <1, Eq. {4) reduces to €, = (n7/
A )* or the more familiar expression

E, = n*r*#/2mL>. (5)

The two-dimensional motion of a quantum bouncer was
also discussed by Gibbs.” In this case the boundaryaty =0
is rotated to an angle @ with the vertical and another reflect-
ing boundary is placed at an angle & with the horizontal.
{For a charge in a uniform field this corresponds to the
motion in an infinite conductor with two perpendicular
boundaries and the electric field at an angle & with one of
the boundaries.)

This problem can also be generalized to the enclosed
case, but the solutions of the Schrodinger equation for this
system were not obtained by Aguilera-Navarro et al. The
energy levels may also be obtained from the Bohr-Som-
merfeld—Wilson quantization as follows.

Introducing a set of coordinates? in the rotated system

s=xsinf +ycosfandt= — xcos 8 + ysin 6, the en-
ergy may be written as
E=(p2+p})/2m + mg(scos @ + tsin ). (6)

This equation is separable. For each component of the mo-
tion

631:,2) - (enq,, - AS‘”)3/2 = 37Tfl51,)/2, (7)
where
€nge) =E"w)/mg13(')’ /13(1) =LS(I)/1x(1)’

I, = (#2/2m?g cos 6)'/3,

l, = (#/2m%sin6)"*> and L,/L, =tané.

The total energy of the system is

E,, =E, +E,. )

An energy level diagram as a function of 8 for the case
L using the eigenvalues obtained from the Schro-
dinger equation was given by Gibbs.> A similar diagram
may be constructed using Egs. (7) and (8).

The “quantum bouncer” or charge in a uniform electric
field is an interesting example for discussion in a quantum
mechanics course. The Bohr-Sommerfeld—Wilson quanti-
zation predictions of the energy levels can provide a useful
introduction to the quantum-mechanical calculation and
also an opportunity to illustrate the limitations of the “old”
quantum theory.

'V. C. Aguilera-Navarro, H. Iwamoto, E. Ley-koo, and A. H. Zimerman,
Am. J. Phys. 49, 648 {1981).
?R. L. Gibbs, Am. J. Phys. 43, 25 (1975).
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It is a very important example or problem in textbooks
on statistical mechanics to calculate the partition function,
and therefore the free energy, of a rigid rotator or polyato-
mic gases. There are two standard approaches to obtain the
partition function in classical statistical mechanics. The
first one is to use the Eulerian angles 8, ¢, ¥ as the general-
ized coordinates and express the Hamiltonian of the rigid
rotator in three dimensions as'
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2‘9[(17‘,, — Py ©0s 0 )cos ¥ — p, sin O sin Y]
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where p,, p,,, and p, are the conjugate generalized mo-
menta of the generalized coordinates 8, @, ¥, respectively.
The rotational partition function can be written as*®

Q——fdﬁf dtpf dy| dpe

XJ dp,, dpd, exp—

T ‘ (2)
and by using Eq. (1) we obtain
Q = 87287, ILL,) ' 4kT'*/h>. 3)

The second approach’ expresses the energy of a rigid ro-
tator with three degrees of freedom as'®
M: M?: M:

Hy=—%+ 14—~ (4)
. 2, 21, 21
where £, 7,  are the coordinates in a rotating frame of
reference whose axes coincide with the principal axes of the
rotator, while M., M, , M are the corresponding angular
momenta. The partltlon function can be written as

1 —H
0=-L f dd; db, db dM; M., dM, exp—2. (3

In the product d¢, dé,, dé, of three infinitesimal angles of
rotation, d¢, d¢, may be regarded as an element of d(2 of
solid angle for directions of the § axis. The integration over
{2 is independent of that over rotation d¢, about the § axis
and gives 4. The integration over ¢, gives a further 27.
Integrating also over M, M, , M, from — o t0 + o0, We
will have the same result as Eq. (3).

Both of the above approaches give the correct answer,
but to some serious readers it is very confusing when they
ponder over the differences of these two approaches. Ac-
cording to the general principle of classical statistical me-
chanics, the “volume element” in the phase space is defined
as

dr = H dp; dg;,

where ¢; and p; must be the independent generalized coor-
dinate and the corresponding generalized momentum, re-
spectively. Eulerian angles and their conjugate momenta
are indeed “true” generalized coordinates and momenta,
therefore the first approach is legitimate. In contrast to Eq.
(1), the angular momenta in Eq. (4) are not independent
generalized momenta. It is well known that the Poisson
bracket or commutator of any two angular momenta is
given by’

[M, M,] = —iM,. (6)

To the author’s knowledge, although all the textbooks
stress the point of the “generalized” coordinates, “‘general-
ized” momenta, and their independency in defining the
phase space volume element, there exists no textbook on
statistical physics making the above confusion explicit for
the readers’ attention, not even in a footnote nor an appen-
dix. The answer only implicitly exists in a classic mono-
graph by Whittaker.'"'? In his book it is pointed out that
although Eq. (4) is not expressed in terms of the true gener-
alized coordinates, it can be proven that we can formulate
the problem by the so-called quasicoordinates. The d¢,,
which are linear combinations of the differentials dg,’s, will
not necessarily be the differential of the quasicoordinates
¢, and are called the differentials of the quasicoordin-
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ates.'"'? It is very convenient to use quasicoordinates and
the quasimomenta in the equation of motion and the phase
space volume element to calculate the partition function
for the rigid body system. The feasibility and justification
for this are rigorously proven by Whittaker.

If a rigid body is free to rotate about one of its points 0,
which is fixed, so that the coordinates of the body can be
taken to be the three Eulerian angles (generalized coordi-
nates) 6, @, ¥, which specify the position of axes 0574, fixed
in the body and moving with it, with reference to axes
0XYZ fixedinspace. Let an arbitrary displacement (69, 6@,
6y) of the body be equivalent to the resultant of small rota-
tion (8¢,, 68.,, 54, ) around the O£, On, O, respectively, so
thatdé,,d¢, ,dé, canbe taken as the differentials of quasi-
coordinates, although they are not necessarily the differen-
tials of quasicoordinates ¢,, ¢,,, and .. Let M., M, , M,
which are equal to I, w,, 1,,,0,, and I, @, respectively, be
the components about the axes 0£7%¢ of the angular mo-
menta of the body at any instant, so that dg,, d¢, , do, are
the differentials of quasicoordinates corresponding, re-
spectively, to the angular momenta. It was proven rigor-
ously in Ref. 11 that there exist three Euler equations of
motion of rigid body expressed in terms of the quasicoor-
dinates."® These Euler equations of motion can be derived
from the generalized Lagrangian equations of quasicoor-
dinates.'* From the Euler equations of motion, which are
usually expressed in terms of quasicoordinates, the state of
the rigid rotator can be specified uniquely by the quasicoor-
dinates and their corresponding angular momenta. The de-
finition of partition function is the sum of state (Zustands-
summe) and is given by

Q=Ze*&".

According to the above arguments the sum over states can
be replaced by an integral over the quasicoordinates and
their corresponding angular momenta, which can specify
the classical state of this rigid rotator uniquely; therefore
using Eq. (5) it is very convenient to obtain the correct an-
swer. But strickly speaking, we can only view Eq. (5) as a
convenient form to evaluate the integral because of its sim-
plicity and symmetry form of the H,. The phase space vol-
ume element d7 should be expressed as Eq. (2) by true gen-
eralized coordinates and momenta, but under coordinates
transformation from the generalized coordinates to those
of quasicoordinates, the transformation Jacobian is just
equal to one. The expression in Eq. (2) is more fundamental
than that of Eq. (5).

I suggest that textbooks on statistical physics should
note this point at least in a footnote or give references for
further readings.
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Dynamical systems with retarded and advanced interac-
tions can have surprising behavior and in dealing, say, with
action at a distance theories of electromagnetic forces, one
must exercise appropriate caution. In a recent issue of this
Journal,' standard expansion techniques were applied to
the equation

Mix(t) = — sk {x[t — |x(¢)|/s] + x[t + |x(¢)|/s]}. (1)
Before reviewing that expansion we rescale both space and

time units and allow the dependent variable to be a vector.
The equation becomes

y'(r)= —ilylr + |y(n)}) + yir — |y(7))], (2)
where y (or y)is the new dependent variable, 7 = ¢ (k /M )!/?,
yr)=s""(k/M)"*x(t), prime = d /dr, and |y| = (y-y)"/%
We can also take y to be a scalar, like x. Note that in the
scalar case the absolute value symbol is unnecessary since
the two terms interchange when x changes sign.

The large s expansion of Ref. 1 becomes a small |y| ex-
pansion and we have

Y =~y +(122)yl’y" + (1/4)]y|*y* + -] (3)

(when y has no argument it is evaluated at 7). Now assume
that fourth- and higher-order terms can be dropped. Then
it is easy to see that the truncated Eq. (3) can be written

Y = —y/(1+ 4y )= — VW, 4)
with
Ver(y) = log(1 + 3|y}?), (5)

and the gradient is with respect to y. The following is a
solution to Eq. (4): »

¥(7) = R (&, cos 27 + &, sin {21), (6)
provided R and {2 are appropriately related (2, and &, are

orthogonal unit vectors and we are now restricted to two or
more dimensions). From Eq. (6),

Y'(r) = — 2%lr). (7)
Therefore comparing Egs. (4) and (7) we require
22=1/(144R?), (8)

which fixes {2 as a decreasing function of R.
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But there is an explicit solution of the exact equation
which shows Eq. (2) to be far richer than is suggested by Eq.
(4). To see this, substitute Eq. (6) into the original equation;
Eqg. (2). This yields

— 2% = — |yt —R)+y[r+R)]. (9
Now y(7 + R )involves cos[f2 (r + R )] and sin[£2 (7 + R )).
If it should happen that 2R = 27n, n = 1,2,... then Eq. (9)
will be identically satisfied provided £2 = 1. Therefore we
have found the following exact solutions to Eq. (2):

Yult) = 2nm(e, cos 7 + &, sin 7). (10)

But this is just the tip of the iceberg, for the sines and
cosines in Eq. (9) can be expanded and it is seen that several
terms cancel. The result {regathering into vectors) is

— 2% = —cosfRy. (11)
Therefore, whenever ‘
2?2 = cos N2R, (12)

we have an exact solution. Expansion of the cosine in Eq.
(12) shows that there is an exact solution with 2 given ap-
proximately by Eq. (8), but study of Eq. (12) (.g., by graph-
ing its left and right sides) shows that for large enough R
there can be many frequencies £2 and for any £2<1 there is
an infinity of R ’s that solve Eq. (12) and hence Eq. (2).

The solution given here was suggested by a well-known
solution of Schild® to the more complicated equations of
time symmetric electrodynamics. His idea was that for cir-
cular motion the retardation and advance are constant and
we have used that trick. ‘

At this point in our discussion the danger of truncation
seems to be confined to the possibility of overlooking solu-
tions. However, the truncated solution will show behavior
different from that shown by the solution to Eq. (4); in par-
ticular it will be highly unstable. To sée this we study a
somewhat simpler case. Consider the differential-differ-
ence equation®

d__;{f)= — 4L flt+a) +f(t—a)l, (13)
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