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近紅外線影像之非均勻校正與壞點修復 

 

學生:彭彥凱            指導教授: 張志永博士 

 

國立交通大學電機與控制工程研究所 

 

摘要摘要摘要摘要    

    

本論文使用非均勻校正(NUC)與壞點修正演算法修正近紅外線影像。在非均

勻現象上，我們採用了 2 點式校正與最小平均平方法，此 2 種方法分別為非均勻

校正中主要使用的 2 大類:基於參考平面與基於環境 2 種方式，兩點校正是一個

高度精確的方法，不幸的是，他需要精密的儀器來測量參考圖像；最小平均平方

法不需使用參考圖像，但演算法之速度難以使用在即時影像中，我們將測試並分

析 2 種演算法。 

為了提高壞點校正效能，我們使用改進基於同儕濾波器(peer group filter)

之壞點修正法。在紅外線焦平面探测器所偵測影像中，經常出現團狀之壞點，我

們必須執行一種特別的影像校正法。我們採用可自動調整濾波器遮罩大小來修正

團狀之壞點。我們預設使用之濾波器遮罩大小為 3×3 之遮罩，可以盡可能的保持

圖像清晰度；在遇到無法修正之壞點時，濾波器遮罩之大小將會自動增加，以提

高修正能力。通過這項計劃，它是更準確地找出壞像素，將由同儕濾波器的中值

取代壞點。 
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ABSTRACT 

 

In this thesis, we use non-uniformity correction (NUC) and bad pixel correction 

to correct infrared image of a NIR sensor. We employ Two-point calibration and Least 

Mean Squares method, there are mainly used two categories of the calibration for 

non-uniformity correction, reference-based and scene-based correction algorithm. 

Two-point correction is a highly accurate method, unfortunately, it needs sophisticated 

instruments to measure the reference image; LMS method only need the readout 

infrared data captured by the imaging system and compensate the non-uniform 

response of pixels during its normal operation, But the speed of the algorithm is 

difficult to use in real-time video. We will test and analyze the two kinds of 

algorithms.  

For bad pixel correction, in order to improve the performance of bad pixel 

correction, we have improved bad pixel correction which is based on the peer filter. 

Because bad pixels in the infrared images which are detected by infrared focal plane 

array sensor are frequently in blobs than kinds of images, we must implement a 

specific method of image correction. We employ adjustable window size that can 
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increase the window automatically where bad pixels are in blobs. We use 3×3 window 

as default working window for sharpness maintenance, if the small window does not 

correct a bad pixel, the window size will increase automatically to enhance the 

correction capability. By this scheme, it is more accurate to locate bad pixel, and bad 

pixels will be replaced by the median of the peer group. 
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Chapter 1  Introduction 
 

1.1 Motivation 

 

With the rapid technological development, the visible light technology has 

become popular. Recently infrared sensing has also been widely applied in 

various domains of low/no light environments. One spectrum of infrared is near  

infrared (NIR), whose bandwidth is close to visible red light band, with a higher 

reflective image sensing capability under low/no light environments. In addition, NIR 

band also widely used in the military application providing high resolution images the 

sensing device of NIR is. It can be used as the enemy recognition systems and 

surveillance systems, in low/no light or fog or smoke in the environments.  

It is well known that near infrared focal plane array (NIR FPA) has 

non-uniformity and bad pixels in the produced sensor cells. Hence, the infrared image 

must do non-uniformity correction (NUC) and bad pixel correction. Bad pixel is the 

pixel that does not respond (non responsive) i.e., dark situation (commonly) or always 

responsive i.e. In the NIR sensor bad pixel saturation is most often observed. 

In the low light military applications, infrared image processing must be fast and 

efficient. Because military NIR sensor has to be lightweight and easy to used, there in 

NUC, the most popular reference-based correction method, so-called “two-point” 

correction method in which two uniform sources of known intensity are sequentially 

imaged [1], [2] is widely used.  

Bad pixel replacement of infrared focal plane arrays is also known as Dead Pixel 

Correction. Bad pixels are non-responsive, permanently dark or saturating. Bad pixels 

in infrared digital images might still remain uncorrected after non-uniformity 
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correction, so we need to correct bad pixels afterward. Because dead pixels in the 

infrared images are frequently in blobs than kinds of images, we must implement a 

specific method of image correction. 

In this thesis, we use two-point correction to correct infrared images, 

non-uniformity and correct bad pixel. In the noise reduction scheme developed for 

better bad pixel detection, we propose a new impulse noise filter based on peer group 

concept. We employ adjustable window size that can increase the window 

automatically where bad pixels are in blobs. We use 3×3 window as default working 

window for sharpness maintenance, if the small window does not correct a bad pixel, 

the window size will increase automatically to enhance the correction capability. By 

this scheme, it is more accurate to locate bad pixel, and bad pixels will be replaced by 

the median of the peer group. 

 

1.2 Non-uniformity Correction 

 

With the development of infrared imaging technology, near infrared focal plane 

arrays (NIR FPA) imaging system has become the focus the next generation infrared 

imaging system. Compared with other thermal imaging systems, NIR FPA has simple 

structure, high reliability, high detection sensitivity and high frame rate, The NIR FPA 

is widely applied to various fields of military, medical, civil, and forest fire 

prevention.  

Unfortunately, due to the limitations of semiconductor materials and process 

conditions, the output response of the detector is not the same, which resulted in the 

NIR FPA response non-uniformity. In general, the non-uniformity is called fixed 

pattern noise (FPN) will be striped or grid-like noise model. Therefore, how to 
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effectively track and remove the device non-uniformity, non-uniformity correction 

(NUC) is the key to improve the NIR FPA imaging quality. 

There are several calibration methods for the NUC of an NIR FPA. In general, 

there are two categories of the calibration methods, reference-based and scene-based 

correction algorithm. Reference-Based (or calibration-based) NUC techniques are 

based on the use of uniform infrared sources. The most used one is the Two-Point 

Calibration method [3], which employs at least two blackbody sources at different 

luminance to calculate the gain and the offset of each detector on the NIR FPA. 

Unfortunately, when the system is in use of increased working hours, its performance 

would be decreased for the working environment may change, Correction parameters 

which were measured before cannot meet the correct situation. Such kinds of 

Reference-Based NUC methods require to halt the operation of the system, and re-do 

the procedure and re-set the correction parameters to operate again.  

For these reasons, Scene-Based NUC techniques are actually becoming more 

popular, since they only need the readout infrared data captured by the imaging 

system and compensate the non-uniform response of pixels during its normal 

operation.  The constant statistics constraint method is the most referred scene-based 

technique However, its algorithm structure is complex, hardware implementation is 

difficult, thus reduces its engineering applications.  

In this thesis, we propose to utilize two-point correction and adaptive 

scene-based NUC method [4] to correct infrared image that has non-uniformity. We 

also present varying-size impulse noise filter to correct bad pixels, and NIR sensor 

flowchart is illustrated in Fig. 1.1 below.  
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Fig 1.1 The flowchart of our NIR sensor. 

 

1.3 Bad Pixel Correction 

 

In many practical situations, the sensing devices and the transmission process 

tend to degrade the quality of the digital images by introducing noise, images are 

corrupted by the so-called impulsive noise of short duration and high energy. The 

presence of noise in an image may be a drawback in any subsequent processing to be 

done over the noisy image such as edge detection, image segmentation or pattern 

recognition. As a consequence, filtering the image to reduce the noise without 

degrading its quality, preserving edges, corners and other details is a major step in 
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imaging systems such as image content retrieval, medical image processing, industrial 

visual inspection [5]. This type of noise occurs mostly in the over-the-air transmission 

such as in standard broadcasting and satellite transmission. Common sources of 

impulse noise include lightening, industrial machines, car starters, faulty or dusty 

insulation of high-voltage powerlines and various unprotected electric switches  

[6–8]. 

In order to recovery the original image pixel values, the vector median filter 

(VMF) [9], which is probably the most well-known vector filter, uses the L1 

(City-Block) or L2 (Euclidean) norm to define the above distance function. The 

filtering method sorts pixels vectors in the working window by space vector distance 

sum. On this basis, the Basic Vector Directional Filtering (BVDF) [10] sorts color 

vector by vector angle sum. Distance Directional Filtering (DDF) [11] sorts color 

vector by product of vector distance and vector angle. The above methods are too 

much smoothing, which results in an extensive blurring of the output image. This 

undesired property is caused by the unnecessary filtering of the noise-free samples 

that should be passed to a filter output without any change. To remove this drawback, 

a switching mechanism has been introduced into the structure of the robust smoothing 

filters, [12,13]. Such a switching filter detects if the pixel under consideration is 

affected by the noise process and if it is found to be noisy, then it is being replaced by 

the output of some robust filter, otherwise it is left unchanged. For example, Adaptive 

center-Weighted vector directional filter (ACWVDF) [14], and robust switching 

vector median filtering (RSVMF) [15]. When the noise ratio is low, the class 

switch-type methods have achieved good results. 

 

In this thesis, we use improved peer group filter to correct infrared image that 

has non-uniformity and correct bad pixel. 
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1.4 Thesis Outline 

The thesis is organized as follows. The basic concepts and technique concerning 

the NUC introduced in Chapter 2. The basic concepts and technique concerning the 

bad pixel correction are describled in Chapter 3. In Chapter 4, the results of our NIR 

methods which are introduced in Chapter 2 and Chapter 3 are shown and compared. 

At last, we conclude this thesis with a discussion in Chapter 5. 
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Chapter 2  Non-uniformity Correction 
 

There are two calibration methods for the NUC of an NIR FPA, reference-based 

and scene-based correction algorithm. We will introduce one of reference-based 

correction algorithm, two-point correction, and one of reference-based correction 

algorithm, least mean squares algorithm. 

 

2.1 Two-Point Correction 

 

One of the most developed methods is the two-point calibration method [3], 

which is earlier for the NUC in infrared imaging systems. In the method, it assumes 

that the response of the detector is linear in range of illumination, and the response of 

the detector is more stable and less affected by random noise.  Non-uniformity can 

be said for the results of the multiplicative noise and additive noise. At this point, the 

response model of the detection unit ij-th can be expressed as: 

 

( ) ( )
( ) ( )

1 1

2 2

, ,

, ,
ij ij

ij ij

P i j T i j

P i j T i j

 = α + β
 = α + β

                   (2.1) 

 

where ( )1 ,P i j  and ( )2 ,P i j  represent the ij-th pixel value in completely off image 

and 75% exposure image, respectively. The ijα  and ijβ  represent gain and offset of 

the ij-th pixel. The 1T  and 2T  represent illumination level. In order to calculate the 

values of the gain and offset , we chose two illumination level. By using Eq. (2.1), we 

can assume ( )2 1, ( , )T i j kT i j= , then: 
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( ) ( )2 1

1

, ,

(k 1) ( , )ij

P i j P i j

T i j

−
α =

−
                      (2.2) 

( ) ( ) ( )
( )

2 1
1

, ,
,

k 1
i

ij

P i j P i j
P i j

−
β = −

−
                 (2.3) 

           

We hope that all the output values of the detector are the same after correction, 

so we calculate the averages of the completely off image and 75% exposure image, 

the results are shown in Figs. 2.1(a)− (b) as 1P  and 2P , respectively. In other word, 

we correct all the output as:  

 

2

1

2

1( , )

( , )

ij ij ij ij

ij ij ij ij

P A T i j B

P A T i j B

 = α + β


= α + β
                     (2.4) 

 

and we combine the Eq. (2.4) with Eq. (2.2) and Eq. (2.3): 

 

( ) ( )
2 1 2 1

2 1 2 1( ) , ,ij
ij

P P P P
A

T T P i j P i j

− −= =
α − −

                 (2.5) 

( )( )1 1

1
,ij ij ij

ij

B P A T i j= − α
β

                    (2.6) 

 

Finally, we would like to correct infrared image which is under unknown 

illumination level xT , then : 

( ) ( ), ,x ij x ijP i j T i j= α + β                      (2.7) 
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Consequently, corrected pixel output signal should be: 

 

         

( ) ( )( )
( ) ( )

1 2 1
1

2 1

, , ( )

, ,
xP i j P i j P P

P
P i j P i j

− −
= +

−
                      (2.8) 

 

Therefore, we can correct directly without any other illumination level that 

always needs reference image from the laboratory. 

 

  

                (a)                                (b) 

Fig. 2.1 (a) The completely off image; (b) The 75% exposure image. 

   

2.2 Least Mean Squares 

 

A commonly used bias-gain linear model for an FPA sensor is given by:  

 

( ) ( ) ( ) ( )ij ij ij ijY n a n X n b n= × +                    (2.9) 

 

( ) ( ) ( ) ( )1 1, , , ,C ij ij x ij ij ij ij x ij ijP i j A T i j B A T i j P A T i j= α + β = α + − α
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where ( )ija n  and ( )ijb n  are the gain and the offset of the ij-th detector at frame n, 

( )ijX n  is the real incident infrared radiation collected by the respective detector, and 

( )ijY n  is the measured output signal. The main idea of the NUC scene-based methods 

relies on estimating the gain and the offset parameters of each detector on the NIR 

FPA with only the readout data ( )ijY n . The algorithm has the ability of adapting 

sensor’s parameters over time under a frame by frame basis. To understand how the 

neural network based approach proposed, Eq. (2.9) must be reordered as following: 

 

( ) ( ) ( ) ( )ij ij ij ijX n g n Y n o n= × +                   (2.10) 

 

where the new parameters ( )ijg n  and ( )ijo n  are related to the real gain and offset 

parameters of the detectors, as expressed in the following expression: 

 

( ) ( )
1

ij
ij

g n
a n

=   ( ) ( )
( )

ij
ij

ij

b n
o n

a n
= −                  (2.11) 

 

In order to minimize some error functions that allow good estimations for the 

real infrared data ( )ijX n , the parameters ( )ijg n  and ( )ijo n  must be recursively 

updated. 

Then, using linear regression to perform the parameter estimation, the error 

function ( )ijE n  for each neuron is usually defined as the difference between a 

desired target value ( )ijT n  and the estimated infrared data � ( )ijX n . The function is 

expressed as: 
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( ) ( ) � ( )ijij ijE n T n X n= −                     (2.12) 

 

The unknown parameters are estimated by using the neural network method, and 

the desired target value can be calculated as the local spatial average (mean filter) of 

the output data � ( )ijX n . 

Thus, to minimize the error ( )ijE n  in the mean squares error sense, a functional 

( )nijJ  is defined as following: 

 

( ) ( )( ) ( ) � ( )( )22

n n

n ijij ij ijJ E n T n X n= = −∑ ∑              (2.13) 

 

Then, we can get gradients relative to each parameter in Eq. (2.14). 

 

�
2ij

ij ij

ij

J
E Y

g

∂
= − ×

∂
                              

ɵ
2ij

ij
ij

J
E

o

∂
= −

∂
                         (2.14) 

 

The steepest descent algorithm is a good way to solve this Least Mean Squares 

(LMS) optimization problem. In this gradient-based search algorithm, the parameters 

to be estimated are recursively updated with a portion of each respective error 

gradient. The parameter learning procedure is finally described as following: 

 

� ( ) � ( ) ( ) ( )1 ij ijij ijg n g n E n Y n+ = + η× ×                      
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ɵ ( ) ɵ ( ) ( )1ij ij ijo n o n E n+ = + η×                     (2.15) 

 

where η is a fixed parameter known as the learning rate. 

Basic LMS method for NUC of sensor array pixels is described above. Then we 

use three improvements on LMS method [4], which include regularization, 

momentum term and adaptive learning rate as explained below.  

 

2.2.1. Regularization 

 

To test the algorithm, we note that the gain is usually much larger than the offset, 

and gain value is usually around 1. When the gain value is much larger than the offset 

value, it is difficult to select the appropriate learning rate. In the LMS algorithm, 

when the learning rate is very small, the numerical convergence is slow; when the 

learning rate is large, the iteration would not converge. This makes the algorithm 

encounter an obstacle in practical applications. According to above analysis, the gain 

value was normalized to improve the calibration of artificial neural network algorithm. 

When the gain and offset are adjusted, you can get the same adjustment in the same 

order of magnitude. the issues of the difficulty in selecting the learning rate are 

resolved, and that also eliminates the obstacles of the LMS algorithm in practical 

applications. Thus, the purpose of regularization is to eliminate the difference in the 

magnitude of the gain and offset adjustment. Parameter adjustment is as following: 

 

( ) � ( )
1 1

1
1

N M

ij
i j

r n g n
NM = =

  
= λ ⋅ −   

  
∑∑                   (2.16) 
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� � ( ) ( )( )ij ijg n g n r n= +                                    

� ( ) � ( )
1 1

1
1

N M

ij ij
i j

g n g n
NM = =

  
= + λ ⋅ −   

  
∑∑            (2.17) 

 

where λ  is the regularization constant,  N M×  is the number of pixels on the 

NIR FPA, and � ( )ijg n  is the normalized gain. 

 

2.2.2. Momentum 

 

Another possible enhancement to the steepest descent algorithm is the 

well-known momentum. The gradient descent can be very slow of if the learning 

constant eta is small and can oscillate widely if eta is too large. This problem 

essentially results from error-surface valleys with steep sides but a shallow slope 

along the valley floor. Other efficient and commonly used method that allows larger 

learning constant without divergent oscillations occurring is the addition of a 

momentum term to the normal gradient-descent method. The idea is to give each 

weight some inertia or momentum so that it tends to change in the direction of the 

average downhill force that it feels. This scheme is implemented by giving a 

contribution from the previous time step to each weight change: 

 

� ( ) � ( ) ( ) ( ) � ( ) � ( )( )1 1ij ijij ij ij ijg n g n E n Y n g n g n+ = − η× × + α ⋅ − −             

� ( ) ( ) ( ) � ( )ij ijij ijg n E n Y n g n= − η× × + α ⋅∆                (2.18) 
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ɵ ( ) ( ) ɵ ( )ij ijijo n E n o n= − η× + α ⋅∆                 (2.19) 

 

where [0,1]α∈  is a momentum parameter and a value of 0.9 is often used. For 

example, Figure 2.1 shows the offset of the correction curve. Note that the trajectory 

without momentum (the left curve) has larger oscillations than the one with 

momentum (the right curves). We further observe from the right curves in Fig. 2.1 that 

the momentum can enhance process toward the target point if the weight update is in 

the right direction (point A to A' in Fig. 2.1). On the other hand, it can redirect 

movement in a better direction toward the target point in the case of overshooting 

(point B to B' in Fig. 2.1). This observation indicates that the momentum term 

typically helps to speed up the convergence and to achieve an efficient and more 

reliable learning profile. 

The use of momentum could improve the performance of the adaptive algorithm, 

improving its stability and probably reducing the production of ghosting artifacts, and 

it can leave some beneficial fluctuation in trajectory. 

 

ɵ ( ) ɵ ( ) ( ) ɵ ( ) ɵ ( )( )1 1ij ij ij ijijo n o n E n o n o n+ = − η× + α ⋅ − −



 

Fig. 2.

 

2.2.3. Adaptive Learning Rate

 

In the neural network

calculation of the error ijE n

 

(ijT n

 

Ideal ( )ijT n  is the output

neighborhood averaging 

neighborhood average, the

weakened. However, in particular, 
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Fig. 2.2. The offset of the correction curve. 

Adaptive Learning Rate 

neural network algorithm, desired target value ( )ijT n  

( )ijE n  as follows: 

)
( )( ) ( )1 1

1 ,1

8
k l i k j l ijX n X n

T n
= − += +−

−
=
∑ ∑

             

output value of the 2-points correction algorithm

 method is the image smoothing filter

the variance becomes small, and the noise

n particular, the boundary of the image may become blurred

 

 is used in the 

             (2.20) 

algorithm. In fact, 

smoothing filter. After doing 

noise intensity is 

may become blurred. 
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Thus, based on the knowledge that the local spatial average is not always a good 

estimation for the desired target response of an adaptive NUC method, the proposed 

adaptive learning rate ( )ij nη  showed in Eq. (2.21) is designed to be dependent, and 

inversely proportional to the local spatial variance of the input image
ij

2
Yσ (n) . 

 

( ) ( )2

1

1
ij

ij
Y

n K
n

η = ⋅
+ σ

                     (2.21) 

 

Therefore, if input image of the working window is smooth enough, the desired 

averaged target value at the output is more confident, and the learning rate gets larger. 

On the other hand, if a given sliding window size of the input image is not smooth 

enough, the local variance is too high, like in a object border, and the learning rate 

gets a smaller. To add this adaptive learning rate to the adaptive NUC algorithm, η 

in equation (2.15) must be replaced by its counterpart ( )ij nη  in Eq. (2.20), where K 

is a constant that limits the maximum learning rate. The local variance 
ij

2
Yσ (n)  can be 

calculated with any desired window size, and a 3 × 3 window size would be assumed 

along this paper. 
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Chapter 3 The Improvement of Bad Pixel 

Correction 
 

After the Non-uniformity Correction, the infrared images often have bad pixels 

because the manufacturing process is not perfect, Most of the bad pixels are impulse 

noise. A few of dead pixels will be gathered in blobs, and that results in the difficulty 

and hence the failure of bad pixel correction. We proposed a new method can correct 

bad pixels observed in NIR sensor array.  

In order to remove the noise of the NIR sensor, we use some color image filter 

for impulse noise. Although the NIR images are grayscale, we will improve filter 

from grayscale filter to color filter. When the filter can remove the noise in color 

images, grayscale image should also have good results. In Section 3.1, we introduce 

some basic and state-of-the-art impulse removing filter, and Section 3.2 will introduce 

our method. 

 

3.1 Bad Pixel Correction 

 

From Sec. 3.1.1 to Sec. 3.1.3, we will describe the basic impulse noise filter, and 

then from Sec. 3.1.4 to Sec. 3.1.8, we will introduce switching filters.  

 

3.1.1 Vector Median Filters 

 

Let ( ) : l my x Z Z→
 
represent a multichannel image, where l is an image 

dimension and m  characterizes a number of color channels. In the case of standard 
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color images, parameters l  and m  are equal to 2 and 3, respectively. Let 

{ ;   1,2, , }l
iW x Z i N= ∈ = …  represents a filter window of a finite sizeN , where 

1 2, , , Nx x x…  is a set of noisy samples. The central sample ( 1)/2Nx +  determines the 

position of the filter window. Let us consider that each input vector ix  is associated 

with the distance measurement: 

 

1

- for 1,2, ,
N

i i j
j

L x x i N
γ

=

= = …∑ 　                 (3.1) 

 

where γ  represents the selected norm, e.g. absolute (1γ = ), Euclidean ( 2γ = ), etc. 

The quantification of the distance between two � -channel samples 

1 2( , , , )i i i imx x x x= …  and 1 2( , , , )j j j jmx x x x= …  given by the expression i jx x
γ

−  

follows from the generalized Minkowski metric (Plataniotis and Venetsanopoulos, 

2000) defined by 

 

1

1/m

i j i j
k

x x x x
γ

γ

γ
=

 
− = − 

 
∑                    (3.2) 

 

where γ  characterizes the used norm, m  is the dimension of vectors and ikx  is the 

k-th element of ix . 

If distance measures 1 2, , , NL L L…  serve as ordering criterions, i.e. 

 

1 2 ( ) ( )r NL L L L≤ ≤ … ≤ ≤ … ≤                    (3.3) 
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it means that the same ordering is implied to the input set 1 2, , , Nx x x…  which results 

in ordered input sequence 

 

(1) (2) ( ) ( )r Nx x x x≤ ≤ …≤ ≤ …≤                   (3.4) 

The sample (1)x W∈  associated with the minimum vector distance (1)L  

constitutes an output of the well-known vector median filter (VMF) introduced by 

Astola et al. [9]. Equivalently, the VMF output of the set 1 2, , , Nx x x…  is defined as 

the sample 1 2{ , , , }VMF Nx x x x∈ …  that satisfies the following expression: 

 

1 1

N N

VMF j i j
i i

x x x x
γ

=
γ

=

− ≤ −∑ ∑    for 1,2, ,j N= …         (3.5) 

 

where γ  characterizes the used norm. 

 

3.1.2 Vector Directional Filters 

 

Vector directional filters (VDFs) [8] operate on the direction of image vectors 

and the VDF output is determined according to these directions in the vector space. 

By above operation, image vectors with atypical directions in the vector space are 

eliminated and VDFs lead to optimal estimates in the sense vectors’ directions, so that 

VDFs preserve the color chromaticity well. 

Let each input sample ix , for 1,2, ,i N= … , be associated with a sum of vector 

angles 
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( )
1

,         for 1,2, ,
N

i i j
j

A x x i N
=

α = = …∑
   

             (3.6) 

 

where 

 

( ) 1 1, cos cos
T

i j
i j

i j

x x
A x x

x x
− −

 
 =
 ⋅ 

⋅
                  (3.7) 

 

represents the angle between two m -dimensional vectors 1 2( , , , )i i i imx x x x= …  and 

1 2( , , , )j j j jmx x x x= …  . 

 If  1 2, , Nα α …α  , i.e. the sums of vector angles, serve as ordering criterions, i.e. 

 

( )(1) (2) Nα ≤ α ≤ ≤ α⋯                      (3.8) 

 

and the same ordering is applied to the input set 1 2, , , Nx x x…  . This operation results 

in Eq. (3.4). The sample (1)x  , i.e. the sample that minimizes the sum of angles with 

other vectors, represents the output of basic vector directional filter (BVDF) [10]. 

Since the BVDF passes to the filter output the sample associated with minimal angle 

distance (1)α , it preserves the color chromaticity better than the VMF. 

 

3.1.3 Directional Distance Filters 
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Directional Distance Filters (DDF) combine advantage of VMF and BVDF [11], 

the Algorithm is as following: If the minimization formula is expressed through a 

minimization of products 

 

      for 1,2, ,i i iL i NΩ = ×α = …                 (3.9) 

( )
1 1

,     for 1,2, ,
N N

i i j i j
j j

x x A x x i N
γ

= =

  
Ω = − = …    

  
∑ ∑          (3.10) 

 

and the filter output is given by the sample (1)x  associated with (1)Ω , i.e. the 

minimum value from products 1 2, , , NΩ Ω … Ω , and such their ordered set is simply 

written as 

 

( )(1) (2) NΩ ≤ Ω ≤ ≤ Ω⋯                      (3.11) 

 

then the sample (1)x  determines the output of DDF. 

 Although the minimization of products i iL × α , for 1,2, ,i N= …  , does not 

necessarily imply a minimum for either iL  and iα , it results in very small values for 

both of them [10]. For that reason, the product minimization will select as the filter 

output the vector-valued sample that results in a very small sum of vector distances 

Eq. (3.1) and a very small sum of vector angles Eq. (3.6), simultaneously. 
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3.1.4 Peer Group Filter 

 

These are adaptive switching filters based on the peer group concept [16]. 

Essentially, the peer group of pixels in a given window represents the set of neighbor 

pixels that are sufficiently similar to each pixel according to a particular measurement. 

In the Peer Group Filter (PGF) [16] the pixels in the window are sorted in ascending 

order according to their distances to the center pixel. The center pixel (1)x  of the peer 

group is then determined as the filtering window W pixels that rank the lowest in this 

sorted sequence. In order to remove the effect of the impulsive noise, if the distance 

between (1)x  and the central pixel of W  ix  is not exceeding threshold d, the 

central pixel is free of noise. Otherwise, the center pixel of W  is considered noisy 

(see fig. 3.1). In this case, the center pixel is replaced with the VMF output (1)x ; 

otherwise it remains unchanged. The range of the threshold d is set to [40,60]. 

Equation is expressed as follows: 

 

( ) ( )

( )

1 1

2
out 1

2

,      if 

,      
PG

if  
F

i

i i

x x x d

x x x d

 − >
= 

− ≤


                     (3.12) 

 

 

The following proposed method is the improvement of PGF, known as Fast Peer 

Group Filter (FPGF) [17]. The FPGF is a fast modification of the PGF in which the 

center pixel is considered to be noise-free as soon as m pixels in the window are 

determined to be sufficiently similar. The peer group ( , , )iP x m d  will denote the set 

of pixels of the filtering window W  which satisfy the following condition:



 

2 ,  i j jx x d x W− ≤ ∈ . In other

and distance between ix  

determined to belong to the peer

noise in the image is not very 

originally necessary in PGF can be dramatic 

follows: 

 

outFPGF

Fig. 3.1. The concept of the peer group centered at 

3.1.5 Fuzzy Modified 

 

Fuzzy Modified Peer 

concept is adapted to the use of a novel fuzzy metric. The use of the fuzzy metric is 

considered because it has been proved to be an appropriate alternative to some 
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In other words, if the central pixel of W  ix  has m 

ix  and neighbors is not exceeding d, the central pixel

the peer group ( , , )iP x m d . If m is low, and the amount of 

noise in the image is not very much, the number of distance computations

originally necessary in PGF can be dramatic reduced. Equation is expressed as 

( )
( )

out 1

,            if , ,

otherwis, e
i i i

x x P x m d

x

 ∈= 


                 

1. The concept of the peer group centered at ( )1x  (m 

odified Peer Group Filter 

eer Group Filter (FMPGF) describe in [18], the peer group 

concept is adapted to the use of a novel fuzzy metric. The use of the fuzzy metric is 

considered because it has been proved to be an appropriate alternative to some 

has m neighbors, 

central pixel ix  is 

If m is low, and the amount of 

computations which is 

is expressed as 

                 (3.13) 

 

(m = 5). 

 

, the peer group 

concept is adapted to the use of a novel fuzzy metric. The use of the fuzzy metric is 

considered because it has been proved to be an appropriate alternative to some 
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classical measures [19] and in order to further introduce it in the area. This fuzzy 

metric may be also useful in other approaches based on fuzzy techniques, which are 

interesting in image processing. Due to the non-stationarity of images and the 

difficulty in distinguishing between noise and edges, fuzzy modeling is considered 

quite appropriate in image filtering [20]. The fuzzy similarity between two pixels ix  

and jx  can be computed as:  

 

( ) { }
{ }1

min min ,
,

max max ,

p
i

j
ii

i
p i

i

x y K
M x x

x y K=

+
=

+∏               (3.14) 

 

They denote by ( , )iP x d  the set  

 

( ) ( ){ }, , ,j i p i jx P x d M x x d∈ ≥                 (3.15) 

 

In order to increase computing speed, FMPGF use non-overlap window, FMPGF 

algorithm is as follows: 

(1) The image under processing is divided into 1 2
2

N N

n

×
 disjoint n n×  windowsW . 

Let ix  denote the central pixel of one of these windows. Then, the following rule 

is computed for each central pixelix : 

IF ( , , )iP x m d W∃ ⊂ ; THEN 

( , , )j ix P x m d∀ ∈ ; jx  is declared as non-corrupted and  

, ( , , )k k ix W x P X m d∀ ∈ ∉ ; kx  is declared as non-diagnosed. 
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ELSE 

ix  is declared as provisionally corrupted and  

,jx W j i∈ ≠ ; jx  is declared as non-diagnosed. 

 

(2) Each non-diagnosed pixel ix  is now considered centered in a n n×  window W

and the following rule is computed: 

If ( ), , ,iP x m d W∃ ⊂  THEN 

 ( , , )j ix P x m d∀ ∈ , jx  is declared as non-corrupted.  

 ELSE 

ix  is declared as corrupted. 

 

(3) In this step the switching filtering to compute the outputs y from the inputs x is 

carried out in a n n×  window W as follows: 

 

,        if is non-corrupted.

, if is corrupted.over the non-corrupted pixels in 

 

 
i i

i
out i

x x
y

AMF xW


= 


 

 

3.1.6 Fast Similarity-Based Impulsive Noise Removal 

Vector Filter 

 

According to the family of filters introduced by Smolka et al. in [21–24], the fast 

similarity-based impulsive noise removal vector filter (FSVF) is defined as follows: 

Let us assume a filtering window � containing 1n +  image pixels { }0 1, , , nF F F… , 
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where n  is the number of neighbors of the central pixel 0F . It is considered a 

similarity function :[0; ) Rµ ∞ →  which is non-ascending and convex in [0; )∞  and 

satisfies ( )0 1µ = , and ( )lim 0x x→∞ µ = . The similarity between two pixels of the 

same color should be 1, and the similarity between pixels with very different colors 

should be very close to 0. The function defined as ( )i jF Fµ −  where i  denotes 

the specific vector norm (typically the 1L  or 2L  vector norms) can easily satisfy the 

above conditions when it is a decreasing function and ( )0 1µ = . The cumulated sum 

kM  of similarities between a given pixel ( 0, , )kF k n= …  and all other pixels 

belonging to the window W  is defined as 

 

( ) ( )0 0
11

, ,    ,
n n

j k k j
jj
j k

M F F M F F
==
≠

= µ = µ∑ ∑                (3.16) 

 

which means that for those kF  which are neighbors of 0F , the similarity between 

kF  and 0F  is not taken into account (see fig. 3.2), which privileges the central pixel. 

Hence, the reference pixel 0F  is replaced by one of its neighbors if

0 ,    1, ,kM M k n< = … , only when it is really noisy, preserving the original 

undistorted image structures. If this is the case then, 0F  is replaced by that *k
F  for 

which * arg arg maxk kk M= . Equation is expressed as follows: 

 

* *0

0 0

,  

,
k k

k

F M M

F M M

<
 ≥

                      (3.17) 
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Fig. 3.2. (a) First the cumulative similarity value 0M  between the central pixel 

�� and its neighbors is calculated. (b) Then pixel 0F  is rejected from the filter 

window and the cumulative similarity values ,  1, ,kM k n= … of the pixels 1, , nF F…  

are determined [22]. 

 

Several convex functions fulfilling the above conditions have been proposed in 

[21–24]. The best results were achieved [22] for the simplest similarity function 

 

( )
( ) ( )

7

,
          for ,1 ,,

otherwise
0,

i j
i l

i j

F F
F F h

F F h

 ρ ρ < −µ = 



          (3.17) 

 

Where (0, )h∈ ∞ , and ρdenotes the particular distance function, typically the 1L  

or 2L  distances. This function allows to construct a fast noise reduction algorithm 

[21–24]. 

 

3.1.7 Fast Impulsive Noise Filter Using Fuzzy Metrics  
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The filter of the paper [19] is similar to FSVF, but similarity function just like 

FMPGF. The proposed fuzzy metric has been combined with the FSVF technique 

[21–24] to define a computationally efficient filter. This filter is faster than FSVF 

since the filtering process is simpler and the fuzzy metric used is faster than the 

classical metrics used in FSVF [21–24]. The fuzzy similarity between two pixels ix  

and jx  can be computed as: 

 

{ }
{ }1

min min ,
( , )

max max ,

p
i i

p
i i i

x y K
M x y

x y K

α

α

=

 +
=   + 

∏                 (3.18) 

 

where ( ) ( )1 1,.., ,  ,..,p px x x y y y= = , the particular case of the proposed fuzzy metric 

Map suitable for 3-channel image processing tasks will be 3M α , and then 3 ( , )i jM F Fα  

will denote the fuzzy distance between the pixels iF  and jF  in the image. 

In the proposed filtering, the cumulated sum kM  of similarities between a given 

pixel ( 0, , )kF k n= …  and all other pixels belonging to the window W is defined as 

 

0 3 0 3
11

( , ),    ( , )
n n

j k k j
jj
j k

M M F F M M F Fα α

==
≠

= =∑ ∑               (3.19) 

 

the reference pixel 0F  is replaced by *k
F  if 0 kM M< , the equation is the same 

as Eq. (3.17). 

 

3.1.8 Fuzzy Peer Group Averaging Filter  
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In the paper [25], they introduced the concept of fuzzy peer group for a color 

image pixel which extends the concept of peer group in the fuzzy setting. This novel 

concept aims to represent the set of all pixel neighbors to a given pixel which are 

similar to it. Since the similarity between color pixels is an imprecise concept, they 

have represented it using fuzzy similarities. For this, they have introduced a method 

based on fuzzy logic that builds the fuzzy peer group of a color image pixel by first 

determining the members of the fuzzy peer group and then assigning their 

corresponding membership degrees. The proposed method is able to accurately 

determine the fuzzy peer group of any color image pixel overcoming shortcomings of 

previous peer group approaches. 

The fuzzy peer group averaging filter (FPGA) can correct impulse noise and 

Gaussian noise, but we just use it for impulse noise here. The filter method is as 

follows: 

1. Determine the fuzzy peer group 

2. Determine the best number of members for a fuzzy peer group.  

3. Using above results to detect and replace impulses. 

where FR 2C  will be discussed later. 

In order to establish our concept of fuzzy peer group we will define two fuzzy 

sets on the ordered set of pixels . Firstly, we consider the proposition “ is similar to .” 

In the approach presented in this paper, they propose to use a fuzzy similarity function, 

�, as the function above which, following the above terminology, is given by 

 

( ) 2, ,      , 0,1,2, , 1
i jF F

F
i jF F e i j nσ

−
−

ρ = = … −             (3.20) 
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where �·� denotes the Euclidean norm and 0Fσ >  is a parameter which will be 

discussed later. Notice that now ρ  takes values in [0,1] and that ( )0 ( ), 1iF Fρ =
 
if 

and only if 0 ( )iF F= . Again, as discussed above, the color vectors iF W∈  are sorted 

in a descending order with respect to its similarity to ��, which results in an ordered 

set 'W defined ( ) ( ) ( ){ }2

'
0 1 n 1

, , ,W F F F
−

= …  as follows: such that ( )0 (0),F Fρ

( ) ( )20 (1) 0 (n 1)
, ,F F F F

−
≥ ρ ≥…≥ ρ , where ( ) 00F F= . 

 Secondly, they define the accumulated similarity for ( )iF , denoted ( )
0A F

iF , as  

  

( )( ) ( )( ) { }0 2

0

, ,   0,1, , 1
i

F
ii k

k

A F F F i n
=

= ρ ∈ … −∑              (3.21) 

 

For computing its certainty, author used a fuzzy membership function, 0FL ,on 

( ) ( ) ( ){ }20 1 n 1
, , ,F F F

−
…  . In this work author prefer to define 0FL  as a function of 0FA  

by means of a custom membership function   defined on   that fulfills the 

following requirements:  

1. ( )( )( )0 0F
iA Fµ =  for the minimum possible value of 0FA , that is, ( )1 0µ = .  

2. ( )( )( )0 1F
iA Fµ =  for the maximum possible value of 0FA , that is, ( )2 1nµ = . 

Author prefer the membership function to be more sensitive in the low value 

range than in the high value range, and, therefore, author devise µ  so that the 

derivative of µ  should be a strictly decreasing function. The function is given by 

 

( )
( )

( )( )2
22

1
1 2 1

1
x x x n

n

 
 µ = − × − − +
 − 

                (3.22) 



 

31 

( )( ) ( )( )( ) ( ) ( )( )( ) ( )( )( )0 0 0 0 2
22

1
1 2 1

1

F F F F
i i i iL F A F A F A F n

n

 
 = µ = − × − − +
 − 

 

20,1,2, , 1i n= … −            (3.23) 

 

According to the above, they determine the best number of members for a fuzzy 

peer group. The best number of members of a peer group for a given pixel will be 

determined by choosing so that all similar pixels are included in the set and the rest of 

the pixels are not. In other words, if a pixel has similar neighbors, the best number of 

members for its peer group is �m , and vice versa. Author proposal is based on 

determining �m  as the value for which 0F
iP  is the largest set that contains only 

similar pixels. The best number of members �m  of 0F
iP  will be the value of 

2{1,2, , 1}wm N n∈ = … −  maximizing the certainty of the following fuzzy rule. 

Fuzzy Rule 1: Determining the certainty of to be the best number of � members 

for 0F
mP  

IF “ ( )mF  is similar to 0F ” and “ ( )( )0F
mA F  is large” 

THEN “the certainty of to be the best number of members is high”. 

The mathematical equation is as follows: 

 

� ( )1wm N FRm argmax C m∈=                    (3.24) 

( ) ( )( ) ( )( )0 0
1

F F
FR m mC m C F L F=                   (3.25) 

( )( ) ( )( )0
0,

F
i iC F F F= ρ                      (3.26) 
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 According to the above, we can formulate this condition in terms of fuzzy peer 

groups as follows: a pixel �� is free of impulse noise if for the fuzzy peer group 

0F
mFP  it is satisfied that “ �( )0

( )

F

m
A F  is large” and “ �( )m

F  is similar to 0F ”. The 

following Fuzzy Rule 2 represents this condition: 

Fuzzy Rule 2: Determining the certainty of the pixel to be free of impulse noise 

IF “ �( )0

( )

F

m
A F  is large” and “ �( )m

F  is similar to 0F ” 

THEN “ 0F  is free of impulse noise”. 

The mathematical equation is as follows: 

 

( ) �( ) �( )
0 0F F

FR2 0C F C F L F
m m

   =    
   

                   (3.27) 

 

They use to detect and replace impulses according to threshold-based rule are shown 

in Eq. (3.28) [28], 

( )FR 2 0 t 0

0 out

if  C F F , then F is free of impulse noise

else F is an impulse and it is replaced wit

 

 h VMF

 ≥



         (3.28) 

 

3.2 Proposed Filtering 

 

When the noise is impulse noise and noise of the low density, above the noise 

filter usually can achieve good results. In fact, the noises which are detected by NIR 

sensor are frequently in blobs. Fig. 3.3 shows the noise maps of the sensor, noise 

types as shown in fig. 3.4. From type 1 to type 16 is a basic type, others are basic type 

combinations. 
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(a) 

(b) 

 

 



 

Fig. 3.3. The noise maps

“sample 2”. 

 

When concentration of

working window is enough

pixels in working window 

noise. In order to detect 

window. Because the number

window, bad pixels can be

large size of the working window 

will be blurred; small size

detect a group of bad pixels

in blobs, we use a 3 × 3

working window size. The 
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(c) 

maps of the sensor. (a) Sample 1. (b) Sample 2. (c) Zoomed 

concentration of the impulse noise is not high, peer group filter with 

is enough; however, when bad pixels are blobs, the number of bad 

pixels in working window is too much, bad pixels may be misjudgment

 dead pixels in blobs, we use the larger size 

number of dead pixels becomes a minority in a 

can be detected. But the boundary in the image 

working window can detect a group of bad pixels, but 

size of the working window can keep the details

ad pixels. We propose a method: we hope that the

3 × 3 working window; the noises are in blobs, we use 

The block diagram of the method is as follows:

 

(a) Sample 1. (b) Sample 2. (c) Zoomed 

filter with 3 × 3 

blobs, the number of bad 

misjudgment as free of 

 of the working 

in a large working 

 is blurred. The 

, but the details 

details, but cannot 

the noises are not 

in blobs, we use larger 

as follows:  



 

Fig. 3.4. Noise types

combinations.  

We use PGF with 5×5 working window to detect bad pixel, because 3

window cannot detect bad pixels in blobs. 

We calculate the vector median

35 

types in sensor. (a) – (p) are basic type; (q) – (s) 

5 working window to detect bad pixel, because 3

window cannot detect bad pixels in blobs. Peer group filter algorithm as

vector median of all pixels within the working window 

 

(s) are basic type 

5 working window to detect bad pixel, because 3×3 working 

as section 3.1.4. 

window W  (section 
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3.1.1). Vector is composed of RGB three dimensions, if the distance between (1)x  

and the central pixel of W  ix  is not exceeding threshold d , the central pixel is 

free of noise. Otherwise, the center pixel of W is considered noisy. 

 When the pixel is detected as a bad pixel, we will use the vector median of 

the 3 × 3 working window to correct (see Fig. 3.5, Fig. 3.6). If the distance between 

(1)x  and the central pixel of W  ix  is not exceeding threshold d , the central pixel 

is free of noise. Otherwise, the center pixel of W  is considered noisy. After 

Correction, we use peer group with 5 × 5 working window to detect central pixel of 

W  ix  again. If ix  is still bad pixel, we increase the size of the working window. 

After Correction, We will detect ix  whether ix  is bad pixel or not again, and so on, 

until the central pixel ix is corrected. 
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Fig. 3.5. Block diagram of the method. 

 

Fig. 3.6. The working window W size of n x n, (n=3,5,7,…) 

  

The purpose of this method is as much as possible to keep the details of image, 

and we use a 5 × 5 PGF at the right time, let bad pixels in blobs be corrected. 

5×5 sliding window 

3×3 sliding window 



 

Chapter 4  Experimental Results

 
 The experimental results

results of NUC in Section 4.1, and we show e

correction in Section 4.2. 

 

4.1  Results of NUC

 

We show the result of two of two

the result of LMS method in Section 4.1.2.

 

4.1.1 Result of T

 

Applying two-point correction to 

images of Figs. 4.1 (a), (c), and 

and (f), respectively. 

(a) 
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Experimental Results 

results are divided into two parts, we show the 

of NUC in Section 4.1, and we show experimental results

 

Results of NUC 

We show the result of two of two-point correction in Section 4.1.1, and we 

the result of LMS method in Section 4.1.2. 

Two-point Correction 

point correction to “Monitor,” “Words,” and 

(c), and (e), the corrected images are shown in Figs. 4.1

 
(b) 

 

we show the experimental 

esults of bad pixel 

point correction in Section 4.1.1, and we show 

and “Two-persons” 

, the corrected images are shown in Figs. 4.1(b), (d), 

 



 

(c)                                (d)

(e)                                (f)

Fig. 4.1 (a) The raw image of 

The raw image of “Words

of “Two-persons”, (f) The corrected

 

To further validate the effectiveness of NUC, we exploit

with a sensitive threshold to test raw images and NUC corrected images above, 

leading to Figs. 4.2 (a)− (f)
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(c)                                (d) 

 

 
(e)                                (f) 

 

The raw image of “Monitor”, (b) The corrected image of 

Words”, (d) The corrected image of “Words”; (e) 

The corrected image of “Two-persons”. 

To further validate the effectiveness of NUC, we exploit Sobel edge detection 

old to test raw images and NUC corrected images above, 

(f), respectively. 

 

 

image of “Monitor”; (c) 

 The raw image 

Sobel edge detection 

old to test raw images and NUC corrected images above, 



 

   (a)  

   (c)  

   (e)  

Fig. 4.2. Sobel edge map images of 

corrected image of “Monitor

image of “Words”; (e) The raw image of

“Two-persons”. 
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          (b) 

 

          (d) 

 

          (f) 

Fig. 4.2. Sobel edge map images of (a) The raw image of “Monitor

onitor”; (c) The raw image of “Words”, (d)

The raw image of “Two-persons”, (f) The corrected

 

 

 

Monitor”, (b) The 

(d) The corrected 

The corrected image of 
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From these figures in Fig. 4.2, it is easy to see the powerfulness of NUC in 

reducing the excessive or un-necessary edges due to the non-uniformity of the image 

sensors. Excessive lines in left-up corner of Fig. 4.2 (b) is removed in Fig. 4.2 (a), 

NUC corrected counterpart. From Fig. 4.2 (c), it is evident that removed of excessive 

lines and edges, in tables, wafer, and hand right, of Fig. 4.2 (d). Unnecessary lines and 

edges of left person in Fig. 4.2 (f) has been removed in NUC corrected image Fig. 4.2 

(e). 

 

4.1.2 Result of Least Mean Squares 

 

In this section, the proposed enhancements to the LMS method are tested with 

infrared data corrupted with simulated non-uniformity. The infrared sequences with 

artificial non-uniformity were generated from a clean 1200 frame infrared video 

sequence. Then, several 1200 frame corrupted video sequences were obtained using a 

synthetic gain with an unitary- mean gaussian distribution with 3% of variance, and a 

synthetic offset with a zero-mean gaussian distribution with 5% of variance. As an 

example, fig. 4.3 a) shows a sleeping person image and fig. 4.3 b) shows a walking to 

bed person. The parameters used to initialize the weight and bias estimation process 

are random. 

To study the performance of the proposed enhanced methods, we employ the 

Pseudo Signal to Noise Ratio (PSNR) performance metric, which is based on the Root 

Mean Square Error (RMSE). The PSNR is expressed in dB and it is defined as 

follows: 
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21
( )ijij

ij

RMSE I I
NM

= −∑ ɵ                    (4.1) 

10

2
20 log ( )

b

PSNR
RMSE

= ×                    (4.2) 

 

where ijI  is the ij pixel value of the true frame, and I ij
ɵ is the ij pixel value of the 

corrected frame. The frame size is  N M×  pixels, and b  represents the number of 

bits per pixel in the image, which in this case is equal to 8 for all the simulations. The 

PSNR values shown in this section were computed averaging the results obtained. 

Larger value for the PSNR indicates better performances. 

 

  

  (a)           (b) 

Fig. 4.3. IR image of (a) Sleeping person. (b) Walking to the bed person. 

 

  First, we use three modified method in [3], regularization (REG), momentum 

(MOM) and adaptive learning rate (ALR), and we try several combination of the 

modified method in [3]. The results are shown in Fig. 4.4. 
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Fig 4.4. PSNR for the LMS algorithm and its proposed modifications versus frame 

number. ’NOR’ indicates LMS method, ’MOM’ indicates LMS method plus 

momentum, ’REG’ indicates LMS method plus regularization, ’MOM+REG’ 

indicates LMS methods plus momentum and regularization, and ’ALR+MOM+REG’ 

indicates LMS methods plus momentum, regularization and adaptive learning rate. 

 

 Figure 4.3 shows that ALR in the initial learning rate was significantly slower, 

because ALR formula in Eq. 2.20 will reduce the learning rate of the initial settings. 

 

( ) ( )2

1

1
ij

ij
Y

n K
n

η = ⋅
+ σ

                    (2.20) 

  

where K  is a constant that limits the maximum learning rate. If local variance 

( )2

ijY nσ  is too large, the K value must be larger. For example, ( )2 4
ijY nσ = , and the 

0

5

10

15

20

25

30

35

40

1

6
2

1
2
3

1
8
4

2
4
5

3
0
6

3
6
7

4
2
8

4
8
9

5
5
0

6
1
1

6
7
2

7
3
3

7
9
4

8
5
5

9
1
6

9
7
7

1
0
3
8

1
0
9
9

1
1
6
0

P
S

N
R

frame number

NOR

REG

MOM

REG+MOM

ALR+MOM+REG



 

44 

( ) 1
0.2

4 1ij n K Kη = =
+

.If each learning rate η  of modifications is the same, the K 

must be 5× η . Therefore, we adjust the value of K, let average of the learning rate be 

our settings. In addition, RMSE is larger at the beginning, so we should have a larger 

learning rate; and the learning rate which is gradually smaller performs minor 

adjustments. 

 The paper described three modified method, there are eight kinds of 

combinations as follows: NOR, REG, MOM, ALR, REG+MOM, REG+ALR, 

MOM+ALR, and REG+MOM+ALR. They only try several combinations in [3], we 

will find the best method of all combinations, and we will test two video: “sleeping 

person” and “walking to bed person”. According to the above experimental results, η 

= 5 × 10-5 when the frame number is 1–20, η will linear down to 10-5 when the frame 

number is 21–120. The results are shown in Fig. 4.5. 

 In the beginning, learning rate of "REG + MOM + ALR" is better in video 

“sleeping person”; when PSNR approaches the stability, PSNR of the “MOM+ALR” 

and “ALR” are larger (see fig. 4.5.(a)). In video “walking to bed person”, The person 

is moving in video “walking to bed person” when frame number is 120 – 300. When 

person is walking to bed, "REG + MOM + ALR", "REG + ALR", and "MOM + ALR" 

have a better effect; when PSNR approaches the stability, PSNR of “ALR” is the 

largest. This shows that the "MOM + ALR" is the best in the dynamic video; the 

"ALR" is the best in static video, and "MOM + ALR" also has a good effect in static 

video. Based on the above, we should use the "MOM + ALR" 

The corrected images are shown in Fig.4.6 and Fig. 4.7. The accuracy of the 

LMS method is low. Although gain and offset can correct in the right trend (see fig. 

4.6), gain and offset cannot reach precise effect such as two-point correction (see fig. 

4.7).  
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(a) 

 
(b) 

Fig. 4.5. PSNR for the LMS algorithm and its proposed modifications versus frame 

number. (a) Sleeping person. (b) Walking to bed person. ‘NOR’ indicates LMS 
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method, ‘MOM’ indicates 

method plus regularization, 

‘MOM+REG’ indicates 

‘REG+ALR’ indicates LMS

‘MOM+ALR’ indicates LMS

and ‘ALR+MOM+REG’ indicates 

adaptive learning rate. 

 

(a)                              (b)

  

Fig. 4.6. (a) Original image of frame 3. (b) 

The corrected frame of the frame 300.
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MOM’ indicates LMS method plus momentum, ‘REG’ indicates 

method plus regularization, ‘ALR’ indicates LMS method plus adaptive 

MOM+REG’ indicates LMS methods plus momentum and regularization

LMS methods plus regularization and adaptive 

LMS methods plus momentum and adaptive 

MOM+REG’ indicates LMS methods plus momentum, regularization

 

(a)                              (b) 

 

(c) 

Fig. 4.6. (a) Original image of frame 3. (b) The corrected frame of the frame 3. (c) 

of the frame 300. 

REG’ indicates LMS 

daptive learning rate, 

s plus momentum and regularization, 

daptive learning rate,  

daptive learning rate,  

regularization and 

 

of the frame 3. (c) 



 

(a)                              (b)

Fig. 4.7. Frame 240 of the 

Corrupted image. (c) Corrected image with the proposed NUC 

learning rate plus momentum

 

4.2  Results of Bad Pixel Correction

 

For the evaluation of noise suppression algorithms, we will use two noise model

to simulate different models

 

(I) Impulsive noise: 

Let 1 2 3{ , , }i i i ix x x x=  

corrupted by the noise process. Then the image pixels are distorted according to the 

following scheme: 
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(a)                              (b) 

 

(c) 

of the “walking to bed person” (a) Original image of frame 3. (b) 

Corrected image with the proposed NUC method using adaptive 

learning rate plus momentum and regularization. 

Results of Bad Pixel Correction 

For the evaluation of noise suppression algorithms, we will use two noise model

models of distortions. 

{ , , }  denote the original pixel and let 'ix  denote the pixel 

corrupted by the noise process. Then the image pixels are distorted according to the 

 

(a) Original image of frame 3. (b) 

method using adaptive 

For the evaluation of noise suppression algorithms, we will use two noise models 

denote the pixel 

corrupted by the noise process. Then the image pixels are distorted according to the 
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1 2 3

1 2 3

1 2 3

1 2 3

1

2

3

4

{ , , }  with probability 

{ , , }  with probability 
'

{ , , }  with probability 

{ , , }  with probability 

i i i

i i i
i

i i i

i i i

v x x

x v x
x

x

p p

p p

p p

p p

x v

v v v



= 



                  (4.3) 

 

where 1iv , 2iv , 3iv  are independent and equal to 0 or 255. p is the sample corruption 

probability and 1p , 2p , 3p  are corruption probabilities of each color channel, so that 

4

1
1kk

P
=

=∑ . In this work, noise model will generally denote the case with 0.25kP = , 

1,...,4k = . 

 

(II) Realistic noise:  

In this noise model, we use fig. 3.3. (a) as sample to calculate the proportion of 

each noise type which is detected by sensor, and we add realistic noise with the ratio 

of noise types. We can accordance with the proportional increase or decrease in noise 

until the sample corruption probability p  is our settings. The image pixels are 

distorted like Eq. (4.3), and each neighboring noise have the same distortion.  

 In this experiment, we add the impulse noise with 5%, 10%, 15%, and 20%; and 

we add the realistic noise with 1%, 4%, 7%, 10%. Because noise density is less than 

1% in Figure 3.3, we add noise proportion of the realistic noise is smaller than the 

noise proportion of the realistic noise.  

For the measurement of the restoration quality, we employ the Pseudo Signal to 

Noise Ratio (PSNR) performance metric, which is based on the Root Mean Square 

Error (RMSE). The RMSE and PSNR are defined as: 
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( )( )2

1 1 1

1
, ( , )

QN M
qq

i j q

i j oRMSE x i j
N M Q = = =

= −
× × ∑∑∑            (4.4) 

255
20 logPSN

RMSE
R

 = ×  
 

                      (4.5) 

 

where M , N  are the image dimensions, Q  is the number of channels of the image 

( 3Q =  for color image), and ( , )qo i j  and ( ),qx i j  denote the q -th component of 

the original image vector and the filtered image, at pixel position ( ),i j , respectively. 

For the evaluation of the detail preservation capabilities of the proposed filtering 

design the mean absolute error (MAE) has been used 

 

( )
11 1

, ( , )
N M Q qq

i j q
i j o i j

M
x

AE
N M Q

= ==
−

=
× ×

∑ ∑ ∑
                 (4.6) 

 

Since RGB is not a perceptually uniform space in the sense that differences 

between colors in this space do not correspond to color differences perceived by 

humans, the restoration errors are often analyzed using the perceptually uniform color 

spaces. In this paper, we will use the CIE LUV color space and the normalized color 

difference (NCD) defined as: 

 

1 1

*

1 1

N M

labi j
Lab N M

Labi j

E
NCD

E

= =

= =

∆
=

∆

∑ ∑
∑ ∑                  

    (4.7) 

1/2* 2 * 2 * 2( ) ( ) ( )labE L a b∆ = ∆ + ∆ + ∆                   (4.8) 

1/2* * 2 * 2 * 2( ) ( ) ( )LabE L a b∆ = + +                     (4.9) 

 

where labE∆  denotes the perceptual color error and *LabE∆  is the norm or magnitude 
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of the original image color vector in the * * *L a b  color space. 

 Figure 4.8 shows the results of each filter in 5% impulse noise density, and table 

4.1 shows the performances with each sample corruption probability of impulse noise; 

Figure 4.7 shows the results of each filter in 1% realistic noise density, and table 4.2 

shows the performances with each sample corruption probability of realistic noise. In 

order to quickly see the advantages and disadvantages of each method, I will 

normalize parameters which are RMSE, MAE, and NCD. The parameters are 

normalized numbers which are between 0 and 1, and the larger value for the 

parameters indicates better performances. Equation is expressed as follows: 

 

max( ) ( )

max( ) min( )normalize

RMSE RMSE i
RMSE

RMSE RMSE

−=
−

               (4.10) 

 
max( ) ( )

max( ) min( )normalize

MAE MAE i
MAE

MAE MAE

−=
−

                  (4.11) 

max( ) ( )

max( ) min( )normalize

NCD NCD i
NCD

NCD NCD

−=
−

                  (4.12) 

 

 According to Table 4.1, when the noise is impulse noise, the performance of 

switch filters is better than the non-switch filter (VMF, BVDF, DDF). Although our 

propose method is not the best method, the performance of our proposed method is 

still above average; when the noise is realistic noise, no matter what the sample 

corruption probability p  is, the performance of our proposed method is the best. 

The fig. 4.9. show that the bad pixels which are blobs are corrected by our proposed 

method, and others filter cannot correct the bad pixels in blobs. In the zoomed images 

(see fig. 4.6 (c) – (k)), we can see that some bad pixels are similar to neighbor pixels, 

and the bad pixels cannot be detected by our proposed method. The reason is that we 

use the same threshold d  value in the different working window. If we can 

automatically select the threshold, the problem may be solved. The image is blurred in 
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the detail part, because we detect dead pixels with 5 × 5 working window. We hope 

that if we can detect dead pixels with 3 × 3 working window, and we use the larger 

working window when the bad pixels are blobs.  

 

  

(a)                                (b) 

  

(c)                                (d) 
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(e)                               (f) 

  

(g)                               (h) 

  

(i)                               (j) 
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(k) 

  

(l)                                 (m) 

  

(n)                                 (o) 
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(p)                                 (q) 

  

(r)                                (s) 

  

(t)                               (u) 

Fig. 4.8. Bad pixel correction results of Lena image filtered by different impulse noise 
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filters. (a) Original image. (b) Corrupted image with 5% impulse noise. (c)− (k) are  

filtering results. Image filtering results filtered by (c) our proposed filter. (d) Vector 

median filter (VMF). (e) Basic vector directional filter (BVDF). (f) Directional 

distance Filter (DDF). (g) Fast Peer Group Filter (FPGF). (h) Fuzzy Modified Peer 

Group Filter (FMPGF). (i) Fast similarity-based impulsive noise removal vector filter 

(FSVF). (j) Fuzzy metric FSVF (FMFSVF). (k) Fuzzy Peer Group Averaging Filter 

(FPGA). (l) is zoomed parts of (b). (m)− (u) are zoomed “Lena” filtering results. 

Zoomed results filtered by (l) our proposed filter. (m) VMF. (n) BVDF. (o) DDF. (p) 

FPGF. (q) FMPGF. (r) FSVF. (s) FMFSVF. (t) FPGA. 

 

  
(a)                                 (b) 

  
(c)                                 (d) 
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(e)                                 (f) 

  

(g)                                 (h) 

  

(i)                                 (j) 
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(k)                                 (l) 

  

(m)                                (n) 

  

(o)                                (p) 
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(q)                                (r) 

  

(s)                                (t) 

Fig. 4.9. Bad pixel correction results of Lena image filtered by different realistic noise 

filters. (a) Corrupted image with 1% realistic noise. (b)− (j) are filtering results. Image 

filtering results filtered by (b) our proposed filter. (c) Vector median filter (VMF). (d) 

Basic vector directional filter (BVDF). (e) Directional distance Filter (DDF). (f) Fast 

Peer Group Filter (FPGF). (g) Fuzzy Modified Peer Group Filter (FMPGF). (h) Fast 

similarity-based impulsive noise removal vector filter (FSVF). (i) Fuzzy metric FSVF 

(FMFSVF). (j) Fuzzy Peer Group Averaging Filter (FPGA). (k) is zoomed parts of (a). 

(l) − (t) are zoomed “Lena” filtering results. Zoomed results filtered by (l) our 

proposed filter. (m) VMF. (n) BVDF. (o) DDF. (p) FPGF. (q) FMPGF. (r) FSVF. (s) 
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FMFSVF. (t) FPGA. 

 

Table 4.1 

The evaluation results of Lena image filtered by the following filter: 

(a) Corrupted image with 5% impulse noise. 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 3.5957 0.4377 0.0048 0.8865 0.9701 0.9574 2.8140 

FIVF 2.5723 0.3069 0.0033 0.9703 0.9939 0.9935 2.95763 

FMPGF 6.0304 0.6896 0.0080 0.6872 0.9242 0.8834 2.4948 

FPGA 3.1922 0.4384 0.0039 0.9195 0.9699 0.9782 2.8677 

FSVF 2.3992 0.2756 0.0034 0.9845 0.9996 0.9908 2.97492 

PGF 2.2093 0.2735 0.0030 1.0000 1.0000 1.0000 3.00001 

BVDF 14.4265 5.7611 0.0456 0.0000 0.0000 0.0000 0.0000 

DDF 14.0460 5.2382 0.0446 0.0311 0.0953 0.0249 0.1513 

VMF 6.6024 3.8029 0.0356 0.6404 0.3568 0.2344 1.2317 

 

  



 

60 

(b) Corrupted image with 10% impulse noise. 

 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 4.2708 0.7164 0.0076 0.9209 0.9719 0.9638 2.8566 

FIVF 3.3270 0.5535 0.0060 0.9820 0.9966 0.9941 2.97272 

FMPGF 7.2660 1.1532 0.0122 0.7270 0.9054 0.8748 2.5072 

FPGA 3.8339 0.7040 0.0066 0.9492 0.9738 0.9824 2.9053 

FSVF 3.7577 0.5679 0.0077 0.9541 0.9945 0.9613 2.90983 

PGF 3.0491 0.5314 0.0057 1.0000 1.0000 1.0000 3.00001 

BVDF 18.4944 7.1068 0.0578 0.0000 0.0000 0.0000 0.0000 

DDF 18.1712 6.5833 0.0567 0.0209 0.0796 0.0208 0.1214 

VMF 6.8445 3.9487 0.0367 0.7543 0.4803 0.4039 1.6384 

 

(c) Corrupted image with 15% impulse noise. 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 4.8266 0.9825 0.0103 0.8183 0.9528 0.9397 2.7109 

FIVF 4.0217 0.8102 0.0085 0.9601 0.9929 0.9937 2.94672 

FMPGF 8.6644 1.6116 0.0177 0.1424 0.8066 0.7164 1.6654 

FPGA 4.6494 0.9683 0.0099 0.8495 0.9561 0.9515 2.75723 

FSVF 5.1482 0.9003 0.0133 0.7617 0.9719 0.8492 2.5829 

PGF 3.7952 0.7795 0.0083 1.0000 1.0000 1.0000 3.00001 

BVDF 9.4727 5.0826 0.0414 0.0000 0.0000 0.0000 0.0000 

DDF 8.6538 4.5245 0.0403 0.1442 0.1297 0.0335 0.3074 

VMF 7.0543 4.0807 0.0378 0.4260 0.2328 0.1091 0.7679 
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(d) Corrupted image with 20% impulse noise. 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 5.2512 1.2236 0.0127 0.9350 0.9659 0.9608 2.8618 

FIVF 4.3763 1.0194 0.0110 1.0000 1.0000 1.0000 3.00001 

FMPGF 9.8929 2.0342 0.0229 0.5902 0.8306 0.7281 2.1489 

FPGA 5.1914 1.2713 0.0125 0.9394 0.9580 0.9659 2.86333 

FSVF 7.4217 1.3642 0.0225 0.7738 0.9425 0.7370 2.4533 

PGF 4.4594 1.0709 0.0113 0.9938 0.9914 0.9931 2.97832 

BVDF 17.8379 7.0108 0.0549 0.0000 0.0000 0.0000 0.0000 

DDF 17.4112 6.4963 0.0538 0.0317 0.0859 0.0243 0.1419 

VMF 7.3442 4.2557 0.0390 0.7795 0.4598 0.3622 1.6016 
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Table 4.2 

The evaluation results of Lena image filtered by the following filter: 

(a) Corrupted image with 1% realistic noise. 

 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 2.4088 0.1387 0.0017 1.0000 1.0000 1.0000 3.00001 

FIVF 4.0657 0.2834 0.0031 0.6786 0.9667 0.9595 2.60482 

FMPGF 7.2351 0.4181 0.0053 0.0638 0.9356 0.8969 1.8964 

FPGA 5.5436 1.6414 0.0137 0.3919 0.6540 0.6612 1.7070 

FSVF 6.5536 0.3204 0.0048 0.1960 0.9581 0.9131 2.0672 

PGF 6.3073 0.3044 0.0041 0.2437 0.9618 0.9312 2.13683 

BVDF 7.5638 4.4813 0.0372 0.0000 0.0000 0.0000 0.0000 

DDF 6.7914 3.9355 0.0360 0.1498 0.1257 0.0342 0.3098 

VMF 6.4934 3.6915 0.0350 0.2076 0.1819 0.0638 0.4534 
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(b) Corrupted image with 4% realistic noise. 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 3.6473 0.4080 0.0046 1.0000 1.0000 1.0000 3.00001 

FIVF 7.0845 0.8450 0.0087 0.6830 0.8974 0.8797 2.46012 

FMPGF 13.1474 1.4814 0.0191 0.1238 0.7481 0.5775 1.4494 

FPGA 7.0037 1.9142 0.0164 0.6904 0.6465 0.6554 1.99233 

FSVF 14.4900 1.4873 0.0214 0.0000 0.7467 0.5104 1.2570 

PGF 13.7416 1.3512 0.0175 0.0690 0.7786 0.6243 1.4720 

BVDF 8.5840 4.6686 0.0390 0.5447 0.0000 0.0000 0.5447 

DDF 7.8682 4.1339 0.0378 0.6107 0.1255 0.0325 0.7687 

VMF 7.7489 3.8851 0.0368 0.6217 0.1839 0.0639 0.8695 

 

(c) Corrupted image with 7% realistic noise. 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 4.1995 0.6394 0.0067 1.0000 1.0000 1.0000 3.00001 

FIVF 8.8677 1.2205 0.0131 0.6354 0.8655 0.8453 2.34623 

FMPGF 16.6498 2.3675 0.0305 0.0275 0.5999 0.4214 1.0489 

FPGA 7.2998 1.3124 0.0117 0.7578 0.8442 0.8782 2.48022 

FSVF 17.0025 2.1611 0.0326 0.0000 0.6477 0.3705 1.0182 

PGF 14.9220 4.9589 0.0478 0.1625 0.0000 0.0000 0.1625 

BVDF 9.5716 4.8688 0.0409 0.5804 0.0209 0.1686 0.7698 

DDF 8.8976 4.3302 0.0398 0.6330 0.1455 0.1949 0.9735 

VMF 8.5891 4.0665 0.0387 0.6571 0.2066 0.2224 1.0861 
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(d) Corrupted image with 10% realistic noise. 

 

Filter     
RMSE    MAE     NCD    

RMSE- 

normalized    

MAE- 

normalized    

NCD- 

normalized    
Sum    

Our method 4.7496 0.8634 0.0086 1.0000 1.0000 1.0000 3.00001 

FIVF 10.2902 1.5584 0.0172 0.7343 0.8559 0.8452 2.43553 

FMPGF 19.3414 3.2260 0.0403 0.3003 0.5101 0.4321 1.2425 

FPGA 8.4397 1.5953 0.0147 0.8231 0.8482 0.8907 2.56202 

FSVF 25.6040 4.5280 0.0644 0.0000 0.2402 0.0000 0.2402 

PGF 17.9512 5.6863 0.0549 0.3670 0.0000 0.1715 0.5384 

BVDF 10.4649 5.0824 0.0429 0.7259 0.1252 0.3863 1.2375 

DDF 9.7540 4.5290 0.0417 0.7600 0.2400 0.4066 1.4066 

VMF 9.5453 4.2751 0.0407 0.7700 0.2926 0.4256 1.4882 
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Chapter 5  Conclusion 

 

In this thesis, we employ two-point correction method and LMS method to 

correct non-uniformity among pixels of NIR sensor. Two-point correction is a highly 

accurate method, unfortunately, he needs sophisticated instruments to measure the 

reference image, and correction parameters which were measured before cannot meet 

the correct situation when the system is in use of increased working hours. On the 

other hand, LMS method only need the readout infrared data captured by the imaging 

system and compensate the non-uniform response of pixels during its normal 

operation. We changed the parameters set so that LMS can be adapted to all the 

circumstances. Furthermore, we use peer group filter which can adjust the size of the 

working window automatically. We use 3×3 window as default working window for 

sharpness maintenance, if the small window does not correct a bad pixel, the window 

size will increase automatically to enhance the correction capability. Although the 

detail of the image may be blurred, most of the bad pixels can be corrected. 

In the future, more advanced NUC method will be investigated to improve NIR 

sensor performance. We can the above two methods in the application, two-point 

correction do not need to re-measurement gain and offset, we use the LMS method to 

make it without sophisticated measurement. Furthermore, in order to apply in real 

time, If we can find out the location of the dead pixels in advance, we can save a lot 

of time in the detection, We only need regular dead pixel detection to find out dead 

pixels generated due to mechanical aging, we can achieve the purpose of quickly and 

effectively.  
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