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Non-Uniformity and Bad Pixel Correction for NIR
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STUDENT: Yen-Kai Peng ADVISOR: Dr. Jyh-Yeo@fang

Institute of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

In this thesis, we use non-uniformity correctiodJ@) and bad pixel correction
to correct infrared image of a NIR sensor. We emflwo-point calibration and Least
Mean Squares method, there are mainly used twagaats of the calibration for
non-uniformity correction, reference-based and sdsased correction algorithm.
Two-point correction is a highly accurate methadafoutunately, it needs sophisticated
instruments to measure the reference image; LMShadebnly need the readout
infrared data captured by the imaging system antpemsate the non-uniform
response of pixels during its normal operation, Bwg speed of the algorithm is
difficult to use in real-time video. We will testn@ analyze the two kinds of
algorithms.

For bad pixel correction, in order to improve therfprmance of bad pixel
correction, we have improved bad pixel correctidmol is based on the peer filter.
Because bad pixels in the infrared images whichdatected by infrared focal plane
array sensor are frequently in blobs than kinddnwdges, we must implement a
specific method of image correction. We employ satdjble window size that can



increase the window automatically where bad pizedsin blobs. We usex3 window

as default working window for sharpness maintenairidee small window does not

correct a bad pixel, the window size will increametomatically to enhance the
correction capability. By this scheme, it is mocewate to locate bad pixel, and bad

pixels will be replaced by the median of the paeug.
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Chapter 1 Introduction

1.1 Motivation

With the rapid technological development, the \esilight technology has
become popular. Recently infrared sensing has asen widely appliedin
various domains of low/no light environments. Oneedrum of infrared is near
infrared (NIR), whose bandwidth is close to visile light band, with a higher
reflective image sensing capability under low/ghtienvironments. In addition, NIR
band also widely used in the military applicationyding high resolution images the
sensing device of NIR is. It can be used as theangneecognition systems and
surveillance systems, in low/no light or fog or &®an the environments.

It is well known that near infrared focal plane agrr (NIR FPA) has
non-uniformity and bad pixels in the produced serstls. Hence, the infrared image
must do non-uniformity correction (NUC) and badgbigorrection. Bad pixel is the
pixel that does not respond (non responsive)dak situation (commonly) or always
responsive i.e. In the NIR sensor bad pixel saturas most often observed.

In the low light military applications, infrared age processing must be fast and
efficient. Because military NIR sensor has to lgativeight and easy to used, there in
NUC, the most popular reference-based correctiothode so-called “two-point”
correction method in which two uniform sources obwn intensity are sequentially
imaged [1], [2] is widely used.

Bad pixel replacement of infrared focal plane asresyalso known as Dead Pixel
Correction. Bad pixels are non-responsive, permiiyndark or saturating. Bad pixels
in infrared digital images might still remain unpssted after non-uniformity
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correction, so we need to correct bad pixels atiedwBecause dead pixels in the
infrared images are frequently in blobs than kinfismages, we must implement a
specific method of image correction.

In this thesis, we use two-point correction to eotr infrared images,
non-uniformity and correct bad pixel. In the norseluction scheme developed for
better bad pixel detection, we propose a new ingontsse filter based on peer group
concept. We employ adjustable window size that @acrease the window
automatically where bad pixels are in blobs. We 3% window as default working
window for sharpness maintenance, if the small wmdloes not correct a bad pixel,
the window size will increase automatically to emtethe correction capability. By
this scheme, it is more accurate to locate bad,pxel bad pixels will be replaced by

the median of the peer group.

1.2 Non-uniformity Correction

With the development of infrared imaging technologgar infrared focal plane
arrays (NIR FPA) imaging system has become thesfolee next generation infrared
imaging system. Compared with other thermal imagiygtems, NIR FPA has simple
structure, high reliability, high detection senstii and high frame rate, The NIR FPA
is widely applied to various fields of military, wheal, civil, and forest fire
prevention.

Unfortunately, due to the limitations of semiconwucmaterials and process
conditions, the output response of the detectootsthe same, which resulted in the
NIR FPA response non-uniformity. In general, thenqomiformity is called fixed
pattern noise (FPN) will be striped or grid-likeise model. Therefore, how to
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effectively track and remove the device non-unifitymnon-uniformity correction
(NUC) is the key to improve the NIR FPA imaging bjiya

There are several calibration methods for the NW@moNIR FPA. In general,
there are two categories of the calibration methoeference-based and scene-based
correction algorithm. Reference-Based (or calibratbrased) NUC techniques are
based on the use of uniform infrared sources. Thstmsed one is the Two-Point
Calibration method [3], which employs at least tiMackbody sources at different
luminance to calculate the gain and the offset axfhedetector on the NIR FPA.
Unfortunately, when the system is in use of incedasorking hours, its performance
would be decreased for the working environment sta@nge, Correction parameters
which were measured before cannot meet the cosigation. Such kinds of
Reference-Based NUC methods require to halt theatipa of the system, and re-do
the procedure and re-set the correction parametenserate again.

For these reasons, Scene-Based NUC techniquesctaralya becoming more
popular, since they only need the readout infradath captured by the imaging
system and compensate the non-uniform responseixelspduring its normal
operation. The constant statistics constraint oteth the most referred scene-based
technique However, its algorithm structure is camplhardware implementation is
difficult, thus reduces its engineering applicasion

In this thesis, we propose to utilize two-point regtion and adaptive
scene-based NUC method [4] to correct infrared et has non-uniformity. We
also present varying-size impulse noise filter torect bad pixels, and NIR sensor

flowchart is illustrated in Fig. 1.1 below.



Read two raw images, completely off
image, and 75% exposure image.

Use three raw images and 75% exposure
image to find bad pixel map.

Non-uniformity correction (NUC).

Bad pixel correction.

Fig 1.1 The flowchart of our NIR sensor.

1.3 Bad Pixel Correction

In many practical situations, the sensing deviaas the transmission process
tend to degrade the quality of the digital imaggsiriiroducing noise, images are
corrupted by the so-called impulsive noise of slthntation and high energy. The
presence of noise in an image may be a drawbaakyrsubsequent processing to be
done over the noisy image such as edge detectimaigd segmentation or pattern
recognition. As a consequence, filtering the imagereduce the noise without
degrading its quality, preserving edges, cornerb @her details is a major step in

4



imaging systems such as image content retrievaljaakimage processing, industrial
visual inspection [5]. This type of noise occurssthpin the over-the-air transmission
such as in standard broadcasting and satellitesrtression. Common sources of
impulse noise include lightening, industrial ma&sncar starters, faulty or dusty
insulation of high-voltage powerlines and variouspuwtected electric switches
[6-8].

In order to recovery the original image pixel vau¢he vector median filter
(VMF) [9], which is probably the most well-known ater filter, uses the i
(City-Block) or L, (Euclidean) norm to define the above distance tfanc The
filtering method sorts pixels vectors in the workiwindow by space vector distance
sum. On this basis, the Basic Vector Directiondiefng (BVDF) [10] sorts color
vector by vector angle sum. Distance Directiondlefing (DDF) [11] sorts color
vector by product of vector distance and vectorl@anghe above methods are too
much smoothing, which results in an extensive bigriof the output image. This
undesired property is caused by the unnecessaeyiri) of the noise-free samples
that should be passed to a filter output withoyt @mange. To remove this drawback,
a switching mechanism has been introduced intstitueture of the robust smoothing
filters, [12,13]. Such a switching filter detectstihe pixel under consideration is
affected by the noise process and if it is fountdgamoisy, then it is being replaced by
the output of some robust filter, otherwise itaft unchanged. For example, Adaptive
center-Weighted vector directional filter (ACWVDH)14], and robust switching
vector median filtering (RSVMF) [15]. When the mwisatio is low, the class

switch-type methods have achieved good results.

In this thesis, we use improved peer group filteicorrect infrared image that

has non-uniformity and correct bad pixel.
5



1.4 Thesis Outline

The thesis is organized as follows. The basic qotscand technique concerning
the NUC introduced in Chapter 2. The basic concaptstechnique concerning the
bad pixel correction are describled in Chaptem3Chapter 4, the results of our NIR
methods which are introduced in Chapter 2 and @haptare shown and compared.

At last, we conclude this thesis with a discussio@hapter 5.



Chapter 2 Non-uniformity Correction

There are two calibration methods for the NUC of\dR FPA, reference-based
and scene-based correction algorithm. We will iohtice one of reference-based
correction algorithm, two-point correction, and ook reference-based correction

algorithm, least mean squares algorithm.

2.1 Two-Point Correction

One of the most developed methods is the two-pcatibration method [3],
which is earlier for the NUC in infrared imagingssgms. In the method, it assumes
that the response of the detector is linear in easfgllumination, and the response of
the detector is more stable and less affected bgora noise. Non-uniformity can
be said for the results of the multiplicative nogsel additive noise. At this point, the

response model of the detection ujith can be expressed as:

{ﬂ(i’l:)zo‘ijTl(i_'j_)J’BiJ (2.1)
|::t2 =q +D,;

where RB(i,j) and B(i,j) represent thé-th pixel value in completely off image
and 75% exposure image, respectively. Tie and 3; represent gain and offset of

theij-th pixel. The T, and T, represent illumination level. In order to calceldhe

values of the gain and offset , we chose two ilhation level. By using Eq. (2.1), we

can assume, (i, j) =KT,(i, j), then:



a, = Pz(l’J)_Pl(l’J) (2.2)
b k=116 )

= (2.3)

We hope that all the output values of the deteaterthe same after correction,

so we calculate the averages of the completelynudige and 75% exposure image,

the results are shown in Figs. 2.&)) as 51 and P, respectively. In other word,

we correct all the output as:

{El =0 AT ) +By B,

—3 S8 (2.4)
Pz :aijAsz(l’ J)+BijB|j
and we combine the Eq. (2.4) with Eqg. (2.2) and B®)(
B-R P,-P,
= 2 "1 — 2 " 25
A a;(T,-T)  Py(i, ) -Ri.]) (25
B; :é(ﬁ_aijAjTl(i’ J)) (2.6)

1]

Finally, we would like to correct infrared image it is under unknown

illumination level T, , then :

R((i’j):aiij(i'j)+Bij (2.7)



Consequently, corrected pixel output signal shéeld

P.(i,j)= o AT, (i,])+B;B; =a; AT (i.i)+R-a;AT,(i.])

P(i.i)=R (i) B-P) 2.8)
R(i.i)-R(i.i)
Therefore, we can correct directly without any othiieimination level that

always needs reference image from the laboratory.

(a) (b)

Fig. 2.1 (a) The completely off image; (b) The 78%posure image.

2.2 Least Mean Squares

A commonly used bias-gain linear model for an FEAs®r is given by:

Y, (n) =4, (n)xX; (n)+by (n) (2.9)



where a;(n) and b;(n) are the gain and the offset of tii¢h detector at frama,
X;;(n) is the real incident infrared radiation collectgdthe respective detector, and

Y; (n) is the measured output signal. The main idea®@NHC scene-based methods

relies on estimating the gain and the offset patareeof each detector on the NIR

FPA with only the readout datéﬂj(n). The algorithm has the ability of adapting

sensor’s parameters over time under a frame byefraasis. To understand how the

neural network based approach proposed, Eq. (219) be reordered as following:

X;; (n) = g; (n)=¥; (n) +0, (n) (2.10)

where the new parameterg; (n) and g, (n) are related to the real gain and offset

parameters of the detectors, as expressed in lbevilog expression:

0;(n) = _in; (2.11)

In order to minimize some error functions that wallgood estimations for the

real infrared dataX;(n), the parametersy, (n) and o,(n) must be recursively

updated.

Then, using linear regression to perform the patamestimation, the error

function Ej(n) for each neuron is usually defined as the diffeeetetween a

desired target valud; (n) and the estimated infrared daté; (n). The function is

expressed as:
10



E,(n)=T,(n)- X (n) (2.12)

The unknown parameters are estimated by usingabhehnetwork method, and

the desired target value can be calculated asotta $patial average (mean filter) of

the output dataX; (n).
Thus, to minimize the erro; (n) in the mean squares error sense, a functional

Ji (n) is defined as following:

Ji (”):Zn:(Eij(”))z:Z(Tij(n)_?ii(”))z (2.13)

n

Then, we can get gradients relative to each pasemetq. (2.14).

0J.
aT” =2, xY;
g;
aJ; __
R 2E; (2.14)
00

The steepest descent algorithm is a good way tedbis Least Mean Squares
(LMS) optimization problem. In this gradient-bassshrch algorithm, the parameters
to be estimated are recursively updated with aigrorbf each respective error

gradient. The parameter learning procedure islfirtdscribed as following:

~

9 (n+1) =g, (n) +nxE, (n)x¥; (n)



6ij (I’1+1)=CA)ij(I’1)+I’]><Eij (n) (2.15)

where n is a fixed parameter known as the learning rate.
Basic LMS method for NUC of sensor array pixelsiéscribed above. Then we
use three improvements on LMS method [4], whichlude regularization,

momentum term and adaptive learning rate as exquldielow.

2.2.1. Regularization

To test the algorithm, we note that the gain isallgumuch larger than the offset,
and gain value is usually around 1. When the galoesis much larger than the offset
value, it is difficult to select the appropriateateing rate. In the LMS algorithm,
when the learning rate is very small, the numeracmivergence is slow; when the
learning rate is large, the iteration would not \enge. This makes the algorithm
encounter an obstacle in practical applicationsofding to above analysis, the gain
value was normalized to improve the calibratioraxificial neural network algorithm.
When the gain and offset are adjusted, you carthgesame adjustment in the same
order of magnitude. the issues of the difficulty Salecting the learning rate are
resolved, and that also eliminates the obstacleh@fLMS algorithm in practical
applications. Thus, the purpose of regularizat®moi eliminate the difference in the

magnitude of the gain and offset adjustment. Pat@anaeljustment is as following:
1 N M
r(n)=A 1—W(Zz g; (n)J (2.16)

12



5, (v (£35,00)| @17

where A is the regularization constant,NxM is the number of pixels on the

NIR FPA, and éij (n) is the normalized gain.

2.2.2. Momentum

Another possible enhancement to the steepest desagorithm is the
well-known momentum. The gradient descent can bg sw of if the learning
constant eta is small and can oscillate widelytd & too large. This problem
essentially results from error-surface valleys wstkep sides but a shallow slope
along the valley floor. Other efficient and commpnked method that allows larger
learning constant without divergent oscillationscuarcing is the addition of a
momentum term to the normal gradient-descent methbe idea is to give each
weight some inertia or momentum so that it tendshtange in the direction of the
average downhill force that it feels. This scherseimplemented by giving a

contribution from the previous time step to eacligivechange:

g, (n+1) =g, (n)-nxE, (n)xY, (n)+a [Qéu (n)-g, (n—l))

= aij (n)-nx E; (n)inj (n)+a maij (n) (2.18)

13



0 (n+1) = 0 (n)-nxE; (n)+a 0 (n) — 0 (n—l))

A

= Ojj (n)—r]x E; (n)+0( méu (n) (2.19)

where a[J[0,1] is a momentum parameter and a value of 0.9 isnafeed. For
example, Figure 2.1 shows the offset of the coiwaaturve. Note that the trajectory
without momentum (the left curve) has larger oatitins than the one with
momentum (the right curves). We further observenfthe right curves in Fig. 2.1 that
the momentum can enhance process toward the taogstif the weight update is in
the right direction (point A to A' in Fig. 2.1). Otle other hand, it can redirect
movement in a better direction toward the targahipm the case of overshooting
(point B to B' in Fig. 2.1). This observation indies that the momentum term
typically helps to speed up the convergence andctieve an efficient and more
reliable learning profile.

The use of momentum could improve the performariceeoadaptive algorithm,
improving its stability and probably reducing th@guction of ghosting artifacts, and

it can leave some beneficial fluctuation in tragegt

14



-n-E; (n")+a-AQ;; (n’)

-n-E;; (n)+a-A0; (n)

Fig. 22. The offset of the correction curve.

2.2.3. Adaptive Learning Rate

In the neural networ algorithm, desired target valuﬁj(n) is used in the

calculation of the errorE; (n) as follows:

T ()= (21:—12?:-3(“;&! (n)) =X (n)

i

(2.20)

Ideal T, (n) is theoutpu value of the 2-points correctiomigorithr. In fact,

neighborhood averagingnethod is the imagesmoothing filte. After doing
neighborhood averagethe variance becomes small, and theise intensity is
weakened. Howeverniparticular,the boundary of the imagmay become blurre.
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Thus, based on the knowledge that the local spatiatage is not always a good

estimation for the desired target response of aptace NUC method, the proposed

adaptive learning ratey; (n) showed in Eq. (2.21) is designed to be dependeat,

inversely proportional to the local spatial variarof the input image$ij (n).

n;(n)=K T (2.21)

Therefore, if input image of the working windowsmooth enough, the desired
averaged target value at the output is more conffjdend the learning rate gets larger.
On the other hand, if a given sliding window si#etlee input image is not smooth
enough, the local variance is too high, like intgeot border, and the learning rate

gets a smaller. To add this adaptive learning t@tihe adaptive NUC algorithmi)

in equation (2.15) must be replaced by its coumterp; (n) in Eqg. (2.20), where K

is a constant that limits the maximum learning.ratee local variancecsiij (n) can be

calculated with any desired window size, and & 3 window size would be assumed

along this paper.
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Chapter 3 The Improvement of Bad Pixel

Correction

After the Non-uniformity Correction, the infrarechages often have bad pixels
because the manufacturing process is not perfeast B the bad pixels are impulse
noise. A few of dead pixels will be gathered inddpand that results in the difficulty
and hence the failure of bad pixel correction. Weppsed a new method can correct
bad pixels observed in NIR sensor array.

In order to remove the noise of the NIR sensoruae some color image filter
for impulse noise. Although the NIR images are gcaye, we will improve filter
from grayscale filter to color filter. When thetél can remove the noise in color
images, grayscale image should also have goodtsesulSection 3.1, we introduce
some basic and state-of-the-art impulse removitey fiand Section 3.2 will introduce

our method.

3.1 Bad Pixel Correction

From Sec. 3.1.1 to Sec. 3.1.3, we will describebiligic impulse noise filter, and

then from Sec. 3.1.4 to Sec. 3.1.8, we will introglswitching filters.

3.1.1 Vector Median Filters

Let y(x):Z' -~ Z™ represent a multichannel image, wherés an image

dimension andm characterizes a number of color channels. In #se of standard
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color images, parameters and m are equal to 2 and 3, respectively. Let

W={x 02z i=12,...,N} represents a filter window of a finite siXe where
X, X%p,--, Xy 1S @ set of noisy samples. The central samylg,,, determines the

position of the filter window. Let us consider that each inmdtor X is associated

with the distance measurement:
N -
L=>x%-x Hv fori=1,2,.. N (3.1)
j=1

where y represents the selected norm, e.g. absoltel], Euclidean ¢ =2), etc.

The quantification of the distance between twm -channel samples

X = (X1 X203 %m) @ANA X = (X3, X55---,X,) @iven by the expressiovﬂx —xij

follows from the generalized Minkowski metric (Plataniotis areh&tsanopoulos,

2000) defined by
m v Uy
b5l =( s~ @2

where y characterizes the used normm is the dimension of vectors ang, is the
k-th element ok .

If distance measured,L,,...,L, serve as ordering criterions, i.e.

L<L,<...€L,,<...<L (3.3)

(N)



it means that the same ordering is implied to the inpubset,,..., X, which results

in ordered input sequence

xXP<x@<.. . exP<.. . <x™ (3.4)
The sample xXY OW associated with the minimum vector distands,
constitutes an output of the well-known vector median filter BYNhtroduced by

Astola et al. [9]. Equivalently, the VMF output of the setx,,...,X, is defined as

the sample X, O{ X, X, ..., Xy} that satisfies the following expression:

Z::H&MF ‘Xij £ iXHi‘xj Hy forj=1,2,.. N (3.5)

where y characterizes the used norm.

3.1.2 Vector Directional Filters

Vector directional filters (VDFs) [8] operate on the direction of imagetors
and the VDF output is determined according to these directiotiginector space.
By above operation, image vectors with atypical directions envéctor space are
eliminated and VDFs lead to optimal estimates in the sensergedirections, so that

VDFs preserve the color chromaticity well.

Let each input sample;, fori=1,2,.. N, be associated with a sum of vector

angles
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N

a =Y A(x.x)  fori=12. N (3.6)

=

where

X7

A()g,xj):cos‘1 cosl()q ) } (3.7)
|’9|[Pxi‘

represents the angle between two m -dimensionabrsec = (x,,X,,..., %) and

X; = (X, X X ) .

] jrr a2t 1 m

If a,a,,...0y ,ie.the sums of vector angles, serve as orgeriterions, i.e.
Oy SUpy S-S Uy (3.8)

and the same ordering is applied to the inputsex,,...,x, . This operation results

in Eq. (3.4). The samplexV | i.e. the sample that minimizes the sum of angji¢s
other vectors, represents the output of basic vetitectional filter (BVDF) [10].

Since the BVDF passes to the filter output the darapsociated with minimal angle

distance a,,, it preserves the color chromaticity better thaam VYMF.
3.1.3 Directional Distance Filters
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Directional Distance Filters (DDF) combine advaetag VMF and BVDF [11],
the Algorithm is as following: If the minimizatioformula is expressed through a

minimization of products

Q =Lxa, fori=12,... N (3.9)

Q :(i”x - X Hy)(iA(x,xj)J fori=1,2,.. N (3.10)

and the filter output is given by the sampk¥’ associated withQ,,, i.e. the

@
minimum value from product£2,,Q,,...,Q, , and such their ordered set is simply

written as

Qy<Q,,<--<Q

@ = 2= % (311)

(N)

then the samplex™ determines the output of DDF.
Although the minimization of product$; xa,, fori=1,2,... N , does not
necessarily imply a minimum for eithel; and a,, it results in very small values for

both of them [10]. For that reason, the productimination will select as the filter
output the vector-valued sample that results irely émall sum of vector distances

Eq. (3.1) and a very small sum of vector angles(&E®), simultaneously.
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3.1.4 Peer Group Filter

These are adaptive switching filters based on teer ggroup concept [16].
Essentially, the peer group of pixels in a givendaw represents the set of neighbor
pixels that are sufficiently similar to each pixaelcording to a particular measurement.
In the Peer Group Filter (PGF) [16] the pixelshe window are sorted in ascending
order according to their distances to the centezlpThe center pixelx™ of the peer
group is then determined as the filtering windowpikels that rank the lowest in this

sorted sequence. In order to remove the effech@firhpulsive noise, if the distance
between x¥ and the central pixel of¥ x is not exceeding threshold d, the

central pixel is free of noise. Otherwise, the eemtixel of W is considered noisy
(see fig. 3.1). In this case, the center pixeleplaced with the VMF outpux®:
otherwise it remains unchanged. The range of thmeskiold d is set to [40,60].

Equation is expressed as follows:

) xY, if‘x(l)—)g2>d
PGF,, = o o] zc (3.12)

The following proposed method is the improvemen®PGiF, known as Fast Peer
Group Filter (FPGF) [17]. The FPGF is a fast modifaa of the PGF in which the

center pixel is considered to be noise-free as ssom pixels in the window are

determined to be sufficiently similar. The peerugyoP(x,m,d) will denote the set

of pixels of the filtering windowW which satisfy the following condition:
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X =X, =d, x, OW. In othe words, if the central pixel otV X has mneighbors,
and distance betweer and neighbors is not exceeding d, tentral pixe x is

determined to belong tthe pee group P(x,m,d). If m is low, and the amount «

noise in the image is not vemuch, the number of distancemputation which is

originally necessary in PGF can be drameaeduced. Equations expressed ¢

follows:

FPGE, :{ s OPGomd) (3.13)
X, otherwis
G
A
L
L
[
B
R

Fig. 31. The concept of the peer group centere x (m=05).

3.1.5 Fuzzy Modified Peer Group Filter

Fuzzy Modified Rer Group Filter (FMPGF) describe in [18]he peer grou
concept is adapted to the use of a novel fuzzyimeéthe use of the fuzzy metric

considered because it has been proved to be ampgte alternative to son
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classical measures [19] and in order to furtherothice it in the area. This fuzzy
metric may be also useful in other approaches basdtizzy techniques, which are
interesting in image processing. Due to the nonestatity of images and the

difficulty in distinguishing between noise and edgkszy modeling is considered

quite appropriate in image filtering [20]. The fyzzimilarity between two pixelsx

and x; can be computed as:

P minmin )g y,

D max max{ X y.}

(3.14)

They denote byP(x,d) the set

{ijP(x,d),Mp(xi,xj)zd} (3.15)

In order to increase computing speed, FMPGF useomerlap window, FMPGF

algorithm is as follows:

(1) The image under processing is divided infel\le}r):z—l\l2 disjoint nxn windowsw .
Let x denote the central pixel of one of these window®nTthe following rule
is computed for each central pixel

IF [P(x,m,d)O0W ; THEN

Ox; OP(x,m,d); X is declared as non-corrupted and

i

Ox, OW, x, OP(X,,m,d); x, is declared ason-diagnosed.
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ELSE

X is declared aprovisionally corrupted and

X OW, j£i; X

; Is declared ason-diagnosed.

(2) Eachnon-diagnosed pixel x is now considered centered inrexn window W

and the following rule is computed:

If [P(x,m,d)OW, THEN

Ox; OP(x,md), X

; Is declared ason-corrupted.

ELSE

X is declared as corrupted.

(3) In this step the switching filtering to compute thetputs y from the inputs X is

carried out in anxn window W as follows:

X%, ifx is non-corrupte
%= AMF . ,over the non-corrupted pixels W if X is corrupted.

out?

3.1.6 Fast Similarity-Based Impulsive Noise Removal

Vector Filter

According to the family of filters introduced by Stka et al. in [21-24], théast

similarity-based impulsive noise removal vector filter (FSVF) is defined as follows:

Let us assume a filtering window containing n+1 image pixels{F,,F,,...,F.},
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where n is the number of neighbors of the central piXgl It is considered a
similarity function u:[0;) - R which is non-ascending and convex[iy©) and
satisfieg1(0) =1, and lim,_, p(x)=0. The similarity between two pixels of the

same color should be 1, and the similarity betwegal$g with very different colors

should be very close to 0. The function definedpe(#lzi - FjH) where |+ denotes

the specific vector norm (typically th&, or L, vector norms) can easily satisfy the
above conditions when it is a decreasing functiah ﬂrﬁo) =1. The cumulated sum

M, of similarities between a given pixeF (k=0,...,n) and all other pixels

belonging to the windoww is defined as

MOZiu(FO,Fj), Mk:i;u(Fk,Fj) (3.16)

jzk

which means that for thos€, which are neighbors of,, the similarity between
F. and F, is not taken into account (see fig. 3.2), whiclvifgges the central pixel.
Hence, the reference pixelF, is replaced by one of its neighbors if
M,<M,, k=1...n, only when it is really noisy, preserving the onji
undistorted image structures. If this is the cémmt F; is replaced by that~. for

which k' =argargmaxM, . Equation is expressed as follows:

F., M, <M,
{k 0 K (3.17)

F, My2M,
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Fl Fg F3 Fl F> FS

F; | F6 | Fs F- | F¢ | Fs

(a) (®)
Fig. 3.2. (a) First the cumulative similarity valud, between the central pixel
F, and its neighbors is calculated. (b) Then piXgl is rejected from the filter

window and the cumulative similarity valuedl,, k =1,... ,nof the pixels F,...,F

n

are determined [22].

Several convex functions fulfilling the above cdradis have been proposed in

[21-24]. The best results were achieved [22] forsiihgplest similarity function

_ji-= foro(F F)<h
FE)= , 3.17
H7( ‘) h otherwise S

Where h[J(0,»), and pdenotes the particular distance function, typicalg L,

or L, distances. This function allows to construct & fasise reduction algorithm

[21-24].

3.1.7 Fast Impulsive Noise Filter Using Fuzzy Metds
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The filter of the paper [19] is similar to FSVF,tksimilarity function just like
FMPGF. The proposed fuzzy metric has been combwmigd the FSVF technique
[21-24] to define a computationally efficient filteThis filter is faster than FSVF

since the filtering process is simpler and the yumzetric used is faster than the

classical metrics used in FSVF [21-24]. The fuzryilarity between two pixelsx

and x; can be computed as:

minmin{x ,y} +K )’
Mo (x,y) = ”(maxma){x YK ] (3.18)

wherex:(xl,..,xp) : y:(yl,..,yp), the particular case of the proposed fuzzy metric
Map suitable for 3-channel image processing taskdoer M7, and then Mg (F,F,)
will denote the fuzzy distance between the pix€s and F; in the image.

In the proposed filtering, the cumulated suvh, of similarities between a given

pixel F (k=0,...,n) and all other pixels belonging to the window is defined as

Mo=iM§(FO, F). M, ZM F.F) (3.19)

]#k

the reference pixelF, is replaced byF,. if M, <M,, the equation is the same

as Eq. (3.17).

3.1.8 Fuzzy Peer Group Averaging Filter
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In the paper [25], they introduced the conceptuzizf/ peer group for a color
image pixel which extends the concept of peer giauje fuzzy setting. This novel
concept aims to represent the set of all pixel mM@igs to a given pixel which are
similar to it. Since the similarity between colaxgls is an imprecise concept, they
have represented it using fuzzy similarities. Fos,tthey have introduced a method
based on fuzzy logic that builds the fuzzy peewmgrof a color image pixel by first
determining the members of the fuzzy peer group #&meh assigning their
corresponding membership degrees. The proposedotheth able to accurately
determine the fuzzy peer group of any color imaigelpvercoming shortcomings of
previous peer group approaches.

The fuzzy peer group averaging filter (FPGA) camrect impulse noise and
Gaussian noise, but we just use it for impulse endisre. The filter method is as
follows:

1. Determine the fuzzy peer group

2. Determine the best number of members for a fuzey geoup.

3. Using above results to detect and replace impulses.

where C;, will be discussed later.

In order to establish our concept of fuzzy peemugrave will define two fuzzy
sets on the ordered set of pixels . Firstly, wesaer the proposition * is similar to .”
In the approach presented in this paper, they m®pmuse a fuzzy similarity function,

p, as the function above which, following the abtaeninology, is given by

po(F.F)=e =, ij=012. n*- (3:20)
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where ||-|| denotes the Euclidean norm ark] >0 is a parameter which will be
discussed later. Notice that nopy takes values in [0,1] and thai(F,,F,) =1 if
and only if F;=F;,. Again, as discussed above, the color vectBrslW are sorted
in a descending order with respect to its simyattt F,, which results in an ordered
set W' defined W :[F(O), F(l),...,F(nz_l)] as follows: such that p(FO, F(O))
>0 (Fo,Fy) 2.2 p(FouFyy ), WhereR ) = .

Secondly, they define the accumulated similawiy, , denotedh™ Fi)» as

Fo — I 2 _
A (F(i))—ép(E,F(k)), in{oL.. n*-} (3.21)
For computing its certainty, author used a fuzzymiership function,L™ ,on
{F(O),F(l),... ,F(nz_l)} . In this work author prefer to define™ as a function of A™
by means of a custom membership function defioed that fulfills the

following requirements:

1. p(AFO(F(i))) =0 for the minimum possible value oA™, that isp(1) = 0.
2. p(AFO (F(i))) =1 for the maximum possible value oA™, that isu(nz) =1.

Author prefer the membership function to be moresg®e in the low value
range than in the high value range, and, therefawthor devisep so that the

derivative of 1 should be a strictly decreasing function. The fiomcis given by

n(x)=|- ><(x—1)(x—2n2+]) (3.22)
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L (Fy) =w(A° (7)) = '(nzil)z (A (o )= A% (Fy) -2+

i=0,1,2,.. n°—1 (3.23)

According to the above, they determine the bestbarmof members for a fuzzy
peer group. The best number of members of a peeipgior a given pixel will be
determined by choosing so that all similar pixeksiacluded in the set and the rest of

the pixels are not. In other words, if a pixel Basilar neighbors, the best number of
members for its peer group i;1, and vice versa. Author proposal is based on

determining m as the value for whichP® is the largest set that contains only
similar pixels. The best number of members of P will be the value of

mON,, ={L,2,...,n* =1} maximizing the certainty of the following fuzzyleu
Fuzzy Rule 1. Determining the certainty of to be the best nunmddem members

for PP

IF “F

m is similarto F,” and “AF"(F(m)) is largé

THEN “the certainty of to be the best number of memisehigh’ .

The mathematical equation is as follows:

m= argmax, .y Ceg, (M) (3.24)
Cera(M) =C™ (Fy )L (Fi) (3.25)
c®(FRy)=p(F.Fy) (3.26)
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According to the above, we can formulate this @oorl in terms of fuzzy peer

groups as follows: a pixeF, is free of impulse noise if for thieizzy peer group
FP™ it is satisfied that ‘AF"(F@) is large” and Fo is similar toF,”. The
following Fuzzy Rule 2 represents this condition:

Fuzzy Rule 2: Determining the certainty of the pixel to be fréenopulse noise

IF - AFO(F(E])) islargé and “F_ is similar to F,”

THEN “F, is free of impulse noige.

The mathematical equation is as follows:

cuts) 5, )¢

They use to detect and replace impulses accorditigréshold-based rule are shown

in Eq. (3.28) [28],

{ if Ceqo(F)2 F.then § is free of impulse nois (3.28)

else § is an impulse and it is replacedwWMF,

ut

3.2 Proposed Filtering

When the noise is impulse noise and noise of tedensity, above the noise
filter usually can achieve good results. In fabg hoises which are detected by NIR
sensor are frequently in blobs. Fig. 3.3 showsrtbise maps of the sensor, noise

types as shown in fig. 3.4. From type 1 to typaslé basic type, others are basic type

combinations.
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(c)
Fig. 3.3. The noisenap: of the sensora) Sample 1. (b) Sample 2. (c) Zoon

“sample 2.

Whenconcentration ¢ the impulse noise is not high, peer grdilter with 3 x 3
working windowis enoug; however, when bad pixels dbobs, the number of be
pixels in working windowis too much, bad pixels may Imeisjudgmer as free of
noise. In order to detedead pixels in blobs, we use the larger sizéhe working
window. Because theumbe of dead pixels becomes a minorntya large working
window, bad pixelgan b detected. But the boundary in the imagélurred. The
large size of thavorking windowcan detect a group of bad pixelsutthe details
will be blurred; smalkize of the working window can keep thketails, but cannot
detect a group ofdd pixel. We propose a method: we hope ttitnoises are not
in blobs, we use & x Z working window; the noises aia blobs, we usdarger

working window sizeTheblock diagram of the method &s follows
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(a)type1 ((b)type2 (©)type3  (Diypes (h) type 8
(d)types
(@type7 () type 9
(e)type5
() type 10
(Otype12 |  (m)typel3  (m)typeld
(W) type11
(o) type 15 (@) type 16 (@type17
(x) type 18
()type 19

Fig. 3.4. Noisetypes in sensor. (a} (p) are basic type; (¢} (S) are basic type

combinations.

We use PGF with»% working window to detect bad pixel, becaux3 working
window cannot detect bad pixels in bloPeer group filter algorithras section 3.1.4.
We calculate th@ector media of all pixels within the workingvindow W (section
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3.1.1). Vector is composed of RGB three dimensidghthe distance betweenx®

and the central pixel oW x is not exceeding threshold, the central pixel is

free of noise. Otherwise, the center pixel of Wassidered noisy.
When the pixel is detected as a bad pixel, we wg# the vector median of

the 3 x 3 working window to correct (see Fig. 3. 3.6). If the distance between
x® and the central pixel oW x is not exceeding threshold , the central pixel

is free of noise. Otherwise, the center pixel \Of is considered noisy. After

Correction, we use peer group with 5 x 5 workingidaw to detect central pixel of

W x again. If x is still bad pixel, we increase the size of therkimg window.
After Correction, We will detectx whether x is bad pixel or not again, and so on,

until the central pixelx is corrected.

Default window size:

wxw=3x3

Is pixel detected as bad
pixel by Use 5x5 PGF?

Yes

v

Correct bad pixel by
w x w PGF

Y

Increase the window
size w(n+1) = w(n) + 2

detect bad pixel by 5x5 PG
again

No

v

complete the P
correction
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Fig. 3.5. Block diagram of the method.

\ 4

\ X 343 sliding windov
X ||

[ 55 sliding window

Fig. 3.6. The working windowV size of n x n, (n=3,5,7,...)

The purpose of this method is as much as possibkedp the details of image,

and we use a 5 x 5 PGF at the right time, let aelpin blobs be corrected.
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Chapter 4 Experimental Results

The experimentatesult: are divided into two partsye show theexperimental
resultsof NUC in Section 4.1, and we shovxperimental esult: of bad pixel

correction in Section 4.2.

4.1 Results of NUC

We show the result of two of t-point correction in Section 4.1.1, and show

the result of LMS method in Section 4.:

4.1.1 Result ofTwo-point Correction

Applying two-point correction to“Monitor,” “Words,” and “Two-persons”

images of Figs. 4.1 (afc), and(e), the corrected images are shown in Figs(b), (d),

and (f), respectively.
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Fig. 4.1 (a)The raw image o“Monitor”, (b) The correctedmage of*Monitor”; (c)

The raw image of Word¢”, (d) The corrected image of “Words”; (8he raw image

of “Two-persons”, (f)The correcte image of “Two-persons”.

To further validate the effectiveness of NUC, welex Sobel edge detectic

with a sensitive threstid to test raw images and NUC corrected images/el

leading to Figs. 4.2 (a)(f), respectively.
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(f)
Fig. 4.2. Sobel edge map images (a) The raw image of Monitor”, (b) The

corrected image of “Mnitor”; (c) The raw image of “Words”(d) The corrected
image of “Words”; (e)The raw image ¢ “Two-persons”, (f)The correcte image of

“Two-persons”.
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From these figures in Fig. 4.2, it is easy to d&e powerfulness of NUC in
reducing the excessive or un-necessary edges dihe twon-uniformity of the image
sensors. Excessive lines in left-up corner of Big@. (b) is removed in Fig. 4.2 (a),
NUC corrected counterpart. From Fig. 4.2 (c), ievédent that removed of excessive
lines and edges, in tables, wafer, and hand rajtfjg. 4.2 (d). Unnecessary lines and

edges of left person in Fig. 4.2 (f) has been reedan NUC corrected image Fig. 4.2

(e).

4.1.2 Result of Least Mean Squares

In this section, the proposed enhancements to M8 method are tested with
infrared data corrupted with simulated non-unifdgmirhe infrared sequences with
artificial non-uniformity were generated from a are 1200 frame infrared video
sequence. Then, several 1200 frame corrupted @wegoences were obtained using a
synthetic gain with an unitary- mean gaussian ithstion with 3% of variance, and a
synthetic offset with a zero-mean gaussian distigipuwith 5% of variance. As an
example, fig. 4.3 a) shows a sleeping person inaagefig. 4.3 b) shows a walking to
bed person. The parameters used to initialize wight and bias estimation process
are random.

To study the performance of the proposed enhancettiads, we employ the
Pseudo Signal to Noise Ratio (PSNR) performanceicn&thich is based on the Root
Mean Square Error (RMSE). The PSNR is expressedBinand it is defined as

follows:
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— 1 RY
RMSE—\/W;(I” lij) (4.1)

b

PSNR =20x log,, ( 2

=y ) (4.2)

where |, is theij pixel value of the true frame, ani:l,— is theij pixel value of the

corrected frame. The frame size ¥ xM pixels, andb represents the number of
bits per pixel in the image, which in this casedgsial to 8 for all the simulations. The
PSNR values shown in this section were computedagigg the results obtained.

Larger value for the PSNR indicates better perforcea.

(b)
Fig. 4.3. IR image of (a) Sleeping person. (b) Wajko the bed person.

First, we use three modified method in [3], regiziation (REG), momentum
(MOM) and adaptive learning rate (ALR), and we sgveral combination of the

modified method in [3]. The results are shown ig.Hi.4.
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e NOR

= REG

PSNR

MOM

e REG+MOM
10

e ALR+MOM+REG

62
123
184
245
306
367
428
489
550
611
672
733
794
855
916
977

1038
1099
1160

frame number

Fig 4.4.PSNR for the LMS algorithm and its proposed modiiiens versus frame
number. 'NOR’ indicates LMS method, 'MOM’ indicatesMS method plus
momentum, 'REG’ indicates LMS method plus regulaicn, 'MOM+REG’
indicates LMS methods plus momentum and regulaozaand 'ALR+MOM+REG’

indicates LMS methods plus momentum, regularizagiot adaptive learning rate.

Figure 4.3 shows that ALR in the initial learnirede was significantly slower,

because ALR formula in Eq. 2.20 will reduce thehéag rate of the initial settings.

(2.20)

where K is a constant that limits the maximum learningerdf local variance

a°, (n) is too large, the K value must be larger. For eplamc®, (n) =4, and the
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n; (n) = K4%1:0'2K If each learning raten of modifications is the same, the K

must be &n. Therefore, we adjust the value of K, let averafjthe learning rate be
our settings. In addition, RMSE is larger at thgibeing, so we should have a larger
learning rate; and the learning rate which is gadigusmaller performs minor
adjustments.

The paper described three modified method, theme eight kinds of
combinations as follows: NOR, REG, MOM, ALR, REG+MO REG+ALR,
MOM+ALR, and REG+MOM+ALR. They only try several ctamnations in [3], we
will find the best method of all combinations, awd will test two video: “sleeping
person” and “walking to bed person”. According be above experimental results,
= 5 x 10° when the frame number is 1-2pwill linear down to 10 when the frame
number is 21-120. The results are shown in Fig. 4.5

In the beginning, learning rate of "REG + MOM + RLis better in video
“sleeping person”; when PSNR approaches the stigtIENR of the “MOM+ALR”
and “ALR” are larger (see fig. 4.5.(a)). In video “walkj to bed person”, The person
is moving in video “walking to bed person” whenrfra number is 120 — 300. When
person is walking to bed, "REG + MOM + ALR", "REGALR", and "MOM + ALR"
have a better effect; when PSNR approaches thditstaBSNR of “ALR” is the
largest. This shows that the "MOM + ALR" is the bes the dynamic video; the
"ALR" is the best in static video, and "MOM + ALRilso has a good effect in static
video. Based on the above, we should use the "MOMR"

The corrected images are shown in Fig.4.6 and &ig. The accuracy of the
LMS method is low. Although gain and offset canreot in the right trend (see fig.
4.6), gain and offset cannot reach precise effiech f1s two-point correction (see fig.

4.7).
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Fig. 4.5. PSNR for the LMS algorithm and its progabsnodifications versus frame

number. (a) Sleeping person. (b) Walking to beds@er ‘NOR’ indicates LMS
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method, MOM’ indicates LMS method plus momentumREG’ indicatesLMS
method plus regularizatio’ALR’ indicates LMS method plusdaptivelearning rate,
‘MOM+REG’ indicates LMS method plus momentum and regularizai,
‘REG+ALR’ indicatesLMS methods plus regularization andaptivelearning rate,
‘MOM+ALR’ indicates LMS methods plus momentum andaptive learning rate,

and ‘ALRHMOM+REG’ indicatesLMS methods plus momenturregularizatiol and

adaptive learning rate.

Fig. 4.6. (a) Original image of frame 3. (The corrected framef the frame 3. (c
The corrected framef the frame 30(
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Fig. 4.7. Frame 246f the“walking to bed person{a) Original image of frame 3. (I
Corrupted image. (cForrected image with the proposed Nimethod using adapti\
learning rate plus momentt and regularization.

4.2 Results of Bad Pixel Correctiol

For the evaluation of noise suppression algorithaeswill use two noise mocs

to simulate differenimodel: of distortions.

() Impulsive noise:
Let x ={x, X, %4 denote the original pixel and let' denote the pixe

corrupted by the noise process. Then the imagdspate distorted according to t

following scheme:
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{v, X, X 3} with probability p,p
._ J{Xs Viz X3 with probability p, p
" 1{x, X, V.} with probability p,p
{v, V., V. 3 with probability p,p

X (4.3)

where v, ,V,,V, are independent and equal to O or 255is the sample corruption
probability and p,, p,, p; are corruption probabilities of each color chanselthat

ZizlPk =1. In this work, noise model will generally denote tcase withRB, =0.25,

k=1,...,4.

(1) Realistic noise:

In this noise model, we use fig. 3.3. (a) as samplealculate the proportion of
each noise type which is detected by sensor, andddeealistic noise with the ratio
of noise types. We can accordance with the propuatiincrease or decrease in noise
until the sample corruption probability is our settings. The image pixels are
distorted like Eq. (4.3), and each neighboring ediave the same distortion.

In this experiment, we add the impulse noise B, 10%, 15%, and 20%; and
we add the realistic noise with 1%, 4%, 7%, 10%cdse noise density is less than
1% in Figure 3.3, we add noise proportion of thalistic noise is smaller than the
noise proportion of the realistic noise.

For the measurement of the restoration qualityewploy the Pseudo Signal to
Noise Ratio (PSNR) performance metric, which iseldasn the Root Mean Square

Error (RMSE).The RMSE and PSNR are defined as:
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N M Q
RMSE = \/NxMXQZZZ( ) -0, j)) (4.4)

i 1q=1

PSNR = 20x Iog(ﬂj (4.5)
RMSE

where M ,N are the image dimensions) is the number of channels of the image

(Q =3 for color image), ando’(i, j) and x* (i, j) denote theq-th component of

the original image vector and the filtered imageigel position (i, j) , respectively.

For the evaluation of the detail preservation cdjeds of the proposed filtering

design the mean absolute error (MAE) has been used

22X (1) 0" 1)

NxM xQ

MAE =

(4.6)

Since RGB is not a perceptually uniform space i@ sense that differences
between colors in this space do not correspondotor differences perceived by
humans, the restoration errors are often analyzedjuhe perceptually uniform color
spaces. In this paper, we will use the CIE LUV calpace and the normalized color

difference (NCD) defined as:

IDI I

NCDLab - N M (4.7)
Zi=1z j:lAElab
AE,, =|(AL') +(aa ) +(ab P [ (4.8)
AE, =|[(LY +(@f +(@® ¥ \”2 (4.9)

where AE_, denotes the perceptual color error ah#,,, is the norm or magnitude
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of the original image color vector in the'a’b color space.

Figure 4.8 shows the results of each filter in iB9pulse noise density, and table
4.1 shows the performances with each sample céoruptobability of impulse noise;
Figure 4.7 shows the results of each filter in ¥alistic noise density, and table 4.2
shows the performances with each sample corrugtiobability of realistic noise. In
order to quickly see the advantages and disadvestag each method, | will
normalize parameters which are RMSE, MAE, and Ndbe parameters are
normalized numbers which are between 0 and 1, &edldrger value for the

parameters indicates better performances. Equetiexpressed as follows:

max(RMSE )-RMSE ()

RMSE, iz = _ (4.10)
max(RMSE )—- minRMSE )
MAE, = MXMAE)=MAE() (4.11)
max(MAE )— min(MAE )
NCD max(NCD )— NCD () (4.12)

Pz = max(NCD )= min(NCD )

According to Table 4.1, when the noise is imputeése, the performance of
switch filters is better than the non-switch fil@MF, BVDF, DDF). Although our
propose method is not the best method, the perfucenaf our proposed method is
still above average; when the noise is realisticseyono matter what the sample
corruption probability p is, the performance of our proposed method ishibst.
The fig. 4.9. show that the bad pixels which ambblare corrected by our proposed
method, and others filter cannot correct the baelpiin blobs. In the zoomed images
(see fig. 4.6 (c) — (K)), we can see that somepdeels are similar to neighbor pixels,
and the bad pixels cannot be detected by our pesposethod. The reason is that we
use the same threshold value in the different working window. If we can
automatically select the threshold, the problem bagolved. The image is blurred in
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the detalil part, because we detect dead pixels Bvith5 working window. We hope
that if we can detect dead pixels with 3 x 3 wogkimindow, and we use the larger

working window when the bad pixels are blobs.

(@) (b)

© (d)
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(9) (h)
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(k)
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® (u)

Fig. 4.8. Bad pixel correction results of Lena imdidtered by different impulse noise
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filters. (a) Original image. (b) Corrupted imagettwb% impulse noise. (e)(k) are
filtering results. Image filtering results filterday (c) our proposed filter. (d) Vector
median filter (VMF). (e) Basic vector directionaltér (BVDF). (f) Directional
distance Filter (DDF). (g) Fast Peer Group FiltePGF). (h) Fuzzy Modified Peer
Group Filter (FMPGF). (i) Fast similarity-based iolgive noise removal vector filter
(FSVF). () Fuzzy metric FSVF (FMFSVF). (k) Fuzzedt Group Averaging Filter
(FPGA). (l) is zoomed parts of (b). (mju) are zoomed “Lena” filtering results.
Zoomed results filtered by (I) our proposed filtgn) VMF. (n) BVDF. (o) DDF. (p)

FPGF. (q) FMPGF. (r) FSVF. (s) FMFSVF. (t) FPGA.

(b)

(d)
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(9) (h)
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(k) 0
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(@)

(s) (t)

Fig. 4.9. Bad pixel correction results of Lena imddfered by different realistic noise

filters. (a) Corrupted image with 1% realistic reigh)—(j) are filtering results. Image
filtering results filtered by (b) our proposed éitt (c) Vector median filter (VMF). (d)
Basic vector directional filter (BVDF). (e) Direotial distance Filter (DDF). (f) Fast
Peer Group Filter (FPGF). (g) Fuzzy Modified Peeoup Filter (FMPGF). (h) Fast
similarity-based impulsive noise removal vectotefil(FSVF). (i) Fuzzy metric FSVF
(FMFSVF). (j) Fuzzy Peer Group Averaging Filter &®). (k) is zoomed parts of (a).
() —(t) are zoomed “Lena” filtering results. Zoomed uits filtered by (I) our

proposed filter. (m) VMF. (n) BVDF. (0) DDF. (p) &F. (q) FMPGF. (r) FSVF. (s)
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FMFSVF. (t) FPGA.

Table 4.1

The evaluation results of Lena image filtered by fibllowing filter:

(a) Corrupted image with 5% impulse noise.

RMSE- MAE- NCD-

Filter B e normalized normalized normalized

Our metho( 3.5957/0.43770.0044  0.8865 0.9701 0.9574 |2.8140
FIVF 2.57230.30690.0033 0.9703 0.9939 0.9935 [2.9576
FMPGF |6.03040.689¢0.008( 0.6872 0.9242 0.8834 |2.4948
FPGA 3.19220.43840.0039  0.9195 0.9699 0.9782 |2.8677
FSVF 2.39920.275640.0034 0.9845 0.9996 0.9908 [2.9749
PGF 2.2093.273%.0030 1.0000 1.0000 1.0000 [3.0000Q|
BVDF 14.426%5.76110.045¢  0.0000 0.0000 0.0000 [0.0000Q
DDF 14.046(5.23820.0446  0.0311 0.0953 0.0249 |0.1513
VMF 6.602413.80290.035¢ 0.6404 0.3568 0.2344 |1.2317
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(b) Corrupted image with 10% impulse noise.

RMSE- MAE- NCD-

Filter B e normalized normalized normalized

Our metho(4.27080.71640.007¢ 0.9209 0.9719 0.9638 |2.8564
FIVF 3.32700.55390.0060 0.9820 0.9966 0.9941 [2.972%
FMPGF |7.26601.15390.01227 0.7270 0.9054 0.8748 |2.5072
FPGA 3.83390.704(0.0066 0.9492 0.9738 0.9824 |2.9053
FSVF 3.75770.56790.0077 0.9541 0.9945 0.9613 [2.909§
PGF 3.04910.53140.0057 1.0000 1.0000 1.0000 [3.000Q
BVDF 18.49447.10680.057¢ 0.0000 0.0000 0.0000 |0.0000
DDF 18.171%.5833.0567 0.0209 0.0796 0.0208 |0.1214
VMF 6.84453.94810.0367 0.7543 0.4803 0.4039 |1.6384

(c) Corrupted image with 15% impulse noise.

RMSE- MAE- NCD-
RMSE MAE NCD

normalized normalized normalized

Our method | 4.8266| 0.9825| 0.0103| 0.8183 0.9528 0.9397 | 2.7109

FIVF 4.0217| 0.8102| 0.0085| 0.9601 0.9929 0.9937 |2.946%

FMPGF 8.6644| 1.6116| 0.0177| 0.1424 0.8066 0.7164 |1.6654

FPGA 4.6494 0.9683| 0.0099] 0.8495 0.9561 0.9515 (2.7572
FSVF 5.1482| 0.9003( 0.0133| 0.7617 0.9719 0.8492 | 2.5829
PGF 3.7952 0.7795| 0.0083| 1.0000 1.0000 1.0000 |3.000Q
BVDF 9.4727|5.0826| 0.0414| 0.0000 0.0000 0.0000 |0.0000
DDF 8.6538| 4.5245| 0.0403| 0.1442 0.1297 0.0335 0.3074
VMF 7.0543| 4.0807| 0.0378] 0.4260 0.2328 0.1091 |0.7679
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(d) Corrupted image with 20% impulse noise.

el IV RMSE- MAE- . NCD- -
normalized normalized normalized
Our method| 5.2512|1.22360.0127  0.9350 0.9659 0.9608 [2.8618
FIVF 4.3763|1.01940.0110 1.0000 1.0000 1.0000 [3.000Q
FMPGF 9.8929|2.03420.0229  0.5902 0.8306 0.7281 [2.1489
FPGA 5.19141.27130.0125 0.9394 0.9580 0.9659 [2.8633|
FSVF 7.4217|1.36420.0225 0.7738 0.9425 0.7370 2.4533
PGF 4.45941.07090.0113  0.9938 0.9914 0.9931 [2.9783
BVDF 17.83797.01080.0549  0.0000 0.0000 0.0000 [0.000(Q
DDF 17.41126.49630.0538 0.0317 0.0859 0.0243 0.14
VMF 7.3442)|4.25510.0390 0.7795 0.4598 0.3622 1.6016
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Table 4.2

The evaluation results of Lena image filtered by fibllowing filter:

(a) Corrupted image with 1% realistic noise.

RMSE- MAE- NCD-

Filter B normalized normalized normalized

Our metho(2.40880.13870.0017 1.0000 1.0000 1.0000 [3.000Q
FIVF 4.06570.28340.0031 0.6786 0.9667 0.9595 |2.6048
FMPGF |7.23510.41810.005§ 0.0638 0.9356 0.8969 |1.8964
FPGA 5.54361.64140.0137 0.3919 0.6540 0.6612 |1.707Q
FSVF 6.5536/0.32040.004¢ 0.1960 0.9581 0.9131 |2.0672
PGF 6.3073.30440.0041 0.2437 0.9618 0.9312 [2.1368|
BVDF 7.56384.48130.0377 0.0000 0.0000 0.0000 |0.0000
DDF 6.79143.93590.0360 0.1498 0.1257 0.0342 |0.3098
VMF 6.49343.69190.035( 0.2076 0.1819 0.0638 |0.4534
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(b) Corrupted image with 4% realistic noise.

el IV RMSE- MAE- . NCD- -
normalized normalized normalized
Our method| 3.6473|0.40800.0046  1.0000 1.0000 1.0000 [3.0000Q
FIVF 7.0845(0.84500.00871  0.6830 0.8974 0.8797 |2.460%
FMPGF 13.14741.48140.0191 0.1238 0.7481 0.5775 1.4494
FPGA 7.00371.91420.0164  0.6904 0.6465 0.6554 |1.9923
FSVF 14.490(1.48730.0214 0.0000 0.7467 0.5104 1.2570
PGF 13.74161.35120.0175  0.0690 0.7786 0.6243 [1.472(Q
BVDF 8.5840(4.66860.0390  0.5447 0.0000 0.0000 (0.5447
DDF 7.8682/4.13390.037§  0.6107 0.1255 0.0325 |0.7687
VMF 7.7489|3.88510.036§ 0.6217 0.1839 0.0639 [0.8695

(c) Corrupted image with 7% realistic noise.

T RMSE- MAE- . NCD- _
normalized normalized normalized

Our method| 4.1995|0.63940.0067  1.0000 1.0000 1.0000 [3.000Q
FIVF 8.8677/1.22050.0131 0.6354 0.8655 0.8453 |2.3462
FMPGF 16.649§2.36750.0305  0.0275 0.5999 0.4214 |1.0489
FPGA 7.29981.31240.0117 0.7578 0.8442 0.8782 |2.4802
FSVF 17.00292.16110.032§  0.0000 0.6477 0.3705 [1.0182
PGF 14.922(1.95890.0478  0.1625 0.0000 0.0000 [0.1625
BVDF 9.5716|4.868§0.0409  0.5804 0.0209 0.1686 |0.7698
DDF 8.8976|4.33020.0398  0.6330 0.1455 0.1949 |0.9735
VMF 8.5891/4.06650.0387  0.6571 0.2066 0.2224 |1.0861
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(d) Corrupted image with 10% realistic noise.

RMSE- MAE- NCD-

Filter B e normalized normalized normalized

Our metho(4.74960.86340.008¢ 1.0000 1.0000 1.0000 [3.000Q
FIVF 10.29021.55840.0172 0.7343 0.8559 0.8452 |2.4355
FMPGF |19.34143.226(0.0403 0.3003 0.5101 0.4321 |1.2425
FPGA 8.43971.59530.0147 0.8231 0.8482 0.8907 [2.5620
FSVF 25.604(4.528(0.0644 0.0000 0.2402 0.0000 |0.2402
PGF 17.9518.68630.0549 0.3670 0.0000 0.1715 |0.5384
BVDF 10.464¢5.08240.0429 0.7259 0.1252 0.3863 |1.2375
DDF 9.75404.529(00.0417 0.7600 0.2400 0.4066 |1.4064
VMF 9.54534.27570.0407 0.7700 0.2926 0.4256 |1.4882
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Chapter 5 Conclusion

In this thesis, we employ two-point correction noethand LMS method to
correct non-uniformity among pixels of NIR sensbro-point correction is a highly
accurate method, unfortunately, he needs sophisticenstruments to measure the
reference image, and correction parameters whigk weasured before cannot meet
the correct situation when the system is in usenofeased working hours. On the
other hand, LMS method only need the readout iattatata captured by the imaging
system and compensate the non-uniform responseixelspduring its normal
operation. We changed the parameters set so th& tdh be adapted to all the
circumstances. Furthermore, we use peer group Wkech can adjust the size of the
working window automatically. We usex3 window as default working window for
sharpness maintenance, if the small window doesaomwect a bad pixel, the window
size will increase automatically to enhance theemiion capability. Although the
detail of the image may be blurred, most of the piadls can be corrected.

In the future, more advanced NUC method will beestigated to improve NIR
sensor performance. We can the above two methodkeirapplication, two-point
correction do not need to re-measurement gain #adtpwe use the LMS method to
make it without sophisticated measurement. Furtbesmin order to apply in real
time, If we can find out the location of the deaxlets in advance, we can save a lot
of time in the detection, We only need regular dpa@| detection to find out dead
pixels generated due to mechanical aging, we chrewae the purpose of quickly and

effectively.
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