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利用嵌入式繼光鏡顯微超頻譜影像系統進

行口腔癌檢測 
 

學生 : 陳誌賢                         指導教授 : 歐陽盟 教授 

 

國立交通大學電控工程研究所 

 

摘要 

 
癌症在國人十大死因的榜首居高不下，其中口腔癌是惡性腫瘤中最可能

早期發現，並且藉由早期治療進而痊癒。相較於傳統檢測方法，以肉眼判

斷是否有癌症細胞的侵蝕，高光譜影像提供了更多的資訊。我們以嵌入式

繼光鏡高光譜成像系統(ERL-MHIS)對細胞切片樣本進行掃描，建立一個三

維高光譜資訊矩陣，並且提出了型態與光譜兩類方法進行癌症的辨識。在

癌症細胞的影像型態判斷方面，我們提出兩種方法，第一個方法為使用臨

界值分離出細胞的基底層，並且使用碎形維度(fractal dimension)計算維度，

因為癌症細胞的分裂失去限制，分維的維度值會較正常細胞的維度高。當

口腔黏膜細胞發生癌病變時，基底層細胞會持續向內部的固有層持續侵

蝕，造成固有層的型態產生變化，因此第二種方法為使用 K 最鄰近分類算

法(KNN)對固有層的細胞核影像做分類，並且計算分類結果的準確率。光譜

判斷方面，使用了光譜強度的比值、半波寬度(FWHM)、波形下面積與光譜

波段範圍內的強度。將分析結果使用高斯分佈計算準確率。我們將準確率

高的前三個方法做結合，並且計算新的準確率 98.45%.最後，藉由考慮樣本

資料，我們提出雞尾酒方法，將判斷癌症之螢光光譜的準確率提升到 87%。 
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Early detection of oral cancer using embedded relay 

lens microscopic hyperspectral imaging system 

(ERL-MHIS) 
 

student：Chih-Hsien Chen                     Advisor：Mang O

u-Yang

Institute of Electrical Control Engineering 

National Chiao Tung University 

Abstract 

Cancer has been the leading cause of death for years in Taiwan. Oral cancer 

has the greatest possibility for early detection and recovery after early treatment. 

Compared to the traditional method of using the naked eye to detect oral cancer, 

the method of using the hyperspectral image of tissue can offer more 

information. We used the embedded relay lens microscopic hyperspectral 

imaging system to scan the sections and save the hyperspectral image. In this 

study, we diagnosed oral cancer using two methods: morphology and spectrum. 

In diagnosis using morphology, we presented two techniques: calculation of the 

fractal dimension and classification of k-Nearest Neighbor (KNN). In diagnosis 

using the spectrum method, we presented six techniques: comparing intensity, 

ratio of intensity, wavelength of peak, area under spectral curve, maximum after 

spline and full width at half maximum. We calculated the sensitivity and 

specificity using Gaussian distribution. Combining the 3 methods of the highest 

specificity provides a specificity of 98.45%. Finally, in accordance with sample 

data, we presented a cocktail method to increase the specificity of spectral 

analysis with fluorescence excitation to 87%. 
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Chapter 1 Introduction 

 

1.1 Background information 

The habits of drinking, smoking and betel-nut chewing, in Taiwan have 

resulted in an increase in the past ten years in the number of people diagnosed 

with oral cancer. In the last decade, oral cancer was the third leading cause of 

cancer deaths in Taiwan and number 6 worldwide [1]. Given the high cost and 

risk in the therapy of terminal oral cancer, early detection is an important issue. 

The cure rate is 90% in the first stage of oral cancer, 80–90% in the second stage 

and 30–50% in the third and fourth stages [2]. Traditionally, the method of 

detecting oral cancer had been to observe the biopsy of the lesions, and then to 

use a microscope to determine the change in morphology. With the progress of 

technology, the hyper-spectral scanning system began to be used in observing 

oral cancer biopsies. 

It took twenty years from the invention of the spectrometer for the 

development of the hyperspectral system. With the spectrometer, the reflected 

spectrum of different substances was different and provided observers with 

richer information. The hyperspectral system had the potential to find the 

relationship between the biochemical and the morphological, and it offered a 

noninvasive technology to detect oral cancer. Because of its noninvasiveness, it 

provided rapid detection of oral cancer. 

When the change in tissue biochemistry took place, the detected optical 

characteristic would be influenced. The hyperspectral information in cancer 

detection included image and spectrum. The analysis of the image was usually 

done in real time. First, researchers coated the sample with dye, such as 

hematoxylin. After the light source irradiated the target, the probe could collect 

information. In some studies, the most helpful feature would be found in the 

specific excitation wavelength. The autofluorescent spectrum of tissue had been 

widely used to distinguish cancer from healthy oral mucosa. The methods of 

spectral analysis included determining: the ratio of intensity in different 

wavelengths, the intensity in specific wavelength, and the emission and 

excitation wavelength ratio. 

1.2 Motivation 

With respect to the leading causes of disease-related deaths in Taiwan, 
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cancer was number 1 in the past 29 years; the average yearly number of deaths 

caused by cancer was 41,046. In other words, one person died every 13 min as a 

result of cancer. If the cancer could be detected at an early stage, the cure rate 

would be increased. The widely used method of detection was observing the 

biopsies by microscope. Using the naked eye, the medical staffs determined 

whether the cancer cells had diffused. This method has two shortcomings. First, 

there would be some error caused by lack of experience in judging cancer 

tissues. Second, the diagnosis was limited to the spectral bands of visible light: 

380~780nm. The data for the hyperspectral image had spectral and spatial 

information, and the range of wavelength included not only visible light but also 

near-infrared and ultraviolet. The error caused by inexperience could be avoided 

if the algorithm comparing the characteristic of the spectrum had been entered 

into the computer. 

In judging cancer tissue, the main basis for observers was whether the basal 

layer had unlimitedly eroded the lamina propria. The probe diagnosing oral 

cancer was limited to the surface of the mucosa with low transmittance, so 

observing the spread of cancer was impossible. If we could combine the analysis 

of morphology and spectrum, the sensitivity and specificity would be improved. 

This research used the hyperspectral scanning system to distinguish cancer 

cells. We used a microscope to enlarge the image of the sample. There were 

three light sources: a halogen lamp, a fluorescent lamp with 330~385nm 

excitation and a fluorescent lamp with 470~490nm excitation. We operated the 

motor to move the relay lens for scanning the image, and we used the 

hyperspectrometer to transform the image into a hyperspectral image. The 

EMCCD would store the hyperspectral image as a three-dimensional matrix. 

The three axes were x, y and λ. There were four layers in the oral mucosa: the 

lamina propria, the basal-cell layer, the prickle-cell layer and the keratinized 

layer. The boundary between the lamina propria and the basal layer became 

blurred because of the cancer cells’ erosion. We tried to digitalize the image of 

the cancer and normal tissue. Lastly, we determined the sensitivity and 

specificity. 
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Chapter 2 Review Articles 

 

2.1 Introduction of Anatomy 

Anatomy is the study of the internal and external structure of the body. 

Anatomy can be divided into microscopic anatomy and gross anatomy 

according to the methods of research. Microscopic anatomy uses the microscope 

to observe the fine structure unobservable with the naked eye. It includes 

cytology and histology. Gross anatomy means using the naked eye to observe 

the structure of the body. It includes surface anatomy, regional anatomy and 

systemic anatomy.  

With respect to the three dimensions, section pertains to the method of 

understanding the body’s position. Because of the sections, we do not have to 

understand the structure of the body via surgery. The planes are the transverse 

plane, the frontal plane and the sagittal plane [3].   

Table 2-1: The plane of body. 

Plane Direction description 

transverse Frontal or 

coronal 

The body is divided into upper and lower 

part. 

Frontal plane Transverse 

or horizontal 

The body is divided into front and rear part. 

Sagittal plane Sagittal The body is divided into left and right part. 

Midsagittal plane Sagittal The plane goes through the midline to 

divede the body into left and right part 

equally. 

2.1.1 Oral cavity 

The anatomical locations are the gingival, hard palate, soft palate, maxillar 

fold, cheek mucosa, dorsal side of the tongue, lateral border of the tongue, 

ventral side of the tongue, transition of the tongue to the floor of the mouth, the 

floor of the mouth, the mandibular fold, the lower inner lip mucosa, and the 

vermilion border of the lip [4]. 
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Figure 2-1: The 13 anatomical location. 

The stratified squamous epithelium lies in the oral cavity. The glands 

located below the mucosa can secrete serous and mucous. The skeletal muscle 

fibers compose the main part of the tongue. In some parts of the oral cavity, the 

deep tissues are composed of bones, including the hard jaws and teeth.  

The lips cover the opening of the mouth. The squamous epithelium covers 

the lips, which contain the glands and underlying muscle. The vermilion is the 

region between the outer surface and the inner surface. The squamous 

epithelium of the vermilion contains the rete ridge system. The salivary gland 

emits secretions to the surface, and the opening of Fordyce’s spots is on the 

surface of the mucosa. In the depth of the lips, the orbicularis oris muscles 

surrounding the mouth are responsible for the opening and closing of the mouth. 

The squamous epithelium, which internally lines the cheeks, is rich in 

glycogen. Because of the long-term friction of the teeth and cheek biting, there 

are some horny regions. There are buccal glands, Fordyce’s spots and cheek 

muscle under the mucosa. 

The bottom of the mouth is covered by a non-keratinized stratified 

squamous epithelium that connects with the ventral epidermal of the tongue. 

The bottom of the mouth is rich in minor sublingual glands, and there are major 

sublingual glands at the ventral epidermis of the tongue. 

The tongue, which has a high degree of genital muscle, enters the mouth 

from the floor of the mouth. The ventral epidermis of the tongue is covered by a 

non-keratinized stratified squamous epithelium that connects with the bottom of 

the mouth. The back of the tongue is covered by a keratinized stratified 

squamous epithelium.  

The dorsal surface of the tongue is divided into the front two-thirds and the 
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other one-third by the circumvallate papilla, which is like a flattened dome. The 

epithelial of the circumvallate papilla contains taste buds that can detect 

bitterness [3]. 

2.2 Introduction of Histology 

Histology is the science of the microstructure of the biological. Histology is 

an important study of the physiological and the medical because it combines 

biochemistry, molecular biology and physiology. Since the invention of the 

optical microscope and use of tissue sections started the research of histology, 

the knowledge of cells has been established. Originally, tissues were divided 

into four types: epithelial tissues, muscular tissues, nervous tissues and 

connective tissues. 

Now, electron microscopy, cell culture technology of cloning and protein 

sequencing, and molecular genetics provide new understanding of the cell. We 

can classify cells according to their main function, such as epithelial cells, 

supporting cells, contractile cells, nerve cells, germ cells, blood cells, immune 

cells and hormone-secreting cells. However, one cell that may have multiple 

functions will be grouped into more than one cell type, for instance, many 

hormone-secreting cells are also epithelial cells, a white blood cell is not only a 

blood cell but also an immune cell, etc.   

 

Table 2-2: The classification of cells. 

cell example function 

Epithelial cells  The skin, the lining 

cells of blood vessels 

Barrier, absorption, 

secretion 

Supporting cells Cartilages, bones The composition and 

maintenance of body 

Contractile cells Muscle Movement 

Nerve cells Brain Direct communication 

between cells 

Germ cells Sperm Breeding 

Blood cells White blood cells, 

erythrocyte 

Protection, carry oxygen 



 

 6 

Immune cells White blood cells, 

lymphoid tissue 

Protection 

Hormone secreting cells Thyroid, adrenal Indirect communication 

between the cells 

If all the cells in the tissue have the same structure, the tissue is called 

simple tissue. But most tissues containing different functional cells are called 

compound tissues. For example, nerve tissue contains supporting cells, immune 

cells and epithelial cells [5]. 

2.2.1 Oral mucosal tissue 

In a section of healthy oral mucosa, the epithelial tissue showing the 

hierarchical arrangement includes: the basal-cell layer, the prickle-cell layer and 

the keratinized layer. The basal-cell is a cubic or a columnar cell in the bottom 

of the epithelial tissue. Because of the ability of hyperplasia, the nucleus of 

basal cells that have been coated by some dyes, present a dark color. Above the 

basal-cell layer, the prickle-cells connect to other prickle-cells by the 

intercellular bridge. The keratinized layer is in the outermost layer. The 

keratinized layer is the last level of differentiation in epithelial tissue. According 

to the keratinized layer, the oral mucosa has resistance to friction. 

2.2.2 Oral squamous cell carcinoma 

Cancer is a genetic disease, but it is not heritable. It is caused by 

carcinogenic factors and genetic changes. The normal cycle of its growth has 

been uncontrolled, leading to an abnormal proliferation. The cancer tissue grows 

rapidly and can spread to other parts of the body through the blood and lymph. 

The cancer cells may destroy the organ that has been eroded, and they may be 

life-threatening. 

Oral squamous cell carcinoma (OSCC), also called oral cancer, is an 

invasive lesion at the oral mucosa. The causes of oral cancer include smoking, 

drinking, chewing betel nuts, and viral infection. Symptoms include: 

leukoplakia and erythroplakia on the surface of the oral mucosa, an unexplained 

tumor, mucosal ulceration that does not heal for a long time, unexplained 

bleeding and restricted activity of the tongue.  

When we observe the lesions of cancer tissue in the oral mucosa, we can 

determine the changes of type and structure. The changes of type include: 

increased activity of cell division, the ratio of nucleus and cytoplasm, the 

number of nuclei chromosomes and the normal space between the cells. The 
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change of structure means the direction of cell proliferation is uncontrolled. The 

lamina propria is eroded by the cancerous tissue. In histology, we can classify 

oral cancer by the degree of differentiation, including well differentiation, 

moderate differentiation and poor differentiation. The hyper degree of 

differentiation signifies better healing after surgery. 

      

(a)                                     (b) 

Figure 2-2: (a) Well differentiated keratinizing squamous cell carcinoma. 

(b) Poorly differentiated keratinizing squamous cell carcinoma. 

2.2.3 Process of making sections 

When we examine the tissues by light microscope, paraffin embedding is 

the standard method for making the tissue samples. It is inexpensive, easy to use, 

and can be done automatically by machine. After the tissues were dissected, the 

samples were fixed in paraformaldehyde overnight. The samples were 

dehydrated by placing them in ethanol until the water in the tissue and fixative 

was removed. The alcohol was then replaced by organic solvents. Finally, the 

sample was moved into paraffin at the melting point of paraffin. At a normal 

temperature, the paraffin would solidify, and the sample could be cut into thin 

slices (2–3μm) without variant. 

Since cells are colorless, the sections must be stained before observation by 

the light microscope. The staining methods include: empirical stains, 

histochemical stains, enzyme histochemical stains and immunocytochemistry. 

The combination of hematoxyline and eosin is the most useful agent in the 

detection of the sections. It is easy to use and inexpensive. The nucleus is 
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stained purple or black, and the cytoplasm is stained red or pink. 

2.3 Development of diagnosing cancer using hyperspectral image 

2.3.1 Diagnosis of cancer from image 

A fluorescent image was produced in the tissue that the light source 

irradiated. Because imaging provided two-dimensional information, we could 

easily mark the areas of lesions in the specific excitation wavelength. The 

fluorescence imaging techniques enabled real-time detection of cancer simple; it 

is inexpensive and has high sensitivity and specificity. Many studies have been 

performed using fluorescence imaging [6] to detect cancer in different organs, 

such as oral cancer and cancer of the lungs [7-12], the bladder [13], the colon 

[14-20] and the gastrointestinal tract [21-24]. 

Ina et al. used the laser-scanning fluorescence 351–364nm and 488nm 

excitation to detect cervical cancer [25]. Due to the essential dye, Mitotracker 

Orange, they could see the precancer’s cytoplasmic fluorescence in the bottom 

of the epithelium. They found that the intensity of fluorescence decreased with 

the development of cancer cells. In this study, only 10 patients were diagnosed, 

and the sample number was low.  

Darren et al. observed the fluorescence images of oral lesions and normal 

tissues; the images were obtained from 56 patients and 11 normal volunteers 

[26]. They classified the images as normal and cancer in different fluorescence 

excitation wavelengths, 365, 380, 405 and 450nm, with the ratio of normalized 

red-to-green fluorescence and the autofluorescent image. The data were divided 

into two sets: a training set and a validation set. The training set included: 20% 

invasive cancer, 28% dysplasia and 52% normal; the validation set included: 

14% invasive cancer, 25% dysplasia and 61% normal. With 405nm excitation, 

the autofluorescent image showed obvious decreased intensity. It had the 

highest sensitivity (95.9%) and specificity (96.2%) in the training set, and 100% 

sensitivity and 91.4% specificity in the validation set. They provided a 

noninvasive and sensitivity tool to diagnose oral cancer. They detected oral 

lesions using the decrease in autofluorescence images without observing the 

spectrum. 

Catherine et al. used a hand-held device to evaluate oral cancer by location, 

fluorescence visualization (FV) status, histology and loss of heterozygosity 

(LOH) [27, 28]. First, they marked a blue line on the surface of the tumor 

diagnosed by the naked eye. After the light illuminated the tissues, the tissues 

provided direct visualization, and they marked a green line in the FV loss (FVL) 

area as the tumor margins. Lastly, they used LOH to analyze the FVL biopsies 
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from the tumor margins. In a total of 44 patients, the sensitivity was 98% and 

the specificity was 100%. However, they did not analyze the spectrum of 

biopsies. 

2.3.2 Diagnosis of cancer from spectrum 

Diagnosis based on spectrum has the potential to determine the change of 

material in the cancer cells. The spectrum was classified as the halogen 

spectrum and the fluorescence spectrum. When the halogen irradiated the 

section, we recorded the transmittance as the halogen spectrum. When the light 

source excited the tissue, the fluorescence spectrum was emitted by the tissue. 

The spectral data were saved to a computer to be analyzed. Many studies have 

been performed using the spectrum method to distinguish between normal cells 

and cancer cells, and the method includes: Principal Components Analysis 

(PCA) [29-31], emission wavelength ratios [32-35], change of intensity [36-40] 

and artificial neural networks [41, 42]. 

Irene et al. evaluated low-grade and high-grade dysplasia of Barrett’s 

esophagus (BE) by fluorescence, scattering properties, and enlargement and 

crowding of nuclei [43]. They tried to distinguish high-grade dysplasia from 

low-grade dysplastic and nondysplastic BE, and high-grade and low-grade 

dysplasia from nondysplastic BE. There were two peaks in the fluorescence with 

337nm excitation; the decrease between the two peaks occurring in the 420nm 

was caused by the absorption of oxyhemoglobin; they combined the 

corresponding reflectance spectrum to compensate for the decrease.  

At 337nm excitation, the line-shape of the spectrum shifted to the right 

during the progression from nondysplastic to low-grade, to high-grade dysplasia. 

At 397nm excitation, the increase of intensity was found in the wavelength 

range 600–750nm. After the corresponding fitting of the reflectance spectrum, 

the scattering coefficient reflectance spectrum, μs, changed in different grades 

of dysplastic tissue. They also showed the enlargement of nuclei could be the 

characteristic, defining diameter > 10μm as enlargement of the nuclei. The 

analysis combining 3 techniques had a sensitivity of 93% and a specificity of 

100%. Their analysis combined the spectrum and image, but the enlargement 

would be hard to define because of the irregular shape of the nuclei. 

Hamed et al. detected cancer by using integral, support vector machines 

(SVM), spectral standard deviation and the normalized cancer index (NDCI) 

[44]. The halogen spectrum was normalized to calculate the reflectance using 

the following equation: 
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where R(λ) is the reflectance value, Iraw(λ) is the raw-data radiance value, 

Idark(λ) is the dark current and Iwhite(λ) is the white board radiance. The 

wavelength range was 1000–2500nm, and they found the area under the spectral 

curve was higher in cancer than in normal tissues, while the slopes at 

1200–1400nm were lower in cancer tissues. They also used SVM to classify 

tissue into normal and cancer tissues. They also compared the spectral standard 

deviation using the following equations, (2–2) in two dimensions and (2–3) in 

three dimensions: 

2

1

2

1

1

1

1

1

2
}]),,([{),(   













k

kk

ii

iii

jj

jjj

av
RkjiRCjiSD                     (2-2) 

2

1

1

1

1

1

2

1

2
}]),,([{),(   







 



ii

iii

jj

jjj

k

kk

av
RkjiRCjiSD                    (2-3) 

where SD was the standard deviation, k was the number of wavelength bands, 

k1 and k2 were the range of wavelength bands, i and j were spatial coordinates, 

i1 and j1 were the area size of the predefined neighbor, C was a coefficient, R 

was the reflectance and Rav was the mean of reflectance. The NDCI was 

calculated using the following equation: 
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where NDCI was the normalized cancer index, C1 and C2 were coefficients, Rk  

was the normalized reflectance in wavelength k, d(Rk) was the derivative of Rk , 

k1, k2, k3, and k4 were the wavelength bands. Lastly, the specificity was 88% 

using integral, 80% using SVM, 82% using spectral standard deviation and 93% 

using NDCI. However, they only analyzed the halogen spectrum without the 

fluorescence that could show the change of biochemistry. 

Kevin et al. used the colonoscopy to detect colorectal cancer from two 

imaging modalities: visible and NIR autofluorescence imaging and 

hyperspectral reflectance imaging [45]. For normalization, they subtracted the 

background intensity and divided the corresponding brightfield images. In the 

autofluorescence imaging, they found that normal tissues emitted more 

autofluorescence than the cancer tissues in 515nm excitation did, but the normal 

tissues emitted less autofluorescence than the cancer tissues did in 567nm 
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excitation. Therefore, they divided the fluorescence intensity at the second peak 

with 567nm excitation by the fluorescence intensity at the first peak with 515nm 

excitation to diagnose the colorectal cancer, and the ratio was less than 1.96 in 

normal mucosa and more than 1.98 in cancer, as shown in Table 2-3. In the 

hyperspectral reflectance imaging, the result of a total of 7 samples (T1-T7) 

showed a great correlation between different stages of cancer except for tissue 

sample T5. However, the number of samples was too low to prove the method 

was successful. 

Table 2-3: Tissue type, disease state, and 516/515nm ratio. 

Sample Tissue type Disease state 567/515nm ratio 

T1 Rextum Carcinoma 2.0003 

T2 Sigmoid Colon Dysplasia adenoma 2.0655 

T3 Colon Normal mucosa 1.9563 

T4 Sigmoid Colon Dysplasia adenoma with 

possible cancer 

2.0927 

T5 Right Colon Normal mucosa 1.9563 

T6 Descending 

Colon 

Moderately differentiated 

adenocarcinoma 

1.9864 

T7 Colon Normal mucosa 1.9562 

Kojiro et al. analyzed the fluorescence spectrum of oral squamous cell 

carcinoma in 404nm excitation [46]. The samples were all in hamsters, and the 

oral squamous cell carcinoma was induced by chemicals. With 404nm 

excitation, they found the intensity increased at 634 and 672nm peaks and 

decreased at 520 and 582nm peaks, as shown in Table 2-4. They said the 

decrease at 520nm was due to the reducing oxidized forms of riboflavin in 

tumor tissues; the increase at 630nm was due to the accumulation of porphyrin 

in the tumor tissues. After they defined the intensities of the peaks at 582, 634 

and 672nm as A, B and C, respectively, they calculated A/B, B/C and A/C, as 

shown in Table 2-5. The value of A/B and A/C decreased during the progression 

from control to hyperplasia, to early cancer, to invasive cancer.  
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Table 2-4: Fluorescence intensities with 404nm excitation. 

 Peak A (582nm) Peak B (634nm) Peak C (672nm) 

Control (n=6) 24.9±3.8 5.3±0.7 0.9±0.3 

Hyperplasia (n=10) 21.7±4.7 6.4±2.4 1.2±0.3 

Early cancer (n=5)  17.1±5.8 5.1±1.1 1.4±0.6 

Invasive cancer (n=3) 13.0±9.0 27.0±19.1 8.1±4.7 

Table 2-5: Ratio of fluorescence intensities with 404nm excitation. 

 A/B B/C A/C 

Control (n=6) 4.7±0.5 6.2±1.6 8.0±9.4 

Hyperplasia (n=10) 3.4±0.7 5.5±1.6 18.8±4.4 

Early cancer (n=5)  3.4±1.0 4.2±1.4 13.6±4.5 

Invasive cancer (n=3) 0.8±0.7 6.5±8.5 1.5±0.7 

Brigitte et al. analyzed the fluorescence spectrum of colorectal cancer with 

375–478nm excitation [47]. When they evaluated the spectrum from 478 to 

700nm, they found that the ratio of the intensity in the 500–549nm to 

657–700nm was a characteristic of the presence of cancer cells, and the critical 

value was 2.25. The sensitivity of this analysis was 97%, and its specificity was 

95%. However, the number of the spectrum was less than 15 in one sample, too 

low to prove the method was successful. 
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Chapter 3 Methodology 

 

3.1 Embedded Relay Lens Microscopic Hyperspectral 

Imaging System (ERL-MHIS) 

In the measurement process, the system (ERL-MHIS) contained two light 

sources, one microscope, one spectrometer, EMCCD saving hyperspectral data, 

and a computer displaying and analyzing the spectrum. The light sources 

included a halogen spectrum and a fluorescence spectrum with 330–385nm and 

470–490nm excitation. The microscope (IX701, Olympus) enlarged the image 

of the target area on the sample and transferred the image to the spectrometer. 

Lastly, the halogen spectrum and the fluorescence spectrum were saved as a 

1004x1004x1002 three-dimensional matrix by the EMCCD.  

The relay lens was between the microscope and the spectrometer. The 

function of the relay lens was to transfer the image from the object plane to the 

image plane. By moving the relay lens, we transferred the image without the 

relative movement between the microscope and the spectrometer.  

The hyperspectral data were saved in a personal computer (PC) for analysis. 

The PC also controlled the ERL-MHIS. A self-written code controlled the motor 

to move the relay lens for scanning the image of the target area, and set the 

integration time of EMCCD; the hyperspectral data were also analyzed by the 

PC. 
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Figure 3-1: The embedded relay lens microscopic hyperspectral imaging 

system (ERL-MHIS). 

3.2 Process of hyperspectral data 

Generally, the hyperspectral image was saved in binary format, including 

band sequential (BSQ), band interleaved by pixel (BIP) and band interleaved by 

line (BIL). BSQ, the data of the same wavelength in the hyperspectral image, 

were stored in one file. For getting the spectral information of the points in the 

image, BSQ was the best choice. When we used the BIP format, we stored the 

first pixel of all wavelengths in the first file, the second pixel of all wavelengths 

in the second file, the third pixel of all wavelengths in the third file, and so on. 

According to BIL format, we stored the information of the same split in one 

image for one file. BIL was the compromise between BSQ and BIP, and it was 

also the most commonly used.  

In the spectra of halogen, we calculated the penetration after removing the 

light and dark noise. In the halogen, the center of the image had the strongest 

brightness because of the light source. The light noise was caused by the uneven 

light source. We calculated the transmittance and removed the dark and light 

noise using the following equation: 
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where T(λ) is the transmittance value, Iraw(λ) is the raw data, Idark(λ) is the 

dark noise, and Ilight(λ) is the light noise. In the same way, the hyperspectral 

data in the fluorescence needed to have the dark noise removed.   

 

Figure 3-2: The three dimensional matrix of hyperstral image. 

In our research, the original information pertaining to the hyperspectral 

image was a three-dimensional matrix, and the three axes were x, y and λ. For 

the matrix, x was 1004, y was 1004 andλwas 1002. It meant the image was 

1004 pixel size and 1002 bands. For easy analysis, we transformed the 

three-dimensional matrix to 1004 files by BIL format. 

3.3 Patients and samples 

We investigated 33 patients in our research, including 32 men and 1 woman: 

10 patients with good differentiation, 19 patients with moderate differentiation, 

and 4 patients with poor differentiation. The biopsy locations involved: 15 

sections at the tongue, 6 biopsies at the buccal mucosa, 5 biopsies at the gum, 3 

biopsies at the palate, two biopsies at the pyriform sinus, one biopsy at the upper 

lip, and one biopsy at the bucca and retromolar trigone.  
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We took two images from each sample: normal and cancer. According to 

the different light sources: one halogen and two kinds of fluorescent, we had 

three sets of hyperspectral data in one image, so we had a total of six sets of 

hyperspectral data on one patient. Because we had the data of light source for 

only the sample numbers 1~12, we only analyzed the sample numbers 1 to 12 

using topology, and analyzed all samples using spectrum. 

3.4 Morphological methods for diagnosing oral cancer 

In cancerous tissue, the erosion of cancer cells is uncontrollable. It changes 

the image of the epithelial tissue in the cancer tissue. We tried to digitalize these 

changes, so we proposed two methods to analyze the erosion of cancer cells in 

histology. In normal tissue, there are clear borders between different layers, as 

shown in Figure 3-3a. In cancerous tissues, cancer cells erode other cells, as 

shown in Figure 3-3b, and it causes unclear borders between different layers. 

Therefore, we calculated the fractal dimension of the basal-cell layer in normal 

cells and of cancer cells in cancerous tissue. We also found a change of 

morphology in the lamina propria between normal and cancerous tissue, such as 

the increasing number of nuclei. Therefore, we classified the image of nuclei as 

basal cells and lamina propria by K-nearest neighbor. In cancerous tissue, 

because of the change of morphology in the lamina propria, the correct rate of 

classification was low. 

 

Figure 3-3: The image (a) of normal tissue and (b) cancer tissue. A: 

basal-cell layer B: lamina propria in normal tissue C: cancer cells D: lamina 

propria in cancer tissue. 
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3.4.1 Fractal Dimension 

In the topological dimension, 0 was used for points, 1 for lines, 2 for surface 

and 3 for volumes. Generally, the value of dimension meant the number of 

coordinate axis to determine the location of one point for the graphics.  

Differing from the topological dimension, the fractal dimension can be a 

non-integer value. The fractal dimension can be divided into regular and 

irregular. The dimension of regular fractal, like the Koch curve and the Cantor 

set, was calculated using the formula (3-2). D was the dimension, m was the 

number of new sticks and the 1/c signified the scaling factor. 

)/1ln(
ln

c
mD                                               (3-2) 

When we observed the biopsies of cancerous tissue, the cancer cells in the 

basal-cell layer eroded the lamina propria. If we only leaved the image of the 

basal-cell layer, we could determine the erosion of the cancer cells by 

calculating the fractal dimension of the basal-cell layer. The image of the 

basal-layer in cancerous tissues was more complex than in normal tissues. In 

other words, the fractal dimension of the basal-cell layer calculated was higher 

in cancerous tissues than in normal tissues. 

We superimposed the image of the hyperspectral data on the wavelength 

range 500~580nm because the largest difference in the spectral intensity 

between the basal-cell layer and the lamina propria was there. Then we fuzzified 

the image superimposed by hyperspectral data in the wavelength range 

500~580nm to decrease the effect of nuclei by moving the average. Because the 

spectral intensity of the basal-cell layer was lower, we tried to use the threshold 

method to leave the basal-cell layer. The value of the threshold method was 

decided by the nuclei chosen by hand. Closing was the method to fill the 

interruption and gap in morphological image processing. We used the closing to 

remove the small cracks of the basal-cell layer. Lastly, we calculated the fractal 

dimension by the formula (3–2). 
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Figure 3-4: The flow chart of analysis by fractal dimension. 

3.4.2 Classification by K-Nearest Neighbor 

K-nearest Neighbor (KNN) is one of the machine-learning algorithms, and 

it is instance-based learning. KNN classifies the test data by the closest training 

data in the feature space. When inputting test data, we calculated the distance 

between the input and all training data. In the k sets of closest training data, if 

the majority belonged to a category, the test data also belonged to the category.  

 

Figure 3-5: The flow chart of analysis by KNN classifying. 

When we observed the section of cancer tissue, we determined the change 

of the image in the lamina propria because of the erosion by the cancer cells. 

Because the morphology of the samples was one by one case, we constructed 

the training data and used the KNN digitalizing the change of the image in the 

lamina propria. If we classified the nuclei in the basal-cell layer and lamina 
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propria by KNN, the correct rate of classification was lower in cancer cells 

because of the change of the image in the lamina propria by the erosion of the 

cancer cells. First, we had to establish the training data and test data. To 

establish the training data, we chose nuclei of the basal-cell layer and of the 

prickle-cell layer in normal tissue and cancer cells in cancerous tissue, which we 

labeled as group A. Then we chose some nuclei of the lamina propria, which we 

labeled as group B. In every coordinate, we got an 11x11 matrix, similar to the 

size of a cell, and expanded the matrix to the one-dimensional matrix, as in 

Figure 3-5; we recorded the one-dimensional matrix as training data. To 

establish the test data, we moved an 11x11 matrix to scan the image. When the 

intensity of the 5x5 matrix in the center was lower than 80% intensity of the 

average in the 11x11 matrix, we recorded the 11x11 matrix as a nucleus. After 

the matrix scanning of the image, we expanded the 11x11 matrix as an one 

dimensional matrix, as in Figure 3-5, and recorded the one dimensional matrix 

as test data. 

 

Figure 3-6: Expanding an 11x11 matrix to one dimensional matrix. 

According to the training data, we could classify the test data by KNN, and 

the vector difference between the test data and each set of training data in the 

feature space was calculated. Lastly, we calculated the correct rate of the lamina 

propria classified by KNN. 

3.5 Spectral methods for diagnosing oral cancer 
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Before analyzing the spectrum, we needed to remove the noise. For instance, 

the spectrum in halogen dark and light noise needed to be removed; the 

spectrum in fluorescence only removed the dark noise because there was no data 

for the light source.  

After removing the noise, we marked nuclei in the image of the sample and 

recorded these coordinates. According to the coordinates chosen by hand, we 

got the spectrum of these nuclei. We had three methods to analyze these spectral 

data: four in halogen, four in fluorescence 330~385nm excitation and three in 

fluorescence 470~490nm excitation. 

 

Figure 3-7: The flow chart of spectral analysis. 

3.5.1 Intensity in the specific wavelength range 

In some wavelength ranges, the spectral curve showed an obvious 

characteristic. For searching the specific wavelength range, we compared the 

spectral intensity every 30nm wavelength range; then we could find the specific 

wavelength range of the largest difference in intensity. For example, the 

transmittance of halogen in normal cells was higher than in cancer cells in the 

460~480nm, as shown in Figure 3-8a, and we also compared the fluorescence 

intensity 470~490nm excitation in the wavelength range 540~560nm, as shown 

in Figure 3-8d. 
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Figure 3-8: The spectrum of one sample (a) Halogen transmittance. (b) 
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Fluorescent intensity with 330-385nm excitation. (c) Fluorescent intensity 

compensated by spline with 330-385nm excitation. (d) Fluorescent intensity 

with 470-490nm excitation. Red line is normal cells, and blue line is cancer cells. 

A: the peak in wavelength range 460~480nm. B: the peak in wavelength range 

700~710nm. C: the intensity in wavelength range 540~570nm. D: the intensity 

in wavelength range 680~710nm. E: the maximum of spectral curve. F: the full 

width at half maximum (FWHM) of spectral curve. G: the peak in wavelength 

range 540~570nm. H: the FWHM of spectral curve. 

3.5.2 Ratio of intensity in two different wavelength ranges 

Generally, there were some peaks in the spectral curve. We calculated the 

ratio of the intensity in different peaks or specific wavelength range. In our 

research, we calculated the ratio of average halogen transmittance in the range 

460~480nm to the 700~710nm. 

3.5.3 Wavelength of the specific peak 

The wavelength of the peak may be different in each spectral curve. In 

halogen, we compared the wavelength of the maximum in the wavelength 

700~710nm. We tried to find the movement of the peak caused by the cancer 

cells. 

3.5.4 Area under spectral curve 

By the integration of the spectral curve, we calculated the area under the 

curve. Before the integration, we needed to normalize the spectral curve. First, 

we recorded the maximum of the spectral curve, and then we divided the 

intensity by the maximum. We wanted to diagnose cancer cells by the change of 

area under the spectral curve. 

3.5.5 Maximum of spectral curve compensated by spline 

In fluorescence 330~385nm excitation, two peaks occurred in the 

wavelength range 540~560nm and 700~710nm. The decrease between the peaks 

that might have been caused by the absorption of hemoglobin, and the spectral 

curve of fluorescence excitation approximates Gaussian distribution and 

parabolic[43]. We compensated the decrease and fitted the spectral curve as 

parabolic by spline. Spline used the slope of the left and right borders to fit a 

parabolic by the interpolation, as shown in Figure 3-9. After compensation by 

spline, we recorded the maximum of this curve. 
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Figure 3-9: Spectrum compensated by Spline. Solid line is fluorescent 

spectrum with 330-385nm excitation, dotted line is the spectrum curve 

compensated by Spline. 

3.5.6 Full Width at Half Maximum (FWHM) of spectral 

curve  

Full width at half maximum (FWHM) refers to the distance between half 

width of a peak, figure 3-10. After the spectral curve in fluorescence 

330~385nm excitation was compensated by spline, we calculated the FWHM of 

the curve.   
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Figure 3-10: Full width at half maximum. 

3.6 Sensitivity and specificity 

Sensitivity means the correct rate of determining the normal cells as normal 

cells, and specificity means the correct rate of determining the cancer cells as 

cancer cells. We used the Gaussian distribution to calculate the sensitivity and 

specificity of our analysis. First, we computed the mean and variance of the 

result in the analysis; then we could determine the Gaussian distribution using 

the formula (3-3). μ  was the mean, and σ  was the variance. 
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By the Gaussian distribution, we determined the critical value of the method, 

for example, by using the intersection of two curves. We defined the right 

region as normal tissue and the left region as cancerous tissue. Then we could 

determine the sensitivity and specificity: sensitivity was the ratio of the area 

under the solid line and on the left of critical point to the area under the solid 

line, as shown in Figure 4-9; specificity was the ratio of the area under the 

dotted line and on the right of critical point to the area under the dotted line, as 

shown in Figure 3-11. Figure 3-12 shows how to calculate sensitivity and 

specificity. 
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Figure 3-11: The Gaussian distribution of the analysis. Red line is normal 

cells, and blue line is cancer cells. 

Patients with oral cancer

Condition 

Positive

Condition 

Negative

Test Outcome

Test Outcome 

Positive

True Positive 

(TP)

False Positive 
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Test Outcome 

Negative

False Negative 
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True Negative 

(TN)

Sensitivity

=TP/(TP+FN)

Specificity

=TN/(FP+TN)
 

Figure 3-12: Calculation of sensitivity and specificity. 
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Chapter 4 Results 

 

4.1 Experiments 

This is the flow chart of our experiment. First, we used the hyperspectral 

scanning system to transfer the optical image of the sample into a hyperspectral 

matrix. The hyperspectral scanning system includes: a microscope, three light 

sources, a motor, a relay lens, a spectrometer and an EMCCD. We use the 

microscope to enlarge the image of the sample. There are three light sources: 

halogen lamp, fluorescent at 330~385nm excitation and fluorescent at 

470~490nm excitation. The motor was used to move the relay lens for scanning 

the image, and we used the spectrometer to transform the image into the 

hyperspectral image. Lastly, the EMCCD stored the hyperspectral image in a 

three-dimensional matrix. The three axes are x, y and λ.  

After we transferred the format of hyperspectral data to BIL, we chose the 

nuclei in the image. These data on nuclei, which were chosen by hand, and used 

to diagnose cancer cells using the spectral method; they would also serve as the 

training data in the method of topology. There are two kinds of cancer cell 

diagnoses: the difference of spectral curves and the change of topology. In the 

diagnosis by the difference of spectral curves, we have 11 methods to compare 

the spectrum of normal cells and cancer cells: 4 methods in halogen, 4 in 

fluorescence 330~385nm excitation and 3 in fluorescence 330~385nm excitation. 

In the diagnosis of the change in topology, we present two methods: calculating 

the fractal dimension of the image and the correct rate of the classification by 

KNN. Lastly, we can plot the Gaussian distribution curve of the value generated 

by the methods, and calculate the sensitivity and specificity of this method. 
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Figure 4-1: The flow chart of experiment. 

4.2 Morphological analysis of oral cancer 

Before our analysis in topology, we needed to remove the light noise. 

Because we only had the spectrum of light source in samples numbered 1 to 12, 

we only analyzed the sample numbers 1 to 12 in topology. 

4.2.1 Calculation of Fractal Dimension after Threshold 

Method 

Figure 4-1 shows the result of the threshold method for the samples 

numbered 1 to 12. After using the threshold method, the basal-cells in normal 

tissue and the cancer cells in cancerous tissue were set to 1 or white, and the 

others to 0 or black. The figures on the left in Figure 4-1 are all normal tissue; 

the figures on the right are cancerous tissue.  

We can determine that the threshold method images exnibit a large 

difference between normal cells and cancer cells. The white area in the normal 

tissue shows a continuous curve, and the white area in the cancerous tissue 

shows a discontinuous curve and spreads over the whole image. Table 5-1 

shows the fractal dimension of the image after using the threshold method. 
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According to the Gaussian distribution, we can determine 1.75 as the critical 

value. If the fractal dimension is lower than 1.75, we identify the image as 

normal tissue; on the other hand, if the fractal dimension is higher than 1.75, we 

identify the image as cancerous tissue. The sensitivity is 83.44%, and specificity 

is 91.46%. 
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Figure 4-2: After threshold method, the basal cells are white, and the others 

are black in the images. The number 1 to 12 of figure means the number of the 

sample. The label (a) means normal tissue, and the label (b) means cancer tissue. 

Table 4-1: The fractal dimension of sample numbered 1 to 12 after 

threshold method. 

Number 

of 

patients 

1 2 3 4 5 6 7 8 9 10 11 12 

(a) 

Normal 

cells 

1.73 1.73 1.57 1.73 1.24 1.59 1.65 1.66 1.68 1.59 1.66 1.50 

(b) 

Cancer 

cells 

1.90 1.82 1.81 1.67 1.78 1.80 1.85 1.97 1.95 1.89 1.76 1.91 

4.2.2 K-nearest Neighbor Classification 

According to the training data chosen by hand, we can classify the nuclei as 

basal-cell and lamina propria. Figure 4-2 shows the result of classification by 

KNN. A red point means basal-cell and a blue point means lamina propria. 

Table 4-2 shows the correct rate of classification in lamina propria by KNN. 

After the calculation of Gaussian distribution, we determined the critical value 

as 0.76. This means if the correct rate is lower than 0.76, then we indentify the 

sample as cancerous; conversely, if the correct rate is higher than 0.76, we 

indentify the sample as normal tissue. The sensitivity is 81.36%, and the 

specificity is 55.34%. 
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Figure 4-3: The result of classification by KNN in the sample numbered 1 

to 12. The number 1 to 12 of figure means the number of the sample. The label 

(a) means normal tissue, and the label (b) means cancer tissue. 

Table 4-2: The correct rate of classification by KNN in the sample 

numbered 1 to 12. 

Number 

of 

patients 

1 2 3 4 5 6 7 8 9 10 11 12 

(a) 

Normal 

cells (%)  

80.9  58.3  94.7  87.8  95.0  89.4  86.3  92.2  87.8  91.2  64.9  89.2  

(b) 

Cancer 

cells (%)  

49.8  87.9  73.0  81.6  62.9  80.7  79.9  47.4  100  50.9  70.4  93.6  

4.3 Spectral analysis of oral cancer 

We chose nuclei in the image as the data for diagnosis of cancer cells by 

hand, and the number of the data is shown in Table 4-3. Except for sample 

number 5, we have at least 100 sets of data in one sample. Because we have 

three light sources, we have to diagnose cancer cells in three kinds of spectrum. 

We have 11 methods to diagnose cancer cells in spectrum: 4 in halogen, 4 in 

fluorescence 330~385nm excitation and 3 in fluorescence 470~490nm 

excitation. 

Table 4-3: The number of spectral data. 

Number  

of patient  

Normal tissue 

(nuclei)  

Cancer tissue 

(nuclei)  

Number  

of patient  

Normal tissue 

(nuclei)  

Cancer tissue 

(nuclei)  

1  557  458  18  184  301  

2  133  150  19  358  739  

3  260  164  20  416  551  

4  265  210  21  236  371  

5  82  221  22  450  584  

6  167  140  23  424  262  

7  376  404  24  279  239  

8  202  182  25  167  248  

9  150  563  26  309  449  
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10  241  263  27  425  449  

11  334  278  28  399  316  

12  242  413  29  311  330  

13  215  120  30  315  387  

14  393  759  31  229  632  

15  313  342  32  507  296  

16  432  351  33  359  693  

17  623  565     

4.3.1 Transmitting spectral mode 

Figure 5-3 shows the penetration in halogen for the samples numbered 1 to 

12. The penetration means we removed the light noise and black noise from the 

spectral data, and we only have the data of light source in the samples numbered 

1 to 12. The maximum of penetration is 1, and the minimum is 0. We have four 

analytical methods in the spectrum of halogen. Method 1-1 is calculating the 

penetration in the wavelength range 460~480nm. Method 1-2 is calculating the 

ratio of the penetration in the range 460~480nm to the penetration in the range 

700~710nm. Method 1-3 is calculating the intensity of the peak at 700~710nm. 

Table 5-2 shows the specificity of each method in halogen. Except for 

sample number 2, we can see that methods 1-1 and 1-2 have the highest 

specificity, the means of which are 87.15 and 86.27, respectively, so we 

combined methods 1-1 and 1-2 to analyze the spectrum in halogen. If we ignore 

sample number 2, the mean of specificity is 98.45. 
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Figure 4-4: The spectral curve of the sample numbered 1 to 12 in halogen. 

The red line means normal cells, and blue line means cancer cells. The number 

means the number of patients. X axis is wavelength (nm), and Y axis is halogen 

transmittance. 

Table 4-4: The correct rate of classification by KNN in the sample number 

1 to 12. 

Number  

of patient  

Specificity of 

method 1-1 (%)  

Specificity of 

method 1-2 (%)  

Specificity of 

method 1-3 (%)  

Specificity of 

method 1-1+1-2 

(%)  

1  92.5  90.4  43.4  97.4  

2  0  0  42.0  0.0  

3  99.6  98.9  77.1  100.0  

4  98.0  90.4  65.8  100.0  

5  95.1  99.7  71.1  100.0  

6  92.3  88.4  74.4  92.2  

7  83.6  86.6  76.1  97.3  

8  96.6  86.4  35.0  100.0  

9  99.8  93.7  64.2  100.0  

10  99.9  65.2  37.7  100.0  

11  94.7  69.9  71.3  96.1  

12 96.6 79.4 66.7 100 

4.3.2 Fluorescence with 330~385nm excitation 

Figure 4-5 shows the fluorescence intensity of 33 samples in fluorescence 
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330~385nm excitation, and Figure 4-6 shows the spectral curves that have been 

compensated by the spline. We have four methods to compare the normal cells 

and cancer cells. Method 2-1 compares the ratio of the intensity in the range 

540~570nm to the intensity in the range 680~710nm. Method 2-2 calculates the 

area under the spectral curve that has been normalized by the intensity at 

540~570nm. Method 2-3 compares the maximum of the spectral curve that has 

been compensated by spline. Method 2-4 compares the full width at half 

maximum (FWHM) of the spectral curve compensated by the spline. 

Table 4-5 shows the specificity of the method analyzing the spectrum in the 

fluorescence 330~385nm excitation. We can see a large difference between the 

specificity of each sample; it signifies that these analyzing methods are not 

strong enough. 
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Figure 4-5: The spectral curves of each sample in fluorescence 330~385nm 

excitation. The number of figure means the number of the sample. The red line 

means normal cells, and blue line means cancer cells. The number means the 

number of patients. X axis is wavelength (nm), and Y axis is fluorescence 

intensity (μ w). 
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Figure 4-6: The spectral curves of each sample which have been 

compensated by spline in fluorescence 330~385nm excitation. The number of 

figure means the number of the sample. The red line means normal cells, and 
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blue line means cancer cells. The number means the number of patients. X axis 

is wavelength (nm), and Y axis is fluorescence intensity (μ w). 

Table 4-5: The specificity of analysis in fluorescence 330~385nm 

excitation. 

Number  

of patient 

Specificity of 

method 2-1 

(%) 

Specificity of 

method 2-2 

(%) 

Specificity of 

method 2-3 

(%) 

Specificity of 

method 2-4 

(%) 

1 54.9 69.1 79.1 54.2 

2 49.3 34.3 45.1 57.5 

3 96.5 99.4 96.3 76.1 

4 74.9 68.0 82.1 78.5 

5 57.9 71.1 49.0 69.4 

6 38.6 49.7 62.8 90.8 

7 73.3 85.3 82.7 51.4 

8 76.8 55.2 42.8 78.2 

9 59.4 55.2 43.1 64.8 

10 87.0 76.8 83.3 93.5 

11 61.7 74.8 81.5 64.6 

12 70.7 67.6 69.9 79.0 

13 37.6 42.8 59.9 59.7 

14 82.0 93.5 92.7 82.9 

15 40.8 44.1 74.3 67.5 

16 65.5 54.2 70.3 63.3 

17 62.8 75.2 97.6 72.4 

18 49.5 50.5 62.0 54.4 

19 64.1 82.2 49.3 69.8 

20 63.3 87.6 99.7 59.0 

21 35.2 38.7 44.2 27.7 

22 86.4 84.2 89.9 90.8 

23 45.4 55.4 55.4 33.1 
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24 87.6 80.3 79.4 89.0 

25 71.0 69.5 84.2 50.3 

26 61.8 73.5 32.4 48.2 

27 93.1 89.3 85.8 92.0 

28 78.6 70.5 69.9 67.1 

29 64.6 78.7 82.5 65.8 

30 89.1 85.0 83.2 92.3 

31 83.4 72.4 59.4 78.9 

32 97.8 92.8 90.7 98.2 

33 86.9 82.4 77.9 88.4 

4.3.3 Fluorescence with 470~490nm excitation 

Figure 4-7 shows the spectrum in fluorescence 470~490nm excitation. We 

have 3 methods to analyze the spectrum to distinguish normal cells and cancer 

cells. Method 3-1 compares the intensity of the peak in the wavelength range 

540~570nm. Method 3-2 calculates the area under the spectral curve that we 

normalize. Method 3-3 calculates the full width at half maximum (FWHM) of 

the spectral curve. 

Table 4-6 shows the result of the analysis as well as the specificity of each 

method in each sample. We can see that the variation of the specificity between 

different samples is large, and the mean of specificity in one method is too low 

(about 50%). 
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Figure 4-7: The spectral curve of each sample in fluorescence 470~490nm 

excitation. The number of figure means the number of the sample. The red line 
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means normal cells, and blue line means cancer cells. The number means the 

number of patients. X axis is wavelength (nm), and Y axis is fluorescence 

intensity (μ w). 

Table 4-6: The specificity of analysis in fluorescence 330~385nm 

excitation. 

Number  

of 

patient  

Specificity 

of method 

3-1 (%)  

Specificity 

of method 

3-2 (%)  

Specificity 

of method 

3-3 (%)  

Number  

of 

patient  

Specificity 

of method 

3-1 (%)  

Specificity 

of method 

3-2 (%)  

Specificity 

of method 

3-3 (%)  

1  56.9  81.6  62.0  18  51.1  48.6  63.1  

2  51.4  51.5  85.3  19  48.3  83.0  84.4  

3  71.3  69.7  90.4  20  68.6  96.8  95.0  

4  77.5  86.7  76.2  21  24.4  35.3  40.6  

5  99.2  100.0  96.7  22  95.4  72.7  32.2  

6  61.8  46.8  42.3  23  53.8  65.3  54.3  

7  64.8  83.5  74.3  24  86.3  86.4  90.0  

8  54.4  35.5  82.6  25  68.7  49.1  38.4  

9  94.7  78.7  76.7  26  43.8  72.4  66.0  

10  92.2  63.9  70.2  27  90.5  76.0  35.1  

11  46.6  42.4  66.4  28  86.2  66.0  20.8  

12  76.6  64.0  50.1  29  74.6  85.8  74.6  

13  60.6  64.9  50.0  30  83.7  81.1  64.8  

14  83.3  92.5  75.5  31  71.2  68.6  50.7  

15  34.0  98.3  100.0  32  97.1  70.7  82.6  

16  58.8  53.4  90.2  33  89.0  69.8  43.9  

17  50.9  98.9  98.9      
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 Chapter 5 Discussions, Conclusions and Future 

Works 

 

5.1 Discussions 

In calculating the fractal dimension of the image, the critical value of the 

threshold method has an enormous impact on the value of the fractal dimension. 

Determining the value of the critical value is an important issue. Because the 

area of which the value is 1 in the threshold method and the coordinates of the 

training data are both the nuclei in the basal-cell layer, we determined the 

critical value in accordance to the value of the training data chosen by hand.  

The fractal dimension method shows a high sensitivity and specificity, 

except in sample number 3. The fractal dimension of number 3 in normal tissue 

is 1.73 and 1.67 in cancer cells. The goal of the threshold method is setting the 

value of the nuclei in the basal-cell layer as 1 and the other as 0; the image 

causes a low value of fractal dimension with a low number of nuclei. In 

observing the image of sample number 3, we find that the number of nuclei is 

low in cancerous tissue. 

In the result of classification by KNN, the difference in the correct rate 

between normal cells and cancer cells is not large, and the specificity is only 

55.34%. The distribution of nuclei in the lamina propria decides the correct rate. 

If the distribution shows an intensive type, it is difficult to use the KNN to 

distinguish the nuclei between the basal-cell layer and the lamina propria, and it 

causes a low correct rate. The morphology of the lamina propria shows low 

correlation with the erosion of cancer cells, Table 4-2. The topology of the 

lamina propria may change because of different composition or location. 

In order to establish data for spectral diagnosis, we can mark the points on 

the nuclei, cytoplasm or intercellular bridge. Therefore, we have to verify the 

best target on the image for diagnosis. In the beginning, we mark the nuclei, 

cytoplasm and intercellular bridge on the image of the sample and diagnose oral 

cancer using the spectrum. After comparison, nuclei are chosen as the targets 

because of their highest sensitivity and specificity. 

In the halogen spectrum, there is a large difference between normal cells 

and cancer cells. Except for sample number 2, methods 1 and 2 of diagnosis 

have high sensitivity and specificity. When we observe the normal cells in 

Figure 3-7(2), we see that the transmittance abnormally decreases in the 

wavelength range 300~700nm and 750~1100nm. In fluorescence, there is no 
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obvious decrease in the spectrum of normal cells. Therefore, the cause of the 

decrease in Figure 3-7(2) is the thickness of the sample because the thickness 

has an effect on transmittance, but no effect on reflectance.  

We do not remove the light noise in the intensity of fluorescence because it 

is difficult to save light noise in fluorescence. In order to save light noise, the 

light source irradiates the black area of the biopsy, but there is no 

autofluorescence with the black area. Autofluorescence is emitted by the excited 

cells. 

The sensitivity and specificity are higher in the diagnosis of the halogen 

spectrum than in the fluorescence spectrum. The average specificity of diagnosis 

in halogen is 79.545%, in fluorescence 330~385nm excitation is 68.48% and in 

fluorescence 470~490nm excitation is 70.12%. The reason for this is that we do 

not remove the light noise in fluorescence. Removing the light noise can remove 

the effect of the light source on different locations of the sample and normalize 

the intensity; however, the light noise cannot be recorded in fluorescence.  

In defining the method of calculating the fractal dimension as in method 4-1 

and the correct rate of classification by KNN as in method 4-2, according to the 

value of specificity, the order of methods is as follows: 1-1, 4-1, 1-2, 1-3, 3-3, 

2-4, 3-1, 2-3, 2-2, 3-2, 2-1, 1-4 and 4-2. The specificity of the fractal dimension 

method is 91.46%, the method of calculating the halogen penetration in the 

wavelength range of 460~480nm (method 1-1) is 95.34% if sample number 2 is 

ignored, and the method of calculating the ratio of the halogen penetration in the 

range of 460~480nm to the halogen penetration in the range 700~710nm 

(method 1-2) is 86.45% if sample number 2 is ignored. Methods 1-1, 1-2 and 

4-1 have the highest specificity, and the specificity is higher than the others by 

13% at least. Finally, the specificity is 98.45% in combination with methods 1-1, 

1-2 and 4-1. 

Table 5-1 shows the comparison with other articles. Our light sources 

include halogen and fluorescence with 330-385nm and 470-490nm excitation, 

and the method includes analysis using morphology and spectrum. Compared to 

the research presented in other articles, our research presents more information 

(more light sources, larger spectral range), is more convincing (based on 33 

patients and using more than 100 sets of data in one sample), more novel 

(analysis combining morphology and spectrum) and shows high specificity 

(98.45%). 

 

 

 



 

 58 

Table 5-1: Comparison of other articles. 

Author 

(year)  
Light 

source  
Spectral 

range 

(nm)  

Number 

of 

lesions  

Methods  Results  

Our study 

(2012) 

Halogen, 

fluorescence 

330-385nm 

and 

470-490nm 

excitation 

400-1100 33 Fractal dimension, 

classification by 

KNN, intensity, ratio, 

wavelength of peak, 

area under spectrum, 

and FWHM 

Sen. 92.9%, 

spec. 98.45% 

Irene et 

al. (2001)  
Fluorescence 

337-620nm 

excitation  

350-700  unknown  Combination of 

fluorescence, 

scattering, and levels 

of nuclear crowding 

and enlargement  

Sensitivity 

100%, 

specificity 

100%  

Hamed et 

al. 

( 2011)  

Halogen  1000-2500  10  Standard deviation, 

support vector 

machine, and first 

derivatives and 

integral  

Spec. 82% in 

SD,  spec.82% 

in SVM, and 

spec. 88% in 

integral  

Kevin et 

al. (2009)  
Fluorescence 

465-645nm 

excitation  

>600  7 567/515 nm ratio  Showing a good 

correlation 

between various 

disease states  

Kojiro at 

al. (2002)  
Fluorescence 

404nm  
500-700  18  Intensity at 582, 634, 

and 672nm  
Cancer changes: 

peaks at 634 

and 672 

increased and 

peaks at 520 

and 582nm 

decreased  

Chich-Yu 

Wang et 

al. (1999)  

Fluorescence 

280-400nm 

excitation  

300-700  96  Combination of PLS 

andlysis and logistic 

regression  

Accuracy rate 

81.3  

Brigitte 

et al. 

(2001)  

Fluorescence 

375-478nm 

excitation  

450-750  13  500-549/657-700nm 

ratio  
Sens. 97%, 

spec. 95%  
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5.1.1 Cocktail method in accordance to the sample data 

The cocktail method combines the methods with fluorescence excitation , 

and the methods show higher specificity and better correlation with sample data. 

The sample data includes the age of patient, the differentiated level, the location 

of biopsy, the stage of oral cancer, T, N, and M. T is the diagnosis of tumor, N is 

the diagnosis of regional lymph nodes, and M is the diagnosis of distant 

metastasis. For finding the correlation between specificity of the methods and 

the sample data, the Figures 5-1 to 5-7 show the specificity of methods in 

different sample data. In the Figure, X axis is the specificity of methods, and Y 

axis is the ratio of people with the specificity above the value in X axis. For 

example, Figure 5-1(b), the ratio of people which is in age 30-39 in method 2-1 

is 80% with specificity above 60%, 60% with specificity above 70%, and 20% 

with specificity above 90%. We define the method which has highest summing 

Y values in X values 80 and 90 as the most effective method.  

Table 5-2 shows the most effective method for detecting cancer in each 

sample data. According to Table 5-2, we get the effective methods analyzing 

each sample. For example, one sample data are 59 years, poorly differentiated, 

tongue, stage 1, and T0N0M0, and the effective methods are method 2-4, 3-1, 

3-2, and 3-3. We combine the effective method and compute the specificity, 

Table 5-3. The average of specificity is 87% which is higher 15 % than the 

specificity in method 2-1 to 3-3, Table 5-4. 
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Figure 5-1: The ratio of people in different age ranges. X axis is specificity, 

and Y axis is the ratio of people. 



 

 61 

 

Figure 5-2: The ratio of people in different differentiation. X axis is 

specificity, and Y axis is the ratio of people. 
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Figure 5-3: The ratio of people in different locations. X axis is specificity, 

and Y axis is the ratio of people. 

 

Figure 5-4: The ratio of people in different stage. X axis is specificity, and 

Y axis is the ratio of people. 
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Figure 5-5: The ratio of people in different T. X axis is specificity, and Y 

axis is the ratio of people. 
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Figure 5-6: The ratio of people in different N. X axis is specificity, and Y 

axis is the ratio of people. 

 

Figure 5-7: The ratio of people in different M. X axis is specificity, and Y 

axis is the ratio of people. 
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Table 5-2: The most effective method with each sample data.  

Age 30-39 40-49 50-59 60-69 70-79 80  

Method 3-1 3-2, 3-3 3-2 3-3 2-4, 3-1 no  

Differentiated 

level 

Poor Moderate Well     

Method 2-4 3-1 3-2     

Location of 

biopsies 

Tongue Mucosa Gum Palate Pyriform 

sinus 

Bucca Lip 

Method 3-2 3-3 3-2 3-3 3-1 no 2-4, 3-1 

Stage of cancer Stage 1 Stage 2 Stage 3 Stage 4    

Method 3-1 3-3 2-4 3-2    

Tumor T1 T2 T3 T4a    

Method 3-1 3-2 3-3 2-4, 3-1    

Regional 

lymph nodes 

N0 N2 Nx     

Method 3-3 3-2 2-4, 3-1     

Distant 

metastasis 

M0 Mx      

Method 3-3 2-4      
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Table 5-3: The combined methods of cocktail method and the specificity 

for each sample. 

Sample Combined 

Methods 

Specificity 

(%) 

Sample Combined 

Methods 

Specificity 

(%) 

1 2-4, 3-1, 3-2, 

3-3 
85.4 

18 2-4, 3-3 
56.12 

2 3-3 85.3 19 3-2, 3-3 97.7 

3 3-1, 3-2, 3-3 95.3 20 3-1, 3-2, 3-3 98.3 

4 3-1, 3-2, 3-3 99.2 21 3-2, 3-3 30.19 

5 3-1, 3-2, 3-3 100 22 2-4, 3-1, 3-2, 3-3 90.1 

6 2-4, 3-1, 3-2 100 23 3-1, 3-2, 3-3 59.73 

7 2-4, 3-1, 3-2, 

3-3 
86.5 

24 3-1, 3-2, 3-3 
96.7 

8 2-4, 3-1, 3-3 90.1 25 2-4, 3-1, 3-2, 3-3 100 

9 2-4, 3-1, 3-2, 

3-3 
100 

26 3-2, 3-3 
82.22 

10 2-4, 3-1, 3-3 98.8 27 2-4, 3-1, 3-2, 3-3 92.9 

11 2-4, 3-3 75 28 2-4, 3-1, 3-2 79.08 

12 2-4, 3-1 88.28 29 3-2, 3-3 89.4 

13 3-1, 3-2 70.83 30 2-4, 3-2, 3-3 98.9 

14 3-2 94.1 31 2-4, 3-1, 3-2, 3-3 80.1 

15 2-4, 3-2, 3-3 100 32 2-4, 3-1, 3-3 99.6 

16 3-1, 3-2, 3-3 71.1 33 3-1, 3-2, 3-3 81.1 

17 3-1, 3-2, 3-3 98.4    
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Table 5-4: The comparison of the methods. 

 Method 2-1 Method 2-2 Method 2-3 Method 2-4 

Mean of specificity (%) 68.1 70 71.5 70 

Standard deviation of 

specificity 
3.11 2.96 3.2 3.04 

 Method 3-1 Method 3-2 Method 3-3  Cocktail method 

Mean of specificity (%) 68.7 70.9 67.4 87 

Standard deviation of 

specificity 
3.40 3.16 3.76 2.72 

m ethod
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Figure 5-8: The comparison of the methods with vertical bars. 

5.1.2 Cause of halogen transmittance over 1.0 

In Figures 4-3(2), (11) and (12), we see that the halogen transmittance is 

higher than 1.0 in the wavelength range 680~730nm, and that it is abnormal. 

Because the transmittance is calculated by the spectrum, subtracting black noise 

and dividing the light noise, the value of transmittance is usually between 0 and 

1. When we compared the spectrum normalized in halogen and fluorescence in 

330-385nm excitation, we found that the peaks at 680-730nm are similar, as 
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shown in Figure 5-1. Therefore, we estimated transmittance of more than 1.0 

caused by fluorescence excitation. 

 

Figure 5-9: The comparison of spectrum in the halogen and fluorescence (a) 

Normal cells in the sample 2. (b) Cancer cells in the sample 2. (c) Normal cells 

in the sample 11. (d) Cancer cells in the sample 11. (e) Normal cells in the 

sample 12. (f) Cancer cells in the sample 12. The red line means halogen 

spectrum, and blue line means fluorescence spectrum. X axis is wavelength 

(nm), and Y axis is normalized intensity.  
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5.2 Conclusions and future works 

In this study, we aimed to detect oral cancer using ERL-MHIS. The 

ERL-MHIS includes: a microscope, relay lens, spectrometer and EMCCD. With 

the relay lens, we can scan the image of a sample without the relative movement 

between the biopsies and the scanning system. After saving the hyperspectral 

information, we used algorithms to diagnose the oral cancer. We observed the 

change of morphology and spectrum in the sample. The methods of morphology 

include the fractal dimension and the correct rate of classification by KNN. 

Because cancer cells destroy the structure of epithelial tissues, method 4-1 of 

calculating fractal dimension shows high sensitivity in distinguishing between 

normal and cancerous tissues. The methods of spectrum include: comparing the 

intensity, the ratio, the wavelength of a specific peak, the area under spectral 

curve and the FWHM. The spectral data include halogen transmittance and 

fluorescent spectrum with 330~385nm and 470~490nm excitation. After 

removing the noise, we found the decrease of halogen transmittance at 

470-490nm. 

After combining the methods of the penetration in the wavelength range of 

460~480nm, the ratio of the penetration in the range 460~480nm to the 

penetration in the range 700~710nm and fractal dimension, the sensitivity and 

specificity were both more than 95%. ERL-MHIS with diagnoses using 

morphology and spectrum successfully distinguished normal and cancerous 

tissues. However, because of the irregular shape of nuclei, it is hard to 

automatically choose nuclei as training data. All of the methods are needed to 

choose the training data by hand, and it significantly influences sensitivity. In 

the fractal dimension method, the value of the critical point in the threshold 

method is decided according to the training data. In classification by KNN, we 

also need training data. In the spectral method, the coordinates of analyzed data 

are all chosen by hand. In the future, we will try to design a portable and 

real-time instrument and diagnose oral cancer automatically without biopsies or 

training data chosen by hand. 
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