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人體動作辨識之推論與取樣頻率研究 

 

學生:劉育誠            指導教授: 張志永 博士 

 

國立交通大學電機與控制工程研究所 

 

摘要 

 
人體動作辨識系統在電腦視覺領域一直是很熱門的研究與應用目標。在居家

監控系統中最常見的方式是，使用固定式的攝影機，對室內的人物進行追蹤與動

作辨識。為了達到即時監控之目標，處理的演算法必須快速，而且又必須能夠有

效的分析影像。 

在本論文中，動作辨識的目標是人體，為了更正確的擷取出人體部份，我們

同時使用灰階域與 HSV 色彩空間，建立兩個背景模型，提升消除影像中陰影部

分之影響，使得前後景之分離結果能夠更完整。取得即時影像，擷取出的前景部

份，經過特徵空間轉換與標準空間轉換後，累積三張動作影像後，藉由預先學習

而建立之模糊法則與時序動作姿態比對，完成人體動作之辨識。 

研究對於較短周期的動作其取樣頻率改變是否獲得更多資訊，更多的訊息可

以使人體動作辨識更加的準確，並且對判斷相同動作的規則，取其最大或者前三

大、前五大、前七大和前九大相似度的動作法則平均值，藉由更多規則決定目前

輸入的影像與判別動作之間的相似度，確能更加準確判斷人體動作。 
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Inference and Down-sampling Rate study for 

Video-based Human Action Recognition 
 

STUDENT: Yu-Cheng Liu       ADVISOR: Dr. Jyh-Yeong Chang 
 

Institute of Electrical and Control Engineering 
National Chiao-Tung University 

 
ABSTRACT 

 
Human activity recognition system is now a very popular subject for research 

and application. Using a fixed camera to track a person and recognize his (her) 

activity is widely seen in home surveillance. For real-time surveillance, the embedded 

algorithms must be efficient and fast to meet the real-time constraint.  

In the thesis, we build two background models, one is grayscale another is HSV 

color space that extract the human region correctly, and we also reduce the shadowing 

effect. For better efficiency, the binary image is transformed to a new space by 

eigenspace and canonical space transformation. After that, we gathered three 

consecutive down-sampled images to recognize the human actions by fuzzy rules. 

We utilize different down-sampling rate for short-period action to obtain more 

information which is useful for the human action recognition. Furthermore, we 

investigate to the average value of maximal top-3, top-5, top-7 and top-9 firing 

strength of rules with the same action to recognize the human action. Using more 

rules to determine the similarity between the inputs and rules that can be more 

accurately determine human action. 
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Chapter 1 Introduction 
 

1.1 Motivation of this research 

 

Recognizing human actions in monocular video is an important scene 

understanding issue for applications [1] such as automatic surveillance, content-based 

video search, human-computer interaction, intelligent environment, and many others. 

Our society is becoming increasingly aging. Thus, home nursing is getting more and 

more important. However, the price of most home nursing care service is very 

expensive. Besides, the trained nurses are limited and they cannot take care of the 

elderly 24 hours a day. Therefore, automatic home caring system plays an important 

role to this trend. For example, when automatic surveillance system recognizes one's 

human activity is dangerous, the alarm will be triggered. Nevertheless, there is no 

well-defined structure which is effective to recognize the human actions to data. 

Therefore, this makes human action recognition become a challenging task. 

A number of human action recognition methods have been proposed in the past 

few years. Carlsson and Sullivan et al. [6] proposed an action recognition method by 

shape matching to key frames from edge data which obtained from canny edge 

detection. Luke and Keller et al. [5] utilized using fuzzy logic to model human 

activities from voxel person. Cohen and Li [4] presented a 3D visual-hull constructed 

from a set of silhouettes to infer the human postures. W4 [2] can detect single person 

or several persons in group by using an adaptive background model and identify the 

activities by finding the body components on the silhouette boundary. Bobick et al. 

[3], recognized human activities by comparing motion's energy and history. 
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In our research, we have designed a robust method that makes use of shape 

features to recognize the human actions. It is know that, when people do a specific 

action, which are composed of similar posture sequences in the time axis. Therefore, 

we can down-sample the frame sequence to recognize the human actions. Then, we 

use the 5:1, 3:1 and 2:1 down-sampling rate to classify the three consecutive key 

postures and then use the maximum, the average value of maximal top 3, top 5, top7 

and top 9 firing of the action rule to recognize the human action. 

The human action recognition system is composed of three modules. The first 

module is foreground extraction. The second module is the posture classification 

module which will transform the image data to a smaller dimension for computational 

and storage efficiency. Then the foreground image will be classified to the key 

postures of actions. The third module is the inference module which reasons the using 

the fuzzy rules to classify the three consecutive posture sequences to recognize the 

human action. The human action recognition system is showing in Fig. 1.1.
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Fig. 1.1 Block diagram showing the human action recognition system. 
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1.2 Foreground extraction 

 

The foreground subject extraction is the first step of human action recognition. 

We need to construct a background model. Background subtraction is a method 

typically used to segment moving regions in image sequences taken from a static 

camera by comparing each new frame to a model of the scene background [7]. There 

are many methods to build background models. In Piccardi [8], a review of the most 

relevant background subtraction methods were presented. W4 [2] is such a popular 

example that using frame-difference with a threshold. In addition, foreground subject 

extraction is commonly affected by the additional inclusion of shadows. A lot of 

attempts have been developed to tackle the shadow suppression. Horprasert et al. [9] 

and Cucchiara et al. [10] utilized the rationale that shadows have similar chromaticity, 

but lower brightness than the background model. In our system, we build two 

background models. The first one is based on grayscale value and the second is based 

on HSV color space. In short, the background model should be adoptive to the 

represent the scene change. A subject enters scene and then leaves some things in the 

scene. After the subject leaves the scene, the background model will be updating 

accordingly. 

 After building the background model, we can extract the foreground subject from 

video frames. Subtracting each pixel of background model from current image frames 

will produce foreground subject. Then, the resulting image is converted to a binary 

image which contains the foreground subject by setting a threshold. Therefore, we can 

extract the most possible region of a person to a rectangle binary image. The rectangle 

image is resized to the specified resolution for normalization. 
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1.3 Eigenspace and Canonical Space Transformation 

 

In most of video and image processing, the size of frame is usually very large 

and it usually contains a great deal of redundancy. The redundancy wastes the 

resources greatly in computation and storage aspects. Hence, some space 

transformations are introduced to reduce the redundancy of an image by reducing the 

data size of the image. The first step of redundancy reduction often transforms an 

image from a high-dimensional space into a low-dimension space. The transformation 

can use fewer dimensions to approximate the original image. There are many 

well-known transformation methods such as Fourier Transformation, Wavelet 

Transformation, Principal Component Analysis, Multi Dimensional Scaling (MDS) 

and Locally Linear Embedding (LLE). Our transformation method combines 

eigenspace transformation and canonical space transformation which are described as 

follows. 

The Eigenspace Transformation (EST), which is based on Principal Component 

Analysis (PCA), has been demonstrated to be a potent scheme used for automatic face 

recognition [11], [12], gait analysis [13] and action recognition [14]. The subsequent 

transformation, Canonical Space Transformation (CST) based on Canonical Analysis, 

is used to reduce data dimensionality and to optimize the class separability and 

improve the classification performance. Unfortunately, CST approach needs long 

computation efforts when the image is large. Therefore, we combine EST and CST in 

order to improve the classification performance while reducing the dimension. Thus 

each image can be projected from a high-dimensional spatiotemporal space to a 

low-dimensional canonical space. In this low-dimension space the recognition of 

human activities becomes much simpler and easier. 
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1.4 Image Frame Classification and Activity Recognition 

      

In this thesis, images are transformed into an image feature vector by extracting 

features from images. We extract image features by using eigenspace transformation 

and canonical space transformation. Because of the cameras usually capture image 

frames with a frequency of 30 frames per second. There is not much difference 

between two consecutive image frames. Thus, down-sampling the input image stream 

is necessary and that can reduce the computation load and complexity. We group three 

contiguous down-sampled images and transform them to three consecutive feature 

vectors. Then, the time-sequential images are converted to a posture sequence by 

using these three feature vectors. The posture sequence is signified by the number of 

the templates. In the learning phase, we build a transition model in terms of three 

consecutive posture sequences which are the category symbol of the posture template. 

For human action recognition, the model which best matches the observed posture 

sequence is chosen as the recognized action category. 

One of the famous methods to model the time-sequential data's transition model 

is Hidden Markov Models (HMMs). The basic concept of Hidden Markov Models is 

described in [15]. HMMs have been used in speech recognition [16] and hand 

gestures recognition [17]. After transforming image frames to eigenspace and 

canonical space domain, we greatly reduce the image data size. We adopt the fuzzy 

rule-based techniques to classify human activities, not by the shape-based features of 

the images. Therefore our activity analysis system is tolerant of dissimilarity, 

uncertainty, ambiguity and irregularity which exist in the action video. Relevant 

articles using the fuzzy theory in action recognition are described as follows. Wang 

and Mendel [18] proposed that fuzzy rules to be generated by learning from examples. 
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Su [19] presented a fuzzy rule-based approach to spatio-temporal hand gesture 

recognition.  

In our system, we propose a fuzzy rule-base approach for human activity 

recognition. Each action is represented in the form of fuzzy IF-THEN rules, extracted 

from the posture sequences of the training data. Each IF-THEN rule is fuzzified by 

employing an innovative membership function in order to represent the degree of the 

similarity between a time-based three posture pattern and the corresponding 

antecedent to infer the subject's action. When our system classifies an unknown action 

video, we match the three contiguous down-sampled images to the precedent part of 

each fuzzy rule. The rule's consequent with maximal accumulated similarity measure 

associated with these three consecutive postures defines the subject's activity type. 

 

 

1.5 Thesis Outline 

 

The thesis is organized as follows. In Chapter 2, we introduce the basic concepts 

concerning eigenspace transform, canonical space transform, and the HSV color space. 

In Chapter 3, we describe that utilizing different down-sampling rate to select the key 

postures and investigating to the average value of maximal top-3, top-5, top-7 and 

top-9 firing strength of rules with the same action to recognize the human action. In 

Chapter 4, the experiment results of our recognition systems are shown. At last, we 

conclude this thesis with a discussion in Chapter 5. 
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Chapter 2 Basic Concept 
 

In this chapter, we briefly explain the basic concepts of eigenspace and canonical 

space transform. Then HSV color space concept is introduced. 

 

2.1 Fundamentals of Eigenspace and Canonical Space 

Transform 

 

In video and image processing, the dimensions of image data are often extremely 

large. It is common to transform the image from high-dimensional space into a 

low-dimension one to discover a small set of composite features for action recognition. 

There are many well-known transformation methods such as Fourier Transformation, 

Wavelet Transformation, Principal Component Analysis (PCA), Multi Dimensional 

Scaling (MDS) and Eigenspace Transformation (EST). However, PCA based on the 

global covariance matrix of the full set of image data is not very effective to the class 

structure existent in the data. In order to enhance the discriminatory power of various 

activity features, Etemad and Chellappa [20] introduced Linear Discriminant Analysis 

(LDA), also called canonical analysis (CA) [21], which can be used to optimize the  

posture class separability of different activity classes and improve the classification 

performance. The features are obtained through maximizing between-class and 

minimizing within-class variations. Here we call this approach canonical space 

transformation (CST). To benefit from these two transforms, combining EST based on 

PCA and CST based on CA. Therefore, our approach reduces the data dimensionality 

and optimizes the posture class separability of different activity classes.  
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Image data in high-dimensional space are converted into low-dimensional 

eigenspace using EST. Then, the obtained vector is further projected to a smaller 

canonical space using CST. Action Recognition is accomplished in the canonical 

space. 

Assume that there are c training classes to be learned. Each class represents a 

specific posture, which assumes of testers various forms existing in the training image 

data. i,jx′  is the j-th image in class i, and Ni is the number of images in the i-th class. 

The total number of images in training set is cT NNNN +++= 21 . This training set 

can be written as 

                    [ ]cNcN ,1,2,11,1  , , , , , , 1 xxxx ′′′′                      (2.1) 

where each ji,x′  is an image with n pixels. 

At first, the intensity of each sample image is normalized by 

                                 .
,

,
,

ji

ji
ji x

xx
′
′

=                        (2.2) 

Then, the mean pixel value for the training set is given by 

                              .1
1 1

,x ∑∑
= =

=
c

i

N

j
ji

T

i

N
xm                    (2.3) 

The training set can be rewritten as an TNn×  matrix X. And each image ji,x  forms 

a column of X, that is 

                 [ ].  , , , , x,x,1x1,1 1
mxmxmxX −−−=

cNcN             (2.4) 
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2.1.1 Eigenspace Transformation (EST) 

 

Basically EST is widely used to reduce the dimensionality of an input space by 

mapping the data from a correlated high-dimensional space to an uncorrelated 

low-dimensional space while maintaining the minimum mean-square error to avoid 

information loss. EST uses the eigenvalues and eigenvectors generated by the data 

covariance matrix to retain the original data coordinates along the directions of 

maximal variance sequentially. 

If the rank of the matrix XX T  is K, then K nonzero eigenvalues of 

XX T , Kλλλ ,  ,  , 21  , and their associated eigenvectors, Keee  , , , 21  , satisfy the 

fundamental relationship 

                          2 1         ,  K,,,iiii ==λ eRe                   (2.5) 

where TXXR =  and R is a square, symmetric nn×  matrix. In order to solve    

Eq. (2.5), we need to calculate the eigenvalues and eigenvectors of the nn×  matrix 

TXX . But the dimensionality of TXX  is the image size, it is usually too large to be 

computed easily. Based on singular value decomposition, we can get the eigenvalues 

and eigenvectors by computing the matrix R~  instead, that is 

 

                      T           :  =R X X X data matrix                  (2.6) 

 

in which the matrix size of R~  is TT NN ×  which is much smaller than nn×  of R. 

Then the matrix R~  still has K nonzero eigenvalues K
~,,~,~ λλλ 21  and K associated 

eigenvectors K
~,,~,~ eee 21  which are related to those in R by 
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( )





λ=

λ=λ
−

iii

ii

eXe ~~ 

~ 

2
1      K,,,i 21   =            (2.7) 

These K eigenvectors are used as an orthogonal basis to span a new vector space. 

Each image can be projected to a point in this K-dimensional space. Based on the 

theory of PCA, each image can be approximated by taking only the largest 

eigenvalues kλλλ ≥≥≥ 21 , Kk ≤ , and their associated eigenvectors 

keee  , , , 21  . This partial set of k eigenvectors spans an eigenspace in which ji ,y  are 

the points that are the projections of the original images j,ix  by the equation 

 [ ]
T

, 1 2 , ,  , ,         1, 2,...,   ;  1, 2,...,i j k i j ci c j N= = =y e e e x  (2.8) 

We called this matrix [ ]T21 ,,, keee   the eigenspace transformation matrix. After 

this transformation, each image ji,x can be approximated by the linear combination of 

these k eigenvectors and ji,y  is a one-dimensional vector with k elements which are 

their associated coefficients. 

 

2.1.2 Canonical Space Transformation (CST) 

 

Based on canonical analysis in [22], we suppose that { }cφφφ ,,, 21   represents 

the classes of transformed vectors by eigenspace transformation and ji,y  is the j-th 

vector in class i. The mean vector of entire set can be written as 

                 ,
1    1,  2, , ;  1,  2, ,y i j i

i jT

i c j N
N

= = =∑∑m y            (2.9) 
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The mean vector of the i-th class can be presented by 

                         .1
Φ

,∑
∈

=
ii,j

ji
i

i
N y

ym                           (2.10) 

Let Sw denote the within-class matrix and Sb denote the between-class matrix, 

then 

 
( )( )

( )( )∑

∑ ∑

=

= ∈

−−=

−−=

c

i
yiyii

T

c

i
ijiiji

T

N
N

N
iji

1

T

1 φ

T
,,

  1

1

,

mmmmS

mymyS
y

b

w

  

where Sw  represents the mean of within-class vectors distance and Sb  represents the 

mean of between-class distance vectors distance. The objective is to minimize Sw  and 

maximize Sb  simultaneously, which is known as the generalized Fisher linear 

discriminant function and is given by 

                          ( ) .T

T

WSW
WSWWJ

w

b=                        (2.11) 

The ratio of variances in the new space is maximized by the selection of feature 

transformation W if 

                                .0=
∂
∂
W
J                          (2.12) 

Suppose that W* is the optimal solution where the column vector *
iw  is a 

generated eigenvector corresponding to the i-th largest eigenvalues iλ . According to 

the theory presented in [22], we can solve Eq. (2.12) as follows 

                              * *.i i iλ=S w S wb w                       (2.13) 
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After solving (2.11), we will obtain c–1 nonzero eigenvalues and their corresponding 

eigenvectors [ ]121 v,,v,v −c  that create another orthogonal basis and span a 

(c–1)-dimensional canonical space. By using these bases, each point in eigenspace 

can be projected to another point in canonical space by 

                       [ ] jicji ,
T

121,  ,,, yvvvz −=                      (2.14) 

where ji,z  represents the new point and the orthogonal basis [ ] T
121  ,,, −cvvv   is 

called the canonical space transformation matrix. By merging equation (2.8) and 

(2.14), each image can be projected into a point in the new (c－1)-dimensional space 

by 

                             i,jj,i x Hz = .                        (2.15) 

in which H [ ] [ ] . ,,, ,,, T
21

T
121 kc eeevvv  −=  
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2.2 The HSV color space 

The HSV (hue, saturation and value) color space corresponds closely to the 

human perception of color. Conceptually, the HSV color space is a cone as shown in 

Fig. 2.1. Viewed from the circular side of the cone, the hues are represented by the 

angle of each color in the cone relative to the 0o line, which is traditionally assigned to 

be red. The saturation is represent as the distance from the center of the circle. Highly 

saturation color are on the outer edge of the cone, whereas gray tones (which have no 

saturation) are at the very center. The value is determined by the colors vertical 

position in the cone. At the point end of the cone, there is no brightness, so all colors 

are blacks. At the fat end of the cone are the brightness colors. 

 

 

Fig. 2.1 The HSV Cone 
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The formula of RGB transfers to HSV is defined as below: 
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maxV =                                          (2.16) 

 

where max =max( BGR ,, ) and min =min( BGR ,, ). 

The hue parameter is the value which represents color information without 

brightness. Therefore, the hue is not affected by change of the illumination brightness 

and direction. Although hue is the most useful attribute, there are three problems in 

using hue attribute for color segmentation: 1) hue is meaningless when the intensity 

value is very low, 2) hue is unstable when the saturation is very low, and 3) saturation 

is meaningless when the intensity value is very low [18]. Accordingly, Ohba et al. [23] 

use three criteria (intensity value, saturation, and hue) to obtain the hue value reliably. 
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 Intensity Threshold Value: 

If tV V< , then 0H = , where V , tV , and H are an intensity value, the 

intensity threshold value, and a hue value, respectively. If measured color is not 

bright enough, the color is discarded. Then, the hue value is set to a 

predetermined value, i.e., 0. 

 Saturation Threshold Value: 

If tS S< , then 0H = , where S , tS , and H are an saturation value, the 

saturation threshold value, and a hue value, respectively. Using this equation, 

measured color close to gray is discarded in the image. 

 Hue Threshold Value: 

If tHH <<0  or, ππ 22 <<− HHt  then 0H = . The range of hue 

value is from 0 to 2π , and it has discontinuity at 0 and 2π . We use the phase 

threshold value tP∆  to avoid the discontinuity effect. 
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Chapter 3 Human Activity Recognition System 
 

The first step of human activity recognition system is foreground subject 

extraction. We need to construct a background model. There are many well-known 

methods to build background models. The most common one is that applying frame 

difference with a threshold. W4 [2] is such a famous example with some modifications. 

It records the maximum and minimum grayscale values and the maximum inter-frame 

difference of each pixel in a background video. Then each pixel in the image frames 

subtracts the maximum and minimum grayscale values. If the pixel’s absolute value 

of the subtraction operation is larger than the maximum inter-frame difference, the 

pixel is classified as the foreground. We cannot detect reliably those foreground pixel 

whose luminance component close to background pixel. In order to solve this problem, 

we build another background model in the HSV color space. The HSV color space 

corresponds closely to the human perception of color. We can have the luminance 

information and the chromatic information simultaneously. Hue is unreliable in some 

condition, so we use the three criteria (intensity value, saturation, and hue) described 

in Chapter 2 to obtain the hue value reliably. 

 

3.1  Object Extraction 
 

3.1.1 Background Model 

 

A. Grayscale Value Background Model 

In the grayscale value background model, each pixel of background scene is 
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characterized by three statistics: minimum grayscale value ),( yxn gray , maximum 

grayscale value ),( yxmgray  and maximum inter-frame difference ),( yxd gray  of a 

background video. Because these three values are statistical, we need a background 

video without any moving objects, for background model training. Let I be an image 

frame sequence and contains N consecutive images. ),( yxI gray
i  is the grayscale value 

of a pixel which is located at ),( yx  in the i-th frame of I. The grayscale value for 

background model, )],(),,(),,([ yxdyxnyxm graygraygray , of a pixel is obtained by 
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where . , ... 2, ,1 Ni =  

 

 

B. HSV Color Space Background Model 

We build another background model with the minimum value 

([ ( , ), ( , ), ( , )]H S Vn x y n x y n x y ) and maximum value ([ ( , ), ( , ), ( , )]H S Vm x y m x y m x y ) in 

each HSV domain. Then, we also record the inter-frame ratio in the brightness 

information and the inter-frame different in the chromatic information. Similarly, we 

use the same background video to build another background model. Suppose the 

observed image frame sequence that contains N consecutive images. ( ),H
iI x y  is the 

pixel’s hue value at ( )yx,  of the i-th image frame. ( ),S
iI x y  is the pixel’s saturation 

value at ( )yx,  of the i-th image frame. ( ),V
iI x y  is the pixel’s brightness value at 

( )yx,  of the i-th image frame. The background model of a pixel is obtained by 
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where Ni  ..., ,2 ,1=  

 

 

3.1.2  Foreground Object Extraction 

 

Fig. 3.1 shows the framework we apply to foreground subject extraction. Our 

framework of foreground subject extraction is composed of four components. The 

first component is foreground subject extraction in the grayscale value and the HSV 

color space background models. The second component is the shadow suppression. 

The third component is the object segmentation. And the finally component is the 

foreground image compensation to recover the foreground pixels those are wrongly 
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classified to the background. 

 

 
Fig. 3.1 The framework we apply to foreground subject extraction. 

 

Foreground objects can be segmented from every frame of the video stream. Each 

pixel of the video frame is classified to either a background or a foreground pixel by 

the difference between the background model and a captured image frame. First, we 

utilize the maximum grayscale value ( )yxmgray  , , minimum grayscale value ( )yxn  ,  

and maximum inter-frame difference ( )yxd gray  ,  of the grayscale value background 
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model to segment a foreground by 

 









−>

+<

=
otherwise          ,255

)),((),(   and            

   )),((),( if      ,0

),(1 µ

µ

kyxnyxI
kyxmyxI

yxI grayt
i

grayt
i

foreground                 (3.5)   

where ),( yxI t
i  is the intensity of a pixel which is located at ( )yx, , ),(1 yxI foreground  

is the gray level of a pixel in binary image, µ  is the median of all ( )yxd gray  , , and k 

is a threshold. Threshold k is determined by experiments according to different 

environments. The value of k affects the amount of information retained in binary 

image ),(1 yxI foreground . 

On the other hand, we utilize the maximum value ( ),  Vm x y , minimum value 

( ),  Vn x y  and maximum inter-frame value ratio ( ),  Vd x y  of the HSV color space 

background model to segment the foreground pixel by 

 









<

<

=
otherwise       ,255

),(),(/),(or              

),(),(/),( if           ,0

),(2 yxdkyxnyxI
yxdkyxmyxI

yxI V
V

VV
i

V
V

VV
i

foreground              (3.6) 

 

where ( ),  V
iI x y is the intensity of a pixel which is located at ( )yx, , ),(2 yxI foreground  

is the gray level of a pixel in a binary image, Vk  is a threshold, determined by light 

sufficiency of the scene. Vk  will be reduced for in-sufficient light condition and 

increased otherwise. 
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3.1.3 Shadow Suppression 

 

The pixels of the moving shadows are easily detected as the foreground pixel in 

normal condition. Because the shadow pixels and the object pixels share the important 

visual feature: motion model. For this reason, the moving shadows cause object 

merging and object shape distortion. Therefore, we need to remove the shadow by 

using the shadow filter. We assume that the observed intensity of shadow pixels is 

directly proportional to incident light. Consequently, shadowed pixels are scaled 

versions (darker) of corresponding pixels in the background model [24]. 

In the first place, we build the shadow filter in the grayscale value. Let ),( yxB  

be the background image formed by temporal median filtering, and ),( yxI  be an 

image of the video sequence. For each pixel ),( yx  belonging to the foreground, 

consider a 33× template xyT  such that ),(),( nymxInmTxy ++= , for 

11 ,11 ≤≤−≤≤− nm (i.e. xyT  corresponds to a neighborhood of pixel ),( yx ). Then, 

the NCC between template xyT  and image B at pixel ),( yx  is given by: 
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If a pixel ),( yx  is in a shadowed region, the NCC in a neighboring region xyT  

should be large, and the energy 
xyTE  of this region should be lower than the energy 

),( yxEB  of the corresponding region in the background images. There, we get  
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 otherwise     ,foreground

),( and ),(          shadow,
),(1

yxEELyxNCC
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where ),(1 yxS  is the binary image, and nccL  is a fixed threshold. If nccL  is low, 

several foreground pixels may be misclassified as shadow pixels. On the other hand, 

selecting a large value of nccL , then the shadow pixels may not be detected.  

We know that the shadow pixels have similar chromaticity but lower brightness 

than the background model. Therefore, we can detect the shadow in the HSV color 

space. We analyze the points which are possible moving object that are detected 

above. Building another shadow filter 2S  for each ( , )x y  point as follows: 
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where ( , )H
iI x y , ( , )S

iI x y , and ( ),  V
iI x y  are respectively the HSV channel of a pixel 

located at ( )yx, , and ),(2 yxS  is one of the shadow filter to class the pixel in the 

moving shadow. Values Sk  and Hk  are selected threshold values that used to 

measure the similarities of the hue and saturation between the background image and 

the current observed image.  
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We extract the foreground objects from the two background models. Setting a 

hard threshold for each background model, we obtain the foreground objects which 

have less noise, but missing some foreground objects. Therefore, using the union is 

better than the intersection. Because of using the union can increase the foreground 

with less noise. Finally, the foreground subject is defined as: 

 

                    ),(),(),( 21 yxSyxSyxI foreground ∨=                (3.11) 

 

 

3.1.4 Object Segmentation 

 

According to the binary image foregroundI  segmented by above, we extract the 

region of foreground object as minimum as possible. Foreground region extraction 

can use a simply method by setting a threshold on the histograms in X-axis and Y-axis. 

Fig. 3.2 shows an example of foreground region extraction. We utilize the binary 

image that the binary image is projected on X-axis and Y-axis. The region we interest 

in that has higher counts in the histogram. We obtain the boundary coordinates x1, x2 

of X-axis and y1, y2 of Y-axis from the projection histogram. We can use these 

boundary coordinates as corners of a rectangle to extract foreground region. 

 

 

3.1.5 Foreground Image Compensation 

It is difficult to detect all the foreground pixels and remove all the shadows in the 

same time. When we want to remove shadow pixels, some foreground information 
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will be lost and that makes the foreground image be broken. In order to solve the 

problem, we will repair the foreground image by opening filter and closing filter. 

 

After the four components, we extract the foreground objects. The rectangular 

image which contain foreground objects will be normalized to 96128× . Fig. 3.3 is 

the extracted foreground region. 
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Fig. 3.2 The binary image is projected on X-axis and Y-axis. 
 

 

 

 
 

Fig. 3.3 The binary image of extracted foreground region. 
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3.2  Background Update 
 

If we move indoor facilities, they will be detected as foreground pixels and the 

activity recognition will be misclassified. Therefore, we have to update background 

models in order to avoid above state occurring. Background models will be updated if 

the video does not vary for a long time and there is nobody in the scene. By Eq. (3.12), 

we calculate how many times the binary values are unchanged. 
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where ),( yxI foreground
t  is the gray level of a pixel in binary image and it is located at 

),( yx . Value ),( yxupdate  is a record of how many times ),( yxI t
foreground  remains 

unchanged. 

 

 By skin color detection, we can discriminate that there are someone or not. First, 

the input image is transfer to the normalized RGB color space by: 

 

BGR
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=                         (3.13) 

BGR
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=                         (3.14) 

 

According to Soriano and Martinkauppi [25], the boundary of skin tone in the r-g 

plane is defined as follow: 
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1452.00743.13767.1)( 2 ++−= rrrfupper              (3.15) 

1766.05601.07760.0)( 2 ++−= rrrflower              (3.16) 

 

If a pixel satisfies the following four conditions, it will be labeled as skin pixel. 

Therefore, we know there is a person or not. 
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3.3  Down-sampling the Video Stream 
 

Physical constraints on the architecture of human bodies’ induce rhythmic and 

repetitive patterns of motion limited within a certain frequency. Because cameras 

usually capture image frames in high frequency, i.e., 30 frames /sec. There is almost 

no difference between two consecutive image frames for a normal recording of 30 

frames per second. Hence, we can down-sample the video frame instead of using all 

the 30 frames captured in a second. Down-sampling can also reduce the intensive 

computation and memory load. It is difficult to select the key posture as a result of 

different actions with different cycles. 

 The action cycle is defined as backing to repeat the same attitude time. In our 

daily life, some of the most universal and frequently performed actions are walking, 

jog and running. According to the statistics shown in KTH datasets, the mean of the 

walking cycle is 1.1s, jog cycle is 0.86s and running cycle is 0.67s. We observed 

running is short-period and walking is long-period. Fig. 3.4 is the walking video 

sequences. Fig. 3.5 is the jog video sequences, and Fig. 3.6 is the running video 

sequences. 

 

 

Fig. 3.4 The walking video sequences. 

 

 

Fig. 3.5 The jog video sequences. 
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Fig. 3.6 The running video sequences. 

 

In our research, we compare using the same down-sampling rate with using the 

different down-sampling rate for different actions. Because of utilizing the 5:1 

down-sampling rate for short-period actions, the key postures may be the same that 

cannot show the short-period action. Therefore, we will see whether down-sampling 

rate affects the human action recognition or not. The first method, we utilize 5:1 

down-sampling rate for all actions to select the essential template image. The second 

method, we utilize 5:1 down-sampling rate for walking, 3:1 down-sampling rate for 

jog and 2:1 down-sampling rate for running to select the essential template image. Fig. 

3.7 shows using 5:1 down-sampling rate to select the essential template images. 

 

t1 t2 t3 t4 t5 t6

t

template n1 template n2

 

Fig. 3.7 Using 5:1 down-sampling rate to select the essential template images. 

 

These essential templates are transformed to a new space by eigenspace 

transformation (EST) and canonical space transformation (CST). The approximation 

will lose slight information of image with little differences, but it can decrease 

massive data dimensions. However, two similar image frames will converge to two 
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near points after eigenspace and canonical space transformation. The images of 

similar postures done by difference people also barely converge to one point. 

Consequently, we select only essential templates rather than use all sequences for 

human activity recognition. 

 Combining both EST and CST, each image frame is transformed to a 

(c–1)-dimensional vector [26]. Assume that there are n training models and c clusters 

in the system. Therefore, we have Nt templates, where Nt is equal to n multiplied by c. 

Let ji,g  be a vector of template image of the j-th training model and the i-th category 

and ji,t  be the transformed vector of ji,g . ji,t  is computed by 

 

njcijiji  , ,2 ,1; , ,2 ,1,,,  ==⋅= gHt              (3.21) 

 

where H denotes the transformation matrix which combine EST with CST and n is the 

total number of posture images in the i-th cluster. ji,t  is a (c–1)-dimensional vector 

and each dimension is supposed to be independent. Hence, ji,t  is rewritten as 
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The transformation of each training model’s templates is treated as a mean vector. 

That is, 
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where i is the number of template categories.  

The standard deviation vector of the m-th dimension is computed by 
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3.4  Construction of Fuzzy Rules from Video Stream 
 

For human activity classification, temporal relationships of postures in video 

sequence are important information. Human’s actions may have similar postures in 

two different activity sequences. Therefore, only one image frame is utilized to 

classify the action that is prone to wrong. For example, the actions of “jumping” and 

“crouching” both have the same postures called common states as shown in Fig. 3.8. 

Besides, the posture sequence of each activity is dissimilar in different people. 

 

An image sequence of
the activity “Jumping”

An image sequence of
the activity “Crouching”

Common states

 

Fig. 3.8 Common states of two different activities. 

 

Hence, we propose a method which not only combines temporal sequence 

information for recognition but also is tolerant to variation of actions done by 

different people. We utilize the fuzzy rule-base approach to design our system. The 

fuzzy rule-base approach also has been proposed in gesture recognition in [19]. 
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We use the membership degree to represent the feature’s possibility of each 

cluster. We choose the Gaussian type membership function to represent the key 

posture’s features, because the Gaussian type membership function can reflect the 

similarity of the input feature vector to a key posture template vector.  

Firstly, when the k-th training image frame xk is inputted, the feature vector ak is 

extracted by 

 

                     . kk xHa =                               (3.25) 

 

where H denotes the transformation matrix and ak can be rewritten as 

 

                     [ ] . ,, , T 121 −= c
kkkk aaa a                         (3.26) 

 

If we assume that the dimensions of the feature vectors are independent, then we 

can compute the similarity between the training vector ak and each template vector. 

Let Σ denote the covariance matrix of all essential template vectors and Ci denote the 

i-th class of essential templates. The membership function is given by 
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where j is the training model number, kir ,  denotes the grade of membership function 

in category i of the k-th image frame and σm is the m-th dimensional variance of the 

covariance matrix. After that we can obtain which category the image belongs to by 
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kik rp ,i
 max arg=                          (3.28) 

 

We obtain which category the image belongs to, but that is a single image. 

Recognizing the human action is using three consecutive posture sequences instead of 

a single posture. Therefore, we combine three consecutive posture sequences to a 

group (I1, I2, I3) and transfer the group to the feature vector (a1, a2, a3). Assume we 

have c categories. There are c3 combinations of the feature vector. By Eq. (3.28), the 

feature vector (a1, a2, a3) is represented to (p1, p2, p3). 

In [18], fuzzy rules are generated by learning from examples. The generated 

rules are the follow form: 

 

“IF antecedent conditions hold, THEN consequent conditions hold.” 

 

The number of antecedent conditions equals the number of features and the 

antecedent conditions are connected by “AND”. For example, an image sequence 

(Image 1, Image2, Image3) with its category is D1. We express that in vector format. 

Eq. (3.29) is showing the vector format. 

 

[ ]1321 ;,, DPPP                         (3.29) 

 

 

Suppose that Image 1, Image2 and Image 3 belong to category 1, category 2 and 

category 3 respectively. Therefore, the image sequence (Image 1, Image2, Image3) is 

transferred to (P1, P2, P3). Then, a rule is generated by the image sequence. 
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P1            P2                  P3 

          

Fig. 3.9 A fuzzy rule learned to classify action. 

 

Rule 1. IF 1I  is 1P  AND 2I  is 2P  AND 3I  is 3P , THEN the activity is D1. 

 

After the learning step of different actions, some conflicting rules may be 

generated. The conflicting rules have the same image sequence but different activity. 

Therefore, we have to choose one from a set of conflicting rules. To this end, we 

choose the rule that is supported by a maximum number of training examples. 

Furthermore, to prune redundant or inefficient fuzzy rules, if the number of examples 

supporting a rule is less than a threshold, the rule is excluded from the set of rules. 
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3.5  Classification Algorithm 
 

 To obtain the action for an input video stream, we utilize the background 

model to extract foreground objects from the image frames. Then, we use 

down-sampling rate to classify the three consecutive postures. These images will be 

obtained by the following procedures:  

 

1. Foreground subject extraction 

2. Normalization 

3. Transformation by EST and CST 

 

After these procedures and constructing the rule base, we can compute the 

similarity between current image sequences (Ik-2, Ik-1, Ik) and each rule in the rule 

base by the membership function which is given by 
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         (3.30) 

 

where Σ denote the covariance matrix of all essential template vectors, Ci denote the 

i-th class of essential templates and j is the training model number. σ is the standard 

deviation of all essential templates. kir ,  denotes the grade of membership function in 

category i of the k-th image frame. After the membership function, we obtain the 

membership degree from current image sequences.  
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For example, given a rule, “IF Ik-2 is Pn1 AND Ik-1 is Pn2 AND Ik is Pn3, THEN 

the action is Dn.” we compute the similarity degree of each image. We obtain the 

membership degrees (rk-2,n1, rk-1,n2, rk,n3) by Eq. (3.30). Then, we have to calculate the 

firing strength (FS) of the rule. The sum is used to compute the firing strength that is 

defined as follows: 

 

3,2,11,2 nknknk rrrFS ++= −−                  (3.31) 

 

Hence, we can compute the firing strength of each fuzzy rule which is in the rule 

base. Moreover, we will also investigate to the average value of maximal top-3, top-5, 

top-7, and top-9 firing strength of the rules with the same action to recognize the 

human action. Fig. 3.10 shows that take top-3 as an example, the similarity between 

three consecutive down-sampled images and each action that we average the maximal 

top-3 firing strength of the rules which have the same actions. After that, the action 

which has the highest average value of similarity is selected. Because of the major 

factors to separate the walking, jog and running is not templates but the velocity, 

therefore we include the velocity factor to recognize the human actions. We utilize the 

velocity to determine the actions and the fuzzy rules to determine the direction. 

 

 

Fig. 3.10 Utilizing the average value of maximal top-3 firing strength. 
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Chapter 4 Experimental Results 

 

In our experiment, we tested our system on videos. We took the Weizmann 

databases, KTH databases and our LAB databases. We took our LAB databases at the 

5th Engineering Building in NCTU campus. The light source is fluorescent lamp and 

stable. The background is not complex and we equip a table in the scene. The camera 

has a frame rate of thirty frames per second and image resolution is 320 240×  

pixels. 

 

 
Fig. 4.1 One of the environment in our LAB databases. 

 

 
Fig. 4.2 Another environment in our LAB databases. 
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Fig. 4.1 and Fig. 4.2 show the environment of our LAB databases. In our LAB 

databases, the person performed several actions: “walking from left to right,” 

“walking from right to left,” “bend,” “crouch,” “climbing up,” and “waving.” The 

action “climbing up” is to climb up on the table from the ground. Fig. 4.3 shows the 

examples of actions from Weizmann databases, KTH databases and our LAB 

databases. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 
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(c) 

 

Fig. 4.3 Example video sequence used in our experiments. (a) Typical video 

sequences of Weizmann. From top to bottom: walk, bend, jack, jump, side, wave1 and 

wave2, respectively. (b) Typical video sequences of KTH. From top to bottom: boxing, 

wave, walking from left to right and walking from right to left, respectively. (c) 

Typical video sequences for actions of our LAB. From top to bottom: walking from 

right to left, walking from left to right, bend, crouch, wave and climbing up, 

respectively. 
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4.1  Background Model and Object Extraction 
 

A background model is used for segmenting the foreground subject or object. In 

our system, we first record a video with no subject in environment to build the 

background models. If the grayscale value and the HSV color space background 

models are complete, we will extract the foreground pixels by using Eq. (3.5) and Eq. 

(3.6) in Section 3.1.2. 

In order to get the optimal result of object extraction, we have to adjust the 

threshold in our system. In the grayscale value and the HSV color space background 

models, we set 3.2=k  in Eq. (3.5) and 4.1=vk  in Eq. (3.6) to extract foreground 

pixels. Fig 4.4 shows an example of foreground extraction. Fig. 4.4(a) is a frame 

which obtained from background video. Fig. 4.4(b) is an image frame of the video 

stream. Fig. 4.4(c) is the result of the image frame transferred to grayscale value. Fig. 

4.4(d) is the binary image after using shadow filter, closing filter and opening filter. 

Fig. 4.4(e) is the extracted foreground region. 
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(a)                                   (b) 

 

  

(c)                                  (d) 

 

 

(e) 

 

Fig 4.4 Showing an example of foreground extraction. (a) Background image. (b) 

Input image. (c) Grayscale value image. (d) Binary image. (e) Extraction foreground 

image. 
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4.2  Fuzzy Rule Construction for Action Recognition 

 

We construct the template model and the fuzzy rule database with the training 

data. We first utilize 5:1 down-sampling rate for walking, jog and running to select 

the essential templates. On the other hand, we utilize 5:1 down-sampling rate for 

walking, 3:1 down-sampling rate for jog and 2:1 down-sampling rate for running to 

select the essential templates. Thus, compare using the same down-sampling rate with 

using the different down-sampling rate, and we will know whether down-sampling 

rate affects the human action recognition. Fig. 4.5 is an example of some templates 

that using the same down-sampling rate. Fig. 4.6 shows using the different 

down-sampling rate to select the essential templates. 

 

      

     

    

Fig. 4.5 Some essential templates use the same down-sampling rate. From top to 

bottom: walking, jog and running, respectively. 
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Fig. 4.6 Some essential templates use the different down-sampling rate. From top 

to bottom: walking, jog and running, respectively. 

 

Furthermore, we chose five kinds of essential templates for “walking from right 

to left,” “walking from left to right,” “bend,” “crouch,” “climbing up,” “waving,” 

“boxing,” “jack,” respectively; four for “side,” “wave1,” “wave2” and three for 

“jump.” There are totally 30 kinds of essential templates in Weizmann databases, 20 

kinds of essential templates in KTH databases and 30 kinds of essential templates in 

our LAB databases. Each essential template is a cluster with four similar key postures 

which are selected from four different training persons. Fig 4.7, Fig. 4.8, and Fig. 4.9 

are the examples of essential templates of respective datasets. 
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Class 17 
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Fig. 4.7 30 essential templates for Weizmann databases. 
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Fig. 4.8 20 essential templates for KTH databases. 
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Fig. 4.9 30 essential templates for our LAB databases. 
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After determining the standard deviation vectors, the corresponding training 

video frames are inputted. The relationship between each image frame and each 

template is calculated by using Eq. (3.27) in Section 3.4. We gathered three 

consecutive down-sampled images as a group in order to include temporal 

information. The interval between each of these three images is determined by the 

down-sampling rate which is the same as in template selection phase and learning 

phase. Therefore, we gathered three images from different start points to train fuzzy 

rules. Taking 5:1 down-sampling rate for examples: the first frame, the 6-th frame and 

the 11-th frame are gathered together as an input training data; the second frame, the 

7-th frame and the 12-th frame are gathered together as another input training data; 

the third frame, the 8-th frame and the 13-th frame are gathered together as another 

input training data, etc. Different start points of image frames are used for training 

fuzzy rules in our experiment, because the starting posture of testing video may not be 

the same. By utilizing different start points, the system is able to learn and then 

classify the actions at any time instant.  

The group of the three images is converted to the posture sequence which has the 

maximum summation of three membership function values in Eq. (3.27). Each 

posture sequence will the consequent action of the rule with maximal value. If the 

corresponding rule is not existent, a new rule is built in the form of IF-THEN which 

is represented in Section 3.4. 
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Table I 

Some of the Obtained Fuzzy Rule Base 

Number Image 1 Image 2 Image 3 Class 
1 P1 P1 P1 WRL 
2 P1 P1 P2 WRL 
3 P1 P1 P3 WRL 
          

30 P4 P11 P12 WLR 
          

60 P3 P13 P14 Bend 
          

80 P13 P16 P17 CROUCH 
          

91 P2 P18 P18 WAVE 
          

129 P27 P28 P10 CUP 
130 P28 P7 P7 CUP 
131 P28 P28 P10 CUP 

 

 

4.3  The Recognition Rate of Activities 
 

In order to calculate the recognition rate of activities, we use videos to test the 

human action recognition system. Each of video includes several actions in our 

experiment. Then, we input the testing video from different starting frames which is 

similar to the way for the training fuzzy rules. Namely, we recognize the video from 

the first frame, the second frame, the third frame and the fourth frame, etc. with the 

sampling intervals of five frames. Hence, there are many video databases for testing. 

The WRL is the activity “walking from right to left,” WLR is the activity “walking from 

left to right,” JRL is the activity “jog from right to left,” JLR is the activity “jog from 

left to right,” RRL is the activity “running from right to left,” RLR is the activity 
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“running from left to right,” and CUP is the activity “climbing up.” The frame based 

accuracy is the total number of correct recognition divide by the total number of 

recognitions done. The following tables show the accuracy by using the video bases. 

Fig. 4.10 shows the statistic velocity of walking, jog and running from the KTH 

dataset and we normalize the statistic result. Fig. 4.11 shows the regularization result. 

 

 

Fig. 4.10 The statistic velocity of walking, jog and running from the KTH dataset. 

 

 

Fig. 4.11 Normalizing the statistic velocity. 
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Table II 
Action Recognition Use 5:1 Down-Sampling Rate on KTH dataset. 

Input  
Output 

5:1 Down-Sampling Rate 

WRL WLR JRL JLR RRL RLR 

WRL 379 57 114 6 21 3 

WLR 34 374 10 124 7 22 

JRL 57 7 147 1 59 0 

JLR 11 33 0 109 0 65 

RRL 11 0 11 0 39 0 

RLR 7 17 0 37 1 40 

Accuracy 75.95% 76.64% 52.13% 39.35% 30.71% 30.77% 

Total frame based accuracy: 60.34% 
 
 
 

Table III 
Action Recognition Use 5:1 for Walking, 3:1 for Jog and 2:1 for Running Sampling Rate. 

Input  
Output 

Different Down-Sampling Rates 

WRL WLR JRL JLR RRL RLR 

WRL 863 94 316 11 74 6 

WLR 70 735 16 299 10 76 

JRL 65 16 231 7 95 1 

JLR 9 111 1 265 2 129 

RRL 13 4 81 0 199 2 

RLR 6 25 2 37 1 137 
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Accuracy 94.11% 74.62% 35.70% 42.81% 52.23% 39.03% 

Total frame based accuracy: 60.61% 
 
 
 

Table IV 
Action Recognition Use 5:1 for Walking, 3:1 for Jog and 2:1 for Running Sampling 

Rate with Velocity factor. 

Input  
Output 

Different Down-Sampling Rates 

WRL WLR JRL JLR RRL RLR 

WRL 708 119 194 3 26 4 

WLR 61 663 8 219 2 35 

JRL 53 11 273 3 49 3 

JLR 6 80 6 265 0 85 

RRL 5 0 60 0 179 12 

RLR 2 11 2 25 3 168 

Accuracy 84.79% 75.00% 50.28% 51.46% 69.11% 54.72% 

Total frame based accuracy: 67.48% 
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Table V 
Action Recognition Use the Maximum Firing Strength on Weizmann databases. 

Input  
Output 

Top-1 

WRL Wave2 Bend Jack Jump Side Wave1 

WRL 292 0 0 5 0 0 0 

Wave2 0 295 0 2 0 0 11 

Bend 5 0 259 3 10 0 4 

Jack 0 1 0 337 2 3 1 

Jump 0 0 0 2 185 7 4 

Side 2 0 0 1 2 163 1 

Wave1 0 8 1 7 0 0 218 

Accuracy 97.66% 97.04% 99.62% 94.40% 92.96% 94.22% 91.21% 

Total frame based accuracy: 95.52% 
 
 
 

Table VI 
Action Recognition Use the Average Value of maximal Top-3 Firing Strength on 

Weizmann databases. 

Input  
Output 

Top-3 

WRL Wave2 Bend Jack Jump Side Wave1 

WRL 295 0 0 5 0 0 0 

Wave2 0 288 0 2 0 0 0 

Bend 1 0 258 2 0 0 1 

Jack 0 1 0 337 0 0 0 

Jump 0 0 0 2 199 6 6 
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Side 3 0 0 0 0 167 0 

Wave1 0 15 2 9 0 0 232 

Accuracy 98.66% 94.74% 99.23% 94.40% 100% 96.53% 97.07% 

Total frame based accuracy: 97.00% 
 
 
 
 

Table VII 
Action Recognition Use the Average Value of maximal Top-5 Firing Strength on 

Weizmann databases. 

Input  
Output 

Top-5 

WRL Wave2 Bend Jack Jump Side Wave1 

WRL 295 0 0 5 0 0 0 

Wave2 0 289 0 2 0 0 0 

Bend 1 0 258 2 0 0 0 

Jack 0 0 0 337 0 0 0 

Jump 0 0 0 3 199 7 6 

Side 3 0 0 0 0 166 0 

Wave1 0 15 2 8 0 0 233 

Accuracy 98.66% 95.07% 99.23% 94.40% 100% 95.95% 97.49% 

Total frame based accuracy: 97.05% 
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Table VIII 
Action Recognition Use the Average Value of maximal Top-7 Firing Strength on 

Weizmann databases. 

Input  
Output 

Top-7 

WRL Wave2 Bend Jack Jump Side Wave1 

WRL 295 0 0 4 0 0 0 

Wave2 0 291 0 2 0 0 0 

Bend 1 0 258 2 0 0 0 

Jack 0 0 0 343 0 0 0 

Jump 0 0 0 2 199 8 6 

Side 3 0 0 0 0 165 0 

Wave1 0 13 2 4 0 0 233 

Accuracy 98.66% 95.72% 99.23% 96.08% 100% 95.38% 97.49% 

Total frame based accuracy: 97.43% 
 
 
 

Table IX 
Action Recognition Use the Average Value of maximal Top-9 Firing Strength on 

Weizmann databases. 

Input  
Output 

Top-9 

WRL Wave2 Bend Jack Jump Side Wave1 

WRL 295 0 0 3 0 0 0 

Wave2 0 290 0 2 0 0 0 

Bend 1 0 258 2 0 0 0 

Jack 0 0 0 342 0 0 0 
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Jump 0 0 0 4 199 8 6 

Side 3 0 0 0 0 165 0 

Wave1 0 14 2 4 0 0 233 

Accuracy 98.66% 95.39% 99.23% 95.80% 100% 95.38% 97.49% 

Total frame based accuracy: 97.32% 
 
 

Table X 
Action Recognition Use the Maximum Firing Strength on KTH databases. 

Input 
Output 

Top-1 

Boxing WLR Handwaving WRL 

Boxing 1773 2 22 1 

WLR 18 465 39 50 

Handwaving 94 2 2146 8 

WRL 7 5 19 411 

Accuracy 93.71% 98.10% 96.41% 87.45% 

               Total frame based accuracy: 94.73% 
 
 

Table XI 
Action Recognition Use the Average Value of maximal Top-3 Firing Strength on KTH databases. 

Input 
Output 

Top-3 

Boxing WLR Handwaving WRL 

Boxing 1863 3 22 0 

WLR 0 464 3 11 

Handwaving 29 1 2195 2 

WRL 0 6 6 457 

Accuracy 98.47% 97.89% 98.61% 97.23% 

               Total frame based accuracy: 98.36% 
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Table XII 

Action Recognition Use the Average Value of maximal Top-5 Firing Strength on KTH databases. 

Input 
Output 

Top-5 

Boxing WLR Handwaving WRL 

Boxing 1868 2 22 0 

WLR 0 467 1 9 

Handwaving 24 1 2201 1 

WRL 0 4 2 460 

Accuracy 98.73% 98.52% 98.88% 97.87% 

               Total frame based accuracy: 98.70% 
 
 
 
 

Table XIII 
Action Recognition Use the Average Value of maximal Top-7 Firing Strength on KTH databases. 

Input 
Output 

Top-7 

Boxing WLR Handwaving WRL 

Boxing 1872 0 22 0 

WLR 0 469 1 6 

Handwaving 20 1 2203 1 

WRL 0 4 0 463 

Accuracy 98.94% 98.95% 98.97% 98.51% 

               Total frame based accuracy: 98.91% 
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Table XIV 

Action Recognition Use the Average Value of maximal Top-9 Firing Strength on KTH databases. 

Input 
Output 

Top-9 

Boxing WLR Handwaving WRL 

Boxing 1872 0 24 0 

WLR 0 469 1 4 

Handwaving 20 0 2201 2 

WRL 0 5 0 464 

Accuracy 98.94% 98.95% 98.88% 98.72% 

               Total frame based accuracy: 98.89% 
 
 
 

Table XV 
Action Recognition Use the Maximum Firing Strength on LAB databases. 

Input  
Output 

Top-1 

WRL WLR Bend Crouch Wave CUP 

WRL 1286 14 40 0 92 0 

WLR 125 1084 0 0 85 0 

Bend 20 0 2269 0 2 82 

Crouch 0 14 2 875 118 62 

Wave 4 1 0 0 1149 3 

CUP 2 1 138 2 2 411 

Accuracy 89.49% 97.31% 92.65% 99.77% 79.35% 73.66% 

Total frame based accuracy: 89.74% 
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Table XVI 
Action Recognition Use the Average Value of maximal Top-3 Firing Strength on LAB databases. 

Input  
Output 

Top-3 

WRL WLR Bend Crouch Wave CUP 

WRL 1462 3 0 0 0 0 

WLR 82 1278 0 0 0 0 

Bend 14 0 2529 0 0 23 

Crouch 0 0 0 929 0 5 

Wave 10 20 0 0 1533 4 

CUP 0 0 17 2 0 533 

Accuracy 93.24% 98.23% 99.33% 99.79% 100% 94.34% 

Total frame based accuracy: 97.87% 
 
 
 

Table XVII 
Action Recognition Use the Average Value of maximal Top-5 Firing Strength on LAB databases. 

Input  
Output 

Top-5 

WRL WLR Bend Crouch Wave CUP 

WRL 1495 7 0 0 0 0 

WLR 43 1272 0 0 0 0 

Bend 19 0 2526 0 0 13 

Crouch 2 0 0 929 0 9 

Wave 9 20 0 0 1533 5 

CUP 0 2 20 2 0 538 
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Accuracy 95.34% 97.77% 99.21% 99.79% 100% 95.22% 

Total frame based accuracy: 98.21% 
 
 
 
 

Table XVIII 
Action Recognition Use the Average Value of maximal Top-7 Firing Strength on LAB databases. 

Input  
Output 

Top-7 

WRL WLR Bend Crouch Wave CUP 

WRL 1499 9 0 0 0 0 

WLR 30 1266 0 0 0 0 

Bend 25 0 2520 0 0 3 

Crouch 3 0 0 929 0 9 

Wave 11 23 0 0 1533 5 

CUP 0 3 26 2 0 548 

Accuracy 95.60% 97.31% 98.98% 99.79% 100% 96.99% 

Total frame based accuracy: 98.24% 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

62 

Table XIX 
Action Recognition Use the Average Value of maximal Top-9 Firing Strength on LAB databases. 

Input  
Output 

Top-9 

WRL WLR Bend Crouch Wave CUP 

WRL 1498 10 0 0 0 0 

WLR 25 1261 0 0 0 0 

Bend 28 1 2516 0 0 3 

Crouch 3 1 0 929 0 12 

Wave 14 25 0 0 1533 8 

CUP 0 3 30 2 0 542 

Accuracy 95.54% 96.93% 98.82% 99.79% 100% 95.93% 

Total frame based accuracy: 98.05% 
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Chapter 5 Conclusion 
 

In this thesis, a novel method for human action recognition was proposed. Firstly, 

a foreground subject is extracted and converted to a binary image. For better 

efficiency and separability, the binary image is transformed to a new space by 

eigenspace and canonical space transformation. After down-sampling, we gather three 

image sequences to recognize the human actions. By template matching, we can infer 

the actions from fuzzy rules. Fuzzy rules combine not only temporal sequence 

information for recognition but also the tolerant to variation of actions done by 

different people. 

Experimental results have shown that using same down-sampling rate is similar 

to using different down-sampling rate. This is because that, the three image sequences 

which selected by different down-sampling are similar. It is difficult to recognize 

actions with similar posture sequences. However, by combining the important speed 

rule base, we can improve the similar walking, jog and running action recognition by 

about 67.48%. Moreover, using the average value of maximal top-7 firing strength to 

recognize the human action is better than similar attempts. The best frame based 

accuracy is obtained by using the average value of maximal top-7 firing strength in 

Weizmann databases, KTH databases and our LAB databases. 
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