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全天候之人臉與動作辨識及其於睡著與清醒偵測 

 

學生:歐瑞賢            指導教授: 張志永博士 

 

國立交通大學電機與控制工程研究所 

 

摘要 

  

 本論文實現了一套結合人臉辨識、動作辨識與清醒或睡著判別的自動化居家

看護系統。首先的人臉與動作辨識工作，待測影像是分別藉由背景相剪法與 Haar 

疊層分類器產生。為了能抽取出更完整的前景影像，我們分別在灰階與 HSV 空間

建立背景模型。Haar 疊層分類器是一種基於特徵運算的演算法，這種演算法比

基於逐點運算的更快速。接著影像將藉由特徵空間與標準空間轉換被投影到一個

讓不同類別影像的區別性更大且維度較小的空間。 

動作與人臉辨式分別利用模糊法則推論與 FisherFace 方法來實現。為了將

時間軸上的資訊包含進來，我們結合從動作視訊 5:1 減低抽樣連續三張影像來訓

練建立動作辨識模糊法則，並用之推論動作辨識工作。在清醒判別系統中，影像

首先會藉由照度隨中心遞減公式來校正。接著利用移動估測方法來量化測試者在

睡眠中的活動程度並進一步判定他的清醒/睡著狀態。 
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ABSTRACT 

 

In this thesis, we implement an automatic home health care system that combines 

the face, action and sleep/awake recognition of a person in day and night. The test 

images are extracted by background subtraction embedded in an action recognition 

system and then by Haar cascade classifier for face recognition. We build two 

background models in grayscale and HSV color space to extract the foreground 

images correctly. Haar cascade classifier for face is a feature-based algorithm that 

works much faster than the pixel-based algorithm. Then, the test images are 

transformed to a new space by eigenspace and canonical space projection for better 

efficiency and separability.  

Face and action and recognition is implemented by using FisherFace method and 

fuzzy rule inference, respectively. We gather three consecutive images 5:1 

down-sampled from activity video to construct fuzzy rules inference for containing 

temporal information to recognize the action. In sleep/awake detection, the LCD NIR 

images will be rectified by using the function of illumination variation firstly. Then, 

the motion estimation is utilized to quantify the activity degree of a sleeper to 

determine one’s sleep/awake state. 
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Chapter 1  Introduction 

 

1.1 Motivation 

 

The importance of home nursing care increases with the coming of aged society 

and the trend of fewer children. Most of the home nursing care service is provided by 

professional people, such as nurse. However, the service cost is maybe expensive and 

the nurse cannot look after elderly people in 24 hours. Therefore, the home automatic 

health care system become a popular research area in recent years. The care system 

not only can record user’s information, which is a reference of diagnosis but also 

make a response in time when emergency happened. 

 

 In this thesis, we design a home health care system which includes the following: 

face and activity recognition system and video-based sleep/awake detection system in 

one’s home environment. Human activity analysis is an open problem that has been 

studied intensely within the areas of video surveillance, homeland security, and more 

recently, eldercare. In the video surveillance, human activity recognition from video 

streams has many applications such as home care system, human-machine interface, 

automatic surveillance, and smart home applications. For example, an automatic 

system will trigger an alarm condition when the automated surveillance system 

detects and recognizes suspicious or dangerous human activities. Finally, we combine 

face identification with activity recognition system to enhance its effectiveness. We 

hope that the system can recognize a person in his home and also recognize and 

record his activity in the daily living environment. 
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Our life in daytime is affected by the quality of sleep during the previous night. 

The working efficiency will be decreased when the sleep is disturbed. Sleep disorders 

also causes many different diseases. Therefore, sleep quality can be an index of 

personal health both physically and mentally. The system in this thesis can detect 

sleep/awake status of a user by video frames. Cameras are usually utilized to study 

sleep disorders in recent years because it is cheaper and less intrusive than traditional 

devices, such as [1], [2]. 

 

1.2 Face and Activity Recognition System 

 

    The first step of activity recognition system is foreground subject extraction. The 

method for subject extraction exploited in this thesis is the background subtraction. It 

is widely used for detecting moving objects from image frames of static cameras. The 

rationale of this approach is to detect the moving objects by the difference between 

the current frame and a reference frame, often called the “background model.” A 

review is given in [3] where many different approaches were proposed. In our system, 

we construct two background models for more correct subject extraction; one is based 

on grayscale value and the other is based on HSV color space. After subtracting each 

pixel value of background model from that current image frame, the resulting image is 

converted to a binary image by setting a threshold. Therefore, we can set a threshold 

in the histogram of the binary image to extract a rectangle image, which is the most 

resemble shape of a person. Then, the rectangle image is resized to the specified 

resolution for normalization.  

 

In most of video and image processing, the size of image frame is usually very 
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large and an image frame usually contains a great deal of redundancy. Hence, some 

space transformations are introduced to reduce the redundancy of an image by 

reducing the data size of the image. The first step of redundancy reduction often 

transforms an image from spatiotemporal space to another data space. The 

transformation can use fewer dimensions to approximate the original image. There are 

many well-known transformation methods such as Fourier transformation and 

Principal Component Analysis. Our transformation method combines eigenspace 

transformation and canonical space transformation which are described as follows. 

The eigenspace transformation (EST), which uses principal components analysis 

(PCA) for dimensionality reduction, generates projection directions that maximize the 

total scatter across all classes. It has been demonstrated to be a potent scheme used for 

automatic face recognition [4], [5] and action recognition [6]. The subsequent 

transformation, Canonical Space Transformation (CST) based on Canonical Analysis, 

is used to reduce data dimensionality and to optimize the class separability and 

improve the classification performance. Unfortunately, CST approach needs high 

computation efforts when the image is large. Therefore, we combine EST and CST in 

order to improve the classification performance while reducing the dimension, and 

hence each image can be projected from a high-dimensional spatiotemporal space to a  

point in a low-dimensional canonical space. 

 

Then, we group three contiguous 5:1 down-sampled images and transform them 

to three consecutive feature vector by EST and CST. The time-sequential images are 

classified to a posture sequence by using these three feature vectors. In the learning 

stage, we build a transition model in terms of three consecutive posture sequences 

which is the category symbol of the posture template. For human action recognition, 

the model that best matches the observed posture sequence is chosen as the 
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recognized action category.  

 

We propose a fuzzy rule-base approach for human activity recognition, in which 

we employ the fuzzy rule based learning of Wang and Mendel [7] for action 

recognition. In our activity recognition system, activity rule base is represented in the 

form of fuzzy IF-THEN rules, extracted from the posture sequences of the training 

data of activity video. Each IF-THEN rule is fuzzified by employing an innovative 

membership function in order to represent the degree of the similarity between a 

three-posture pattern and the corresponding antecedent part of action type. When our 

system classifies an unknown action, it will match the three consecutive sampled 

images of the video frames by each fuzzy rule learned before. The rule with the 

largest accumulated similarity measure associated with the above three consecutive 

postures is selected and then its consequent part of action type defined the current 

action type of the person. The system flowchart is depicted in Fig. 1.1. 

 

The face detection is an important step before face recognition. The purpose of 

face detection is to localize and extract the face region from the extracted foreground. 

Firstly, Haar cascade classifier of OpenCV [10] is employed to detect the face region. 

The classifier is proposed by Viola et al. [8]. Skin detection is also utilized to locate 

the face position in our system. Then we recognize face images by Eigenface and 

Fisherface method [9]. The rationale behind Eigenface and Fisherface are eigenspace 

and canonical space transformation. Finally, the class of the most similar training face 

is the system output. The system flowchart is depicted in Fig. 1.2. 
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Input frame 
image

Output          
a persom 

Face detection

EST

CST

Match 
training facial 

images

Match 
training facial 

images

Output          
a person 

Fig. 1.2 The block diagram of Eigenface and Fisherface face recognition systems.

 

 

1.3 Video-Based Sleep/Awake Detection System 

 

  Common cameras cannot capture the image with useful information in total 

darkness. In order to solve above problem, the near-infrared (NIR) cameras are 

utilized to capture the image in sleep studies. LEDs around the camera lens emit 

near-infrared light toward target objects, and then the lens collects the reflected light 
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to form the image. Capturing images from NIR cameras in total darkness not only 

contain much noise than in the lightness but also exhibit non-uniformity due to 

irregular illumination. Therefore, we must improve the image quality by reducing the 

random noise and rectifying for non-uniform illumination before recognizing 

sleep/awake status. In the next step, our system determines sleeper’s status (sleep or 

awake) in thirty seconds by calculating degrees of frame differences because it is 

proportional to human activity levels of moving in sleeping. The system flowchart is 

depicted in Fig. 1.3. 

 

The sleeping postures can also reveal useful information about sleep quality 

and/or diseases. The automatic posture classification methods are usually based on 

pressure sensor array on the bed and video image frames, and the latter is realized in 

this paper. We will use the action recognition system, which is described in chapter 

1.2, to recognize sleeper’s postures. 

 

1.4 Thesis Outline 

 

This thesis is organized as follows. In Chapter 2, we introduce our face and 

action recognition system in detail. In Chapter 3, we describe the sleep/awake 

detection system that includes 1) image rectification for non-uniform illumination, 2) 

sleep/awake status detection, 3) noise removal and 4) sleeping posture recognition. In 

Chapter 4, the experiment results of our system are shown. At last, we conclude this 

thesis with a discussion in Chapter 5. 

 

 



 

8 
 

 

 

 

 

 



 

9 
 

Chapter 2 Face and Action Recognition System 

 

2.1  Foreground Extraction 

 

We extract foreground subject by using background model methods. There are 

many well-known background models. Wସ is such a typical example with some 

modifications [11]. It records the maximum, minimum and maximum inter-frame 

difference grayscale of each pixel in background video frames. If the pixel’s grayscale 

is in interval between maximum and minimum grayscale with toleration, the pixel is 

classified to a foreground one. The toleration is a median of the maximum inter-frame 

difference grayscales over the entire image. The toleration is usually adjusted to 

multiple of median according to environments. We build two background models in 

grayscale and HSV domain to detect reliably foreground pixels [18]. The HSV color 

space corresponds closely to the human perception of color. 

 

2.1.1  Background Model 

 

In the grayscale value background model, each pixel of background scene is 

characterized by three statistics: minimum grayscale value ),( yxngray , maximum 

grayscale value ),( yxmgray  and maximum inter-frame difference ),( yxd gray  of a 

background video. The grayscale value background model, 

)],(),,(),,([ yxdyxnyxm graygraygray , of a pixel is obtained by 
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where I is an image frame sequence and contains N consecutive images. ),( yxI gray
i  

is the grayscale value of a pixel which is located at ),( yx  in the i-th frame of I, 

. , ... 2, ,1 Ni   

 

 Similarly we build another background model like grayscale value background 

model in each HSV dimension, hue, saturation and brightness [18]. The HSV 

background model of a pixel is obtained by 
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where  ,H
iI x y ,  ,S

iI x y  and  ,V
iI x y  are respectively intensity of each HSV 

dimension at  yx,  of the i-th image frame, . ..., ,2 ,1 Ni   Specifically, ),( yxdV  

is the inter-frame ratio instead of inter-frame different in the brightness information. 

 

 

2.1.2  Extraction of Foreground Object 

 

Foreground objects can be segmented from every frame of the video stream. Each 

pixel of the video frame is classified to either a background or a foreground pixel by 

the difference between the background model and a captured image frame. First, we 

utilize the maximum grayscale value  yxmgray  , , minimum grayscale value  yxn  ,  

and maximum inter-frame difference  yxd gray  ,  of the grayscale value background 

model to segment a foreground by 
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where ),( yxI t
i  is the intensity of a pixel which is located at  yx, , ),(1 yxI foreground  

is the gray level of a pixel in binary image,   is the median of all  yxd gray  ,  in the 

entire image, and k is a threshold. Threshold k is determined by experiments 

according to difference environments. 

 

 In other hand, we utilize the maximum value  ,  Vm x y , the minimum value 

 ,  Vn x y  and maximum inter-frame value ratio  ,  Vd x y  of the HSV color space 

background model to segment the foreground pixel by 

 





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otherwise       ,255
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where  ,  V
iI x y is the intensity of a pixel which is located at  yx, , ),(2 yxI foreground  

is the gray level of a pixel in a binary image, Vk  is a threshold, determined by light 

sufficiency of the scene. Vk  will be reduced for in-sufficient light condition and 

increased otherwise. 

 

2.1.3  Shadow suppression 

 

 The shadows of the object are easily classified as foreground pixels in normal 

condition. The situation causes object merging and object shape distortion in the 

binary foreground image. Therefore, we need to remove the shadow by using a 

shadow filter. The rationale behind the filter is that shadows have similar chromaticity, 
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but lower brightness than the background model. The shadows filter in the HSV color 

space is intuitively designed as follows: 
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We analyze only points belonging to possible moving object that are detected in the 

former step. where ( , )H
iI x y , ( , )S

iI x y , and  ,  V
iI x y  are respectively the HSV 

channel of a pixel located at  yx, , and ),(1 yxS  is the result of foreground 

extraction in HSV domain. 

 

 In the grayscale domain, we utilize the estimate of Normalized Cross-Correlation 

(NCC) [12] to quantify the similarity between the background image and an image of 

the video sequence. The NCC estimate method is described as follows. Let ),( yxB  

be the background image formed by temporal median filtering, and ),( yxI  be an 

image of the video sequence. For each pixel ),( yx  belonging to the foreground, 

consider a 33 template xyT  such that ),(),( nymxInmTxy  , for 

11  ,11  nm  (i.e. xyT  corresponds to a neighborhood of pixel ),( yx ). 

Then, the NCC between template xyT  and image B at pixel ),( yx  is given by: 

 

 
),(

),(
),(

xyTB EyxE

yxER
yxNCC                       (2.8) 

where 



 

14 
 







 

 

 







1

1

1

1

2

1

1

1

1

2

1

1

1

1

),(       

),( ),(

),(),(),(

n m
xyT

n m
B

n m
xy

nmTE

nymxByxE

nmTnymxByxER

xy

             (2.9) 

 

If a pixel ),( yx  is in a shadowed region, the NCC should be large (close to one), and 

the energy 
xyTE  of this region should be lower than the energy ),( yxEB  of the 

corresponding region in the background images. There, we get  

 

        




 


 otherwise     ,foreground

),( and ),(          shadow,
),(2

yxEELyxNCC
yxS

BTncc xy       (2.10) 

 

where ),(2 yxS  is the result of foreground extraction in grayscale domain, and nccL  

is a fixed threshold. If nccL  is low, several foreground pixels corresponding to 

moving objects may be classified as shadow pixels. Otherwise, choosing a large value 

of nccL , then the actual shadow pixels may not be detected. Finally, the foreground 

subject is defined as: 

 

                    ),(),(),( 21 yxSyxSyxI foreground                (2.11) 

 

2.1.4  Object Segmentation 

 

According to the binary image foregroundI  segmented by above, we extract the 
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region of foreground object to minimize the image size. Foreground region extraction 

can be accomplished by simply introducing a threshold on the histograms in X and Y 

direction. Fig. 2.1 shows an example of foreground region extraction. We utilize the 

binary image and project it to X and Y directions. The interested section has higher 

counts in the histogram. We obtain the boundary coordinates x1, x2 of X axis and y1, y2 

of Y axis from the projection histogram. We can use these boundary coordinates as 

four corners of a rectangle to extract foreground region and the size of this rectangle 

is adjusted to 12896  . Fig. 2.2 is the extracted foreground region. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Histogram of binary image projection in X and Y direction. 

 

 

 

 

Fig. 2.2 The binary image of extracted foreground region. 
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2.2  Face Extraction 

 

2.2.1  Haar Cascade Classifier 

 

 We use the classifier that is proposed by Viola et al. [8] to detect face regions. 

The classifier is based on the value of simple features. The feature-based algorithm 

works much faster than the pixel-based algorithm. The algorithm utilizes three kinds 

of features, two-rectangle feature, three-rectangle feature and four-rectangle feature 

to classify facial region and not facial region (see Fig. 2.3). The sum of the pixels 

which lie within the white rectangles is subtracted from the one within the gray 

rectangles, and then the value is considered as a feature. 

 

 

Fig. 2.3  Rectangle features shown relative to the enclosing detection widow 

 

  The cost of calculation of rectangle features can be reduced by using the integral 

image. The integral image intensity at location (x,y) is the sum of the pixels above and 

to the left of (x,y), the mathematical description as follows: 
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



yyxx

xiyxii
 ,

)y ,() ,(  
(2.12)

 
 

where ) ,( yxii   is the integral image and ) y ,( xi   is the original image (see Fig. 

2.4). 

 

 

Fig. 2.4  Sum of all pixels marked is the integral image intensity at (x,y) 

 

The integral image can be computed in just one pass over the original image by using 

the following pair of recurrences: 

 

) ,()1 ,() ,( yxiyxsyxs   (2.13)

) ,()1 ,() ,( yxsyxiiyxii   (2.14)

 

where ) ,( yxs   is the cumulative row sum, 0)1 ,( xs   and 0) ,1(  yii . Any 

rectangular sum can be computed in four array references (see Fig. 2.5). The sum of 

pixels in rectangle A is the integral image intensity at location 1. The sum of A+B is at 

location 2, A+C is at location 3 and A+B+C+D is at location 4. Therefore, the sum of 
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pixels in rectangle D can be computed as 4+1－(2+3). 

 

Fig. 2.5  The sum of pixels in rectangle D can be computed as 4+1－(2+3) 

 

  A variant of AdaBoost is used to select the features and train the classifier. The 

objective of the AdaBoost algorithm is to form a stronger classifier by combining a 

collection of weak classification functions. If the correct rate of a weak classifier is 

above 50%, it is a good weak classification function. Finally, the Haar cascade 

classifier is built by stringing strong classifiers for detecting face region more 

accurately. 

 

2.2.2  Skin Detection 

 

 A skin locus model is proposed by Soriano et al. [13]. They sample skin pixels 

form image in 16 conditions (4 illuminant under 4 camera calibrations) and transform 

RGB space to Normalized Color Coordinates (NCC) r-g space to reduce illumination 

brightness dependence. The NCC r-g components are obtained by 
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BGR
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





 

 

(2.15)

 

where R、G and B are three components in RGB space. The skin locus is limited by a 

pair of quadratic functions defining the upper and lower bound of the cluster. The 

maximum and minimum g for each r is utilized to find the upper and lower quadratic 

functions by using least squares estimation. The upper and lower boundary curves are 

estimated as follows: 

 

1766.05601.0776.0)( 2
lower  rrrf   (2.16)

1452.00743.13767.1)( 2
upper  rrrf   (2.17)

)(   and   )(:1R upperlower rfgrfg    (2.18)

 
Fig. 2.6 Skin locus in the NCC r-g space [13] 

 

However, the white pixel (r = g = 0.33) is within the skin locus model. To avoid that 

whitish pixels are labeled as skin, a circle of radius 0.02 is drawn around the white 
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point and pixels falling within the circle are excluded from skin model. The second 

condition is obtained by 

 

0004.0)33.0()33.0(:2R 22  grW  
(2.19)

 

Because the skin regions are not accurately extracted with conditions mentioned 

previously, we add two conditions to remove the wrong skin pixels. 

 

BGR :3R                 (2.20)

45:4R GR                                           (2.21)

 

Finally, the skin locus model is obtained as follows: 

 






otherwise.    ,0

 true,are 4R and 3R,2R,1R all if     , 1
S  

(2.22)

 

where S = 1 expresses that the pixel is in skin region. 

 

2.3 Fundamentals of Eigenspace and Canonical Space 

Transform 

 

 Egenspace transform is a linear projection that reduces dimensionality and 

maximizes the scatter of all projected data, but it is not sensitive to the class structure 

existent in the dada. In order to increase the recognition rate of various actions, 

Etemad and Chellappa [14] used linear discriminant analysis (LDA), also called 

Canonical Analysis (CA), which can be used to optimize the class separability of 
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different posture classes and improve the classification performance. If c is the 

number of class, the method will find a (c–1)-dimensional space in which the data are 

maximizing between-class and minimizing within-class variations. Here we call this 

approach Canonical Space Transformation (CST). Combining EST based on PCA 

with CST based on CA, our approach reduces the data dimensionality and optimizes 

the class separability among different classes. 

 

 Assume that there are c training classes to be learned. Each class represents a 

specific posture, which assumes of testers various forms existing in the training image 

data. i,jx  is the j-th image in class i, and Ni is the number of images in the i-th class. 

The total number of images in training set is cT NNNN  21 . This training set 

can be written as 

                ቂ
cNcN ,1,2,11,1  ,…, ,…, ,…,

1
xxxx ቃ                  (2.23) 

 

where each ji ,x  is an image with n pixels. Then, the mean pixel value for the 

training set is given by 

                      
 


c

i

N

j
ji

T

i

N 1 1
,x

1
xm                        (2.24) 

The training set can be rewritten as an TNn  matrix X by subtracting xm . And 

each image ji,x  forms a column of X, that is 

 

܆ ൌ ቂ x,x,1x1,1  ,… , ,… ,
1

mxmxmx 
cNcN ቃ             (2.25) 
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2.3.1  EigenSpace Transformation (EST) 

 

EST uses the eigenvalues and eigenvectors generated by the data covariance 

matrix to rotate the original data coordinates along the directions of maximal variance 

sequentially. If the rank of the matrix XX T  is K, then K nonzero eigenvalues of XX T ,

K ,…  ,  , 21 , and their associated eigenvectors, Keee  ,… , , 21 , satisfy the 

fundamental relationship 

                       …2 1         ,  K,,,iiii  eRe ,                  (2.26) 

where TXXR   and R is a square, symmetric nn  matrix. In order to solve    

Eq. (2.26), we need to calculate the eigenvalues and eigenvectors of the nn  matrix 

TXX . But the dimensionality of TXX  is the image size, it is usually too large to be 

computed easily. Based on singular value decomposition, we can get the eigenvalues 

and eigenvectors by computing the matrix R
~

 instead, that is 

 

                     T          :  R X X X data matrix                  (2.27) 

 

in which the matrix size of R
~

 is TT NN   which is much smaller than nn  of R. 

Then the matrix R
~

 still has K nonzero eigenvalues K ~,…,~,~
21  and K associated 

eigenvectors Ke~,…,e~,e~ 21  which are related to those in R by 

                   
 










iii

ii

eXe ~~
 

~
 

2

1      Ki ,…,2  ,1 .             (2.28) 

These K eigenvectors are used as an orthogonal basis to span a new vector space. 
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Each image can be projected to a point in this K-dimensional space. Based on the 

theory of PCA, each image can be approximated by taking only the largest 

eigenvalues ,…21 k  ,Kk   and their associated eigenvectors 

keee  , , , 21  . This partial set of k eigenvectors spans an eigenspace in which ji,y  are 

the points that are the projections of the original images j,ix  by the equation 

௜,௝ܡ ൌ ሾ܍ଵ, ,ଶ܍ … , ݅    ௜,௝ܠ ௞ሿT܍ ൌ 1,2, … , ܿ ; ݆ ൌ 1,2, … , ௖ܰ       (2.29) 

We called this matrix  T21 ,…,, keee  the eigenspace transformation matrix. After 

this transformation, each image ji,x can be approximated by the linear combination 

of these k eigenvectors and ji,y  is a vector with k elements which are their 

associated coefficients. 

 

2.3.2  Canonical Space Transformation (CST) 

 

Based on canonical analysis in [15], we suppose that  c ,,, 21   represents 

the classes of transformed vectors by eigenspace transformation and ji,y  is the j-th 

vector in class i. The mean vector of entire set can be written as 

            ,

1
  1,  2, , ;  1,  2, ,y i j i

i jT

i c j N
N

  m y           (2.30) 

 

The mean vector of the i-th class can be presented by 
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ym                         (2.31) 

Let Sw denote the within-class matrix and Sb denote the between-class matrix, 

then 
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              (2.32) 

where Sw  represents the covariance matrix of within-class vectors and Sb  represents 

the covariance matrix of between-class distance vectors. The objective is to minimize 

WSW w
T and maximize WSW b

T simultaneously, which is known as the generalized 

Fisher linear discriminant function and is given by 

                            
WSW

WSW
WJ

w

b

T

T

                       (2.33) 

The ratio of variances in the new space is maximized by the selection of feature 

transformation W if 

                                 0
 




W

J
              

(2.34) 

Suppose that W* is the optimal solution where the column vector *
iw  is a generated 

eigenvector corresponding to the i-th largest eigenvalues i . According to the theory 

[15], we can solve Eq. (2.34) as follows 
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                              * *.i i iS w S wb w                       (2.35) 

After solving (2.33), we will obtain c–1 nonzero eigenvalues and their corresponding 

eigenvectors  121 v,…,v,v c  that create another orthogonal basis and span a 

(c–1)-dimensional canonical space. By using these bases, each point in eigenspace 

can be projected to another point in canonical space by 

                         jicji ,
T

121,  ,…,, yvvvz                    (2.36) 

where ji,z  represents the new point and the orthogonal basis   T
121  ,…,, cvvv  is 

called the canonical space transformation matrix. By merging equation (2.29) and 

(2.36), each image can be projected into a point in the new (c－1)-dimensional space 

by 

                             i,jj,i x Hz  .                        (2.37) 

in which H     . ,,, ,,, T
21

T
121 kc eeevvv    

 

2.4  Activity Template Selection 

 

  Cameras usually capture image frames in high frequency (30 frames / sec), but 

human action transforms are much slower than the camera capturing speed. There are 

only few changes between two consecutive postural image frames. Therefore, we 

select some key frames, called as essential template images, from a sequence with a 

fixed interval to represent an action. We select an essential template image every 5 
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frames in this thesis and the schematic diagram is shown in Fig. 2.8. The number of 

essential template images about an action is depended on the period of the action. The 

long period action has more template images than the short period one. Template 

images of the action, “right to left walking”, are shown in Fig. 2.9. The period of the 

action is about 26 frames, so we choose 5 frames to represent the action. 

 

 

Fig. 2.7 An essential template image is selected every 5 frames. 

     

Fig. 2.8 Template images of the action, “right to left walking”. 

These essential templates are transformed to a (c－1)-dimensional vector by EST 

and CST methods. Let ji,g  be a vector of template image of the j-th training model 

and the i-th category and ji ,t  be the transformed vector of ji,g . ji ,t  is computed by 

 

njcijiji  , ,2 ,1; , ,2 ,1,,,   gHt             (2.38) 

 

where H denotes the transformation matrix combing EST and CST and n is the total 

number of posture images in the i-th cluster. ji ,t  is a (c–1)-dimensional vector and 
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each dimension is supposed to be independent. Hence, ji ,t  is rewritten as 

 

 T1
,

2
,

1
,, ,, ,  c

jijijiji ttt t                       (2.39) 

 

The transformation of each training model’s templates is treated as a mean vector. 

That is, 

 

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j
jii n 1

,

1
tμ                         (2.40) 

 

where i is the number of template categories. The standard deviation vector of the 

m-th dimension is computed by 
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where 1  ,,2 ,1  cm  . 

 

2.5  Construction of Fuzzy Rules from Video Stream 

 

Transitional relationships of postures in a temporal sequence are important 

information for human activity classification. If we only utilize one image frame to 

recognize actions, it may be not sufficient to obtain high correct rate because human’s 

actions may have similar postures in two different action sequences. For example, the 

actions of “jumping” and “crouching” both have the same postures called common 

states as shown in Fig. 2.10. 
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Fig. 2.9 Common states of two different activities. 

 

We use the fuzzy rule-base approach to solve aforesaid problem. The approach 

not only combines temporal sequence information for recognition but also is tolerant 

to variations of different people. The Gaussian type membership function is 

represented the possibility of each cluster in this thesis because the membership 

function can reflect the similarity via the first order and second order statistics of 

clusters and is differentiable. 

 

Firstly, when the k-th training image frame xk is inputted, the vector ak is 

extracted by 

                         kk xHa                             (2.42) 

 

where H denotes the transformation matrix of EST and CST. As the same as ti,j in 
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Eq.(2.39), ak can be rewritten as 

 

                         T 121  ,, ,  c
kkkk aaa a                      (2.43) 

 

If we suppose the dimensions of the feature vectors are independent, a local measure 

of similarity between the training vector and each template vectors can be computed. 

Let Σ denote the covariance matrix of all essential template vectors and Ci denote the 

i-th class of essential templates. The membership function is given by 
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              (2.44) 

 

where j is the training model number. jir ,  denotes the grade of membership function 

in category i of the k-th image frame. Besides, we can obtain which category each 

image belongs to by 

 

jikk rP ,,
i

 max arg                       (2.45) 

 

The membership function describes the probability of which one it is like most. But it 

just contains the information of a single image. Hence, we collect three images to 

form a basis for temporal information. 

 Assume we have c linguistic labels, each linguistic label represent a category of 

essential template. Each image frame can be represented by one of these c linguistic 
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labels. Here, we combine three contiguous images to a group 1 2 3( , , )I I I and the 

interval of itself and next is 5 frames. The transformation of the image group can form 

a feature vector ሺሾࢇ૚, ,૛ࢇ  ૜ሿሻ.There are c3 combinations of the feature vector. Eachࢇ

combination represents the possible transition states of the three images. We use Eqs. 

(2.44) and (2.45) to class each image frame. Hence, we can represent the feature 

vector ሺሾࢇ૚, ,૛ࢇ ૜ሿሻ by linguistic label sequenceࢇ  ),,( 321 PPP . An image sequence 

with linguistic label sequence is associated with its output of corresponding action. 

 As developed by Wang and Mendel [7], fuzzy rules can be generated by learning 

from training data. Such image sequence constitutes an input-output pair to be learned 

in the fuzzy rule base. In this setting, the generated rules are a series of associations of 

the form  

 

“IF antecedent conditions hold, THEN consequent conditions hold.” 

 

The number of antecedent conditions equals the number of features. Note that 

antecedent conditions are connected by “AND.” For example, an image sequence, its 

transformations of image 1, image 2, image 3 and belonging categories being 

concatenated as vector format, is given by 

 

 1321 ;,, DPPP                       (2.46) 
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Suppose that Image 1, Image2 and Image 3 belong to key posture 1, key posture 2 and 

key posture 3 respectively. Therefore, we assign the image sequences, whose feature 

vector is [ 1a , 2a , 3a ], to the linguistic labels Posture 1, Posture 2 and Posture 3 

respectively. Finally, according to the feature-target association implies this image 

sequence to support the rule of  

 

Rule 1.   IF the activity’s 1I  is 1
1P  AND its 2I  is 1

2P  AND its 3I  is 1
3P , 

THEN the action is D1.                                   (2.47) 

 

Sometimes conflicting rules may be generated; they have the same image 

sequence but refer to different activity. Therefore, we have to choose one from the two 

or more conflicting rules. To this end, we choose the rule that is supported by a 

maximum number of training data. Furthermore, to prune redundant or inefficient 

fuzzy rules, if the supporting actions of a rule are less than a threshold, the rule is 

excluded from defining an IF-THEN rule. 

 

 

 



 

32 
 

2.6 Classification algorithm 

 

After constructing the rule base, we can grade the input image sequence with 

each fuzzy rule by grade of membership function. First, each image s in the test image 

sequence [ 2ks , 1ks , ks ] can generate a membership function lookup table Rk (k-th 

image frame) between image s and each template image ti by using Eq.(2.44). In order 

to calculate the similarity between image sequence and each postural sequence in the 

training data base, we take out the membership function values from the table 1,2 nkr  , 

2,1 nkr   and 3,nkr  which are corresponding to the three category of linguistic labels, 

1nP , 
2nP  and 

3nP , in the rule and have been calculated by Eq. (2.45). The summation 

of 1,2 nkr  , 2,1 nkr  and 3,nkr  is the similarity between current image sequence and the 

postural sequence of this rule. We can obtain the similarity related to all fuzzy rules 

base in the same manner. Consequent condition of the rule which has the highest 

value of similarity is considered as the action at the moment. 
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Chapter 3 Video-Based Sleep/Awake Detection 

System 

 

3.1  Image Rectification for Non-uniform Illumination 

 

NIR cameras can generate better images than common cameras because LEDs 

around the lens provide the near infrared wave in total darkness environment. 

Sometimes, LEDs are too little to supply sufficiently uniform illumination for the 

scene to produce good quality NIR images. In this situation, NIR images will be better 

presented around the image center and thus usually cause serious non-uniform 

illumination problem (See Fig 3.1). The region around the center of the image is 

bright and the brightness of the pixels, will decreases gradually. If we use the NIR 

image directly to recognition sleep/awake status of a person, it may produce poor 

results. Therefore, We rectify for non-uniform illumination before recognizing 

sleep/awake status of a person. 

 

 

 

Fig. 3.1 NIR image with non-uniform illumination. 
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 We utilize the on-axis and off-axis illumination relationship that is described by 

Kang and Weiss in [16] to rectify the non-uniform illumination of  NIR image. The 

image illumination decreases across field of view in proportion with the fourth power 

of the cosine of the field angle. The function of illumination variation is derive as 

follows: 

 The illuminance on-axis (see Fig. 3.2) at the image point indicated by ݀ܣᇱ is 

 

 

Fig. 3.2 The object projection on images (a) On-axis, (b) Off-axis at entrance angle θ. 

The ellipses represent the lens for the image plane. 

 

଴ܫ
ᇱ ൌ ௅ ௌ

ሺெோሻమ                            (3.1) 
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L is the radiance of the source at ݀ܣ, i.e., the emitted flux per unit solid angle, per 

unit projected area of the source. S is the area of the pupil normal to the optical axis, 

M is the magnification (݀ܣᇱ ൌ  to the entrance ܣ݀ and R is the distance of ,(ܣଶ݀ܯ

lens. The flux Φ is related to the illuminance by the equation 

 

ᇱܫ ൌ ௗః

ௗ஺ᇲ                             (3.2) 

Now, the flux for the on-axis case (see Fig. 3.2(a)) is 

 

଴ߔ݀ ൌ ௅ ௗ஺ ௌ

ோమ                            (3.3) 

 

However, the flux for the off-axis case (see Fig. 3.2(b)) is 

 

ߔ݀ ൌ ௅ሺௗ஺ ୡ୭ୱఏሻሺௌ ୡ୭ୱఏሻ

ሺோ/ୡ୭ୱఏሻమ ൌ ܣ݀ ௅ ௌ

ோమ cosସߠ ൌ ᇱܣ݀ ௅ ௌ

ሺெோሻమ cosସ(3.4)         ߠ 

 

As a result, the illuminance at the off-axis image point will be 

 

ሻߠᇱሺܫ ൌ ଴ܫ
ᇱܿݏ݋ସ(3.5)                           ߠ 

 

If f is the effective focal length and the area ݀ܣᇱ is at image position (x, y) relative to 

the center of image, then 

 

ሻߠᇱሺܫ ൌ ଴ܫ
ᇱሺ ௙

ඥ௙మା௫మା௬మ
ሻସ ൌ ଴ܫ

ᇱ ଵ

ሺଵାሺ௥/௙ሻమሻమ ൌ ଴ܫߚ
ᇱ            (3.6) 

where ܫᇱ and ܫ଴
ᇱ can be considered as the intensity in original and rectified NIR 

images, and ݎଶ ൌ ଶݔ ൅  .ଶݕ
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3.2  Sleep/Awake Status Detection 

 

 When a person often rolls over in sleeping, we generally think that his sleep 

quality is poor. Therefore, motion estimation is used to detection sleep/awake status of 

a person in our system [19]. The current image frame is partitioned into 

non-overlapping and fixed-size rectangular blocks in this method. The size of the 

blocks called as macroblocks is often 4×4 to 16×16. The motion vector of each 

macroblock is measured by finding the closest block in the previous (or subsequent) 

video frame (called the reference frame) according to a similarity criterion (see Fig. 

3.3).  

 

 

 

Fig 3.3 The motion vector of a macroblock 

 

One of the most commonly used error measures is Mean Absolute Distortion (MAD) 

[19]. 

 

,ݔሺܦܣܯ ሻݕ ൌ ଵ

௠௡
∑ ∑ |݂ሺݔ ൅ ݅, ݕ ൅ ݆ሻ െ ݔሺ݌ ൅ ݅ ൅ ,ݔ݀ ݕ ൅ ݆ ൅ ሻ|௡ݕ݀

௝ୀଵ
௠
௜ୀଵ     (3.7) 
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where x and y are the coordinates of the upper-left pixel of the m×n macroblock in 

current frame f, dx and dy are displacements from the reference frame, and p is array 

of macroblock pixels value in the reference frame. Typically, dx and dy must fall 

within a limited search region that is usually ±8 to ±64 pixels for each macroblock. 

Motion estimation is performed by searching for the dx and dy that minimize 

MAD(x,y) over the allowed range. 

 

 However, we just want to know whether the person move in sleeping instead of 

the direction of motion (i.e., is the direction of motion a vector (0,0) ?). Therefore, we 

calculate the MAD(x,y) at dx = dy = 0 for measuring the activity degree of sleeper. If 

the value of MAD(x,y) is 0, the macroblock that corresponds to the MAD(x,y) is 

consider as a static block. Contrariwise, the macroblock is consider as a dynamic 

block. Activity degree in sleeping can be quantified as follows: 

 

ADI ሺActivity Degree Indexሻ ൌ ୢܰ୷୬               (3.8) 

 

where Ndyn is the number of dynamic blocks in a frame. The multiplier of thirty 

seconds is often a period for recording data in most sleep researches. Therefore, we 

will average every ADI in thirty seconds, and then determine sleeper’s status (sleep or 

awake) of a person by a threshold from training data. 

 

MADI ሺMean of Activity Degree Indexሻ ൌ
∑ ADI೔

ಿ
೔సభ

ே
          (3.9) 

 

where N is the number of ADI and ADI௜ is the i-th activity degree index in 30 

seconds. Sometime a person is awake, but he do not move in the view of the NIR 
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camera. Therefore, we will make the second and third judgment for more correct 

result. In the second judgment, sleeper’s status in current interval (30 seconds) is 

associated with former 9 intervals. If sleeping status of one in former 9 intervals is 

awake, sleeping status in the current interval will be awake. 

 

3.3  Noise Removal 

 

 The MAD of a static block is not 0 if the video is recorded with random noise. 

That will make static blocks be regarded as dynamic blocks. To avoiding the situation, 

we have to find the MAD range of the noise to set a threshold. When the MAD of a 

macroblock lies in the noise range, we set the MAD of the macroblock to 0. To 

determine the range of the random noise, we calculate the MAD of each block in 

frames that belonging to a background video. Because no object moves in the 

background video, the MAD can be regarded as effect of random noise. 

 Fig. 3.4 is the histogram of MAD of macroblocks in background video. The 

background video had 24 frames and each frame has 901 macroblocks (24 × 901= 

21624 macroblocks). The grayscale difference can be regard as effect of noise. We 

can find that the range of MAD interfered by noise is about 0 to 3.6 from Fig. 3.4. 
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Fig. 3.4 MAD of macroblocks in background frame 

 

3.4  Sleeping Posture Recognition 

 

 Sleeping postures can also reveal the posture likeness and sleeping quality as 

well of a person in sleeping. For example, maybe the people has a poor sleep quality 

if he often changes his sleeping posture all night. Moreover, some diseases, such as 

bedsore and obstructive sleep apnea, have a close relationship with one’s sleep 

postures. We define four kinds of sleeping postures, log, star-fish, right-foetus, 

left-foetus, (see Fig. 3.5) [17] to implement sleeping posture recognition. Sleeping 

postures will are classified by the approach in line with actions recognition system 

that is described in Chapter 2. 
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(a)                           (b) 

 

     

(c)                          (d) 

Fig. 3.5 Sleeping postures (a) log, (b) star-fish, (c) right-foetus, 

(d) left-foetus. 
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Chapter 4  Experimental Results 

 

 In our experiment, we test our system on video captured by NIR camera in bright 

and dark environments. The experimental environment is in our laboratory at the 5th 

Engineering Building in NCTU campus. The NIR camera with a lens of 6.0mm focus 

is set up at the location that is far from the object about 4 meter. This camera has a 

frame rate of 30 frame per second and image resolution is 320×240 pixel. The 

background of the experiment environment is simple and illumination of the 

environment is 524 Lux in the day (fluorescent lamps are on.) and 0.07 Lux in the 

night respectively. The scenes in bright and dark environments are shown in Fig. 4.1. 

We choose five actions: “walking from right to left,” “walking from left to right,” 

“walking straightly,” “waving” and “bending” to recognize in our system. Fig. 4.2 

shows the examples video sequence form our LAB databases. 

 

   

(a)                                   (b) 

Fig. 4.1 (a) The experiment environment in the day, (b) The experiment environment       

in the night 
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 (a) 

 

 

 

 

 

 

 

(b) 

 

Fig. 4.2 Example video sequences used in our experiments. (a) and (b) are typical 

video sequences for actions of LAB in bright and dark environments. From 

top to bottom: “walking from right to left, walking from left to right, walking 

straightly, waving and bending respectively. 

 



 

43 
 

4.1  Image Rectification Result 

 

 All frames of video captured in total dark environment must be rectified by using 

Eq. (3.6) in Section 3.1. Fig. 4.2(a) is a frame from the action recognition training 

data and it is transformed to gray level. Results of rectifying NIR images with 

different f are shown in Fig. 4.2. We can find that f = 300 is a better parameter for 

rectifying the NIR image to be a uniform illumination image. 

 

  

(a)                                (b) 

 

  

(b)                                (d) 

Fig. 4.3 Results of rectifying NIR image with different f  (a) brfore rectifying, (b) f = 

200, (c) f = 300, (d) f = 400. 
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4.2  Background Model and Foreground Object Extraction 

 

 For constructing the background model, we first record a video of pure 

background (like Fig. 4.1) about 2 second in bright and dark environments. After 

building the grayscale value and the HSV color space background models, we will 

extract the foreground pixel by using Eq. (2.5) and Eq. (2.6) in Section 2.1.2. Then we 

continue to emend the former foreground image by shadow filter. 

In order to get the optimal result of object extraction, we have to adjust some 

parameters in our system. We set 3.2k  and 0.2k  for the grayscale value 

background models and 4.1vk  and 1.1vk  for the HSV color background 

models in bright and dark environments respectively. The same parameter is used in 

bright and dark environments for shadow filter. We set 95.0nccL  in the grayscale 

value space and 3.1Hk  and 3.1sk  in the HSV color space to detect shadow 

pixels. Fig. 4.3 shows results of foreground extraction in bright and dark 

environments. 

 

  

(a)                                 (b) 
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(c)                                 (d) 

Fig. 4.4 Results of foreground extraction (a) an image frame in the bright environment, 

(b) foreground extraction from (a), (c) an image frame in the dark 

environment (d) foreground extraction from (c). 

 

 Finally, we simply introduce a threshold on the histograms in X and Y direction 

to minimize the size of foreground images, and then resize the images to 96×128 for 

normalization. That is described in Section 2.1.2. The threshold in X and Y direction 

is about 10 pixels in our experience. 

 

4.3  The Day and Night Face and Action Recognition 

 

4.3.1  Fuzzy Rule Construction 

 

 We construct the template model matrix and the fuzzy rule database with the 

training data. Firstly, we choose key posture images as essential templates from each 

action, and the number of each action is according to its period. Key posture images 

of each action for one person (one model) are shown in Fig. 4.4. We will regard each 

posture as one class. 
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(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

 

(d) 
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(e) 

Fig 4.5 Key postures of the actions (a) walking from right to left, (b) walking from 

left to right, (c) walking straightly, (d) bending, (e) waving.  

 

 Fuzzy rules are constructed in off-line situation. We gathered three images from 

different start points to train fuzzy rules. For examples: the first frame, the 6-th frame 

and 11-th frame are gathered together as an input training data; the second frame, the 

7-th frame and 12-th frame are gathered together as another input training data, etc. 

By utilizing different start points, the system is able to learn much more combinations 

of image frames and increase accuracy of fuzzy rules. 

The group of the three images is converted to the posture sequence which has the 

maximum summation of three membership function values in Eq. (2.44). Each 

posture sequence will trigger a corresponding rule one time. If the corresponding rule 

is not existent, a new rule is built in the form of IF-THEN which is represented in 

Section 2.5. 

 

4.3.2  The Recognition Rate of Actions 

 

In order to calculate the recognition rate of actions, we use off-line videos in our 

experiment. Then, we input the testing video from different starting frames which is 
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similar to the way for the training fuzzy rules. Namely, we recognize the video from 

the first frame, the second frame and the third frame, etc. Table I and Table II show 

the recognition rate in bright and dark environments respectively, four folds cross 

validation, of each action of each model. If we test these videos in Person 1, we will 

constructed the templates and fuzzy rules by used the order three persons. That is, the 

testing video was not used for constructing templates and fuzzy rules. 

In the tables, WRL is the action “walking from right to left,” WLR is the action 

“walking from left to right,” WS is the action “walking straight,” WAVE is the action 

“waving,” BEND is the action “bending.” Here, the recognition rate is the number of 

correct recognition divide by the total number of recognition for each video. 

 

Table I 

The recognition rate of each activity in the light environment 

 Person 1 Person 2 Person 3 Person 4 

WRL 93.1% (108/116) 99.1% (105/106) 92.9% (118/127) 90.3% (121/134)

WLR 95.0% (95/100) 100% (110/110) 98.4% (112/124) 96% (96/100) 

WS 100% (81/81) 88.8% (87/98) 92.3% (36/39) 94.0% (47/50) 

WAVE 100% (83/83) 95.6% (43/45) 100% (107/107) 98.1% (53/54) 

BEND 100% (48/48) 89.2% (66/74) 100% (200/200) 100% (74/74) 

Average 95.7% (1790/1870) 
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Table II 

The recognition rate of each activity in the dark environment 

 Person 1 Person 2 Person 3 Person 4 

WRL 89.5% (68/76) 90.9% (60/66) 95.5% (64/67) 93.3% (56/60) 

WLR 100% (80/80) 95.6% (43/45) 100% (66/66) 93.9% (46/49) 

WS 100% (83/83) 100% (49/49) 100% (44/44) 100% (32/32) 

WAVE 82.7% (62/75) 100% (94/94) 93.8% (45/48) 100% (55/55) 

BEND 100% (86/86) 100% (70/70) 97.6% (80/82) 94% (63/67) 

Average 96.5% (1249/1294) 

 

4.3.3  The Recognition Rate of Faces 

 

 In our face recognition experiment, we take face images of 8 persons and 9 

persons in bright and dark environments respectively to obtain the accurate rate of 

face recognition. The size of face images is 50×60 for training and testing. Firstly, the 

face images are project to eigenspace by using EST transformation. Then, we utilize 

CST transformation to project former images to FisherFace space and implement face 

recognition. The test image is compared to every training data by L2 norm to find the 

most similar one. The numbers of training and testing images are 15 and 45 for each 

person in the darkness. In the lightness, the numbers of training and testing images are 

10 and 100 for each person. Fig. 4.5 shows the curve of accumulative eigenvalues. 

Accumulative eigenvalues contain 98% information of images when the number of 

eigenvalues is about 50. Fig. 4.6 shows the correct rate of face recognition by using 

FisherFace method for different dimension in eigenspace. The best correct rate of face 

recognition in bright and dark environments are recorded in Table III and Table IV 

respectively. 
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(a) 

 

 

(b) 

Fig. 4.6 The Curves of accumulative eigenvalues (a) in bright environment (b) in dark 

environment. 
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；  

(a) 

 

 

(b) 

Fig. 4.7 The curves of face recognition rate versus dimensions of eigenspace used in 

the (a) bright environment; (b)dark environment. 
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Table III 

The correct rate of face recognition in the light environment 

  Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7 Person 8

Person 1 100 0 0 1 0 0 2 0 

Person 2 0 100 0 0 0 0 0 0 

Person 3 0 0 99 0 0 0 0 0 

Person 4 0 0 0 99 0 0 0 0 

Person 5 0 0 0 0 100 0 2 0 

Person 6 0 0 1 0 0 100 0 4 

Person 7 0 0 0 0 0 0 96 0 

Person 8 0 0 0 0 0 0 0 96 

individual 

Accuracy rate 
100% 100% 99% 99% 100% 100% 96% 96% 

The total accuracy rate is 98.7%. 

Table IV 

The correct rate of face recognition in the dark environment 

 
Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7 Person 8 Person 9

Person 1 42 0 4 0 0 0 0 5 0 

Person 2 2 44 0 0 0 0 1 1 0 

Person 3 0 1 23 2 9 2 15 0 7 

Person 4 0 0 0 27 0 0 0 0 0 

Person 5 0 0 0 0 36 0 0 0 2 

Person 6 0 0 0 0 0 43 0 0 0 

Person 7 0 0 18 0 0 0 29 0 0 

Person 8 0 0 0 0 0 0 0 39 0 

Person 9 1 0 0 16 0 0 0 0 36 

Individual 

Accuracy rate 
93.3% 97.8% 51.1% 60.0% 80.0% 95.6% 64.4% 86.7% 80.0% 

The total accuracy rate is 78.8% 

Test 
Judge 

Test 
Judge 
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4.4  Sleep/Awake Detection 

 

 In the sleep/awake detection system, the detected region is divided into hundreds 

of macroblocks if the size we choose of macroblocks is 5×5 pixels (see Fig. 4.7). 

Dimensions of the region in the rectangle with red edges are 265×85 pixels (i.e., 53×

17 = 901 macroblocks). Common sample rate of NIR camera is 30 frames per second, 

and it will waste the spaces for data if we capture image data by using the sampling 

rate. Because the human activity is not active in sleeping, we reduce the sampling rate 

to 2 frames per second for our records. 

 

 

Fig. 4.8 The region of sleep/awake detection. 

 

 Table IV show the result of sleep/awake detection. An interval represents a sleep 

or awake video of 30 seconds. The threshold of MADI is 6 that is set by training data. 

When a person is awake, our system will output 1, otherwise 0.  
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Table V 

The result of sleep/awake detection 

 Awake Sleep 

Interval MADI Judge 1 Judge 2 MADI Judge 1 Judge 2 

1 20.57 1 1 3.82 0 0 

2 6.30 1 1 2.93 0 0 

3 15.97 1 1 3.63 0 0 

4 2.82 0 1 4.68 0 0 

5 4.12 0 1 3.30 0 0 

6 43.78 1 1 3.53 0 0 

7 4.73 0 1 3.02 0 0 

8 75.52 1 1 4.77 0 0 

9 93.83 1 1 4.45 0 0 

10 3.38 0 1 4.23 0 0 

11 2.62 0 1 3.62 0 0 

12 3.28 0 1 4.00 0 0 

13 13.37 1 1 3.98 0 0 

14 2.95 0 1 3.02 0 0 

15 2.42 0 1 2.58 0 0 

16 3.75 0 1 4.37 0 0 

17 2.88 0 1 4.35 0 0 

18 2.80 0 1 3.40 0 0 

19 3.10 0 1 2.95 0 0 

20 2.75 0 1 3.47 0 0 

 

4.5  Sleeping Posture Recognition 

 

Actions recognition system is utilized to classify sleeping postures in this thesis. 

We set 0.2k  for the grayscale value background models and 1.1vk  for the 

HSV color background models. In the HSV color space, we set 95.0nccL  in the 

grayscale value space and 3.1Hk  and 3.1sk  to detect shadow pixels. Fig. 4.3 
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shows results of foreground extraction in bright and dark environments. Key posture 

images of four sleeping posture are show in Fig. 4.8. We select different postures as 

templates according to degree of shrinking feet in sleeping postures, right and left 

foetus. Table VI show the correct rate of sleeping posture. 

 

 

(a) 

 

(b) 

      

(c) 

      

(d) 

Fig. 4.9 Key postures of sleeping postures (a) log, (b) star-fish, (c) right-foetus, 

(c) left-foetus. 
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Table VI 

The recognition rate of each sleeping posture 

 Log Star-fish Right-foetus Left-foetus 

Person 1 100% (79/79) 100% (95/95) 96.1% (73/76) 98.2% (54/55)

Average 98.7% (301/305) 
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5. Conclusion 

 

In this thesis, we implement the automatic home health care system that combine 

the face, action and sleep/awake recognition of a person in day and night. The test 

images are extracted by background subtraction in action recognition system and by 

Haar cascade classifier in face recognition system. Then, the test images are 

transformed to a new space by eigenspace and canonical space projection for better 

efficiency and separability. Because actions are dynamic unlike face, we gather three 

images with fixed interval to construct fuzzy rules for containing temporal 

information. In sleep/awake detection, the NIR images will are rectified by using the 

function of illumination variation firstly. Then, the motion estimation is utilized to 

quantify the activity degree of sleepers. 

NIR images look similar to gray-level image. The NIR image has less 

information of hue and saturation components than color images. Therefore, the 

correct rate of face recognition in dark environment is much lower than in the bright 

environment. However, the correct rates of action recognition in bright and dark 

environment are not that different because information provided by NIR images is 

sufficient to extract almost complete foreground images. In the sleep/awake detection 

system, we also obtain very good by using motion estimation. In the future, it is 

necessary to find a new a new face recognition algorithm to improving the correct rate 

in darkness environment. 
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