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Chapter 1  Introduction 

 

1.1 Motivation 
Edge detection plays an important role in image processing and computer vision. 

High-level image processing tasks such as image segmentation, object recognition, 

tracking, stereo analysis, and image coding depend on the quality of the edge 

detection procedure. The performance of these tasks is therefore tremendously 

affected by the effectiveness of edge detection. In grayscale edge detection, the Canny 

edge detector [1] is well-known for its high reliability and sensitivity. It is largely due 

to its optimal weights in computing pixel’s difference, non-maximal suppression 

technique and thresholding with hysteresis make the output edge map showing 

well-connected edges. For an image, as the color information lost during grayscale 

conversion, so that when the edges of the object boundary although have different 

hues but only little change in the grayscale intensity, edges still most likely cannot be 

detected successfully. In addition, edge detection sometimes will also enhance the 

difficulty of its implementation in face of some lower-contrast images. 

    In this thesis, we propose to apply a set of generalized weighted aggregation 

algorithm to implement the edge detection method with difference for image pixels, 

and proceeding the numerical correction and update in the size of operating 

parameters along with the variation of total average accuracy for edge detection. Then, 

we extend to a set of operating parameters automatic iterative learning mechanism 

through several repeated operations. We make use of eight grayscale synthetic images 

with adding different types and rates of random noises as the input images in the 

parameters automatically learning mechanism. At last, we expect to obtain the best 

operating parameter set about the performance of edge detection for these eight  
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input images in a limited number of iterative learning.    

 

1.2  Image Edge Detection  
 

1.2.1  Image Edge 

In the view of imaging science, edge represents the collection of connected 

pixels between two different objects of an image. Because the edge can recognize the 

most obvious distinction between different geometric objects, it has become one of 

the most important features between each geometric object in one image. And edge 

detection has also become the most important pre-processing step of image signal 

processing. In the traditional studies of edge detection, the vast majority are based on 

the concept of first-order and second-order derivative. Figure 1.1 shows the diagram 

of the image edge and the first and second-order derivative of gray-level intensity; 

Figure 1.1 (b) indicates a zero-crossing point of the second derivative at the 

intersection of the horizontal zero-intensity axis and the connection of second 

derivative. The point not only indicates the location of the image edge, but also 

specifies the background intensity on both sides of the edge are often far higher or 

lower than the value on the edge.  
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(a)                           (b) 

Fig. 1.1 The diagram of image edge and the first and second-order derivative of 
gray-level intensity, (a) Two regions separated by a vertical edge; (b) The detail near 
the edge showing a gray-level profile, and the first and second derivatives of the 
profile.  

 
 
1.2.2  Binary Edge Maps 

 

    In general, we utilize the binary technique to convert any image to a 

black-and-white image in order to facilitate the human can easily identify the partition 

between the edges of objects and the background in the original image when 

proceeding the edge detection of images. However, due to the amount of data that  

need to be processed significantly reduce after converting an image to a binary image,   

it will also enhance the executing speed for other image processing tasks.     

Here we will introduce the basic operation of the binary image processing 

method:   
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    First, for any image ,I we proceed the necessary numerical or logical operation 

of edge detection work for gray-level values of each pixel ( , )I x y  and its neighbor 

pixel from left to right, top to bottom respectively, and set an empty array B  with 

same dimension of image I in advance. Then, we compare the operation value with 

the default threshold value, “T”. If the value greater than T, we will mark the 

corresponding location of pixel ( , )I x y  as a black spot which is equal to gray-level 

value “0” in the array B , indicating that the pixel belongs to an edge point; 

Otherwise, it is marked as a white spot which is equal to gray-level value “255”  

standing for that pixel ( , )I x y  is an non-edge point, such as equation 1.1. Finally, we 

can obtain a binary image clearly depicting the image edges by rendering the array B  

in image mode, as shown in Figure 1.2 (b). 

     

     
 

 0(Edge point),    if ( , )
,

255(Nonedge point),  if ( , )
I x y T

B x y
I x y T

  
             (1.1) 

 
 

 

                    
          

(a)                                (b) 
 

Fig. 1.2  The result of the gray-scale edge detection by Sobel operator [3], 

(a) The original gray-level image; (b) The binary edge map obtained by setting 

the threshold value T = 0.001.  
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Since the binary image having the characteristics containing easy to storage, 

process and identify, it has been used widely in morphology and image recognition 

processing. Morphology in Imaging Science refers specifically to the technology of 

extracting the specific components in the images, such as image segmentation, edge 

detection, thinning, skeleton extraction are the means of the Morphology.  

 
1.3  Research Method  

   
In this thesis, adopting the method proposed by Barrenechea et al. [2], our new   

edge detection method utilize generalized weighted mean aggregation algorithm to  

construct interval-valued fuzzy relations. From the weighted mean difference of the 

central pixel and its 8-neighborhood pixels in a 3x3 sliding window, the upper and 

lower interval-valued fuzzy relations can be obtained. To increase the edge detection 

accuracy, we have derived the iterative learning mechanism of the two weighting 

parameters of the mean aggregation. In the parameters learning phase, we make use of  

eight grayscale synthetic images with different types and percentages of random 

noises by the computer program as the input images of the parameters. We have used 

several edge accuracy indices, which lay different importance multiples of edge-pixel 

over non-edge-pixel accuracy, so that we can extract the image edge map more 

sensitively and reliably. Then, we update the weighting parameters of the mean to 

increase the edge accuracy index of the edge maps of eight images by the steepest 

descent method cast in discrete formulation. After the learning procedure, we can   

obtain the best weighting parameters of the mean for the edge detection scheme of all 

input images through several repeated learning. In our experiments, we have tested by   

a variety of edge accuracy indices for edge detection, and compare their merits and 

drawbacks in the edge detection ability of the images.   
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1.4  Thesis Outline 

   This thesis is organized as follows. The motivation of this study and the basic 

concept of image edge are introduced in Chapter 1. In Chapter 2, we introduce the 

method of edge detection for images applying the concept of interval-valued fuzzy 

relation proposed by Barrenechea et al [2]. In Chapter 3, we describe the concept and 

method for the iterative learning mechanism of the operating parameter 

accompanying with the edge detection for images in this thesis, and propose several 

common random noise types. In Chapter 4, we summarize all experimental results. At 

last, we integrate all of our studies and discuss the directions for improvement in the 

future in Chapter 5. 
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Chapter 2 Apply Interval-valued Fuzzy Relation 

to Image Edge Detection  

 
In this chapter, we will introduce to construct interval-valued fuzzy relation 

(IVFR) [2] of an image by applying t-norm and t-conorm (also called s-norm) in the 

fuzzy theory to the central pixel and its eight neighbor pixels in a sliding window of 

the image. For each sliding window, we will calculate the intensity differences  

between the central pixel and its eight neighbor pixels. To this end, we thus can 

compute the upper and lower bound differences corresponding to each pixel of the  

image, which lead to interval-valued fuzzy relation of the image.     

Thus, we refer to a method proposed by Barrenechea et al [2] making the image 

edges blurring associated with the interval-valued fuzzy relations. First, we give the 

definition of an edge in fuzzy terms, since it can indicate that an edge should make it 

clear that the adjacent pixels having a big enough variation in intensity. To measure 

this variation between the intensity of a pixel and the intensities of the neighboring 

pixels, we construct, by means of lower and upper constructors, the interval-valued 

fuzzy relation and its associated W-fuzzy relation. Finally, we apply the concepts 

and technology of fuzzy theory in the handler of image edge detection. 

 Fig. 2.1 illustrates the concepts and steps about the application of 

interval-valued fuzzy relations in edge detection of images. First of all, we have to 

normalize the original gray-scale image in order to obtain an image representable by   

a fuzzy set and an interval-valued fuzzy relation by the lower and upper constructors. 

We further construct a“W-fuzzy relation”(also called“W-fuzzy edge image”) 

that represents the difference between the upper and lower bounds of each interval in 

an interval-valued matrix. Finally, a binary edge map is generated by threshold   
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setting from the “W-fuzzy edge image”. 

 

Construct an  interval-
valued fuzzy relation (IVFR) 
with a 3x3 window and the 

lower and upper constructor 
 

Construct a fuzzy 
relation (FR) by 
normalizing the 
gray-level image

 

Construct a W-fuzzy 
relation (or W-fuzzy  image)  

by the calculation of the 
difference between the  upper 

and  lower bound 

Generate a binary

 edge map through 

the threshold setting

 
Fig. 2.1  The flow chart of the application among interval-valued fuzzy 

relation to image edge detection. 

 

 

2.1  Fuzzy Membership Degree  

    In the fuzzy theory, fuzzy sets represent the collection of the unclear boundaries 



 

9 
 

or borders and having specific things. In general, we establish a membership function 

to represent the relationship of each element to a fuzzy set. The membership function 

is the basis of fuzzy theory, the purpose of which is to describe some vague 

phenomena by using the definite and religious mathematical method. It represents the 

degree of membership of an element belonging to the set by any real number between 

0 and 1. If we suppose A  is a fuzzy subset of a universal set U and the membership 

function of A is represented by Aµ , then Aµ  satisfies the following relationship: 

 

                       : 0,1A X                           (2.1) 

 

It means that all the values of A ( )xµ  are between 0 and 1 for all x U . Zadeh ever 

mentioned that the degree of membership of x  belonging to A  is higher as the 

value of A ( )xµ  closer to“1” in the theory of fuzzy sets in 1965. And if the value of 

A ( )xµ  approaches to“0”, it indicates the degree of x  belonging to A  is very low. 

Therefore, it not only can express clearly the degree of membership of the elements 

belonging to the set but also show all the values of“Transition”between“Yes”

and“No”.  

 

2.2  Interval-valued Fuzzy Relation   
 
Base on the fuzzy relation, we can define two fuzzy relations of an image, one is

“lower”and the other is “upper” constructor to constitute the interval-valued fuzzy 

relation with the same dimensions of the images [6]. It is to be noticed that we must 

consider carefully the gray-scale intensity of each pixel and its neighbor pixels 

contained in a fixed range of the testing image in the procedure, for example, we 
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consider eight pixels contained in the neighborhood when using a sliding window 

with size of 3x3. 

 
2.2.1  Fuzzy Relation  

For a grayscale image with size of M N , we execute the normalization which 

let all the gray-scale values of pixels in the image converted to a number between 0 

and 1 by dividing all of them by the grayscale maximal intensity “255” in advance.            

Next, we consider two finite universes  0,1,..., 1X M   and 

 0,1,..., 1Y N  . Then, {(( , ), ( , )) | ( , ) }  R x y R x y x y X Y is called a 

fuzzy relation from X  to Y . Fuzzy relations are described by matrices in the 

following way, as the expression (2.2) : 

               

               

(0,0) (0, 1)
(1,0) (1, 1)

( 1,0) ( 1, 1)

R R N
R R N

R
R M R M N

                    





  



             (2.2) 

Besides, ( )F X Y  represents the set of all fuzzy relations from X  to Y  [8], 

[9].     

 

2.2.2 Lower and Upper Constructor   

 

We can define the expressions of the lower bound and the upper bound 

respectively for a k-tuple pair 21( , ,..., )kx x x  in which 21, ,..., [0,1]kx x x ∈ as followed:  

 

                   
1 1 21

( , ) ( , ,..., )
k k

i i k ki i
T x T T x x x xT x
 

                   (2.3)       
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1 1 21

( , ) ( , ,..., )
k k

i i k ki i
S x S S x x x xS x
 

                    (2.4) 

     

In the above expressions, “T ” and “ S ” stand for one kind of t-norm and s-norm 

operators introduced in fuzzy theory; In this section, we take the common “min” and 

“max” operators for examples. And the operations of them are expressed as followed:   

               

                   ( , ) min( , )MT x y x y , , [0,1]x y                     (2.5)                                         

                  ( , ) max( , )MS x y x y , , [0,1]x y                     (2.6) 

Let ( )R F X Y   be a fuzzy relation. Consider two t-norms 1T  and 2T   and 

two values ,m n    so that 1

2

M
m


 , and 1

2

N
n


 . We define the lower constructor 

associated with 1T , 2T , m , and n  in the following way: 

 

              
1 2

,
, 1 2

-
-

   ( , )   ( ( ( - , - ),  ( , )))   

n
m

m n
T T

i m
j n

L R x y T T R x i y j R x y



             (2.7) 

 

For all ( , )x y X Y  , and where the indices ,i j take values such that 

0 1x i M    and 0 1y j N    . The values of m  and n  indicate that the 

considered sliding window is a matrix of dimension (2 1) (2 1)m n   , which is 

centered at ( , )x y .               

     Analogously, if we consider two t-conorms (s-norms) 1S  and 2S , then we 

define the upper bound of an interval in the following way: 
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                
1 2

,
, 1 2

-

-

( , )  ( ( ( , ),  ( , )))    

n

m
m n
S S

i m

j n

U R x y S S R x i y j R x y




            (2.8)   

                        

    For simplicity, if =m n , then we denote 
1 2

,
,

m n
T TL  and 

1 2

,
,

m n
S SU  as 

1 2,
m
T TL and 

1 2,
m
S SU , 

respectively. 

In Fig. 2.2, we graphically illustrate how the lower constructor operation works 

with = =1m n , and 1 2 MT T T  . For the element (0,0) and 1 1( , ) x y X Y  in the 

fuzzy relation, we have:  

 

  1
, (0,0) min(min(0.74,0.71),min(0.69,0.71),min(0.72,0.71),

M MT TL R   

                   min(0.71,0.71)) 0.69                           
 

      1
, 1 1( , ) min(min(0.56,0.49),min(0.56,0.49),min(0.53,0.49),

M MT TL R x y   

                    min(0.49,0.49),min(0.49,0.49),min(0.58,0.49),  

                    min(0.59,0.49),min(0.77,0.49),min(0.78,0.49))  

                    0.49     
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Fig. 2.2  The diagram of the operation of lower constructor for specific 

pixels in an image.  

 
 
2.2.3  Interval-valued Fuzzy Matrix 
 

    Let ( )R F X Y   be a fuzzy relation. If we consider a lower constructor 
1 2

,
,

m n
T TL  

and a upper constructor 
1 2

,
,

m n
S SU , then an interval-valued fuzzy relation ,m nR  will be 

denoted as an M N×  matrix:  
 

       

       

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, , , ,
, , , ,

,

, , , ,
, , , ,

(0,0), (0,0) (0, 1), (0, 1)

( 1,0), ( 1,0) ( 1, 1), ( 1, 1)

m n m n m n m n
T T S S T T S S

m n

m n m n m n m n
T T S S T T S S

L R U R L R N U R N

L R M

R

U R M L R M N U R M N



  



                 

         

         

      (2.9) 

 
which all of the elements in this matrix ,m nR  represent an interval, as follows:   
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     
1 2 1 2

, , ,
, ,( , ) ( 0( ,, ), ( 1 ),, )m n m n m n

T T S SL R x y U yx y LxR R       ( , )x y X Y          (2.10) 

 

where X  and Y are two  sets  0,1,..., 1M   and  0,1,..., 1N   as mentioned in 

section 2.2.1, and ([0,1])L  represents the set of all closed subintervals of [0,1] . If 

 = m n , then we denote ,m nR  as mR .  

  

2.3  W-Fuzzy Relation and W-Fuzzy Edge 

   In this section, we will compute the length between the upper and lower bound of 

each interval from the given interval-valued fuzzy matrix ,m nR , and construct a new 

fuzzy relation ,m nW R     by the values, which is defined as follows:  

 

   
1 2 1 2

, , , , ,
, ,( , ) ( , ) ( , ) ( , ) ( , )m n m n m n m n m n

S S T TW R x y R x y R x y U R x y L R x y              (2.11)
             

   0,1,..., 1x X M    , 0,1,..., 1y Y N    

where the magnitude of , ( , )m nW R x y     represents the membership degree associated 

with a pixel in the fuzzy relation of the original image, that means the degree of 

difference between the gray-scale values of pixels contained in a (2 1) (2 1)m n    

window for this pixel. Therefore, we can obtain following conclusion with this 

W-fuzzy relation, ,m nW R    :  

(1) We have that if the length associated with a pixel is maximal (i.e., in the  

window considered, we have at least one white pixel and at least one black 

pixel), then the pixel is always considered an edge. 

(2) We have that if the window centered at ( , )x y  has a constant intensity, then 

the length of the associated interval is zero. Therefore, the pixel will never 

be considered as part of an edge. 
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In the fuzzy theory, we call ,m nW R     the W-fuzzy relation. In the image 

processing field, due to the relation ,m nW R     represents a fuzzy edge image that can 

not show the definite differences of intensity value, but visually captures the intensity 

changes clearly between a pixel and its neighbor pixels, it is named as a W-fuzzy edge 

image specifically in the reference proposed by Barrenechea et al [2]; for this reason, 

this image can be considered as an image that represents edges in a fuzzy way. This 

fact will enable us to better adjust to the application in which we want to use our edge 

detector based on W-fuzzy edge images. Fig. 2.3 shows two gray-scale natural images 

and their W-fuzzy edge images.  

 

 

 

 

 

 

 

       

(a)                                   (b) 
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(c)                                 (d) 

       

    Fig. 2.3  The gray-scale natural images and their W - fuzzy edge images by 
using a 3 3×  window, (a) The “House” image; (b) The “Lenna” 
image; (c)-(d) The W -fuzzy edge images of “House” and “Lenna” 
images. 
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Chapter 3  The Best Learning of Operating 

Parameters For Image Edge Detection  

 
    

In this chapter, we will extend the edge detection method based on the concept of 

W-fuzzy relation introduced in Chapter 2. We propose an edge detection method of 

the weighted mean difference aggregated algorithm for pixel values between a central 

pixel and its 8 neighbor pixels in a 3 3×  window by using two weighting parameters 

within [0,1], and constitute a set of parameters automatic learning mechanism by 

several iterative operations. In the learning procedure, we adopt eight synthetic 

gray-scale images with size of 60 60×  that the gray-level values are randomly 

generated by the computer program as the input images for parameter learning, as 

shown in Fig. 3.1. And then, our principle to modify and update the operating 

parameters is according to the variation of average accuracy index for edge detection 

calculated by the binary edge maps obtained from our edge detection method and the 

individual ground truths (GT) edge maps of eight images in each parameter learning 

epoch. 

 

 

 

             
(a)               (b)              (c)               (d)  
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       (e)               (f)              (g)               (h) 

Fig. 3.1  Eight gray-scale synthetic images randomly generated by 

a computer program with size of 60 60× . 

              

              

       GT1              GT2                        GT3                        GT4 

 

             

            GT5                        GT6                         GT7                        GT8 

Fig. 3.2  The ground truth edge maps for eight gray-scale synthetic images. 

 

 

3.1  The Introduction of Operating Parameters 
 

In the thesis proposed by Barrenechea et al [2], the selections of t-norm and 

s-norm operators do not have sufficient flexibility, and all of them are nonlinear 

operands as well as hard to derive a common formulation such as the “max” and 
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“min” logical operators introduced in Section 2.2.2. In order to improve the 

disadvantage and increase the accuracy index for edge detection, we develop a 

weighted mean common equation of linear or power with a set of generalized T-type 

and S-type operands “αT
” and “αS

” in order to replace the t-norm and s-norm 

operators. By this way, we can obtain an output value of each pixel in an image like 

the “W-fuzzy relation” do. At last, the goal of edge detection is achieved through the 

operation of a threshold.           

    On the basis of above principles, there are two operating parameters in our 

learning system, defined respectively as follows:    

    

   “α
T

”: T-type operating parameter. It’s used for replacing the efficacy of t-norm 

operators, meaning to construct a lower bound of an interval for an image. 

And we limit its value within [0, 0.5].    

 

   “α
S

”: S-type operating parameter. It’s used for replacing the efficacy of s-norm 

operators, meaning to construct an upper bound of an interval for an image. 

And we limit its value within [0.5, 1]. 

 

It will lead to the up and down variation of accuracy index for edge detection by 

applying two designed operating parameters. Then, we correct and update the 

operating parameters according to this variation of accuracy index in the parameter 

learning system later. 

                                                     

3.2  The Weighted Mean Difference Aggregation Calculation of 

Pixel Values  
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    In this research, in addition to have the parameters “αT
” and “αS

” to determine 

the strength of T-type and S-type operands, we also promote them to an edge 

detection method by performing the weighted mean difference calculation for pixel 

values in an image, and expect to obtain a set of operating parameters with best 

capability in edge detection through a series of parametric designs. We will introduce 

the weighted mean difference calculation of “linear” and “quadratic” types for pixel 

values in the following.  

 
 
3.2.1  The Aggregation Calculation of Linear Type 
 

For a M N image I , we separately compute the linear weighted mean 

operating value of gray-scale intensity between the central pixel ( , )I m n  and its 

eight neighbor pixels in a 3 3×  window by using the generalized weighted 

operands “αT
” and “αS

” as shown in following:                

 
 
 
 
 
 
 
 

Fig. 3.3  The diagram of a 3 3× window centered at pixel ( , )I m n  

associated with its eight neighbor pixels. 

                        
 

 

( ( , )) ( ( , )) (1 ) ( ( , ))
,     , [0,1] 

( ( , )) ( ( , )) (1 ) ( ( , ))
       ( 1, 2,...,8;  1, 2,..., ,  1, 2,...,  ) 

T i T i T i

S i S i S i
T S

y I m n a I m n b I m n
y I m n a I m n b I m n

i m M n N

α α
α α

α α
= + −

∈ = + −
= = =

     (3.1)       

1 2 3 

4 I(m,n) 5 

6 7 8 
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where the subscript“i”represents eight neighbor pixels and the operating 

parameters “α
T

”, “α
S

” must satisfy α α<T S , ( ( , ))ia I m n  and ( ( , ))ib I m n  represent 

the larger and smaller gray-scale value respectively between the central pixel ( , )I m n  

and its neighbor pixels. And then, we further compute the average of eight T iy  and 

S iy  as follows: 

 

        

8

i 1

( ( ,
 ( , )

))

8

i

T

T

y
y I

n
m

m
n

==
∑

 , 

8

i 1

( ( ,
 ( , )

))

8

i

S

S

y
y I

n
m

m
n

==
∑

           (3.2) 

 
 

At last, we obtain an output value Wy  for each pixel like as the meaning of W-fuzzy 

relations : 
          

             ( , )( , )) ( ,   S TW y m n y mm nny                            (3.3) 

                    

8

1

) ( ( ( , )) ( ( , ))

8

( )i i
i

TS a I m n b I m n 


 



        

        

We can determine whether a pixel I(m,n) belongs to edge pixel or not according to the  

comparison of this output value and an adaptive threshold T as shown in the 

expression 3.4. We also can obtain the degree of intensity difference between the 

central pixel I(m,n) and its neighbor pixels in the same time .    

              

          

I( , )  if ( , )  
I( , )  if ( , ) < 

W

W

m n y m n T
m n y m n T



 is an edge point,

is a nonedge point,
             (3.4) 
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3.2.2  The Aggregation Calculation of Quadratic Type  
 

We try to change ( ( , ))ia I m n  and ( ( , ))ib I m n  into 2 ( ( , ))ia I m n  and 2 ( ( , ))ib I m n  

in order to strengthen the power of intensity variation between two pixels. 

Analogously, we execute the weighted mean aggregation calculation with the 

operands “αT
” and “αS

” by considering a 3 3×  window centered at pixel 

( , )I m n shown in Fig. 3.3 and calculate the value Ty  and Sy  by taking account of 

the gray-scale values of pixel ( , )I m n and its eight neighbor pixels as shown in 3.5:              

        

2 2

2 2

( ( , )) ( ( , )) (1 ) ( ( , ))
,     , [0,1] 

( ( , )) ( ( , )) (1 ) ( ( , ))
         ( 1, 2,...,8;  1, 2,..., ,  1, 2,...,  ) 

α α
α α

α α
 = + −

∈
= + −

= = =

T i T i T i

S i S i S i
T S

y I m n a I m n b I m n
y I m n a I m n b I m n

i m M n N

    (3.5)

                                                            

In the same way, we calculate the average of the eight T iy  and S iy  as follows: 
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            (3.6) 

 

Then, the output value Wy  for pixel ( , )I m n  is defined as follows: 

 

         ( , )Wy m n = ( , )  ( , )S Ty m n y m n−
                          

(3.7)                  
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∑
 

 
 
3.3  Parameter Automatic Learning Mechanism 
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3.3.1  The Setting of Initial Operating Parameters and Thresholds  
 

Before proceeding the parameter automatic learning, we must give a set of initial 

operating parameters for it. By this way, the weighted mean difference aggregation 

calculation for pixel values will be started from this set of operating parameter, and 

the repeated numerical correction of operating parameter would be adjusted towards 

the direction to enhance the capability in edge detection. Besides, it is necessary to set 

a threshold for deciding whether a pixel belongs to edge or not and obtain the edge 

detection accuracy index to judge the correcting direction for the parameter value. 

And the size of threshold usually depends on the nature of input images. 

 
 
3.3.2 The Jacobi Error Correction with Steepest Gradient Method 
 
    The basic concept of the steepest gradient method [10] is applying the theory of 

Calculus to search the local extremes of any function ( )F a  that a simple expression 

of it is: 

 

                    
1  ( ) (k 0,1, 2,...),  k kk k k d F aa a dη+ = ∇= ± =

            
(3.8) 

 

which “ ” is called “learning ratio constant”  that is generally set between 0 and 1, 

and kd  denote the gradient value at point ka  in the function F . For the steepest 

gradient method, it can reach the maximum value of a function at the soonest speed 

going along with a certain point in its positive gradient direction; on the contrary, it 

reach the minimum of a function at the soonest speed going in the negative gradient 

direction.  

    First, we have to choose an initial point 0a  and determine the increment or 
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decrement in the direction of rapidest ascending or descending at 0
( )F a  through an 

appropriate gradient value. Then, we further seek for a new searching direction 

repeatedly. As shown in Fig. 3.4, ( )kF a∇ represents the magnitude in need of 

changing for the steepest gradient ascent or descent obtained from the first-order 

partial differential at point a  of the function F . And the gradient ( )kF a∇ of any point 

ka in the function F  is a vector which the direction is increased most rapidly of the 

value in the function F ; In contrast, the direction of negative gradient is the one that 

decreased most rapidly of the value in the function F . For any point ( )kF a  of 

function F , we can define the unit vector of the searching direction of its gradient as 

follows: 

 

                          
( )
( )

∇
=

∇
k

k
k

F ad
F a

                           (3.9) 

 

Move on the point ( )kF a , we can obtain a new point 1k k k ka a d    by going 

forward k  steps along the direction of kd  or kd− .   

 

Fig. 3.4  The diagram of the steepest gradient method. 
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Through the iterative calculation repeatedly, all of“ a”will consist a sequence 

 0 1 2 1, , , , , ,k ka a a a a 
  which must converge to the maximum value of function F  

under some specific conditions. The more important is that the extreme solution we 

get would be just one among the local extremes instead of the global one for this kind 

of iterative calculation.      

    Then, we apply the notion of steepest gradient method to search the best 

operating parameters for edge detection in the parameter learning mechanism. 

Moreover, we execute the correction and update of parameters according to the 

variation of total average accuracy for edge detection in the learning mechanism, and 

perform the weighted mean difference aggregation calculation of pixel values with 

new operating parameters repeatedly in next iteration. In addition, we adopt the 

method of Jacobi error correction proposed by M. Emin Yüksel et al in the reference 

[11] as the basis of parameters correction.  

    First of all, let w  be a parametric vector consisted of ( )T tα  and ( )S tα  for the 

t-th learning epoch as follows: 

 

 

                           
2 1

( )
( )

T

S

t
w

t





     
                          (3.10) 

 
 

And w∆ denote a vector consisted of ( )T tα∆  and ( )S tα∆ as follows:        

 
                                                                                      

             
             1

2 1

( )
[ ( ) ( ) ] ( ) ( )

( )
T T

S

T t
w J w J w I J w E w

t
µ

α
α −

×

∆ 
∆ = = + ∆ 

         (3.11)
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In the above expression, J  represents a Jacobi matrix defined as follows: 
 
 

                         
α  α T S

E EJ ∂ ∂
∂ ∂

 
=  
 

                        (3.12) 

 

and µ  is an arbitrarily small constant for the purpose that we can obtain the vector 

w∆  when ( ) ( )TJ w J w  is a singular matrix (we choose 0.01µ =  in our research). In 

addition, I  is a 2 2  identity matrix and E  denotes an error function of any pixel 

( , )kI m n  in the k-th input image kI :  

 
 

             ( , ) ( , )
kk WE GT m n y m n= −                    (3.13)  

 
 
For the operation in equation 3.3, the elements in Jacobi matrix are denoted as 
follows:  
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And for the operation in equation 3.7, the results will be as follows: 
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    Next, we will calculate the average of correction for all pixels in these eight 

images as shown in the following expression: 

                                                                      

       

8

1 1 1

8

1 1 1

2 1

2 1

  ( , ; )

  ( 8)
 

  ( , ; )

( 8)

( )
=

( )

k

ave

ave
k

M N

T
m n k

T

M N
S

S
m

e

n

v

k

a

m n t

M N

m n t

M

t
w

t

N

α

α

α
α

= =

×

=

= = =

×

∆

∆ ×

 
 
 

   
∆ =     

   
 
 


×
∆

∆

× × 

∑∑∑

∑∑∑
                 (3.18) 

 

And we regard ( ) 
aveT tα∆  

and ( ) 
aveS tα∆  

as the basic unit of correction for the 
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operating parameters “ Tα ” and “ Sα ” in next epoch as shown in expression 3.19: 

 

                 
( 1) ( ) ( )

( 1) ( ) ( )

 

 
ave

ave

T T

S
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S S

t t t

t t t

α α η

α α η

α
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+ = ±
 + = ∆±

∆


                      (3.19) 

 

which the learning ratio constant “η ” can be arbitrarily chosen an adaptive value, and 

the increment or decrement of parameters “ Tα ” and “ Sα ” depends on the variation of 

average accuracy index in edge detection of all input images.  

 

3.3.3  The Best Operating Parameters 
 
    In the end of each learning epoch, we calculate the total average edge detection 

accuracy of all working images and find out the best operating parameters α
optT and 

α
optS  

corresponding to the highest accuracy through several iterative learning. From 

the experimental results, we find it will affect the value of best operating parameters 

more or less with different initial operating parameters or different accuracy indices 

for edge detection. Fig. 3.5 roughly depicts the procedure of entire parameter 

automatic learning mechanism.  
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The setting of  initial 
parameters and thresholds 

No

YesNo

Yes

Linear or quadratic 
weighted mean aggregation
calculation of  pixel values 

Calculate the average 
accuracy for edge detection 

Generate the 
binary edge maps

The Jacobi error 
correction of  parameters

with steepest gradient
method  

Check if  the 
parameter values are within 

the interval [0,1]  

Examine whether the
 learning epoch reaches 

to maximal

Search for the best 
 operating parameters set

 

                  
Fig. 3.5  The flow chart of the automatic learning mechanism 
for operating parameters. 

 
 
 
3.4  Random Noise 

 
   In machine vision systems, noise often arises out of the using of cameras or video 

capture cards. In addition, the video signal may be subjected to interference in the 
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transmission of an image from place A to place B, and the probability of occurrence 

for random noise is higher as the transmission distance is longer. Thus, in this thesis, 

we mix “Impulse” and “Gaussian” noise randomly in the original gray-scale input 

images by MATLAB program without loss of generality, and further use these images 

to proceed the parameter automatic learning for the purpose of best edge detection.    

 
 
3.4.1  Impulse Noise 
    Impulse noise is usually a black or white dot in an image. Because its color is 

similar to“pepper”black or“salt”white, we also call it the“salt and pepper 

noise”that the gray-scale intensity“0”represents for“pepper”noise, and the 

intensity“255”is in behalf of“salt”noise in the field of imaging science. Such 

noise usually has a higher frequency and is out of tune with the adjacent pixels, so it is 

easy to be identified. In our research, we try to dope impulse noise with the amount of 

5, 8, or 10 percent in the original gray-scale images of Fig. 3.1 as shown in Fig. 3.6.  

     Besides, we also test by mixing one kind of impulse random noise within an 

arbitrary positive fixed value P  in the original gray-scale image. The way of 

operation is to increase or decrease the gray-scale intensity with an positive number 

not greater than P  for 5~10 percent amount of pixels chosen at random in an image 

as shown in Fig. 3.7.  
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Fig. 3.6  Eight gray-scale images with 5% impulse random noise. 

 

 

             
 
 

               
      

Fig. 3.7   Eight gray-scale images with 10% impulse random noise 

within a fixed value P =50.  

. 

 

 

 
3.4.2  Gaussian Noise 
  
    In general situation, it would be quite possible that there exists Gaussian noise 

as the pixel values we capture are different for each time. And the expression of 
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Gaussian function is shown as follows: 

                      

                          
2
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G x e
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πσ

−
=                         (3.20) 

 

which “ µ ” denotes the mean value, and “σ ” denotes the standard deviation. 

However, due to we mix Gaussian noise in original images by the instruction 

“imnoise” of MATLAB program, it is necessary to normalize the gray-scale images 

in advance in order to match the instruction. After doping the Gaussian noise in these 

images, we convert them back to the normal gray-scale images as shown in Fig. 3.8.     

 

              
 

                     

  

Fig. 3.8  Eight gray-scale images with Gaussian random noise ( 0,  =6µ σ= ). 
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Chapter 4 Experimental Results  
 

In the experiments, we try to mix some different proportions and types of 

random noises for eight gray-scale images in Fig. 3.1 respectively. As shown in 

Fig.4.1, in order to prevent too many noise pixels misjudged as edge for the edge 

detection result, we make a preprocessing to remove a few noise in these images by 

a 3 3 median filter before proceeding the parameters automatic learning. And then, 

we perform the parameters learning for edge detection with linear and quadratic 

weighted mean difference algorithms of image pixels introduced in Section 3.2.  

  

              

        (a)               (b)              (c)               (d) 

 

               

        (e)               (f)              (g)               (h) 

 

    Fig.4.1  Eight gray-scale synthetic images mixed with different types of 
random noises, (a) With 5% impulse noise within a fixed value P=80 and 
Gaussian noise ( 0,  =5.5µ σ= ),(b) With 8% impulse noise and Gaussian noise 
( 0,  =4.5µ σ= ), (c) With 10% impulse noise within a fixed value P=50 and 
Gaussian noise( 0,  =3.5µ σ= ), (d) With 10% impulse noise within a fixed value 
P=80, (e) With 8% impulse noise, (f) With Gaussian noise ( 0,  =6µ σ= ), (g) 
With 8% impulse noise within a fixed value P=30 and Gaussian noise 
( 0,  =4.5µ σ= ), (h) With 10% impulse noise and Gaussian noise ( 0,  =3µ σ= ). 
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4.1 Median Filter 

    In general, using a feasible filter can make a smoothing effect for images without 

changing the structure of image pixels. Specifically, the median filter can remove the 

stronger high frequency noise effectively but still keep the specific edge shape and not  

blur an image easily. The method of operation is to sort all the pixel values in a  

window and seek for the median value to replace the central pixel in the window. As 

shown in Fig.4.2, we sort nine pixel values in a 3 3×  window in ascending order as 

the sequence {10, 15, 20, 20, 20, 20, 20, 25, 100} and find out the median“20”to 

replace the original central pixel value. Then, it can exactly filter out the isolated 

high-brightness noise“100”and roughly keep the same for the brightness value 

around the central pixel.   

 

 

10 20 20 

20 100 20 

20 25 15 

 

 

Fig. 4.2  The diagram of the action of a median filter. 

 

    Fig.4.3 shows the results of eight gray-scale images mixed with random noise 

through the action of a median filter.  

 

 

               

10 20 20 

20 20 20 

20 25 15 

Replace the central pixel  

value through a median filter 
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Fig.4.3  The results of eight images in Fig. 4.1 through  

the action of a median filter. 

 

 

4.2  Accuracy Calculation  
 

Because we take the variation of the total average accuracy for edge detection as 

the reference basis of the correction direction of parameters in our algorithm, we have 

to establish an accuracy formulation for providing the learning mechanism in 

advance. 

First, we have to determine a ground truth map (GT) for every input image 

which depends on the gray-scale intensity difference between a pixel and its four 

neighbor pixels in this research in order to obtain the calculation of edge detection 

accuracy for convenience. If there is at least one of four neighbor pixels different with 

the central pixel, then we will label the coordinate corresponding to the location of 

this pixel as a black dot standing for edge in the ground truth map like the binary 

image introduced in Section 1.2.2.  

    Next, by scanning and comparing the ground truths and binary edge maps 

produced by our edge detection algorithm, we can define the following two 

representative accuracy formulations:  
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A. Edge-weighted Accuracy: 
 

 

   misjudged    misjudged 
edge pixels in GT nonedge pixels in GT

1 10
            
edge pixels in GT nonedge pixels in GT

The number of The number of
r

The number of The number of
r

    
+    

    − ×
    

+    
    

0%  

where “r” denotes an importance multiple for edge pixels in the ground truth map. 

 

B. The Average Accuracy of Edge-pixel and Nonedge-pixel: 
 

 

   edge pixels    nonedge pixels 
correctly detected in GT correctly detected in GT 2 100%
   edge pixels in GT    nonedge pixels in GT

The number of The number of

The number of The number of

 
 
 + ÷ ×
 
 
 

 

  
 
 

 

4.3  The Results and Analysis of Parameters Learning 
         

Fig.4.4-6 are the results of best edge detection for parameter learning with the 

linear weighted mean difference aggregation calculation of pixel values under the 

combinations of three different initial operating parameter sets and three kinds of 

accuracy formulations by using the eight gray-scale images mixed with random noise 

in Fig. 4.1; Fig. 4.7-9 are the results of best edge detection with the quadratic 

weighted mean difference formulation of pixel values. Table 4.1-2 and Table 4.4-5 

show the results of best operating parameters and edge detection accuracy under nine 

different conditions respectively for Fig.4.4-6 and Fig.4.7-9. Besides, the ratio 

relationships between the number of edge-pixel and nonedge-pixel for eight original 

gray-scale images in Fig. 3.1 are recorded in Table 4.3.  
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 (b) 
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                                  (c) 
 

Fig. 4.4  The results of best edge detection for parameters learning with the 

linear  weighted mean difference algorithm of image pixel values  (Initial 

values: Tα =0.25, Sα =0.75; η =0.88, T=7), (a) Correct based on the accuracy 

with edge-pixel weighted of multiple “1”; (b) Correct based on the accuracy with 

edge-pixel weighted of multiple “4”; (c) Correct based on the average accuracy 

of edge-pixel and nonedge-pixel.  

 

             

 

 

             

                       (a) 
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 (b) 
 

 

              

 

 

             

                                  (c) 
 

Fig. 4.5  The results of best edge detection for parameters learning with the 

linear weighted mean difference algorithm of image pixel values  (Initial values: 

Tα =0.15, Sα =0.55; η =0.7, T=5), (a) Correct based on the accuracy with 

edge-pixel weighted of multiple “1”; (b) Correct based on the accuracy with 

edge-pixel weighted of multiple “4”; (c) Correct based on the average accuracy 

of edge-pixel and nonedge-pixel.  
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                                  (a) 
 

 

             

 

 

             
(b) 
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                                (c) 
 

Fig. 4.6  The results of best edge detection for parameters learning with the 

linear weighted mean difference algorithm of image pixel values (Initial values: 

Tα =0.42, Sα =0.58; η =0.8, T=3), (a) Correct based on the accuracy with 

edge-pixel weighted of multiple “1”; (b) Correct based on the accuracy with 

edge-pixel weighted of multiple “4”; (c) Correct based on the average accuracy 

of edge-pixel and nonedge-pixel.  
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TABLE 4.1  The results of best operating parameters and average accuracy 

through 80 epoches with the linear weighted mean difference aggregation   

algorithm of pixel values for eight images in Fig. 4.1.   

Note1: “Average Accuracy” means that the average of all individual accuracy 

 of eight images with some kind of accuracy formulations.        

Initial 
Values 

 
 η  

 

Accuracy  
Formulation 

Best Average 
Accuracy(%)1 

       The Best  
Operating Parameters 

 

 T 0.25 

S  0.75 

(T=7)  

0.88 

   A(r=1) 97.263  T 0.1540 , S  0.8460 

   A(r=4) 93.40  T 0.1540 , S  0.8460 

     B 92.68  T 0.1540 , S  0.8460 

 

 T 0.15 

S  0.55 

(T=5) 

0.7 

   A(r=1) 97.312  T 0.0901 , S  0.6099 

   A(r=4) 93.59  T 0.0901 , S  0.6099 

     B 94.66  T 0.0901 , S  0.6099 

 

 T 0.42 

S  0.58 

(T=3) 

0.8 

  A(r=1) 97.841  T 0.2960 , S  0.7040 

   A(r=4) 95.16  T 0.2960 , S  0.7040 

     B 94.59  T 0.2960 , S  0.7040 
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TABLE 4.2  The individual edge accuracy of eight images in Fig.4.1 
                with different operating parameters of TABLE 4.1. 

 

 

TABLE 4.3  The number of edge-pixel and nonedge-pixel and 
the ratio relationship of them for ground truth edge maps in Fig. 3.1. 

 

       The image  

The best  number in  

parameters   Fig. 4.1 

with three         

accuracy indices          

(a) (b) (c) (d) (e) (f) (g) (h) 

T  0.1540 

S  0.8460 

 (T=7) 

A(r=1) 99.97 99.83 95.31 97.67 95.64 97.78 96.89 94.97 

A(r=4) 99.98 99.65 86.64 93.51 89.58 94.60 93.26 89.97 

B 99.99 99.32 82.06 91.32 89.25 94.43 94.05 91.06 

T  0.0901 

S  0.6099 

   (T=5) 

A(r=1) 99.97 99.78 95.44 97.67 95.67 97.86 96.86 95.25 

A(r=4) 99.98 99.61 87.16 93.57 89.65 94.87 93.24 90.65 

B 99.99 99.29 82.79 91.41 89.32 94.71 94.03 91.65 

T  0.2960 

S  0.7040 

(T=3) 

A(r=1) 99.92 99.72 96.31 97.75 97.36 98.81 97.06 95.78 

A(r=4) 99.93 99.56 89.76 93.93 94.13 97.65 94.02 92.29 

B 99.96 99.26 86.31 91.91 93.95 97.58 94.68 93.05 

 (a) (b) (c) (d) (e) (f) (g) (h) 

The number of 

edge pixels 
  236   236   464   464   684   684  896   896 

The number of 

nonedge pixels 
 3364  3364  3136  3136  2916  2916  2704  2704 

The ratio of  

nonedge-pixel 

and edge-pixel 

14.25 14.25   6.76   6.76  4.26  4.26   3.02   3.02 
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                       (a) 
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 (c) 
 

Fig. 4.7  The results of best edge detection for parameters learning with the 

quadratic weighted mean difference algorithm of image pixel values  (Initial 

value: Tα =0.25, Sα =0.75; η =0.001, T=15), (a) Correct based on the accuracy 

with edge-pixel weighted of multiple “1”; (b) Correct based on the accuracy with 

edge-pixel weighted of multiple “4”; (c) Correct based on the average accuracy 

of edge-pixel and nonedge-pixel.  
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 (b) 
 

   

                 

 

 

            

                                (c) 

Fig. 4.8  The results of best edge detection for parameters learning with the 

quadratic weighted mean difference algorithm of image pixel values  (Initial 

values: Tα =0.15, Sα =0.55; η =0.0005, T=12), (a) Correct based on the 

accuracy with edge-pixel weighted of multiple “1”; (b) Correct based on the 

accuracy with edge-pixel weighted of multiple “4”; (c) Correct based on the 

average accuracy of edge-pixel and nonedge-pixel.    
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                                (c) 
 

Fig. 4.9  The results of best edge detection for parameters learning with the 

quadratic weighted mean difference algorithm of image pixel values  (Initial 

values: Tα =0.42, Sα =0.58; η =0.0003, T=10), (a) Correct based on the 

accuracy with edge-pixel weighted of multiple “1”; (b) Correct based on the 

accuracy with edge-pixel weighted of multiple “4”; (c) Correct based on the 

average accuracy of edge-pixel and nonedge-pixel. 

    

 

 

             

 

             

 

Fig. 4.10  The results of Canny edge detector ( =2, LowT =0.03, HighT =0.15)  

for eight images mixed with random noise in Fig. 4.1.  
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TABLE 4.4  The results of best operating parameters and average accuracy 

through 80 epoches with the quadratic weighted mean difference aggregation 

algorithm of pixel values for eight images in Fig. 4.1. 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial 
Values 

 

 η  

 

Accuracy 
Calculation 

Best Average 
Accuracy(%) 

      The Best  
Operating Parameters 

 T 0.25 

S  0.75 

(T=15)  

0.001 

  A(r=1)    96.70  T 0.5003, S  0.6159 

   A(r=4) 94.39  T 0.4397, S  0.6489 

     B 94.69  T 0.4397, S  0.6489 

 T 0.15 

S  0.55 

(T=12) 

0.0005 

   A(r=1) 96.70  T 0.3620, S  0.4360 

  A(r=4) 94.38  T 0.3234, S  0.4569 

     B 94.67  T 0.3234, S  0.4569 

 T 0.42 

S  0.58 

(T=10) 

0.0003 

   A(r=1) 96.70  T 0.4894, S  0.5423 

  A(r=4) 94.38  T 0.4636, S  0.5564 

     B 94.67  T 0.4636, S  0.5564 
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TABLE 4.5 The individual edge accuracy of eight images in Fig. 4.1 
       with different operating parameters sets of TABLE 4.4. 

     The image  

The best  number in  

parameters  Fig. 4.1    

with three   

accuracy indices        

  (a) (b) (c) (d) (e) (f) (g) (h) 

 T 0.5003 

 S 0.6159 

(T=15) 

A(r=1) 98.78 99.69 95.42 98.86 94.86 94.19 96.69 95.14 

 T 0.4397 

 S 0.6489 

  (T=15) 

A(r=4) 90.67 98.45 92.69 99.12 93.93 95.10 92.78 92.41 

B 94.02 98.85 91.19 98.95 93.75 95.09 92.69 92.98 

 T 0.3620 

 S 0.4360 

  (T=12) 

A(r=1) 98.78 99.69 95.42 98.86 94.86 94.19 96.69 95.14 

 T 0.3234 

 S 0.4569 

  
(T=12) 

A(r=4) 90.69 98.47 92.53 99.12 93.93 95.10 92.81 92.41 

B 94.04 98.87 90.97 98.95 93.75 95.09 92.73 92.98 

 T 0.4894 

 S 0.5423 

(T=10) 

A(r=1) 98.56 99.72 95.36 98.89 94.86 94.28 96.67 95.28 

 T 0.4636 

 S 0.5564 

  (T=10) 

A(r=4) 90.69 98.47 92.53 99.12 93.93 95.10 92.81 92.41 

B 94.04 98.87 90.97 98.95 93.75 95.09 92.73 92.98 
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From the experimental results of the linear type weighted mean aggregation 

algorithm for edge detection, we find that the boundary pixels between adjacent 

blocks having similar gray-scale intensity are hard to be detected out for an image.   

For example, as the fourth image in the first row of Fig 4.4 (b) shows, the 

boundaries of three connected blocks in the middle row are not detected successfully 

due to the gray-scale values for these blocks in the original image are 198, 208, 222 

respectively very close. But on the other hand, as the datum shown in TABLE 4.1, 

the best operating parameters almost not be affected by the choose of edge accuracy 

indices for this kind of algorithm. 

    For the edge detection of quadratic type algorithm, it can enhence the difference 

of gray level between adjacent pixels and detect out more edge pixels. But in the 

meanwhile, it is more likely to magnify the noise points and lead to more misjudged 

edge pixels. And we can get from TABLE 4.4 that it is possible to reach the same 

effect in edge detection with different sets of initial operating parameters. Besides, 

from the experimental results, it also exhibits that median filter only has better 

suppressing effect for impulse type noise, but is useless for Gaussian noise.    

    In addition, due to the non-maximum suppression of thinning processing, the 

lines representing for edge are often one-pixel width in the binary edge map 

generated by the popular Canny edge detector as shown in Fig. 4.10. And the Canny 

edge  detector even can suppress the noise of different strength effectively by its 

internal Gaussian filtering processing. Anyway, using our edge detection algorithm 

can better emphasize details and silhouettes of the objects for an image.     
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4.4  Edge Detection for Natural Images  
 

    For natural images, it is unable to determine a ground truth edge map for 

calculating the edge detection accuracy. Thus, we try to pick out two sets of 

operating parameters that perform better for edge detection in TABLE 4.1 and 

TABLE 4.4 to test the natural image “Lenna” by the corresponding edge detection 

algorithm and to obtain some better results for edge detection by appropriately 

adjusting the size of thresholds as shown in Fig. 4.11.      

    By comparing with the results of our edge detection algorithm and Canny edge 

detector, we hold that it will make the outlines portrayed deeper and show the details 

more clearly in an image by using our edge detection algorithm.  

 
 
 
 
 
 

 

                                  (a) 
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 (b)                                  (c) 
 

            

(d)                                  (e) 
 

 Fig.4.11  (a) The natural image “Lenna”; (b)-(c) The results of linear weighted 

mean difference aggregation algorithm for edge detection with the best operating 

parameter sets ( T  0.0901, S  0.6099) and ( T  0.2960, S  0.7040) in TABLE 

4.1, and  the threshold T is equal to 3 and 2.5 respectively; (d)-(e) The results of 

quadratic weighted mean difference aggregation algorithm for edge detection with 

the best operating parameter sets ( T  0.5003, S  0.6159) and ( T  0.4894, 

S  0.5423) in TABLE 4.4, and the threshold T is equal to 13.5 and 9.5 respectively.  
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(a)                                   (b) 

 

Fig.4.12 The results of Canny edge detector[11] for natural image “Lenna”, 

(a)  =1.6, LowT =0.1, HighT =0.12; (b)  =2, LowT =0.1, HighT =0.12. 
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Chapter 5  Conclusion and Future Prospects 
 
 

    In this thesis, we integrate the technique based on the concept of interval-valued 

fuzzy relations to construct an fuzzy image that show the degree of intensity variation 

between neighbor pixels in a gray-scale image obviously, and apply the linear or 

quadratic type weighted mean difference aggregation calculation of pixel values 

between a central pixel and its eight neighbor pixels in a 3 3 sliding window 

combined with a set of generalized operating parameters to implement the edge 

detection for eight synthetic gray-scale images mixed with different types and 

percentages of random noise. Besides, we further develop a parameter automatic 

learning mechanism by calculating the edge detection accuracy and the concept of 

steepest descent method, and test 80 iterations by the linear and quadratic type 

algorithms with three sets of different initial operating parameters and three kinds of   

edge detection accuracy indices. From the experimental results, although we test with 

different conditional setting, but it is possible to achieve same effect for edge 

detection. On the other side, despite it can better highlight the boundaries between 

adjacent regions of similar gray-scale pixels with the quadratic type aggregation  

calculation of image pixel values, but relatively, it also cause some noise pixels 

magnified and misjudged as edge pixels. So we have to filter out a few noise with 

tremendous intensity variation by a median filter in advance to make the response of 

edge detection more robust.    

    At last, we also choose some pairs of best operating parameters in the application 

of edge detection for the natural“Lenna”image. By the comparison of our edge 

detection method and the popular Canny edge detector, we find that it can better 

emphasize the object details and show the silhouettes strongly by using our edge 
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detection method. Out of the promotion in the edge detection capability, the efficiency 

of performance for some high-level tasks of image processing such as image 

segmentation or object recognition would also escalate.  

    In the future, we intend to establish an automatic adjustment system of  

thresholds and learning ratio constants in the parameter learning mechanism 

according to the image contents in order to prevent the unreliability and inadaptability 

for setting by testers themselves. 
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	Fig. 2.3  The gray-scale natural images and their  - fuzzy edge images by using a   window, (a) The “House” image; (b) The “Lenna” image; (c)-(d) The -fuzzy edge images of “House” and “Lenna” images.

