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摘 要       

  空間調變 (SM) 是近年來被提出的一種提升頻譜效率及降低傳送接收端複

雜度的技術。 這是由於 SM 可避免傳統 MIMO 技術中通道間交互干擾 (ICI) 的

問題，且大量減少硬體上射頻鏈路 (RF chain) 的高花費。 

    大多數對於 MIMO 訊號的偵測，傳送或是接收端需要知道通道資訊 (CSI)，

此通道資訊可透過某種估計演法得到。在本文中，提出了兩種基於 SM 系統下，

隨時間變動的通道估測方法，此方法可以省掉領航信號 (pilot) 的額外負擔因此

而提升系統效能。 

    因為共置 (co-located) 雙極化天線的使用可以節省空間和花費，因此我們也

探討使用雙極化天線的SM技術及其訊號偵測的方法，其中所提出的次佳化的偵

測器複雜度只需要將近最大似然偵測法 (ML) 的一半，且效果比基於匹配濾波器

(MF-based) 的偵測法更好。在使用雙極化天線及有空間相關性的通道模型中，

我們也引進了一個較一般性的通道模型並提出相對應的通道估測方法。 

  由於 SM 系統在傳送訊號時，一次只使用單根傳送天線，利用 Alamouti 的

時空編碼可以使 SM 系統更具彈性。本文中提出了在 SM 系統下差分的 Alamouti

時空編碼技術，此法接收端不須要通道資訊即可解碼。 

針對所提出的方法，我們透過了模擬結果來檢驗其效能並與現有的方法做比

較。 
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Abstract

Spatial modulation (SM) technique has received intensive interest recently for its

capability to improve the spectral efficiency and lower the transceiver complexity. This

is because SM induces zero inter-channel interference and requires a single RF chain

only.

To detect or encode SM signals, channel state information (CSI), which is to be

obtained by a channel estimator at either the transmit or the receive side, is needed

for spatial identification. The first SM-related issue investigated in this thesis concerns

channel estimation in a correlated time-varying channel. We propose superimposed-

pilot-assisted and decision-directed spatial channel estimation schemes. These schemes

improve the system throughput by either removing or reducing the pilot overhead.

Since the use of co-located dual-polarized antennas offers a space- and cost-effective

alternative for multiple antenna systems, we then review the feasibility of using such

antenna arrays and present a new SM scheme which takes advantage of the channel

decorrelation inherited in a dual-polarized antenna array. A suboptimal detector which

needs only half of the ML detector complexity is proposed. This suboptimal detector

performs much better than the MF-based method. For a dual-polarized antenna array
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based SM system, we suggest a general channel model which takes into account the

spatial correlation and introduce a model-based spatial channel estimator.

Finally, to avoid the CSI requirement, we propose an Alamouti coding based differ-

ential space time block coded SM (DSTBC-SM) scheme.

For each proposed scheme, we provide computer simulation results to demonstrate

and verify its superiority against the existing solutions.
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Chapter 1

Introduction

Multiple-input and multiple-output (MIMO) techniques have drawn intensive atten-

tion and R&D efforts in the past decade as they promise to offer a system capacity which

is linearly proportional to the minimum of the transmit and receive antennas numbers

[1]-[3] in a richly scattered environment. The extra spatial degrees of freedom is specially

welcome for wireless communication system designers who are always looking for novel

transmission techniques to achieve both high data rate and high spectral efficiency.

Many existing techniques have been developed to exploit the promised MIMO ca-

pacity. One simple yet efficient scheme to achieve the full diversity (array) gain is the

class of space-time codes (STC) [4]. Besides achieving full diversity gain with low re-

ceiver complexity, it also has high spectral efficiency of one symbol per channel use [5].

The Bell Labs layered space-time (BLAST) [6], on the other hand, demultiplexes data

streams into a number of substreams which are then transmitted by different anten-

nas, resulting in a data rate increase proportional to the number of transmit antennas.

The multiplexing gain, however, is obtained by using equal number of receive antennas

and complex signal processing at the receive side to eliminate the inter-(spatial)channel

interference (ICI).

Another transmission technique which uses multiple antennas is spatial modulation

(SM). SM is a simple scheme which avoids ICI, timing synchronization of multiple spatial

data streams and reduces the cost of multiple radio frequency (RF) chains by allowing
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one transmit (and receive) antenna to be active in any one transmission interval [7].

In addition, SM can exploit transmit antenna index to convey information to enhance

spectral efficiency and capacity [11]. The low system complexity requirement, relative

high spectral efficiency, and robust error performance in correlated channels [8] have

made SM an attractive candidate for high rate transmissions. However, the SM system

needs at least two transmit antennas and the transmit-receive wireless links have to

be sufficiently dissimilar to each other to yield adequate performance [9]. When the

only information is carried by the transmit antenna index, SM degenerates to the so-

called space shift keying (SSK) modulation [10] which is easy to implement although the

associated achievable data rate is rather limited.

Maximum likelihood (ML), matched-filter (MF)-based and sphere detection (SD)

based receivers have been introduced for detecting SM signals [12], [13]. These detectors

perform fairly well only when the channel state information (CSI) is perfectly known by

the receiver. CSI is often obtained by using a pilot-assisted least square (LS) or minimum

mean square error (MMSE) channel estimator [14]. In most cases, the channel is assumed

to be either static (time-invariant) or block faded [15], [16], these known estimators yield

poor performance valid for time-varying or correlated block-fading channels. In this

thesis, we propose two channel estimation schemes for use in time-varying block-faded

channels that takes advantage of the SM structure. The first scheme is a decision-

directed one which uses the detected signals of previous blocks to update estimated

channel coefficients. Since the selected transmit antenna is uniformly distributed, all

CSIs would be updated in a sufficient long transmission period. The performance of this

scheme has error floor in high SNR (signal-to-noise ratio) region due to the propagation

of channel estimation error. We introduce a superimposed pilot CSI estimation scheme

to overcome this shortcoming and improve the system performance without incurring

extra pilot overhead.

While multiple spatially-separated antennas at the transmitter and receiver can pro-
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vide multiplexing and/or array gains, these antennas need to have a large physical sepa-

ration to yield uncorrelated spatial channels. A space- and cost-effective alternative [17]

can be obtained by using co-located orthogonally-polarized antennas. A MIMO channel

using dual polarized antennas has a better channel condition as compared to that of

the conventional one when fixing antenna numbers and the area that can accommodate

antenna hardware. Moreover, the use of such antennas offers additional degree of free-

dom with the same structure of antenna array [18]. The dual-polarized antenna system,

however, possesses complicated depolarized properties because of the coupling effect be-

tween different orthogonal polarizations as were shown in [19], [20], [21]; measurements

of depolarization parameters can be found in [19].

We make use of the advantages inherited in dual-polarized antennas and propose

a new scheme called dual-polarized spatial modulation (DPSM) to fully exploit multi

antenna capabilities. This scheme convey information in the polarization of antenna,

antenna index, and symbol transmitted. It can outperform conventional MIMO system

in correlated channel because of the better channel condition. Moreover, we develop

the ML detector and the MF-based detector of DPSM, and we propose a sub-optimal

DPSM detector whose complexity is almost half of ML detector and its performance is

much better than MF-based method. In addition, DPSM assuages the problem of poor

SM performance when the transmit-to-receive wireless links are too much alike, i.e., the

MIMO channel is too correlated or has a bad condition [9].

Spatial correlation is also considered in dual-polarized channels. In [19], [21], [22]

the transmit and receive spatial correlations are assumed to be de-coupled, resulting

in Kronecker-like model [23]. As spatial correlation between transmitter and receiver

does exist [24], alternate correlated channel models are introduced to incorporate this

joint correlation [25], [26]. However, these analytic models often call for the knowledge

of second-order channel statistics that are not easy to obtain, [27] proposed a reduced-

rank channel model and compact CSI representation to solve this inconvenience. and
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generalizes the above-mentioned channel models. In this thesis, we combine this model

with dual-polarization effects and propose a modified channel estimation method for this

modified dual-polarized channel model.

Finally, we notice that space-time block-coded spatial modulation (STBC-SM) has

been proposed recently [28] to improve the SM spectral efficiency. An Alamouti coded-

based differential STBC-SM (DSTBC-SM), which dose not need CSI and performs well

in slow time-varying channel, is studied.

The rest of this thesis is organized as follows. In Chapter 2 we present the transceiver

structure of a typical SM system along with spatial correlated channel models. In

Chapter 3, we propose two time varying channel estimation methods for SM systems and

give simulated performance. Chapter 4 describes a dual-polarized antenna array based

SM scheme and the associated CSI estimation methods for spatial correlated channels.

Space-time-coded systems are introduced in Chapter 5. Our main contributions are

summarized in Chapter 6.

The following notations are used throughout the thesis: upper case bold symbols

denote matrices and lower case bold symbols denote vectors. IN is a N × N identity

matrix. (·)T , (·)H, and (·)† represent the transpose, conjugate transpose, and pseudo-

inverse of the enclosed items, respectively. (·)−1 denotes the inverse of matrix. vec(·) is

the operator that forms one tall vector by stacking columns of a matrix. While E{·}, | · |,

and ‖ · ‖F denote the expectation, absolute value, and Frobenius norm of the enclosed

items, respectively, ⊙ and ⊗ are respectively the Hadamard and Kronecker product.
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Chapter 2

Preliminaries

2.1 Conventional MIMO System Model

When MIMO system is used in wireless communications, it is commonly referred

to the uni-polarized multiple input multiple out antenna system. These antennas are

spatial separated to yield an uncorrelated channel, thus they can provide diversity gain

and increase the reliability of wireless links [1]. Moreover, under suitable channel fading

conditions, spatially multiplexing gain can be achieved and increase the MIMO capacity.

For conventional MIMO system, the MIMO channel between transmitter and receiver

at time k is modeled as

H(k, τ) =

G
∑

p=1

Hp(k)δ(t− τp), (2.1)

where G is the maximum number of paths between the subchannel of a transmit and

receive antenna pair. τp is the delay of the pth path , and δ denotes the Dirac delta

function. If we consider a narrowband flat-fading MIMO system with NT transmit

antennas and NR receive antennas, MIMO channel representation is reduced to a NR ×

NT single-tap fading channel matrix. Then when data vector x(t) is transmitted, the

received signal is denoted as

y(k) = H(k)x(k) + z(k), (2.2)
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where for rayleigh-fading spatial-uncorrelated channel, the elements ofH(k) are indepen-

dent and identically distributed, zero mean complex Gaussian random variables. z(k) is

the additive white Gaussian noise (AWGN) vector, whose entries are of zero mean and

with variance σ2
z . Figure 2.1 gives the brief MIMO system model,

 

 

 

Receiver Transmitter 

 

Modulation Detection 
De-

multiplexing 

Figure 2.1: A MIMO system model.

2.2 Spatial Modulation (SM) Schemes and Their De-

tections

In MIMO system, many transmission techniques have been designed to improve

spectral efficiency such as vertical Bell Laboratories layered space-time (V-BLAST) ar-

chitecture. BLAST transmission systems suffer from high inter-channel interference

resulting from the simultaneous transmissions on the same frequency for MIMO chan-

nel. Spatial modulation (SM) is an innovative approach which can boost the spectral

efficiency and further avoid ICI by using active transmit antenna indices as additional

source of information. In the following subsections, we will discuss the transceiver design

of SM.
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2.2.1 Spatial Modulation Transmission

We consider the block fading case that channel gain remains unchanged within a

block time and eliminate the time parameter t in this chapter. To begin with, data bits

are partitioned into groups of m = log2(MNT ) bits where in each group the first log2NT

bits indicate the transmit antenna to be used and the remaining bits corresponds to an

M-QAM symbol. This M-QAM constellation is denoted as AM and the symbol in it

are transmitted by the indexed antennas. Figure 2.2 depicts the system model described

above.

 

Input bits Antenna Index Transmit Symbol  Antenna Index Transmit Symbol 

000  

001  

010  

011  

100  

101  

110  

111  

Pilot Pilot 

Pilot  Pilot  Pilot Data Pilot 

 

X Q 

Spatial 

Modulation 
Detection 

Tx Ant.  

Estimation 

Symbol 

Detection 

Spatial 

Demodulation 

H 

Figure 2.2: A MIMO-SM system model.

Spatial modulation (SM) maps m × B data matrix Q to X, NT × B transmitted

signal matrix, where B denotes block size which should be equal or larger than NR. The

reason is that Matrix X , [x1, · · ·xB] has only one nonzero element in each column

where xi is the signal vector transmitted at the ith time slot. At time slot i, the ℓth

entry of xi, xℓ,i, is the transmit symbol of antenna ℓ. The case when xℓi = 0 means

antenna ℓ is not used at the ith instant. One example of SM mapping rule is shown in

Table 2.1.

7



 

Input bits Antenna Index Transmit Symbol  Antenna Index Transmit Symbol 

000 1 +1  1 +1 + j 

001 1 -1  1 -1 + j 

010 2 +1  1 -1 - j 

011 2 -1  1 +1 - j 

100 3 +1  2 +1 + j 

101 3 -1  2 -1 + j 

110 4 +1  2 -1 - j 

111 4 -1  2 +1 - j 

 

Pilot Pilot 

Pilot  Pilot  Pilot Data Pilot Data 

Table 2.1: SM mapping table for 3 bits/transmission

At the receiver side, the NR × B received signal matrix Y can be expressed as

Y = HX+ Z, (2.3)

where

X = [x1, · · · ,xB]; (2.4)

Y = [y1, · · · ,yB]; (2.5)

Z = [z1, · · · , zB]; (2.6)

H = [h1, · · · ,hNT
]. (2.7)

Matrix H describes the overall NR × NT channel matrix whose (m,n)-th element

hm,n is the channel response between the nth transmit antenna and the mth receive

antenna. The elements of H are independent and identically distributed (i.i.d.), zero-

mean complex Gaussian random variables with unit variance, σ2
h = 1. In addition, Z is

the NR × B additive white Gaussian noise (AWGN) matrix, whose entries are of zero

mean and E{ zi zHi } = σ2
z INR

, observed at the receiver. We assume an average transmit

power of Ex, i.e.,

Ex =
1

B
E [ ‖X ‖2F ] =

1

B
E [ tr {XXH} ], (2.8)
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Through this thesis, we consider a quasi-static scenario, where channel remains un-

changed over the period of B and is independent of both X and Z.

Because only one transmit antenna is active, say ℓth antenna, during symbol time i,

alternatively we have

yi = hℓxℓi + zi, (2.9)

where xℓi ∈ AM and for i = 1, · · · , B, i = 1, · · · , NT

xi = [0, · · · , xℓ,i, · · · , 0]T ∈ CNT
, (2.10)

yi = [y1,i, · · · , yNR,i]
T ∈ CNR , (2.11)

zi = [z1,i, · · · , zNR,i]
T ∈ CNR, (2.12)

hj = [h1,j , · · · , hNR,j]
T ∈ CNR . (2.13)

2.2.2 Optimal Detector

Due to SM’s specific structure, its receiver is inherently of low complexity. With the

assumption that the channel state information (CSI) H is known to the receivers, we

introduce the single-stream-based maximum likelihood (ML) and matched filter (MF)-

based detector respectively in this and the next subsection, respectively.

Since the channel coefficients are assumed equally likely, the optimal detector based

on the ML principle is equal to maximizing the probability P (Y|H,X) [29],

P (Y|H,X) =
1

(πσ2
z)

NR
e
− 1

σ2
z
‖Y−HX‖2

F . (2.14)

ML detection exhaustively searches over all transmit antenna index and constellation

point pairs. It is often regarded as a high complexity detection technique. However, the

complexity of SM’s ML detector is much reduced due to the fact that only one transmit

antenna is used at a time. Therefore, the ML metric of each time can be expressed as

(ℓ̂i, x̂ℓi) = argmax
ℓ,xℓi

P (yi|H,xi) = argmin
ℓ,xℓi

‖yi − xℓihℓ‖2, (2.15)
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whose search space is of order O(MNT ). It is also called the single-stream-based ML

detector

2.2.3 Sub-Optimal Detector

For the MF-based detector, we need to normalize every column of H by its norm

before estimation of transmit antenna index. The reason is as follows. First, let

h̄j =
hj

‖hj‖
, j = 1, · · · , NT . (2.16)

As Cauchy-Schwarz inequality suggests:

|h̄H
ℓ hℓ| = ‖hℓ‖ =

‖hj‖‖hℓ‖
‖hj‖

≥ |h̄H
j hℓ|, ℓ = 1, · · · , NT , (2.17)

we can define the MF receiver as

gj = h̄H
j yi, i = 1, · · · , B, (2.18)

which reduces to ‖hℓ‖xℓ,i plus noise if j = ℓ or noise only when yi = xℓihℓ+zi. Therefore,

we can estimate transmit antenna index by finding the maximum value of |gj|.

ℓ̂i = argmax
ℓi∈{1,··· ,NT }

|gℓi,i|. (2.19)

Next, left-multiplying yi by the pseudo-inverse of hℓ̂i
(h†

ℓ̂i
= (hH

ℓ̂i
hℓ̂i

)−1hH
ℓ̂i
) and quan-

tizing this product to the constellation points with function Q(·) to recover transmit

symbol x̂ℓ̂i,i
, i.e.,

ǧℓ̂i,i = h†

ℓ̂i
yi =

hH
ℓ̂i
yi

‖hℓ̂i
‖2 =

gℓ̂i,i
‖hℓ̂i

‖ , (2.20)

x̂ℓ̂i,i
= Q(ǧℓ̂i,i). (2.21)

2.3 Spatial-Correlated MIMO Channel Models
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2.3.1 Conventional Correlated Channel Model

In general, a full correlation matrix R that specifies the NRNT × NRNT mutual

correlation coefficients between all channel matrix elements is used to describe the spatial

behavior of a general MIMO channel; specifically,

R , E{vec(HH)vec(HH)H}. (2.22)

For example, the spatial correlation matrix of a 2× 2 MIMO channel can be described

as

R =









1 t∗ r∗ s∗1
t 1 s∗2 r∗

r s2 1 t∗

s1 r t 1









, (2.23)

where t and r are transmit and receive antenna correlation coefficients, and s1
def
=

E{h1,1h
∗
2,2} and s2

def
= E{h1,2h

∗
2,1} are cross-channel correlation coefficients.

Consequently, a spatial correlated Rayleigh fading channel can be modeled as

vec(HH) = R
1

2vec(HH
ω ), (2.24)

where Hω is the i.i.d. complex Gaussian matrix with unit variance.

However, there are some difficulties in using this model. First, large number of

transmit and receive antennas will make the number of correlation matrix elements,

(NRNT )
2, too large to compute. Moreover, physical propagation of the radio channel,

such as angle of arrival (AOA), direction of departure (DOD), and etc., could not be

easily interpreted by this correlation matrix [24].

2.3.2 Kronecker Model

Kronecker model is commonly used when correlation between transmit and receive

antennas are independent and can be separated that the spatial correlation matrix is

given by the Kronecker product of those of the transmit and receive antennas, which is

reasonable when the main scattering is locally rich at each transmitter and receiver side
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[24],

H = R
1

2

RHω(R
1

2

T )
T , (2.25)

where NT × NT matrix RT and NR × NR RR represent spatial correlation of transmit

and receive antennas, respectively.

The separation statistic of Kronecker model implies that NRNT ×NRNT correlation

matrix of H can be expressed as

R = RR ⊗RT . (2.26)

Since the strict assumption of separate correlation between transmitter and receiver

side, it would not be appropriate to model a correlated channel where transmitter and

receiver side have some correlation leading to capacity and error probability misfits.

2.3.3 Virtual Channel Representation and Weichselberger Model

Both [25] and [26] consider joint correlation at both ends of MIMO channel, so

the correlated channel is modeled by basis matrices of two one-sided correlation matrix

and one coupling matrix which contains the correlation between transmitter and receiver

side. In [25], a virtual channel representation using predefined discrete Fourier transform

(DFT) matrices is proposed to model the correlated channel. Specifically,

H = FR(Ω̃virt ⊙Hω)F
H
T , (2.27)

where FR and FT are respectively NR ×NR and NT ×NT are predefined DFT matrices

and Ω̃virt is the coupling matrix. However, this model is restricted to single polarized

uniform linear arrays (ULAs) only, we therefor introduce in the following a model that

copes with this issue.

In [26], eigenbases of transmit and receive correlation matrices are used to model this

spatial correlated channel, i.e.,

H = UR(Ω̃⊙Hω)U
H
T , (2.28)
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where UR and UT are the eigenbasis of the receive and transmit correlation matrix,

respectively. With ΛR and ΛT being the diagonal matrices comprise the eigenvalues,

which are nonnegative, of RR and RT , the eigen decompositions of RR and RT are

RR = URΛRU
H
R and RT = UTΛTU

H
T , (2.29)

Ω̃ is the element-wise square root of the coupling matrix Ω which is defined as

[Ω]i,j = E{|uH
R,iHu∗

T,j|2}, i = 1, . . . , NR, j = 1, . . . , NT . (2.30)

where uR,i and uT,j are the ith and jth column vector of UR and UT , respectively. From

this coupling matrix, the mean amount of energy that is coupled with an eigenvector

of one side to that of the other can be identified a more general framework of channel

model.

2.3.4 Model-Based Correlated Channel

The model-based correlated channel is introduced by [27]. Since the channel matrix

H can be decomposed via singular value decomposition (SVD), H = UΛVH , where U

and V are NR × NR and NT × NT unitary matrices, respectively, and Λ is a NR × NT

diagonal matrix with non-negative entries. The two unitary matrices can be represented

by predefined unitary matrices Q1 and Q2 as UP1 = Q1 and VP2 = Q2 where P1 and

P2 are unitary. As a result, we have

H = Q1P
−1
1 Λ(P−1

2 )HQH
2 = Q1CQH

2 , (2.31)

where C is a complex random matrix, equation (2.29) can be regarded as a generalization

of all the models mentioned above. To be specific, it is equivalent to the Kronecker model

if C satisfies

vec(C) = (ΞT ⊗ΞR)vec(Hω), (2.32)

where ΞT and ΞR are obtained by Gram-Schmidt orthonormalization with R
1

2

T = Q2ΞT

and R
1

2

R = Q1ΞR, and is related to the Weichselberger model when

UT = Q2P
H
T and UR = Q1P

H
R , (2.33)
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with PT and PR being the eigenbasis matrices of E{CCH} and E{CTC∗} whose eigen-

values are the same as those of E{HHH} and E{HTH∗}. Finally, if Q1 and Q2 are

chosen to be composed of columns of DFT matrices, this general model is compatible

with the virtual channel representation by Sayeed [25].

The fact that second-order statistics is not required, because spatial correlation is

captured by predetermined nonparametric regression, reduces the number of parameters

needed to be estimated when modelling the channel H by (2.29). This provides a great

complexity reduction when the dimension of H is large.
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Chapter 3

Estimation of Spatial-Modulated
Time-Varying Channels

In this chapter, we first give a review of conventional pilot-based channel estimation

techniques and present the proposed time-varying channel estimation methods for SM

system.

3.1 Conventional Pilot-Based Channel Estimation

Methods

Considering a time-varying block-fading channel, its CSI is obtained by transmitting

pilot signal which is known to the receiver. Assume pilot signal matrices XP (k)’s are of

size NT ×B and the average pilot symbol energy equals to the data symbol energy. The

received signal at kth block time can be written as

YP (k) = H(k)XP (k) + ZP (k), (3.1)

where YP (k) is NR×B. H(k) is the NR×NT MIMO channel matrix at time k, and the

entries of AWGN matrix Zp(k) are i.i.d., zero mean complex Gaussian with variance σ2
z .

To estimate a time-varying channel, pilot signal blocks are inserted in transmit data

stream periodically. Transmit data detection can thus be conducted with the estimated

channel. However, if the channel changes rapidly, the period of pilot signal insertion
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should be short to keep up with the change. This in turn reduces the power or spectral

efficiency of the data signal. We illustrate this idea in Figure 3.1.
Table 1 SM mapping table 

 

Pilot Data Pilot Data 

 

Pilot Data Pilot Data Pilot Data Pilot Data 

 

 

Figure 3.1: Periodical pilot signal insertion in transmit data.

Two conventional pilot-based channel estimation methods which are discussed in the

following.

3.1.1 Least Square Channel Estimation

The least square (LS) channel estimate of H(k) is found by minimizing the squared

error ‖YP (k) − H(k)XP (k)‖2 [29]. As a result, the estimated channel ĤLS(k) can be

derived by

ĤLS(k) = YP (k)X
H
P (k)(XP (k)X

H
P (k))

−1 (3.2)

= H(k) + ZP (k)X
H
P (k)(XP (k)X

H
P (k))

−1.

While the main advantage of the LS channel estimation method is its low complexity, it

fails to take the statistics of the channel and noise into account. Such obliviousness can

result in significant noise power enhancement offer channel equalization performance

degradation. As LS estimation may be a suitable solution when channel and noise

statistics are unknown, it is not sufficient for our requirement.

3.1.2 Minimum Mean Square Error Channel Estimation

In order to solve the noise enhancement problem, minimum mean square error

(MMSE) channel estimation method is introduced. As its name suggests, if F minimizes
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the mean square error E{‖YP (k)F−H(k)‖2}. Since the entries of H(k) are assumed to

be unit-variance, we have

ĤMMSE(k) = YP (k)X
H
P (k)(σ

2
zINT

+XP (k)X
H
P (k))

−1 (3.3)

Based on the abovementioned channel estimation methods, we propose two time-

varying channel estimation methods for SM systems and discuss in the ensuing sections.

3.2 Decision-Directed SM Channel Estimation

The main idea of decision-directed channel estimation is to track channel variations

using detected data symbols of previous blocks as pilots. This method saves the pilot

signal overhead and thus retains the data rate. Due to the SM systems’ capability to

avoid ICI, the utilization of detected data symbols can be a good approach to estimate

channel. The reason is that it is proved the optimal channel estimation performance can

be achieved by using unitary pilot signal matrices which help decoupling channel vectors

at the receiver [30], [31]. This behavior can similarly be realized by SM transmit data

matrices. Although it is likely that one or more transmit antennas remain inactive in one

data block, in general, all channel coefficients would be updated for a sufficiently long

transmission period since the selected transmit antenna index is a uniformly distributed

random variable.

However, the problem of error propagation resides in all decision-directed channel

estimation methods. An incorrectly detected symbol of a previous block may affect the

channel estimation performance of its following blocks and produce more symbol errors

that continue to propagation along the entire transmission. Hence, pilot signals are

inserted periodically and the previous result of channel estimation is forgotten, and the

forgetting factor α is introduced to compress the error propagation effect.

The initial guess of channel coefficients is derived by transmitting a full block of pilot

signals and estimating with either LS- or MMSE- based methods. These coefficients can
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then be updated with decision-directed channel estimation for SM. When MF-based

detector is employed, as explained in Chapter 2, we first normalize the column vectors

of the estimated channel matrix of the previous ((k − 1)-th) block time, i.e.,

H̄(k − 1)
def
=

[

ĥ1(k − 1)

‖ĥ1(k − 1)‖
, · · · , ĥNT

(k − 1)

‖ĥNT
(k − 1)‖

]

. (3.4)

Then the received signal of current instant (kth block time) is multiplied by the normal-

ized channel matrix H̄(k − 1) and we have

gi(k)
def
=







g1,i(k)
...

gNT ,i(k)






= H̄H(k − 1)yi(k), i = 1, · · · , B. (3.5)

The active transmit antenna index of ith instant of block k can be estimated by finding

the maximum value of the MF output:

ℓ̂i(k) = argmax
ℓi∈{1,··· ,NT }

|gℓi,i(k)|, (3.6)

and the carried data is detected via gℓi,i(k),

x̂ℓ̂i
(k) = Q

(

gℓ̂i(k)

‖ĥℓ̂i
(k − 1)‖

)

. (3.7)

On the other hand, when ML detector is used, transmit antenna index and data are

jointly estimated by

(x̂ℓ̂i
(k), ℓ̂i(k)) = arg min

(xi,ℓi)
‖yi(k)− ĥℓi(k − 1)xi‖2. (3.8)

Let x̂i(k) = [0, · · · , 0, x̂ℓ̂i
(k), 0, · · · , 0]T , the estimated data matrix X̂(k) can be denoted

as

X̂(k) = [x̂1(k) x̂2(k), · · · , x̂B(k)], (3.9)

which may not be full rank. Define L = {1, · · · , NT} as the set of transmit antenna

indices and ℓ̂(k) = {ℓ̂1(k), · · · , ℓ̂B(k)} the set of active antenna estimates in block k. We

flatten X̂(k) by removing its all-zero rows, which have indices belong to L \ ℓ̂(k), and

denote the result by X̄(k).

18



The channel estimates for the columns indexed by ℓ̂(k) are thus

Ĥ[1, · · · , NR; ℓ̂(k)](k)
def
= Y(k)X̄H(k)(X̄(k)X̄H(k))−1. (3.10)

While columns that are not updated in this block are kept unchanged and remains the

same as the previous block, i.e.,

Ĥ[1, · · · , NR;L \ ℓ̂(k)](k) = Ĥ[1, · · · , NR;L \ ℓ̂(k)](k − 1). (3.11)

However, to ameliorate error propagation effect, we would like to update channel

estimate not so abruptly. We define, instead,

Ĥ(k) = (1− α)Ĥ(k) + αĤ(k − 1), (3.12)

where Ĥ(k) is of the form as (3.10) and (3.12) and 0 ≤ α ≤ 1.

We conclude this section by noting that the error-rate performance curve of this

scheme has an error floor in high SNR region due to the possibility that not all channel

coefficients are updated in each block. Therefore, superimposed pilot signals, which

ensure every coefficient is updated, are introduced in next section to improve channel

estimation performance.

3.3 SM Channel Estimation With Superimposed Pi-

lots

Superimposed pilot-assisted approaches add (superimposed) low power pilot signal

onto the data signals before transmission. At the receiver, the channel can be estimated

by these superimposed pilot signals. Unlike the traditional pilot-assisted methods, which

do not send any information during the estimation phase, superimposed pilot signals do

not cause any loss in transmit data rate. However, this is at the cost of decreasing

effective SNR due to the additional power for pilots. In the thesis, we propose a channel

estimation method, which combines the decision-directed channel estimation method

and use of superimposed pilot signals, for SM schemes.

19



Note that the initial channel coefficient estimates are acquired by LS or MMSE esti-

mation while after that the estimated coefficients are updated by the detected SM data

matrices and imposed pilot signals. Since for an SM system only one transmit antenna

is active at a time, other transmit antennas can transmit pilot signals simultaneously

to improve the channel estimation quality. The power of superimposed pilots shall be

carefully designed because of the following reasons: i) pilots with large powers may cause

serious ICI in SM system; and ii) low power pilots do not give reliable estimates.

At the transmitter, data matrix X(k) and NT × B superimposed pilot matrix S(k)

are transmitted at the same time. The received signal is denoted as

Y(k) = H(k)(X(k) + S(k)) + Z(k), (3.13)

Due to the fact that the antenna selection is random, chances are one or more

antennas are not active in a block duration. Thus, the transmit data matrix X(k)

might not be full rank and inversible, making channel tracking fails. Nevertheless, this

problem may be solved by designing the superimposed pilot matrix S(k) to be data-

dependent. Specifically, the pilot signals are transmitted by transmit antennas which

are not used in X(k) and its corresponding matrix S(k) has column vectors that span

Ker{X(k)} (nullspace of X(k)).

Let Nx(k) be the matrix consists of a set of basis vector of Ker{X(k)}, where it

satisfies

X(k)Nx(k) = 0, (3.14)

and the size of Nx(k) is B ×M withM =Nullity(X(k)).

Therefore,

Y(k)Nx(k) = H(k)(X(k) + S(k))Nx(k) + Z(k)Nx(k) (3.15)

= H(k)S(k)Nx(k) + Z(k)Nx(k).

In the following, we detail the design of the superimposed pilot signal matrix for

SM systems. For block k, S(k) has (B-M) nonzero vector, 0, and M single-component
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columns that have only one nonzero elements on the rows not used by X(k), where the

positions of the nonzero vectors depend on the time instants in which transmit antennas

are reused. For example, let both the number of transmit antennas and block size be 4.

For a single transmit data matrix

X(k) =









0 0 0 0
0 0 0 0
0 x2 x3 x4

x1 0 0 0









or X(k) =









x1 0 0 x4

0 0 0 0
0 x2 x3 0
0 0 0 0









, (3.16)

the corresponding superimposed pilot signal matrix can be

S(k) =









0 0 S1 0
0 0 0 S2

0 0 0 0
0 0 0 0









or S(k) =









0 0 0 0
0 S2 0 0
0 0 0 0
0 0 0 S4









, (3.17)

where Si’s are the superimposed pilot signals with energy Es.

Due to the SM characteristic (3.15) and the structure of superimposed pilots (3.17),

we proposed a channel estimation scheme for this system. It can be summarized by the

following procedure:

Step 1: With the detected data matrix X̂(k), derived by either MF-based or ML

detector, we obtain the matrix Nx̂(k) corresponding to its null space by solving M

underdetermined systems of linear equations

X̄(k) ·Nx̂[1, · · · , B; m](k) = 0 (3.18)

for m = 1, · · · ,M , where X̄(k)
def
= X̂[ℓ̂(k); 1, · · · , B](k).

To simplify channel estimation (in the next step) and incorporate the sparse nature

of transmit data matrix, we arrange Nx̂(k) into a special form such that

S̄[L \ ℓ̂(k); 1, · · · ,M ](k) = EsIM , (3.19)

where S̄(k) = S(k)Nx̂(k). The technique to achieve it is given in Appendix A.

Step 2: With Nx̂(k) superimposed pilots can be taken out as

Ȳ(k)
def
= Y(k)Nx(k) = H(k)S(k)Nx(k) + Z(k)Nx(k). (3.20)
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Hence the LS channel estimations on the pilot positions can be obtained as

Ĥ[1, · · · , NR;L \ ℓ̂(k)](k) = Ȳ(k)P̄(k))H(P̄(k)P̄(k))H)−1. (3.21)

Let H̄[1, · · · , NR;L\ℓ̂(k)](k) def
= Ĥ[1, · · · , NR;L\ℓ̂(k)](k) and H̄[1, · · · , NR; ℓ̂(k)](k)

def
= 0,

Ȳ(k)
def
= Y(k)− H̄(k)S(k). (3.22)

The LS channel estimates for the remaining columns ℓ̂(k) are

Ĥ[1, · · · , NR; ℓ̂(k)](k) = Ȳ(k)X̄H(k)(X̄(k)X̄H(k))−1, (3.23)

where X̄ is defined similarly in Section 3.2.

3.4 Simulation Results

In this section, the simulation results of the proposed two channel estimation meth-

ods are presented. For a 4× 4 MIMO system, we generate each independent path of the

spatial uncorrelated time-varying channels by jake’s model [35]. The carrier frequency

is 2GHz and sampling time Ts is 0.1ms of the duration 10s channel paths. Then the

time correlation function is defined as

E{hij(t1)h
∗
ij(t2)} = J0(2πfD(t1 − t2)Ts). (3.24)

Setting the block length to 4 for the reason that at least 4 symbol times are needed

to fully estimate the total number of channel coefficients. The frame size is 5 where the

first block consist of pilot signals only. In addition, QPSK constellation is used.

In Figure 3.2 and Figure 3.3, we generate the time-varying channel at mobile velocity

30 km per hour, and compare the bit error rate(BER) and normalized minimum mean

square error(NMSE) of decision-directed channel method based on MF-based and ML

detector and perfect CSI under the same pilot overhead. It is shown that the performance

of decision-directed channel estimation is better than that of only initial pilot estima-

tion is used. Moreover, the decision-directed channel estimation based on ML detector
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outperforms MF-based detector. The BER and NMSE performance of decision-directed

channel estimation method via different mobile velocity based on MF-based and ML

detector are given in Figure 3.4, Figure 3.5, Figure 3.6, and Figure 3.7. It can be seen

that there is error floor in high SNR region.
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Figure 3.2: BER performance of SM detectors with decision-directed channel estimation.

Superimposed channel estimation method is proposed to improve the error floor

performance of decision-directed channel estimation, the energy of superimposed pilot

signals affects the BER performance which is shown in Figure 3.8 where the MF-based

detector is used and the mobile velocity is set to 30 km/hr. If the energy of superimposed

signals is too large, it would cause the serious ICI to receiver and thus degrades the BER

performance. However, if the energy is small, it could not have good channel estimation

performance. Hence, the optimal energy of the superimposed signal is approximately

2/SNR which is shown in Figure 3.9. The BER performance of superimposed channel

estimation method under different mobile velocity based on MF-based and ML detector

are shown in 3.10 and 3.11, respectively. In addition, we can see from these simulation

results that the use of superimposed signal can get better performance than that of
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Figure 3.3: NMSE performance of SM detectors with decision-directed channel estima-
tion.

decision-directed channel estimation method in high SNR region and in high mobile

velocity.
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Figure 3.4: BER performance of MF-based detector with decision-directed channel es-
timation under various mobility.
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Figure 3.5: NMSE performance of MF-based detector with decision-directed channel
estimation under various mobility.
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Figure 3.6: BER performance of ML detector with decision-directed channel estimation
under various mobility.
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Figure 3.7: NMSE performance of ML detector with decision-directed channel estimation
under various mobility.
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Figure 3.8: BER performance of superimposed channel estimation with different super-
imposed pilot symbol energy.
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Figure 3.9: BER performance of different superimposed pilot symbol energy versus SNR.
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Figure 3.10: BER performance of superimposed channel estimation method with MF-
based detector under different mobile velocity.
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Figure 3.11: BER performance of superimposed channel estimation method with ML
detector under different mobile velocity.
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Chapter 4

Spatial Modulation Using
Dual-Polarized Antenna Arrays

4.1 Dual-Polarized MIMO Channel Models

In MIMO wireless communication systems, antenna spacings are usually required

to be at least half a wavelength at subscriber units and ten wavelengths at base stations

to achieve satisfactory performance. This condition restricts the implementation of

MIMO systems on some space-limited devices. However, since orthogonal polarization

can decrease the correlation of transmit antennas or receive antennas, the usage of co-

located dual-polarized antennas can be a space- and cost-effective alternative. Figure

4.1 depicts a co-located dual-polarized MIMO system with antennas grouped into pairs.

For ideal dual-polarized antennas, cross-polar transmissions, from a vertically-polarized

transmit antenna to a horizontally-polarized receive antenna or from a horizontally-

polarized transmit antenna to a vertically-polarized receive antenna, equal to zero.

Practically, there are two depolarization mechanisms that can cause polarization in-

terference: cross-polar isolation (XPI) due to use of imperfect antennas and the depo-

larization caused by the propagation channel which can be identified by the existence of

cross-polar ratio (XPR). The interplay between both effects forms the global cross-polar

discrimination (XPD) which quantifies the separation between two channels of different
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Figure 4.1: A co-located dual-polarized MIMO system model.

polarizations. Besides, vertically-polarized electromagnetic wave is vulnerable to electric

current on the ground, so co-polar ratio (CPR) can be taken into consideration in some

cases. Figure 4.2 shows the depolarization mechanisms discussed above.

We first consider one dual-polarized transmit-receive antenna pair, Let pij
def
= |hij |2 (i, j ∈

{V,H}) be the instantaneous dual-polarized channel gain. The channel is a 2×2 matrix,

HP =

[

hV V hV H

hHV hHH

]

, (4.1)

and depolarization parameters can be defined as

(1) Cross-polar isolation:

Transmitter : XPIT
def
=

E{pii}
E{pij}

(4.2)

Receiver : XPIR
def
=

E{pii}
E{pji}

(4.3)

(2) Cross-polar ratio:

XPR
def
=

pvv
phv

=
phh
pvh

(4.4)
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Figure 4.2: Depolarization mechanisms.

(3) Co-polar ratio:

CPR
def
=

pvv
phh

(4.5)

Analytically, XPI effect at transmitter and receiver can be respectively modelled with

coupling matrices

Mt =

[

1
√
χa,t√

χa,t 1

]

, (4.6)

Mr =

[

1
√
χa,r√

χa,r 1

]

, (4.7)

where χa,t and χa,r are the inverse of XPI at transmitter and receiver, respectively. If

the used dual-polarized antennas are in perfect condition, these scalars will equal to

zeros. Note that this depolarization mechanism affect line-of-sight (LOS) and scattered

components whereas XPR exists only in non-line-of-sight components.

While the above definitions concentrate only on the channel gains, to get a thorough

understanding of the depolarization effect, the dual-polarized channel can be characterize

by the correlation matrix E{vec(HH
P )vec(H

H
P )

H}. The diagonal terms of this 4×4 matrix

are the average channel gains of each channel coefficient and the off-diagonal ones include

the cross-polar correlations (XPC) between hii and hij or hji, co-polar correlation (CPC)
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between hvv and hhh, and anti-polar correlation (APC) between hvh and hhv. This model

is verified by several measurements to be a good approximation to the real dual-polarized

channels. The corresponding parameters to various environment settings are given in

[19] and references therein.

In the following, one dual-polarized antenna pair is extended to a MIMO system.

As the measurement result [19] shown, in Rayleigh fading environment, the spatial

correlation properties are independent of the polarization, i.e., beam pattern are similar

for all antennas, the parameters concerning the polarization and spatial correlation can

be decoupled in our model. It is especially true when the system is implemented in

macrocells or microcells. It is explained in the following.

An NR × NT dual-polarized MIMO fading channel consists of NT/2 and NR/2 co-

located dual-polarized transmit and receive antenna pairs. If all dual-polarized antennas

are identically oriented, the joint transmitter-to-receiver direction spectrum would be

equivalent for all co-located antennas. The matrix can thus be written as

H̃x = HNR
2

×
NT
2

⊗MrW̃Mt (4.8)

where HNR/2×NT /2 is the spatial correlated Rayleigh fading channel and W̃ is the de-

polarization matrix which is separated from the spatial correlation parameters. Matrix

W̃ models the differential attenuation and the correlated phase shifts between the dual-

polarized channels. Specifically,

vec(W̃H) =









1
√
µχϑ∗ √

χσ∗ √
µδ∗1√

µχϑ µχ
√
µχδ∗2 µ

√
χσ∗

√
χσ

√
µχδ2 χ

√
µχϑ∗

√
µδ1 µ

√
χσ

√
µχϑ µ









1/2

vec(W̃H
ω ), (4.9)

where µ and χ represent the inverse of CPR and XPR, σ and ϑ are the receive and

transmit correlation coefficients between polarization vv and hv, hh and hv, vv and vh

or hh and vh. δ1 and δ2 are respectively co- and anti-polar correlation coefficients. The

last term,

W̃ω
def
=

[

ejΦ1 ejΦ2

ejΦ3 ejΦ4

]

, (4.10)
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where Φk’s are uniformly distributed in [0, 2π).

As a result, a dual-polarized MIMO channel can be formed into

H̃x =













H1,1 H1,2 . . . H
1,

NT
2

H2,1 H2,2 . . . H
2,

NT
2

...
...

...
...

HNR
2

,1
HNR

2
,2

. . . HNT
2

,
NT
2













, (4.11)

where Hi,j is the dual-polarized channel matrix of the jth transmit and ith receive

antenna pairs:

Hi,j =

[

hiV jV hiV jH

hiHjV hiHjH

]

. (4.12)

where each entry hiPijPj
is the channel coefficient between the Pi-polarized ith transmit

antenna pair and Pj-polarized jthe receive antenna pair. In addition, we define the

column vectors of H̃x as

H̃x =
[

h1V ,h1H , · · · hNT
2

V
,hNT

2
H

]

. (4.13)

4.2 Dual-Polarized Spatial-Correlated (DPSC) Chan-

nel Model

Most of the previous proposals model spatial correlated channels by the Kronecker

model which is not reasonable when joint correlation exists between transmitter and

receiver. A more general model [27] has been discussed in Chapter 2 and is considered

here to incorporate with the dual-polarized systems.

We assume the XPIs of all dual-polarized antenna pairs are infinite, i.e., the transmit

and receive antenna in a pair are perfectly polarized. Matrices Mr and Mt become iden-

tity and are thus ignored in the following discussion. A dual-polarized MIMO channel

is denoted as

H̃x = HNR
2

×
NT
2

⊗ W̃. (4.14)

It has been proven that 4.14 can be equally represented by

H̃x = QNR,KR
C̃QH

NT ,KT
, (4.15)
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where C̃ is complex random and QNR,KR
and QNT ,KT

are NR × KR and NT × KT

predefined unitary matrices, respectively with KR (≤ NR) and KT (≤ NT ) being the

modelling orders to be discussed later [27].

Several types of functions can be chosen as (basis) vectors in the predefined unitary

matrices [27]. In this thesis, polynomial basis functions [32] are used. Specifically, these

polynomial functions are of degree D where the entries of the corresponding basis matrix

D are specified as

[D]i,j = (i− 1)j−1, i, j = 1, 2, · · · , D, (4.16)

where D equals to NT when D is used to determine QNT ,KT
and NR to determine

QNR,KR
. Consider first the construction of QNT ,KT

. In order to satisfy the unitary

property, by applying QR decomposition, we can obtain the orthonormal polynomial

basis matrix Q, i.e., D = QR. Then, we can choose the first KT columns of Q to

be the predefined matrices QNT ,KT
where modelling order KT can be determined by

Akaike information criterion (AIC) or minimum description length (MDL) approach

[33]. QNR,KR
is obtained analogously.

Due to the property that co-located dual-polarized antennas experience the same

spatial characteristics, we are able to reduce the degree of this basis matrix D to half of

the original DPSC MIMO channel model is thus modified to

H̃x = (QNR
2

,KR
⊗ I2)C(QH

NT
2

,KT

⊗ I2), (4.17)

C = C̃⊗ W̃, (4.18)

where the depolarization effect is coupled into C and the modelling orders KR ≤ NR

2
and

KT ≤ NT

2
. With predefined QNR

2
,KR

and QNT
2

,KT
, identification of the unknown channel

H̃x is equivalent to the estimation of C̃, which usually has fewer unknowns than those

of H̃x.
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4.3 Time-Varying DPSC Channel Estimation

Let XP (k) be NT ×B, a full-rank pilot matrix used to estimate time-varying DPSC

channel H̃x. The received signal can be expressed as

YP (k) = H̃x(k)XP (k) + ZP (k) (4.19)

= (QNR
2

,KR
⊗ I2)C̃(k)(QH

NT
2

,KT

⊗ I2)XP (k) + ZP (k).

where QNT
2

,KT
, QNR

2
,KR

, and XP (k) are known to the receivers. By a property of vector

operation, we have

vec(ABC) = (CT ⊗A)vec(B). (4.20)

Due to the fact that (4.20),

vec(YP (k)) =
[

(XP (k)
H(QNT /2,KT

⊗ I2))⊗ (QNR/2,KR
⊗ I2)

]

vec(C(k)) (4.21)

+vec(ZP (k)),

the LS estimate of C(k) can be obtained as

vec(Ĉ(k)) = (VHV)−1VHvec(YP (k)), (4.22)

where V
def
=
(

XP (k)
H(QNT /2,KT

⊗ I2)
)

⊗ (QNR/2,KR
⊗ I2).

Note that the decision-directed channel estimation technique proposed in Chapter

3 can also be utilized here by substituting XP (k) in (4.22) by X̂(k)[ℓ̂(k); 1, · · · , B](k).

The detection algorithms for SM in dual-polarized channel are discussed in the next

subsection.

4.4 Data Detection in SM-DPSC Channels

When co-located dual-polarized in the SM system, information is conveyed by the

index of the transmit antenna pair and the specific polarization in that pair used and

the symbol transmitted. Hence, m = log2(NTM) bits are transmitted in each channel
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use. The receiver’s task thus contains the used transmit antenna and polarization index

estimation and transmitted symbol detection. The system model is depicted in Figure

4.3. A mapping rule for this SM system with two dual-polarized antenna pairs in both

the transmitter and receiver and BPSK or QPSK modulated symbols is suggested in

Table 4.1

HP- Ant. 

VP- Ant. 

HP- Ant. 1

VP- Ant. 1

HP- Ant. 

VP- Ant. 

HP- Ant. 1 

VP- Ant. 1

SM Detection SMD

Polar. Est. Ant. Est. Symbol Det.

Transmitter Receiver

Figure 4.3: A dual-polarized SM system model.

Three data detection techniques are proposed for the spatial modulated dual-polarized

MIMO system. Since we only concentrate on its data detection in this section, CSI H̃x

is assumed known at the receiver and block index k is ignored. The received signal

corresponding to transmitted signal X can be represented as

Y = H̃xX+ Z. (4.23)

The ML detector is simply

(x̂i, ℓ̂i) = argmin
xi,ℓi

‖yi − h̃x,ℓixi‖2, i = 1, · · · , B. (4.24)
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Input bits Antenna Index Transmit Symbol  Antenna Index Transmit Symbol 

000 VP-1 +1  VP-1 +1 + j 

001 VP-1 -1  VP-1 -1 + j 

010 HP-1 +1  VP-1 -1 - j 

011 HP-1 -1  VP-1 +1 - j 

100 VP-2 +1  HP-1 +1 + j 

101 VP-2 -1  HP-1 -1 + j 

110 HP-2 +1  HP-1 -1 - j 

111 HP-2 -1  HP-1 +1 - j 

 

Pilot Pilot 

Pilot Data Pilot Data Pilot Data Pilot Data 

Table 4.1: An SM mapping table for the dual-polarized system for 3 bits/transmission

The MF-based detector for (4.24) is similar to the traditional one (2.16)-(2.21) for

(2.3) with following procedure:

H̄ =

[

h̃x,1

‖h̃x,1‖
, · · · , h̃x,NT

‖h̃x,NT
‖

]

, (4.25)

gi = H̄Hyi, (4.26)

ℓ̂i = argmax
ℓi∈{1,··· ,NT }

|gℓi,i|, (4.27)

x̂ℓi = Q(
gℓ̂i,i

‖h̃x̂,ℓi
‖
), i = 1, · · · , B. (4.28)

Prior to the introduction of the last detection method, we consider the following.

Since antenna polarization selection bares information for SM system in dual-polarized

MIMO system, we shall give a few facts. Based on the Cauchy-Schwarz inequality, for

a specific spatial channel i (the ith column of H̃x, hi), we have the following due to the

mismatch of polarization:

|hH
iV hiH |
‖hiH‖

≤ |hH
iV hiV |
‖hiV ‖

= ‖hiV ‖ (4.29)

which agree with our intuition. On the other hand, for two different spatial channel

vectors, say hi and hj , the correlation between their portions corresponding to the same

polarization outweighs that corresponding to different polarizations, i.e.,

|hH
iV hjH |
‖hjH‖

≤ |hH
iV hjV |
‖hjV ‖

≤ ‖hiV ‖. (4.30)
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This is because of the inability of a polarized antenna to receive signal of other polar-

izations. In this way, the (horizontal) polarization of a signal passing through hiV can

be effective estimated prior to the antenna and symbol detection.

As a result, the polarization used can be detected before ML detection of antenna

pair index and symbol. This suboptimal method effectively lower the complexity of

detection algorithm with some performance loss. Specifically, first calculate (4.24) and

find the MF output of vertical or horizontal polarized transmit antenna of each transmit

antenna pair,

n̂P = [n̂V n̂H ] =

NT
2
∑

i=1

argmax
nP∈{[1,0],[0,1]}

∣

∣h̄H
iV y · nP,1 + h̄H

iHy · nP,2

∣

∣ (4.31)

where nP is the indicator vector whose position of value 1 represents the detected po-

larization in a specific transmit antenna pair and n̂V and n̂H count the total number

of detected polarization used in all transmit antenna pairs. Based on the majority vote

algorithm, the used polarization of the transmit antenna is decided via

P̂ = arg max
P=V,H

{n̂V n̂H} (4.32)

Based on the result, the ML detector of the antenna pair used and symbol transmitted

only needs to search over the specific P̂ -polarized channel vectors,

(x̂i, ℓ̂i) = arg min
xi,ℓi=iP̂

‖yi(k)− h̃x,ℓixi‖2, i = 1, . . . , B. (4.33)

This detection method reserves the high detection performance of the ML detector but

needs only about half of the complexity required by the latter. As will be shown later,

it outperform the MF-based detector.

4.5 Simulation Results

In this section, we investigate the performance of SM scheme using dual-polarized

antenna. For simplicity and the measurement results in [19], we concentrate on the effect
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of XPR and CPR. The values of µ and χ are set to 0.7 and 0.1 for all the simulation

results except for Figure 4.8 and Figure 4.9, and the parameters of polarized correlation

are set to zero. First, the BER performance of 2 × 2 SM comparing to 4 × 4 SM using

dual-polarized antenna is given in Figure 4.4 where MF-based detector is used and CSI

is assumed known to receiver. We can see from the result that the use of dual-polarized

antennas can give the polarization diversity gain.
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SM−BPSK
SM−16 QAM
DPSM−BPSK
DPSM−16 QAM

Figure 4.4: Comparison of BER performance for SM under conventional MIMO channel
and dual-polarized MIMO channel.

We also give a BER performance comparison between SM and V-BLAST and space

time code based on Alamouti[4] under dual-polarized channel in Figure 4.5. Based on

the same spectral efficiency which is 8 bits/transmission, SM outperforms V-BLAST

and Alamouti scheme. V-BLAST in this simulation result uses QR-based detector and

Alamouti and SM scheme use ML detector.

Then the normalized mean square error of dual-polarized spatial correlated channel

estimation method is shown in Figure 4.6. In this figure, we use the 3GPP SCM model
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Figure 4.5: Comparison of BER performance for SM and VBLAST and Alamouti scheme
under dual-polarized channel for 8 bits/transmission.

to generate the co-located dual-polarized spatial correlated channel. Two channels with

different angle spread (AS) 2 and 15 with mobile velocity 60 km/hr are adopted in

the simulation result. The number of transmit and receive antennas setting to 8, we

compare the NMSE performance of conventional MIMO channel estimation methods

and modified dual-polarized channel estimation method. It can be seen from this figure

that dual-polarized spatial correlated channel estimation method only use half of the

basis to achieve the same estimation performance with conventional method.

The BER performance of proposed detectors for SM in dual-polarized system is

shown in Figure 4.7. We consider a 4× 4 MIMO channel using dual-polarized antennas,

and QPSK modulated signals. From the result, ML detector performs the best of three

detectors and the low-complexity sub-optimal detector outperforms MF-based detector

where we assume CSI is known to receiver in this simulation result. We also investigate

the influence on the three detectors of depolarization effect caused by propagation chan-

nel. From Figure 4.8, fixed parameter χ to 0.5, when the value µ is too small, all the three

detectors can not have adequate performance because the horizontal-polarized channel
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Figure 4.6: NMSE comparison of channel estimation for dual-polarized spatial-correlated
MIMO channel with different modelling order, AS=2 and 15.

is too small than vertical and thus cause the signals transmit by horizontal-polarized

antenna cannot be successfully detected. The effect of χ which denotes the inverse of

XPR value with fixed µ = 0.5 on the detectors’s performance is given in Figure 4.9. The

result shows that when the value of χ is too large which means that cross interference

between polarization is large, the performance of the MF-based and the suboptimal

detector degrade since the large χ value can make the channel vector of vertical- and

horizontal-polarized transmit antenna become similar thus the value of MF output of

both the vertical and horizontal polarized antenna are approximately equal. Therefore,

the MF-based and suboptimal detectors cannot detect the polarization correctly.

The following part, we give the simulation result of different time-varying channel

estimation methods in DPSC channel where t and r are assumed to be 0.3, and three

detectors are investigated. In Figure 4.10–4.15, the BER and NMSE performance of

decision-directed channel estimation method based on MF-based, suboptimal and ML
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Figure 4.7: Comparison of BER performance of SM for MF-based detector, suboptimal
detector and ML detector under perfect CSI.

detector are shown, we can see that using ML or suboptimal detectors can have better

performance than that of MF-based detector. In addition, the performance loss increase

when the mobile velocity increases. In Figure 4.16, BER performance of superimposed

channel estimation method is given. It performs better than decision-directed channel

estimation in high SNR and fast varying channel.
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Figure 4.8: The effect of different mu (inverse of CPR) value with different detectors on
BER performance.
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Figure 4.9: The effect of different chi (inverse of XPR) value with different detectors on
BER performance.
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Figure 4.10: BER performance of decision-directed channel estimation method with
MF-based detector in DPSC channel under different mobile velocity.
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Figure 4.11: NMSE performance of decision-directed channel estimation method with
MF-based detector in DPSC channel under different mobile velocity.
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Figure 4.12: BER performance of decision-directed channel estimation method with low
complexity ML detector in DPSC channel under different mobile velocity.
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Figure 4.13: NMSE performance of decision-directed channel estimation method with
low complexity ML detector in DPSC channel under different mobile velocity.
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Figure 4.14: BER performance of decision-directed channel estimation method with ML
detector in DPSC channel under different mobile velocity.
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Figure 4.15: NMSE performance of decision-directed channel estimation method with
ML detector in DPSC channel under different mobile velocity.
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Figure 4.16: BER performance of superimposed channel estimation method based on
three detectors in DPSC under different mobile velocity.
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Chapter 5

Space-Time Block-Coded Spatial
Modulation (STBC-SM) System

5.1 STBC-SM System

Conventional space-time block codes (STBCs) offer an excellent way to exploit

the potential of MIMO systems because of the improvement of transmission reliabil-

ity, obtaining both diversity and coding gain. Redundant copies of the data stream

transmitted through multiple transmit antennas via STBC. As a result, different copies

of the data are received and hence can provide the more reliable information. More-

over, STBC schemes are simple to implement and decode. However, the symbol rate of

unitary STBCs is upper-bounded by 1 symbol per channel use. Therefore, space-time

block-coded SM (STBC-SM) system is introduced to improve the spectral efficiency of

conventional STBCs [28].

In the STBC-SM scheme, both STBC symbols and the indices of the transmit an-

tennas by which these symbols are transmitted carry information. The famous STBC

proposed by Alamouti [4] suggests that the system transmits two symbols, drawn from

the constellation, by the two transmit antennas respectively at a time. During the first

time slot, the symbols x1 and x2 are simultaneously transmitted by the first and second

transmit antennas, respectively, then, in the next time slot, −x∗
2 and x∗

1 are transmitted
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by the respective transmit antennas. In other words, the codeword is given by

X = [x1 x2] =

[

x1 −x∗
2

x2 x∗
1

]

. (5.1)

The above Alamouti codeword matrix is extended to the antenna domain for the STBC-

SM system where the selection of two out of NT antennas to transmit the two symbols

introduce additional carried information. The spectral efficiency is shown to be superior

to the conventional STBC or SM system in [28]. We first give an example of STBC-SM

systems in the following [28].

Consider a MIMO system with four transmit antennas (NT = 4), a STBC code ξ is

designed to be of the following form:

ξ1 = {X11,X12} =

{

[

x1 x2 0 0
−x∗

2 x∗
1 0 0

]T

,

[

0 0 x1 x2

0 0 −x∗
2 x∗

1

]T
}

,

ξ2 = {X21,X22} =

{

[

0 x1 x2 0
0 −x∗

2 x∗
1 0

]T

,

[

x2 0 0 x1

x∗
1 0 0 −x∗

2

]T
}

ejθ. (5.2)

where the codebooks ξ1 and ξ2 contains two codewords Xij, j = 1, 2 that do not interfere

with each other. A codebook is constructed by grouping a codewords satisfyingXH
ijXik =

02×2, j, k = 1, 2, j 6= k, and θ is a rotation angle to be optimized for a given modulation

scheme. With this STBC-SM codebook design, coding gain and diversity gain of the

scheme can be maximized. A mapping rule of this example with BPSK modulation

symbols is given in Table 5.1.

When there are more than two codebooks, multiple rotation angles shall be imple-

mented. The optimization of these rotation angles in the STBS-SM system is done by

maximizing the minimum distance in the code. For detail, see [28].

Noted that the number of transmit antennas in the STBC-SM scheme needs not be

an integer power of 2 as is restricted in SM scheme and thus provides design flexibility.

A design procedure to generalize STBC-SM system to NT antennas is given in the

following:
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Table 5.1: STBC-SM mapping table for 2 bits/transmission

 Antenna 

Position 

Input 

Bits 

Transmit 

Matrix 

  Antenna 

Position 

Input 

Bits 

Transmit 

Matrix 

 

 

0000 
 

 

 

1000 
 

0001 
 

1001 
 

0010 
 

1010 
 

0011 
 

1011 
 

 

0100 
 

 

1100 
 

0101 
 

1101 
 

0110 
 

1110 
 

0111 
 

1111 
 

 

Polar. Est. Ant. Est. Symbol Det.

Step 1: Find the number of possible combinations of two out of NT transmit anten-

nas. This number c = ⌊
(

NT

2

)

⌋2ı , where ı is a positive integer, should be a power of 2 to

carry information bits by antenna selection.

Step 2: To make codewords in i codebook do not interfere with each other, their

nonzero rows have to be nonoverlapping. Therefore, we can calculate the number of

codewords in a codebook and total number of codebooks to be a = ⌊NT

2
⌋ and n = ⌈ c

a
⌉,

respectively.

Step 3: Construct the STBC-SM codewords starting from ξ1 which contains a non-

interfering codewords as

ξ1 = {[X 02×(NT−2)]
T , [02×2 X 02×(NT−4)]

T , · · · , [02×2(a−1) X 02×(NT−2a)]
T}, (5.3)
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where X is defined as (5.1). The other codebooks, ξi, 2 ≤ i ≤ n, are created sequentially

in a similar manner, where every codebook ξi should contain non-interfering codewords

of different transmit antenna combinations and must be composed of codewords that

were never used in the previous codebooks ξj, j ≤ i.

Step 4: Determine the optimal θi of each codebook ξi by maximizing the minimum

distance where i = 1, · · · , n. Code ξ = {ξ1, ξ2, · · · , n} is determined.

Since there are c antenna combinations, the spectral efficiency of STBC-SM is

m =
1

2
log2 c+ log2M [bits/s/Hz], (5.4)

where the factor 1
2
is due to the normalization by the block size B = 2. With codeword

Xξ(k) drawn from this determined code, the received signal at time k can be denoted as

Y(k) = H(k)Xξ(k) + Z(k), (5.5)

where Xξ(k) is an NT × 2 STBC-SM codeword matrix. While the conventional ML

detector needs an exhaustive search over cM2 metrices, i.e.,

X̂ξ(k) = arg min
Xξ∈ξ

‖Y(k)−H(k)Xξ‖2, (5.6)

the unitary property of Alamouti code suggests a simpler ML detector. Specifically, the

received signal can be replaced by a 2NR × 1 vector [4]

y(k) = Hξ(k)

[

x1(k)
x2(k)

]

+ z(k), (5.7)

where Hξ(k) is the 2NR × 2 equivalent channel matrix corresponding to the different

realizations of STBC-SM codewords. In the case of NT = 4, there are c = 4 possible
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realizations for Hξ,

Hℓ1 =















h1,1 h1,2

h∗
1,2 −h∗

1,1
...

...
hNR,1 hNR,2

h∗
NR,2 −h∗

NR,1















, Hℓ2 =















h1,3 h1,4

h∗
1,4 −h∗

1,3
...

...
hNR,3 hNR,4

h∗
NR,4 −h∗

NR,3















, (5.8)

Hℓ3 =















h1,2ϕ h1,3ϕ
h∗
1,3ϕ −h∗

1,2ϕ
...

...
hNR,2ϕ hNR,3ϕ
h∗
NR,3ϕ −h∗

NR,2ϕ















, Hℓ4 =















h1,4ϕ h1,1ϕ
h∗
1,1ϕ −h∗

1,4ϕ
...

...
hNR,4 hNR,1

h∗
NR,1ϕ −h∗

NR,4ϕ















,

where ϕ = ejθ and time index k is neglected for the moment. The ML detector (5.9)

can be simplified and decoupled into two independent ML symbol detectors due to the

column-orthogonality in every Hℓi, i.e,

(ℓ̂i, x̂j,ℓi(k)) = arg min
ℓi,xj∈γ

‖y(k)− hℓi,j(k)xj‖2, j = 1, 2. (5.9)

5.2 Differential STBC-SM Scheme

Differential space-time modulation (DSTM) has received much attention recent by,

since it not only avoids MIMO channel estimation but also can achieve considerably

high spatial diversity gain. In order to realize DSTM, the data information needs to be

first encoded into differential space-time block codes (DSTBCs). In general, DSTBC is

designed to be unitary to simplify the transceiver [34].

In the thesis, we propose a differential STBC-SM system which dose not need CSI

knowledge at the receiver and thus outperforms STBC-SM in the presence of channel

estimation error. With the need that the DSTBCs should be unitary, it necessitates us

to modify the non-unitary Alamouti code-based STBC-SM codewords introduced in the

previous section.

Due to the fact that for anNT -transmit-antenna STBC-SM system, only two transmit

antennas are selected to transmit symbols and the rest of the antennas are inactive, we

52



let the number of transmit antennas be even 2 and extend the STBC-SM codeword

matrix to NT × NT with a procedure given later. We recall the NT = 4 case as an

example, the STBC-SM codeword

Xξ =

[

x1 x2 0 0
−x∗

2 x∗
1 0 0

]T

(5.10)

can be extended to an unitary matrix by extending the block size B = 4 and letting

the unused antennas to transmit additional symbols in time instants 3 and 4. The

corresponding DSTBC codeword matrix becomes

XD =









x1 x2 0 0
−x∗

2 x∗
1 0 0

0 0 x3 x4

0 0 −x∗
4 x∗

3









. (5.11)

Similar procedures generalized to other value of NT is depicted as follows:

Step 1: Each codeword designed for the NT -transmit antenna STBC-SM system is

taken as the first two columns of a DSTBC codeword matrix.

Step 2: To achieve the unitary property, the available transmit antennas at the

third and fourth time cannot include the transmit antennas used in the previous tow

instants. Therefore, the third and fourth columns (negleting the rows in which the first

two columns have nonzero elements) are designed to be the codewords of (NT − 2)-

antenna STBC-SM system.

Step 3: Similar process is done to the fifth and sixth columns and the remaining

columns by neglecting the occupied rows by the previous steps until all columns are

considered.

Since we produce ck =

⌊(

NT − 2(k − 1)
2

)⌋

2ı
possible combinations at each step

k, the spectral efficiency of the proposed DSTBC-SM system is

m =
1

NT

(log2 c1 + log2 c2 + · · ·+ log2 cNT
2

) + log2M [bits/s/Hz] (5.12)

which is smaller than that of STBC-SM system (5.9).
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Let each symbol xi be taken from a unimodular ∈ ξD constellation with energy Ex

(e.g. M-PSK, M-QAM, etc). For each codeword XD, it satisfies

XDX
H
D = 2ExINT

, (5.13)

where ξD is the code constructed via the procedure and is of cardinality
∏

NT
2

k=1 ck. An

identity matrix which dose not contain any information is sent to initialize the trans-

mission, i.e, VD(0) = INT
. By mapping information bits to a DSTBC-SM codeword,

the differential encoded codeword matrix of the kth block becomes

VD(k) = ṼD(k − 1)XD, k ≥ 2 (5.14)

where

ṼD(k − 1) =
1√
2Ex

VD(k − 1) (5.15)

denotes the normalized version of ṼD(k−1) to ensure constant transmission power, i.e.,

ṼD(k − 1)ṼH
D(k − 1) = INT

.

As a result, the received signals at (k − 1)- and kth block are respectively

Y(k − 1) = H(k − 1)VD(k − 1) + Z(k − 1), (5.16)

Y(k) = H(k)VD(k) + Z(k). (5.17)

For slow time-varying channel, the channel matrices at two consecutive block times are

similar, hence H(k − 1) ∼= H(k). The optimal non-coherent detector can be

X̂D(k) = arg min
XD∈ξD

‖Y(k)− 1√
2Ex

Y(k − 1)XD‖2. (5.18)

In addition, due to the unitary structure of Alamouti code, the transmit data symbols can

be estimated individually via the similar approach discussed in (5.8)–(5.7). Therefore,

the complexity of the optimal non-coherent detector is further reduced.

5.3 Simulation Results

The performances of the proposed DSTBC-SM are given in this section. In Figure

5.1, we compare the performance of STBC-SM and DSTBC-SM. The transmit and
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receive antennas are set to 4, and the slow-tim varying channel is generated by Jake’s

model the same as in previous Chapters. The performance of DSTBC-SM with QPSK

modulation under the mobile velocity of 40 km/hr outperforms STBC-SM with LS

channel estimation error due to the fact that the differential design dose not need CSI

at the receiver and can thus avoid the estimation error effect. We also investigate the

DSTBC-SM performance under different mobile velocity in Figure 5.2, and it can be

seen that the performance degrades with higher mobile velocity.
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Figure 5.1: Comparison of BER performance for STBC-SM with perfect CSI, DSTBC-
SM and STBC-SM with channel estimation error.
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Figure 5.2: BER performance of DSTBC-SM for different mobile velocity.
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Chapter 6

Conclusion

Several issues associated with SM systems are investigated in this thesis. We first

propose two channel estimators for time-varying SM channels. The decision-directed

estimator gives good error-rate performance when SNR is not too high but exhibits

error floor in high SNR regime. To overcome the error propagation effect, we propose

a superimposed pilot-aided estimator which not only outperforms the decision-directed

method but reduce the pilot overhead.

New SM schemes for dual-polarized antenna arrays are then presented, along with a

modified channel estimator which takes into account the spatial correlations. The corre-

sponding signal mapping and MF-based and ML detection techniques are proposed. We

also suggest a suboptimal low-complexity detector which achieves near-ML performance.

Looking into the depolarization effect on the performance of these detectors, we find

that considerable performance degradation incurs when the CPR value is small. On the

other hand, large XPR values cause performance loss on the MF-based and suboptimal

detectors but have little or no influence on the ML detector’s performance.

We also propose a differential STBC-SM scheme to relieve the burden of channel

estimation requirement. The simulation result shows that it performs well in slow time-

varying environments and outperforms the conventional STBC-SM with imperfect CSI

knowledge.

Detailed studies on the feasibilities of various SM systems, including cost, complexity
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and implementation losses have to be performed before the SM technology becomes a

realistic design option. As has been mentioned, the spatial channels have to be dissimilar

to a certain extent for the receiver to resolve the transmit antenna indices. We think

there must be ways to make the equivalent MIMO subchannels as dissimilar as possible

by proper signal design.

Finally, we notice that the SM scheme has recently been applied for high speed LED

(array) communications where optical on-off keying is used. To enhance the throughput

of such optical communication systems, higher-order modulations like PPM or PAM

can be employed. In an indoor environment where multiple optical sources coexist, opti-

cal interference must be considered and the associated interference-insensitive detection

scheme has to be developed if LED communication systems are to become practical.
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Appendix A

In order to find a set of basis for the null space matrix that can be used to separate

superimposed pilots from data matrix, the choices of basis need to be satisfy a specific

form. Since each column of the data matrix X(k) only has one nonzero element, it is

not complicated to find the basis of its null space. We give the algorithm to solve this

issue as follows.

Let one data matrix X of size NT ×B be

X =











x1,1 x1,2 · · · x1,B

x2,1 x2,2 · · · x2,B
...

... · · · ...
xNT ,1 xNT ,2 · · · xNT ,B











(1)

, and define the B × M matrix Nx which consists of the null space basis of X and

M = Nullity(X),

Nx =











nx1,1 nx1,2 · · · nx1,M

nx2,1 nx2,2 · · · x2,M
...

... · · · ...
nxB,1 nxB,2 · · · nxB,M











. (2)

These two matrices satisfy the condition that XNx = 0. This is equal to solve a

homogeneous system of linear equations:

nx1,jxi,1 + nx2,jxi,2 + · · ·+ nxB,jxi,B = 0, j = 1, · · · ,M (3)

where the bases are found by the rows of matrix X whose nonzero elements are larger

than one. For each equation, we set the second variable with nonzero coefficient to 1 and

solve the value of the first variable by setting other variables to zero and thus we can

get one basis of the null space. Then the second variable with nonzero coefficient is set
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to 0 and the third nonzero coefficient is set to 1 and solve the value of the first variable

to get another basis. The rest can be done by the same manner until all coefficients are

solved in one equation. By this way, we can get M basis of the null space for matrix X

to form Nx.

For example, when a 4× 4 BPSK data matrix is used,

X =









1 1 −1 0
0 0 0 1
0 0 0 0
0 0 0 0









, (4)

the corresponding Nx is

Nx =









−1 1
1 0
0 1
0 0









. (5)
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