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中中中文文文摘摘摘要要要

記記記憶憶憶型型型多多多重重重存存存取取取萊萊萊斯斯斯衰衰衰減減減通通通道道道之之之衰衰衰減減減數數數

研究生：周育興 指導教授：莫詩台方 博士

國立交通大學電信工程研究所碩士班

在本篇論文中，我們分析記憶型萊斯衰減多重存取通道的總通道容量。在此通道中，

衰減程序為高斯分佈並且有一個可目視的路徑成分，而且，有一個以上的使用者在同一時

間裡傳送資料。為了簡化我們的分析，我們只考慮單傳送天線單接收天線的情況，也就是

說，所有傳送端的使用者和接收端都僅使用單一天線。

在衰減通道容量的分析中，我們還不知道通道容量的精準表示式。我們使用一種稱作漸

進分析的方法，在極限當可用的功率趨近無限大時得到通道容量。它顯示通道總容量在高

訊號與雜訊比時會以雙指數成長達到無限大。而在高訊號與雜訊比的展開式中，第二項是

一個叫做衰減數的常數。

在我們的研究中，我們找到一個單傳送天線單接收天線，m個使用者，一般記憶型萊

斯衰減多重存取通道衰減數的上界。和其自然的下界－單使用者，單傳送天線單接收天線

通道的衰減數結合後，我們得到精確的單傳送天線單接收天線，m個使用者，一般記憶型

萊斯衰減多重存取通道衰減數。為了達到這個衰減數，我們必須停止比較差的使用者們傳

送，並且讓最好的使用者們用分享時間的方式傳送。



Abstract

The Fading Number of Multiple-Access

Rician Fading Channel with Memory

Student: Chou Yu-Hsing Advisor: Prof. Stefan M. Moser

Institute of Communications Engineering

National Chiao Tung University

In this thesis we analyze the sum-rate capacity of the Rician fading multiple-access

channel (MAC) with memory. The fading process of the channel is Gaussian in addition to

a line-of-sight component. Moreover, there are more than one user sending data at the same

time. To simplify our analysis, we consider the single-input single-output (SISO) case, i.e.,

all the transmitters and the receiver use one antenna.

In the analysis of the fading channel capacity, the exact expression of the capacity is not

yet known. A way called asymptotic analysis is used to derive the channel capacity in the

limit when the available power tends to infinity. It is shown that at high signal-to-noise ratio

(SNR), the sum-rate capacity grows to infinity doublelogarithmically. The second term in

the high-SNR expansion is a constant called fading number.

In our work, we derive an upper bound on the fading number of the general m-user

SISO Rician fading MAC with memory. Combining the natural lower bound on the fading

number of the single-user SISO channel, we then obtain the exact fading number of the

general m-user SISO Rician fading MAC with memory. To achieve the fading number, we

have to switch off the worse users and allow the best users communicate by time-sharing.
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Chapter 1

Introduction

With the development of the technology, the usage of wireless communication is more and

more common nowadays. Therefore, it is important to analyze the communication in this

area. There is much interference in nature: we divide the influences of the interference in

wireless channel model into additive Gaussian noise and multiplicative noise called fading.

The fading impact on the signal amplitude is often destructive and the channels with fading

impact usually called fading channels. Moreover, it is more complicated to design a good

communication system for fading channels than the additive white Gaussian noise (AWGN)

channel. In this thesis, we research a multiple-access fading channel with memory, where

we restrict the fading to the special case of Rician fading.

In Rician fading the multiplicative noise is Gaussian distributed with a line-of-sight path

between the transmitter and the receiver. Furthermore, we assume memory which implies

that not only the present fading process but also the past fading process affects the output

of the channel.

Multiple-access indicates that there are more than one user on the transmitter side

that send data at the same time. The difference between one user with multiple antennas

and multiple-access is that in the latter all users are individual and have no knowledge of

the other users, i.e., they are independent of each other, while in the former all antennas

cooperate. A common example of a multiple-access channel (MAC) are several mobile

phones in the same area that communicate to the same base station.

In order to make a communication system efficient, we have to analyze the channel

capacity, which was initially introduced in the famous landmark paper of Shannon — ”A

Mathematical Theory of Communication” [12]. In this paper, Shannon proved that in every

communication channel, we can transmit data reliably with a theoretical maximum rate

denoted capacity, i.e., for every transmission rate below the capacity, we can make the

probability of transmission errors as small as wished. As a result, how good a channel is

can be judged by the capacity of the channel.

In the case of MAC, the rate of one user might be affected by other users. It is unfair

to decide whether the channel is good or not based on only one user. For this reason, we

calculate the sum of all users’ rate and use the sum-rate capacity to denote the maximum

1



Chapter 1 Introduction

of the sum to replace the original capacity.

Although there are many research results about the wireless communication channel,

the channel capacity of a general fading channel is still unknown. To solve the problem, re-

searchers have tried many different approaches. A common approach is to assume that from

the training sequences, the receiver can estimate the channel state perfectly. Unfortunately,

it is impossible to measure the channel state perfectly even if we have sent a large amount

of training data. Moreover, another problem is the bandwidth for these training sequences

cannot be neglected.

Even though the receiver cannot have perfect knowledge of the channel state, the receiver

can be assumed to have some intelligence of the channel by the received information data.

We call a channel model noncoherent, when both the transmitter and the receiver have no

idea about the real state of the channel, but they know the characteristics of the channel.

Since the exact expression of noncoherent channel’s capacity is not yet known, a way

called asymptotic analysis is used to derive the channel capacity at asymptotic high and

low signal-to-noise ratio (SNR). In [3], [6] and [8], Lapidoth and Moser have derived the

asymptotic high-SNR capacity of general single-user fading channels; the asymptotic low-

SNR capacity of fading channel has also been derived in [11]; and the asymptotic high-SNR

sum-rate capacity of the memoryless MAC is derived in [4]. In our work, we extend the

result of the memoryless MAC [4] to the case with memory.

Since the evaluation of the noncoherent channel’s capacity includes the problem of op-

timization, it is difficult to get the exact channel capacity. Instead of deriving the channel

capacity directly, we find an upper and a lower bound of the channel capacity and try to

make them tight. From [7], we know a natural upper bound and a natural lower bound on

the sum-rate capacity of MAC. The sum-rate capacity of a MAC can be upper-bounded by

the capacity of the multiple-input single-output (MISO) channel and lower-bounded by the

capacity of the single-input single-output (SISO) channel. Unfortunately, the upper bound

is loose. Based on the duality-based upper bound on the mutual information in [3] and [6],

we obtain a tighter upper bound on the sum-rate capacity.

In [6, Theorem 6.10], the result is proved that in the regime of high-SNR, the capacity

grows only double-logarithmically in the SNR such that the capacity mainly is decided by a

constant called fading number. This result directly extends to our model, too. Consequently,

we focus on the computation of the fading number in this thesis. The precise definition of

the fading number is given in Section 3.4.

The main contributions of this thesis are as follows. Firstly, we find an upper bound

on the fading number of MAC from the duality-based upper bound on sum-rate capacity

of MAC. Next, we derive the exact fading number of the two-user and the general m-user

MAC.

The structure of this thesis is as follows: In the reminder of this chapter we will shortly

describe our notation. The channel model will be introduced in Chapter 2. In Chapter 3, we

will give some concepts that are related to our analysis. In Chapter 4, we review some pre-

vious results that we will use in the following chapters. The main results and the derivation

of the results are shown in Chapter 5 and Chapter 6. Finally, we will give the conclusion

2



Chapter 1

and discuss the results and future works in Chapter 7.

In order to make this thesis easier to read, we attempt to use a consistent and precise

notation. For random quantities, we use upper-case letters such as X to denote scalar

random variables, and their realizations are written in lower-case, e.g., x. For random

vectors we use bold-face capitals, e.g., X and bold lower-case for their realization. Constant

matrices are denoted by a special font of upper-case letters, e.g., H and for random matrices

we use another font, e.g., H. Scalars are typically denoted using Greek letters or lower-case

Roman letters.

Some exceptions that are widely used in literature and therefore kept in their customary

shape are as follows:

• h(·) denotes the differential entropy of a continue random variable.

• I(·; ·) denotes the mutual information functional.

Furthermore, we use the capitals Q and W to denote probability distribution functions:

• Q(·) denotes a distribution on an input of a channel.

• W (·|·) denotes a channel law, i.e., the distribution of the channel output when the

channel input is given.

The letter C denotes the channel capacity for single-user or the sum-rate capacity for

multiple-user. The energy per symbol is denoted by E . Also note that we use log(·) to

denote the natural logarithmic function.

3



Chapter 2

Channel Model

In this chapter, we will introduce our channel model of the multiple-access Rician fading

channel. We assume that the channel model is noncoherent in the sense that neither the

transmitter nor the receiver knows the real state of the channel model. Moreover, the

transmitter and the receiver only have the information about of channel characteristics,

e.g., the distribution of the channel state. In Section 2.1, we consider the m-user SISO

channel model and give some mathematical formulas. In Section 2.2, we will describe the

special cases of the two-user MAC and the memoryless MAC.

2.1 The m-User SISO Rician Fading MAC with Memory

The multiple-access channel is a channel where more than one user transmits data to the

receiver at the same time. Furthermore, every user does not know the state of other users

i.e., all users are independent of each other. In our channel model, we assume that the

channel has memory, i.e., the current channel state depends on the past channel states. We

assume that the channel is a discrete-time model with a common clock known to all users.

We consider a SISO multiple-access channel with m users at the transmitter side. Each

user and the receiver use only one antenna. As illustrated in Figure 2.1, the total number

of transmit antennas is m.

At time k, the output Yk ∈ C is given by

Yk = HT

kxk + Zk (2.1)

= H1,kx1,k + · · ·+Hm,kxm,k + Zk. (2.2)

Here Hk ∈ C
m is a random vector that denotes the time-k random fading vector; xk ∈ C

m

denotes the time-k input vector of m users; Zk ∈ C is a random variable that denotes the

time-k additive noise.

The additive noise {Zk} is a independent and identically distributed (IID), zero-mean,

circularly symmetric, complex Gaussian random variable, i.e., {Zk} is IID ∼ NC

(
0, σ2

)
for

some σ2 > 0.

4



2.1 The m-User SISO Rician Fading MAC with Memory Chapter 2

In general, we can assume that the fading process {Hk} and the additive noise {Zk} are

independent, and neither does depend on the input {xk}. Furthermore, we can assume the

fading process Hk be any distribution. In our analysis, we only discuss the case of stationary

Rician fading with memory. Thus, every component {Hi,k} which represents the channel

fading for the i-th user is Gaussian distributed, i.e., at time k

Hi,k ∼ NC

(
di, σ

2
)
, i = 1, . . . ,m (2.3)

for some σ2 > 0, where di ∈ C is a constant called the line-of-sight component. The memory

is defined by a spectral distribution function Fi(λ) such that the prediction error of Hi,k

given from its past {Hi,j}
k−1
j=−∞ is

ǫ2i = exp

(
∫ 1

2

− 1
2

log F′i(λ)dλ

)

, (2.4)

which is shown in [9] and [13]. Moreover, we assume the different channels to be independent,

i.e.,

{Hi,k} ⊥⊥ {Hj,k}, ∀i, j = 1, . . . ,m, i 6= j. (2.5)

As for the input, because of the property of the multiple-access channel, the different

users are not allowed to cooperate, i.e.,

{Xi,k} ⊥⊥ {Xj,k}, ∀i, j = 1, . . . ,m, i 6= j. (2.6)

Furthermore, we use a symbol E to denote the total power allowed and consider one of three

different constraints for the input:

• Peak-Power Constraint: At every time-step every user i is allowed to use a power

of at most κi

mE :

Pr
[

|Xi,k|
2 >

κi

m
E
]

= 0 (2.7)

for some fixed number κi > 0.

• Average-Power Constraint: Averaged over the length of a codeword, every user i

is allowed to use a power of at most κi

mE

E
[
|Xi,k|

2
]
≤

κi

m
E (2.8)

for some fixed number κi > 0.

• Power-Sharing Average-Power Constraint: Averaged over the length of a code-

word all users together are allowed to use a power of at most κ̄E

E

[
m∑

i=1

|Xi,k|
2

]

≤ κ̄E (2.9)

for some fixed number κ̄ > 0.

5



Chapter 2 Channel Model

In all cases, we have the signal-to-noise ratio:

SNR ,
E

σ2
. (2.10)

Note that if κi = 1 for all i, we have the special case where all users have an equal power

available. Also note that in (2.7) and (2.8), we have normalized the power to the number

of user m. From an engineering point of view, this might be strange; however, in regard of

our freedom to choose κi, it is irrelevant, and it simplifies our analysis since we can easily

connect the power-sharing average-power constraint with other two constraints. Indeed, if

we define κ̄ to be the average of the constants {κi}
m
i=1, i.e.,

κ̄ ,
1

m

m∑

i=1

κi (2.11)

then the three constraints are in order of strictness: the peak-power constraint is the most

stringent of the three constraints, i.e., if (2.7) is satisfied for all i = 1, . . . ,m, then the

other two constraints are also satisfied; and the average-power constraint is the second most

stringent in the sense that if (2.8) is satisfied for all i = 1, . . . ,m, then the power-sharing

average-power constraint (2.9) is also satisfied. In the remainder of this thesis, we will always

assume that (2.11) holds.

It is worth mentioning that the slackest constraint, i.e., the power-sharing average-power

constraint, implicitly allows a form of cooperation: even if the user are still assumed to be

statistically independent, we do allow cooperation concerning power allocation. This is not

very realistic, however, we include it anyway because it will help in deriving bounds on

the sum-rate capacity. As a matter of fact, it will turn out that the asymptotic sum-rate

capacity is unchanged irrespective of which constraint is assumed.

X1,k

X2,k

Xm,k

...

Yk

Figure 2.1: The m-user SISO MAC.
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2.2 The Simplified Channel Model Chapter 2

2.2 The Simplified Channel Model

Now, we consider the special case of a two-user SISO multiple-access channel with memory.

We assume that there are only two users in our channel model, i.e., m = 2. At time k, the

time-k output of channel can be simplifed as

Yk = H1,kx1,k +H2,kx2,k + Zk (2.12)

where H1,k, H2,k and Zk are as the same as we mentioned before. As for the input, the two

users are not allowed to cooperate, i.e.,

{X1,k} ⊥⊥ {X2,k}. (2.13)

Moreover, given X1,k = x1,k, X2,k = x2,k, and the past fading process {Hj}
k−1
j=−∞, the

variance of the output Yk is

ǫ21|x1,k|
2 + ǫ22|x2,k|

2 + σ2 (2.14)

where ǫ2i > 0 is the prediction error (2.4).

Another special case is the memoryless version of the m-user channel (2.1), the output

of which is given by

Y = HTx+ Z (2.15)

= H1x1 + · · ·+Hmxm + Z. (2.16)

Here H ∈ C
m is a random vector that denotes the fading vector of fading process; x ∈ C

m

denotes the input vector of m users; Z ∈ C is a random variable that denotes the additive

noise.

The additive noise Z and the input x are as the same as the case with memory. The

difference between the two cases is we assume that the channel is memoryless such that the

present output only depends on the present input and the present fading process. Therefore,

the past fading process has no effect on the present fading, and we drop the prediction errors.

7



Chapter 3

Mathematical Preliminaries

In this chapter, we review some important notions that help us to analyze our channel

model. We consider the memoryless channel as shown in (2.15) and (2.16) with only single

user, the output of which is given as

Y = Hx+ Z. (3.1)

In Section 3.1, we review the knowledge of the channel capacity, furthermore, we provide

the idea of sum-rate capacity to compute the channel capacity of channel with more than

one user. In Section 3.2, we give the concept that the power of input escapes to infinity.

Moreover, we provide a lemma expressing in some conditions that the power of input may

escape to infinity. In Section 3.3, we mention the stationarity of the input distribution that

makes our channel model easier to analyze. In Section 3.4, we introduce the fading number

which is relative to the fading channel.

3.1 The Channel Capacity

Firstly, we review the definition of channel capacity in [12] provided by Shannon. The

channel capacity of a discrete memoryless channel (DMC) is defined as

C , max
QX

I(X;Y ) (3.2)

where the maximization is taken over all possible input distributions QX . Next, we consider

the general case of continuous channel with memory, i.e., the input and output of the channel

are continuous alphabet, and the channel capacity becomes:

C , lim
n→∞

1

n
sup
Qn

X

I(Xn
1 ;Y

n
1 ) (3.3)

where Xn
1 symbols the squence X1, . . . , Xn, and the supremum is over the set of all proba-

bility distributions of Xn
1 .

Furthermore, there must be a power constraint for the input of the channel:

C , lim
n→∞

1

n
sup

Qn
X
∈D

I(Xn
1 ;Y

n
1 ) (3.4)

8



3.2 Escaping to Infinity Chapter 3

where D is the set of all probability measures Qn
X satisfying the given constraint, i.e.,

|Xk|
2 ≤ E , ∀k (3.5)

for the peak power constraint or

1

n

n∑

k=1

E
[
X2

k

]
≤ E (3.6)

for the average power constraint.

When we extend the channel model to multiple-user, the capacity becomes a capacity

region. This is too complicated, so we replace it by the sum-rate capacity that is given as:

C = sup
Qn

X
∈D

(R1 + · · ·+ Rm) (3.7)

= lim
n→∞

1

n
sup

Qn
X
∈D

I(Xn
1 ;Y

n
1 ) (3.8)

where Ri is the achievable rate of the i-th user; D is the set of all probability measures

Qn
X
, the m subsets of which are independent and satisfy the given constraint (2.7) for the

peak-power constraint, (2.8) for the average-power constraint or (2.9) for the power-sharing

average-power constraint.

3.2 Escaping to Infinity

In this section, we introduce the concept of input distributions that escape to infinity in [3],

[6]. A sequence of input distributions parameterized by the allowed cost (in our case the

cost of the fading channel is the available power or the SNR, respectively) is said to escape

to infinity if it assigns to every fixed compact set a probability that tends to zero as the

allowed cost tends to infinity. That is to say such a distribution does not use any finite-cost

symbols in the limit that when the allowed cost tends to infinity.

Since the asymptotic capacity of the fading channels can only be achieved by input

distributions that escape to infinity, this notion is very important. As a matter of fact we

can show that to achieve a mutual information of only identical asymptotic growth rate as

the capacity, the input distribution must escape to infinity.

Then, we give the definition of escaping to infinity for the fading channel.

Definition 3.1. Let {QE}E≥0 be a family of input distribution for the memoryless fading

channel (3.1), where this family is parameterized by the available average power E such that

EQE

[
‖X‖2

]
≤ E , E ≥ 0. (3.9)

We say that the input distributions {QE}E≥0 escape to infinity if for every E0 > 0

lim
E↑∞

QE(‖X‖2 ≤ E0) = 0. (3.10)

9
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And we have the following lemma:

Lemma 3.2. Assume a single-user memoryless SISO fading channel as given in (3.1) and

let W (·|·) denote the corresponding conditional channel law. Let {QE}E≥0 be a family of

input distributions satisfying the power constraint (3.9) and the condition

lim
E↑∞

I(QE ,W )

log log E
= 1. (3.11)

Then {QE}E≥0 escape to infinity.

Proof. A proof can be found in [3], [6].

From the engineering point of view, this concept is intuitive that the input should utilize

the resource (available power) completely as the available power tends to infinity, as a result,

any fixed symbol is not used in the limit.

Remark 3.3. When computing the bounds on the fading number (which is part of the

capacity in the limit when E tends to infinity), we can assume that for every E0 > 0

Pr
(
‖X‖2 ≤ E0

)
= 0. (3.12)

Next, we generalize escaping to infinity to multiple user, and there is a proposition which

is stated in [4].

Proposition 3.4. Let {QE}E≥0 be a family of joint input distributions of the multiple-access

fading channel given in (2.15) and (2.16), where the family is parameterized by the available

average power E such that

EQE

[
‖X‖2

]
≤ E , E ≥ 0. (3.13)

Let W (·|·) be the channel law, and {QE} be such that

lim
E↑∞

I(QE ,W )

log log E
= 1. (3.14)

Then at least one user’s input distribution must escape to infinity, i.e., for any E0 > 0

lim
E↑∞

QE

(
m⋃

i=1

{

‖Xi‖
2 ≥

E0
m

})

= 1. (3.15)

Proof. A proof can be found in [4].

3.3 Stationarity

In this section, we give the idea of the capacity achieving input distributions that are

stationary in [8]. One of the main assumption about our channel model is that the fading

processes and the additive noises are stationary. Since the assumption allows us to shift

10
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random quantities in time, it is important for the results and the derivation. From an

intuitive point of view, it is obvious that a stationary channel model should have a capacity

achieving input distribution that is also stationary. Unfortunately, we are not aware of

a rigorous proof of this claim. However, [8, Theorem 3] proves that for the MIMO fading

channel, the capacity can be approached up to a τ > 0 by a distribution that looks stationary

apart from edge effects. We simplify the MIMO fading channel to MISO fading channel

where there is only one antenna at the output.

Theorem 3.5. Consider a MISO channel model with input xk ∈ C
nT and output Yk ∈ C

which is shown as

Yk = HTxk + Zk. (3.16)

Note that the channel is both stationary and unaffected by zero input vector 0 in the follow-

ing sense: for every choice of n ∈ N and t ∈ Z, for some integers n < −|t| and n > n+ |t|,

and for every distribution Q ∈ P(CnT×n) we have

I
(
00+t
n ,Xn+t

1+t ,0
n
n+1+t;Y

n
n

)
= I (Xn

1 ;Y
n
1 ) (3.17)

whenever both Xn+t
1+t on the LHS and Xn

1 on the RHS have the same distribution Q.

Now fix some non-negative integer κ and some power E > 0. Then for every τ > 0 there

corresponds some positive integer η = η(E , τ) and some distributions Qκ+1
E,τ ∈ P(CnT×(κ+1))

such that for a blocklength n sufficiently large there exists some input Xn
1 satisfying the

following conditions.

1. The input Xn
1 nearly achieves capacity in the sense that

1

n
I(Xn

1 ;Y
n
1 ) ≥ C(E)− τ. (3.18)

2. For every integer µ with 0 ≤ µ ≤ κ, every length-(µ+ 1) block of adjacent vectors

(Xℓ, . . . ,Xℓ+µ) (3.19)

take from within the sequence

Xη,Xη+1, . . . ,Xn−2η+2 (3.20)

has the same joint distribution Q
µ+1
E,τ , where this distribution Q

µ+1
E,τ is given as the

corresponding marginal distribution of Qκ+1
E,τ .

3. In particular, all vectors in (3.20) have the same marginal distribution Q1
E,τ .

4. The marginal distribution Q1
E,τ gives rise to a second moment E

E
[
‖Xk‖

2
]
= E , k ∈ {η, . . . , n− 2η + 2}. (3.21)

11
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5. The first η−1 vectors and the last 2(η−1) vectors satisfy the power constraint possibly

strictly

E
[
‖Xk‖

2
]
≤ E , k ∈ {1, . . . , η − 1} ∪ {n− 2η + 3, . . . , n}. (3.22)

Proof. A proof can be found in [8].

Remark 3.6. Neglecting the edge effects for the moment, Theorem 3.5 basically says that,

for every µ ≤ κ, every block of µ+1 adjacent vectors has the same distribution independent

of the time shift. From this it immediately follows that the distribution of every subset of

(not necessarily adjacent) vectors of a µ + 1 block does not change when the vectors are

shifted in time (simply marginalize those vectors out that are not members of the subset).

Therefore, Theorem 3.5 almost proves that the capacity achieving input distribution is

stationary: the only problems are the edge effects. Note that κ can be chosen freely, but has

to remain fixed until n has been loosened to infinity. That is, to get rid of the edge effects

one needs to first let n tend to infinity, before one can let κ grow.

3.4 The Fading Number

When we focus on the asymptotic analysis of channel capacity at high SNR, the channel

capacity grows only double-logarithmically in the SNR, which has been shown in [3], [6].

It means that at high SNR, the addition of power is inefficient since to get an additional

bit improvement in capacity, we have to square the SNR. In fact, the difference between

channel capacity and log log SNR is bounded as the SNR tends to infinity, i.e.,

lim
E↑∞

{

C(E)− log log
E

σ2

}

< ∞. (3.23)

The bounded term is called the fading number. The precise definition of fading number

is as follows.

Definition 3.7. The fading number χ (Hk) of a fading channel with fading matrix Hk is

defined as

χ (Hk) , lim
E↑∞

{

C(E)− log log
E

σ2

}

. (3.24)

Thus, whenever χ is finite and the limit of (3.24) exists, we can express the capacity as

C(E) = log log
E

σ2
+ χ+ o(1). (3.25)

Here when E tends to infinity, the o(1) term tends to zero. Therefore, at high SNR, we can

approximate the channel capacity of a fading channel to

C(E) ≈ log log
E

σ2
+ χ. (3.26)

12
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Note that this approximation is not always valid. In the regime of low-SNR to medium-SNR,

the capacity is dominated by the o(1) term that cannot be neglected. However, we only

focus on high-SNR regime in the analysis of the asymptotic capacity, furthermore, especially

in the condition that the SNR tends to infinity. Hence we can use the asymptotic expression

of the channel capacity shown as (3.26) which is constructed by a double-logarithmical term

decided by the SNR and a constant called fading number instead of the intractable exact

expression. Moreover, since the first double-logarithmically term is always the same at high

SNR, we can even only be concerned about the fading number.

The most important effect of the fading number is that it symbols a criterion for the

communication system. From (3.26), we know the capacity is extremely power-inefficient

at high SNR, as a result, we should avoid transmission in this regime. Since the fading

number is a constant, the capacity is mainly dominated by the o(1) term in low-SNR regime,

by fading number in medium-SNR regime and by double-logarithmical term in high-SNR

regime. The fading number can provide a threshold of how high the capacity can be before

entering the high-SNR regime, i.e., the fading number can give a threshold SNR0 such that

once the SNR is higher than SNR0, the enlargement of SNR is inefficient to the channel

capacity. For more details see [8].
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Chapter 4

Previous Results

In this chapter we review some known results that are related to our analysis. In Section 4.1,

we derive natural upper and lower bounds of the multiple-access channel sum-rate capacity.

Furthermore, we find bounds on the fading number of the MAC channel. The results

are based on [7]. In Section 4.2, we give an upper bound on the mutual information of

memoryless MAC fading channel, which is derived in [7]. In Section 4.3, we provide two

equalities introduced in [5] that are needed in our analysis.

4.1 Natural Upper and Lower Bounds

In this section, we consider the channel model of a two-user SISO MAC fading channel as

shown in (2.12). Note that the difference between the MAC and the MISO fading channel

with two transmitters and one receiver is that the two transmitters of the latter can cooperate

while the two transmitters of the former are independent. Therefore, in the MISO fading

channel, we can get higher transmission rate than the MAC fading channel, i.e., the sum-

rate capacity of the MAC fading channel is upper-bounded by the capacity of the MISO

fading channel:

CMAC(E) ≤ CMISO,av(E). (4.1)

On the other hand, we can regard the SISO fading channel as a special case of the MAC

fading channel where only one user communicates. As a result, the sum rate of MAC fading

channel cannot be smaller than the single-user rate that can be achieved when the weaker

of the two users is switched off, i.e.,

CMAC(E) ≥ max
i∈{1,2}

CSISO,i(E). (4.2)

Based on (3.24), (4.1), and (4.2), we can define the fading number of MAC by

χMAC , lim
E↑∞

{

CMAC(E)− log

(

1 + log

(

1 +
E

σ2

))}

. (4.3)

Note that asymptotically for E ↑ ∞, log
(
1 + log

(
1 + E

σ2

))
= log log E

σ2 + o(1).
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4.2 An Upper Bound of Memoryless MAC Chapter 4

From [6], the fading number of the SISO Rician fading channel with memory is given as

χSISO = log(|d|2)− Ei
(
−|d|2

)
− 1 + log

1

ǫ2
, (4.4)

where Ei(·) is the exponential integral function defined as

Ei(−ξ) , −

∫ ∞

ξ

e−t

t
dt, ξ > 0, (4.5)

and where ǫ2 > 0 is the prediction error (2.4).

Hence, from (4.2), we have

χMAC ≥ max
i∈{1,2}

χSISO,i (4.6)

= max
i∈{1,2}

{

log(|di|
2)− Ei

(
−|di|

2
)
− 1 + log

1

ǫ2i

}

. (4.7)

4.2 An Upper Bound on the Mutual Information of Memo-

ryless MAC

We know the multiple-access channel is quite similar to the MISO channel, therefore, we

recall an upper bound on the capacity of MISO channel in [3], [6] to derive the sum-rate

capacity of MAC channel. By choosing the output distribution as a generalized Gamma

distribution, we derive the upper bound from the dual expression of mutual information,

and we have the following lemma.

Lemma 4.1. Consider a memoryless version of the MISO fading channel (3.16), the output

of which is shown as

Y = HTx+ Z. (4.8)

Then the mutual information between input and output of the channel is upper-bounded as

follows:

I(X;Y ) ≤ −h(Y |X) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
log(|Y |2 + ν)

]

+
1

β
E
[
|Y |2

]
+

ν

β
(4.9)

where α, β > 0 and ν ≥ 0 are parameters that can be chosen freely, but must not depend on

X.

Proof. A proof can be found in [3], [6].

Next, we choose the parameters α, β and ν appropriately, (4.9) can be further simplified

to an upper bound on the mutual information of MAC fading channel.
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Lemma 4.2. For the memoryless version of SISO Rician fading MAC (2.15) and (2.16),

an upper bound of the mutual information is given as follows:

I(X;Y ) ≤ −1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)]

+ ǫν + α(log β − log σ2 + γ)

+ log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
. (4.10)

Proof. The proof can be found in Appendix A and in [7].

4.3 Two Equalities for the SISO Rician Fading MAC

In asymptotic analysis, we only consider the input distribution escaping to infinity. From

Proposition 3.4, we know that at least one user’s input distribution escapes to infinity as the

input distribution escapes to infinity. With this constraint, we can show that the following

two expectations are equal to zero.

Lemma 4.3. Consider a memoryless version of SISO Rician fading MAC (2.15) and (2.16).

With the constraints of power-sharing average-power constraint and the input distribution

escapes to infinity, we have

lim
E↑∞

sup
QE∈A

E

[
|d1||X1||di||Xi|

|X1|2 + · · ·+ |Xm|2

]

= 0 (4.11)

lim
E↑∞

sup
QE∈A

E

[
|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2

]

= 0 (4.12)

for i, j ∈ {2, . . . ,m}, i 6= j, and where A is the set defined as

A ,

{

{QX}E>0 : Xi ⊥⊥ Xj , i, j = 1, . . . ,m, ∀i 6= j; E

[
m∑

i=1

‖Xi‖
2

]

≤ κ̄E ;

lim
E↑∞

QE

(
m⋃

i=1

{

|Xi|
2 ≥

E0
m

})

= 1 for any fixed E0 > 0

}

. (4.13)

Proof. The proof can be found in Appendix B and in [5].
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Chapter 5

Main Results

In this chapter, we present our main results about the fading number of SISO Ricain fading

MAC with memory. In Section 5.1, we find an upper bound on the fading number of the m-

user SISO Rician fading MAC with memory from the duality-based bounds. In Section 5.2,

we show the exact fading number of the two-user SISO Rician fading MAC with memory.

In Section 5.3, we generalize the channel model to the m-user case and provide the exact

fading number, furthermore, we discuss the power constraint of the input.

5.1 An Upper Bound on Fading Number of the m-User SISO

Rician Fading MAC with Memory

Proposition 5.1. Consider a SISO Rician fading multiple-access channel with m users as

defined in (2.1) and (2.2). Then the sum-rate fading number can be upper-bounded by:

χMAC ≤ lim
E↑∞

sup
QE∈A

{

E

[

log

(
XTDdX

‖X‖2

)

− Ei

(

−
XTDdX

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

(5.1)

where A is the set as defined in (4.13); Dd is the diagonal matrix defined as

Dd , diag
(
|d1|

2, . . . , |dm|2
)
; (5.2)

and Dǫ is the diagonal matrix defined as

Dǫ , diag
(
ǫ21, . . . , ǫ

2
m

)
(5.3)

with prediction errors ǫi shown in (2.4).

This proposition shows that the upper bound of the fading number depends on not only

the line-of-sight components but also the prediction errors. Compared with [5] and [7], the

effect of memory is the third term in (5.1) which is independent of line-of-sight components.
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5.2 The Fading Number of the Two-User SISO Rician Fading

MAC with Memory

Theorem 5.2. Consider a two-user SISO Rician fading multiple-access channel as defined

in (2.12). Then the sum-rate fading number is given by

χMAC-2 = max
i∈{1,2}

χSISO,i (5.4)

= max
i∈{1,2}

{
log
(
|di|

2
)
− Ei

(
−|di|

2
)
− log

(
ǫ2i
)
− 1
}

(5.5)

This fading number of the two-user SISO MAC holds in all three cases when the peak-power

constraint (2.7), the average-power constraint (2.8), or the power-sharing average-power

constraint (2.9) is considered.

This theorem shows that the lower bound in (4.7) is tight. Moreover, the sum-rate

capacity of the two-user SISO MAC is decided by the better one of the two users. Note that

if the fading numbers of the two users are the same, the sum-rate capacity of MAC can be

achieved by time-sharing.

5.3 The Fading Number of the m-User SISO Rician Fading

MAC with Memory

Theorem 5.3. Consider a SISO Rician fading multiple-access channel with m users as

defined in (2.1) and (2.2). Then the sum-rate fading number is given by

χMAC = max
i∈{1,...,m}

χSISO,i (5.6)

= max
i∈{1,...,m}

{
log
(
|di|

2
)
− Ei

(
−|di|

2
)
− log

(
ǫ2i
)
− 1
}

(5.7)

This fading number of the m-user SISO MAC holds in all three cases when the peak-power

constraint (2.7), the average-power constraint (2.8), or the power-sharing average-power

constraint (2.9) is considered.

This theorem shows that the sum-rate capacity of the m-user SISO MAC is decided by

the best one of m users. Similarly to the two-user case, if more than one user has the best

channel, i.e., they have the maximum fading number, the sum-rate capacity of MAC can

be achieved by time-sharing between these users.

In our analysis, we have allowed three different types of power constraints: an individual

peak-power constraint for each user, an individual average-power constraint for each user,

and a combined power-sharing average-power constraint among all users. The power-sharing

constraint does not make sense in a practical setup as it requires the users to share a common

battery, while their signals still are restricted to be independent. However, the inclusion

of this case helps with the analysis. Furthermore, it turns out that the pessimistic results

described above even hold if we allow for such power sharing.
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Within the three types of constraint, we do allow for different power settings for different

users as long as the constraints scale linearly (see the constants κi and κ̄ in (2.7)–(2.9)).
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Chapter 6

Derivation of Results

In this chapter, we give the proofs of the main results shown in Chapter 5. In Section 6.1,

we derive an upper bound on the fading number of SISO MAC based on the proof of the

MIMO case in [8]. In Section 6.2, the fading number of the two-user SISO Rician fading

MAC with memory is derived by the concepts of Section 4.1 and Section 6.1. In Section 6.3,

from the result of Section 6.2, we provide the proof of the exact fading number in the m-user

case.

6.1 Derivation of Proposition 5.1

To upper-bound the fading number of SISO MAC, we follow the steps of MIMO case stated

in [8]. Fix some power E > 0, and let τ > 0 be an arbitrary value. From Theorem 3.5, we

can fix a positive integer κ, and let η = η(E , τ) ∈ Z
+ and Qκ+1

E,τ ∈ P(CnT×(κ+1)) which is

the set of all input distributions over C
nT×(κ+1) on C

nT . Moreover, let blocklength n and

input Xn
1 satisfying (3.18)–(3.22) so that

CMAC(E) ≤
1

n
I (Xn

1 ;Y
n
1 ) + τ (6.1)

=
1

n

n∑

k=1

I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

+ τ. (6.2)

For the region of 1 ≤ k ≤ η + κ− 1 and n− 2η + 3 ≤ k ≤ n, we use the crude bound

I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

≤ I (Xk;Yk) + I
(
H0;H

−1
−∞

)
(6.3)

≤ CIID(E) + I
(
H0;H

−1
−∞

)
(6.4)

where CIID(E) denotes the sum-rate capacity of the SISO memoryless MAC fading channel

as given in (2.15) and (2.16) with an available average power of at most E as guaranteed in

(3.21) and (3.22). Here the first inequality can be derived as follows:

I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

= I
(

Xn
1 , Y

k−1
1 ;Yk

)

− I
(

Yk;Y
k−1
1

)

(6.5)

≤ I
(

Xn
1 , Y

k−1
1 ;Yk

)

(6.6)
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= I
(

Xk−1
1 , Y k−1

1 ,Xk;Yk

)

(6.7)

≤ I
(

Xk−1
1 , Y k−1

1 ,Hk−1
1 ,Xk;Yk

)

(6.8)

= I
(

Hk−1
1 ,Xk;Yk

)

(6.9)

= I (Xk;Yk) + I
(

Hk−1
1 ;Yk

∣
∣
∣Xk

)

(6.10)

= I (Xk;Yk) + I
(

Hk−1
1 ;Xk, Yk

)

(6.11)

≤ I (Xk;Yk) + I
(

Hk−1
1 ;Hk,Xk, Yk

)

(6.12)

= I (Xk;Yk) + I
(

Hk−1
1 ;Hk

)

(6.13)

≤ I (Xk;Yk) + I
(
H0;H

−1
−∞

)
. (6.14)

Here (6.5) follows from the chain rule; (6.6) follows from the non-negativity of mutual

information; (6.7) follows because we prohibit feedback; (6.8) follows from the inclusion of

the additional random vectors Hk−1
1 in the mutual information term; (6.9) follows from the

chain rule and the fact that if the past fading processes Hk−1
1 and present input Xk are

given, the past inputs Xk−1
1 and outputs Y k−1

1 are independent of the present output Yk;

(6.10) follows from the chain rule; (6.11) follows from the chain rule and the fact that since

Xk and Hk−1
1 are independent, I

(

Hk−1
1 ;Xk

)

= 0; the two steps (6.12), (6.13) are similar

to (6.8) and (6.9); and (6.14) follows once more from the inclusion of additional random

vectors in the mutual information and from stationarity.

Because (6.4) is uniformly bounded in n, we conclude that

CMAC(E) ≤ lim
n↑∞

1

n
I (Xn

1 ;Y
n
1 ) + τ (6.15)

= lim
n↑∞

1

n− κ− 3(η − 1)

n−2(η−1)
∑

k=η+κ

I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

+ τ (6.16)

Since Theorem 3.5 guarantees that every (κ+ 1)-block (Xk−κ, . . . , Xk) has the same distri-

bution Qκ+1
E,τ , we only have to focus on the region η + κ ≤ k ≤ n− 2(η − 1).

Now, we further upper-bound I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

for such k to continue:

I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

= I
(

Xn
1 , Y

k−1
1 ;Yk

)

− I
(

Yk;Y
k−1
1

)

(6.17)

≤ I
(

Xn
1 , Y

k−1
1 ;Yk

)

(6.18)

= I
(

Xk−1
1 , Y k−1

1 ,Xk;Yk

)

(6.19)

≤ I
(

Xk−1
1 , Y k−1

1 ,Hk−κ−1
1 , {HT

ℓXℓ}
k−1
ℓ=k−κ,Xk;Yk

)

(6.20)

= I
(

Xk−1
k−κ,H

k−κ−1
1 , {HT

ℓXℓ}
k−1
ℓ=k−κ,Xk;Yk

)

(6.21)

= I (Xk;Yk) + I
(

Xk−1
k−κ;Yk

∣
∣
∣Xk

)

︸ ︷︷ ︸

=0

+I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;Yk

∣
∣
∣X

k
k−κ

)
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+ I
(

Hk−κ−1
1 ;Yk

∣
∣
∣X

k
k−κ, {H

T

ℓXℓ}
k−1
ℓ=k−κ

)

(6.22)

= I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;Yk

∣
∣
∣X

k
k−κ

)

+ I
(

Hk−κ−1
1 ;Yk

∣
∣
∣X

k
k−κ, {H

T

ℓXℓ}
k−1
ℓ=k−κ

)

(6.23)

≤ I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;Yk

∣
∣
∣X

k
k−κ

)

+ δ(κ). (6.24)

Here the three steps (6.17)–(6.19) are the same as (6.5)–(6.7); (6.20) follows from the inclu-

sion of the additional random vectors Hk−κ−1
1 and the random variables {HT

ℓXℓ}
k−1
ℓ=k−κ in

the mutual information term; (6.21) follows from the chain rule and the fact that if Hk−κ−1
1 ,

{HT

ℓXℓ}
k−1
ℓ=k−κ and Xk

k−κ are given, the past output Y k−1
1 and input Xk−κ−1

1 are independent

of the present output Yk; (6.22) follows from the chain rule; (6.23) follows from the fact that

the past inputs Xk−1
k−κ and the present output Yk are independent as the present input Xk

is given; and (6.24) follows from [8, Lemma 18].

Note that δ(κ) does neither depend on k nor on the input {Xk} and monotonically tends

to zero as κ tends to infinity due to the stationarity of {Hk}.

We continue (6.24) as follows:

I
(

Xn
1 ;Yk

∣
∣
∣Y

k−1
1

)

≤ I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;Yk

∣
∣
∣X

k
k−κ

)

+ δ(κ) (6.25)

≤ I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;Yk,H

T

kXk

∣
∣
∣X

k
k−κ

)

+ δ(κ) (6.26)

= I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;H

T

kXk

∣
∣
∣X

k
k−κ

)

+ I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;Yk

∣
∣
∣X

k
k−κ,H

T

kXk

)

︸ ︷︷ ︸

=0

+δ(κ) (6.27)

= I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;H

T

kXk

∣
∣
∣X

k
k−κ

)

+ δ(κ) (6.28)

= I (Xk;Yk) + I
(

{HT

ℓXℓ}
k−1
ℓ=k−κ;H

T

kXk

∣
∣
∣ X̂

k
k−κ, {‖Xℓ‖}

k
k−κ

)

+ δ(κ) (6.29)

= I (Xk;Yk) + I
(

{HT

ℓX̂ℓ}
k−1
ℓ=k−κ;H

T

kX̂k

∣
∣
∣ X̂

k
k−κ

)

+ δ(κ). (6.30)

Here (6.26) follows from the inclusion of the additional random variable HT

kXk in the mutual

information; (6.27) follows from the chain rule; (6.28) follows the fact that the additive noise

Zk is independent of the fading processes Hk−1
k−κ; in (6.29), we split the vectors Xℓ up into

magnitude ‖Xℓ‖ and direction X̂ℓthat X̂ℓ ,
Xℓ

‖Xℓ‖
; and (6.30) follows from dividing each term

by the magnitude of the input vectors and from the fact that {HT

ℓX̂ℓ}
k
ℓ=k−κ is independent

of {‖Xℓ‖}
k
ℓ=k−κ as X̂k

k−κ is given.

Note that (6.30) only depends on Xk
k−κ which has a distribution Qκ+1

E,τ according to

Theorem 3.5. As a result, using the stationarity and combining (6.30) with (6.16), we have

CMAC(E)

≤ lim
n↑∞

1

n− κ− 3(η − 1)

n−2(η−1)
∑

k=η+κ

(

I (Xk;Yk) + I
(

{HT

ℓX̂ℓ}
k−1
ℓ=k−κ;H

T

kX̂k

∣
∣
∣ X̂

k
k−κ

))

+ δ(κ) + τ (6.31)
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= lim
n↑∞

1

n− κ− 3(η − 1)

n−2(η−1)
∑

k=η+κ

(

I
(
Xk;H

T

η+κXk + Zη+κ

)

+ I
(

HT

η+κ−1X̂k−1, . . . ,H
T

ηX̂k−κ;H
T

η+κX̂k

∣
∣
∣ X̂

k
k−κ

))

+ δ(κ) + τ (6.32)

= I
(
Xη+κ;H

T

η+κXη+κ + Zη+κ

)
+ I

(

{HT

ℓX̂ℓ}
η+κ−1
ℓ=η ;HT

η+κX̂η+κ

∣
∣
∣ X̂

η+κ
η

)

+ δ(κ) + τ. (6.33)

Here in (6.32) we shift Hk and Zk to Hη+κ and Zη+κ due to the stationarity of {Hk, Zk};

and (6.33) follows from the fact that for all k ∈ {η+ κ, . . . , n− 2(η− 1)} the distribution of

Xk
k−κ is Qκ+1

E,τ given in Theorem 3.5.

To make (6.33) easy to read, we introduce a slight misuse in notation: for pure notational

convenience we will assume from now on that X0
−κ ∼ Qκ+1

E,τ , i.e., that from now on X0
−κ is

quasi-stationary. Note that there is no contradiction between this notation and the edge-

effects of Theorem 3.5 since this is a notational choice. Hence, we can drop η and rewrite

(6.33) as follows:

CMAC(E) ≤ I (X0;H
T

0X0 + Z0) + I
(

{HT

ℓX̂ℓ}
−1
ℓ=−κ;H

T

0X̂0

∣
∣
∣ X̂

0
−κ

)

+ δ(κ) + τ. (6.34)

We can find that the first term in (6.34) is the mutual information of the SISO mem-

oryless MAC and independent of the past. Therefore, the memory effect only comes from

the second term, and we upper-bound the second term to continue:

I
(

{HT

ℓX̂ℓ}
−1
ℓ=−κ;H

T

0X̂0

∣
∣
∣ X̂

0
−κ

)

= h
(

HT

0X̂0

∣
∣
∣ X̂

0
−κ

)

− h
(

HT

0X̂0

∣
∣
∣ X̂

0
−κ, {H

T

ℓX̂ℓ}
−1
ℓ=−κ

)

(6.35)

= h
(

HT

0X̂0

∣
∣
∣ X̂0

)

− h
(

HT

0X̂0

∣
∣
∣ X̂

0
−κ, {H

T

ℓX̂ℓ}
−1
ℓ=−κ

)

(6.36)

= log πe− h
(

HT

0X̂0

∣
∣
∣ X̂

0
−κ, {H

T

ℓX̂ℓ}
−1
ℓ=−κ

)

(6.37)

≤ log πe− h
(

HT

0X̂0

∣
∣
∣ X̂

0
−κ,H

−1
−κ, {H

T

ℓX̂ℓ}
−1
ℓ=−κ

)

(6.38)

= log πe− h
(

HT

0X̂0

∣
∣
∣ X̂

0
−κ,H

−1
−κ

)

(6.39)

= log πe− h
(

HT

0X̂0

∣
∣
∣ X̂0,H

−1
−κ

)

(6.40)

= log πe− E
[

h
(

HT

0x̂0

∣
∣
∣ X̂0 = x̂0,H

−1
−κ

)]

(6.41)

= E[log πe]− E
[

log πe
(

ǫ21,κ|X̂1,0|
2 + · · ·+ ǫ2m,κ|X̂m,0|

2
)]

(6.42)

= E
[

log πe− log πe
(

ǫ21,κ|X̂1,0|
2 + · · ·+ ǫ2m,κ|X̂m,0|

2
)]

(6.43)

= −E
[

log
(

ǫ21,κ|X̂1,0|
2 + · · ·+ ǫ2m,κ|X̂m,0|

2
)]

. (6.44)

Here (6.35) follows the definition of the mutual information; (6.36) follows the fact that if

the present input X̂0 is given, HT

0X̂0 is independent of the past input X̂−1
−κ; (6.38) follows

that the conditioning reduces differential entropy; (6.39) follows the fact that when X̂0
−κ

and H−1
−κ are given, {HT

ℓX̂ℓ}
−1
ℓ=−κ can be dropped because it is decided by these two terms;
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(6.40) follows the same step as (6.36); and in (6.42), ǫi,κ is the prediction error for i-th user

from the past fading {Hi,k}
−1
k=−κ.

Combined with (6.44), (6.34) becomes

CMAC(E) ≤ I (X0;H
T

0X0 + Z0)− E
[

log
(

ǫ21,κ|X̂1,0|
2 + · · ·+ ǫ2m,κ|X̂m,0|

2
)]

+ δ(κ) + τ (6.45)

= I (X0;H
T

0X0 + Z0)− E
[

log
(

ǫ21|X̂1,0|
2 + · · ·+ ǫ2m|X̂m,0|

2
)]

+ τ (6.46)

= I (X0;H
T

0X0 + Z0)− E

[

log

(

ǫ21,κ|X1,0|
2 + · · ·+ ǫ2m,κ|Xm,0|

2

|X1,0|2 + · · ·+ |Xm,0|2

)]

+ τ (6.47)

= I (X0;H
T

0X0 + Z0)− E

[

log

(
XT

0DǫX0

‖X0‖2

)]

+ τ. (6.48)

Here in (6.46), we let κ tends to infinity which makes sure that δ(κ) → 0 as can be seen

from [8, Lemma 18] and the prediction error ǫi,κ is equal to ǫi which is shown as (2.4);

(6.47) follows the definition X̂ℓ ,
Xℓ

‖Xℓ‖
; and (6.48) follows from the Rayleigh-Ritz Theorem

[1, Theorem 4.2.2], and we have defined the matrix

Dǫ , diag
(
ǫ21, . . . , ǫ

2
m

)
. (6.49)

Since every term in (6.48) is independent of the time, we can drop the time parameter

and rewrite (6.48) as follows

CMAC(E) ≤ I (X;HTX+ Z)− E

[

log

(
XTDǫX

‖X‖2

)]

+ τ (6.50)

= I (X;Y )− E

[

log

(
XTDǫX

‖X‖2

)]

+ τ (6.51)

≤ −1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)]

− E

[

log

(
XTDǫX

‖X‖2

)]

+ ǫν

+ α(log β − log σ2 + γ) + log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
+ τ (6.52)

= −1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)]

+ ǫν

+ α(log β − log σ2 + γ) + log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
+ τ. (6.53)

Here (6.52) follows the Lemma 4.2.

Note that this bound still depends on the distribution Qκ+1
E,τ which is guaranteed to exist

by Theorem 3.5. However, the exact form of the bound is unknown. Fortunately, the bound

is independent to the time, and we can upper-bound this expression by maximizing it over

all probability measures QX:

CMAC(E) ≤ sup
QE∈A

{

−1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)]

+ ǫν

+ α(log β − log σ2 + γ) + log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
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+ τ

}

(6.54)

= sup
QE∈A

{

−1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)]}

+ ǫν

+ α(log β − log σ2 + γ) + log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β

+ τ (6.55)

Here we define A to be the set of all probaility measures in QX satisfying the constraints

that all users are independent (2.6), the power-sharing average-power constraint (2.9) and

that the input distribution of at least one user escapes to infinity as the available power E

tends to infinity shown in Proposition 3.4, i.e.,

A ,

{

{QX}E>0 : Xi ⊥⊥ Xj , i, j = 1, . . . ,m, ∀i 6= j; E

[
m∑

i=1

‖Xi‖
2

]

≤ κ̄E ;

lim
E↑∞

QE

(
m⋃

i=1

{

|Xi|
2 ≥

E0
m

})

= 1 for any fixed E0 > 0

}

. (6.56)

Note that we drop the time parameter k here since (6.55) is independent of the time.

From the definition of the MAC fading number (4.3) and (6.55), we can derive the

following upper bound on the MAC fading number:

χMAC = lim
E↑∞

{

CMAC(E)− log

(

1 + log

(

1 +
E

σ2

))}

(6.57)

= lim
E↑∞

{

sup
QE∈A

{

−1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)]}

+ ǫν

+ α(log β − log σ2 + γ) + log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
+ τ

− log

(

1 + log

(

1 +
E

σ2

))}

(6.58)

Next, we choose the free parameters α and β as follows:

α , α(E) =
ν

log ((1 + ‖d‖2)E + σ2)
(6.59)

β , β(E) =
1

α(E)
eν/α(E) (6.60)

for some constant ν ≥ 0, which leads to the following asymptotic behavior:

lim
E↑∞

{

log Γ

(

α,
ν

β

)

− log
1

α

}

= log(1− e−ν); (6.61)

lim
E↑∞

α
(
log β − log σ2 + γ

)
= ν; (6.62)

lim
E↑∞

{
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β

}

= 0; (6.63)

lim
E↑∞

{

log
1

α
− log

(

1 + log

(

1 +
E

σ2

))}

= − log ν. (6.64)
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(Compare with [3, Appendix VII], [6, Sec. B.5.9])

As a result, (6.58) can be upper-bounded as follows:

χMAC ≤ lim
E↑∞

{

sup
QE∈A

{

−1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)]}

+ ǫν

+ α(log β − log σ2 + γ) + log Γ

(

α,
ν

β

)

+
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
+ τ

− log

(

1 + log

(

1 +
E

σ2

))}

(6.65)

≤ lim
E↑∞

sup
QE∈A

{

E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

+ ǫν + ν

+ log(1− e−ν)− log ν + τ. (6.66)

Let ν tend to zero which makes sure that ǫν → 0 as can be seen from (A,6). Since τ is

an arbitrary value, (6.66) can be rewritten as

χMAC ≤ lim
E↑∞

sup
QE∈A

{

E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

. (6.67)

Furthermore, we define

f(ξ) , log(ξ)− Ei(−ξ) (6.68)

F(X) , − log

(
XTDǫX

‖X‖2

)

− 1 (6.69)

G1(X) ,
|d1|

2|X1|
2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2
(6.70)

G2(X) ,
m∑

i=1

m∑

j=1
j 6=i

|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2
, (6.71)

and upper-bound the RHS in (6.67) as follows:

lim
E↑∞

sup
QE∈A

{

E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

= lim
E↑∞

sup
QE∈A

{

E

[

log

(
|d1X1 + · · ·+ dmXm|2

|X1|2 + · · ·+ |Xm|2

)

− Ei

(

−
|d1X1 + · · ·+ dmXm|2

|X1|2 + · · ·+ |Xm|2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

(6.72)

= lim
E↑∞

sup
QE∈A







E






log







|d1X1|
2 + · · ·+ |dmXm|2

|X1|2 + · · ·+ |Xm|2
+

m∑

i=1

m∑

j=1
j 6=i

|diXi| · |djXj |

|X1|2 + · · ·+ |Xm|2







−Ei






−







|d1X1|
2 + · · ·+ |dmXm|2

|X1|2 + · · ·+ |Xm|2
+

m∑

i=1

m∑

j=1
j 6=i

|diXi| · |djXj |

|X1|2 + · · ·+ |Xm|2












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− log

(
XTDǫX

‖X‖2

)

− 1













(6.73)

≤ lim
E↑∞

sup
QE∈A







E






log







|d1|2|X1|2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2
+

m∑

i=1

m∑

j=1
j 6=i

|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2







−Ei






−







|d1|
2|X1|

2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2
+

m∑

i=1

m∑

j=1
j 6=i

|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2













− log

(
XTDǫX

‖X‖2

)

− 1













(6.74)

= lim
E↑∞

sup
QE∈A

{E[f (G1(X) +G2(X)) + F(X)]} (6.75)

≤ lim
E↑∞

sup
QX∈A

sup
Q

X̃
∈A

{

E
X,X̃

[

f
(

G1(X) +G2(X̃)
)

+ F(X)
]}

(6.76)

≤ lim
E↑∞

sup
QX∈A

sup
Q

X̃
∈A

{

EX

[

f
(

G1(X) + E
X̃

[

G2(X̃)
])

+ F(X)
]}

(6.77)

≤ lim
E↑∞

sup
QX∈A

sup
Q

X̃
∈A

{

EX

[

f

(

G1(X) + sup
Q

X̃
∈A

E
X̃

[

G2(X̃)
]
)

+ F(X)

]}

(6.78)

= lim
E↑∞

sup
QX∈A

{

EX

[

f

(

G1(X) + sup
Q

X̃
∈A

E
X̃

[

G2(X̃)
]
)

+ F(X)

]}

. (6.79)

Here (6.74) follows from the Cauchy-Schwarz inequality and the fact that ξ 7→ f(ξ) is

monotonically increasing; in (6.76), we replace X in G2(X) by X̃ and take the supremum

over all Q
X̃

without the constraint that X̃ = X; (6.77) follows from the Jensen’s inequality;

and (6.78) follows because f(ξ) is monotonically increasing.

Since Q
X̃

is independent of QX, we can regard the X̃-term in (6.79) as a constant

upper-bounded as follows:

lim
E↑∞

sup
QE∈A

E
[

G2(X̃)
]

= lim
E↑∞

sup
QE∈A

m∑

i=1

m∑

j=1
j 6=i

E

[

|di||X̃i||dj ||X̃j |

|X̃1|2 + · · ·+ |X̃m|2

]

(6.80)

≤ 2 lim
E↑∞

sup
QE∈A

m∑

j=2

E

[

|d1||X̃1||dj ||X̃j |

|X̃1|2 + · · ·+ |X̃m|2

]

+ 2 lim
E↑∞

sup
QE∈A

m∑

i=2

m∑

j=i+1

E

[

|di||X̃i||dj ||X̃j |

|X̃1|2 + · · ·+ |X̃m|2

]

(6.81)

≤ 2
m∑

j=2

lim
E↑∞

sup
QE∈A

E

[

|d1||X̃1||dj ||X̃j |

|X̃1|2 + · · ·+ |X̃m|2

]

27



Chapter 6 Derivation of Results

+ 2
m∑

i=2

m∑

j=i+1

lim
E↑∞

sup
QE∈A

E

[

|di||X̃i||dj ||X̃j |

|X̃1|2 + · · ·+ |X̃m|2

]

(6.82)

= 2 · 0 + 2 · 0 = 0. (6.83)

Here in (6.81), we separate the expectations into two kinds; in (6.82), we split the supremum

into many separate suprema; and (6.83) follows from Lemma 4.3.

Therefore, combined (6.67) with (6.79) and (6.83), we have

χMAC ≤ lim
E↑∞

sup
QE∈A

{E[f (G1(X)) + F(X)]} (6.84)

= lim
E↑∞

sup
QE∈A

{

E

[

log

(
|d1|

2|X1|
2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2

)

−Ei

(

−
|d1|

2|X1|
2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

(6.85)

= lim
E↑∞

sup
QE∈A

{

E

[

log

(
XTDdX

‖X‖2

)

− Ei

(

−
XTDdX

‖X‖2

)

− log

(
XTDǫX

‖X‖2

)

− 1

]}

. (6.86)

Here (6.86) follows from the Rayleigh-Ritz Theorem [1, Theorem 4.2.2], and we have defined

the matrix

Dd , diag
(
|d1|

2, . . . , |dm|2
)
. (6.87)

6.2 Derivation of Theorem 5.2

From Proposition 5.1, we have an upper bound on fading number of the two-user SISO

MAC with memory:

χMAC-2 ≤ lim
E↑∞

sup
QE∈A

{

E

[

log

(
|d1|

2|X1|
2 + |d2|

2|X2|
2

|X1|2 + |X2|2

)

− Ei

(

−
|d1|

2|X1|
2 + |d2|

2|X2|
2

|X1|2 + |X2|2

)

− log

(
ǫ21|X1|

2 + ǫ22|X2|
2

|X1|2 + |X2|2

)

− 1

]}

(6.88)

= lim
E↑∞

sup
QE∈A

{

E
[

log
(

|d1|
2|X̂1|

2 + |d2|
2|X̂2|

2
)

− Ei
(

−
(

|d1|
2|X̂1|

2 + |d2|
2|X̂2|

2
))

− log
(

ǫ21|X̂1|
2 + ǫ22|X̂2|

2
)

− 1
]}

. (6.89)

Note that we have a lower bound on fading number of the two-user SISO MAC fading

channel (4.7). If the upper bound of fading number (6.89) exists in the condition that only

one user communicates and the other one is switched off, Theorem 5.2 is proved.

Since X̂ is an unit vector, i.e.,

|X̂1|
2 + |X̂2|

2 = 1, (6.90)

we can we use ϑ with 0 ≤ ϑ ≤ 1 to denote the power allocation of the first user such that

|X̂1|
2 = ϑ, (6.91)

|X̂2|
2 = 1− ϑ, 0 ≤ ϑ ≤ 1. (6.92)
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And we have

χMAC-2 ≤ max
0≤ϑ≤1

{
log
(
d21ϑ+ d22(1− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))

− log
(
ǫ21ϑ+ ǫ22(1− ϑ)

)
− 1
}
. (6.93)

Here we drop the moduli of line-of-sight components because they are given and we can

assume they are always real.

To finish the proof, our main purpose is to prove that the RHS of (6.93) is always on the

boundary, i.e., ϑ = 0 or ϑ = 1. Since it has four arbitrary values, it’s difficult to analyze.

To make it easier, we separate the four arbitrary values into three cases:

1. d1 > d2 and ǫ1 < ǫ2,

2. d1 > d2, ǫ1 > ǫ2, and
d1
ǫ1

< d2
ǫ2
,

3. d1 > d2, ǫ1 > ǫ2, but
d1
ǫ1

> d2
ǫ2
.

In the first case, the first user has the larger line-of-sight component, and the smaller

prediction error. We know that the larger the line-of-sight component is, and the smaller

the prediction error is, the better the channel is. Therefore, it is obvious that the first user

has the better channel.

The (6.93) becomes

χMAC-2 ≤ max
0≤ϑ≤1

{
log
(
d21ϑ+ d22(1− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))

− log
(
ǫ21ϑ+ ǫ22(1− ϑ)

)
− 1
}

(6.94)

≤ max
0≤ϑ≤1

{
log
(
d21ϑ+ d22(1− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))
− 1
}

+ max
0≤ϑ≤1

{
− log

(
ǫ21ϑ+ ǫ22(1− ϑ)

)}
(6.95)

= log
(
d21
)
− Ei

(
−d21

)
− 1− log

(
ǫ21
)
. (6.96)

Here in (6.95), we split the maximum into two maximums, and (6.96) follows form the fact

that ξ 7→ log(ξ)− Ei(−ξ)− 1 is monotonically increasing (see Figure 6.1) and ξ 7→ − log(ξ)

is monotonically decreasing. In this case, the first user is switched on and the second user

is switched off at all time. The maximum is achieved at ϑ = 1.

Next, we look at the second case. The first user has the better line-of-sight component,

but the worse prediction error. However, the impact of the prediction error is very large

such that the second user has the better ratio of line-of-sight component to prediction error.

We can prove that the second user has the better channel:

χMAC-2 ≤ max
0≤ϑ≤1

{
log
(
d21ϑ+ d22(1− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))

− log
(
ǫ21ϑ+ ǫ22(1− ϑ)

)
− 1
}

(6.97)

= max
0≤ϑ≤1

{

log

(
d21ϑ+ d22(1− ϑ)

ǫ21ϑ+ ǫ22(1− ϑ)

)

− Ei
(
−
(
d21ϑ+ d22(1− ϑ)

))
− 1

}

(6.98)
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Figure 6.1: The plot of ξ 7→ log(ξ)− Ei(−ξ) for ξ from 0 to 10.
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Figure 6.2: The plot of ξ 7→ −Ei(−ξ) for ξ from 0 to 2.5.
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≤ max
0≤ϑ≤1

{

log

(
d21ϑ+ d22(1− ϑ)

ǫ21ϑ+ ǫ22(1− ϑ)

)}

+ max
0≤ϑ≤1

{
−Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))}
− 1 (6.99)

= log

(
d22
ǫ22

)

− Ei
(
d22
)
− 1. (6.100)

Here in (6.99), we split the maximum into two maximums, and (6.100) follows from the fact

that ξ 7→ log(ξ) is monotonically increasing and ξ 7→ −Ei(−ξ) is monotonically decreasing

(see Figure 6.2). In this case, the first user is switched off and the second user is switched

on at all time. The maximum is achieved at ϑ = 0.

In the third case, the first user has the better line-of-sight, but worse prediction error.

However, the impact is not large enough to make the first user worse that we are not sure

which user has the better channel. Therefore, we have to try another way to analyze (6.93)

in this case.

Now, we focus on the function

ϕ : ϑ 7→ log

(
d21ϑ+ d22(1− ϑ)

ǫ21ϑ+ ǫ22(1− ϑ)

)

− Ei
(
−
(
d21ϑ+ d22(1− ϑ)

))
− 1. (6.101)

It consists of three terms: a log term, an exponential integral term and a constant 1. The

shape of (6.101) only depends on the log term and the exponential integral term. With these

two terms being monotonically concave or convex, the shape can only be one out of four

cases, as shown in Figure 6.3: monotonically increasing, monotonically decreasing, convex,

or concave. Of these four cases, only the concave case breaks our proof that the maximum

may appear in the middle of the interval between ϑ = 0 and ϑ = 1. If we want to prove

the maximum only exists on the boundary, we have to show the shape of (6.101) is never

concave.

Note that the slope decides how the shape looks like. Hence we describe the shape of

(6.101) by the sign of the slope: if the slope is always positive, the shape is monotonically

increasing; similarly, if the slope is always negative, the shape is monotonically decreasing;

if the slope goes from negative to positive as ϑ goes from 0 to 1, the shape is convex; and if

the slope goes from positive to negative, the shape is concave.

To find the slope, we look at the first differential of (6.101):

∂ϕ

∂ϑ
=

d21ǫ
2
2 − d2ǫ

2
1 −

(
d21 − d22

) ǫ21ϑ+ǫ22(1−ϑ)

ed
2
1ϑ+d22(1−ϑ)

(
d21ϑ+ d22(1− ϑ)

) (
ǫ21ϑ+ ǫ22(1− ϑ)

) . (6.102)

Because in our assumption, the terms
(
d21ϑ+ d22(1− ϑ)

)
and

(
ǫ21ϑ+ ǫ22(1− ϑ)

)
in the de-

nominator are always positive, i.e., they have nothing to do with the sign of the slope. As

a result, we can drop them, and the sign of the slope is decided by:

d21ǫ
2
2 − d2ǫ

2
1 −

(
d21 − d22

) ǫ21ϑ+ ǫ22(1− ϑ)

ed
2
1ϑ+d22(1−ϑ)

. (6.103)

To simplify (6.103), we define

c , d21ǫ
2
2 − d22ǫ

2
1 (6.104)

f(ϑ) ,
(
d21 − d22

) ǫ21ϑ+ ǫ22(1− ϑ)

ed
2
1ϑ+d22(1−ϑ)

, (6.105)
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Figure 6.3: The four possible shapes of (6.101)

and rewrite (6.103) as

c− f(ϑ). (6.106)

It means that the sign of the slope is decided by the relationship between c and f(ϑ).

We consider two cases first as shown in Figure 6.4:

c ≤ f(ϑ), 0 ≤ ϑ ≤ 1 (6.107)

and

c ≥ f(ϑ), 0 ≤ ϑ ≤ 1. (6.108)

In the first case, c − f(ϑ) is always negative in the interval between ϑ = 0 and ϑ = 1, and

therefore the shape is monotonically decreasing. The maximum is achieved as ϑ = 0. In the

other case, c − f(ϑ) is always positive in the interval between ϑ = 0 and ϑ = 1, and hence

the shape is monotonically increasing. The maximum is achieved as ϑ = 1. These two cases

are in agreement with our proof. So we focus on the situation when c cuts through f(ϑ).
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Figure 6.4: The two cases of c > f(ϑ) and c < f(ϑ).

Since c is independent of ϑ, the change of the slope only depends on f(ϑ). Therefore,

we follow the same step to analyze f(ϑ) by looking at its first derivative:

∂f(ϑ)

∂ϑ
=

d21 − d22

ed
2
1ϑ+d22(1−ϑ)

{
(ǫ21 − σ2

2)− (d21 − d22)σ
2
2 − (d21 − d22)(ǫ

2
1 − ǫ22)ϑ

}
. (6.109)

Note that since the numerator and the denominator of the fraction are always positive by

assumption, we can drop the fraction. Hence the slope’s sign of f(ϑ) is decided by:

(ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 − (d21 − d22)(ǫ

2
1 − ǫ22)ϑ. (6.110)

In (6.110), d1, d2, ǫ1, ǫ2 are given, and we have assumed that d1 > d2, ǫ1 > ǫ2 and

0 ≤ ϑ ≤ 1. As a result, (6.110) is a decreasing straight line as ϑ goes from 0 to 1, and we

can separate this case into three subcases:

1. (ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 ≤ 0,

2. (ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 ≥ 0 and (ǫ21 − ǫ22)− (d21 − d22)ǫ

2
2 ≥ (d21 − d22)(ǫ

2
1 − ǫ22),

3. (ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 ≥ 0 but (ǫ21 − ǫ22)− (d21 − d22)ǫ

2
2 ≤ (d21 − d22)(ǫ

2
1 − ǫ22).

In the first subcase, (6.110) is always negative, hence f(ϑ) is monotonically decreasing.

Recall that currently we focus on the situation when c ≤ f(0), but c ≥ f(1). When ϑ goes

from 0 to 1, (6.106) goes from negative to positive. It means that the shape of (6.101) is

convex, and the maximum is achieved on the boundary for ϑ = 0 or ϑ = 1.
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In the second subcase, (6.110) is positive as ϑ = 0. Furthermore, the last term is too

small to make the sign of (6.110) change. Even if ϑ = 1, (6.110) is still positive. Before we

analyze the shape of f(ϑ), we observe the following facts:

If (ǫ21 − ǫ22) ≥ (d21 − d22)ǫ
2
2, then d21ǫ

2
2 − d22ǫ

2
1 ≤ (d21 − d22)

ǫ22

ed
2
2

. (6.111)

This can be proven as follows:

d21ǫ
2
2 − d22ǫ

2
1 ≥ (d21 − d22)

ǫ22

ed
2
2

⇐⇒
d21ǫ

2
2 − d22ǫ

2
1

(d21 − d22)ǫ
2
2

≥
1

ed
2
2

(6.112)

⇐⇒ −
d21ǫ

2
2 − d22ǫ

2
1

(d21 − d22)ǫ
2
2

≤ −
1

ed
2
2

(6.113)

⇐⇒ 1−
d21ǫ

2
2 − d22ǫ

2
1

(d21 − d22)ǫ
2
2

≤ 1−
1

ed
2
2

(6.114)

⇐⇒
(ǫ21 − ǫ22)d

2
2

(d21 − d22)ǫ
2
2

≤
ed

2
2 − 1

ed
2
2

(6.115)

⇐⇒ ed
2
2
(ǫ21 − ǫ22)d

2
2

(d21 − d22)ǫ
2
2

≤ ed
2
2 − 1 (6.116)

⇐⇒ ed
2
2
(ǫ21 − ǫ22)d

2
2

(d21 − d22)ǫ
2
2

− ed
2
2 + 1 ≤ 0. (6.117)

Here in (6.112), we divide the both sides by (d21 − d22)ǫ
2
2 that is positive by assumption

d1 > d2. Next, we lower-bound the LHS of (6.117) as follows:

ed
2
2
(ǫ21 − ǫ22)d

2
2

(d21 − d22)ǫ
2
2

− ed
2
2 + 1 ≥ ed

2
2
(d21 − d22)ǫ

2
2d

2
2

(d21 − d22)ǫ
2
2

− ed
2
2 + 1 (6.118)

= d22e
d22 − ed

2
2 + 1, (6.119)

which follows from the assumption (ǫ21 − ǫ22) ≥ (d21 − d22)ǫ
2
2. Note that the function ξ 7→

ξeξ − eξ +1 shown in Figure 6.5 is monotonically increasing and equals to 0 as ξ = 0. Since

d22 ≥ 0, we have

d22e
d22 − ed

2
2 + 1 ≥ 0 (6.120)

From (6.117), (6.119) and (6.120), (6.111) is proved and can be rewritten as:

If (ǫ21 − ǫ22) ≥ (d21 − d22)ǫ
2
2, then c ≤ f(0). (6.121)

Next, we recall that in the currently analyzed second subcase, (6.110) is always positive,

hence f(ϑ) is monotonically increasing with the minimum f(0) in the interval between ϑ = 0

and ϑ = 1. As a result, the situations that c is above f(ϑ) and c cuts through f(ϑ) do not

exist. Furthermore, since (6.106) is always negative, (6.101) is monotonically decreasing.

The maximum is achieved at ϑ = 0.

Finally, we look at the third subcase. There (6.110) is positive at ϑ = 0, however, the

last term is large enough to make the sign of (6.110) change: (6.110) changes from positive
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Figure 6.5: The plot of ξ 7→ ξeξ − eξ + 1 for ξ from 0 to 2.5

to negative as ϑ goes from 0 to 1, so f(ϑ) is a concave function between ϑ = 0 and ϑ = 1.

Because in this subcase, we still have assumed (ǫ21 − ǫ22) − (d21 − d22)ǫ
2
2 ≥ 0, we can use the

fact (6.121) as well.

Note that here the concave function f(ϑ) is one of two types as illustrated in Figure 6.6:

f(0) ≤ f(1) (6.122)

or

f(0) ≥ f(1). (6.123)

In the first type, from the fact (6.121), we have the same result as in the second subcase

mentioned before. Therefore, (6.101) is monotonically decreasing and the maximum is

achieved at ϑ = 0. As for the second type, (6.106) changes from negative to positive as ϑ

goes from 0 to 1. As a result, (6.101) is a convex function between ϑ = 0 and ϑ = 1. Hence

the maximum exists on the boundary.

This finishes the discussion of all possible cases and proves that (6.101) cannot be con-

cave. Therefore, the maximum is achieved for 0 ≤ ϑ ≤ 1, but it is always on the boundary

ϑ = 0 or ϑ = 1. Furthermore, the upper bound on the fading number of the two-user SISO

Rician fading MAC with memory becomes:

χMAC-2 ≤ max
i∈{1,2}

{
log
(
|di|

2
)
− Ei

(
−|di|

2
)
− log

(
ǫ2i
)
− 1
}
. (6.124)
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Figure 6.6: The two shapes of f(ϑ) depending on whether f(0) ≤ f(1) or f(0) ≥ f(1),
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From (4.7) and (6.124), we have

χMAC-2 = max
i∈{1,2}

{
log
(
|di|

2
)
− Ei

(
−|di|

2
)
− log

(
ǫ2i
)
− 1
}

(6.125)

= max
i∈{1,2}

χSISO,i. (6.126)

6.3 Derivation of Theorem 5.3

In Section 4.1, we have discussed the lower bound on the fading number of the two-user

SISO MAC. Next, we generalize the lower bound to the m-user case. The lower bound of

the m-user SISO Rician fading MAC with memory is shown as

χMAC ≥ max
i∈{1,...,m}

χSISO,i (6.127)

= max
i∈{1,...,m}

{

log
(
|di|

2
)
− Ei

(
−|di|

2
)
− 1 + log

1

ǫ2i

}

. (6.128)

From Proposition 5.1, we have the following upper bound:

χMAC ≤ lim
E↑∞

sup
QE∈A

{

E

[

log

(
|d1|

2|X1|
2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2

)

−Ei

(

−
|d1|

2|X1|
2 + · · ·+ |dm|2|Xm|2

|X1|2 + · · ·+ |Xm|2

)
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− log

(
ǫ21|X1|2 + · · ·+ ǫ2m|Xm|2

|X1|2 + · · ·+ |Xm|2

)

− 1

]}

(6.129)

= lim
E↑∞

sup
QE∈A

{

E
[

log
(

|d1|
2|X̂1|

2 + · · ·+ |dm|2|X̂m|2
)

−Ei
(

−
(

|d1|
2|X̂1|

2 + · · ·+ |dm|2|X̂m|2
))

− log
(

ǫ21|X̂1|
2 + · · ·+ ǫ2m|X̂m|2

)

− 1
]}

. (6.130)

Note that the upper bound (6.130) exists in the condition that only one user communi-

cates and the others are switched off, Theorem 5.3 is proved.

Since X̂ is a unit vector, i.e.,

m∑

i=1

|X̂i|
2 = 1, (6.131)

we can use ri with 0 ≤ ri ≤ 1 to denote the input distribution of the i-th user such that

|X̂i|
2 = ri, (6.132)

m∑

i=1

ri = 1, 0 ≤ ri ≤ 1, i = 1, . . . ,m, (6.133)

and we have

χMAC ≤ max
r

{
log
(
d21r1 + · · ·+ d2mrm

)
− Ei

(
−
(
d21r1 + · · ·+ d2mrm

))

− log
(
ǫ21r1 + · · ·+ ǫ2mrm

)
− 1
}

(6.134)

Here we drop the moduli of line-of-sight components because they are given and we can

assume they are always real.

To finish the proof, our main purpose is to prove that the maximum on the RHS of

(6.134) is always achieved:

ri = 1, rj = 0, j = 1, . . . ,m, j 6= i (6.135)

for some i ∈ {1, . . . ,m}. As a result, we focus on the RHS of (6.134) and analyze the

maximum.

From Section 6.2, we have

max
0≤ϑ≤1

{
log
(
d21ϑ+ d22(1− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))
− log

(
ǫ21ϑ+ ǫ22(1− ϑ)

)
− 1
}

= max
ϑ∈{0,1}

{
log
(
d21ϑ+ d22(1− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ)

))
− log

(
ǫ21ϑ+ ǫ22(1− ϑ)

)

− 1
}

(6.136)

for given d1, d2, ǫ1, ǫ2 > 0. It means that the maximum of the two-user case is achieved on

the boundary as ϑ = 0 or ϑ = 1.

Moreover, we can derive two lemmas.
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Lemma 6.1. Given d1, d2, ǫ1, ǫ2 > 0, for any 0 ≤ a ≤ 1 and the constraint 0 ≤ ϑ ≤ a, we

have

max
0≤ϑ≤a

{
log
(
d21ϑ+ d22(a− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(a− ϑ)

))
− log

(
ǫ21ϑ+ ǫ22(a− ϑ)

)
− 1
}

= max
ϑ∈{0,a}

{
log
(
d21ϑ+ d22(a− ϑ)

)
− Ei

(
−
(
d21ϑ+ d22(a− ϑ)

))
− log

(
ǫ21ϑ+ ǫ22(a− ϑ)

)

−1
}
. (6.137)

Proof. We first separate d1, d2, ǫ1, and ǫ2 into three cases:

1. d1 > d2 and ǫ1 < ǫ2,

2. d1 > d2, ǫ1 > ǫ2, and d1
ǫ1

< d2
ǫ2
,

3. d1 > d2, ǫ1 > ǫ2, but d1
ǫ1

> d2
ǫ2
.

In the first and the second cases, we follow the same steps as in Section 6.2 and get the

same result that the maximum exists on the boundary as ϑ = 0 or ϑ = a.

In the third condition, we define

d′21 , d21 − (1− a)d22 > 0, (6.138)

d′22 , ad22 > 0, (6.139)

ǫ′21 , ǫ21 − (1− a)ǫ22 > 0, (6.140)

ǫ′22 , aǫ22 > 0, (6.141)

and the LHS of (6.137) can be rewritten as

max
0≤ϑ≤a

{
log
(
d′21 ϑ+ d′22 (1− ϑ)

)
− Ei

(
−
(
d′21 ϑ+ d′22 (1− ϑ)

))
− log

(
ǫ′21 ϑ+ ǫ′22 (1− ϑ)

)

−1} . (6.142)

Therefore, we can follow the same step of the third case in Section 6.2, and prove that

the maximum is achieved as ϑ = 0 or ϑ = a. Note that in our proof here, we change the

constraint from 0 ≤ ϑ ≤ 1 to 0 ≤ ϑ ≤ a, as a result, the scope of the conditions (6.107),

(6.108), (6.122) and (6.123) should be modified. Furthermore, (6.110) should be separated

into three new subcases with the same steps to analyze:

1. (ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 ≤ 0,

2. (ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 ≥ 0 and (ǫ21 − ǫ22)− (d21 − d22)ǫ

2
2 ≥ a(d21 − d22)(ǫ

2
1 − ǫ22),

3. (ǫ21 − ǫ22)− (d21 − d22)ǫ
2
2 ≥ 0 but (ǫ21 − ǫ22)− (d21 − d22)ǫ

2
2 ≤ a(d21 − d22)(ǫ

2
1 − ǫ22).
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Lemma 6.2. Given d1, d2, ǫ1, ǫ2 > 0, for any b ≥ 0, c ≥ 0 and the constraint 0 ≤ ϑ ≤ 1, we

have

max
0≤ϑ≤1

{
log
(
d21ϑ+ d22(1− ϑ) + b

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ) + b

))

− log
(
ǫ21ϑ+ ǫ22(1− ϑ) + c

)
− 1
}

= max
ϑ∈{0,1}

{
log
(
d21ϑ+ d22(1− ϑ) + b

)
− Ei

(
−
(
d21ϑ+ d22(1− ϑ) + b

))

− log
(
ǫ21ϑ+ ǫ22(1− ϑ) + c

)
− 1
}
. (6.143)

Proof. We define

d′21 , d21 + b > 0, (6.144)

d′22 , d22 + b > 0, (6.145)

ǫ′21 , ǫ21 + c > 0, (6.146)

ǫ′22 , ǫ22 + c > 0, (6.147)

and the LHS of (6.143) can be rewritten as (6.142). Hence from (6.136), we get the result

that the maximum exists on the boundary as ϑ = 0 or ϑ = 1.

From Lemma 6.1, we know that no matter how large the total power allocation of the

two users is, the maximum of the two-user case still achieves on the boundary as ϑ = 0 or

ϑ = a. Moreover,

Lemma 6.2 gives the result that even if we add two different constant in the line-of-

sight components term and the prediction errors term, the maximum of the two-user case

is still achieved on the boundary as ϑ = 0 or ϑ = 1. We combine these two lemmas: Given

d1, d2, ǫ1, ǫ2 > 0, for any 0 ≤ a ≤ 1, b ≥ 0, c ≥ 0 and the constraint 0 ≤ ϑ ≤ a, we have

max
0≤ϑ≤a

{
log
(
d21ϑ+ d22(a− ϑ) + b

)
− Ei

(
−
(
d21ϑ+ d22(a− ϑ) + b

))

− log
(
ǫ21ϑ+ ǫ22(a− ϑ) + c

)
− 1
}

= max
ϑ∈{0,a}

{
log
(
d21ϑ+ d22(a− ϑ) + b

)
− Ei

(
−
(
d21ϑ+ d22(a− ϑ) + b

))

− log
(
ǫ21ϑ+ ǫ22(a− ϑ) + c

)
− 1
}
. (6.148)

Next, we define s to be the choice of r that achieves the maximum in (6.134).

s , argmax
r

{
log
(
d21r1 + · · ·+ d2mrm

)
− Ei

(
−
(
d21r1 + · · ·+ d2mrm

))

− log
(
ǫ21r1 + · · ·+ ǫ2mrm

)
− 1
}
. (6.149)

Note that the maximum always exists since the expression in the maximum of (6.134) is a

sum of monotonic concave or convex terms. The maximum might not be unique, though

this does not affect the following arguments (simply pick one possible choice of s). Further,

we define

a1 , s1 + s2, (6.150)

b1 , d23s3 + · · ·+ d2msm, (6.151)

c1 , ǫ23s3 + · · ·+ ǫ2msm, (6.152)
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where 0 ≤ a1 ≤ 1, b1 ≥ 0, c1 ≥ 0. Then we have

log
(
d21s1 + · · ·+ d2msm

)
− Ei

(
−
(
d21s1 + · · ·+ d2msm

))
− log

(
ǫ21s1 + · · ·+ ǫ2msm

)
− 1

= max
0≤ϑ1≤a1

{
log
(
d21ϑ1 + d22 (a1 − ϑ1) + b1

)
− Ei

(
−
(
d21ϑ1 + d22 (a1 − ϑ1) + b1

))

− log
(
ǫ21ϑ1 + ǫ22 (a1 − ϑ1) + c1

)
− 1
}

(6.153)

= max
ϑ1∈{0,a1}

{
log
(
d21ϑ1 + d22 (a1 − ϑ1) + b1

)
− Ei

(
−
(
d21ϑ1 + d22 (a1 − ϑ1) + b1

))

− log
(
ǫ21ϑ1 + ǫ22 (a1 − ϑ1) + c1

)
− 1
}
, (6.154)

where 0 ≤ ϑ1 ≤ a1 denotes the power allocation of the first user, and where (6.154) follows

from (6.148). Hence the maximum is achieved either for ϑ1 = 0, i.e.,

log
(
d22a1 + b1

)
− Ei

(
−
(
d22a1 + b1

))
− log

(
ǫ22a1 + c1

)
− 1, as s1 = 0, (6.155)

or for ϑ1 = a1, i.e.,

log
(
d21a1 + b1

)
− Ei

(
−
(
d21a1 + b1

))
− log

(
ǫ21a1 + c1

)
− 1, as s2 = 0. (6.156)

Note that a1 = s1 + s2. As a result, a1 can be replaced by s2 in the first case and by s1 in

the second case.

In the first case, we define

a2 , s2 + s3, (6.157)

b2 , d24s4 + · · ·+ d2msm, (6.158)

c2 , ǫ24s4 + · · ·+ ǫ2msm, (6.159)

where 0 ≤ a2 ≤ 1, b2 ≥ 0, c2 ≥ 0. Then (6.155) can be rewritten as follows:

log
(
d22s2 + b1

)
− Ei

(
−
(
d22s2 + b1

))
− log

(
ǫ22s2 + c1

)
− 1

= log
(
d22s2 + d23s3 + · · ·+ d2msm

)
− Ei

(
−
(
d22s2 + d23s3 + · · ·+ d2msm

))

− log
(
ǫ22s2 + ǫ23s3 + · · ·+ ǫ2msm

)
− 1 (6.160)

= max
0≤ϑ2≤a2

{
log
(
d22ϑ2 + d23 (a2 − ϑ2) + b2

)
− Ei

(
−
(
d22ϑ2 + d23 (a2 − ϑ2) + b2

))

− log
(
ǫ22ϑ2 + ǫ23 (a2 − ϑ2) + c2

)
− 1
}

(6.161)

= max
ϑ2∈{0,a2}

{
log
(
d22ϑ2 + d23 (a2 − ϑ2) + b2

)
− Ei

(
−
(
d22ϑ2 + d23 (a2 − ϑ2) + b2

))

− log
(
ǫ22ϑ2 + ǫ23 (a2 − ϑ2) + c2

)
− 1
}
, (6.162)

where 0 ≤ ϑ2 ≤ a2 denotes the power allocation of the second user, and where (6.162)

follows from (6.148). Hence the maximum is achieved either for ϑ2 = 0, i.e.,

log
(
d23a2 + b2

)
− Ei

(
−
(
d23a2 + b2

))
− log

(
ǫ23a2 + c2

)
− 1, as s2 = 0, (6.163)

or for ϑ2 = a2, i.e,

log
(
d22a2 + b2

)
− Ei

(
−
(
d22a2 + b2

))
− log

(
ǫ22a2 + c2

)
− 1, as s3 = 0. (6.164)
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Note that a2 = s2 + s3. As a result, a2 can be replaced by s3 in the first case and by s2 in

the second case.

In the case of (6.156), we define

a2 , s1 + s3, (6.165)

where 0 ≤ a2 ≤ 1, and b2 ≥ 0, c2 ≥ 0 are the same as given in (6.158) and (6.159). Then

(6.156) can be rewritten as follows:

log
(
d21s1 + b1

)
− Ei

(
−
(
d21s1 + b1

))
− log

(
ǫ21s1 + c1

)
− 1

= log
(
d21s1 + d23s3 + · · ·+ d2msm

)
− Ei

(
−
(
d21s1 + d23s3 + · · ·+ d2msm

))

− log
(
ǫ21s1 + ǫ23s3 + · · ·+ ǫ2msm

)
− 1 (6.166)

= max
0≤ϑ2≤a2

{
log
(
d21ϑ2 + d23 (a2 − ϑ2) + b2

)
− Ei

(
−
(
d21ϑ2 + d23 (a2 − ϑ2) + b2

))

− log
(
ǫ21ϑ2 + ǫ23 (a2 − ϑ2) + c2

)
− 1
}

(6.167)

= max
ϑ2∈{0,a2}

{
log
(
d21ϑ2 + d23 (a2 − ϑ2) + b2

)
− Ei

(
−
(
d21ϑ2 + d23 (a2 − ϑ2) + b2

))

− log
(
ǫ21ϑ2 + ǫ23 (a2 − ϑ2) + c2

)
− 1
}
, (6.168)

where 0 ≤ ϑ2 ≤ a2 denotes the power allocation of the first user, and where (6.168) follows

from (6.148). Hence the maximum is achieved either for ϑ = 0, i.e.,

log
(
d23a2 + b2

)
− Ei

(
−
(
d23a2 + b2

))
− log

(
ǫ23a2 + c2

)
− 1, as s1 = 0, (6.169)

or for ϑ2 = a2, i.e.,

log
(
d21a2 + b2

)
− Ei

(
−
(
d21a2 + b2

))
− log

(
ǫ21a2 + c2

)
− 1, as s3 = 0, (6.170)

Note that a2 = s1 + s3. As a result, a2 can be replaced by s3 in the first case and by s1 in

the second case. Combining the cases (6.163), (6.164), (6.169) and (6.170), we can find that

the maximum is achieved either for s2 = 0, s3 = 0, i.e.,

log
(
d21s1 + b2

)
− Ei

(
−
(
d21s1 + b2

))
− log

(
ǫ21s1 + c2

)
− 1, (6.171)

or for s1 = 0, s3 = 0, i.e.,

log
(
d22s2 + b2

)
− Ei

(
−
(
d22s2 + b2

))
− log

(
ǫ22s2 + c2

)
− 1, (6.172)

or for s1 = 0, s2 = 0, i.e.,

log
(
d23s3 + b2

)
− Ei

(
−
(
d23s3 + b2

))
− log

(
ǫ23s3 + c2

)
− 1. (6.173)

We continue to apply the same steps from (6.155) to (6.173), we define

ak , sj + sk+1, (6.174)

bk , d2k+2sk+2 + · · ·+ d2msm, (6.175)

ck , ǫ2k+2sk+2 + · · ·+ ǫ2msm, (6.176)
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where j = 1, . . . , k and k = 2, . . . ,m− 2. Then

log
(
d2jsj + bk−1

)
− Ei

(
−
(
d2jsj + bk−1

))
− log

(
ǫ2jsj + ck−1

)
− 1

= log
(
d2jsj + d2k+1sk+1 + · · ·+ d2msm

)
− Ei

(
−
(
d2jsj + d2k+1sk+1 + · · ·+ d2msm

))

− log
(
ǫ2jsj + ǫ2k+1sk+1 + · · ·+ ǫ2msm

)
− 1 (6.177)

= max
0≤ϑk≤ak

{
log
(
d2jϑk + d2k+1 (ak − ϑk) + bk

)
− Ei

(
−
(
d2jϑk + d2k+1 (ak − ϑk) + bk

))

− log
(
ǫ2jϑk + ǫ2k+1 (ak − ϑk) + ck

)
− 1
}

(6.178)

= max
ϑk∈{0,ak}

{
log
(
d2jϑk + d2k+1 (ak − ϑk) + bk

)
− Ei

(
−
(
d2jϑk + d2k+1 (ak − ϑk) + bk

))

− log
(
ǫ2jϑk + ǫ2k+1 (ak − ϑk) + ck

)
− 1
}
, (6.179)

where 0 ≤ ϑk ≤ ak denotes the power allocation of the j-th user. Here in (6.178), everything

is fixed except the j-th and the (k + 1)-th users, and (6.179) follows from (6.148). Hence

the maximum is achieved either for ϑk = 0, i.e.,

log
(
d2k+1ak + bk

)
− Ei

(
−
(
d2k+1ak + bk

))
− log

(
ǫ2k+1ak + ck

)
− 1, as sj = 0, (6.180)

or for ϑk = ak, i.e.,

log
(
d2jak + bk

)
− Ei

(
−
(
d2jak + bk

))
− log

(
ǫ2jak + ck

)
− 1, as sk+1 = 0, (6.181)

for j = 1, . . . , k. Note that ak = sj + sk+1. As a result, ak can be replaced by sk+1 in

the first case and by sj in the second case. Combining the k cases, we can find that the

maximum is achieved for one of k + 1 cases:

log
(
d2jsj + bk

)
− Ei

(
−
(
d2jsj + bk

))
− log

(
ǫ2jsj + ck

)
− 1 (6.182)

for j = 1, . . . , k + 1 as sl = 0, l = 1, . . . , k + 1, l 6= j.

In the end, we have the result that the maximum is achieved for one of m− 1 cases:

log
(
d2jsj + d2msm

)
− Ei

(
−
(
d2jsj + d2msm

))
− log

(
ǫ2jsj + ǫ2msm

)
− 1 (6.183)

for j = 1, . . . ,m − 1. From (6.133), we know the sum of si is 1, therefore, (6.183) can be

rewritten as follows: for j = 1, . . . ,m− 1

log
(
d2jsj + d2msm

)
− Ei

(
−
(
d2jsj + d2msm

))
− log

(
ǫ2jsj + ǫ2msm

)
− 1

= max
0≤ϑm≤1

{
log
(
d2jϑm + d2m (1− ϑm)

)
− Ei

(
−
(
d2jϑm + d2m (1− ϑm)

))

− log
(
ǫ2jϑm + ǫ2m (1− ϑm)

)
− 1
}

(6.184)

= max
ϑm∈{0,1}

{
log
(
d2jϑm + d2m (1− ϑm)

)
− Ei

(
−
(
d2jϑm + d2m (1− ϑm)

))

− log
(
ǫ2jϑm + ǫ2m (1− ϑm)

)
− 1
}
, (6.185)

where 0 ≤ ϑm ≤ 1 denotes the power allocation of the j-th user. Here (6.185) follows from

(6.136). Hence the maximum is achieved either for ϑm = 0, i.e.,

log
(
d2m
)
− Ei

(
−
(
d2m
))

− log
(
ǫ2m
)
− 1, as sj = 0, (6.186)
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or for ϑm = 1, i.e.,

log
(
d2j
)
− Ei

(
−
(
d2j
))

− log
(
ǫ2j
)
− 1, as sm = 0 (6.187)

for j = 1, . . . ,m − 1. Combining these m − 1 cases, we derive the fact that the maximum

must be of the form

log
(
d2j
)
− Ei

(
−d2j

)
− log

(
ǫ2j
)
− 1 (6.188)

for some j ∈ {1, . . . ,m} as sl = 0, l = 1, . . . ,m, l 6= j. Consequently, the RHS of (6.134) is

always in the form of (6.135). Furthermore, the upper bound of the m-user SISO Rician

fading MAC with memory becomes:

χMAC ≤ max
i∈{1,...,m}

{
log
(
|di|

2
)
− Ei

(
−|di|

2
)
− log

(
ǫ2i
)
− 1
}
. (6.189)

From (6.128) and (6.189), we have

χMAC = max
i∈{1,...,m}

{
log
(
|di|

2
)
− Ei

(
−|di|

2
)
− log

(
ǫ2i
)
− 1
}

(6.190)

= max
i∈{1,...,m}

χSISO,i. (6.191)
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Discussion and Conclusion

In this thesis, we have succeeded in deriving the exact fading number (i.e.,the exact asymp-

totic capacity region) for an m-user SISO Rician fading MAC with memory. We have shown

that the fading number of SISO MAC is exactly equivalent to the fading number of a single-

user SISO channel. To achieve the sum-rate capacity, the optimal strategy is switching off

all the users except the one who has the best fading number.

In [4], we have the fading number of memoryless case:

χMAC-IID = log
(
d2MAC-IID

)
− Ei

(
−d2MAC-IID

)
− 1 (7.1)

where

dMAC-IID = max {|d1|, . . . , |dm|} . (7.2)

The fading number of the Rician fading memoryless SISO MAC only depends on the line-

of-sight components, i.e., the better the line-of-sight component is, the better the fading

number is. However, in our thesis, since we assume channels with memory where we can

predict the current fading from the past fading, the fading number is also influenced by the

prediction errors. Even if the channel has the better line-of-sight component, it might has

the worse fading number.

In Section 6.2, we have proved the two-user case with one user has the better line-of-sight

component and the better prediction error. From the upper bound of the fading number

in Proposition 5.1, we can derive the fading number of the two-user case with one user has

the better ratio of line-of-sight component to prediction errors and the worse line-of-sight

component. But in other cases, we can not distinguish which one has the better fading

number by the line-of-sight components and the prediction errors directly. We only prove

that the fading number cannot exist in the situation of two users working together. In

general, the fading number only exist as only one user communicates.

A possible reason for this pessimistic result might be that all the users are indepen-

dent, i.e., they don’t know the states of other users and can’t cooperate with other users.

Therefore, the signals transmitted from other users can only be interference and reduce the

performance.
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Note that in our thesis, we assume the channel model is noncoherent. Since neither

the transmitter and the receiver knows the real state of channel model, some methods of

lowering the interference can not be utilized. Moreover, we only consider the asymptotic

capacity that the system works in the regime of high-SNR, however, real systems usually

operate at low SNR. As a result, it’s not necessary to degrade the multiple-access channel

to single-user channel for designing a system.

Possible future works for the multiple-access fading channel might be as follows:

• Generalizing the SISO case to the MIMO case that the users and the receiver use the

multiple antennas. A possible approach could be considered first for the MISO case.

• Considering the case with side-information.

• Considering the case with feedback.

• Loosening the restriction of Rician fading and considering the cases of general fading.

• Deriving bounds on the nonasymptotic capacity when the system does not operate in

the regime of high-SNR.

45



Appendix A

Derivation of Lemma 4.2

We follows the steps in [7, Section 4.2] to derive the upper bound in Lemma 4.2. From the

mutual information of MISO fading channel shown in Lemma 4.1, we have

I(X;Y ) ≤ −h(Y |X) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
log(|Y |2 + ν)

]

+
1

β
E
[
|Y |2

]
+

ν

β
(A.1)

≤ −h(Y |X) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
log |Y |2

]
+ ǫν

+
1

β
E
[
|Y |2

]
+

ν

β
(A.2)

= −E
[
log πe(‖X‖2 + σ2)

]
+ log π + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
E
[
log |Y |2

∣
∣X = x

]]
+ ǫν +

1

β
E
[
‖X‖2 + σ2 + |dTX|2

]
+

ν

β
(A.3)

= −E
[
log(‖X‖2 + σ2)

]
− 1 + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
log(‖X‖2 + σ2)

]

+ (1− α)E

[

log

(
|dTX|2

‖X‖2 + σ2

)

− Ei

(

−
|dTX|2

‖X‖2 + σ2

)]

+ ǫν

+
1

β
E
[
‖X‖2 + σ2 + |dTX|2

]
+

ν

β
(A.4)

= −1 + E

[

log

(
|dTX|2

‖X‖2 + σ2

)

− Ei

(

−
|dTX|2

‖X‖2 + σ2

)]

+ α

(

log β − E
[
log(‖X‖2 + σ2)

]
− E

[

log

(
|dTX|2

‖X‖2 + σ2

)

− Ei

(

−
|dTX|2

‖X‖2 + σ2

)])

+ log Γ

(

α,
ν

β

)

+ ǫν +
1

β
E
[
‖X‖2 + σ2 + |dTX|2

]
+

ν

β
. (A.5)

Here (A.1) follows Lemma 4.1; in (A.2), we assume 0 < α < 1 such that 1 − α > 0 and

define

ǫν , sup
x

{
E
[
log
(
|Y |2 + ν

) ∣
∣X = x

]
− E

[
log |Y |2

∣
∣X = x

]}
, (A.6)
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such that

(1− α)E
[
log(|Y |2 + ν)

]

= (1− α)E
[
log |Y |2

]
+ (1− α)

(
E
[
log(|Y |2 + ν)

]
− E

[
log |Y |2

])
(A.7)

≤ (1− α)E
[
log |Y |2

]

+ (1− α) sup
x

{
E
[
log(|Y |2 + ν)

∣
∣X = x

]
− E

[
log |Y |2

∣
∣X = x

]}
(A.8)

= (1− α)E
[
log |Y |2

]
+ (1− α)ǫν (A.9)

≤ (1− α)E
[
log |Y |2

]
+ ǫν ; (A.10)

(A.3) follows the fact that the channel output is Gaussian distributed when X = x is given;

in (A.4), we evaluate the expected logarithm of a noncentral of a noncentral chi-square

random as derived in [2], [3, Lemma 10.1], [6, Lemma A.6]; and (A.5) follows from simple

algebraic rearrangements.

Next, we lower-bound some terms in (A.5) as follows:

E
[
log(‖X‖2 + σ2)

]
≥ log σ2; (A.11)

E

[

log

(
|dTX|2

‖X‖2 + σ2

)

− Ei

(

−
|dTX|2

‖X‖2 + σ2

)]

≥ −γ; (A.12)

and upper-bound another term as follows:

E
[
‖X‖2 + σ2 + |dTX|2

]
≤ E + σ2 + E

[
‖d‖2‖X‖2

]
(A.13)

= E + σ2 + ‖d‖2E
[
‖X‖2

]
(A.14)

≤ E + σ2 + ‖d‖2E (A.15)

= (1 + ‖d‖2)E + σ2. (A.16)

Here, (A.11) follows from dropping some nonnegative terms; (A.12) follows because log ξ −

Ei(−ξ) ≥ −γ where γ ≈ 0.57 denotes Euler’s constant; and (A.13) and (A.15) follow from

the Cauchy-Schwarz inequality and the fact that the input needs to satisfy the average-power

constraint.

Furthermore, we bound

E

[

log

(
|dTX|2

‖X‖2 + σ2

)

− Ei

(

−
|dTX|2

‖X‖2 + σ2

)]

≤ E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)]

, (A.17)

which follows because ξ 7→ log ξ − Ei(−ξ) is monotonically increasing.

Therefore, we can rewrite (A.5) as follows:

I(X;Y ) ≤ −1 + E

[

log

(
|dTX|2

‖X‖2

)

− Ei

(

−
|dTX|2

‖X‖2

)]

+ α
(
log β − log σ2 + γ

)

+ log Γ

(

α,
ν

β

)

+ ǫν +
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β
(A.18)

and Lemma 4.2 is proved.
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Derivation of Lemma 4.3

To derive (4.11) and (4.12), we first define the set B as

B , {x1 : 0 ≤ |x1| ≤ a|xi|} (B.1)

for an arbitrary value a > 1 and

E1 , E
[
|X|2

]
; (B.2)

assume that the first user escapes to infinity, i.e., if E ↑ ∞ then E1 ↑ ∞. Furthermore, the

LHS in (4.11) can be upper-bound as follows:

lim
E↑∞

sup
QE∈A

E

[
|d1||X1||di||Xi|

|X1|2 + · · ·+ |Xm|2

]

≤ |d1||di| lim
E↑∞

sup
QE∈A

E

[
|X1||Xi|

|X1|2 + |Xi|2

]

(B.3)

≤ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

E

[
|X1||Xi|

|X1|2 + |Xi|2

]

(B.4)

= |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫
|x1||xi|

|x1|2 + |xi|2
dQx1(x1)dQxi

(xi) (B.5)

≤ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈B

|x1||xi|

|x1|2 + |xi|2
dQx1(x1)dQxi

(xi)

+ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈Bc

|x1||xi|

|x1|2 + |xi|2
dQx1(x1)dQxi

(xi). (B.6)

Here (B.3) follows because we drop some terms in the denominator; in (B.4), we define A1

as the set of all input distributions of the first user that escape to infinity, and take the

supremum over all Qxi
which are independent on Qx1 and without any constraint on the

average power; and (B.6) follows from splitting the inner integration into two parts and the

property that the supremum of a sum is always upper-bounded by the sum of the suprema.

48



Appendix B

We focus on the first term in (B.6) to continue:

|d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈B

|x1||xi|

|x1|2 + |xi|2
︸ ︷︷ ︸

≤ 1
2

dQx1(x1)dQxi
(xi)

≤ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈B

1

2
dQx1(x1)dQxi

(xi) (B.7)

≤ |d1||di| sup
Qxi

lim
E1↑∞

∫
(

sup
Qx1∈A1

1

2

∫

x1∈B
dQx1(x1)

)

dQxi
(xi) (B.8)

= |d1||di| sup
Qxi

∫

lim
E1↑∞

(

sup
Qx1∈A1

1

2

∫

x1∈B
dQx1(x1)

)

dQxi
(xi) (B.9)

= |d1||di| sup
Qxi

∫
(

lim
E1↑∞

sup
Qx1∈A1

1

2
Pr(|X1| ≤ a|xi|)

)

dQxi
(xi) (B.10)

= |d1||di| sup
Qxi

∫

0dQxi
(xi) = 0. (B.11)

Here (B.7) follows the fact that

r1ri

r21 + r2i
≤

1

2
(B.12)

and that r1 7→ r1ri
r21+r2i

is monotonically decreasing if r1 > ri; (B.8) follows by taking the

supremum into the first integral which can only enlarge the expression; in (B.9), we exchange

limit and integration which needs justification: define

gE1(xi) , sup
Qx1∈A1

1

2

∫

x1∈B
dQx1(x1) (B.13)

≤ sup
Qx1∈A1

1

2

∫

dQx1(x1) (B.14)

=
1

2
, gupper(xi) (B.15)

and then note that
∫

gupper(xi)dQxi
(xi) =

∫
1

2
dQxi

(xi) =
1

2
, (B.16)

i.e., gupper(·) is independent of E1 and integrable, therefore, we are allowed to swap limit

and integration by the Dominated Convergence Theorem in [10]; and (B.10) follows from

Proposition 3.4 since Qx1 escapes to infinity.

Next, we upper-bound the LHS in (4.11) as follows:

lim
E↑∞

sup
QE∈A

E

[
|d1||X1||di||Xi|

|X1|2 + · · ·+ |Xm|2

]

≤ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈Bc

|x1||xi|

|x1|2 + |xi|2
dQx1(x1)dQxi

(xi) (B.17)
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≤ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈Bc

(a|xi|)|xi|

(a|xi|)2 + |xi|2
dQx1(x1)dQxi

(xi) (B.18)

= |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫

x1∈Bc

a

a2 + 1
dQx1(x1)dQxi

(xi) (B.19)

≤ |d1||di| sup
Qxi

lim
E1↑∞

sup
Qx1∈A1

∫ ∫
a

a2 + 1
dQx1(x1)dQxi

(xi) (B.20)

= |d1||di| sup
Qxi

∫
a

a2 + 1
dQxi

(xi) (B.21)

= |d1||di|
a

a2 + 1
< τ (B.22)

for any τ > 0 if we choose a large enough. Here (B.18) follows the fact that r1 7→ r1ri
r21+r2i

is

monotonically decreasing if r1 > ri. Since a > 1 is arbitrary, we get

lim
E↑∞

sup
QE∈A

E

[
|d1||X1||di||Xi|

|X1|2 + · · ·+ |Xm|2

]

= 0. (B.23)

Moreover, we upper-bound the LHS in (4.12) with the same steps as (4.11):

lim
E↑∞

sup
QE∈A

E

[
|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2

]

≤ |di||dj | lim
E↑∞

sup
QE∈A

E

[
|Xi||Xj |

|X1|2 + |Xi|2 + |Xj |2

]

(B.24)

≤ |di||dj | sup
Qxi

·Qxj

lim
E1↑∞

sup
Qx1∈A

E

[
|Xi||Xj |

|X1|2 + |Xi|2 + |Xj |2

]

(B.25)

= |di||dj | sup
Qxi

·Qxj

lim
E1↑∞

sup
Qx1∈A
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|xi||xj |

|x1|2 + |xi|2 + |xj |2
dQx1(x1)dQxi

(xi)dQxj
(xj) (B.26)

≤ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫
|xi|

2

|x1|2 + 2|xi|2
dQx1(x1)dQxi

(xi) (B.27)

≤ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈B

|xi|
2

|x1|2 + 2|xi|2
dQx1(x1)dQxi

(xi)

+ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈Bc

|xi|
2

|x1|2 + 2|xi|2
dQx1(x1)dQxi

(xi). (B.28)

Here (B.24) follows because we drop some terms in the denominator; in (B.25), we define

A1 as the set of all input distributions of the first user that escape to infinity, and take the

supremum over all Qxi
· · ·Qxj

which are independent on Qx1 and without any constraint on

the average power; (B.27) follows the fact that

rirj

r21 + r2i + r2j
≤

r2i
r21 + 2r2i

≤
1

2
(B.29)

and that r1 7→
r2i

r21+2r2i
is monotonically decreasing if r1 > ri; and (B.28) follows from the

same step as (B.6).
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For the first term in (B.28), we have

|di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈B

|xi|
2

|x1|2 + 2|xi|2
︸ ︷︷ ︸

< 1
2

dQx1(x1)dQxi
(xi)

≤ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈B

1

2
dQx1(x1)dQxi

(xi) (B.30)

≤ 0. (B.31)

Here (B.31) follows from the derivation of (B.8)–(B.11).

Combined with (B.31), the LHS in (4.12) becomes:

lim
E↑∞

sup
QE∈A

E

[
|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2

]

≤ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈Bc

|xi|2

|x1|2 + 2|xi|2
dQx1(x1)dQxi

(xi) (B.32)

≤ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈Bc

|xi|
2

(a|xi|)2 + 2|xi|2
dQx1(x1)dQxi

(xi) (B.33)

= |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫

x1∈Bc

1

a2 + 2
dQx1(x1)dQxi

(xi) (B.34)

≤ |di||dj | sup
Qxi

lim
E1↑∞

sup
Qx1∈A

∫ ∫
1

a2 + 2
dQx1(x1)dQxi

(xi) (B.35)

= |di||dj | sup
Qxi

∫
1

a2 + 2
dQxi

(xi) (B.36)

= |di||dj |
1

a2 + 2
≤ τ (B.37)

for any τ > 0 if we choose a large enough. Here (B.33) follows the fact r1 7→
r2i

r21+r2i
is

monotonically decreasing if r1 > ri. Since a > 1 is arbitrary, we obtain

lim
E↑∞

sup
QE∈A

E

[
|di||Xi||dj ||Xj |

|X1|2 + · · ·+ |Xm|2

]

= 0. (B.38)
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