A2 W

5 E R R R ALY 2 R

The Fading Number of Multiple-Access
Rician Fading Channel with Memory



A FEFERETRRFELYE 2 FRE

The Fading Number of Multiple-Access
Rician Fading Channel with Memory

FoTo4 o om oy Student : Chou Yu-Hsing

¥Ry 3L L Advisor : Dr. Stefan M. Moser

B = i+ F
TG LAY T
AL o2

A Thesis

Submitted to Institute of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Communication Engineering
August 2012

Hsinchu, Taiwan, Republic of China

PEAR-FE- & AN



Information Theory

Laboratory -~
Institute of Communications Engineering ‘ v
National Chiao Tung University

Master Project

The Fading ' Number of

Multiple-Access
Rician Fading Channel
with Memory

Chou-Yu-Hsing

Advisor: Prof. Dr. Stefan M. Moser
National Chiao Tung University, Taiwan

Graduation Prof. Dr. Chen Po-Ning
Committee: National Chiao Tung University, Taiwan

Prof. Dr. Chen Fu-Chiarng
National Chiao Tung University, Taiwan



A AR JEHE  EFESF L

5%

S RIMKEEZ LA RTALIE

RS

ERRBRBHLF » KM>HRZBURNRRS EARAENREEELTE o ALiBEF >
RRALT By B B ot 3 B A — B ST B AL BAE s 9 g Bl A — 1B L 694 A & 42 Bl — B
MAZAR i A4 o B T BALKRMG 24 > RMARAFRBEREARBBRRRLGHER » Lt 2
Hoo PTR AR A éﬁﬁifﬂ FAn MR A AEAE B — R4 o

B XRBEEEOY T+ BRATE A it ilad B 7 9 BRTF X o KAUE A — A ¥

B 7k ﬁﬁ&*Tm%%iﬁﬁﬁ&k%ﬁ@k&ag CHETAELTEES
IR L A I H R R ER BB K o MAGAREERYGERAXP > F=EE
— 1B ™ P R R B e o

HERMGAET » MK —EAERXRGEERRE s mEER L —KTEER
HERSEHPAARBRBOER e ARG TR - HH EREXRBLEHLRRG
i 18 69 R B SR RAF B EE B AR E R B R R o B A & > — A seie R
%%%ﬁyﬁémxiﬁﬁﬁ BT 3SR AR Bk IR A% Ak P £ 640 R B 1R

s 3t HL3E AT 648 R E A H o F uE B 6G g X A% % o



The Fading Number of Multiple-Access
Rician Fading Channel with Memory

Student: Chou Yu-Hsing Advisor: Prof. Stefan M. Moser

Institute of Communications Engineering
National Chiao Tung University

Abstract

In this thesis we analyze the sum-rate capacity of the Rician fading multiple-access
channel (MAC) with memory. The fading process of the channel is Gaussian in addition to
a line-of-sight component. ‘Moreover, there are more than one user sending data at the same
time. To simplify our amalysis, we consider the single-input single-output (SISO) case, i.e.,
all the transmitters and the receiver-use one antenna.

In the analysis of the fading-channel capacity, the exact expression of the capacity is not
yet known. A waylcalled.asymptotic analysis-is-used to derive the channel capacity in the
limit when the available power tends to infinity. Itds shown that at high signal-to-noise ratio
(SNR), the sum-rate capacity grows to infinity doublelogarithmically. The second term in
the high-SNR expamsion is a constant called fading number.

In our work, we derive an upper bound on thefading number of the general m-user
SISO Rician fading MAC with memory. Combining the natural lower bound on the fading
number of the single-user SISO channel, we then obtain the exact fading number of the
general m-user SISO Rician fading MAC with memory.. To achieve the fading number, we
have to switch off the worse users and allow the best users communicate by time-sharing.
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Chapter 1

Introduction

With the development of the technology, the usage of wireless communication is more and
more common nowadays. Therefore; it is important to @analyze the communication in this
area. There is much interference in nature: we divide'the influences of the interference in
wireless channel model into additive Gaussian noise and multiplicative noise called fading.
The fading impact on.the signal-amplitude is often destructive and the channels with fading
impact usually called fading channels. Moreover, it isdmore complicated to design a good
communication system for fading channels than the additive white Gaussian noise (AWGN)
channel. In this thesis, we research a multiple-access fading channel with memory, where
we restrict the fading to the special case of Rician fading.

In Rician fading the multiplicative noise is Gaussian distributed with a line-of-sight path
between the transmitter and the receiver. Furthermore, we assume memory which implies
that not only the present fading process but also the past fading process affects the output
of the channel.

Multiple-access indicates that there are more than one user on the transmitter side
that send data at the same time. The difference between one user with multiple antennas
and multiple-access is that in the latter all users are individual and have no knowledge of
the other users, i.e., they are independent of each other, while in the former all antennas
cooperate. A common example of a multiple-access channel (MAC) are several mobile
phones in the same area that communicate to the same base station.

In order to make a communication system efficient, we have to analyze the channel
capacity, which was initially introduced in the famous landmark paper of Shannon — ”A
Mathematical Theory of Communication” [12]. In this paper, Shannon proved that in every
communication channel, we can transmit data reliably with a theoretical maximum rate
denoted capacity, i.e., for every transmission rate below the capacity, we can make the
probability of transmission errors as small as wished. As a result, how good a channel is
can be judged by the capacity of the channel.

In the case of MAC, the rate of one user might be affected by other users. It is unfair
to decide whether the channel is good or not based on only one user. For this reason, we
calculate the sum of all users’ rate and use the sum-rate capacity to denote the maximum
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of the sum to replace the original capacity.

Although there are many research results about the wireless communication channel,
the channel capacity of a general fading channel is still unknown. To solve the problem, re-
searchers have tried many different approaches. A common approach is to assume that from
the training sequences, the receiver can estimate the channel state perfectly. Unfortunately,
it is impossible to measure the channel state perfectly even if we have sent a large amount
of training data. Moreover, another problem is the bandwidth for these training sequences
cannot be neglected.

Even though the receiver cannot have perfect knowledge of the channel state, the receiver
can be assumed to have some intelligence of the channel by the received information data.
We call a channel model noncoherent, when both the transmitter and the receiver have no
idea about the real state of the channel, but they know the characteristics of the channel.

Since the exact expression of noncoherent channel’s capacity is not yet known, a way
called asymptotic analysis is used to derive the.channel capacity at asymptotic high and
low signal-to-noise ratio (SNR). In (3], [6] and [8];Lapidoth and Moser have derived the
asymptotic high-SNR, capacity of general single-user fading channels; the asymptotic low-
SNR capacity of fading channel-has-also been derived in [11]; and the asymptotic high-SNR
sum-rate capacity of the memoryless MAC is derived in [4]. In our work, we extend the
result of the memoryless MAC [4]-to the case with memory.

Since the evaluation of the noncoherent channel’s capacity includes the problem of op-
timization, it is difficult to get the exact channel capacity. Instead of deriving the channel
capacity directly, we find an upper and a-dower bound of the channel capacity and try to
make them tight. From [7], we know a natural upper bound and a natural lower bound on
the sum-rate capacity of MAC. The sum-rate capacity of a MAC can be upper-bounded by
the capacity of the multiple-input single-output (MISO) channel and lower-bounded by the
capacity of the single-input single-output (SISO) channel: Unfortunately, the upper bound
is loose. Based on the duality-based upper bound on the mutual information in [3] and [6],
we obtain a tighter upper bound on the sum-rate capacity.

In [6, Theorem 6.10], the result is proved that in the regime of high-SNR, the capacity
grows only double-logarithmically in the SNR such that the capacity mainly is decided by a
constant called fading number. This result directly extends to our model, too. Consequently,
we focus on the computation of the fading number in this thesis. The precise definition of
the fading number is given in Section 3.4.

The main contributions of this thesis are as follows. Firstly, we find an upper bound
on the fading number of MAC from the duality-based upper bound on sum-rate capacity
of MAC. Next, we derive the exact fading number of the two-user and the general m-user
MAC.

The structure of this thesis is as follows: In the reminder of this chapter we will shortly
describe our notation. The channel model will be introduced in Chapter 2. In Chapter 3, we
will give some concepts that are related to our analysis. In Chapter 4, we review some pre-
vious results that we will use in the following chapters. The main results and the derivation
of the results are shown in Chapter 5 and Chapter 6. Finally, we will give the conclusion
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and discuss the results and future works in Chapter 7.

In order to make this thesis easier to read, we attempt to use a consistent and precise
notation. For random quantities, we use upper-case letters such as X to denote scalar
random variables, and their realizations are written in lower-case, e.g., x. For random
vectors we use bold-face capitals, e.g., X and bold lower-case for their realization. Constant
matrices are denoted by a special font of upper-case letters, e.g., H and for random matrices
we use another font, e.g., H. Scalars are typically denoted using Greek letters or lower-case
Roman letters.

Some exceptions that are widely used in literature and therefore kept in their customary
shape are as follows:

e h(-) denotes the differential entropy of a continue random variable.

e [(-;-) denotes the mutual infermation functioenal.
Furthermore, we use the capitals'@Q) and W to denote probability distribution functions:

e (Q(-) denotes a distribution-on-an input of a channel.

o W(-|-) denotes'a channel law, i.e., ‘the distribution of the channel output when the
channel input is given.

The letter C denotes the channel capacity for single-user or the sum-rate capacity for
multiple-user. The energy per symbol is denoted by £. Also note that we use log(-) to
denote the natural logarithmic function:
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Channel Model

In this chapter, we will introduce our channel model of the multiple-access Rician fading
channel. We assume that the channel'model is.noncoherent in the sense that neither the
transmitter nor the receiver kmows the real state ofithe channel model. Moreover, the
transmitter and the receiver only have thelinformation about of channel characteristics,
e.g., the distribution of the channel state. In Section 2.1, we consider the m-user SISO
channel model and/give some mathematical formulas. In Section 2.2, we will describe the
special cases of the two-user MAC and the memoryless MAC:

2.1 The m-User SISO Rician Fading MAC with Memory

The multiple-access’channel is a channel where more than one user transmits data to the
receiver at the same time. Furthermore, every user does not know the state of other users
i.e., all users are independent of each other. In our-channel model, we assume that the
channel has memory, i.e., the current.channel state depends on the past channel states. We
assume that the channel is a diserete-time model with a common clock known to all users.

We consider a SISO multiple-access channel with m users at the transmitter side. Each
user and the receiver use only one antenna. As illustrated in Figure 2.1, the total number
of transmit antennas is m.

At time k, the output Yj, € C is given by

Y. = ngk + Zy, (2.1)
= Hypx1+ -+ Hp T o + Z. (2.2)

Here Hy € C™ is a random vector that denotes the time-k random fading vector; x; € C™
denotes the time-k input vector of m users; Z; € C is a random variable that denotes the
time-k additive noise.

The additive noise {Zx} is a independent and identically distributed (IID), zero-mean,
circularly symmetric, complex Gaussian random variable, i.e., {Z} is IID ~ N¢ (0, 02) for
some o2 > 0.
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In general, we can assume that the fading process {Hy} and the additive noise {Zy} are
independent, and neither does depend on the input {xj}. Furthermore, we can assume the
fading process H be any distribution. In our analysis, we only discuss the case of stationary
Rician fading with memory. Thus, every component {H;;} which represents the channel
fading for the ¢-th user is Gaussian distributed, i.e., at time k

Hij ~Nc(diyo?), i=1,....m (2.3)

for some 02 > 0, where d; € C is a constant called the line-of-sight component. The memory
is defined by a spectral distribution function F;(\) such that the prediction error of H;
Ml is

€2 = exp </2 log FQ(A)dA) : (2.4)

L
2

given from its past {Hi,j}

which is shown in [9] and [13]. Moreover; we assumme the different channels to be independent,

i.€.,
{H; kA gt Visg =1, ,my i j. (2.5)

As for the input; because of the property of the multiple-access channel, the different
users are not allowed to cooperate, i.e.,

{(Xip Y LX), Vig=1,...,m|) i#]. (2.6)

Furthermore, we use a symbol £ to-denote the total power allowed and consider one of three
different constraintsfor the input:

¢ Peak-Power Constraint: At every time-step every user 7 is allowed to use a power
of at most 7:&:

PI‘ 'Xi,k

2o Mgl o (2.7)
m
for some fixed number x; > 0.

e Average-Power Constraint: Averaged over the length of a codeword, every user i
is allowed to use a power of at most 72&

E[IXixl?] < =2 (2.8)

Rg
m
for some fixed number k; > 0.

¢ Power-Sharing Average-Power Constraint: Averaged over the length of a code-
word all users together are allowed to use a power of at most K€

E [i |Xi,k]2] < RE (2.9)
=1

for some fixed number & > 0.
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In all cases, we have the signal-to-noise ratio:

&

SNR £ et (2.10)
Note that if x; = 1 for all i, we have the special case where all users have an equal power
available. Also note that in (2.7) and (2.8), we have normalized the power to the number
of user m. From an engineering point of view, this might be strange; however, in regard of
our freedom to choose k;, it is irrelevant, and it simplifies our analysis since we can easily
connect the power-sharing average-power constraint with other two constraints. Indeed, if
we define & to be the average of the constants {r;}!", i.e.,

m

1
R2 EZK@ (2.11)

=1

then the three constraints are in order of strictness: the peak-power constraint is the most
stringent of the three comstraints, i.e., if (2.7) is satisfied for all ¢ = 1,...,m, then the
other two constraints are also satisfied;.and the average-power constraint is the second most
stringent in the sense that if (2:8)is satisfied«for all 7 = 1,...ym, then the power-sharing
average-power constraint (2.9) is-also satisfied. In the remainder of this thesis, we will always
assume that (2.11) holds.

It is worth mentioning that the slackest constraint, 7.e., the power-sharing average-power
constraint, implicitly allows a form of cooperation: even if the user are still assumed to be
statistically independent, we do allow cooperation concerning power allocation. This is not
very realistic, however, we include it anyway" because it will help in deriving bounds on
the sum-rate capacity. As a matter of fact, it will turn out that the asymptotic sum-rate
capacity is unchanged irrespective of which constraint.is assumed.

X1k

Yy

Xo.k ﬁ/_/./—r

Figure 2.1: The m-user SISO MAC.
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2.2 The Simplified Channel Model

Now, we consider the special case of a two-user SISO multiple-access channel with memory.
We assume that there are only two users in our channel model, i.e., m = 2. At time k, the
time-k output of channel can be simplifed as

Yy = Hypx1p + Hopwo g + 2 (2.12)

where H j,, Hy 3, and Zj, are as the same as we mentioned before. As for the input, the two
users are not allowed to cooperate, i.e.,

{ XL { Xk} (2.13)

Moreover, given X = x1 4, Xok = T2k, and the past fading process {H; ?;ioo, the

variance of the output Y} is
et |21 k) + Slzo i[> w02 (2.14)

where €2 > 0 is the prediction error(2:4).
Another special case is the memoryless version of the m-user channel (2.1), the output
of which is given by

Y=Hx+Z2 (2.15)
= Hyxy ¥+ Hpaxm + Z. (2.16)

Here H € C™ is a random vector that denotes the fading vector of fading process; x € C™
denotes the input vector of m users; Z € C is a random variable that denotes the additive
noise.

The additive noise Z and the input x are as-the-Same as the case with memory. The
difference between the two cases/is we assume that the channel is memoryless such that the
present output only depends on the present input and the present fading process. Therefore,
the past fading process has no effect on the present fading, and we drop the prediction errors.



Chapter 3

Mathematical Preliminaries

In this chapter, we review some. important notions that help us to analyze our channel
model. We consider the memoryless channelras shown in(2.15) and (2.16) with only single
user, the output of which is given as

Y =Hz+Z. (3.1)

In Section 3.1, we review the knowledge rof the channel capacity,.furthermore, we provide
the idea of sum-rate capacity to compute the channel capacity of channel with more than
one user. In Section 3.2, we give the concept that the power of input escapes to infinity.
Moreover, we provide a lemma expressing in-some conditions that the power of input may
escape to infinity. In'Section 3.3, we mention the stationarity of the input distribution that
makes our channel model easier to analyze: In-Section'3.4, we introduce the fading number
which is relative to the fading channel.

3.1 The Channel Capacity

Firstly, we review the definition of channel capacity in [12] provided by Shannon. The
channel capacity of a discrete memoryless channel (DMC) is defined as
CEmaxI(X;Y) (3.2)
Qx
where the maximization is taken over all possible input distributions ) x. Next, we consider
the general case of continuous channel with memory, i.e., the input and output of the channel
are continuous alphabet, and the channel capacity becomes:
1
C = lim —sup I(X7; YY) (3.3)
where X{" symbols the squence X7, ..., X,, and the supremum is over the set of all proba-
bility distributions of X7'.
Furthermore, there must be a power constraint for the input of the channel:

1
C= lim — sup I(X];Y{]Y) (3.4)
n—soo N Q?(E'D

8
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where D is the set of all probability measures ()’ satisfying the given constraint, i.e.,
IXKP <€, Wk (3.5)

for the peak power constraint or

CE[x2 <€ (3.6)
k=1

1
n
for the average power constraint.

When we extend the channel model to multiple-user, the capacity becomes a capacity
region. This is too complicated, so we replace it by the sum-rate capacity that is given as:

C= sup (Ri+---+Ry) (3.7)
QD
1

= lim = supL(XT; ¥{") (3.8)

n—oo N, Q%E’D

where R; is the achievable rate.of.the ¢-th user; D is the set of all probability measures
Q% the m subsets of which are independent and satisfy the given constraint (2.7) for the
peak-power constraint, (2.8) for the average-power constraint or (2.9) for the power-sharing
average-power constraint.

3.2 Escaping to Infinity

In this section, we introduce the concept of input distributions that escape to infinity in [3],
[6]. A sequence of input distributions parameterized by the allowed cost (in our case the
cost of the fading channel is the available power or the’'SNR, respectively) is said to escape
to infinity if it assigns to every fixed.compact-set _a probability that tends to zero as the
allowed cost tends to infinity. That is to say such a distribution does not use any finite-cost
symbols in the limit that when the allowed cost tends to infinity.

Since the asymptotic capacity of the fading channels can only be achieved by input
distributions that escape to infinity, this notion is very important. As a matter of fact we
can show that to achieve a mutual information of only identical asymptotic growth rate as
the capacity, the input distribution must escape to infinity.

Then, we give the definition of escaping to infinity for the fading channel.

Definition 3.1. Let {Qc}es( be a family of input distribution for the memoryless fading
channel (3.1), where this family is parameterized by the available average power £ such that

Eo:[IXI?] <&, €>0. (3.9)
We say that the input distributions {Q¢} e>0 escape to infinity if for every & > 0

lim Qe (|X1* < &) = 0. (3.10)

9
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And we have the following lemma:

Lemma 3.2. Assume a single-user memoryless SISO fading channel as given in (3.1) and
let W(|-) denote the corresponding conditional channel law. Let {Qs}esq be a family of
input distributions satisfying the power constraint (3.9) and the condition

1(Qe, W)
— = =1. A1
mrglo loglog & (3:.11)

Then {Q¢} e escape to infinity.

Proof. A proof can be found in [3], [6]. O

From the engineering point of view, this concept is intuitive that the input should utilize
the resource (available power) completely as the available power tends to infinity, as a result,
any fixed symbol is not used in the limit.

Remark 3.3. When computing the bounds on the fading number (which is part of the
capacity in the limit when £ tends to infinity), we€an assume that for every & > 0

Pr(||x))> <€) = 0- (3.12)

Next, we generalize escaping to infinity to multiple user;and there is a proposition which
is stated in [4].

Proposition 3.4. Let {Q¢ }520 be a family of joint input distributions of the multiple-access
fading channel given'in (2.15) and (2:16)ywhere the family is parameterized by the available
average power £ such_ that

Eo. [IX[?] <&, &0 (3.13)
Let W(-|) be the channel law, and {Qg} be-such that

I(Qe, W)
ﬁ?o loglogEé L (3.14)

Then at least one user’s input distribution must escape to infinity, i.e., for any & > 0

EI:ITIO% Q¢ (U {HXzH2 > ij}) =1. (3.15)

i=1

Proof. A proof can be found in [4]. O

3.3 Stationarity

In this section, we give the idea of the capacity achieving input distributions that are
stationary in [8]. One of the main assumption about our channel model is that the fading
processes and the additive noises are stationary. Since the assumption allows us to shift

10
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random quantities in time, it is important for the results and the derivation. From an
intuitive point of view, it is obvious that a stationary channel model should have a capacity
achieving input distribution that is also stationary. Unfortunately, we are not aware of
a rigorous proof of this claim. However, [8, Theorem 3| proves that for the MIMO fading
channel, the capacity can be approached up to a 7 > 0 by a distribution that looks stationary
apart from edge effects. We simplify the MIMO fading channel to MISO fading channel
where there is only one antenna at the output.

Theorem 3.5. Consider a MISO channel model with input x; € C*T and output Y, € C
which is shown as

Y. = HTXk + Zg. (3.16)

Note that the channel is both stationary ‘and unaffected by zero input vector 0 in the follow-
ing sense: for every choice of m € N and t € Z, for some. integers n < —|t| and m > n + |t|,
and for every distribution @ € P(C"T*™) we have

FOYEEXIH 00, s Yor) =0 (X5 (3.17)

whenever both X1} on' the LHS and X3 on the RHS have the same distribution Q.

Now fix some non-negative integer k and some power € > 0. Then for every T > 0 there
corresponds some positive integer n = n(E,7) and some distributions ng;l € P(Crrx(stl))
such that for a blocklength n sufficiently large there exists some input X7 satisfying the
following conditions.

1. The input X7 nearly achicves capacity in the sense that
1
S I(X3Y) 2 CE) - (3.18)
n

2. For every integer p with 0 < p < k, every length-(u + 1) block of adjacent vectors
(Xey oo Xogp) (3.19)
take from within the sequence
X X1y oo s Xp_opy2 (3.20)

has the same joint distribution Qgtl, where this distribution Qgtl s given as the
corresponding marginal distribution of Qgtl
3. In particular, all vectors in (3.20) have the same marginal distribution QéT.

4. The marginal distribution Q};T gives rise to a second moment &
E[IXk?] =& ke{n...,n—2n+2}. (3.21)

11
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5. The first n—1 vectors and the last 2(n—1) vectors satisfy the power constraint possibly
strictly

E[IXsl?] <€ ke{l,....n—1}u{n—2n+3,....n}. (3.22)

Proof. A proof can be found in [8]. O

Remark 3.6. Neglecting the edge effects for the moment, Theorem 3.5 basically says that,
for every pu < k, every block of p+1 adjacent vectors has the same distribution independent
of the time shift. From this it immediately follows that the distribution of every subset of
(not necessarily adjacent) vectors of a u + 1 block does not change when the vectors are
shifted in time (simply marginalize those vectors out that are not members of the subset).
Therefore, Theorem 3.5 almost proves that the capacity achieving input distribution is
stationary: the only problems are the edge effects.”Note that x can be chosen freely, but has
to remain fixed until n has been loosened to infinity. That is, to get rid of the edge effects
one needs to first let n tend to-infinity, before one can:let k. grow.

3.4 The Fading Number

When we focus on the asymptotic analysis of channel capacity at high SNR, the channel
capacity grows only double-logarithmically in the SNR, which has been shown in [3], [6].
It means that at high SNR, the addition of power is inefficient since to get an additional
bit improvement in_capacity, e have to square the SNR. In fact, the difference between
channel capacity andloglog SNR is bounded as the SNR tends to infinity, i.e.,

— &
grglo {C(S) — log log 0_2} & 60. (3.23)

The bounded term is called the fading number. The precise definition of fading number
is as follows.

Definition 3.7. The fading number x (Hj) of a fading channel with fading matrix Hy, is
defined as

— &
A TS
x (Hy) = ggo {C(é’) —loglog 02} . (3.24)
Thus, whenever x is finite and the limit of (3.24) exists, we can express the capacity as
&
C(&) = loglog 2 + x +o(1). (3.25)

Here when £ tends to infinity, the o(1) term tends to zero. Therefore, at high SNR, we can
approximate the channel capacity of a fading channel to

C(€) =~ loglog % + x. (3.26)
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Note that this approximation is not always valid. In the regime of low-SNR to medium-SNR,
the capacity is dominated by the o(1) term that cannot be neglected. However, we only
focus on high-SNR regime in the analysis of the asymptotic capacity, furthermore, especially
in the condition that the SNR tends to infinity. Hence we can use the asymptotic expression
of the channel capacity shown as (3.26) which is constructed by a double-logarithmical term
decided by the SNR and a constant called fading number instead of the intractable exact
expression. Moreover, since the first double-logarithmically term is always the same at high
SNR, we can even only be concerned about the fading number.

The most important effect of the fading number is that it symbols a criterion for the
communication system. From (3.26), we know the capacity is extremely power-inefficient
at high SNR, as a result, we should avoid transmission in this regime. Since the fading
number is a constant, the capacity is mainly dominated by the o(1) term in low-SNR regime,
by fading number in medium-SNR regime-and.by double-logarithmical term in high-SNR
regime. The fading number can provide a threshold of-how high the capacity can be before
entering the high-SNR regime;4.e:;the fading number ean give a threshold SNRgy such that
once the SNR is higher than'SNRg, the enlargement of SNR. is inefficient to the channel
capacity. For more details see [8]

13



Chapter 4

Previous Results

In this chapter we review some known'results that are related to our analysis. In Section 4.1,
we derive natural upper and.lower bounds-of-the multiple-access channel sum-rate capacity.
Furthermore, we find bounds on the fading number. of‘the MAC channel. The results
are based on [7]. In Section 4.2, we give an upper bound on the mutual information of
memoryless MAC fading channel; which is derived in [7]. In Section 4.3, we provide two
equalities introduced.in [5] that-areneeded invour analysis.

4.1 Natural.Upper and Lower Bounds

In this section, we'consider the channel-model of a two-user SISO'MAC fading channel as
shown in (2.12). Note that the difference between the MAC ‘and the MISO fading channel
with two transmitters:and one receiver is that the two transmitters of the latter can cooperate
while the two transmitters of the former are independent: Therefore, in the MISO fading
channel, we can get higher transmission rate than the MAC fading channel, i.e., the sum-
rate capacity of the MAC fading channel is upper-bounded by the capacity of the MISO
fading channel:

Cumac(€) < Cmiso,av(€). (4.1)

On the other hand, we can regard the SISO fading channel as a special case of the MAC
fading channel where only one user communicates. As a result, the sum rate of MAC fading
channel cannot be smaller than the single-user rate that can be achieved when the weaker
of the two users is switched off, i.e.,

CMAC(E) > max CSISO,i(S)- (4.2)
1€{1,2}

Based on (3.24), (4.1), and (4.2), we can define the fading number of MAC by
&
Note that asymptotically for £ 1 oo, log (1 + log (1 + %)) = loglog % +o(1).

14



4.2 An Upper Bound of Memoryless MAC Chapter 4

From [6], the fading number of the SISO Rician fading channel with memory is given as
. 1
XSISO = 10g(’d‘2> — El(—’dlz) -1 + lOg ?, (44)
where Ei(+) is the exponential integral function defined as

oo ,—t
Ei(—¢) 2 _/5 ert, £>0, (4.5)

and where €2 > 0 is the prediction error (2.4).
Hence, from (4.2), we have

> ; 46
XMAC > IAX, XSISO, (4.6)
1
_ 2 - 2
= Z-?E?’,’é} {log(|di| )—Ei(—di|*) — 1+ log 63} . (4.7)

4.2 An Upper'Bound on the Mutual Information of Memo-
ryless MAC

We know the multiple-access channel is quite similar to the- MISO channel, therefore, we
recall an upper bound on the capacity of MISO channel in [3], [6] to derive the sum-rate
capacity of MAC channel. By choosing the output distribution as a generalized Gamma
distribution, we derive the upper bound from the dual expression of mutual information,
and we have the following lemma.

Lemma 4.1. Consider a memoryless version of the MISO fading channel (3.16), the output
of which is shown as

VEHx+Z. (4.8)

Then the mutual information between input and output of the channel is upper-bounded as
follows:

I(X;Y) < —h(Y|X) + logm + alog § + log T’ (a, ;) +(1-a)E [log(|Y|2 + 1/)]
+;E[Y!2] +% (4.9)

where o, 5 > 0 and v > 0 are parameters that can be chosen freely, but must not depend on
X.

Proof. A proof can be found in [3], [6]. O

Next, we choose the parameters a,  and v appropriately, (4.9) can be further simplified
to an upper bound on the mutual information of MAC fading channel.
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Lemma 4.2. For the memoryless version of SISO Rician fading MAC (2.15) and (2.16),
an upper bound of the mutual information is given as follows:

d™X|? d™X|?
I(X;Y)§—1+E[log(| | >—Ei<—| | >]+ey+a(logﬁ—10g02+7)

1X? X2
v 1 9 9 v
+logT (o, = ) + = (A +[d]*)E+0°) + . (4.10)
B) B p
Proof. The proof can be found in Appendix A and in [7]. O

4.3 Two Equalities for the SISO Rician Fading MAC

In asymptotic analysis, we only consider the input distribution escaping to infinity. From
Proposition 3.4, we know that at least-one user’s-input distribution escapes to infinity as the
input distribution escapes to infinity.- With this constraint, we can show that the following
two expectations are equal to zero.

Lemma 4.3. Consider a memoryless version of SISO Rician fading MAC (2.15) and (2.16).
With the constraintsrof power-sharing average-power constraint-and the input distribution

escapes to infinity, ‘we have

— | || X1 [|ds|| X ]
lim sup E =0 4.11
T B ey )
T |di| X |d; ]| X; }
lim< sup  E =0 4.12
T T (12
fori,je{2,...,m}, T # j,.and where Ais the set defined as
i=1
lim Q¢ G 1 X2 > & =1 for any fized & > 0 » . (4.13)
Etoo Pt - m
Proof. The proof can be found in Appendix B and in [5]. O
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Chapter 5

Main Results

In this chapter, we present our main results about the fading number of SISO Ricain fading
MAC with memory. In Section 5:1, we find an upper-bound on the fading number of the m-
user SISO Rician fading MAC with memory from the duality-based bounds. In Section 5.2,
we show the exact fading number of the two-user SISO Rician fading MAC with memory.
In Section 5.3, we generalize the-channel. model to the m-user case and provide the exact
fading number, furthermore, we-discuss the power constraint of the input.

5.1 An Upper Bound on Fading Number of the m-User SISO
Rician Fading MAC with Memory

Proposition 5.1. Consider a SISO Rician fading multiple-access channel with m users as
defined in (2.1) and (2.2). Then the sum-rate fading number can be upper-bounded by:

— X'DyX [ X"D;X X'D.X
xMac < lim sup {E [log <.—) — E1<—y> — log () — 1}} (5.1)
E1%0 Qeea PSIE X1 X2

where A is the set as defined in (4.13); Dq is the diagonal matriz defined as
Dy £ diag (|di1[%,. .., |dm|?); (5.2)
and D¢ is the diagonal matriz defined as
D, £ diag (e%, ey 67271) (5.3)

with prediction errors €; shown in (2.4).

This proposition shows that the upper bound of the fading number depends on not only
the line-of-sight components but also the prediction errors. Compared with [5] and [7], the
effect of memory is the third term in (5.1) which is independent of line-of-sight components.
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Chapter 5 Main Results

5.2 The Fading Number of the Two-User SISO Rician Fading
MAC with Memory

Theorem 5.2. Consider a two-user SISO Rician fading multiple-access channel as defined
in (2.12). Then the sum-rate fading number is given by

XMAC-2 = MaxX XSISO,i (5.4)
1€{1,2}
_ 12) R 1d02) 2\ _
= max {log (|dil’) — Bi(~Idif*) —log (¢]) — 1} (5.5)

This fading number of the two-user SISO MAC holds in all three cases when the peak-power
constraint (2.7), the average-power constraint (2.8), or the power-sharing average-power
constraint (2.9) is considered.

This theorem shows that the lower bound in (4.7) is tight. Moreover, the sum-rate
capacity of the two-user SISO MAC-is decided by the better one of the two users. Note that
if the fading numbers of‘the two users are the same, the sum-rate capacity of MAC can be
achieved by time-sharing.

5.3 The Fading Number of the m-User SISO Rician Fading
MAC with Memory

Theorem 5.3. Consider a SISO Rician fading multiple-access channel with m users as
defined in (2.1) and (2.2). Then the sum=rate fading number 18 given by

XMAC= . INax < XSISO,i (5.6)
ie{l,....,m}

= max }{log(ldi|2) — Ei(=]di|?) = log (¢}) — 1} (5.7)
el,..m

This fading number of the m-user SISO MAC holds in all three cases when the peak-power
constraint (2.7), the average-power constraint (2.8), or the power-sharing average-power
constraint (2.9) is considered.

This theorem shows that the sum-rate capacity of the m-user SISO MAC is decided by
the best one of m users. Similarly to the two-user case, if more than one user has the best
channel, i.e., they have the maximum fading number, the sum-rate capacity of MAC can
be achieved by time-sharing between these users.

In our analysis, we have allowed three different types of power constraints: an individual
peak-power constraint for each user, an individual average-power constraint for each user,
and a combined power-sharing average-power constraint among all users. The power-sharing
constraint does not make sense in a practical setup as it requires the users to share a common
battery, while their signals still are restricted to be independent. However, the inclusion
of this case helps with the analysis. Furthermore, it turns out that the pessimistic results
described above even hold if we allow for such power sharing.

18
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Within the three types of constraint, we do allow for different power settings for different
users as long as the constraints scale linearly (see the constants x; and & in (2.7)—(2.9)).
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Chapter 6

Derivation of Results

In this chapter, we give the proofsofithe main results shown in Chapter 5. In Section 6.1,
we derive an upper bound on the fading-mumber of SISO MAC based on the proof of the
MIMO case in [8]. In Section 6.2, the fading number of the two-user SISO Rician fading
MAC with memory is derived by the concepts of Section 4.1 and Section 6.1. In Section 6.3,
from the result of Section 6.2, we provide the proof of the exact fading number in the m-user

case.

6.1 Derivation of Proposition 5:1

To upper-bound the fading number.of SISO MAC, we follow the steps of MIMO case stated
in [8]. Fix some power & > 0, and let 7 > 0 be an arbitrary value. From Theorem 3.5, we
can fix a positive integer k, and let 5 = n(€;7) € Z and Q’gj;l € P(Crm*(+HD) which is
the set of all input distributions over C"**(5+1) on C"1¢ Moreover, let blocklength n and
input X7 satisfying (3.18)+(3.22)so that

1
Cymac(€E)'< EI( LY+ T (6.1)
1 & _
=S (XY 4 (6.2)
=1

For the region of 1 <k <n+x—1and n—2n+ 3 < k < n, we use the crude bound
I (X{L; Ys ‘ Yl"’_l) < I(Xp Vi) + 1 (Ho HL) (6.3)
< Cup(€) + 1 (Ho; HZL) (6.4)

where Crp(€) denotes the sum-rate capacity of the SISO memoryless MAC fading channel
as given in (2.15) and (2.16) with an available average power of at most £ as guaranteed in
(3.21) and (3.22). Here the first inequality can be derived as follows:

I ( n Y, ‘ Y{H) -y ( ?,Yf‘l;Yk) 1 (Yk;Yf_1> (6.5)
< 1 (X3, (6.6)
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-y (Xk Lyk Xy, Yk> (6.7)

<1 (X’“ Lyk=t it X, Yk> (6.8)
—7 <H’f‘1,Xk; Yk> (6.9)
=1 (Xp; Yy) +1 (Hlf_l; Y ‘ Xk) (6.10)
— [ (X V) + 1 (H’f*l, X, Yk> (6.11)
<T(Xp Vi) + 1 (H’f‘l, H,, X,, Yk) (6.12)
= I (X Yi) + 1 (H’f‘l; Hk) (6.13)
<I(Xp;Yy)+1(HosHZL). (6.14)

Here (6.5) follows from the chain rulej (6.6) follows from the non-negativity of mutual
information; (6.7) follows because we prohibit feedback; (6.8) follows from the inclusion of
the additional random vectors H’ffl in the mutual information term; (6.9) follows from the
chain rule and the fact that'if the past-fading processes Hlffl and present input X are
given, the past inputs X’f_l and outputs Ylk_1 are independent of the present output Yj;
(6.10) follows from the chain rule; (6.11) follows from the chain rule and the fact that since
X}, and H’ffl are independent, I (H’fﬁl;Xk) = 05 the two steps(6.12), (6.13) are similar
o (6.8) and (6.9); and (6.14) follows once more from the inclusion of additional random
vectors in the mutual information and from stationarity.
Because (6.4) isuniformly bounded in n, we conclude that

1
Cymac(E) < lim —I(XE YY) +7 (6.15)
nfoo
1 n—2(n—1) i
— 44 T ”;Yk’Y -1 47 6.16
ntoo AV = = 3(m=1) k_zm:_n ( ! 1 ) (6.16)

Since Theorem 3.5 guarantees that every (k + 1)-block (Xk_, ..., Xk) has the same distri-
bution Q‘g > we only have to focus on the region n + x <k <n — 2(77 —1).

Now, we further upper-bound 7 (X’f, Y ‘ Yk 1) for such k£ to continue:

(X3 Y| V) = 1 (X0 v) - 1 (Ve i) (6.17)
I( ’f,Yf’l;Yk) (6.18)
—7 (X’f—l, YEL Xy Yk> (6.19)
I<Xk 1 Ylk 1 Hk: r—1 {HTXZ}E 1 HanQYk> (6.20)
=1 <XZ:}@»Hlffﬁfla{H}X£}[§ ,.;vXMYk) (6.21)
= T(Xi Vi) + (XYL v | Xe) 47 (XS v | XL

=0
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+I<H’“ r1, Yk‘Xk o {HIX L R) (6.22)
—I(Xk,Yk:)JrI({H}Xz}g P K,Yk‘X )

+I<H’“ "1, Yk‘Xk o {HPX L R) (6.23)
<I(Xk,Yk)+I({HTX4}€ 1 H,Yk‘Xk R) + (k). (6.24)

Here the three steps (6.17)—(6.19) are the same as (6.5)—(6.7); (6.20) follows from the inclu—
sion of the additional random vectors Hk #=1 and the random variables {HTXg}Z oy 111
the mutual information term; (6.21) follows from the chain rule and the fact that if HY 1,
{HZXg}?;;_ .. and X’,j_ .. are given, the past output Ylkf1 and input X’f*’ifl are independent
of the present output Yj; (6.22) follows from the chain rule; (6.23) follows from the fact that
the past inputs XZ:/I{ and the present output Y, are independent as the present input X
is given; and (6.24) follows from [8, Lemma 18]:

Note that d(x) does neither depend on-knor on the input { Xy} and monotonically tends
to zero as k tends to infinity dueto the stationarity of {Hy}.

We continue (6.24)as follows:

I( Yk’Y’“ 1) < I(Xk,Yk)+I({HTXg}£ > | N,Yk‘X )+5(/<;) (6.25)
<I(Xk,Yk)+I<{HTXg}Z -3 H,Yk,HTxk’Xk H) 5(k) (6.26)
zz(xk;yk)u({HTXg}z o’ H,HTXk‘X )

1 (XS0 | X X ) +(n) (6.27)
=0

— T (X ) ({HTXg}Z - N,HTXk‘X ) +6(k) (6.28)

— T (X V)P ({HTX VoL X | KE 1KY ) + 8(k) (6.20)

_ (Xk,Yk)—FI({HTXg}E | H,HTXk‘X )+5(m). (6.30)

Here (6.26) follows from the inclusion of the additional random variable H} X}, in the mutual
information; (6.27) follows from the chain rule; (6.28) follows the fact that the additive noise
Z, is independent of the fading processes Hi_i, in (6.29), we split the vectors X, up into
magnitude ||X,|| and direction X that X, £ ”X 7> and (6.30) follows from dividing each term
by the magnitude of the input vectors and from the fact that {H; Xg}gzk_ .. is independent
of {||IXell}s_, .. as X’,j_,i is given.

Note that (6.30) only depends on X’,jfn which has a distribution Q"‘+1 according to
Theorem 3.5. As a result, using the stationarity and combining (6.30) with (6.16), we have

Cmac(€)
1 n—2(n—1)
< : T T
a3 o (R 5.
+0(Kk)+ 7 (6.31)
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1 n—2(n—1)
— lim (7 (X H X + Zo
oo n— Kk — 3(,'7 o 1) k;ﬁ ( nN+kK n Ii)
), (H;+K,1xk,1, LLHIX, G HT L X, ‘ Xk )) (k) T (6.32)

=1 (Xn+n§ H;JrHXTH-H + Z77+N> +1 ({HTX }n—i_ﬁ g H;wLK}A(?H"$ XZ+H>
+ §(k) + 7. (6.33)

Here in (6.32) we shift Hy and Zj to H, 1, and Z,, due to the stationarity of {Hy, Zs};
and (6.33) follows from the fact that for all k € {n+~x,...,n—2(n— 1)} the distribution of
Xi . 18 Q ! given in Theorem 3.5.

To make (6.33) easy to read, we introduce a slight misuse in notation: for pure notational
convenience we will assume from now on that X% ~ Q"‘H, i.e., that from now on X°,_ is
quasi-stationary. Note that there is no contradiction between this notation and the edge-
effects of Theorem 3.5 since this is-a'notational choice: Hence, we can drop n and rewrite
(6.33) as follows:

Cumac(é) < I(Xos H Xo—+-Zo)+ I ({H;Xg};:l_n; H{ X ) Xﬂ_ﬁ) +0(k) + 7. (6.34)

We can find that:the first term in (6:34) is the mutual information of the SISO mem-
oryless MAC and independent of the past. Therefore, the-memory effect only comes from
the second term, and we upper-bound the second term to continue:

T ({FGX 2 Hy X | X )

—h (HgXO X‘ln) h (HTXO ‘ X1 gXZ};:l_H) (6.35)
—h (HgXO ‘ Xo) “h (HTX0 ' X0 {H;XZ};_H) (6.36)
— log e 4 (HgXO o {HZX@}é_i’{) (6.37)
< log me — <H0Xo X% 1H-L {H}X@}Zi_li) (6.38)
— log e — (HTX0 X0, Ho}) (6.39)
— log e — ( o | Xo, H:;) (6.40)
— log me — [ ( T ‘ X, = xO,H:;)} (6.41)
— E[logme] — E [log e (&K;XLOF +ot € Xl )} (6.42)
—E [logﬂe _logme (e%ﬁp%l,oy? +ot 2 Kol )} (6.43)
- E [log (ei,€|f(1,o|2 dot eE,W\Xm,O\ )} . (6.44)

Here (6.35) follows the definition of the mutual information; (6.36) follows the fact that if
the present input X is given, HBXO is independent of the past input X:};% (6.38) follows
that the conditioning reduces differential entropy; (6.39) follows the fact that when Xgﬁ
and H™} are given, {H}XZ};:l_ .. can be dropped because it is decided by these two terms;
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(6.40) follows the same step as (6.36); and in (6.42), €; . is the prediction error for i-th user
from the past fading {Hlk}/,;:l_}g
Combined with (6.44), (6.34) becomes

Caac(€) < I (Xo; HIXo + Zo) — E |log <e§7,€|X1,0|2 T efm|Xm,0|2)} + (k) + 7 (6.45)

= 1 (Xo; H}Xo + Zo) — E [log (%102 + -+ + €&, Kmol?) | + 7 (6.46)

=1 (Xo; H{Xo + Zp) — E |1 ( 17K\X170|2+--.+\T;(ﬁ 0‘;”’ +7 (6.47)
b m7
[ /XID.X
= I (Xo; HyXo + Zp) — E |log <”OX0”20ﬂ + 7. (6.48)

Here in (6.46), we let x tends to infinity which makes sure that d(k) — 0 as can be seen
from [8, Lemma 18] and the prediction error € s is equal to ¢; which is shown as (2.4);
(6.47) follows the definition X & ”}}é—ﬁ”; and (6.48) follows from the Rayleigh-Ritz Theorem
[1, Theorem 4.2.2], and we have defined the matrix

De= diag (e7,.. .. em) - (6.49)

Since every term in (6.48) is-independent of the time, we can drop the time parameter
and rewrite (6.48) as follows

Crac(E) <I(X;H'X +Z)—E [log (%)} + 7 (6.50)
=I1(X;Y)=E [log ()T';?Hf)] +7 (6.51)

[ |dTX|? S |dTX]? XD X
< —-1+E]|l — | — Ei( — —E{1 v
=T _Og( Xz TR \XE )T

+ a(log B — log 0% 4 ~) +logl’ (a, —;-) + % (1 +[[dP)E +o°) + % + 7 (6.52)

_ 1+E|o ATXPN gy (XY (XTDX +
- AP AEAE WP v

+ a(log 8 —logo? +7) + logT <a, ;) + ; (X + [|d]PE +o?) + % + 7.(6.53)

Here (6.52) follows the Lemma 4.2.

Note that this bound still depends on the distribution Qgﬁl which is guaranteed to exist
by Theorem 3.5. However, the exact form of the bound is unknown. Fortunately, the bound
is independent to the time, and we can upper-bound this expression by maximizing it over
all probability measures Qx:

|dTX|?  |dTX|? XD X
o) < gup {1+ s (i) (- ) -1 (i )+

+ a(log 8 —logo? +7) 4 logT <a, ;) + ; ((1 +d)*)E + 02) + %
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N T} (6.54)

|dTX|?  |dTX|? XD.X
=sup s —1+E [log < — Ei| — —log | —<5— + e
Q,sEA{ X[ 1X[? 1X?

+ a(log 8 — log o +7) +logT <Oé, ;) + ; ((1 + HdHQ)g + (72) + %

7 (6.55)

Here we define A to be the set of all probaility measures in Qx satisfying the constraints
that all users are independent (2.6), the power-sharing average-power constraint (2.9) and
that the input distribution of at least one user escapes to infinity as the available power &£
tends to infinity shown in Proposition 3.4, i.e.,

=1

" &
. 2 0 .
ngI;IO Q¢ (U {|XZ\ > m}) =1 for anyfixed & > O} . (6.56)

i=1
Note that we drop the time parameter k here since (6.55) is independent of the time.
From the definition of the MAC fading number (4.3) and (6.55), we can derive the
following upper bound on the MAC fading number:

. &
YMAC = ;1%10 {CMAC(g) —log <1 -+ log (1 + ;)) } (6.57)

e |dX|? fo|dTX |2 X'D.X
= lim < sup {—1—|—E[log (— —Ei| =————5 | = log + €
Etoo {QEGA [1X[J? X[} X[

+ aliogBlago® + 1) + g (o, ZNHEN(L+ I +02) 4 5 4 7

—log (1 +16g <1 + (—%)) } (6.58)

Next, we choose the free parameters o and S as follows:

2 o) = v 6.59
*T O g (@ e T o) (0:59)
2 U
B=pB(E) = a(é’)e (6.60)
for some constant v > 0, which leads to the following asymptotic behavior:
— v 1 .
21%10 {logF <a, 5) — log a} =log(1 —e™); (6.61)
lim o (log 8 — log o = v; 62
ngréloa(ogB ogo’ +7) =v; (6.62)

— [ 1
élTrg}?{B (1 +[|d]>)E + o?) + (6.63)

=
B
lim {logi —log ( + log ( E > } —log v. (6.64)

Etoo o2
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(Compare with [3, Appendix VII], [6, Sec. B.5.9])
As a result, (6.58) can be upper-bounded as follows:

MAC > — — — — €,
€1 | Qeea X2 1X[[? X2
1
+ allog § ~logo® +) +1ogT (0,5 ) + 5 (14 I +0%) 4 5 +7
E
—log (1 +log (1 + 2)) } (6.65)
g

< lim sup {E [log <|dTX‘2> Ei< |dTX2> log (XTD6X> 1] } +e, +v
_ _ _ _ €,
E10 Qeca 1X? X2 1X]2

+log(l—e™”) —logv + 7. (6.66)

Let v tend to zero which makessure that e, = 0 as can be seen from (A,6). Since 7 is
an arbitrary value, (6.66) can be rewritten as

_— [dTX|? O |dTX ] X™D. X
xmac < lim sup {E [log ( == it —log| ——— ) —1| . (6.67)
E100 Qeca X2 e X2

Furthermore, we.define

f(€) & log(€) — Ei(—¢) (6.68)
F(X) & ~log (%) — (6.69)

s 21X + w | X 2

G (X)= 6.70
|d HXHd |15
Y SALERSr (6.71)
=1 j=1 K
JFi
and upper-bound the RHS in (6.67) as follows:
|dTX |2 |dTX? X™D.X
lim sup {E [log < — Ei( — — log -1
190 Qeca X2 X2 [
|d1X1+ +d AXVrn|2 . |d1X1++dem‘2
= lim sup 7 5 — Ei| — 5 5
E1%0 Qeeca [ X1[2+ -+ [ X [ X1[2+ -+ [ X
D, X
log( i) } (6.72)
|1 X3 * + - -+ [din X | |di Xi| - |d; X;|
= lim su
T AR X+t Xl ZZ X+ + XD
1751
| | X P [ X[ iz’": i Xi - |d; X1
P X KR X
J#i
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XTD.X
—log< - >—1 (6.73)
X[
— 1P X0 2+ [ dn P X s il 1 Xl
< lim su E |lo +
< Jim o $E g | e Y Y L
i
: 1P X0 2+ 4 P X m s il Xl X
—Ei| — +
TP X 2 2 TP+ + P
J#i
X'D.X
—log< - )—1 (6.74)
11
= lim sup {E[f (G1(X)+ G2(X)) + F(X)]} (6.75)
€10 Qeea
< Tim Ey 4 X X)) +F(X :
< I sup, sup KK |7 (€260 Gal X))+ RC0 (6.76)
< lim o X .
< Im P, o {EX [ f (GI(X) +Eg [GQ(X)D + F(X)] } (6.77)
< Tim sup sup9Ex |f [ G:i(X)2/%5up EX[GQ(X)} +RX) (6.78)
Eto0 gy e A Qg el QxeA
— Tim sup { Ex | ff GuX)r sup EX[GQ(X)} MRS (6.79)
EToo Qxed QA

Here (6.74) follows from the Cauchy-Schwarz inequality and the fact that £ — f(&) is
monotonically increasing; in (6.76); we replace X in Gg(X) by X and take the supremum
over all Qg without the constraint'that X = X: (6.77) follows from the Jensen’s inequality;
and (6.78) follows because f(£) is monotonically increasing.

Since Qx is independent of Qx, we can regard the X-term in (6.79) as a constant
upper-bounded as follows:

m m <7 <
lim sup E[GQ(X)} = m sup Y Y E | ;H ill 1% - (6.80)
gToone-A gTOOQ£€A i=1 j=1 ‘Xl‘ et |Xm‘
J#i
<92 Tlim Sup iE ~|d1|‘Xlude*X:ﬂ
- 5TOOQ£€Aj:2 ‘Xl‘2++|Xm‘2
m m < <
— d;|| Xil|d; || X,
+ 2 lim sup Z J ;H ill 3‘ 5 (6.81)
ETOOQ‘SE'AZ':2]':Z'+1 | X1]2 + -+ | X

m
<92 lim E
< ]Z_;Slm sup

|d1 || X1 ||d; |1 X5
Too QeeA

[Xa [+ [ X
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a1 X5 ds || X
+2Z Z hm Sup ~| ’L|| 'L|| j|| j‘ (682)
=2 jmir1 S 10 QeEA X124+ | X2

=2.042-0=0, (6.83)

Here in (6.81), we separate the expectations into two kinds; in (6.82), we split the supremum
into many separate suprema; and (6.83) follows from Lemma 4.3.
Therefore, combined (6.67) with (6.79) and (6.83), we have

xMac < hTm sup {E[f (G1(X)) + F(X)]} (6.84)

X QeeA

— Tm sup {E[log (|d1|2|X1|2 4t \dm|2|Xm|2>
£l Qeen [ X12 - [ X2

(| PIX P+t Idm!2|Xm!2> (XTD€X> ]}
—Ei{ - —log| —5— ) —1 6.85
(N e 5\ (059
XIDgX [ XTDgX X™DX
= lim sup {E [log (—.) = E1<——> = log < ) — 1] } . (6.86)
Etoo Qe A X2 X1 X2

Here (6.86) follows from the Rayleigh-Ritz Theorem [1, Theorem 4.2.2], and we have defined

the matrix

Dy = diag (|d1|%, . .., |dm|?) - (6.87)

6.2 Derivation of Theorem 5.2

From Proposition 5.1, we have an upper-bound.on-fading number of the two-user SISO
MAC with memory:

— di]?| X112 + |da|?| X2|? di 21X 12 & 1do 21X |2
Mac.e < Tm sup {E[IOgC 171 X0 + [da?[ Xo >—Ei(—’ 12| X1 + |dof?| 2|)

E1o0 QeeA | X1 % + | Xof? | X1 % + | Xo?
61|X1|2"‘€2iX |2> ]}
—1 6.88
os (A6 E (659
= lim sup { [log (] PIX)? + |d2|2\X2\2> - Ei(- <|d1|2\X1‘2 + ‘d2‘2’X2’2)>
STOOQSEA
~log (e X102 + €2 X2 ) - 1} } (6.89)

Note that we have a lower bound on fading number of the two-user SISO MAC fading
channel (4.7). If the upper bound of fading number (6.89) exists in the condition that only
one user communicates and the other one is switched off, Theorem 5.2 is proved.

Since X is an unit vector, i.e.,
X117+ | X = 1, (6.90)
we can we use ¥ with 0 <19 <1 to denote the power allocation of the first user such that
X2 =9, (6.91)
Xo2=1-9, 0<9<1. (6.92)
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And we have

XMAC-2 S max {log (d39 + d3(1 — 9)) — Ei(— (di9 + d3(1 — 9)))
—log (]9 + €5(1 —¥)) — 1} . (6.93)

Here we drop the moduli of line-of-sight components because they are given and we can
assume they are always real.

To finish the proof, our main purpose is to prove that the RHS of (6.93) is always on the
boundary, i.e., 9 = 0 or ¥ = 1. Since it has four arbitrary values, it’s difficult to analyze.
To make it easier, we separate the four arbitrary values into three cases:

1. di > dy and €1 < €9,

4 d
€1 €2

2. di > dg, €1 > €9, and

di
€1 €2’

3. di > ds, €1 > €3, but

In the first case, the first user has the larger line-of-sight component, and the smaller
prediction error. We know that-the-larger the line-of-sight component is, and the smaller
the prediction erroris, the better-the channel is. Therefore, it is'obvious that the first user
has the better channel.

The (6.93) becomes

XMAC-2 STmAx {log,(df9 4 d5(1 = ¥)) = Bi(— (di9 +d3(1 — 9)))

—log (79 + &5(1 = 9)) —~1} (6.94)

< max {log (d39 + d5(1 — 0)) — Ei(—(di0+ d3(1 — 9))) — 1}
+ Olg?x {=log ({9 + e5(1 — 1))} (6.95)
=log (d}) — Ei(=d}) = 1 —log (¢f) . (6.96)

Here in (6.95), we split the maximum into two maximums, and (6.96) follows form the fact
that & — log(§) — Ei(—¢) — 1 is monotonically increasing (see Figure 6.1) and & — — log(&)
is monotonically decreasing. In this case, the first user is switched on and the second user
is switched off at all time. The maximum is achieved at ¥ = 1.

Next, we look at the second case. The first user has the better line-of-sight component,
but the worse prediction error. However, the impact of the prediction error is very large
such that the second user has the better ratio of line-of-sight component to prediction error.
We can prove that the second user has the better channel:

XMAC-2 < mmax {log (d3¥ + d3(1 — ¥)) — Ei(— (d39 + d3(1 — 0)))

—log (19 + &5(1 —v)) — 1} (6.97)
B &9+ 21— 0)\
T oehn {log (e%ﬂ s Tow—;) ) — Bi(= (40 + d3(1 - ))) — 1} (6.98)
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25

log(€) ~ Ei(~¢)

rom 0 to 10.

25

Figure 6.2: The plot of £ — — Ei(—¢) for £ from 0 to 2.5.
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d3 + d3(1 —9)
< 1 2 i (2 201 _ _ '
02152(1 {log < &2 (1 ) > } + Orggli(l { El( (dlfﬁ +d5(1 19)))} 1(6.99)

d2
= log (g) — Ei(d3) — 1. (6.100)
€2

Here in (6.99), we split the maximum into two maximums, and (6.100) follows from the fact
that & — log(€) is monotonically increasing and £ — — Ei(—¢) is monotonically decreasing
(see Figure 6.2). In this case, the first user is switched off and the second user is switched
on at all time. The maximum is achieved at ¢ = 0.

In the third case, the first user has the better line-of-sight, but worse prediction error.
However, the impact is not large enough to make the first user worse that we are not sure
which user has the better channel. Therefore, we have to try another way to analyze (6.93)
in this case.

Now, we focus on the function
29+ d3 (1. =)
0+ e3(1 — )

It consists of three terms: a log term, an exponential integral term and a constant 1. The

<p:19»—>log< )—Ei(— (d0 -+ d3(1—9))) — 1. (6.101)

shape of (6.101) only.depends on-thelog term and the exponential integral term. With these
two terms being monotonically-concave or convex, the.shape can only be one out of four
cases, as shown in Figure 6:3: monotonically increasing, monotonically decreasing, convex,
or concave. Of these four cases, only the concave case breaks our proof that the maximum
may appear in the:middle of the interval between v = 0 and ¥ = 1. If we want to prove
the maximum only exists on the boundary, we have to show the shape of (6.101) is never
concave.

Note that the slope decides how the shapelooks like. ‘Hence we describe the shape of
(6.101) by the sign of the slope: if the slope is always positive, the shape is monotonically
increasing; similarly, if the slope is.always negative;the shape is monotonically decreasing;
if the slope goes from negative to positive as v-goes from 0 to 1, the shape is convex; and if
the slope goes from positive to negative, the shape is concave.

To find the slope, we look at the first differential of (6.101):

2 2
292 32 (12 59\ €1V+e3(1-9)
Do _ die; — dae€y (dl d2) LA39+d3(1-9)

3 (B +d3(1-0)) (9 +E(1-0))
Because in our assumption, the terms (di9 + d3(1 —9)) and (ef9 + €3(1 — )) in the de-
nominator are always positive, i.e., they have nothing to do with the sign of the slope. As

(6.102)

a result, we can drop them, and the sign of the slope is decided by:
39 + e3(1 —99)

2 2 2 2 2
To simplify (6.103), we define
c2 d2e3 — die? (6.104)
2 2
f(ﬁ) = (d1 - d2) ed%ﬁ—’_d%(l_ﬁ) ) (6105)
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monotonically increasing monotonically decreasing
3 3
2 2
1 1
0 0
-1 -1
_2 -2
-3 -3
0 02 04 06 08 1 0 02 04 06 08 1
v v
convex concave
3 3
2 2
1 1
0 0
-1 -1
_2 -2
-3 -3
0 02 04 06 08 1 0 02 04 06 08 1
v Y

Figure 6.3: The four possible shapes/of (6:101)

and rewrite (6.103) as
c— f(9). (6.106)

It means that the sign of the slope is decided by the relationship between ¢ and f(¥).
We consider two cases first as shown in Figure 6.4:

c< f(¥), 0<9<1 (6.107)
and
c>f(9), 0<v9<I1 (6.108)

In the first case, ¢ — f(¥) is always negative in the interval between ¥ = 0 and ¢ = 1, and
therefore the shape is monotonically decreasing. The maximum is achieved as ¢ = 0. In the
other case, ¢ — f(¥) is always positive in the interval between ¥ = 0 and ¥ = 1, and hence
the shape is monotonically increasing. The maximum is achieved as ¢ = 1. These two cases
are in agreement with our proof. So we focus on the situation when ¢ cuts through f(¥).
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6.2 Derivation of Theorem 5.2 Chapter 6

Figure 6.4: The two cases.of ¢ > f(¥) and ¢ < f(9).

Since c¢ is independent of 9, the change of the slope only depends on f(1}). Therefore,
we follow the same step to analyze f(«) by looking at its first derivative:

of(¥) _ _di —dj
09 edd0+d3(1-9)

{(6 —a3) — (@] = d3)o5 — (df —d3)(ef — e3)9}.  (6.109)

Note that since the numerator.and the denominator of the fraction are always positive by
assumption, we can drop the fraction.. Hence theslope’s sign of f(¥) is decided by:

(] — €3) — (df —d3)ez —(d] — d3)(ef — €3)V. (6.110)

In (6.110), dy,ds,€1,€9 are given, and we have assumed that di > da, €1 > €2 and
0 <9 <1. As a result, (6.110) is a decreasing straight line as ¥ goes from 0 to 1, and we
can separate this case into three subcases:

L (e — ) — (df — dj)e3 <0,
2. (¢ — &) = (df — d3)e3 > 0 and (] — ) — (df — d3)e > (df — d3)(e] — €3),
3. (f = 63) = (df — d3)e3 > 0 but (¢f — &) — (df — d3)e5 < (df — d5)(} — €3).

In the first subcase, (6.110) is always negative, hence f(¢) is monotonically decreasing.
Recall that currently we focus on the situation when ¢ < f(0), but ¢ > f(1). When 9 goes
from 0 to 1, (6.106) goes from negative to positive. It means that the shape of (6.101) is
convex, and the maximum is achieved on the boundary for ¥ =0 or ¥ = 1.
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In the second subcase, (6.110) is positive as ¥ = 0. Furthermore, the last term is too
small to make the sign of (6.110) change. Even if ¢ = 1, (6.110) is still positive. Before we

analyze the shape of f(9), we observe the following facts:

If (2 — €2) > (d2 — d2)e2, then d2e2 — d2¢2 < (d? — d%)e% (6.111)
This can be proven as follows:
2 22 — @3
N dies — dje 1
dlfz dzfl (dy d2)67§ W = B3 (6.112)
d3e3 — die? 1
—— <l —— 6.113
(d2 d2) 2 — ed% ( )
d3e2 — d2e? 1
1- L2 21— 6.114
(d2 d2) 2 — ed% ( )
(Gea)d _ e -1
= 6.115
GRS (0:419)
2 2\ 7
az (€1 — 6)d3 d2
<= e <e —1 (6.116)
(df = d3)e5
2% 2\ 72
az (€1 263)d3 d2
=2 241<0. 6.117
Ca@sgig\(Ar= O

Here in (6.112), we divide the both sides by (di — d3)e3 that is positive by assumption
dy > dy. Next, we lower-bound the LHS of (6.117) as follows:

D, 2\ 72 2\ 2 72
d? (61 - 52)d2 d3 (d1 dz)ﬁzd d2
o e € 1808 29 kK 6.118
TN i )8 (6.118)
= d2e® — o3 40, (6.119)

which follows from the assumption (3" =€3) > (d} — d3)e3. Note that the function ¢
¢et — et + 1 shown in Figure 6.5 is monotonically increasing and equals to 0 as £ = 0. Since
d% > 0, we have

d2e® —eB +1>0 (6.120)
From (6.117), (6.119) and (6.120), (6.111) is proved and can be rewritten as:
If (3 — €2) > (d? — d3)€, then ¢ < £(0). (6.121)

Next, we recall that in the currently analyzed second subcase, (6.110) is always positive,
hence f (1) is monotonically increasing with the minimum f(0) in the interval between ¢ = 0
and ¥ = 1. As a result, the situations that ¢ is above f(¢) and ¢ cuts through f(J) do not
exist. Furthermore, since (6.106) is always negative, (6.101) is monotonically decreasing.
The maximum is achieved at ¥ = 0.

Finally, we look at the third subcase. There (6.110) is positive at ¥ = 0, however, the
last term is large enough to make the sign of (6.110) change: (6.110) changes from positive
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€ef —ef +1

Figure 6.5: Theplot-of &.— £e& — e& + 1for £ from 0 to 2.5

to negative as ¢ goes from 0 to 1, so f(¢)is a‘concave function between 9 = 0 and ¥ = 1.
Because in this subcase, we still have assumed (e ~ €2) — (d? —d3)e3 > 0, we can use the
fact (6.121) as well:

Note that here the concave function f(19) is one of two types as illustrated in Figure 6.6:

f(0) < f(1) (6.122)

or

f(0) > f(1). (6.123)

In the first type, from the fact (6.121), we have the same result as in the second subcase
mentioned before. Therefore, (6.101) is monotonically decreasing and the maximum is
achieved at ¥ = 0. As for the second type, (6.106) changes from negative to positive as ¢
goes from 0 to 1. As a result, (6.101) is a convex function between ¥ = 0 and ¥ = 1. Hence
the maximum exists on the boundary.

This finishes the discussion of all possible cases and proves that (6.101) cannot be con-
cave. Therefore, the maximum is achieved for 0 < ¢ < 1, but it is always on the boundary
¥ =0 or ¥ = 1. Furthermore, the upper bound on the fading number of the two-user SISO
Rician fading MAC with memory becomes:

XMAC-2 < e {log (|di|*) — Ei(—|d|*) —log (&) — 1} . (6.124)
€1,
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T N e  RARA Y

Figure 6.6: The two shapes of f(?¥)) depending on whether f(0) < f(1) or f(0) > f(1),
¢ < f(0).

From (4.7) and (6.124), we have

XMAC-2 = ig%inzc} {1og (|d1|2) = Ei(—|di|2) —log (ef) - 1} (6.125)
= zg{li};} XSISO,i- (6.126)

6.3 Derivation of Theorem 5.3

In Section 4.1, we have discussed the lower bound on the fading number of the two-user
SISO MAC. Next, we generalize the lower bound to the m-user case. The lower bound of
the m-user SISO Rician fading MAC with memory is shown as

XMAC = IMax  XSISO, (6.127)
€{1,...,m}
1
= log (|d;|?) — Ei(—=|d;|?) = 1 + log = & . 6.128
s o () — ) 1o (6128)

From Proposition 5.1, we have the following upper bound:

XMAC < m sup {E[log <’d1’2’X1’2 + .+ ‘dmIQ‘XmP)
- €l Qeea X124+ | X ?

_Ei<_\d1\2’X1!2 +ot Idm!2|Xm!2>
1 X124 - [ X2
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X+t 6 X
-1 1 miZml ) 1 6.129
og( X122+ o+ [ X2 > ]} ( )

— Tm sup {E|log (lds 21X + -+ + dn 2| X )
EToo QeeA

—Ei(— (I P11+ -+ [d? K f?) )
“log (%\Xﬂ%---ﬂily)?mﬁ) —1}}. (6.130)
Note that the upper bound (6.130) exists in the condition that only one user communi-

cates and the others are switched off, Theorem 5.3 is proved.
Since X is a unit vector, i.e.,

m
XL =1, (6.131)
=1

we can use r; with 0 < r; <4 todenote the input. distribution of the i-th user such that

X7 =i, (6.132)
m
Z?"izl, Ogrzgla izla""ma (6133)
i=1

and we have

XMAC < max {log (d%T‘l + oL d?nTm) = Ei(— (d%?“l 4+ -+ d?n’l“m))
Ir
—log (efr1 4+ + €5,7m) — 1} (6.134)

Here we drop the moduli of line-of-sight components because they are given and we can
assume they are always real.

To finish the proof, our/main purpese.is.to prove that the maximum on the RHS of
(6.134) is always achieved:

ri=1, r;=0, j=1,....m, j#i (6.135)

for some ¢ € {1,...,m}. As a result, we focus on the RHS of (6.134) and analyze the
maximum.
From Section 6.2, we have

Jnax {log (d}9 + d5(1 — 9)) — Ei(— (di9 + d3(1 — 9))) — log (19 + e3(1 — 9)) — 1}

= max, {log (d39 + d5(1 — ¥)) — Ei(— (di9 + d5(1 = 9))) — log (€19 + e3(1 — ¥))
€0,

— 1} (6.136)

for given dy,ds, €1, €2 > 0. It means that the maximum of the two-user case is achieved on
the boundary as ¥ =0 or ¥ = 1.
Moreover, we can derive two lemmas.
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Lemma 6.1. Given dy,ds,€1,€2 > 0, for any 0 < a <1 and the constraint 0 < 9 < a, we
have

jnax. {log (d79 + d3(a — ¥)) — Ei(— (d}9 + d3(a — 9))) — log (€9 + e3(a — 9)) — 1}
= 191&1}{8&& {log (d39 + d3(a — 9)) — Ei(— (d}9 + d3(a — 0))) — log (19 + €5(a — V)
—1}. (6.137)

Proof. We first separate di,ds2, €1, and €y into three cases:

1. di > dy and €1 < €9,
2. dy > d2,61 > €9, and 2L

3. di > ds, €1 > €9, but 4oz da

In the first and thessecond cases, we follow.theSsame stepsas in Section 6.2 and get the
same result that the maximum-exists on the boundary as ¥ ==0 or 9 = a.
In the third condition, we define

dZ & d? — (1—a)d3 >0, (6.138)
d5 £ ad3 >0, (6.139)
iE G (1—a)ed> 0, (6.140)
€% £ ae3 > 0, (6.141)

and the LHS of (6.137) can be rewritten as
12 121 9\ T (/2 12010 _ 2 201 _
[nax {log (d?0 + d5 (1 =W)) = Ei(=(d70 +d5 (1 = ¥))) — log (€79 + €5 (1 — )
~1}. (6.142)

Therefore, we can follow the same step of the third case in Section 6.2, and prove that
the maximum is achieved as 9 = 0 or ¥ = a. Note that in our proof here, we change the
constraint from 0 < ¥ < 1to 0 < 9 < a, as a result, the scope of the conditions (6.107),
(6.108), (6.122) and (6.123) should be modified. Furthermore, (6.110) should be separated
into three new subcases with the same steps to analyze:

1. (2 —€3) — (d3 — d3)e3 <0,
2. (€f —€3) = (df — d3)e5 > 0 and (€f — &) — (df — d3)e3 > a(df — d3)(ef — €3),

3. (2~ ) — (2~ d3) > 0 but ( — &) — (& — )3 < a(d? — dB) (e — ).
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Lemma 6.2. Given di,ds,€1,ea > 0, for any b > 0,¢ > 0 and the constraint 0 <9 <1, we
have

max {log (d}9 + d3(1 — ) +b) — Ei(— (d}0 + d3(1 — 9) + b))

0<9<
—log (]9 + e3(1 — ) +¢) — 1}
= max {log (d30 + d3(1 — ¥) + b) — Ei(— (di + d5(1 — 9) + b))

9€{0,1}
—log (]9 + e3(1 — ) +¢) — 1}. (6.143)
Proof. We define
ZE2di+b>0, (6.144)
d’2 2d&4+b>0, (6.145)
RS+ e>0, (6.146)
Z2E4c>0, (6.147)

and the LHS of (6.143) can be rewritten as (6.142). Hence from (6.136), we get the result
that the maximum exists on the boundary as =0 or v = L O

From Lemma 6.1, we know-that-no matter<how large the total power allocation of the
two users is, the maximum of the-two-user case still achieves on the boundary as ¥ = 0 or
¥ = a. Moreover,

Lemma 6.2 gives the result that even if we add two different constant in the line-of-
sight components term and the prediction errors term, the maximum of the two-user case
is still achieved on the boundary as ¢ = 0 or ¥y = 1. We combine these two lemmas: Given
di,do,€1,e >0, forany 0.< a < 1,6 > 0,¢ > 0 and the constraint 0 < ¢ < a, we have

max {log((dd + d5(a — V) + b) — Ei(— (di9 ¥ d5(a — 9) + b))
—log (6§19 e3lam) + ) =47}
= ,max, {log (dtV +d5(a — V) +b) — Ei(— (di9 + d3(a — 9) + b))
€
—log (19 + e3(a — V) +¢) — 1}. (6.148)

Next, we define s to be the choice of r that achieves the maximum in (6.134).

s= argmax {log (d1T1 +oeet dg@rm) - Ei(— (d%rl + -+ d%lrm))
—log (elrl +- e%nrm) —1}. (6.149)

Note that the maximum always exists since the expression in the maximum of (6.134) is a
sum of monotonic concave or convex terms. The maximum might not be unique, though
this does not affect the following arguments (simply pick one possible choice of s). Further,

we define
a1 = 81+ so, (6.150)
by & d3s3+ -+ d% s, (6.151)
12 szt e sm, (6.152)
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where 0 < a7 <1,b1 > 0,c; > 0. Then we have

log (d%sl + -4 d?nsm) — Ei(— (d%sl + 4 dfnsm)) — log (6%81 + .+ efnsm) -1
= max {log (di¥1 +d5 (a1 — 1) + b1) — Ei(— (d791 + d5 (a1 — 1) + b1))

0<91<ay
—log (191 + €3 (a1 — V1) + 1) — 1} (6.153)
= ) g%x ) {log (d%ﬁl + d% (a1 — 191) + bl) — Ei(— (d%ﬁl + d% (a1 — 191) + bl))
1 a1
—log (191 + €5 (a1 — V1) + 1) — 1}, (6.154)

where 0 < 191 < a1 denotes the power allocation of the first user, and where (6.154) follows
from (6.148). Hence the maximum is achieved either for ¢; = 0, i.e.,

log (d%al + bl) — Ei(— (d%al + bl)) —log (e%al + 01) —1, ass; =0, (6.155)
or for 91 = ay, i.e.,
log (d%al + bl) h Ei(— (d%al + bl)) — log (G%al + 61) —1, assy=0. (6.156)

Note that a1 = s1 +.59. A a result;-a; can be replaced by s in the first case and by s; in
the second case.
In the first case;we define

as = S9 + S3, (6.157)
by & disq+ - +d s, (6.158)
co 2 edsg+ € s, (6.159)

where 0 < ag < 1,b >0, > 0.<Then (6.155) can be rewritten as follows:

log (d%SQ + bl) — Ei(— (d%SQ + bl)) — log (6%82 5 Cl) -1
= log (d%SQ + d3s3 + - d%lsm) - Ei(- (d%SQ +d3s3+ -+ d?nsm))

—log (€352 + €553+ + €2ySm) — 1 (6.160)
=, Mnax {log (d392 + d3 (az — ¥2) + bs) — Ei(— (d392 + d3 (a2 — ¥2) + bs))
Sv2xa2
—log (€392 + €3 (a2 — ¥2) + c2) — 1} (6.161)
=, max {log (d392 + d3 (az — ¥2) + by) — Ei(— (d392 + d3 (a2 — ¥2) + bs))
2 , a2
—log (€392 + €5 (a2 — ¥2) + c2) — 1}, (6.162)

where 0 < ¥ < ag denotes the power allocation of the second user, and where (6.162)
follows from (6.148). Hence the maximum is achieved either for ¥9 = 0, i.e.,

log (d%ag +by) — Ei(— (d%ag +b2)) —log (e%az +c2)—1, assy=0, (6.163)
or for Y9 = ag, i.e,

log (d%ag + bz) — Ei(— (d%ag + bg)) — log (6%@2 + 62) —1, ass3=0. (6.164)

40



6.3 Derivation of Theorem 5.3 Chapter 6

Note that ag = s 4+ s3. As a result, a2 can be replaced by ss in the first case and by so in
the second case.
In the case of (6.156), we define

az = s1 + s3, (6.165)

where 0 < ag < 1, and ba > 0,c2 > 0 are the same as given in (6.158) and (6.159). Then
(6.156) can be rewritten as follows:

log (d%sl + bl) — Ei(— (d%sl + bl)) — log (6%81 + Cl) —1

=log (d}s1 + djs3 + -+ + dosm) — Ei(— (dis1 + d3ss + -+ + doysm))

—log (€151 + €553+ -+ + €2y8m) — 1 (6.166)
=, Mnax {log (d%ﬁz + dg (ag — V2) + bg) — Ei(— (d%ﬁz + dg (ag — ¥2) + 62))
Sv2xa2
—log (€192 6§ (a2 = ¥2) + o) = 1} (6.167)
=, max {log (d30s 4 d5 (az — ¥U2) + ba) — Bi(= (@302 + d5 (a2 — ¥2) + b))
2 ,a2
—log (6%’[92 +€2(ap — Vo) + c) — 1}, (6.168)

where 0 < 93 < ay denotes the power allocation of the first useryand where (6.168) follows
from (6.148). Hence the maximum is achieved either for J.=.0, i.e.,

log (d3as + bo) — Ei(— (djaz +b2) )= log (e5a2 +c2) =1, ass; =0, (6.169)
or for V9 = ay, i.e.,
log (d%ag -+ bg) - Ei(— (d%ag + bg)) — log (e%ag 44 62) —~1, ass3=0, (6.170)

Note that ag = s1 + s3. ‘As aresult, as can be replaced by s3 in the first case and by s; in
the second case. Combining the cases (6:163);(6:164), (6.169) and (6.170), we can find that

the maximum is achieved either for sy = 0,53 = 0, i.e.,

log (dis1 + ba) — Ei(— (dis1 + b2)) — log (e]s1 + c2) — 1, (6.171)
or for s1 = 0,53 =0, i.e.,

log (djs2 + b2) — Ei(— (d3s2 + b)) — log (€552 + c2) — 1, (6.172)
or for 51 = 0,52 =0, i.e.,

log (d3s3 + ba) — Ei(— (d3ss + b2)) — log (e3s3 + ¢c2) — 1. (6.173)

We continue to apply the same steps from (6.155) to (6.173), we define

ar = 8+ Spi1, (6.174)
bp 2 diyoSk2 + o+ d2ySm, (6.175)
Ch 2 hyoSkta + o+ €Sy (6.176)

41



Chapter 6 Derivation of Results

where j=1,...,kand k=2,...,m — 2. Then

log (djz-sj + by—1) — Ei(— (djz-sj +bi—1)) — log (E?Sj +cp-1) — 1
=log (dis; + dj 1 Sk41 + -+ diysm) — Bi(— (&35 + diy 1Sk + - + doysim))

—log (€28; + €ppq ka1 + o €hsm) — 1 (6.177)

= Jnax {log (59 + di 1 (ar, — 9k) + by) — Ei(— (305 + dji ) (ak — %) + bi))
—log (59k + €441 (ar — Ug) + cx) — 1} (6.178)

=, max {log (20, + diy (ar, — V) + bi) — Bi(— (d30k + diyy (ar, — 95) + b))
—log (9% + €41 (ar — Ug) + cx) — 1}, (6.179)

where 0 < 9y < ai denotes the power allocation of the j-th user. Here in (6.178), everything
is fixed except the j-th and the (k +.1)sth users, and (6.179) follows from (6.148). Hence
the maximum is achieved either for ¢ =0, 7.e.,

log (diyar + by) — Bi(=(di qar + b)) —log (ejyar +€x) — 1, ass; =0, (6.180)
or for ¥, = ay, i.e.,
log (d,?ak + bk) — Ei(— (d?ak + bk)) —log (e?ak + ck) —1, assgy1 =0, (6.181)

for j = 1,...,k. Note that ap = s; + sp+1< As a result, a; can be replaced by 5541 in
the first case and by s; in the second case. Combining the k cases, we can find that the
maximum is achieved for one of k+1 cases:

log'(d5s5 + bi) = Bi(= (d7s; - bk)) = log (€8, ¥ i) — 1 (6.182)

forj=1,....k+1lass=0,0=1,....k+ 1,1 #j.
In the end, we have the result that the maximum is achieved for one of m — 1 cases:

log (d?sj +d2,sm) — Bi(+ (d?sj +dpsm)) — log (e?sj + €2,8m) — 1 (6.183)
for j =1,...,m — 1. From (6.133), we know the sum of s; is 1, therefore, (6.183) can be
rewritten as follows: for j=1,...,m —1

log (dgsj + d? sm) — '(— (dzs]- +d? sm)) — log (ejz-sj + e,QnSm) -1
= max {log (d39m + dy, (1= )) — Ei(— (d}9m + di, (1 — 9)))

0<y

—log (€} + €2, (1 — Um)) — 1} (6.184)
:ﬁmrg%(l}{1og(d%9 +d2 (1=, ))— (= (d50m + d2, (1= 9pn)))

—1og (59m + €, (1 = Um)) — 1}, (6.185)

where 0 < 9,,, < 1 denotes the power allocation of the j-th user. Here (6.185) follows from
(6.136). Hence the maximum is achieved either for ¥,, =0, i.e.,

log (d2,) — Ei(— (d2,)) —log (e2,) — 1, ass; =0, (6.186)
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or for 9,, =1, i.e.,

log (d3) — Ei(— (d7)) —log () =1, as sp =0 (6.187)
for j =1,...,m — 1. Combining these m — 1 cases, we derive the fact that the maximum
must be of the form

log (d?) — Ei(—d7) —log (&5) — 1 (6.188)

for some j € {1,...,m} as s; =0,l =1,...,m,l # j. Consequently, the RHS of (6.134) is
always in the form of (6.135). Furthermore, the upper bound of the m-user SISO Rician
fading MAC with memory becomes:

) 2)

Xaao < mnax {log — Ei(—|d;|*) — log () —1}. (6.189)
1€ .

s}

() — 1} (6.190)
(6.191)
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Discussion and Conclusion

In this thesis, we have succeeded indériving the exact fading number (i.e.,the exact asymp-
totic capacity region) for an m~user SISO Rician fading MAC with memory. We have shown
that the fading number of SISO-MAC is exactly equivalent to the fading number of a single-
user SISO channel. Tolachieve the sum-rate capacity, the optimal strategy is switching off
all the users except the one who has the best fading number.

In [4], we have the fading number of memoryless case:

xmac = log (diacn) — Ei(—dyacam) — 1 (7.1)

where

dyiac.imp = max {|dy), .. ., |dm]} . (7.2)

The fading number of the Rician fading memoryless SISO MAC only depends on the line-
of-sight components, i.¢., the better the line-of-sight<component is, the better the fading
number is. However, in our thesis, Sinece.we-assume channels with memory where we can
predict the current fading from the past fading, the fading number is also influenced by the
prediction errors. Even if the channel has the better line-of-sight component, it might has
the worse fading number.

In Section 6.2, we have proved the two-user case with one user has the better line-of-sight
component and the better prediction error. From the upper bound of the fading number
in Proposition 5.1, we can derive the fading number of the two-user case with one user has
the better ratio of line-of-sight component to prediction errors and the worse line-of-sight
component. But in other cases, we can not distinguish which one has the better fading
number by the line-of-sight components and the prediction errors directly. We only prove
that the fading number cannot exist in the situation of two users working together. In
general, the fading number only exist as only one user communicates.

A possible reason for this pessimistic result might be that all the users are indepen-
dent, i.e., they don’t know the states of other users and can’t cooperate with other users.
Therefore, the signals transmitted from other users can only be interference and reduce the
performance.

44



Chapter 7

Note that in our thesis, we assume the channel model is noncoherent. Since neither
the transmitter and the receiver knows the real state of channel model, some methods of
lowering the interference can not be utilized. Moreover, we only consider the asymptotic
capacity that the system works in the regime of high-SNR, however, real systems usually
operate at low SNR. As a result, it’s not necessary to degrade the multiple-access channel
to single-user channel for designing a system.

Possible future works for the multiple-access fading channel might be as follows:

e Generalizing the SISO case to the MIMO case that the users and the receiver use the
multiple antennas. A possible approach could be considered first for the MISO case.

e Considering the case with side-information.
e Considering the case with feedback.
e Loosening the restriction of Rician fadingrand considering the cases of general fading.

e Deriving bounds on the nonasymptoetic capacity when the system does not operate in
the regime of high-SNR.
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Appendix A

Derivation of Lemma 4.2

We follows the steps in [7, Section 4.2] to derive the upper bound in Lemma 4.2. From the
mutual information of MISO. fading channel'shown in/Lemma 4.1, we have

I(X;Y) < —h(Y|X) +logm+ alog 5 +log I (a, %) +({ = aE [log(|Y|2 + 1/)]

1

* 3 E[IYP) A+ B (A1)
< —h(Y|X)+ logm + alog f + logI' (a, %) + (1 - a)E [log |Y|2} + €,

1

+ E IR 6 (A.2)

=—-E [logme(HXH2 + 02)] 4 log m + orlog 5 +log T (oz, %)

+ (1 —a)E[Eflog|Y |*| X =x]] + ¢ + ;E XY=+ o? + [d"X?] + % (A.3)

—E [log(|X | + 02)] 2 1-al6g 8 FlogT (a, 6) + (1 — a)E [log(| X2 + 02)]

’de|2 ) ’dTXP
1—a)E|log [ =20 ) _gif - 12T )
T-a) [°g<uxw2+02 Pz T

1
+5E [I1X2 + 0% + [d"X[2] + %

dTX |2 S ldTXP
=-14+E|log| w3 ) —Eil — 753 ——3
+ |:Og(||X||2_|_U2 ! ||X||2+02
de’2 ‘CIT}Q2
! _ER X |2 21 gl ‘7 —Ei| 05—
+a<og6 [log(IX]|* + )] {Og<HXH2+02> 1( X[ + o

1
+logT (oz, ;) +€V+EE[HX”2+02+ [d™X|?] +%. (A.5)

Here (A.1) follows Lemma 4.1; in (A.2), we assume 0 < a < 1 such that 1 —a > 0 and
define

(A.4)

€, 2 sup {Eflog (Y*+v) | X =x] — E[log|V]*| X =x]}, (A.6)
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such that

(1 — a)E[log(]Y > +v)]

= (1 — a)E[log |[Y ] + (1 — a) (E[log(|Y]* + v)] — E[log|Y|?]) (A.7)
(1 —a)E[log|Y] ]

+(1- a)sup {Eflog(|Y]* +v)| X =x] —E[log |V | X =x] } (A.8)

[log|Y|2] (1—-a) (A.9)

g )E[log [Y?] + €, (A.10)

(A.3) follows the fact that the channel output is Gaussian distributed when X = x is given;
n (A.4), we evaluate the expected logarithm of a noncentral of a noncentral chi-square
random as derived in [2], [3, Lemma 10.1], [6, Lemma A.6]; and (A.5) follows from simple
algebraic rearrangements.

Next, we lower-bound some terms'in (A.5) as-follows:

E[log(||X||* + 02)] > log 0% (A.11)

‘de|2 I |dTX|2
Eiog | ———— | mEifee S WG .. A12
%gQXW+a2 WX Ree )L T (4.12)

and upper-bound another term as follows:

E[IX|]? + o + [dXP] < € + 0 + E[|{d|]?|X)?] (A.13)
=&+ 0° + 1A *E[IX]I’] (A.14)
<EF 02+ ||d)PE (A.15)
= (1+||d|[HE o°. (A.16)

Here, (A.11) follows from dropping some nonnegative terms; (A.12) follows because log & —
Ei(—=¢) > —v where v = 0.57 denotes Euler’s constant; and (A.13) and (A.15) follow from
the Cauchy-Schwarz inequality and the fact that the input needs to satisfy the average-power
constraint.

Furthermore, we bound

rre) B e ) < € o ()~ (-l )
E|l —— )| —-Fi| ——m—— < E|[1 — | — Eil ———— , (A7
%ggxw+o2 e )| Bl Uz ) B0 )| B

which follows because £ — log ¢ — Ei(—¢) is monotonically increasing.
Therefore, we can rewrite (A.5) as follows:

|wXP> E(|NXP
il
IXI? IXI?

I(X;Y)§—1+E[log< ﬂ%—a(logﬁ—logaQ—i—v)

1

5 (O +dP)E +02) + z

5 (A.18)

+logT <a, V> + €, +
B
and Lemma 4.2 is proved.
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Derivation of Lemma 4.3

To derive (4.11) and (4.12), we first define the set Bas
B2 {z1:0< |z1| < alal} (B.1)
for an arbitrary value.a > 1 and
= ENX ] (B.2)

assume that the first user escapes to infinity, i.e., if £ 1 oo then & 1 co. Furthermore, the
LHS in (4.11) can be upper-bound-as follows:

Jey |11 ||| X }
| X112 41X |2

[ |X1 ]| X ]
| X 1] + X2

lim sup E [
EToo QseA

< |d1||d] hm sup E

&0 QeeA
| X |5
< |d1]|d;| sup lim  sup E[ (B.4)
R e A [ e
|21 |23
di||d;| sup lim su d 21)dQ. (x; B.5
= il o s [ [ G a0 (1)@ ) (B.5)
<\d1Hd\sup hm sup // ‘Zl”lﬂ T 5 4Qu (21)dQy, (74)
Qz; 0 Qqz €A1 z1EB ’5131‘ |x ’
|21 |i
+ |d1]|d; sup hm sup // ————=dQq, (21)dQy, (z;). (B.6)
BT B 00 ) e Tor P+ a0 (7199 (1)

Here (B.3) follows because we drop some terms in the denominator; in (B.4), we define Ay
as the set of all input distributions of the first user that escape to infinity, and take the
supremum over all ();, which are independent on ), and without any constraint on the
average power; and (B.6) follows from splitting the inner integration into two parts and the
property that the supremum of a sum is always upper-bounded by the sum of the suprema.
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We focus on the first term in (B.6) to continue:

z1||z;
b sup T s / / ezl o )0, (@)

Qu; & OonleAl 1€EB ‘3}1’2 + ‘l’ ‘2

;
2
< |dy]|d; |sup hm sup // de (21)dQ, () (B.7)
Qxi & OOQxIEAl r1E€EB 2
- 1
<Jarldifswp Fim [ swp 5[ dQui(en) ) dQu(e (B.8)
Qu, 110 ) \Qu edi 2 JaieB
— 1
= |d1|]di|sup/ lim sup / dQgz, (z1) | dQs, (x5) (B.9)
in ngOO Qz G.Al 2 1‘168
= |d1|]di|sup/ lim | sup —Pr(|X1| < alz;]) | dQu, (x;) (B.10)
in EITOOQI E»Al
= |d1|]di|sup/0dei(xi) =0. (B.11)

Here (B.7) follows the fact that

175 1
2lz2§_
T+ 713 2

(B.12)

and that r; — 2112 is monotonically decreasing if r; > r;; (B.8) follows by taking the
supremum into thedfirst integral which can only enlarge the expression; in (B.9), we exchange

limit and integration which needs justification: define

1

ge, (#) £ sup 2/ dQg (1) (B.13)

Qqy €A1 r1EB
< sup /del x1) (B.14)

Ql‘leAl
= 5 = gupper(xz) (B.15)
and then note that
1 1

/gupper(%)szi(%) = / idei(l‘i) =5 (B.16)

i.€., Gupper(-) is independent of £; and integrable, therefore, we are allowed to swap limit
and integration by the Dominated Convergence Theorem in [10]; and (B.10) follows from
Proposition 3.4 since ), escapes to infinity.

Next, we upper-bound the LHS in (4.11) as follows:

—— E{ da] X 11X }
T sup Bl X
<lafldswp Jin s [ [ a0, ()dQu ) (B.17)
Qu, E11%0 Q. ey J Jaepe [T1]* + |2]
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<lifdfsp s [ [ OGO a0, )0 @) (B
Qu, S0 Q er S Jujene a\$z| + [l
= |d1]|d; ]sup hm sup // ———dQq, (21)dQq, (z;) (B.19)
Qaz; &1to0 @, ey x1EBC a? +1
< |dy]|d; ]sup hm sup // —5——=dQq, (21)dQq, (7;) (B.20)
Q Qzle-Al + 1
= |du|d; !sup/ 7dQ (i) (B.21)
= il—5—— B.22
i) <7 (B.22)

for any 7 > 0 if we choose a large enough. Here (B.18) follows the fact that r; — TQI;Q is
1 7

monotonically decreasing if r; > r;. Since a > 1 is arbitrary, we get

dil| X1 |d; ||X;
lim < sup E[ | ;H 1l|dif| Xl 2] =0. (B.23)
100 geea | 12X [ + 5t | X4
Moreover, we upper-bound the LHS in (4:12) with the same steps as (4.11):
di || Xallds]| X
I o e -
EtooQeea L|1X12 +5 i+ [ Xl
RAIRY ]
< |d;||d; hm sup E[ B.24
iy Fm | o St s (B:24)
= | RAIRY
< |d;||d;] sup hm sup E{ (B.25)
T Qi 1% Qe [ LXK £ IXG £ X

= |d;||d;] sup hm sup ///]x1|2 2dll2y] d@4, (21)dQy, (2:)dQy; (z;) (B.26)

Qu; Qu; E11°9Q, € A + @] * + |22
’xz|2

< |d;||d; bup hm sup // = dQu(21)dQs; (z; B.27
dilld sup T, sup f4 P dQer GO () (B.27)

< lllds s Jig // R 4@ ()4, (1)

up im sup 21 (21)dQg, (4

£t Q, edl) Jaen [T1[>+2lz2 T
|=TZ|2

+ |d;||d; sup hm sup // ———————d Qs (x1)dQq, (x;). B.28
dilldslowe Jn s [ ] 500 (r1)dQu ) (.25)

Here (B.24) follows because we drop some terms in the denominator; in (B.25), we define
A; as the set of all input distributions of the first user that escape to infinity, and take the
supremum over all Q, - - - Q; which are independent on @), and without any constraint on
the average power; (B.27) follows the fact that

2
’l“ﬂ‘j < T‘i

1
r%+r§+r]2-_r%+2ri2 2

IN

(B.29)

2
and that r — 702:712702 is monotonically decreasing if r1 > r;; and (B.28) follows from the
2o

same step as (B.6).
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For the first term in (B.28), we have

’$2|2
d;||d sup hm sup // dQu, (21)dQq, (z;
150 T 30, [, e o+ i 40 )90 0
;
2
< sl s J s [ 580 (ed@u ) (B.30)
QzleA 221662
<0. (B.31)

Here (B.31) follows from the derivation of (B.8)—-(B.11).
Combined with (B.31), the LHS in (4.12) becomes:

|di[| XI5 ]| X1 }
lim sup E
£1oe zen [lel2 +o Xl
|zi?
< |d;||d; sup hm sup // e —d Qg (1)d Qs (z B.32
llds | up JT st s e 540 (200 @) (B32)
i
< |d;||d; |sup hm sup // dQqz, (1)dQq, (z;)  (B.33)
X Qe €A x1EBS alwl‘ +2’ "2 '
= |d;||d,; |sup hm sup // ———dQy, (71)dQq; () (B.34)
907,‘ & OOlee.A r1EBC a +2
< |di||d; lim d@Q, dQ. (z; B.35
a8 s T i?epA//auZ@l(xl)Ql(w) (B39
= e st / Q1) (B.36)
= !dz'de\—ag R\ (B.37)
for any 7 > 0 if we choose a large-enough. Here (B.33) follows the fact r; +— % is
monotonically decreasing if r; > r;. Since a > 1 is arbitrary, we obtain s
il | Xl |dj ]| X5
lim sup E di]| X5 X, | = 0. (B.38)

EtooQeea LIX1[2 4+ + [ X
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