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Abstract

Two new shuffled belief propagation decoding algorithms forlow-density parity-check
(LDPC) codes are proposed-in-this thesis. To accelerate the decoding convergence rate
and lower the implementation complexity, we propose a group shuffled decoding schedule
which divides check nodes into non-disjoint groups to perform group-by-group message-
passing decoding. A hybrid shuffled schedule -which-combines horizontal (partitioning
check nodes into groups) and vertical (partitioning variable nodes into groups) shuffled
schemes is also presented.

Performance of the proposed algorithms are analyzed by a Gaussian approximation
based approach. Both analysis and numerical experiments verify that the new algorithms
do yield a convergence performance better than that of existing conventional shuffled
BP decoder with the same computing complexity constraint. In terms of error-rate per-
formance, Monte-Carlo simulations show that the proposed approaches yield improved

results in comparison with the conventional shuffled decoding schedules.
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Chapter 1

Introduction

Low-density parity-check (LDPC) codes with belief propagation (BP) or so-called
sum-product algorithm (SPA) based decoder can offer near-capacity performance. The
SPA decoder, however, suffers from low convergence rate and high implementation com-
plexity. To improve the rate of convergence and reduce implementation cost, serialized
BP decoding algorithms which partition eitherithe variable nodes (VNs) [5] or the check
nodes (CNs) [6] of the corresponding bipartite graph into multiple groups were intro-
duced. These two classes of serial SPA algorithms are called vertical and horizontal
shuffled BP (SBP) decoding algorithms; respectively.«More recent related works can be
found in [7] -[10]. These practical alternatives use serial-parallel decoding schedules that
perform sequential group-wise message-passings and have the advantage of obtaining
more reliable extrinsic messages for subsequent decoding within an iteration.

We focus on the horizontal shuffled BP (HSBP) decoding algorithms as they pro-
vide more advantages in hardware implementation [5] [10] than vertical shuffled BP
(VSBP). For conventional HSBP schedules, the CNs are divided into a number of groups
such that each CN belongs to just one group. A decoding iteration consists of several
sub-iterations. Each sub-iteration updates in parallel the log-likelihood ratios (LLR)
associated with the VNs connecting to the CNs in the same group. Hence within a sub-
iteration, message-passing is performed on the bipartite subgraph that consists of the

CNs of a group and all the VNs connecting to these CNs. Unlike conventional shuffled



schedules which partition either VNs or CNs into disjoint groups, we propose a shuffled
decoding schedule which divides CNs into non-disjoint CN groups. Such a CN grouping
results in larger connectivity of consecutive subgraphs (CoCSG) associated with two
neighboring CN groups, where the CoCSG refers to the the average number of VNs
connecting the CNs of, say, the kth group and the VNs which are also linked to the CNs
of the previous, i.e., (k — 1)th, CN group. A larger CoCSG means more information
will be forwarded from the previous sub-iteration and thus provides opportunities for
improved decoding performance. We demonstrate by using both simulation and analysis
that the proposed SBP is indeed capable of offering performance improved and addi-
tional performance-complexity-decoding delay tradeoffs. Since our division on the CNs
yields CN groups with a nonempty intersection for-any twe neighboring groups, we re-
fer to the resulting decoding schedule as non-disjoint group-shuffled belief propagation
(NDGSBP) in subsequent, discourse.

Shuffled BP decoding is a sequential approach, and the conventional method is based
on a natural increasing order according to the node indexes. In vertical shufied BP
decoding, the later abit is processed, the more information it may get. Therefore, as
the index increases, the reliability of the bit increases and the corresponding error rate
decreases. This may result in the.unequal error-correcting capability of the coded bits
and yield bad convergence performance. Randomly adjusting the updating order of VNs
or CNs in each iteration is a simple and effective way to overcome this drawback, i.e.,
updating messages in a random node-by-node order helps that each bit could obtain
equivalent amount of new updated messages. However, this random-ordering manner is
impractical due to the high hardware implementation complexity. We propose a new
decoding schedule which alternately performs VSBP and HSBP decoding to achieve
pseudo-random decoding schedule and name it hybrid-shuffled belief propagation (H-
SBP) decoding. The H-SBP algorithm provides excellent trade-offs between error-rate

performance and implementation complexity.



To analyze the performance of iterative LDPC decoding algorithms in binary-input
additive white Gaussian noise (BILAWGN) channels, approaches such as density evo-
lution (DE), Gaussian approximation (GA), and extrinsic information transfer (EXIT)
charts have been proposed [11]-[15]. We adopt the GA approach [12] [15] as it requires
just the tracking of the first two moments which are sufficient to completely characterize
the probability densities. Moreover, if a consistency condition is met [15], we need to
track only the means of related likelihood parameters.

The rest of this thesis is organized as follows. In chapter 2, we review the basic
definition, some decoding algorithms of LDPC code and the GA approach. We explain
the basic idea of the new grouping methods, provide relevant parameter definitions
and present the NDGSBP decoding algorithm and. hybrid SBP in Chapter 3. The
corresponding GA-based performance analysis is given in Chapter 4. Chapter 5 provides
numerical performance examples-of-the our algorithms,; estimated by both computer

simulations and analysis. Finally, concluding remarks are drawn.in Chapter 6.



Chapter 2

Review of Low-Density
Parity-Check Codes

Low-density parity-check cedes form a class of linear block codes which provide
the near-Shannon-limit performance with practical complexity if the code length is long
enough. It was originally invented-by Gallager [1]. The algorithm Gallager proposed
was too complex to implement at that time thusit was ignored by researchers for almost
35 years. In the meanwhile Tanner provided a graphical interpretation of LDPC codes,
which are called as Tanner graphs [2]. LDPC codes were “rediscovered” again until the
mid 1990s with the works of MacKay and Neal [3].. They noticed the advantage between
linear block codes which' generated by sparse matrix and iterative decoding based on
belief propagation. And by that time.the decoding ecomplexity has become practically
achievable and extensive efforts on various related issues then followed.

For simplicity, we only consider binary LDPC codes. This chapter starts with the
fundamental representations of LDPC codes via parity-check matrix and Tanner graphs.
We then introduce the sum-product (or belief propagation, BP) algorithm and shuffled
iterative decoding algorithms for the binary-input additive white Gaussian noise (BI-
AWGN) channels. Finally, we investigate the iterative decoding performance of LDPC

code ensembles using the Gaussian approximation (GA) approach [12].



2.1 Representations of LDPC codes

2.1.1 Matrix representation

As its name implies, an LDPC code is a linear block code defined by the null space
of a parity-check matrix H that has a low density of 1s. An LDPC code with a parity-
check matrix H which has constant row and column weights d, and d,, is called a (d., d,)
regular LDPC code. It said to be irregular if all the rows or all the columns of the

parity-check matrix H do not have the same weight.

2.1.2 Tanner graphs

A Tanner graph is a bipartite graph used to illustrate constraints or parity check
equations which characterizes an-error correcting code. The graph is partitioned into
check nodes (CNs) and variable nodes (VNs) which-denote the rows of the parity-check
matrix H and the columns of the parity-check matrix H, respectively. An edge connects
the CN ¢ to the VN j'whenever the element h;; in parity-check matrix H is a 1. The
Tanner graph of a LDPC code is a graphical model as the trellis of a convolutional code.
It not only provides anotherrepresentation of the code but helps to describe and develop
decoding algorithms. Each of nodes is like a locally operating processor and each edge

is likes a bridge that conveys the messages from a given node to its neighbors.

Example 1 Consider a N = 6 linear block code with d. = 3 and d, = 2 with the

following H matrixz, the Tanner graph corresponding to H is depicted in Figure 2.1:

OO = =
O = O
_ o O =
O = = O
_— O = O
— O O
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Figure 2.1: The Tanner graph for the code given in the example.

2.2 The sum-product algorithm

Gallager also proposed a near-eptimal iterative decoding algorithm which is now
called the sum-product algorithm (SPA) besides intreducing LDPC codes in his doctoral
dissertation. It also known as belief propagation algorithm which is used in describing
inference in Bayesian networks and-was originally invented by Pearl for developing prob-
abilistic approaches for artificial intelligence applications. The SPA can be viewed as
two kind of decoders-work cooperatively; one is a repetition (REP) decoder (VN de-
coder) and the other ds a single parity check (SPC) decoder (CN decoder). Figs. 2.2
and 2.3 depict the VN and CN decoder situations. For simplicity, we show the updating
equations of these two decoders directly with the extrinsic information to be sent from

VN n to CN m

m/eM(n)—{n}

The extrinsic information to be sent from CN m to VN n is

1
Lm—)n =92 tanh_l H tanh <§L]/—)Z) . (22)
n’eN(m)—{m}

A binary (N, K) LDPC code C is a linear block code whose M x N parity check
matrix H = [H,,,] has sparse nonzero elements. And thus C can be viewed as a bipartite

graph with N VNs corresponding to the encoded bits and M CNs corresponding to the
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Figure 2.3: A CN decoder (SPC decoder). CN m receives LLR information from all of
its neighbors, excluding message L, from VN n, from which CN m composes message
L, that is sent to VN n.



parity-check functions represented by the rows of H.

Let N (m) be the set of variable nodes that participate in check node m and M(n) be
the set of check nodes that are connected to variable node n in the code graph. A (m)\n
is defined as the set N'(m) with the variable node n excluded while M (n)\m is the set
M(n) with the check node m excluded. Let L, _,,, be the message sent from VN n to
CN m and L,,_,, be the message sent from CN m to VN n.

Assume a codeword ¢ = (cg, ¢q, ...,cn—1) is BPSK-modulated and transmitted over
an AWGN channel with noise variance 0. Let y = (o, ¥1, ..., ynv_1) be the corresponding
received sequence and L,, be the log-likelihood ratio (LLR) of the variable node n. Let
[ be the iteration counter and I, be the maximum number of iterations. The SPA is
given as follows:

Initialization
Setlzl,ano—%yn,for0§n§N—1.

Step 1: Message passing

a) ON update: Ym,0<m <M ~1, and n € N(m)
1 1
L~ = 2tanh H tanh §Ln/_>m (2.3)
n’eN (m)\n
b) VN update: ¥n,0 <n < N —1, and m € M(n)
m/'eM(n)\m

Step 2: Total LLR computation
Vn,0<n<N -1,

peta® — 1, 4 Z Lyon (2.5)

m/e€N(n)

Step 3: Hard decision and stopping criterion test



a) Create DO = [dV,d", ... dV)_] such that dV = 0 if LI® > 0 and ) = 1 if

Lﬁlotal,(l) < 0.

b) If DWHT = 0 or I, is reached, stop decoding and output D" as the decoded

codeword. Otherwise, set [ =+ 1 and go to Step 1.

2.3 Shuffled belief propagation decoding

It is well known that long LDPC codes decoded by SPA or a BP-based algorithm can
yield capacity-approaching performance. However, for long LDPC codes, implementing
the fully parallel algorithm require a‘large number of proeessing units, high computation
complexity, large memory space, and complicated network ¢onnecting. A more practical
alternative is to partition either the-variable nodes or the check nodes of the correspond-
ing bipartite code graph into several groups and perform group=wise parallel decoding
in a serial manner. ©That is, the parallel-serial architecture divides a single iteration
into several sub-iterations so that one needs only a reasonable hardware complexity to
perform each sub-iteration.. There are two different types of shuffled schedules called
vertical shuffled BP (VSBP) and horizontal shuffled BP/(HSBP), depending on whether
variable nodes or check nodes are partitioned:“Oncea group is processed, the subsequent
groups will have a chance to obtain the corresponding updated messages. As a result, a

shuffled BP algorithm often converge faster than its standard BP counterpart does.

2.3.1 Vertical shuffled belief propagation algorithm

The vertical shuffled BP algorithm divides VNs into several groups and each group
updates sequentially in a iteration. Different grouping methods result in different con-
vergence. How to group the VNs so that the messages spread faster is another topic,
we assume that VNs are partitioned into groups based on their index order. Let G be

the number of VN groups, G, be the gth VN group, [ be the iteration counter and Iysq



be the maximum number of iterations. We can then describe the VSBP algorithm as
follows:

Initialization

Setlzl,Ln:U—%yn,forOSngN—l.

Step 1: Message passing

For0<¢g<G-1

a) CN update: V. m € M(n),n € G,
1
L, = 2tanh™? H tanh <§Ln/_>m) (2.6)
n’eN(m)\n
b) VN update: V n € G,, mee M(n)
mleM(n)\m

Step 2: Total LLR computation
Vn,0<n<N -1,

[ttt Z N a— (2.8)

m/€N (n)

Step 3: Hard decision and stopping criterion test

a) Create DY = [d¥, 4", ..., d¥ ] such that d¥ = 0 if """ > 0 and 4 = 1 if
LZotal,(l) < 0.

b) If DYHT = 0 or g, is reached, stop decoding and output DY as the decoded

codeword. Otherwise, set [ =1+ 1 and go to Step 1.

As an example, let use consider the code with parity-check matrix H of Example 1. The
decoding processes for one iteration of the vertical shuffled BP is illustrated in Fig. 2.4

with G =1 (SPA), 2, and 6.

10
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Figure 2.4: Vertical shuffled BP with G = 1,2, 6 for decoding a code given in Example
1. (a) G =1 (standard BP). (b) G =2. (¢) G = 6.
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2.3.2 Horizontal shuffled belief propagation algorithm

Similar to VSBP algorithm, HSBP algorithm separate all check nodes into several
groups and decoding is carried out in a group-by-group manner. Relative to VSBP
algorithm, HSBP provides more advantages in hardware implementation. As VSBP,
different grouping methods could result in the difference of the decoding performance
and here we assume that the index-order-based partition is used. Let G be the number
of VN groups, G, be the gth VN group, [ be the iteration counter and I, be the

maximum number of iterations. We can then describe the HSBP algorithm as follows:

Initialization
Setlzl,ano—%yn,forOSnSN—l.
Step 1: Message passing

For0<¢g<G-1

a) CN update: V' m € G,,n € N(m)
1
Lpsy, = 2tanh ™! Il - tanh (§Ln/_>m) (2.9)
n’eN(m)\n

b) VN update: V n € U, g, M{m)sm € M(n)

m/'eM(n)\m

Step 2: Total LLR computation

Vn,0 <n< N —1,

L;otal,(l) =L, + Z Lyy—n (211)
)

m'eN(n

Step 3: Hard decision and stopping criterion test

12



a) Create DU = [d(()l),dgl), ...,dS@_l] such that d\ = 0 if L"*" > 0 and 4 = 1 if

Lﬁlotal,(l) < 0.

b) If DWHT = 0 or I, is reached, stop decoding and output D" as the decoded

codeword. Otherwise, set [ =1+ 1 and go to Step 1.

As an example, consider the code with parity-check matrix H in Example 1. The
decoding processes for one iteration of the horizontal shuffled BP is illustrated in Fig.

2.5 with G =1 (SPA), 2, and 4.

2.4 The Gaussianapproximation

To analyze the iterative decoding performance of LDPC ¢ode ensembles in the water-
fall region, several methods have been proposed. These include density evolution (DE),
Gaussian approximation (GA), and extrinsic information transfer (EXIT) charts [11]-
[15]. The DE method models the decoding process as messages-being passed around
as random variables and tracing the associated.message probability density functions
(pdfs). GA is an approach aimed fo simplifies  and stabilizes the numerical computa-
tions for the BILAWGN channel by approximate density evolution based on a Gaussian
approximation. The pdfs of the messages is approximated to Gaussian densities that
fully specified by two parameters, the mean and variance. It allows tracking the message
means only, under a consistency assumption. EXIT chart technique is a graphical tool
based on the mutual information. The method relies on the Gaussian approximation,
but provides some intuition regarding the dynamics and convergence properties. We
adopt the GA approach as it requires just the tracking of the first moment which are
sufficient to completely characterize the probability densities. In this section, we intro-

duce the GA algorithm for LDPC codes. A message m satisfies the consistency condition

13
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Figure 2.5: Horizontal shuffled BP with G = 1, 2,4 for decoding a code given in Example
1. (a) G =1 (standard BP). (b) G =2. (¢) G = 4.
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if its pdf p,, satisfies
P (T) = pm(—7)e". (2.12)

For all Gaussian pdfs that satisfy the consistency condition

1 1 ) 1 1 2]
exp | —=—=(7 — = exp | ——=(—7 — e’, 2.13
oy P [ 552 (T~ H) } oy P [ 552 1) (2.13)
it reduces to
o? =2u. (2.14)

One need only monitor the message means when performing density evolution using a

Gaussian approximation with the consistency condition.

2.4.1 GA for regular LDPC codes

We start by recalling that an outgoing message form CN.c at [ iteration may be

) de—1 =D
tanh ool E tanh 5 ; (2.15)
(1-1) (@=1)

where my, 7, ..., mygy are the messages received from the d,— Lneighboring VNs. Ex-

rewritten as

amining now the propagation of means for regularcode ensembles, we take the expected

value of this equation under an.i.i.d. assumption for the messages mz(,i_l) , we have

0 ol de—1
E {tanh ( 5 )} =B {tanh ( 5 ) }] : (2.16)

We can therefore write the above quuation as

L= () = [1 = D(ppan)]* (2.17)

where, for p > 0, we define

1
VAT

It can be shown that ®(u) is continuous and decreasing for 1 > 0, so

®(n) =1 -

/_00 tanh(7/2) exp [~ (T — p)*/4p] dr. (2.18)

fp = @1 (1 1-® (uv(l,l))]d“l) . (2.19)

15



Recalling that an outgoing message form VN v at [ iteration may be written as

m® = mg + Z m, (2.20)
n=1
where my is the message from the channel and mcl), e ,m&{}rl are the messages received

from the d, — 1 neighboring CNs. Taking the expected value of (2.20), the update

equation for the VN-to-CN messages mz(,l), to obtain

dy—1

pty = fho + Z o0

= Ho + (dv — 1),uc(z), (2.21)

where the second line follows from the fact that the d; — 1 messages are assumed to be

iid.
2.4.2 GA for irregular LDPC codes

Analogously to the regular case, the mean of an output message m of a degree-i
VN is given by

0 = Ho FE=Dpn (2.22)

Because a randomly chosen-edge is connected to a degree< variable node with probability
i, averaging over all degrees i yields thefollowing Gaussian mixture pdf for the variable

node messages:
'L)Ma:v

(z) Z Ai N( (l)’Qle(”)’ (2.23)

where N (1, 0?) represents the pdf for a Gaussian r.v. with mean p and variance o2.

The expected value within brackets [-] on the right-hand side of (2.16) is

mg}l) o0 mg}l 1) dyMax
E { tanh 5 :/_ootanh Z i - N~ (u (-1, 241, - 1>>d

dyMax

—1—ZA<I>(MU)

16



Reffering to the development of (2.18), we have that the mean of a degree-j check node

output is

deaw j_l
i E L SRR Ry . 2.24
/Jéz) ! ; /'l/’ugl) ( )
Finally, if we average over all check-node degrees j, we have

chaw

He) = E Pit D
7j=2

chaw deaw j_l
= pot|1- [1 = > NP (o + (i — 1)%(1_1))] : (2.25)
j=2

=2

v

\ 1556

17



Chapter 3

Proposed Algorithms

In this chapter, we present two new shuffled decoding algorithms named Hybrid-
shuffled BP and non-disjoint group shuffled BP, respectively. The ideas and advantages

of these proposed algorithms will be shown in the following sections.

3.1 Hybrid-shuffled belief propagation algorithm

Shuffled BP decoding is a bit-based sequential algorithm, the later a bit is processed,
the more information it may get. This'may result in the unequal error-correcting ca-
pability of the coded bits and yield bad convergence performance. Fig. 3.1 depicts the
number of bit errors using standard BP, vertical shuffled BP with increasing, decreasing
and random order for the Mackay’s«(504,252) regular LDPC code with d. = 6, d, = 3
at the SNR of 3.0dB. Randomly adjusting the updating order of VNs or CNs in each it-
eration is a simple and effective way to overcome this drawback, i.e., updating messages
in a random node-by-node order helps that each bit could obtain equivalent amount of
new updated messages. However, this random-ordering manner is impractical due to the
high hardware implementation complexity. We propose a new decoding schedule which
alternately performs VSBP and HSBP decoding to achieve pseudo-random decoding
schedule and name it hybrid-shuffled BP (H-SBP) decoding.

Let GV, G° be the number of VN groups and the number of CN groups respectively.

Define G; as the gth VN group and G; as the gth CN group. Let [ be the iteration
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Figure 3.1: Number of bit errorsversus bit position in the (504,252) LDPC code at SNR
of 3.0 dB.

counter and Iy, bethe maximum number of iterations.’ Then the H-SBP algorithm
can be described as follows:

Initialization

Setlzl,Ln:U—%yn,forOSnSN—l.

Step 1: If L is even then go to/Step 2; otherwise; go to Step 3.

Step 2: VSBP

For0<¢g<G'"-1

a) CN update: V. m € M(n),n € G}

1
Lyysn = 2tanh™? H tanh (§Ln/_>m) (3.1)
n’eN(m)\n

b) VN update: V n € G;,m € M(n)

m/eM(n)\m
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[nitialition

Figure 3.2: Flow chart of H-SBP algorithm.
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Step 3: HSBP

For0<¢g<G°—-1

a) CN update: V m € G, n € N(m)
1
L, = 2tanh™? H tanh <§Ln/_>m) (3.3)
n’eN(m)\n

b) VN update: V n € U, cq N(m'),m € M(n)

Lysm =Ly + Z Ly —n (34)
m/'eM(n)\m

Step 4: Total LLR computation
Vn,0<n<N -1,

g == Z ). o\ (3.5)

m/€N(n)

Step 5: Hard decision and stopping criterion test

a) Create DO = [V al". . Ldl) ] such that dV = 0 if LY > 0 and ) = 1 if
L;otal,(l) < 0.

b) If DWHT = 0 or I, is reached, stop decoding and output D" as the decoded

codeword. Otherwise, set [ =1+ 1 and go to Step 1.

Fig. 3.2 depict the flow chart of H-SBP algorithm.

3.2 Non-disjoint group shuffled belief propagation
algorithm

The so-called horizontal shuffled BP algorithm partitions the check nodes of the code

graph into groups to perform group-by-group message-passing decoding. We propose a
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new grouping technique to accelerate the message-passing rate by dividing CNs into
non-disjoint CN groups and named it non-disjoint group shuffled belief propagation
algorithm (NDGSBP). Fig. 3.3 is the schematic diagram of NDGSBP. In this section,
we first explain why GS decoding with non-disjoint groups and give a easy example to
demonstrate it. Then we define some notations and show the detail of the NDGSBP

algorithm.

G6-3 Y6-2 Gg-i

Figure 3.3:Grouping method of NDGSBP algorithm.

3.2.1 Why GS.decoding with non-disjoint groups?

C1 Cz C3 C4

w1 vz V3 V4 Vs Ve vr ]
m mz /ms m4 ms5 ms mMr ms

Figure 3.4: The Tanner Graph of A Linear Block Code.

Consider the decoding sub-iteration which performs VN-to-CN and then CN-to-VN
message passing for the CNs of the kth group and all connecting VNs. If (at least) one
of the VNs is linked to some CNs in other (CN) groups which have been processed in the
same decoding iteration before (i.e., whose group indices are smaller than k), then other
connecting VNs which have no such links will benefit from receiving more newly updated

messages. We use a simple linear code and its associating Tanner graph shown in Fig.
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3.4, where there are four CNs {c1, ¢o, c3, ¢4} and eight VNs {vy, vy, ..., v7, g}, to explain
this effect. Let the messages the VNs carry be denoted by mq,mso, ..., m7,mg. In a
conventional BP decoding iteration, each VN receives the messages from its neighboring
VNs which are linked through some VNs. For instance, v, and vg are updated by the
messages {msq, ms, mg, m7} and {my, ms}, respectively. For the GSBP decoding with
two CN groups {c1, 2} and {cs, ¢4}, vg receives {mq, ms} in the first sub-iteration and
{msa, ms, mg, m7} in the second sub-iteration while vg is updated by {mq, m4, ms, mz}
in which ms and mjs are the messages forwarded by vy because of its connection to the
second CN group and will help improving the convergence. Obviously, the amount of
messages the CNs in the k group receive from VNs connected to CNs belonging to the
jth group, j < k depends on the code structure and the grouping of CNs. If we limit
our attention to the case j = k£ — 1, the CoCSG defined in the introductory section
can be used to quantify the average amount.of messages received from the previous
sub-iteration and the grouping should try to maximize this number.

To simplify our systematic non-disjoint grouping method, we assume identical group
cardinality, N¢g, anddenote the number.of CN.groups by G so that G x Ng = M
is the number of CNs® We define the overlapping ratio » as the ratio between the
size of the intersection between two neighboring CN groups and G. Then, we have,
GNg — (G —1)Ngr = M.

We arbitrary select Ng CNs to form the first CN group. The kth (k > 1) group
includes 7 - Ng CNs randomly chosen from the (k — 1)th group and (1 — r) - Ng CNs
from the CNs which do not belong to any of the earlier groups. Therefore, a CN does
not necessarily belong to only one group anymore. As an illustration, we consider the
grouping (r,G.Ng) = (0.5,3,2) on the Tanner graph of Figure 3.4 again. Let the first
group be {cy, ¢}, the second one be {cy, 3} and the third one be {c3,cs}. In the first
sub-iteration, vy and vy receive {my, ms, mg, ms} and {mq, ms}, respectively. vy and vg

receive {my, mg, mg, ms, mg, m7} and {my, my, ms, m;} in the second sub-iteration, in
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the final sub-iteration, vg will be updated by {mj, ms, mg, my, ms, mz}. In short, for
conventional BP, a VN can just collect information from VNs which are two-edge away
in one iteration; for GSBP decoding, a VN has the opportunity to obtain the messages
from four-edge-apart VNs; and for the proposed NDGSBP decoding algorithm, it is
possible that a VN obtains the messages from VNs which are more than six-edge away
if we select the overlapping ratio and CNs carefully. With fixed degree of parallelism
N¢g and CN number M, the larger r becomes, the longer the per-iteration delay is
while the less the required iteration number becomes as a VN can update its LLR using
information from more VNs. The product of the required iteration number and the
per-iteration delay equals the total decoding delay to achieve a predetermined error rate
performance. Section IV shows that the NDGSBP algorithm does give improved error

rate performance for the same decoding delay.

3.2.2 Basic definitions and netations

A binary (N, K) LDPC code C is a linear block code whose M X N parity check ma-
trix H = [H,,,] has sparse nonzero elements. And thus C can be viewed as a bipartite
graph with N VNs corresponding to the encoded bits, and A/ CNs corresponding to the
parity-check functions represented by the rows of H. Te track the statistical property
variations of the message-passing sequence between VNs and CNs in an iterative de-
coding schedule, we also need to know the VN and CN degree-distribution polynomials
Az) = %, Nzt and p(z) = Z;lc:z p;xi~t, where \; and p; denote the fraction of all
edges connected to degree-i VNs and degree-j CNs, d,, and d. denotes the maximum VN
and CN degree.

Let N (m) be the set of variable nodes that participate in check node m and M(n) be
the set of check nodes that are connected to variable node n in the code graph. N (m)\n
is defined as the set N'(m) with the variable node n excluded while M (n)\m is the set

M(n) with the check node m excluded. Let L, _,,, be the message sent from VN n to
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CN m and L,,_,, be the message sent from CN m to VN n.

3.2.3 System model and decoding schedule

Assume a codeword C = (¢, ¢, ..., cy) is BPSK-modulated and transmitted over an

AWGN channel with noise variance 2.

Let Y = (y1,¥2,...,yn) be the corresponding
received sequence and L, be the log-likelihood ratio (LLR) of the variable node n with
the initial value given by L, = f—gyn.

Let G, be the gth CN group, 1 < g < G and U be a set of CNs, [ as the iteration

counter and Ip;., as the maximum number of iterations. We can then describe the

NDGSBP algorithm as follows:

Initialization

Set I =1,U = {z|]1 <@&< M}, and G, = 0 for'l <g <G.

Step 1: Grouping check nodes

Collect Ng elements randomly from the set ¢ to form Gy, let U = U\G;. Collect
Ng — Ng - r element randomly from the set U and N - r elements from G, to create Gs.
For 3 < g < G, collect Ng — Ng - r element randomly from the set &/ and Ng -r elements
from G, 1\G,—2 to create G, andilet U = U\G,.

Step 2: Message passing

For1<¢<G@

a) CN update: V. m € G,,n € N'(m)

1
Ly = 2tanh™? H tanh <§Ln/_>m) (3.6)
n’eN(m)\n

b) VN update: V n € U, cg, N'(m'), m € M(n)

m/eM(n)\m
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Step 3: Total LLR computation
Vn,1 <n <N,
Lot — [, 4 Z Lot —sm (3.8)
m/€N(n)

Step 4: Hard decision and stopping criterion test

a) Create DO = [d" al, . dV] such that d¥ = 0 if LY > 0 and ) =1 if

L;,Otal’(l) < 0.

output D as the decoded

= M}, go to Step 1.

b) If DOHT = 0 or Iyas

codeword. Other
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Chapter 4

Convergence Analysis

In this chapter, we adopt the Gaussian approximation approach to analyze the conver-
gence behavior of the proposed algorithms. The basic analytic approach follows that

presented in Section 2.4 but'takes the scheduling inte account.

4.1 GA for shuffled belief propagation algorithm

We first consider two basic types of shuffled BP decoding schedules.

4.1.1 GA for VSBP algorithm

Consider a degree-j CN m and suppose it'is connected with k£ (k =0,1,...,j — 1)
VNs which belongs to the group ¥, and j — k£ VNs.which are in group V5. For such a

CN we obtain

oo (5) = e (N o (O 0

Let UE”’“ be the message sent by degree-i VN which belongs to V;, and vi(l)’g be the

message sent by degree-i VN in group ¢ at the [th iteration. Then (4.1) can be written

as
dyMaz Ul dyMax k
a1 (- e ) (e ) ). e
=2 i=2
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where

g—1
nwvi 1 0.
it = S T (4.3)
g'=0

0

c7j

and ®(-) is defined in (2.18). The mean of degree-j CN messages f, - is obtained by

accumulating all possible values of ,u i, with their corresponding coefficients P :

/’Lc] Z 7,k " /’Lc] k> (44)

where P;, is the proportion of degree-j CNs which have k neighboring VNs belonging

to Vi in all degree-j CNs. Thus P;, is given by

1] g=0,k=0

P = , ‘ 4.5
Th { i (%)k (L=g) 1k O otherwise (45)
By linearly combining the means of degree-2,..:,d e CN messages with weights
.2 <j<d.}, the mean of the:CN messages £’) 1S given b
Pj J gES g Yy
dec
L

u =" pit (4.6)

J=2

A VN with degree-¢ collects the'messages from 7 — 1 conneeted CNs as well as the

channel initial message iy, hence we have

f o sbn (= (4.7)

After linearly combining ,u(l).’g (1=2,3,...,dypraz) With A, ug)’g becomes

0,1

'uMaz

Q—ZA noks (4.8)

4.1.2 GA for HSBP algorithm

Consider a degree-5 CN m. For such CNs we obtain

(@@
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D9

where v is the message sent by VNs at the [th iteration, ¢; " s the message sent by a

degree-j CN in group g at the [th iteration. Then (4.9) can be rewritten as

dvlvfa;c j_l
O e (1 -3 ae (uff}i)) . (4.10)
=2

By linearly combining the means of degree-2,...,d. CN messages with weights {p;,2 <

J < dcpraz }, the mean of CN messages ,ug)’g is obtained from

dc]\/Ia:v

l
plo =" p; - ply?. (4.11)
=2

Consider a degree-i VN n which is connected to k (k= 0,1,...,7—1) CNs in group C}

and ¢ — k CNs in group Cy. For.such a VN, we have
1 =T + kR (i —do — WD, (4.12)

where

(l) C1 _ Z ,U(l) g , (4.13)

1 C=1
Vo Aen wenrc (114
g'=0

@

The mean of degree-i VN messages f,,;

is obtained by acecumulating all possible values

of ,uil,)i,k with their corresponding coefficients

:uvz ZP :uvzk’ (415)

where P, is the ratio of degree-i VNs which have k neighboring CNs belonging to C}
among all degree-i CNs. Thus P, ;, is given by

1, g=0,k=0

P, = . , 4.16
* { cte (%)k (1= &)1, otherwise (4.16)

By linearly combining u(l)- (1=2,3,...,dypaz) With A, ;Af) is given by

v,i

'uMaz

Z A ), (4.17)
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4.2 GA for hybrid-shuffled belief propagation algo-
rithm

Since H-SBP perform VSBP and HSBP alternatively, the GA for H-SBP execute
GA for VSBP and HSBP by turns.

4.3 GA for non-disjoint group shuffled belief propa-
gation algorithm

As can be seen from the above description of the proposed algorithm, the messages
L., and L,,_., are real random variables that depend on the received channel values
Yn, the code structure and the.decoding schedule: The GA approach assumes that they
can be approximated by Gaussian random variables. With this approach, we need only
to monitor the message means as-the consistency condition holds in our case [11]. We
further assume that the all-zero codeword C = (0,0, ...,0), which is mapped into the
BPSK modulated veetor X = (1,1,...,1),s transmitted. The following analysis is
based on the ideas of:[12] and [15] with two distinct considerations. First, the analysis
presented in [15] dealsiwith vertical GSBP while we are dealing with horizontal GSBP.
Second, the intersection among groups can be nonempty in our schedule. For GSBP
decoding, we divide CNs into two.types;-one-is updated CNs and the other is non-
updated CNs. As depicted in Fig.4.1. To analyze the effect of nonempty intersections,
we divide CNs into four classes in a given, say the gth sub-iteration of the [th iteration.
Class-a includes the CNs that will be updated at the ¢'th (¢’ > g) sub-iteration, Class-
b includes the CNs which are also members of the previous (¢ — 1)th group, Class-c
contains the CNs which are not members of the previous (g — 1)th group and the Class-
d are all CNs exclude Class-a and Class-b. Figs.4.2 and 4.3 depict the situations after
three sub-iterations for overlapping ratio r < 0.5 and 0.5 < r < 1 respectively. We now
track the average values of all updated parameters at the [th iteration for the proposed

NDGSBP algorithm. We first define 1 4.0) as the mean of the message sent by a Class-x
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C1 C2 C3 C4 C5 C6 C7T C8 Co C10 C11 €12 C13 C14 C15
Group 1:
Group 2:

Group 3: B EBEBER

. the CNs which have been processed in previous and this sub-iterations
. the CNs which have not be processed

Figure 4.1: A example for GSBP after two sub-iterations.

Ci C2 €3iCaCs: Co : C7 C8:CINCID Cif: Ci2 C13 Cia

Group 1: :
Group 2: H - N
Group 3: i . .
Group 4: i K A HEER
,[Lcé.._r] p‘cg.m E}ch,mé 'U'ci'”' ,(ch.m E’utﬁl: = fgi-11
[l :theCiass-aCNs [JJ] : the Class-b CNs : the Class-d CNs

Figure 4.2: A example for NDGSBP after three sub-iterations when r < 0.5.
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Group 1: : [ | H
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[ :theClass-aCNs [J] : the Class-b CNs : the Class-d CNs

Figure 4.3: A example for NDGSBP after three sub-iterations when 0.5 <r < 1.
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CN, that is, u_ 0.() = E{L3, _m} where m belong to Class-x CNs, n is a VN connecting to
m in the gth sub-iteration of the [th iteration. We start with the VN update equation.
Consider the degree-i VN n which is connected to p Class-d CNs, ¢ Class-b CNs and

1 —p — q Class-a CNs. For the gth sub-iteration of the /th iteration, we have, for g = 1,

O = Ho PR + g (4.18)
+i—p—q—Dup

= o+ PH + Ao (4.19)
+(i = p—q— e

where o = B and po = E{L,} = E{2%} is the mean of the channel value. For

g > 1, we obtain

1
My =— (,ucuw + g @
d g C c

1=2r
-+ Z( = Mcﬂ’ﬂ))) ) (42())

g'=

for r < 0.5 and

Q=

l o
X0

g—1
(,uci,u) -+ ,ch,(l) —+ Z 'UC%I’(Z)> s (4.21)

g'=2
for 0.5 <r <1.

When the CNs in the g-th group are processed in [-th iteration, the mean of message
for degree-i VNs 1 o can be obtained by accumulating all possible values of y o) with

qu

their corresponding coefficients w(i, p, q):

= 4.22
’uvgl) Z Z CU i y Dy 4 ’uvgqu’ ( )

where w(i, p, q) is the proportion of degree-i VNs which have p neighboring Class-d CNs,

g neighboring Class-b CNs in all degree-i CNs. Thus w(i, p, ¢) is given by

) = (", )ar (1 =2yt g=1
w(i,p,q) = { (i;l) (i—;—p)ypzq(]_ Ly )i g2 (4.23)
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where z is the fraction of Class-d CNs for g = 1, y is the fraction of Class-d CNs and z

is the fraction of Class-b CNs.

Thus
1
x :m, (4.24)
y =5~ ((1G_ T)l) (4.25)
z :m. (4.26)

From Class-c CNs updating formula, we can obtain

e fon (S b)) azm

Under the Gaussian approximation and for ;1 > 0, define

A an ex 7_(7_/'02 T
D)2 1 WF t h p{ ™ }d, (4.28)

and (4.27) can be rewritten as

j-1
'uMaa:
W =" (1 = Z A (u m)) . (4.29)

If we average over all CN degree j, we have

deMax

P = Z Pt (4.30)

The computation of the mean of message send from a Class-b CN o) 18 replace IR0

b i
with £ s in (4.29) where f,sw 1s mean of message send from a previous group overlapping
VN. And p ) is got by let p at least 1 in (4.22) and (4.23) for g # 1.

After [ iterations, the mean of the message passed from a CN .o is

T G —Gr

ey = mucg,(z) -+ mucg(n. (4.31)

If g,y — 0o, the connecting VNs achieve error free performance.
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Chapter 5

Numerical Results

Figs. 5.1 and 5.2 depict the BER and FER performance of Mackay’s (504,252)
regular LDPC code with d. = 6,.d, = 3 using the standard BP algorithm, the SBP
algorithm (G = 4,12) and the proposed H-SBP algorithm (G = 4,12). On the other
hand, in Figs. 5.3 and 5:4 we plot.the FER and BER performance of Mackay’s (408,204)
regular LDPC code with d. = 6 and d, =3 using the standard BP algorithm, the SBP
algorithm (G = 4, 12)vand the proposed H-SBPalgerithm (G = 4512), respectively.

Fig. 5.5 depicts the' BER performance of Mackay’s (504,252) regular LDPC code with
d. = 6, d, = 3 using the standard BP algorithm; the HSBP algorithm (G = 12) and the
proposed NDGSBP algorithm (G .= 12, overlapping ratio 7 = 0.2,0.4). On the other
hand, in Fig. 5.6 we show the BER, performance of Mackay’s (408,204) regular LDPC
code with d. = 6 and d, = 3 using the standard BP algorithm, the HSBP algorithm
(G = 12) and the proposed NDGSBP algorithm (G = 12, overlapping ratio r = 0.2,0.4),
respectively.

Since our two approaches are independent, we can combine them to get more im-
provement. Fig. 5.7 shows the BER and FER performance of Mackay’s (504,252) regular
LDPC code with d. = 6, d, = 3 using respectively the standard BP algorithm, the HSBP
algorithm (G = 12) and the proposed algorithm (G = 12, overlapping ratio r = 0.2,0.4).

The simulation results reported in this chapter assume I;,, = 500 for the HSBP and

BP algorithms. To have fair comparison, we assume the system parameter values that
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Figure 5.2: Error rate of a (504, 252) (3,6) LDPC code with standard BP , HSBP and

H-SBP decoding with G = 12.
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Figure 5.5: BER performance of Mackay’s (504,252) regular LDPC code with d. = 6
and d, = 3 using the:decoding algorithms: NDGSBP; HSBP for G = 12 and standard

BP.
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Figure 5.6: BER performance of Mackay’s (408,204) regular LDPC code with d. = 6
and d, = 3 using the decoding algorithms: NDGSBP, HSBP for G = 16 and standard

BP.
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result in the same or similar computation complexity for all algorithms. For example, to

decode the (504,252) LDPC code using the NDGSBP decoder with G = 12 and r = 0.4

imply that Ng = 34 and it is allowed to have at most — +(7C7¥1.—I]1V§Z<ZNG-T = gt ~ 310
decoding iterations.

We use the GA approach outlined in Chapter 4 to analyze the performance of the
H-SBP, NDGSBP, BP and HSBP decoders. Given the code rate and degree distribution
of LDPC codes, the thresholds estimated by the GA approach for BP, HSBP H-SBP
and NDGSBP decoding are the same. In Table 5.2 and Table 5.1, we list the number of
iterations for error free performance at SNR equals threshold. We examine the NDGSBP
performance in decoding two ensemble LDPC codes using the same overlapping ratio

r = 0.2 but different group number . The table shows the H-SBP and NDGSBP

decoder consistently outperform the other two decoders in convergence rate.

Table 5.1: Gaussian_approximation for the binary<input AWGN channel under BP,
HSBP and H-SBP. Wellisted the number of iterations for exceed BER 1071% at (E}/Ny) =
threshold.

HSBP H-SBD
dy de™R (E,/No)cdh BP=G=duil2u36m G=4/12 36
3 6 1/2 . 1.163 424 294 -263 252 270 . 220 201
HSBP H-SBP
dy, d. R (Ey/No)ca BP G=4 16 34./G=4 16 34
4 6 1/3 <1780 +.633 439 387877 408 317 301

Table 5.2: Gaussian approximation for the binary-input AWGN channel under BP,
HSBP and NDGSBP with » = 0.2. We listed the number of iterations for exceed BER
10719 at (E}/Ny) = threshold.

HSBP NDGSBP

dy, d. R (Ey/No)aa BP G=4 12 36 G=4 12 36

3 6 1/2 1163 424 204 263 252 272 239 230
HSBP NDGSBP

dy d. R (Ey/No)aa BP G=4 16 34 G=4 16 34

4 6 1/3 1730 633 439 387 377 407 360 353
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Chapter 6

Conclusion

In this thesis, we propose two nevel group shufied:BP decoding scheduling schemes to
improve the performance of the conventional GSBP algorithm for decoding LDPC codes.
The proposed NDGSBP. scheme enhances the connectivity of the code graph by having
overlapped CNs in neighboring CN-groups. “The enhanced connectivity allows each
VN (or CN) to obtaimsrelated information from mere VNs (or €Ns) within a decoding
iteration, accelerating the message-passing rate and thus the convergence speed. The
H-SBP performs VSBP and HSBP decoding alternately to achieve a pseudo-random
decoding schedule to avoid the unequal error-correcting capability of the coded bits.
As a result, the H-SBP scheme gives better convergence performance than that of the
conventional GSBP approach.

We also analyze the decoding behavior of different decoding schedules in this thesis.
The GA approach is used to track the first-order statistical information flow of the
proposed NDGSBP algorithm and the H-SBP algorithm. The GA analysis verifies that
the NDGSBP decoder and H-SBP decoder do give faster convergence rates with respect
to those of the GSBP and BP decoders. Numerical results also demonstrate that, with
the same decoding computation complexity, the new algorithms yields improved BER
and FER performance.

For NDGSBP decoding, the VNs are grouped in natural increasing order and the
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non-disjoint parts are randomly selected from the available CNs. A proper VN ordering
and overlapping VN selection that take the code structure into account will certainly
give better performance. The optimal decoding schedule and the optimal CN group
overlapping ratio r remain to be found and some analytic performance metrics may be

needed in our search of the desired solution.
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