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摘要 
 

 

於低訊號冗餘合作式通訊系統中的高效能訊號處理演算法在實現節能的第四

代中繼網路中扮演著重要的角色。在這篇論文中，我們研究在無線感測器網路中

針對訊息中繼來考慮在通道參數不匹配的情況下的低冗餘合作式波束形成設計。

在我們所考慮的系統中，為了達到降低傳送通道狀態資訊的訊號冗餘，每一個中

繼端會將其測得之訊源與中繼端的鏈結訊雜比量化成一位元的訊息。為了反映無

線感測器網路嚴格的傳送功率限制，每一個訊雜比的量化訊息在傳輸過程中因此

假設為不理想的，於數學上視為經由一個帶有非零交叉機率的二元對稱通道來傳

送。當接收端接收這些可能有位元翻轉的一位元訊雜比訊息，且假設中繼端與接

收端間鏈結的通道估測是完美的，則我們首先可以考慮藉由最大化接收訊號的訊

雜比期望值所得的波束形成系數設計，其中此訊雜比公式是針對二元對稱通道中

位元翻轉的統計特性所求得的期望值。接著，我們進一步延伸考慮中繼端與接收

端間鏈結的通道估測可能會產生誤差的情況，在數學上我們以獨立同分佈的高斯

隨機變數才表示。在這兩種情況下，我們可以透過針對訊雜比不確定性或是通道

狀態資訊不確定性作平均，以分別推導出具封閉形式的條件平均接收訊雜比。因

為如此推導出來的訊雜比公式對波束形成系數來說是一高度非線性函數，所以針

對這兩種訊雜比公式，我們分別進一步地推導出各自的可分析下界以利於分析。

藉由最大化各自的訊雜比下界，相應的亞最佳波束形成系數解即可透過解廣義特

徵值問題來求得。最後，電腦模擬結果用以檢驗我們提出方法的成效。 
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Abstract 
 

 

High-performance signal processing algorithms for cooperative communication 

systems with reduced signaling overhead play a key role toward realizing 

energy-efficient relay networks for 4G and beyond. In this thesis, we study the problem 

of low-overhead cooperative beamforming design for information relaying in wireless 

sensor networks (WSNs) by taking account of the effect of mismatched inter-node 

channel state information (CSI). In the considered system, each relay node quantizes the 

signal-to-noise ratio (SNR) of the source-to-relay (S-R) link into one bit in order to 

reduce the signaling overhead dedicated to CSI transmission. To reflect the severe 

transmit power limitation of WSNs, the transmission link of the quantized SNR 

message is assumed to be non-ideal, and is modeled by a binary symmetric channel 

(BSC) with a non-zero crossover probability. With the flipped one-bit SNR messages 

received at the destination and assuming that the relay-to-destination (R-D) link channel 

estimation is perfect, we first study the beamforming design based on maximization of 

the expected receive SNR, averaged with respect to the bit-flipping distributions of 

BSC's. Next, the proposed approach is extended to the scenario wherein the R-D link 

channel estimation errors occur, and are modeled as i.i.d. Gaussian random variables. In 

both cases, we derive closed-form expressions for the conditional receive SNR averaged 

over the distributions of the SNR/CSI uncertainty. Since the SNR measures thus 

obtained are highly nonlinear functions of the beamforming coefficients, we further 

derive for each case a tractable SNR lower bound to facilitate analyses. By conducting 

maximization with respect to the derived SNR lower bounds, suboptimal beamformers 

can be obtained via solving generalized eigenvalue problems. Computer simulations are 

used to illustrate the performances of the proposed schemes. 
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Chapter 1 
 

Introduction 
 

 

1.1 Overview 

 

Due to the myriad real-world applications, the study of wireless sensor networks, in 

particular, the development of high-performance distributed signal processing 

algorithms, has received considerable attention in the recent years [1-6]. Typically, 

sensor nodes are of a small size, powered by battery, and therefore subject to limited 

communication and message processing capability. Under such constraints, cooperation 

among sensors for information relaying or data forwarding becomes necessary in order 

to enable various global target tasks, e.g., data aggregation, decision fusion, and signal 

retrieval. Among the various cooperative transmission schemes, cooperative 

beamforming is a promising technique capable of realizing distributed spatial diversity 

toward link reliability enhancement [7-10]. Since the design of beamforming 

coefficients requires the knowledge of the channel state information (CSI) of inter-node 

channel links, communication/signaling overheads dedicated to CSI transmission, or 

feedback, in cooperative beamforming systems are thus unavoidable. To meet the high 

energy-efficiency demand for wireless sensor networks, the reduction of physical-layer 

signaling overhead is crucial [11-16]. There have been many studies of low-overhead 

cooperative beamforming techniques aimed at realizing energy-efficient information 

relaying, e.g., see [17-20]. In all of these works, it is commonly assumed that CSI 

transmission and feedback are errorless. Such an assumption, however, is impractical in 

the sensor network scenario. Indeed, since sensor nodes are subject to stringent power 

and decoding complexity constraints, implementation of forward error correction codes 

for improving the error resilience of quantized CSI (or information bits) may be 

prohibitive due to unacceptable system complexity and decoding latency [1, Chap. 6]. 

As a result, the transmission of the local CSI from the far-end relay nodes could be 

deteriorated by large path loss and severe fading, resulting in distorted CSI received at 

the destination. In point-to-point multi-antenna communications with limited feedback, 
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system designs in the presence of CSI transmission/feedback errors have been well 

documented, see, e.g., [21-25]. Related study in the context of cooperative 

communications, however, remains much to be investigated. 

 

1.2  Contribution 

 

In this thesis, we study the cooperative beamforming design for information relaying 

in wireless sensor networks in the presence of mismatched inter-node CSI. The 

cooperative beamforming scheme employing the amplify-and-forward (AF) relaying 

protocol as in [10] is considered. Also following [10], the information symbols are 

assumed to be BPSK modulated so as to reflect the rate and decoding 

complexity/latency constraints in wireless sensor networks [1], [6]. The design of the 

beamforming weights is aimed at maximizing a certain signal-to-noise ratio (SNR) 

metric at the destination. To reduce the signaling overhead, each relay node quantizes 

the SNR of the source-to-relay (S-R) link into one bit1, which is then sent to the 

destination for beamforming design. Rather than assuming that the quantized SNR 

messages are received at the destination without errors, we consider the realistic case 

that the transmission link of the one-bit message is imperfect, and is mathematically 

modeled as a binary symmetric channel (BSC) with a known crossover probability2. 

Specific technical contributions of this thesis can be summarized as follows. 

 

(I) Beamforming Design in the Presence of Imperfect Quantized S-R Link SNR 

 

We first consider the beamforming design by taking account of the fact that each 

one-bit message of S-R link SNR could be flipped by the BSC, while the R-D link 

channel estimation is assumed to be perfect. Given the one-bit messages received from 

all relays, the beamforming coefficients are designed at the destination via 

 

1. While multiple-bit quantization at relays is considered in the problem formulation in [10], the simulation study 

therein shows that the beamformer designed based on even one-bit quantization can perform quite close to that 

designed in accordance with the full S-R link CSI. Hence, to minimize the signaling overhead, this paper focuses 

on the specific one-bit case. The generalization of our current solution to the multiple-bit case is under 

investigation. 

2. When referring to "BSC" we specifically focus on the transmission link of the one-bit quantized S-R link SNR. 
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maximization of the receive SNR averaged with respect to the conditional bit flipping 

distributions of BSC’s. A closed-form formula for the proposed SNR metric is first 

derived. The formula is seen to be a highly nonlinear function of the beamforming 

factors, and direct maximization of this objective function is quite difficult. For analytic 

tractability, we then derive a lower bound of the conditional average SNR that admits 

the form of a generalized Rayleigh quotient [26]. By conducting maximization with 

respect to this lower bound, a closed-form suboptimal beamformer can be obtained as 

the solution to a generalized eigenvalue problem. Computer simulation shows that the 

proposed scheme does outperform the solution [10] under imperfect quantized S-R link 

SNR.  

 

(II) Beamforming Design Under Imperfect Quantized S-R Link SNR and R-D 

Link Channel Estimation Errors 

 

Next, we generalize the results in part (I) by further taking into account the effect of 

R-D link channel estimation errors. It is assumed that the destination only knows a set  

of R-D link channel estimates, which are modeled as the true channel gains corrupted 

with additive white Gaussian errors. Conditioned on the received one-bit quantized S-R 

link SNR from all relays and estimated R-D link channel parameters, the design 

criterion of the beamformers is to maximize the receive SNR (at the destination) 

averaged over the distributions of both the bit-flipping effect of BSC's and R-D link 

channel estimation errors. An exact formula of the adopted conditional average SNR is 

first derived. Since the formula is quite complicated, to ease analysis we further resort to 

certain approximation techniques to derive an associated SNR lower bound which also 

admits the form of a generalized Rayleigh quotient [26]. As in part (I), we propose to 

instead conduct maximization of this lower bound. A suboptimal beamformer can be 

obtained as the solution to a generalized eigenvector problem. Computer simulations 

show that, compared to the beamformer [10] and the solution derived in part (I), the 

proposed design is more robust against the R-D link channel estimation errors. 

 

1.3 Organization 

 

The rest of thesis is organized as follows. Chapter 2 is the preliminary, which 
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introduces the system model and the problem statement. Chapter 3 presents the 

beamforming design under imperfect S-R link SNR, while R-D link channel estimation 

is assumed to be perfect. Chapter 4 discusses the design of the beamforming weights 

under mismatched S-R link SNR and R-D link CSI. Finally, Chapter 5 concludes this 

thesis. Detailed proofs of key mathematical results are relegated to Appendix. 
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Chapter 2 
 

System Model and Overview of Previous Work 
 

 

We consider the dual-hop cooperative beamforming system in [10] that is depicted in 

Figure 1, in which L  relays employ the AF protocol to collaboratively transmit the 

common source signal [ ] { 1,1}x n Î -  to the destination. During the signal 

broadcasting phase, the received signal at the ith relay is 

                         ,[ ] [ ] [ ]
is s s i iy n P h x n v n= + ,         (2.1) 

where sP  is the source transmit power, 2
, (0, )s i sh s   is the channel gain of the ith 

S-R link3, and 2[ ] (0, )i vv n s   is the receive noise at the ith relay. Based on (2.1), 

the instantaneous SNR of the ith S-R link is thus 

                              

2

,

2i

s s i
s

v

P h
g

s
 .                        (2.2) 

At the information relaying phase, the received signal at the destination reads 

 

                        ,
1

[ ] [ ] [ ]
i

L

d r i i i s
i

y n h G g y n w n
=

= +å ,          (2.3) 

where 2
, (0, )r i rh s   denotes the ith R-D channel gain, 

1
,

1

(1 )
i

i

s i s s

G
h P g-

=
+

 is 

the power normalization factor, ig  is the ith beamforming weight, and 

2[ ] (0, )ww n s   represents the receive noise at the destination. With (2.1), [ ]dy n  in 

(2.3) can be expressed as [10] 

 

3. The notation 
2

(0, )s  denotes the circularly complex Gaussian random variable with zero mean and variance 

2s . 



 

6 
 

               
,,

1 1

[ ] [ ] [ ] [ ]
1 1

i

i i

L L r i i sr i i
d i

i i
s s

h gh g
y n x n v n w n

x

x x= =
= + +

+ +
å å ,        (2.4) 

where 1/
i is sx g  is the reciprocal of the SNR of the ith S-R link, and 

[ ] (0,1)iv n   . To design the beamforming weights ig ’s, one commonly used 

approach is to conduct SNR maximization based on the knowledge of the CSI of the 

S-R and R-D communication links (e.g., [27-28]). This paper focuses on the 

low-overhead cooperative beamforming scheme, wherein the ith relay quantizes the 

SNR of the ith S-R link (see (2.2)) into one bit {0,1}iq Î . Assuming that (i) 

1{ , , }Lq q  are received at the destination without errors, and (ii) the CSI of all the R-D 

links is perfectly known at the destination, the SNR conditioned on either [ ] 1x n =  or 

[ ] 1x n = - , is shown to be [10]4 

                

2

,
1

22 2 2
,

1

( )

( , , )
(1 ( ))

L

i r i i
i

dq L

i r i i w
i

g h q

g h q

f
g

f s

=

=

=
- +

å

å
rg h q ,            (2.5) 

where 1[ , , ]TLq qq   , 1[ , , ]TLg gg   , ,1 ,[ , , ]Tr r Lh hrh   , 

       
/( ) 0

/( )

1 1
exp( ) ,  when 0;

1 (1 / )1
( )

1
exp( ) ,         when 1.

1 (1 / )

i

i s

i s

i

i
s

i

i
s

d q
e

q
e d q

t

t g

t g

t

m
m

gmf
m

m
gm

-

¥

ìïï - =ïï +-ïïíïï - =ïï +ïïî

ò

ò
      (2.6) 

is the mean of 1/ 1
is

x+  given that 1/
i is sg x=  belongs to the quantization 

interval associated with iq , 
2

2
s s

s
v

P s
g

s
  is the average S-R link SNR, and 0it >  is 

the quantization threshold determined according to equation (66) in [10, p-4780]5. The  

 

4. For a finite L, the number of relays, an analytic SNR formula is difficult to find [10]. The expression (2.5) was 

obtained in [10] based on asymptotic analyses in the regime L  ¥ . 

5. The formula (2.6) can be directly obtained based on (33) and (34) in [10] together with the one-bit quantization 

assumption. 
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optimal ig ’s, which maximize ( , , )dqg rg h q  in (2.5) subject to the total power 

constraint 

                              
2

1

L

i d
i

g P
=

=å ,                         (2.7) 

are shown to be [10] 

             
1

,

2

( )

1 ( )
i

r i i
i

r i

h q
g

q

f

x f

-

µ
+ -

, where 
2

2

,

1/
i i

w
r r

d r iP h

s
x g = .         (2.8) 
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Chapter 3 
 

Beamforming Design in the Presence of Imperfect 

Quantized S-R Link SNR 
 

 

We consider the problem of cooperative beamforming design under the assumption 

that the transmitted one-bit message iq  from each relay is subject to communication 

channel impairments and R-D channel estimation remains perfect. More specifically, it 

is assumed that iq  is sent over a BSC with a crossover probability ip , 1 i L£ £ . 

From the perspective of SNR maximization, we propose a new beamforming design 

method which takes account of the imperfect reception of 1{ , , }Lq q . 

Section 3.1 derives the conditional average SNR, which is the proposed design metric 

for the beamforming factors. Section 3.2 then derives a lower bound of the considered 

SNR metric. An analytic suboptimal beamforming scheme is also obtained via the 

maximization of the lower bound. Computer simulations are given in Section 3.3 to 

illustrate the performance of the proposed solution. 

 

3.1. Conditional Average SNR 

 

Let {0,1}iq Î  be the received quantized message associated with iq , 1 i L£ £ . 

Conditioned on the ˆ =q 1̂[q  ˆ ]TLq , the main purpose is to derive the conditional SNR 

averaged with respect to all possible transmitted 
1[ ]TLq q=q   ’s that are flipped to q  

by the BSC. Recall that, the SNR conditioned on 1[ ]TLq q= =q q   is given by 

( , , )dqg rg h q  in (2.5). Hence, the expected ( , , )dqg rg h q  given q̂  is thus 

        | ˆ( , , ) ( , , ) | ( , , ) Pr( | )dq dq dqEg g gé ù = ´ë û år q q r r
q

g h q g h q q g h q q q


    ,    (3.1) 

where Pr( )q q  denotes the probability that q  is flipped into q̂ . The conditional 
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average SNR (3.1) is obtained by averaging over all possible transmitted q ’s given the 

received q̂ . To fix the idea, let us define6 

                 
1

ˆ( )
L

l i i
i

S q q l
=

ì üï ïï ïÅ =í ýï ïï ïî þ
åq q   , 0 l L£ £ ,                 (3.2) 

which denotes the set consisting of all possible q ’s that differ from q  in exactly l bits; 

there are thus 
!

!( )!
L
l

L
C

l L l
=

-
 possible q ’s in ˆ( )lS q . Associated with each 

ˆ( )lSÎq q , we further collect all indices at which iq  differs from îq  to obtain 

                          { }ˆ( , )l i iI i q q¹q q  .                      (3.3) 

With (3.2) and (3.3), the conditional average SNR is given as 

                 
0 ( )

( , , ) Pr( ) ( , , )
l

L

dq dq
l S

g g
= Î

= å år r
q q

g h q q q g h q


   ,             (3.4) 

where 

                   
( , ) ( , )

Pr( ) (1 )
c

l l

k m
k I m I

p p
Î Î

æ öæ ö÷ ÷ç ç÷ ÷ç ç= -÷ ÷ç ç÷ ÷÷ ÷ç çè øè ø
 
q q q q

q q
  

 ,             (3.5) 

and ( , )c
lI q q  denotes the complement of ( , )lI q q . Through further manipulations an 

explicit formula of ( , , )dqg rg h q  is shown in the following theorem. 

Theorem 3.1: The conditional average SNR (3.4) admits the following form 

 

    
1 2 1 1 2 1

2

1
1

20 1 1 1 1
1

1

( , , , )

( , , )
( , , , )l l l l

L

i l iL L L L L
i

dq L
l k k k k k k k

i i l
i

c l k k g

g d l k k
g

- - -

=

= = = + = + = +

=

ì üï ïï ïï ïï ïï ïï ïí ýï ïï ïï ïï ïï ïï ïî þ

å
å å å å å

å
rg h q


  


,   (3.6) 

where 

                

1

1 ,
1 1

( , , , ) (1 ) ( )
j j

l l

i l k k r i i
j j

c l k k p p hh f r
-

= =

æ ö÷ç ÷-ç ÷ç ÷çè ø
   ,         (3.7) 

in which 
1

(1 )
L

l
l

ph
=

-  and ( )f ⋅  is defined in (2.6), 

                    
2

2 2
1 ,( , , , ) 1 ( ) w

i l r i i
d

d l k k h
P

s
f ré ù- +ê úë û

  ,              (3.8) 

6. The notation Å  denotes the binary addition operation. 
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and 

                     
1 2= 1  , , , ,

            , otherwise.

t
li i

i
i

q q i k k k

q
r

ìï Å =ïïíïïïî

  



                 (3.9) 

[Proof]: See Appendix.                                                 □ 

 

  To maximize the conditional average SNR ( , , )dqg rg h q  given in (3.6) with respect 

to the beamforming weights ig ’s, we shall first rewrite ( , , )dqg rg h q  in a more 

tractable form. Through further rearranging the indices in the multiple summations in 

(3.6), ( , , )dqg rg h q  can be expressed as a single sum of Rayleigh quotients. This is 

established in the next theorem. 

Theorem 3.2: Let ( , , )dqg rg h q  be defined in (3.6). Then we have 

                       

2

1

( , , )
HM
m

dq H
m m

g
=

= år

c g
g h q

g D g
 ,                    (3.10) 

in which 
0

L
L
l

l

M C
=

= å , and, for each7 1 m M£ £ , 

                    
1 1 1[ ( , , , ), , ( , , , )]H

m l L lc l k k c l k kc     ,             (3.11) 

                  { }1 1 1( , , , ), , ( , , , )m l L ldiag d l k k d l k kD     ,          (3.12) 

for certain 1, , , ll k k . Given a particular set of indices 1, , , ll k k  in the multiple 

summations in (3.6), the corresponding index m in (3.10) is determined according to 

               
0

0 1

11 1

1
0 1 1

( ) ( )
kl l

L sL
s l l l

s s k

m l C C k k
l

l

l l
l

l
d

-

-- -
-

- -
= = = +

= + + + -å å å ,      (3.13) 

where 0 0k =  and ( )d ⋅  denotes the Kronecker delta function. 

[Proof]: See Appendix.                                                 □ 

 

Based on (3.10), the beamforming weights can be obtained by solving the following 

optimization problem 

 

7. The dependence of the index m in (3.10) on 1, , , ll k k  is omitted to simplify notation. 
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2

2
2

1

Maximize       s.t. 
HM
m

dH
m m

P
=

=å
c g

g
g D g

.                   (3.14) 

where dP  denotes the total transmit power. However, since the cost function in (3.14) 

is a highly nonlinear function of g, a closed-form solution to (3.14) is hard to find. In 

the next subsection we propose an alternate approach to finding suboptimal 

beamforming weights. 

 

3.2 Closed-Form Suboptimal Solution 

 

  To facilitate analysis, we go on to derive in the following theorem a tractable lower 

bound for ( , , )dqg rg h q . By conducting maximization with respect to this lower bound, 

we can then obtain a closed-form suboptimal solution. 

Theorem 3.3: Let mc  and mD  be defined in (3.11) and (3.12). The following 

inequality holds: 

 

                        

2

1

H H HM
m

H H
m m=

³å
c g g cc g

g D g g Dg
,                      (3.15) 

where 
1

M

m
m=
åc c  and 

1

M

m
m=
åD D . 

[Proof]: See Appendix.                                                 □ 

 

With the aid of (3.15), a suboptimal beamformer can be obtained based on 

maximization of the lower bound derived in (3.15): 

                    2
2Maximize       s.t. 

H H

dH P=
g cc g

g
g Dg

.             (3.16) 

The solution to (3.16), denoted by g ,, is precisely the dominant eigenvector of 

1 H-D cc . Since the matrix 1 H-D cc  is of rank-one, we have 

                               1
1c

-=g D c ,                        (3.17) 

where 1c  is chosen so that 2
2 dP=g . 

 

Remark: 
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  Though we study the low-overhead scheme in which each R-D link SNR is quantized 

into a one-bit message, we have tried to extend our first study to the case when multiple 

bits are used for quantization. Explicit analysis and simulation results are given in 

Appendix J. 

 

3.3 Simulation Results 

 

In this section computer simulations are used to illustrate the performance of the 

proposed method. We consider a cooperative beamforming system with four relays 

( 4L = ). The channel gains of both the S-R and R-D links are i.i.d. random variables 

drawn from (0,1) ; the crossover probability ip  of the BSC obeys the uniform 

distribution over the interval [0.05, 0.1] . The quantization threshold is designed 

according to the rule in [10, p-4779]. The total power of transmit beamforming is set to 

be 1dP = . In each Monte-Carlo run, a sequence of 5000T =  BPSK source symbols 

is generated. For fixed average S-R SNR 20sg =  dB, Figure 2 compares the BER 

curves of the proposed beamformer (3.17) with the solution in [10] at various average 

R-D link SNR, defined to be 2 2 2/d d r w wPg s s s-=  [8]. As can be seen from the 

figure, the proposed scheme outperforms the method in [10], especially when SNR is 

high; this is not unexpected since the solution in [10] is designed under the idealized 

assumption that the one-bit message is received at the destination without errors. Also, it 

is seen from the figure that the performance improvement is slight when SNR is below 

10 dB. This phenomenon is caused by the fact that, for the considered cooperative 

beamforming scheme, S-R-link CSI mismatch is not a dominant factor for the BER 

performance in the low-to-medium SNR regime; this fact has been confirmed by the 

simulation results provided in [10, p-4780]. With fixed 20sg =  dB and assuming that 

the crossover probabilities ip ’s of the BSC are identical for all i (thus 

,  1 4ip p i= £ £ ), Figure 3 further shows the BER of the two methods for 

0 0.2p£ £  with respect to three different average R-D link SNR 5,  10,dg =  and 

15 dB. It can be seen that, when 0p =  (i.e., the one-bit message is perfectly received), 

the proposed scheme and the method in [10] yields an identical performance. The result 
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is not unexpected since, with 0p = , the considered objective function (3.10) reduces 

to the single term (2.5) ( 1M = ), and, hence, equality holds in (3.15): this then implies 

that the proposed solution (3.17) is exactly the beamformer given by (2.8). For 0p > , 

our solution is seen to be quite robust against the increase of p , thereby confirming the 

advantage of the proposed design. 
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Figure 2. Simulated BER of the proposed beamformer (3.17) and the solution  

in [10]. 
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      Figure 3. BER results of two methods with respect to different crossover 

probabilities. 
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Chapter 4 
 

Beamforming Design Under Imperfect Quantized 

S-R Link SNR and R-D Link Channel Estimation 

Errors 
 

 

Based on the result in Chapter 3, we generalize the bemaforming design by further 

taking the effect of imperfect R-D channel estimation into consideration. Rather than 

assuming that knowledge of exact CSI of all R-D links is available, we focus on the 

practical scenario that the destination only knows the estimated channel coefficients, 

given by 

                         
, ,

ˆ ,  1r i r i ih h i Le= - £ £ ,                   (4.1) 

where ,r ih  is the true channel gain of the ith R-D link and 2(0, )i ee s   is the 

channel estimation error. Given the received one-bit message ˆ =q 1̂[q  ˆ ]TLq  and the 

channel estimates ,1 ,
T

r r Lh hé ù= ê úë ûrh   , our task is to first derive an analytic expression 

for the receive SNR averaged over the distributions of the bit-flipping effect and R-D 

channel estimation error. Then, with the derived conditional SNR as the design criterion, 

we propose a method for designing the beamforming weights ig 's. 

In Section 4.1 the exact expression for the considered conditional average SNR is 

derived, hereafter denoted by ( , , )rg g h q  . In Section 4.2, an approximate conditional 

average SNR formula is derived for intractability of ( , , )rg g h q   on beamforming 

design. Based on the approximate SNR formula, Section 4.3 derives a lower bound for 

( , , )rg g h q  . By conducting maximization with respect to this lower bound, a 

closed-form suboptimal beamforming scheme is then obtained. Section 4.4 shows the 
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simulation results, which illustrates the performance of the proposed method. 

 

4.1. Exact Formula for the Conditional Average SNR 

 

By definition, ( , , )rg g h q   is precisely the average of ( , , )dq rg g h q  defined in (3.10) 

over the distribution of the estimation errors of the R-D channels, that is, 

      

2 2

, , , , , ,
1 1

( , , ) ( , , ) = ,
H HM M
m m

r rdq H H
m mm m

E E Eg g
= =

é ù é ù
ê ú ê úé ù= = ê ú ê úê úë û ê ú ê ú
ê ú ê úë û ë û
å å

r r re g h q e g h q e g h q

c g c g
g h q g h q

g D g g D g    
    

(4.2) 

where 
1[ , , ]TLe ee    is the channel estimation error vector. To proceed, we shall first 

rewrite each summand in (4.2) in the form of the expectation of a ratio of two quadratic 

forms in the error vector e . Starting from (4.2) together with further manipulations, we 

have (see Appendix D for the detailed derivations) 

( )

2

, ,
1

222 2
,

1

2Re
( , , ) ,

2
Re( )

( ) ( )

1
1 ( )

( )

r

HH H H H
r rM m m m m m

r H
Hm m
m

L

r iw i i
i

E

p m p m

g m h
p m

g

h h

s f r
h

=

=

é ù
ê ú
ê ú
ê ú
ê ú
ê úé ùê ú+ +ê úê úë û= ê ú
ê ú+ê ú
ê ú
ê úé ùê úé ùê ú+ + -ê úê úë ûê úê úë ûë û

å

å

e g h q

e b b e h b b e b h
g h q

e Z e
f e

 

 
 


     

(4.3)

 

where 

                       

1

1 1

( ) (1 )
j j

l l

k k
j j

p m p p

-

= =

æ ö÷ç ÷-ç ÷ç ÷÷çè ø
  ,                  (4.4) 

        ( ) ( )1 1( ) ( )H
m L Lm g m gf r f ré ùë ûb   ,          (4.5) 

      ( )( ) ( )( )2 22 2
1 11 ( ) 1 ( )m L Ldiag g m g mf r f ré ù= - -ê úë ûZ  ,        (4.6) 

and 
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     ( )( ) ( )( )* *2 22 2
,1 ,1 11 ( ) 1 ( )

T

r r Lm L Lg m h g m hf r f ré ù= - -ê úë û
f   .     (4.7) 

Now, each summand in (4.3) is the expectation of a Rayleigh ratio of the 

complex-valued Gaussian random vector e. To facilitate analysis, let us consider the 

augmented real-valued random vector associated with e, namely, 

                             
Re( )

Im( )

é ù
ê ú= ê ú
ê úë û

e
x

e
,                           (4.8) 

where Re( )e  and Im( )e  denote, respectively, the real and imaginary parts of e. With 

the aid of (4.8), we go on to rewrite each summand in (4.3) in terms of the real-valued 

Gaussian random vector x. The result, as shown in the next proposition, will allow us to 

derive an analytic formula for ( , , )rg g h q  . 

Proposition 4.1: Let ( , , )rg g h q   be defined in (4.3). Then it follows that 

               1, 1, 1,

, ,
1 2, 2, 2,

( , , )
r

T TM
m m m

r T T
m m m m

d
E

d
g

=

é ù+ +ê ú= ê ú+ +ê úë û
å x g h q

x A x a x
g h q

x A x a x 
  ,         (4.9) 

where x is defined in (4.8),  

     1,

Re( ) Im( )

Im( ) Re( )

H H
m m m m

m H H
m m m m

é ù-ê ú
ê ú
ê ú
ë û

b b b b
A

b b b b
 ,                 (4.10) 

         

**

1, **

Re 2

Im 2

T
rm m

m
T
rm m

é ùé ù
ê úê úë ûê ú
ê úé ùê ú- ê úê úë ûë û

b b h
a

b b h





,                     (4.11) 

with b defined in (4.5), 

     2,

Re        0
( )

      0      Re
( )

m

m

m

p m

p m

h

h

é ùæ ö÷çê ú÷ç ÷ê úç ÷çè øê ú
ê úæ öê ú÷ç ÷ê ç ú÷ç ÷çê úè øë û

Z

A
Z

 ,                  (4.12) 

         

*

2, *

Re( )2

( ) Im( )

m

m

m
p mh

é ù
ê ú
ê ú
ê ú-ë û

f
a

f
 ,          (4.13) 

                            
2

1,
H
rm md = b h ,                         (4.14) 
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and 

                 
( )

222 2
,

1
2,

1 ( )

( )

L

r iw i i
i

m

g m h
d

p m

s f r

h
=

é ù+ -ê úë û
=

å 

.              (4.15) 

[Proof]: See Appendix.                                                 □ 

 

Since 2(0, )i ee s  , it follows immediately that 2
2( , )e Lsx 0 I  , namely, the real 

2L -dimensional Gaussian random vector with zero mean and variance 2
es . To find a 

closed-form expression for ( , , )rg g h q   based on (4.9), we need the following lemma. 

Lemma 4.2: For 2
2( , )e Lsx 0 I   we have 

       
2

1, 1, 1,
1 2 1 22, , 0 0

2, 2, 2, 1

( , )
r

T T
m m m

T T
m m m

d
E f z z dz dz

d z

¥ ¥é ù+ + ¶ê ú = - -ê ú+ + ¶ê úë û
ò òx g h q

x A x a x

x A x a x  ,   (4.16) 

where 

           { }1/2 1
1 2 1 1, 2 2,( , ) exp /2T

m m m m m mf z z z d z d
- -- - - - +R r R r ,    (4.17) 

in which 

                     ( )2
2 1 1, 2 2,2m L e m mz zs+ +R I A A ,               (4.18) 

and 

                  ( )1 1, 2 2,m e m mz zs +r a a .                    (4.19) 

[Proof]: The result follows directly from Theorem 3.2c.3 in [29].                □ 

 

Based on Lemma 4.2, an analytic formula for the conditional average SNR ( , , )rg g h q   

is derived in the following theorem. 

Theorem 4.3: Let ( , , )rg g h q   be defined in (4.9). It follows that 

   

{ }1/21
1 1, 2 2, 1 1 2 1 2

1 0 0

( , , ) exp( /2) ( , )
M

T
r m m m m m m

m

z d z d f z z dz dzg
¥ ¥

--

=
= - - +å ò òg h q r R r R  ,    

(4.20) 
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where 
2 2 1

1 1 2 2 1 2 1, 1,

1 1 1 1
1, 1, 1, 1,3

1 1 1
1, 1,

( , ) ( , )

( ) 2
            2 ,

2

T
e m m m

T
e m m m m m m m m m

e T
e m m m m m m m

f z z f z z

tr

s

s
s

s

-

- - - -

- - -

+

é ù- +ê ú- ê ú
ê ú-ë û

a R a

A R A R a R A R r

r R A R A R r



   (4.21) 

and  

      1 2 1 1 1
2 1 2 1, 1, 1, 1,( , ) ( )T T

m e m m m e m m m m m m mf z z d trs s- - - -é ù- + +ê úë ûa R r R A r R A R r , (4.22) 

with mR  and mr  defined in (4.18) and (4.19). 

[Proof]: See Appendix.                                                  □ 

 

To the best of our knowledge, the double-integral in (4.20) does not admit further 

closed-form expressions. In the simulation section, it will be verified that the derived 

integral formula (4.20) is in close agreement with the corresponding simulation 

outcome. It can be seen that ( , , )rg g h q   in the form (4.20) is a very complicated 

function of the beamforming coefficients ig 's, and direct maximization of ( , , )rg g h q   

based on (4.20) is thus intractable. In the following section, we propose a method that 

can facilitate an analytic design of ig 's. 

 

4.2 Approximation for ( , , )rg g h q   

 

  As noted before, the double integral form of ( , , )rg g h q   in (4.20) makes the 

beamforming design problem formidable to tackle. To resolve this difficulty, we then 

turn to the expression of ( , , )rg g h q   given in (4.9), which is a sum of the expected 

value of the ratio of quadratic functions in the random vector x. To ease subsequent 

analysis, we propose to adopt the commonly used approximation technique (see, e.g., 

[30]); more specifically, each summand in (4.9) is approximated as the ratio of the 

respective means of the numerator and denominator: 
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1, 1, 1,, ,1, 1, 1,

, ,
2, 2, 2, 2, 2, 2,, ,

r

r

r

T T
T T m m m

m m m
T T T T

m m m m m m

E dd
E

d E d

é ù+ +é ù ê ú+ + ë ûê ú »ê ú é ù+ + + +ê ú ê úë û ë û

x g h q

x g h q
x g h q

x A x a xx A x a x

x A x a x x A x a x

 
 

 

.   (4.23) 

Through further rearrangement, the approximation in (4.23) admits a simple form as 

shown in the next lemma. 

Lemma 4.4: Let 2
2( , )e Lsx 0 I  . Then we have 

 

            
21, 1, 1,, , 1, 1,
2

2, 2,2, 2, 2,, ,

( )

( )

r

r

T T
m m m

e m m
T T

e m mm m m

E d Tr d

Tr dE d

s

s

é ù+ +ê ú +ë û
=

é ù ++ +ê úë û

x g h q

x g h q

x A x a x A

Ax A x a x

 

 

,       (4.24) 

where ()Tr ⋅   denotes the trace operator; 1,mA , 2,mA , 1,md , and 2,md , are defined in, 

respectively, (4.10), (4.12), (4.14), and (4.15). 

[Proof]: See Appendix.                                                 □ 

 

Based on (4.23) and (4.24), it directly follows that 

                   
2

1, 1,
2

1 2, 2,

( )
( , , )

( )

M
e m m

r

m e m m

Tr d

Tr d

s
g

s=

+
»

+
å

A
g h q

A
  .                (4.25) 

By invoking the definitions of 1,mA , 2,mA , 1,md , and 2,md , each summand in (4.25) 

can be further rearranged into a ratio of two standard quadratic forms in terms of the 

beamforming weights ig ’s; hence, the expression for ( , , )rg g h q   can be further 

simplified. This is done in the next lemma. 

Lemma 4.5: The approximation of ( , , )rg g h q   in (4.25) can be expressed as 

       
1

( , , )
HM

m
r H

m m

g
=

» å
g W g

g h q
g Y g

  ,              (4.26) 

where  

    ( ) ( )( )2 2 2
12 ( ) ( ) , , ( )H

m m m e Lp m diag m ms h f r f r+W u u  ,       (4.27) 

in which 

                ( ) ( ),1 ,1( ) ( ) ( )H
r r L Lp m h m h mh f r f ré ù

ê úë ûu    ,            (4.28) 

and 
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 
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
.          (4.29) 

[Proof]: See Appendix.                                                 □ 

 

4.3 Design of Beamforming Weights 

 

  With the aid of (4.26), the problem of beamforming design for SNR enhancement can 

be formulated as  

      
2

2
1

Maximize       s.t. 
HM

m
dH

m m

P
=

=å
g W g

g
g Y g

.            (4.30) 

where dP  is the total available power budget. The optimization problem (4.30), 

unfortunately, is not convex and the optimal solution is difficult to find. Toward 

analytical tractability and complexity reduction, the following theorem further derives a 

lower bound for the objective function in (4. 30). As will be shown later, by conducting 

maximization of the derived lower bound, an analytic suboptimal solution can then be 

obtained. 

Theorem 4.6: Let mW  and mY  be defined in (4.27) and (4.29). Then the following 

inequality holds: 

                         
1

H HM
m

H H
m m=

³å
g W g g Wg

g Y g g Yg
,                     (4.31) 

where 
1

M

mm== åW W  and 
1

M

mm== åY Y . 

[Proof]: See Appendix.                                                 □ 

 

With the aid of Theorem 4.6, we propose to obtain a suboptimal beamformer based on 

maximization of the lower bound derived in (4.31): 

                    
2

2
Maximize       s.t. 

H

dH
P=

g Wg
g

g Yg
.              (4.32) 
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The solution to (4.32) is precisely the dominant eigenvector of 1-Y W  [26], 

normalized so that the two-norm equal to dP .  

 

4.4 Simulation Results 

 

This section uses numerical simulations to illustrate the effectiveness of the proposed 

scheme. In the cooperative beamforming system, the channel gains of all S-R and R-D 

links are i.i.d random variables generated from (0,1) . The crossover probability ip  

of each BSC is drawn from (0.05, 0.1)U , the uniform random variable distributed over 

the interval [ ]0.05,0.1 . The quantization threshold is set according to the rule in [10, 

p-4779]. The total available power of transmit beamforming is 1dP = . In each 

Monte-Carlo run, a sequence of 5000T =  BPSK source symbols is generated. 

 

A. Validation of the Derived Conditional Average SNR (4.20) 

 

  To validate the formula of the derived conditional average SNR ( , , )rg g h q   in (4.20), 

we consider a network of 4L =  relays, and the proposed suboptimal beamforming 

scheme (4.32) is employed at each relay. With R-D link channel estimation error 

variance 2 0.01es = ,  Figure 4 compares the values of ( , , )rg g h q   obtained based on 

the integral form (4.20) and corresponding simulated outcome at different average R-D 

receive SNR, defined to be 2 2 2/d d r w wPg s s s-=  [8]. Also, with R-D receive SNR 

fixed to be 15dg =  dB, Figure 5 compares the theoretical and simulated values of 

( , , )rg g h q   at different channel estimation error variance 2
es . In both figures, the 

simulated results are obtained by averaging over 100 realizations of the R-D link 

channel estimates. The figures show that the theoretical solutions computed based on 

(4.20) are indeed very close to the experimental results. 

 

B. BER Performances 
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  For fixed average S-R SNR 13sg =  dB, Figure 6 compares the BER curves of the 

proposed beamforming scheme (4.32) with the solutions in (3.17) and [10] at various 

average R-D SNR. The number of relays is 6L = , and the R-D channel estimation 

error of each link is drawn according to (0,0.05)ie   . As can be seen from the 

figure, the proposed scheme outperforms the method in [10]; the result is not 

unexpected since the solution in [10] is designed under the idealized assumption that the 

one-bit message is received at the destination without errors and that the CSI of the R-D 

links is perfect. Also, compared with the solution in (3.17), the proposed beamformer 

(4.32) yields improved performance since the effect of R-D channel estimation error is 

taken account of in the design. With fixed 13sg =  dB, and 20dg =  dB, Figure 7 

further illustrates the BER of the three methods when the variance 2
es  of R-D channel 

estimation error varies from 0 to 1, i.e. 20 1es£ £  (the number of relay is 6L = ). 

The figure shows that, compared with the solutions in (3.17) and [10], the proposed 

scheme is indeed more robust against the increase in the channel estimation error 

variance. It is somewhat unexpected to see that the beamformer in (3.17), which takes 

into account only the effect of the one-bit S-R-link SNR transmission error, performs 

worse than [10] when 2 0.08es ³ . A plausible rationale behind this phenomenon is that, 

while the beamformer in [10] admits a simple closed-form expression (see (37) in [10]), 

the computation of the solution in (3.17) calls for solving a generalized eigenvalue 

problem. The involved eigen-decomposition increases the algorithmic complexity, and 

renders the resultant solution more vulnerable to system parameter mismatch. The 

proposed beamforming scheme, which further takes account of the effect of R-D link 

channel estimation errors, does improve the robustness against model uncertainty.  
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Figure 4. Values of the conditional average SNR ( ), ,rg g h q   obtained via the 

integral solution (4.20) and simulations for different R-D SNR 

(channel estimation error variance is set to be 0.01). 
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Figure 5. Values of the conditional average SNR ( ), ,rg g h q   obtained via 

the integral solution (4.20) and simulations for different channel 

estimation error variance (R-D SNR is set to be 15 dB). 
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    Figure 6. BER performance of the proposed beamformer (4.32) and the two 

solution in [10] and (3.17) for different R-D SNR. 
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    Figure 7. BER performance of the proposed beamformer (4.32) and the two  

               solutions in [10] and (3.17) for different channel estimation error 

variance. 
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Conclusion 
 
 
  Low-overhead cooperative beamforming design under mismatched inter-node CSI 

has been an important research problem in the study of relay-based wireless 

communications. In this these we investigate this problem by further taking into account 

the effects of imperfect transmission of quantized S-R link SNR and R-D link channel 

estimation errors. As in previous study, the transmission link of the one-bit S-R link 

SNR is modeled as a BSC with a non-zero crossover probability. In the first part of this 

thesis, we assume R-D link channel estimation is perfect. Given a set of received 

quantized SNR message, we derive the closed-form formula of the expected conditional 

SNR, averaged over the bit-flipping distributions of BSCs. While beamforming design 

via direct maximization of this SNR metric is formidable, we further derive an tractable 

SNR lower bound. By conducting maximization of this lower bound, a suboptimal 

beamformer can be obtained as the solution to a generalized eigenvalue problem. In the 

second part of this thesis, the assumption of perfect R-D channel estimation is relaxed, 

and the channel estimation errors are modeled as i.i.d. Gaussian random variables. 

Given the received quantized S-R link SNR and a set of R-D link channel estimates, we 

further derive the exact formula of the expected conditional SNR averaged over both the 

distributions of the bit-flipping effect and R-D link channel estimation errors. Since the 

SNR metric thus obtained is difficult to analyze, we resort to certain approximation 

techniques to derive a tractable SNR lower bound. Still, through maximization of this 

lower bound a suboptimal beamformer can be obtained by solving a generalized 

eigenvalue problem. Computer simulations evidences the performance advantages of 

the proposed schemes.     
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Appendix A 
 
Proof of Theorem 3.1 

 

 
To derive (3.6), we shall find an explicit expression for 
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Î
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q q

q q g h q
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  , 0, ,l L=  . The term 0b  represents the case with 

=q q . It then follows immediately that 
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where (a) follows from (2.5) and (3.5). The term 1b  represents the event that the true 

q  differs from q  in one bit. Given q , there are totally 1 1( ) LS C L= =q  possible 

candidate q ’s. Therefore, 1b  can be accordingly expressed as 
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                                                                  (A.2) 

where (b) follows after some straightforward manipulations. The term 2b  stands for 

the event that q  differs from the true q  in two bits. Given q , there are totally 
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2 2( ) ( 1)/2LS C L L= = -q  possible candidate q ’s in this case. By repeating the 

above arguments, it can be directly verified that 
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(A.3) 

Based on the same idea and procedures, it can be readily shown that, for 1, ,l L=  , 
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Equation (3.6) follows since 
0

( , , )
L

dq l
l

g b
=

= årg h q .                           □ 
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Appendix B 
 
Proof of Theorem 3.2 

 

 
  All we have to do is to rewrite the multiple summations in (3.6) as a single 

summation in the form of (3.10), and then to provide an explicit relation between m in 

(3.10) and the multiple indices 1, , , ll k k  involved in (3.6). For ease of discussion, 

recall that 
0

( , , )
L

dq l
l

g b
=

= årg h q , where 0b  is defined in (A.1) and lb  for 0l ¹  is 

given by (A.4). Note that, for each 0 l L£ £ , there are totally L
lC  terms in lb . The 

main procedures for deriving (3.10) can be summarized as follows: (1) exhaustively list 

all the 0 1
L L L

LC C C+ + +  terms in (3.6) in the increasing order of l; (2) particularly, 

in lb  ( 1l ³ ), the L
lC  terms in the l-fold multiple summations are listed in the 

following way: starting from 1 1k = , exhaustively list all involved terms indexed by 

this 1k  in the remaining summations, and then proceed to 1 2k = , and so forth. Based 

on such procedures, for given 1, , , ll k k , the corresponding m given in (3.13) can then 

be obtained by induction and some straightforward manipulations. 

  The first term in (3.10) (indexed by 1m = ) is simply 0b , thus 
2

2

1 1

21

1
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( 0)
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H i i
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H L

i i
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c l g

g d l

=

=

=
=

=

å

å

c g

g D g
. Now consider 0l ¹ , and our purpose is to determine for 

the particular indices ( 1, , , ll k k ) the corresponding m. For this we first note that the 

total number of terms contained in 0 1, , lb b -  is 
1

0

l
L
i

i

C
-

=
å . For the particular l, let us 

likewise exhaustively list all the terms in lb  and collect them into a set l . Assume 

that the considered term indexed by ( 1, , , ll k k ) is exactly the K -th element in l . 
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Then it follows immediately that 
1
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L
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=
= +å . Hence it suffices to determine K. 

Towards this end, we recall that, for a fixed l, thus totally l flipped bits, the indices 

1 2 lk k k< < < , where { }1, , 1, ,lk k LÎ  , denote the locations at which bit errors 

occur. Consequently, it is noted that the first 1
1
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lC
-
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1 1k = , the next 2
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listed before the terms indexed by a given set of 0 1 10, , , lk k k -=   in l . Hence, for 

the considered 1, , , ll k k , the associated K can be computed as 

 

8. Since 
1

1k =  and the relation 
1 2 l
k k k< < <  must hold, the plausible values of 

i
k , 2 i l£ £ , take 

only 1L -  levels, namely, {2, 3, , }L . Hence, there are totally 
1

1

L

l
C

-

-
 possible error patterns (equal to the 

total number of combinations of 1l -  out of 1L -  levels). 
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With (A.5), the desired index m is thus 
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The assertion follows from (A.6).                                         □ 
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Appendix C 
 
Proof of Theorem 3.3 

 

 
By the Cauchy-Schwartz inequality, we have 
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Then, 
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which proves (3.15).                                                    □ 
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Appendix D 
 
Derivations of Equation (4.3) 

 
 

  Since ,1 ,1, ,
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Lemma 2.1, ( , , )rg g h q   in (3.1) can be further expressed as 
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where ( )p m , ( )i mr  are defined, respectively, in (4.4) and (3.9). Through 

straightforward rearrangement (A.9) can be expressed as 
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(A.10) 

where (c) holds by using (4.5), (4.6), and (4.7) together with some manipulations.   □ 
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Appendix E 
 
Proof of Proposition 4.1 
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                    (A.11) 

where (d) holds since ( )Im H
m mb b  is anti-symmetric, thus ( )Re( ) Im Re( )T H

m me b b e = 
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m m =e b b e . Moreover, with 1,

T
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By setting 
2

1,
H
rm md = b h , the assertion then follows by definition of mb  and rh . 
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                                                                 (A.13) 

where (e) holds since 
( )
m

p mh
Z

 is a real-valued matrix. By following similar procedures 

as in the derivation of (A.12), the term 
2
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H
mp mh
f e  can be rewritten as 

       ( ) ( ) 2,

Re( )2 2
Re( ) Re  Im

Im( )( ) ( )
H H H T
m m m mp m p mh h

é ù
ê úé ù= - =ê úê úë û ê úë û

e
f e f f a x

e
,      (A.14) 

where 2,
T
ma  is defined in (4.13). By setting 
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the assertion then follows.                                               □           
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Appendix F 
 
Proof of Theorem 4.3 

 

 

  Recall that each summand of ( , , )rg g h q   is expressed in (4.16). To prove the 

theorem, we first rewrite 1 2
1
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Note that in (A.15),  

        

( ) ( )

(f)1/2 3/2 3/2 1

1 1 1

1/2 1/21 2 2 1
1, 1,

1 1
=

2 2

1
                 = 2 = ,

2

m m m m m m m

m m e m e m m m

tr
z z z

tr trs s

- - - -

- -- -

é ù¶ ¶ ¶é ù é ù ê ú= - -ê ú ë û ê úë û¶ ¶ ¶ë û
é ù- -ê úë û

R R R R R R R

R R A R R A

 (A.16) 

where (f) follows from [32] and 
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where (g) holds for the equality 
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and some straightforward manipulation. With (A.16) and (A.17), (A.15) then admits the 

form 
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where 2 1 2( , )f z z  is defined as in (4.22). Then, the second derivative of 1 2( , )f z z  with 

respect to 1z  can be obtained as 
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where (h) holds based on equalities in (A.16) and (A.17), together with some basic 

manipulation. Hence, it suffices to derive 2 1 2
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Based on (A.20) and (A.21), we have 
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(A.22) 

Equation (4.20) follows from (A.22).                                       □ 
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Appendix G 
 
Proof of Lemma 4.4 

 

 

Since 2
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(A.23) 

where (i) holds due to [33, p-414]. Similarly, we have 
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The result follows from (A. 23) and (A.24).                                 □ 
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Appendix H 
 
Proof of Lemma 4.5 
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With H
mu  defined in (4.28), (A.25) can be rewritten as 
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                                                                 (A.26) 

By invoking the definitions of mW  and mY  in (4.27) and (4.29), equation (4.26) 

follows immediately from (A.26).                                         □           
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Appendix I 
 
Proof of Theorem 4.6 

 

 
By Cauchy-Schwartz inequality, we obtain 
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Appendix J 
 
Extension of the First Study: Multi-bit SNR 

Quantization 

 

 
J.1 Analyses 

 

  Assume that B bits ( 1B ³ ) are used at each relay for SNR quantization. Assume 

also that, at the ith relay, the B bits are BPSK modulated, and are then transmitted over 

a BSC with crossover probability ip , 1 i L£ £ . Denote by ,i jq  the jth received bit 

from the ith relay, 1 i L£ £  and 1 j B£ £ . Let us collect all ,i jq 's into a matrix to 

form 
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in which the ith row consists of the received B-bit message of ith S-R link SNR. For a 

given Q , let us collect all 
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In addition, associated with each  ( )lSÎQ Q  we define 

                             { }, ,( , ) ( , )l i j i jI i j q q= ¹Q Q  ,              (A.31) 

which consists of the locations of all different entries between Q  and Q . Based on 

(A.30) and (A.31), the conditional average SNR ( , , )rdqg g h Q  in the multiple-bit case 

is obtained as 
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where  

         2 1Bt = - ,                         (A.34) 
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where ' ', ,
1t

i i i i
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-

= =
= £ £å å . Through further 

rearranging the indices in the multiple summations in (R.12), ( , , )dqg rg h Q  can be 

expressed as a single sum of Rayleigh quotients, which is shown as 
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and 
0

L
L i
i

i

M C t
=

= å , where t  is defined in (A.34). 

 

J.2 Simulation Results 

 

  For the two-bit case, i.e., 2B = , computer simulation is conducted to compare the 

BER performances of the proposed method and the solution in [10]. In the simulation 

setup, the number of relay nodes is 4L = , the average SNR of the S-R link is set to be 

20sg =  dB, and the crossover probability 
ip  of each BSC follows the uniform 

distribution over the interval [0.05,0.1] . The simulated BER with respect to different 

R-D link SNR is then plotted in Figure A.1, shown on the next page. It can be seen from 

the figure that, as expected, the proposed method outperforms the solution in [18].  
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Figure 8. BER results for two methods when 2-bit SNR quantization is adopted 

at each relay. 
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