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中文摘要 

為了使通道的使用更加有效率，我們會針對同一個錯誤更正碼依據不

同的通道狀況使用不同的碼率來傳送資料。為了使穿刺碼的錯誤更正

能力的損失降低，我們針對有限長度的低密度檢測碼提供一個建立穿

刺位元的方法。我們考慮了穿刺位元的恢復能力以及對其他位元造成

的影響來設計我們的演算法並以數學推導得知有哪些參數將對這些

產生作用。最後我們以模擬結果以及數據觀測與分析得知我們設計的

方向與方法能夠有效降低改錯能力的損失。 
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Design of Puncture Patterns for Rate-Compatible

LDPC Codes

Student : Yin-Cheng Liu Advisor : Y. T. Su

Institute of Communication Engineering

National Chiao Tung University

Abstract

In this thesis, we study puncturing schemes for finite-length rate-compatible low-

density parity-check codes. A new bit-by-bit puncturing pattern searching scheme is

proposed. The ultimate goal of the proposed method is to improve the recovery error

probability of the punctured bits. We also take into account the detrimental effects

on previous punctured and unpunctured bits brought about by the new selected punc-

tured. Given the bit locations which have been punctured, a new one is chosen from

the set of candidate bits by i) examining its recovery capability (which depends on the

number and reliabilities of its connected check node message) and ii) assessing the im-

pact a candidate bit may make. Numerical experimental results show that the proposed

scheme outperforms existing puncturing methods. The superiority and robustness of

our scheme are further verified by some observed statistics and are consistent with a

Gaussian approximation based analytic prediction.
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Chapter 1

Introduction

Coding schemes that adapt to the channel condition by adjusting the code rate can

improve the channel bandwidth efficiency while achieving the required bit error rate

(BER) performance. An efficient solution which need only a single codec to implement

various code rates requirements is the class of rate-compatible codes. This solution uses

a low-rate “mother” code and offers several higher rate codes through puncturing so that

only a subset of the original codewords is used to meet a higher rate need. Of course,

puncturing modifies the mother code’s structure and its distance spectrum and leads to

degraded error-rate performance due to the incomplete transmission of coded bits. To

minimize the performance loss, punctured bits need to be properly selected. Optimal

and near-optimal puncturing patterns for some popular convolutional codes have been

intensively studied through semi-analytic and computer-aided approaches.

The class of low-density parity-check (LDPC) codes, which was first introduced by

Gallager [8] in early 1960s and rediscovered by Mackay [9] [10] in 1990s, provide near-

capacity performance when the so-called belief propagation (BP) or sum-product al-

gorithm (SPA) [11] is used for decoding. It is only natural that one looks for LDPC

codes when considering adaptive coding applications. The asymptotic analysis and de-

sign of rate-compatible puncturing schemes for LDPC code ensemble has been studied

by several experts [1]-[3]. However, the optimization results may not be applicable in

non-asymptotic regime (finite length codes). Various puncturing algorithms for finite

1



length LDPC codes have been suggested in [4]-[6].

We investigate the effects of a punctured bit on the SPA decoding of an LDPC

code by examining the massage-passing flows in the associated code graph and derive

several guidelines for minimizing the detrimental puncturing effects. More specifically,

our puncturing algorithm is designed according to the following principles: 1) Increasing

the probability of correct recovery of the punctured nodes. 2) Protecting the nodes which

are affected by the punctured nodes. 3) Guaranteeing no stopping sets are contained

among punctured nodes.
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Chapter 2

Low-Density Parity-Check Codes

Over a BSC channel, the BER performance of low-density codes improves exponen-

tially with the block length by using the maximum likelihood (ML) decoding scheme.

Over an AWGN channel, the error probability is upper-bounded by an exponentially de-

creasing function of the block length [8]. An iterative decoding algorithm that achieves

near-capacity performance was developed in [8]. Gallager’s iterative decoding algorithm

is later recognized as a special instance of the class of so-called belief propagation (BP)

algorithms. BP refers to the process of message passing in a graph in which the messages

often correspond to some probabilistic or statistic values associated with the nodes of

the underlying graph.

2.1 Definitions

An (N,K) LDPC code with K information bits and (N −K) parity bits is a linear

block code for which the M × N parity check matrix H has a low density of ones [8]

where M is the number of check equations. Code rate R = K
N

is interpreted as the

average number of information bits carried by each code bits.

2.2 Tanner Graph

A Tanner graph [12] is a bipartite graph which is composed of variable nodes and

check nodes and edges which connect the two types of nodes. If the jth row and the ith

3



Figure 2.1: The parity check matrix and the corresponding Tanner graph.

column in H is 1, the check node cj is connected to variable node vi. A simple example

is shown in Fig. 2.1. The N variable nodes in Tanner graph correspond to N columns

of H; the M check nodes in Tanner graph correspond to M rows of H. The number of

ones in the ith column of H, deg(vi), is the degree of variable node vi; The number of

ones in the jth column of H, deg(cj), is the degree of check node cj. dv,max and dc,max

denote the maximum variable node and check node degree. The variable node and check

node degree-distribution polynomials from a ”node perspective” are λ(x) =
∑dv

i=2 λix
i

and ρ(x) =
∑dc

j=2 ρjx
j, where λi and ρj denote the fractions of the number of degree-

i variable and degree-j check nodes, respectively. Some commonly used notation are

defined as follows. N (j) is the set of the variable nodes (VNs) connected to the jth

check node (CN). M(i) is the set of the check nodes (CNs) connected to the ith variable

node (VN).

2.3 Message Passing

Message passing decoding is operated cooperatively and iteratively to decode a

received sequence. Intrinsic information and extrinsic information are introduced in

message passing principle. An example is shown in Figure 2.2. The message that an

4



Figure 2.2: Soldier counting example

arbitrary soldier X passes to arbitrary neighboring soldier Y is equal to the sum of

all incoming messages, plus one for soldier X, minus the message that soldier Y had

just sent to soldier X. The sum of the number that a soldier receives from any one

of his neighbors plus the number that the soldier passes to that neighbor is equal to

the total number of soldiers [16]. The message which is sent from X to Y won’t pass

back from Y to X in the same iteration. N (X) is the set of neighbors of X and IX

is the intrinsic information of X and the extrinsic information sent from X to Y is

IX→Y = IX +
∑

Z∈N (X)\Y IZ→X .

2.4 Sum product Algorithm

Assume c = [c0, c1.......cN−1] is the codeword defined by C = {c ∈ F n
2 : HcT = 0},

where F2 denotes the binary Galois field. After mapping, xi = 1−2ci (∀ i = 0 ∼ (N−1))

are transmitted. y = [y0, y1........yN−1] is the sequence of samples at the output of receiver

over the AWGN channel with mean 0 and variance σ2 = N0/2. The log-likelihood ratio

(LLR) of xi:

Li = L(xi|y) = log(
Pr(xi = 1|y)
Pr(xi = −1|y)) = 2yi/σ

2 (2.1)

Li→j denotes the message passsed from ith VN to jth CN. Lj→i denotes the message

passsed from jth CN to ith VN. Let αi→j = sign(Li→j), and βi→j = |Li→j|. Define

φ(x) = − log(tanh(x/2)) = log( e
x+1
ex−1

).

5



Figure 2.3: An illustrate of LLR message passing between variable and check nodes.

The sum-product algorithm is listed.

• Initialization: Let Li→j = Li ∀ i = 1 ∼ N .

• Step 1. Check-to-variable message updating:

Lj→i =
∏

i
′∈M(j)\i

αi
′→j × φ(

∑
i
′∈M(j)\i

φ(βi
′→j)), (2.2)

• Step 2. Variable-to-check message updating:

Li→j = Li +
∑

j
′∈M(i)\j

Lj
′→i (2.3)

• Step 3. LLR computation:

Ltotal
i = Li +

∑
j∈M(i)

Lj→i (2.4)

• Step 4. Make decision: If Ltotal
i < 0, let ĉi = 1. Else, let ĉi = 0.

• Step 5. If the number of iteration reach the maximum setting value or HĉT = 0,

stop decoding. Otherwise, go back to Step 1.

6



Chapter 3

Overview of Puncturing LDPC
Codes

Transmitting a subset of parity bits of error-correcting codes is called puncturing,

and it is assumed that the decoder knows the locations of punctured nodes. Over

time-varying channels where channel state information (CSI) is available at transmitter,

flexible code rate is desired to improve channel bandwidth efficiency. One can encode

at a higher/lower code rate when the channel becomes more/less reliable, respectively.

In multi-carrier sub-channels, to promote error-correcting performance, if the fading

gain of one sub-channel is higher/lower than a threshold, we use/discard it. Power real-

location/puncturing patterns are employed to used/discarded sub-channels, respectively.

Moreover, there is a limit value existing for the total number of sub-channels which are

discarded based on code characteristics.

Punctured codes have another advantage with hybrid automatic-repeat-request (HARQ)

protocols. A transmitter sends partial parity bits by puncturing a mother code. If the

receiver fails to recover the message, the receiver progressively requests additional parity

bits which were previously punctured.

3.1 Introduction to Puncturing at TX and RX

In puncturing, incomplete coded bits are transmitted to receiver, and the error-

rate performance may suffer from this. For reducing the performance loss, punctured

7



nodes need to be properly selected. There are
(
N
x

)
choices for selecting x VNs from

N VNs to puncture. Assume that these choices form a set denoted by S, the opti-

mal puncture pattern P could be obtained by P = arg min
P∈S

∑N
i=1 Pe(vi), where Pe(vi)

is the error probability of vi. However, the exhaustive search is NP-hard (it needs to

take exponential time) so that the method is hard to implement. Several preceding pa-

pers took greedy strategy to design algorithms based on bit-by-bit selection for finding

puncturing patterns. The concepts of these algorithms can be understood through ob-

serving the iterative message-passing decoding. The decoder needs to know which VNs

are punctured, and the error probability of these nodes for random decision is 1/2 (i,e,

LLR = 0). Instead of random decision for these nodes, the punctured nodes need to

acquire message from their connected CNs with decoding iterations. The process that

a punctured node first receives a nonzero message from at least one connected check

node is called to be recovered. The error probability of recovered message is called re-

covery error probability. The recovery procedure is described as follows. Step 1. The

unpunctured nodes which received channel values will pass message to some punctured

nodes. Step 2. The recovered punctured nodes will then pass message to some other

unrecovered punctured nodes. Step 3. Proceeding 2 with decoding iterations and so

forth. The different number of decoding iterations for a punctured node needs to be

recovered causes different error rate on them. A punctured node which is recovered in

the kth decoding iteration is called k-step-recoverable (k-SR) punctured node, and the

recovery order of the punctured node is k. Notice that unpunctured nodes are defined

as 0-SR. A k-SR punctured node vi has at least one connected CN cj, such that the

set N (j) \ {i} contains at least one (k − 1)-SR node while the others are m-SR, where

0 ≤ m ≤ k − 1 [5]. We show an example in Figure 3.1. The recovered message of a

k-SR punctured node is from m-SR (m < k) punctured nodes’, so the information on

the average is more unreliable statistically. For a k-SR punctured node, the CNs which

pass messages to it in the kth iteration is called Survived check node (SCNs). More-

8



Figure 3.1: recovery of puncture nodes
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over, for an unpunctured node, we further define the CNs which pass messages to this

unpunctured node in the first iteration as SCNs In Figure 3.1, the number of SCNs of vi

and vj is two and the number of SCNs of vk is 1. Some expressions need to be defined

as followes. G(i) = {x|x �= i, x ∈ N (j), j ∈ M(i)} is the neighboring VNs of the VN

vi. The neighboring VN which is punctured is called neighboring punctured node; the

neighboring VN which is unpunctured is called neighboring unpunctured node.

3.2 Puncturing Infinite Length LDPC Codes

The asymptotic analysis and design of rate-compatible puncturing schemes for LDPC

code ensemble has been studied in [1]-[3]. In [1] [2], variable nodes with different degrees

are divided into different groups and a puncturing distribution is defined to describe

the puncturing proportions of each group. A Gaussian approximation method [14] is

used to predict and compute the threshold–the lower bound of the theoretical required

signal-to-noise ratio (SNR) for error-free decoding [13] for a code ensemble. When

variable and check node degree distributions and the fraction of punctured nodes are

given, the puncturing distribution is optimized by a linear programming technique to

achieve the asymptotic threshold for the code ensemble. An extension work which

additionally consider the code structure was proposed in [3]. A generalized check node

degree distribution is introduced to describe different code structure: the check nodes

are classified based on the degree distributions of their connected variable nodes. The

authors [3] found out that the optimal puncturing distribution not only depends on code

ensemble degree distribution but also on the code structure.

3.3 Puncturing Schemes for Finite Length LDPC

Codes

The asymptotic analysis is suitable for infinite length LDPC codes, but it may have

distortion when the optimized results are applied to finite length codes. The analysis of

10



finite length LDPC codes is more challenging. Several puncturing algorithms for finite

length LDPC codes have been suggested in [4]-[6].

The idea in [5] is based on a fact that a punctured node will be recovered with

reliable messages. First, the algorithm attempts to maximize the number of punctured

nodes that are 1-SR. When no more 1-SR nodes can be found, it proceeds with 2-SR

nodes, etc.. Second, in the algorithm, a certain SCN is selected for a punctured node

and called guaranteed SCN. The recovery tree is introduced to observe the reliability of

the guaranteed SCN information. A tree is built rooted in a punctured node v in the

following way. First, v is linked to its guaranteed SCN and next link the SCN to all of its

connected VNs excluding v. Then, repeat the preceding process for all new punctured

nodes in the tree until every branch ends with an unpunctured node. The number of

unpunctured nodes in the recovery tree of v is denoted as S(v). When a punctured

LDPC code is transmitted over a BEC with an erasure probability of ε, the probability

of correct recovery of v in Gk which is composed of all k-SR nodes is expressed in a

recursive form:

Ψ(v, ε) =

⎧⎨
⎩

1− ε , if v ∈ G0
dc−1∏
j=1

Ψ(rj, ε) , if v ∈ Gk(k > 0)
. (3.1)

The recovery error probability of a punctured node v over a BEC with an erasure prob-

ability of ε is (1 − Ψ(v, ε)), where Ψ(v, ε) = (1 − ε)S(v). The authors observe that the

number of unpunctured nodes in the recovery tree of a punctured node is positive corre-

lated to the probability of successful recovery. The candidate v with lower recovery order

and with smaller S(v) will be a new punctured node. A grouping algorithm based on the

recovery order and the number of unpunctured nodes in the recovery tree is proposed.

Within each group, sorting algorithm is proposed to determine the puncturing priority

of these selected nodes.

Based on Gaussian approximation (GA), the authors [6] stated that more number of

SCNs of a punctured node, the lower recovery error rate is. C
(k)
i denotes a SCN i of the

11



Figure 3.2: recovery tree of v
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k-SR punctured node v(k). The value S(C
(k)
i ) is the total number of unpunctured nodes

under the SCN C
(k)
i . m

(k)
u,i denotes the mean LLR value from the survived check node

i of a k-SR punctured node to the k-SR punctured node. m
(k)
v denotes the mean LLR

value from a k-SR punctured node to the survived check node of a (k+1)-SR punctured

node. m
(0)
v is the mean LLR of channel value. NSC(v

(k)) denotes the number of survived

check nodes of the k-SR punctured node v(k). When observing the k-SR punctured node,

it is assumed that the m-SR (m < k) punctured nodes only has a SCN. Based on the

assumption, the recovery error probability of a punctured node v ∈ Gk over an Additive

White Gaussian Channel with Gaussian Approximation is P
(R)
e (v(k)) = Q(

√
m

(k)
v /2),

where m
(k)
v =

∑Nsc(v(k))
i=1 Φ−1(1− [1− Φ(m

(0)
v )]S(C

(k)
i )), and

Φ(x) =

{
1− 1√

4πx

∫
tanh u

2
e−(u−x)2/4xdu , if x > 0

1 , if x = 0
. (3.2)

In the simulation, all punctured nodes are 1-SR and every punctured node has the same

number of SCNs. The result is shown that the performance of the punctured code with

more SCNs is better.

In [7], another puncturing scheme with better performance compared with those in

[5] was proposed. The punctured nodes are selected as far apart from each other in the

Tanner graph of the code as possible. In each round, the candidates are composed of

the VNs which are at least a distance of four away from punctured nodes which had

been selected in the round, and have at least one connected check node which connects

to all unpunctured nodes. A new punctured node is randomly selected from candidates,

and the neighboring variable nodes are excluded from the candidate set in the round.

The punctured-patterns-selecting procedure are terminated when the candidate set is

empty in a round and the set will be regenerated for the next round. Each round of

the scheme returns a set of punctured nodes that the average error probability of an

unpunctured node is minimum after 1st iteration of the message passing. When the

kth round (k ≥ 1) is processed, the punctured nodes may be m-SR, where 1 ≤ m ≤ k.

Moreover, Additional puncturing scheme (A-puncturing scheme) is proposed to achieve

13



higher puncturing code rate. It randomly selects an unpunctured node that connects

to the least number of check nodes that involve only one punctured node selected in

the previous puncturing scheme as a new punctured node. This ensures that when the

punctured node is selected in A-puncturing scheme, the reduction in the probability of

correctly recovery of 1-SR punctured nodes selected in the previous puncturing scheme

is minimized.

3.3.1 Some thoughts about existing puncturing schemes

The recovery tree [5] is based on some assumptions. Assumption 1: If the maximum

recovery order of punctured nodes is k, the mother code is either cycle-free or has a girth

larger than 2(k+1). Assumption 2: Every punctured node is connected to its guaranteed

SCN only, that is, it does not consider the actual number of SCNs. Assumption 3: The

unpunctured nodes only pass their channel values even after they have received updated

messages. Based on Assumption 1, the nodes are not repeated in the tree or no cycles

exist in the tree. Based on Assumptions 2 and 3, a punctured node v with a smaller

S(v) has a smaller recovered error probability.

Although multiple SCNs are considered in [6], the DE with GA of a k-SR punctured

node is based on the assumption that each m-SR (m < k) punctured node only has a

SCN. Besides, despite of [5] or [6], the message of unpunctured nodes are not updated

increment of iteration number; that is, unpunctured nodes only pass the received channel

values out. Moreover, the method only cares about the number of SCNs, but which CNs

will be the guaranteed SCNs are not considered, and which candidate with the number

of SCNs as a punctured node is also not considered. Moreover, We know that the

fixed number of guaranteed SCNs is restricted by the degree of VNs, and the achievable

puncturing code rate is restricted by the fixed number of guaranteed SCNs. The authors

don’t provide a method to find the optimal number of guaranteed SCNs to enhance the

overall performance. It is also not known if using a fixed number of guaranteed SCNs is
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a better strategy than the one using different number of guaranteed SCNs for different

punctured nodes.

In [7], although the punctured nodes in each round are at least a distance of four

away from each other, the edge-distance among punctured nodes in all rounds is not

expected to be so. In A-puncturing scheme, less 1-SR punctured nodes selected in

previous scheme whose SCNs decrease due to the new punctured node, but it doesn’t

concern about the k(> 1)-SR punctured nodes selected in previous puncturing scheme

and these new punctured nodes selected in A-puncturing scheme.
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Chapter 4

A New Puncturing Algorithm

4.1 Design Guidelines

To find an optimal puncturing set P , exhaustive search can be used, but it is time-

consuming. In contrast, finding the puncturing set in a bit-by-bit selection manner is a

simpler approach. In this approach, a candidate that can minimize the average bit error

rate (BER) is selected as a new punctured node; that is, a punctured node vi is chosen

by

i = argi min
vi∈V

P=P
⋃

vi

1

N

N∑
j=1

Pe(vj), (4.1)

where V is the set of candidate punctured nodes, i.e., all unpunctured nodes, and Pe(vj)

is the error probability of vj. Based on (4.1), it is straightforward to see that the average

BER of the N VNs is highly related to the recovery error probability of the candidate

punctured node vi and the error probability of other nodes if vi is punctured. Consider

the AWGN channel with the mean LLR of channel value μ0 and use the Gaussian

approximation (GA) to analyze the BER. Let μ
(1)

v
(0)
i

denote the mean LLR of unpunctured

node vi in the first iteration and μ
(k)
vi denotes the mean LLR of k-SR punctured node vi

in the kth iteration, where k ∈ Z+. Let SCN(vi) be the set of SCNs of vi. Let α
(m)
j (vi)

be the number of m-SR nodes in the set {N (j) \ i}, where cj is the SCN of vi. The
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mean LLR of unpunctured nodes and 1-SR punctured nodes in the first iteration are as

follows: ⎧⎪⎪⎨
⎪⎪⎩

μ
(1)

v
(0)
i

= μ0 +
∑

j∈SCN(v
(0)
i )

φ−1(1− [1− φ(μ0)]
deg(cj)−1)

μ
(1)
vi =

∑
j∈SCN(vi)

φ−1(1− [1− φ(μ0)]
deg(cj)−1)

, (4.2)

where φ(x) and φ−1(x) are decreasing function and 0 < φ(x), φ−1(x) < 1. We assume

that μ
(k−1)
v, m−SR is the average mean LLR of m-SR nodes in the (k− 1)th iteration and we

further obtain the mean LLR of k-SR punctured nodes in the kth iteration.

μ(k)
vi

=
∑

j∈SCN(vi)

φ−1(1−
(k−1)∏
m=0

[1− φ(μ
(k−1)
v, m−SR)]

α
(m)
j (vi)), k = 2, 3, ... (4.3)

The error probability of unpunctured node vi in the first iteration is Q(

√
μ
(1)

v
(0)
i

/2) and

the recovery error probability of k-SR punctured node vi is P
(R)
e (v(k)) = Q(

√
μ
(k)
vi /2).

From (4.2) and (4.3), we know that the indicator parameters such as the number of

SCNs, the degree of the SCNs and the connected nodes of the SCNs determine the error

probability. It can be roughly known that a node vi a) has more SCNs and the degree

of these SCNs are smaller and b) the recovery order of the nodes which are connected

to these SCNs are smaller, the error probability of vi is lower. We further discuss about

(4.1) by the indicator parameters to obtain several puncturing guidelines. The details

are given as follows.

First of all, we show two examples to illustrate how the recovery error probabil-

ity of a punctured node is affected. Consider the BEC with erasure probability ε in

Figure 4.1, the probability of correct recovery of vi is (1 − ε)2; the probability of cor-

rect recovery of vi′ is 2(1 − ε)2 − (1 − ε)4. Thus, the probability of correct recovery of

vi′ is larger than vi in BEC. Similarly, we consider the AWGN channel in Figure 4.1.

μ
(1)
vi = Φ−1(1− [1−φ(μ0)]

2); μ
(1)
vi′ = 2Φ−1(1− [1−φ(μ0)]

2). The recovery error probability

of vi′ is smaller than vi.

Guideline 1: The recovery error probability of the punctured node with more SCNs
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will be lower, i,e, |SCN(vi)| ↑⇒ P
(R)
e (vi) ↓.

Another example is shown in Figure 4.2. Consider the BEC and assume that the av-

erage error probability of unpunctured nodes in the first iteration is ε0 and the aver-

age recovery error probability of 1-SR punctured nodes is ε1. Statistically, it is rea-

sonable to assume that ε1 > ε0. The probability of correct recovery of vi is (1 −
ε1) + (1 − ε0)(1 − ε1)

2 − (1 − ε0)(1 − ε1)
3; the probability of correct recovery of vi′

is (1 − ε1) + (1 − ε0)
2(1 − ε1) − (1 − ε0)

2(1 − ε1)
2; the probability of correct recovery

of vi′′ is (1 − ε1) + (1 − ε0)(1 − ε1) − (1 − ε0)(1 − ε1)
2. Thus, if ε1 > ε0, the proba-

bility of correct recovery of vi′′ is larger than that of vi′ and the probability of correct

recovery of vi′ is larger than that of vi in BEC. Analogously, the AWGN channel is

considered in Figure 4.2 and on the average μ
(1)
v, 1−SR is assumed to be smaller than

μ
(1)
v, 0−SR. μ

(2)
vi = Φ−1(1− [1−φ(μ

(1)
v, 1−SR)])+Φ−1(1− [1−φ(μ

(1)
v, 0−SR)][1−φ(μ

(1)
v, 1−SR)]

2);

μ
(2)
vi′ = Φ−1(1 − [1 − φ(μ

(1)
v, 1−SR)]) + Φ−1(1 − [1 − φ(μ

(1)
v, 0−SR)]

2[1 − φ(μ
(1)
v, 1−SR)]); μ

(2)
vi′′ =

Φ−1(1− [1−φ(μ
(1)
v, 1−SR)])+Φ−1(1− [1−φ(μ

(1)
v, 0−SR)][1−φ(μ

(1)
v, 1−SR)]). Thus, P

(R)
e (vi′′) =

Q(

√
μ
(2)
vi′′/2) < P

(R)
e (vi′) = Q(

√
μ
(2)
vi′ /2) < P

(R)
e (vi) = Q(

√
μ
(2)
vi /2). The differences of

the recovery error probability among these three VNs result from the reliability of their

SCNs, i.e., R(cj) < R(cj′) < R(cj′′), where R(cj) denotes the reliability of cj.

Guideline 2: If deg(cj1) = deg(cj2) and cj1 connects to more unpunctured nodes and

less punctured nodes, cj1 is more reliable than cj2. Moreover, the smaller recovery order

of these connected punctured nodes are, the more reliable of the CN is. For example,

R(cj) < R(cj′) in Figure 4.2.

Guideline 3: If two CNs connect to the same number of punctured nodes, the CN with

lower degree is more reliable. For example, R(cj′) < R(cj′′) in Figure 4.2.

From the two examples, for reducing the recovery error probability of punctured nodes,

the punctured nodes should have more SCNs and the reliability of these SCNs should

be higher.

Second, we show an example in Figure 4.3 to discuss about the error probability
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Figure 4.1: An example of the number of SCNs.

Figure 4.2: An example of check reliability.
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Figure 4.3: An example of the effect on the neighboring VNs of a punctured node.

of other nodes if a candidate is punctured. Consider the BEC with erasure prob-

ability ε, if v is unpunctured, the correct probability of v1 in the first iteration is

(1 − ε) + (1 − ε)3 − (1 − ε)4; if v is punctured, c1 cannot pass message to v1 in the

first iteration and the correct probability of v1 in the first iteration is (1− ε). Consider

the AWGN channel in Figure 4.3. If v is unpunctured, μ
(1)

v
(0)
1

= μ0+Φ−1(1− [1−φ(μ0)]
3);

if v is punctured, μ
(1)

v
(0)
1

= μ0. If a node is punctured, the error probability of the neigh-

boring VNs of the punctured node will arise.

Guideline 4: If a node is punctured, the number of SCNs of some neighboring VNs will

decrease such as v1, v2, v3 and v6 in Figure 4.3; the recovery order of some neighboring

punctured nodes will increase such as v5 in Figure 4.3. Thus, the error probability of

these nodes are statistically higher.

Next, we classify the neighboring VNs whose SCNs will decrease if a candidate is punc-

tured. One is the neighboring unpunctured nodes which connect to SCN of the punc-

tured node if the recovery order of the punctured node is 1, for example, v1, v2, v3 in

Figure 4.2; Another is the neighboring punctured nodes of the punctured node despite

of its recovery order, for example, v5, v6 in Figure 4.2. When a new punctured node is

determined, we need to take care of the neighboring VNs.

20



Guideline 5: The recovery order of every punctured node needs to be under control

such that the punctured nodes have lower recovery order and avoid stopping set contain

only punctured nodes.

All in all, we select a new punctured node from candidates, the recovery error probability

and the effect on other nodes need to be considered.

4.2 Discovering Good Puncture Patterns

4.2.1 Notations and Definitions

Let P (t) denote the set of t-SR punctured nodes. If A is a set, let |A| be the

cardinality of the set A. Moreover, we introduce an l-SR constraint to control the

recovery order of punctured nodes; that is when a candidate is punctured, the recovery

order of neighboring punctured nodes of the candidate can be only less than or equal to

l.

The next we define some quantities to measure which candidate is more suitable to

be punctured. For some vi ∈ V , assume candidate vi is punctured (P = P
⋃

vi), we

propose the following five subroutines to obtain appropriate information for puncturing:

• The number of SCNs of the neighboring punctured nodes of vi are observed in

Subroutine (A).

• The number of SCNs of vi is obtained in Subroutine (B).

• The sum of the degree of these SCNs of vi is obtained in Subroutine (C).

• If the recovery order of vi is 1, the number of SCNs of the neighboring unpunctured

nodes which connect to SCN of vi are observed in Subroutine (D).

• If the recovery order of vi is t and t is lager than 1, the number of m-SR (0 ≤ m ≤
(t− 1)) nodes which connect to SCNs of vi are observed in subroutine (E).

21



In Subroutine (B), (C) and (E), we examine the recovery error probability of the

candidate punctured node. In Subroutine (A) and (D), we measure the influence

on previous selected punctured nodes and related unpunctured nodes, which is

caused when the candidate is selected to puncture.

Subroutine (A):

1. Let Γ(m)(i) = {k|k ∈ G(vi)
⋂

P (m)} denote the set of the neighboringm-SR punctured

nodes of vi.

2. The average number of SCN of the nodes in the set Γ(m)(i) is

S̄(Γ(m)(i)) =

⎧⎨
⎩

1
|Γ(m)(i)|

∑
k∈Γ(m)(i)

|SCN(vk)| , |Γ(m)(i)| �= 0

0 , |Γ(m)(i)| = 0
. (4.4)

Subroutine (B):

1. Assume the recovery order of vi is t, let the set S
(t)
CN(vi) be the SCNs of vi,

2. The number of SCNs of vi is |S(t)
CN(vi)|.

Subroutine (C):

Assume the recovery order of vi is t, The sum of the degree of these SCNs of vi is

dSCN(vi) =
∑

j∈S(t)
CN(vi)

deg(cj) (4.5)

Subroutine (D):

1. Assume the recovery order of vi is 1, Λ(i) = {k|k ∈ N(j) \ i , j ∈ S
(1)
CN(vi)} denotes

the neighboring unpunctured nodes which connect to SCN of 1-SR vi.

2. The average number of SCN of the nodes in the set Λ(i) is

S̄(Λ(i)) =
1

|Λ(i)|
∑

k∈Λ(i)

|SCN(vk)| (4.6)

Subroutine (E):
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1. Assume the recovery order of vi is t(> 1), α
(m)
j (vi) denotes the number of m-SR nodes

in the set {N (j) \ i}, where cj is the SCN of vi.

2. The sum of the number of m-SR nodes which each SCN of vi connects is

π(m)(vi) =
∑

j∈S(t)
CN(vi)

α
(m)
j (vi), (4.7)

where 0 ≤ m ≤ (t− 1).

4.2.2 Proposed Algorithm

In our algorithm, the candidate set is composed of all the unpunctured nodes and

the candidate set is regenerated and reduced step by step such that a new punctured

node is acquired. Each step is like a ”sieve” to discard some candidates according to the

quantities obtained by each subroutine. Several examples are illustrated to explain how

to reduce the candidate set by each quantity. (Note that the candidate vi is assumed to

be punctured in the following examples (from Figure 4.4 to Figure 4.15).)

First, l-SR constraint is applied to candidates. If one of the nodes remained in

the candidate set is chosen to be punctured, it would not induce the recovery order

unexpected increment of the punctured nodes and the maximum recovery order of the

new punctured node is l + 1. For example, if 0-SR constraint is applied, the candidate

vi in in Figure 4.4 (a) is discarded; if 1-SR constraint is applied, the candidate vi in

Figure 4.5 (a) is discarded. Notice that when 0-SR constraint is applied, it means that

the punctured nodes are at least a distance of four away in the Tanner graph.

Second, if a node remained in the candidate set after Subroutine (A) is punctured,

the average number of SCNs of its neighboring punctured nodes are larger than that

of selecting any node not belonging to the candidate set. Moreover, the neighboring

punctured nodes with lower recovery order should have stronger protection (let it have

more SCNs). If the recovery order of neighboring punctured nodes of a candidate are all

higher than those of other candidates, the priority of the candidate as a new punctured

node is lower. For example, S̄(Γ(1)(i))=1 in Figure 4.6 (a); S̄(Γ(1)(i))=1.5 in Figure 4.6

23



Figure 4.4: An example of l-SR constraint (I).

Figure 4.5: An example of l-SR constraint (II).
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Figure 4.6: The neighboring punctured nodes of vi (I).

Figure 4.7: The neighboring punctured nodes of vi (II).

(b), so vi in Figure 4.6 (a) is discarded. S̄(Γ(1)(i))=1 in Figure 4.7 (a); S̄(Γ(1)(i))=1.5 in

Figure 4.7 (b), no matter what the value S̄(Γ(2)(i)) is, vi in Figure 4.7 (a) is discarded.

S̄(Γ(1)(i))=1 in Figure 4.8 (a); S̄(Γ(1)(i))=1 in Figure 4.8 (b); S̄(Γ(1)(i))=0 in Figure

4.8 (c), so vi in Figure 4.8 (c) is discarded. S̄(Γ(2)(i))=1 in Figure 4.8 (a); S̄(Γ(2)(i))=2

in Figure 4.8 (b), so vi in Figure 4.8 (a) is discarded.

Third, The candidate punctured node with lower recovery order and more SCNs has

a higher priority as a new punctured node. For example, |S(1)
CN(vi)|= 2 in Figure 4.9

(a); |S(1)
CN(vi)|= 3 in Figure 4.9 (b). In the comparison, vi in Figure 4.9 (a) is discarded.

|S(2)
CN(vi)|= 1 in Figure 4.10 (a); |S(2)

CN(vi)|= 2 in Figure 4.10 (b). In the comparison,

vi in Figure 4.10 (a) is discarded. The recovery order of vi in Figure 4.11 (a) is 2; the
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Figure 4.8: The neighboring punctured nodes of vi (III).

recovery order of vi in Figure 4.11 (b) and (c) is 1. The vi in Figure 4.11 (a) is discarded.

|S(1)
CN(vi)|= 2 in Figure 4.11 (b); |S(1)

CN(vi)|= 1 in Figure 4.11 (c). Thus, vi in Figure 4.11

(c) is discarded. The next we see the sum of degree of SCNs conditionally on the

candidates with the same number of SCNs. dSCN(vi)=6 in Figure 4.12 (a); dSCN(vi)=5

in Figure 4.12 (b). Thus, vi in Figure 4.12 (a) is discarded. dSCN(vi)=3 in Figure 4.13

(a); dSCN(vi)=2 in Figure 4.13 (b). Thus, vi in Figure 4.13 (a) is discarded.

Fifth, if the recovery order of the candidate punctured node is 1, we take care of

the neighboring unpunctured nodes which connect to SCNs of the candidate. i,e., the

amount of SCNs of these neighboring unpunctured nodes should be more. For example,

S̄(Λ(i))=0.5 in Figure 4.14 (a); S̄(Λ(i))=1 in Figure 4.14 (b); in the comparison, vi in

Figure 4.14 (a) is discarded.

Finally, if the recovery order of the candidate punctured node is t and t is larger

than 1, we need to concern more about the SCN reliability. Notice that if the recovery
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Figure 4.9: SCN of vi (I).

Figure 4.10: SCN of vi (II).

Figure 4.11: Recovery order and SCN of candidate punctured node vi.

27



Forth, conditionally on the candidates with the same SCN number, the candidate punc-
tured node with lower degree of their SCNs has a higher priority as a new punctured
node. For example, dSCN(vi)=6 in Figure 4.12 (a); dSCN(vi)=5 in Figure 4.12 (b). Thus,
vi in Figure 4.12 (a) is discarded. dSCN(vi)=3 in Figure 4.13 (a); dSCN(vi)=2 in Figure
4.13 (b). Thus, vi in Figure 4.13 (a) is discarded.

Figure 4.12: Degree of SCN of vi (I).

Figure 4.13: Degree of SCN of vi (II).
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Figure 4.14: Unpunctured nodes which connect to SCN of vi (the recovery order is 1).

order of the candidate punctured node is 1, the reliability of SCNs has been considered

by CN degree. Conditionally on the candidates with the same number of SCNs and the

same sum of the degree of SCNs, we compare π(m)(vi), where 0 ≤ m ≤ (t− 1). If a SCN

connects to more unpunctured nodes and less punctured nodes and the recovery order

of these punctured nodes are lower, the reliability of the SCN is higher. For example,

π(0)(vi)=2 in Figure 4.15 (a); π(0)(vi)=3 in Figure 4.15 (b); thus, vi in Figure 4.15 (a) is

discarded.

The proposed algorithm is listed in Table 4.1. After step 1, the maximum recovery

order of every punctured node is under control. In step 2, the SCN number of previous

punctured nodes is considered when a new punctured node is determined. Based on

taking care of previous selected punctured nodes, the recovery order and SCN number

of a new punctured node are considered in step 3. We further discuss the SCN reliability

of a new punctured node in step 4 and step 5. The SCN number of unpunctured nodes

is thought in step 5. In step 6, the new punctured node is randomly selected from the

candidate set and then the candidate set is regenerated by all unpunctured nodes and
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Figure 4.15: SCN reliability

go back to step 1.
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Table 4.1: Algorithm of Puncture Patterns Design
Initialization:
Set l = 0, P = φ, V = {1, 2, ..., N}, and t = 1.

Step 1:
The candidate set V is regenerated such that the candidates in V satisfy l-SR constraint.
If V = φ
set l = l + 1 and t = 1.
reset V = {1, 2, ..., N} \ P .
If l = N , exit the algorithm.
go back to step 1.

end if
Step 2:
for m = 1 : l
Obtain S̄(Γ(m)(i)) with P by Subroutine (A), ∀ vi ∈ V
V ′ = {i|S̄(Γ(m)(i)) = max

j∈V
S̄(Γ(m)(j))}

V = V ′. (If max
j∈V

S̄(Γ(m)(j)) = 0, V is unchanged.)

end for
Step 3:
If no candidate punctured nodes is t-SR and t < (l + 1), set t = t+ 1.

Obtain |S(t)
CN(vi)| with P by Subroutine (B), ∀ vi ∈ V

V ′ = {i| |S(t)
CN(vi)| = max

j∈V
|S(t)

CN(vj)|}
V = V ′.

Step 4:
Obtain dSCN(vi) with P by Subroutine (C), ∀ vi ∈ V
V ′ = {i|dSCN(vi) = min

j∈V
dSCN(vj)}

V = V ′.
Step 5:
if t = 1
Obtain S̄(Λ(i)) with P by Subroutine (D), ∀ vi ∈ V
V ′ = {i|S̄(Λ(i)) = max

j∈V
S̄(Λ(j))}

end if
else if t > 1
for m = 0 : (t− 1)
Obtain π(m)(vi) with P by Subroutine (E), ∀ vi ∈ V
V ′ = {i|π(m)(vi) = max

j∈V
π(m)(vj)}

V = V ′. (If max
j∈V

π(m)(vj) = 0 ,V is unchanged.)

end for
end if

Step 6:
Randomly select one node vi from V .
P = P

⋃
vi.

V = {1, 2, ..., N} \ P .
If |P | is reached, exit the algorithm.
otherwise, go back to Step 1.
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Chapter 5

Numerical Results and Related
Discussions

5.1 Relationship Between Indicator Parameters and

Error Probability

Several indicator parameters are observed in analyzing the simulation results. The

indicator parameters include the number of SCNs and the degree of the SCNs and

the number of un-/punctured nodes which a SCN connects for each recovery order of

punctured nodes. Notice that the reliability of a CN is determined by its degree and the

connected nodes. In most cases, the recovery error probability can be inferred from these

indicator parameters. However, some cases are more complicated, it needs to observe

more detailed information, for example, the recovery order of punctured nodes which

connect to a SCN and the error rate of the nodes which a SCN connects.

The QC code with N = 576, K = 384, M = 192, and R = 2/3 in IEEE 2005

802.11n is simulated. The degree of VNs is 2, 3, 4; The degree of CNs is 9. When the

puncturing code rate is 3/4, the recovery order of punctured nodes in [7] and proposed

scheme are 1, 2. First, we see the 1-SR nodes. The average number of SCNs which a

1-SR punctured node has is approximately equal in the two schemes and the data is
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shown in Figure 5.1. The average number of unpunctured nodes which connect to a

SCN of a 1-SR node is also approximately equal in Figure 5.2. We can infer the average

recovery error probability of 1-SR nodes in the two schemes are approximately equal

and the simulation result is shown in Figure 5.4. Next, we see the 2-SR nodes. The

average number of SCNs which a 2-SR punctured node has in proposed scheme is more

than that in [7] and the SCN reliability of 2-SR nodes in two schemes is approximately

equivalent, so we can deduce that the average recovery error probability of 2-SR nodes

in proposed scheme is better than that in [7]. After 2-SR nodes are recovered, all the

message passing in Tanner graph works and thus the 2-SR nodes with better recovery

improves the performance of 1-SR nodes.

Both the average BER of unpunctured nodes and two recovery order of punctured

nodes are decreasing functions of the iteration number, as is evidenced by the simulation

results shown in Figure 5.5. In Figure 5.6, we show that in the 100th iteration, the

average BER of unpunctured nodes, 1-SR and 2-SR nodes outperform than those in [7],

respectively. Another simulation is the QC code with puncturing code rate 4/5, the

recovery order of punctured nodes in [7] are 1, 2, 3, 4; in proposed scheme are 1, 2,

3. The average number of SCNs which a 1-SR punctured node has and the reliability

of these SCNs are approximately equivalent in the two schemes. The average recovery

error probability of 1-SR nodes in the two schemes is also approximately equal. The

average number of SCNs of 2-SR or 3-SR nodes and the average number of unpunctured

nodes which connect to a SCN of a 2-SR or 3-SR node in proposed scheme are all more

than those in [7], respectively. Moreover, in Figure 5.9, the average number of 1-SR

and 2-SR nodes which a SCN of a 3-SR node connects in proposed scheme are less than

those in [7], respectively. The average recovery error probability of 2-SR, 3-SR nodes in

proposed scheme outperform than those in [7], respectively. When the puncturing code

rate of the QC code achieves 5/6, the average number of SCNs of 1-SR nodes in proposed

scheme is less than that in [7] and the SCN reliability of 1-SR nodes is approximately
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equal, the average recovery error probability of 1-SR nodes in proposed scheme are worse

than that in [7]. The situations of other punctured nodes with different recovery order

in proposed scheme are all better, therefore the average recovery error probability of

them outperform than those in [7]. The neighboring VNs of 1-SR nodes in proposed

scheme are mainly composed of unpunctured nodes and 2-SR nodes, after 2nd iteration,

the error rate of 1-SR nodes are mainly affected by them. With increment of iteration

number, these nodes which have better recovery in proposed scheme pass more reliable

message out such that the average error rate of all kinds of nodes are better than [7]. The

analysis of simulation data about length-504 PEG code is similar to above description.

5.2 Simulation Results

Computer-simulated bit error rate (BER) and frame error rate (FER) performance

of two different puncturing schemes for LDPC codes are reported in this section. One

scheme is proposed in paper [7] and another is proposed scheme. The (576, 192) 2/3-

rate LDPC code defined in 2005-802.11n, the PEG (504,252) 0.5-rate LDPC code and

the (1920, 640) 1/3-rate Gallager LDPC code are used in simulations. Sum product

decoding algorithm is taken and the maximum number of iteration is set to be 100.

Figure 5.37 depicts the BER performance of the QC code. When the puncturing

code rate is 3/4, 4/5 and 5/6, the proposed scheme outperforms [7] by about 0.24 dB at

BER=3 ∗ 10−6, 0.25 dB at BER=6 ∗ 10−6 and 0.875 dB at BER= 10−5, respectively.

Figure 5.38 depicts the FER performance of the QC code. When the puncturing

code rate achieves 3/4, 4/5 and 5/6, the proposed scheme offers about 0.24 dB gain

around FER=10−4, 0.26 dB gain at FER=2 ∗ 10−4 and 1 dB gain at FER= 4 ∗ 10−4

against [7], respectively.

Figure 5.39 depicts the BER performance of the PEG code. When the puncturing

code rate is 2/3 and 3/4, the proposed scheme outperforms [7] with 0.1 dB distance at

BER=6 ∗ 10−6 and 1 dB distance at BER=2 ∗ 10−5, respectively.
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Figure 5.1: Ratio of SR order and the number and the degree of SCN. (QC576 R=3/4)

Figure 5.2: Average number of un-/punctured nodes which a SCN connects. (QC576
R=3/4)
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Figure 5.3: The percentage of the number of SCN. (QC576 R=3/4)
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Figure 5.4: recovery error probability (QC576 R=3/4)
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Figure 5.5: BER with iterations (QC576 R=3/4)
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Figure 5.6: BER at 100th iteration (QC576 R=3/4)
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Figure 5.7: Ratio of SR order and the number and the degree of SCN. (QC576 R=4/5)

Figure 5.8: Average number of un-/punctured nodes which a SCN connects. (QC576
R=4/5)

Figure 5.9: (In detail) Average number of punctured nodes which a SCN connects.
(QC576 R=4/5)
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Figure 5.10: Average number of neighboring punctured nodes of 1-SR. (QC576 R=4/5)
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Figure 5.11: The percentage of the number of SCN. (QC576 R=4/5)
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Figure 5.12: recovery error probability (QC576 R=4/5)
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Figure 5.13: BER with iterations (QC576 R=4/5)
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Figure 5.14: BER at 100th iteration (QC576 R=4/5)

Figure 5.15: Ratio of SR order and the number and the degree of SCN. (QC576 R=5/6)
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Figure 5.16: Average number of un-/punctured nodes which a SCN connects. (QC576
R=5/6)

Figure 5.17: (In detail) Average number of punctured nodes which a SCN connects.
(QC576 R=5/6)

Figure 5.18: Average number of neighboring punctured nodes of 1-SR. (QC576 R=5/6)
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Figure 5.19: The percentage of the number of SCN. (QC576 R=5/6)
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Figure 5.20: recovery error probability (QC576 R=5/6)
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Figure 5.21: BER with iterations (QC576 R=5/6)
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Figure 5.22: BER at 100th iteration (QC576 R=5/6)

Figure 5.23: Ratio of SR order and the number and the degree of SCN. (PEG504 R=2/3)

Figure 5.24: Average number of un-/punctured nodes which a SCN connects. (PEG504
R=2/3)
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Figure 5.25: The percentage of the number of SCN. (PEG504 R=2/3)
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Figure 5.26: recovery error probability (PEG504 R=2/3)
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Figure 5.27: BER with iterations (PEG504 R=2/3)
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Figure 5.28: BER at 100th iteration (PEG504 R=2/3)

Figure 5.29: Ratio of SR order and the number and the degree of SCN. (PEG504 R=3/4)

Figure 5.30: Average number of un-/punctured nodes which a SCN connects. (PEG504
R=3/4)
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Figure 5.31: (In detail) Average number of punctured nodes which a SCN connects.
(PEG504 R=3/4)

Figure 5.32: Average number of neighboring punctured nodes of 1-SR. (PEG504 R=3/4)
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Figure 5.33: The percentage of the number of SCN. (PEG504 R=3/4)
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Figure 5.34: recovery error probability (PEG504 R=3/4)
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Figure 5.35: BER with iterations (PEG504 R=3/4)
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Figure 5.36: BER at 100th iteration (PEG504 R=3/4)
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Figure 5.40 depicts the FER performance of the PEG code. When the puncturing

code rate achieves 2/3 and 3/4, the proposed scheme yields 0.2 dB gain around FER=2∗
10−4 and 1.2 dB gain at FER=6.5 ∗ 10−4 against [7], respectively.

Figure 5.41 depicts the BER performance of the Gallager code. When the puncturing

code rate is 2/3, the proposed scheme outperforms [7] by about 0.4 dB at BER=10−4.

Figure 5.42 depicts the FER performance of the code. When the puncturing code rate

is 2/3, the proposed scheme offers about 0.4 dB gain around FER=10−3 against [7].
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Figure 5.37: BER performance of puncturing QC code
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Figure 5.38: FER performance of puncturing QC code
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Figure 5.39: BER performance of puncturing PEG code
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Figure 5.40: FER performance of puncturing PEG code
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Figure 5.41: BER performance of puncturing Gallager code with mother code rate 1/3
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Figure 5.42: FER performance of puncturing Gallager code with mother code rate 1/3
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Chapter 6

Conclusions

We present a puncture pattern design scheme for finite-length LDPC codes. For use

in AWGN channels, we use GA to analyze the error probability of variable nodes. Some

indicator parameters associated with the recovery capability of punctured nodes and the

error-correcting performance of unpunctured nodes are obtained based on the analysis.

The design guidelines are derived from the relationships between these parameters and

error-rate performance. We also compare the decoding performance of our scheme with

that of existing approaches. The experimental results prove that the performance of the

proposed algorithm does offer better performance in comparison with the method in [7],

which is consistent with the GA-based theoretical prediction.
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