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Design of Puncture Patterns for Rate-Compatible
LDPC Codes

Student : Yin-Cheng Liu Advisor : Y. T. Su

Institute of Communication Engineering

National Chiao Tung University

Abstract

In this thesis, we study puncturing schemes for finite-length rate-compatible low-
density parity-check codes. A new bit-by-bit puncturing pattern searching scheme is
proposed. The ultimate goal of the propesed method is to improve the recovery error
probability of the punctured bits. We also take intoraccount the detrimental effects
on previous punctured and unpunctured bits brought about by the new selected punc-
tured. Given the bit locations which -have been punctured, a new one is chosen from
the set of candidate bits by i) examining its recovery capability (which depends on the
number and reliabilities of its connected check node message) and ii) assessing the im-
pact a candidate bit may make. Numerical experimental results show that the proposed
scheme outperforms existing puncturing methods. The superiority and robustness of
our scheme are further verified by some observed statistics and are consistent with a

Gaussian approximation based analytic prediction.
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Chapter 1

Introduction

Coding schemes that adapt to the channel-condition.by adjusting the code rate can
improve the channel bandwidth efficiency while achieving the required bit error rate
(BER) performance. Ancefficientssolution which need only a single codec to implement
various code rates requirements is the class of rate-compatible codes. This solution uses
a low-rate “mother” code and offers several higher rate codes through puncturing so that
only a subset of the original codewords is used to meet a higher rate need. Of course,
puncturing modifies the mother code’s structure-and-its-distance spectrum and leads to
degraded error-rate performance due to the incomplete transmission of coded bits. To
minimize the performance loss, punctured bits need to be properly selected. Optimal
and near-optimal puncturing patterns for some popular convolutional codes have been
intensively studied through semi-analytic and computer-aided approaches.

The class of low-density parity-check (LDPC) codes, which was first introduced by
Gallager [8] in early 1960s and rediscovered by Mackay [9] [10] in 1990s, provide near-
capacity performance when the so-called belief propagation (BP) or sum-product al-
gorithm (SPA) [11] is used for decoding. It is only natural that one looks for LDPC
codes when considering adaptive coding applications. The asymptotic analysis and de-
sign of rate-compatible puncturing schemes for LDPC code ensemble has been studied
by several experts [1]-[3]. However, the optimization results may not be applicable in

non-asymptotic regime (finite length codes). Various puncturing algorithms for finite



length LDPC codes have been suggested in [4]-]6].

We investigate the effects of a punctured bit on the SPA decoding of an LDPC
code by examining the massage-passing flows in the associated code graph and derive
several guidelines for minimizing the detrimental puncturing effects. More specifically,
our puncturing algorithm is designed according to the following principles: 1) Increasing
the probability of correct recovery of the punctured nodes. 2) Protecting the nodes which
are affected by the punctured nodes. 3) Guaranteeing no stopping sets are contained

among punctured nodes.




Chapter 2

Low-Density Parity-Check Codes

Over a BSC channel, the BER performance of low-density codes improves exponen-
tially with the block length. by using the maximum likelihood (ML) decoding scheme.
Over an AWGN channelythe error-probability is upper-bounded by an exponentially de-
creasing function of théblock length-[8]. An iterative decoding algorithm that achieves
near-capacity performance was developed in [8]. Gallager’s iterative'decoding algorithm
is later recognized as @ 'special instance of the ¢lass of so-called belief propagation (BP)
algorithms. BP refers to the process of message passingin-a graph in which the messages
often correspond to some probabilistic or statistic values associated with the nodes of

the underlying graph.

2.1 Definitions

An (N, K) LDPC code with K information bits and (N — K) parity bits is a linear

block code for which the M x N parity check matrix H has a low density of ones [§]

K

~ s interpreted as the

where M is the number of check equations. Code rate R =

average number of information bits carried by each code bits.

2.2 Tanner Graph

A Tanner graph [12] is a bipartite graph which is composed of variable nodes and

check nodes and edges which connect the two types of nodes. If the jth row and the 7th
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Figure 2.1: The parity check matrix and the corresponding Tanner graph.

column in H is 1, the check node e;-1s-connected to variable node v;. A simple example
is shown in Fig. 2.1. The N variable nodes-in Tanner graph correspond to N columns
of H; the M check nodes in Tanner graph correspond to M rows of H. The number of
ones in the ith column of H, deg(v;), is-the degree of variable node v;; The number of
ones in the jth column of H, deg(e;),ds the degree of check node c;. dymex and depmas
denote the maximum variable node and check node degree. The variable node and check
node degree-distribution polynemials-from a "node-perspective” are A(z) = Y%, A’
and p(x) = Z;lCZQ p;j?, where \; and'p; denote the fractions of the number of degree-
¢ variable and degree-j check nodes, respectively. Some commonly used notation are
defined as follows. N(j) is the set of the variable nodes (VNs) connected to the jth
check node (CN). M(7) is the set of the check nodes (CNs) connected to the ith variable
node (VN).

2.3 Message Passing

Message passing decoding is operated cooperatively and iteratively to decode a
received sequence. Intrinsic information and extrinsic information are introduced in

message passing principle. An example is shown in Figure 2.2. The message that an



Figure 2.2: Soldier counting example

arbitrary soldier X passes to arbitrary neighboring soldier Y is equal to the sum of
all incoming messages, plus one for soldier X, minus the.message that soldier Y had
just sent to soldier X. The sum of the number that a soldier receives from any one
of his neighbors plus the number that the soldier passes to that neighbor is equal to
the total number of soldiers [16]. “The-message which is sent from2X to Y won'’t pass
back from Y to X in.the same iteration. N (X').is the set of neighbors of X and Iy

is the intrinsic information of X and the extrinsic information sent from X to Y is

IX—>Y = IX + ZZGJ\/’(X)\Y IZ—>X-
2.4 Sum product Algorithm

Assume ¢ = [cg, ¢1....... cn—1] is the codeword defined by C' = {c € Fy' : He! = 0},
where F, denotes the binary Galois field. After mapping, ; = 1—-2¢; (Vi =0~ (N—1))
are transmitted. y = [yo, Y1........ yn—1] is the sequence of samples at the output of receiver
over the AWGN channel with mean 0 and variance 6 = N;y/2. The log-likelihood ratio
(LLR) of z;:

Pr(z; = 1ly)
Pr(z; = —1ly)

L; = L(x;ly) = log( ) = 2y, /0? (2.1)

L;_,; denotes the message passsed from ith VN to jth CN. L,_,; denotes the message
passsed from jth CN to ith VN. Let «;,; = sign(L;;), and f;; = |L;—;|. Define

¢(x) = —log(tanh(x/2)) = log(ZZ—f}).



Lx’—»;’
message passed message passed
from check node ¢, to variable node v, from variable node v, to check node ¢,

Figure 2.3: An illustrate of LLR message passing between variable and check nodes.

The sum-product algorithm is listed.

Initialization: Let L 4; = Ly Vo= 1~ N.

Step 1. Check-to-variable message updating:

L= H Q45X o( Z ¢(5i’—>j))v (2.2)

i’ eM@G)\i i EM(G)\i

Step 2. Variable-to-check message updating:

LY Z L, (2.3)
7 €M\

Step 3. LLR computation:

Lietal — [, 4 Z L (2.4)
JEM(3)

Step 4. Make decision: If Lt < 0, let ¢; = 1. Else, let ¢ = 0.

Step 5. If the number of iteration reach the maximum setting value or He” = 0,

stop decoding. Otherwise, go back to Step 1.



Chapter 3

Overview of Puncturing LDPC
Codes

Transmitting a subset of parity bits of error-correcting eodes is called puncturing,
and it is assumed that the decoder knows the locations of punctured nodes. Over
time-varying channels where channel state information (CSI) is available at transmitter,
flexible code rate is desired to improve channel bandwidth efficiency. One can encode
at a higher/lower code rate when the channel becomes more/less reliable, respectively.

In multi-carrier sub-channels, to promote error-correcting performance, if the fading
gain of one sub-channel isdhigher /lower than a threshold, we use/discard it. Power real-
location/puncturing patterns‘are employed to used/discarded sub-channels, respectively.
Moreover, there is a limit value existing for the total number of sub-channels which are
discarded based on code characteristics.

Punctured codes have another advantage with hybrid automatic-repeat-request (HARQ)
protocols. A transmitter sends partial parity bits by puncturing a mother code. If the
receiver fails to recover the message, the receiver progressively requests additional parity

bits which were previously punctured.

3.1 Introduction to Puncturing at TX and RX

In puncturing, incomplete coded bits are transmitted to receiver, and the error-

rate performance may suffer from this. For reducing the performance loss, punctured



nodes need to be properly selected. There are (JI ) choices for selecting x VNs from
N VNs to puncture. Assume that these choices form a set denoted by S, the opti-
mal puncture pattern P could be obtained by P = arg glelg SN P.(v;), where P.(v;)
is the error probability of v;. However, the exhaustive search is NP-hard (it needs to
take exponential time) so that the method is hard to implement. Several preceding pa-
pers took greedy strategy to design algorithms based on bit-by-bit selection for finding
puncturing patterns. The concepts of these algorithms can be understood through ob-
serving the iterative message-passing decoding. The decoder needs to know which VNs
are punctured, and the error probability of these nodes for random decision is 1/2 (i,e,
LLR = 0). Instead of random decision for these nodes, the punctured nodes need to
acquire message from their connected-CNs with decoding iterations. The process that
a punctured node firstireceives a nonzero message from.at least-one connected check
node is called to be recovered. The error probability of recovered message is called re-
covery error probability. The recovery procedure is described as follows. Step 1. The
unpunctured nodes which received channel values will pass message to some punctured
nodes. Step 2. The recovered punctured nodes will then pass message to some other
unrecovered punctured nodes: Step 3. Proceeding 2.with decoding iterations and so
forth. The different number of decoding iterations for a punctured node needs to be
recovered causes different error rate on them. A punctured node which is recovered in
the kth decoding iteration is called k-step-recoverable (k-SR) punctured node, and the
recovery order of the punctured node is k. Notice that unpunctured nodes are defined
as 0-SR. A k-SR punctured node v; has at least one connected CN ¢;, such that the
set N'(j) \ {i} contains at least one (kK — 1)-SR node while the others are m-SR, where
0 <m < k—115. We show an example in Figure 3.1. The recovered message of a
kE-SR punctured node is from m-SR (m < k) punctured nodes’, so the information on
the average is more unreliable statistically. For a k-SR punctured node, the CNs which

pass messages to it in the kth iteration is called Survived check node (SCNs). More-
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Figure 3.1: recovery of puncture nodes



over, for an unpunctured node, we further define the CNs which pass messages to this
unpunctured node in the first iteration as SCNs In Figure 3.1, the number of SCNs of v;
and v; is two and the number of SCNs of v, is 1. Some expressions need to be defined
as followes. G(i) = {z|z # i,z € N(j),j € M(i)} is the neighboring VNs of the VN
v;. The neighboring VN which is punctured is called neighboring punctured node; the

neighboring VN which is unpunctured is called neighboring unpunctured node.

3.2 Puncturing Infinite Length LDPC Codes

The asymptotic analysis and design of rate-compatible puncturing schemes for LDPC
code ensemble has been studiedin{1]-[3]. In [1] [2], variable nodes with different degrees
are divided into different groups and-a puncturing distribution is defined to describe
the puncturing proportions of each-group. A Gaussian approximation method [14] is
used to predict and compute the threshold the lower bound of the theoretical required
signal-to-noise ratio (SNR) for error-free decoding [13] for a code ensemble. When
variable and check node degree distributions and the fraction of punctured nodes are
given, the puncturing distribution is optimized by a linear programming technique to
achieve the asymptotic threshold for the code ensemble. "An extension work which
additionally consider the code structure was proposed in [3]. A generalized check node
degree distribution is introduced to describe different code structure: the check nodes
are classified based on the degree distributions of their connected variable nodes. The
authors [3] found out that the optimal puncturing distribution not only depends on code

ensemble degree distribution but also on the code structure.

3.3 Puncturing Schemes for Finite Length LDPC
Codes

The asymptotic analysis is suitable for infinite length LDPC codes, but it may have

distortion when the optimized results are applied to finite length codes. The analysis of

10



finite length LDPC codes is more challenging. Several puncturing algorithms for finite
length LDPC codes have been suggested in [4]-]6].

The idea in [5] is based on a fact that a punctured node will be recovered with
reliable messages. First, the algorithm attempts to maximize the number of punctured
nodes that are 1-SR. When no more 1-SR nodes can be found, it proceeds with 2-SR
nodes, etc.. Second, in the algorithm, a certain SCN is selected for a punctured node
and called guaranteed SCN. The recovery tree is introduced to observe the reliability of
the guaranteed SCN information. A tree is built rooted in a punctured node v in the
following way. First, v is linked to its guaranteed SCN and next link the SCN to all of its
connected VNs excluding v. Then; repeat the preceding process for all new punctured
nodes in the tree until every branch-ends with an unpunctured node. The number of
unpunctured nodes in/the recovery tree ofw is'denoted.as S(v).=When a punctured
LDPC code is transmitted over a BEC with an erasure probabilityof ¢, the probability
of correct recovery oftw in Gy which is compesed of all k-SR nodes is expressed in a

recursive form:
1—¢ ,lf v E Go

) N
V(v €) S [T Y(rje) ,if ve Gy(k>0)
j=1

(3.1)

The recovery error probability of a punctured node v over a BEC with an erasure prob-
ability of € is (1 — ¥(v,¢€)), where ¥(v,¢) = (1 — €)°®). The authors observe that the
number of unpunctured nodes in the recovery tree of a punctured node is positive corre-
lated to the probability of successful recovery. The candidate v with lower recovery order
and with smaller S(v) will be a new punctured node. A grouping algorithm based on the
recovery order and the number of unpunctured nodes in the recovery tree is proposed.
Within each group, sorting algorithm is proposed to determine the puncturing priority
of these selected nodes.

Based on Gaussian approximation (GA), the authors [6] stated that more number of

SCNs of a punctured node, the lower recovery error rate is. C’i(k) denotes a SCN 7 of the

11



Figure 3.2: recovery tree of v
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k-SR punctured node v*). The value S (C’i(k)) is the total number of unpunctured nodes
under the SCN C’i(k). m;kl) denotes the mean LLR value from the survived check node
1 of a k-SR punctured node to the k-SR punctured node. m denotes the mean LLR
value from a k-SR punctured node to the survived check node of a (k+1)-SR punctured
node. m{ is the mean LLR of channel value. Ngc (v®) denotes the number of survived
check nodes of the k-SR punctured node v*). When observing the k-SR punctured node,
it is assumed that the m-SR (m < k) punctured nodes only has a SCN. Based on the
assumption, the recovery error probability of a punctured node v € G}, over an Additive
White Gaussian Channel with Gaussian Approxination is P (b)) = Q(\/mgk) /2),
where m{® = zg\[:{(v(m) 1= 1= @(m&o))]s(cfk))), and

{241 [ ianh e (u—2)*/dz g if
O(x) = (imgo-tani g€ RN, (3.2)
1 pif =40

In the simulation, all punctured nodes are 1-SR and every punctured node has the same
number of SCNs. The result is shown that the performance of the punctured code with
more SCNs is better.

In [7], another puncturing scheme with better performance compared with those in
[5] was proposed. The punctured. nodes are selected as far apart from each other in the
Tanner graph of the code as possible. In-each-round; the candidates are composed of
the VNs which are at least a distance of four ‘away from punctured nodes which had
been selected in the round, and have at least one connected check node which connects
to all unpunctured nodes. A new punctured node is randomly selected from candidates,
and the neighboring variable nodes are excluded from the candidate set in the round.
The punctured-patterns-selecting procedure are terminated when the candidate set is
empty in a round and the set will be regenerated for the next round. Each round of
the scheme returns a set of punctured nodes that the average error probability of an
unpunctured node is minimum after 1st iteration of the message passing. When the
kth round (k > 1) is processed, the punctured nodes may be m-SR, where 1 < m < k.

Moreover, Additional puncturing scheme (A-puncturing scheme) is proposed to achieve

13



higher puncturing code rate. It randomly selects an unpunctured node that connects
to the least number of check nodes that involve only one punctured node selected in
the previous puncturing scheme as a new punctured node. This ensures that when the
punctured node is selected in A-puncturing scheme, the reduction in the probability of
correctly recovery of 1-SR punctured nodes selected in the previous puncturing scheme

is minimized.
3.3.1 Some thoughts about existing puncturing schemes

The recovery tree [5] is based on.senie assumptions. Assumption 1: If the maximum
recovery order of punctured nedes is &, the mother code is either cycle-free or has a girth
larger than 2(k+1). Assumption 2: Every pundtured node is.connected to its guaranteed
SCN only, that is, it does not consider the actual number of SCNs. Assumption 3: The
unpunctured nodes only pass their channel values even after they have received updated
messages. Based on Assumption 1, the nodes aré not repeated in the tree or no cycles
exist in the tree. Based on Assumptions2 and 3, a punctured node v with a smaller
S(v) has a smaller recovered error probability.

Although multiple SCNs are considered in [6], the DE‘with GA of a k-SR punctured
node is based on the assumption' that each m-SR(m < k) punctured node only has a
SCN. Besides, despite of [5] or [6], the message of unpunctured nodes are not updated
increment of iteration number; that is, unpunctured nodes only pass the received channel
values out. Moreover, the method only cares about the number of SCNs, but which CNs
will be the guaranteed SCNs are not considered, and which candidate with the number
of SCNs as a punctured node is also not considered. Moreover, We know that the
fixed number of guaranteed SCNs is restricted by the degree of VNs, and the achievable
puncturing code rate is restricted by the fixed number of guaranteed SCNs. The authors
don’t provide a method to find the optimal number of guaranteed SCNs to enhance the

overall performance. It is also not known if using a fixed number of guaranteed SCNs is

14



a better strategy than the one using different number of guaranteed SCNs for different
punctured nodes.

In [7], although the punctured nodes in each round are at least a distance of four
away from each other, the edge-distance among punctured nodes in all rounds is not
expected to be so. In A-puncturing scheme, less 1-SR punctured nodes selected in
previous scheme whose SCNs decrease due to the new punctured node, but it doesn’t
concern about the k(> 1)-SR punctured nodes selected in previous puncturing scheme

and these new punctured nodes selected in A-puncturing scheme.
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Chapter 4

A New Puncturing Algorithm

4.1 Design Guidelines

To find an optimal puncturing set P, exhaustive search can be used, but it is time-
consuming. In contrast, finding the puncturing set in a bit-by-bit selection manner is a
simpler approach. In this approach, a candidate that can minimize the average bit error

rate (BER) is selected as a new punctured node; that is, a punctured node v; is chosen
by
| N
i = arg; rgzlér‘l/ N Z Pe(v5), (4.1)
PEP Uy y=1
where V' is the set of candidate punctured nodes, i.e., all unpunctured nodes, and P.(v;)
is the error probability of v;. Based on (4.1), it is straightforward to see that the average
BER of the N VNs is highly related to the recovery error probability of the candidate
punctured node v; and the error probability of other nodes if v; is punctured. Consider
the AWGN channel with the mean LLR of channel value pg and use the Gaussian
approximation (GA) to analyze the BER. Let ,uil(())) denote the mean LLR of unpunctured
node v; in the first iteration and /Lq(;]:) denotes thle mean LLR of k-SR punctured node v;

in the kth iteration, where k € Z*. Let Scn(v;) be the set of SCNs of v;. Let Oé;-m) (v5)

be the number of m-SR nodes in the set {N(j) \ ¢}, where ¢; is the SCN of v;. The
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mean LLR of unpunctured nodes and 1-SR punctured nodes in the first iteration are as

follows:

i =to+ X 7M1= [1= o))

jeSen(w™)

u = 3 671 = [L— o))

je€Scen(v;)

, (4.2)

where ¢(z) and ¢~!(x) are decreasing function and 0 < ¢(x), ¢! (z) < 1. We assume
that ka ni) sp is the average mean LLR of m-SR nodes in the (k — 1)th iteration and we

further obtain the mean LLR of £-SR punctured nodes in the kth iteration.

(k1)

i = 3 67 (1o Tl = etmlSepl” ), k=23, (4.3)

JGSCN(UZ) m=0

The error probability of unpunctured node v; in the first iteration is Q( ,u(l(())) /2) and

the recovery error probability.of k-SR. punctured node v; is Pe( = Q( uvl / 2).
From (4.2) and (4.3){"we know that the indicator parameters such as the number of
SCNs, the degree of the SCNs and the connected nodes of the SCNs determine the error
probability. It can be roughly known that a node «; a) has more SCNs and the degree
of these SCNs are smaller and b) the recovery order of the nodes which are connected
to these SCNs are smaller, the ‘error probability-of v;is lower. We further discuss about
(4.1) by the indicator parameters to obtain several puncturing guidelines. The details
are given as follows.

First of all, we show two examples to illustrate how the recovery error probabil-
ity of a punctured node is affected. Consider the BEC with erasure probability € in
Figure 4.1, the probability of correct recovery of v; is (1 — €)?; the probability of cor-
rect recovery of vy is 2(1 — €)? — (1 — €)?. Thus, the probability of correct recovery of
vy is larger than v; in BEC. Similarly, we consider the AWGN channel in Figure 4.1.
s = 11— [1—(0)]2); ubl) = 2071(1—[1—p(110)]2). The recovery error probability
of vy is smaller than v;.

Guideline 1: The recovery error probability of the punctured node with more SCNs
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will be lower, i,e, |Scen(v;)| 1= Pe(R)(vi) 1.

Another example is shown in Figure 4.2. Consider the BEC and assume that the av-
erage error probability of unpunctured nodes in the first iteration is ¢, and the aver-
age recovery error probability of 1-SR punctured nodes is €;. Statistically, it is rea-
sonable to assume that €; > ¢p. The probability of correct recovery of v; is (1 —
e1) + (1 —e)(1 —€1)®> — (1 — €)(1 — €1)*; the probability of correct recovery of vy
s (1—e)+(1—e€)*(1—e)—(1—¢€)*1 — €1)?% the probability of correct recovery
of vy is (1 —€1) + (1 —€)(1 —€1) — (1 — €)(1 — €)% Thus, if ¢ > €y, the proba-
bility of correct recovery of v;» is larger than that of w; and the probability of correct
recovery of vy is larger than that of v; in BEC. Analogously, the AWGN channel is

considered in Figure 4.2 .and on the-average uﬁ)lst is assumed to be smaller than

1o sne ) = O (Lamfl & d(pp gl HB T [T @l )] [T — oty _sp)]?):
u) = @711 = [1— oy _s)l) + @11 = 1 —oludy sP =0l _sn)); uis) =
O (1= [1— (sl + D7 (1= L=l o Gp)l[1— o (gl Thus, PP (v0) =
Q(\/,ug,),/Q) < P (vapr=.Q( ug,Q,)/Z) P (v)-=-Q(\/ 1152 /2) The differences of
the recovery error probability among these three VNs result from the reliability of their
SCNs, ie., R(c;) < R(cjr) < R(¢ju)wwhere R(c;) denotes the reliability of ¢;.
Guideline 2: If deg(cj1) = deg(cjz) and ¢ connects to more unpunctured nodes and
less punctured nodes, c;; is more reliable than cjo. Moreover, the smaller recovery order
of these connected punctured nodes are, the more reliable of the CN is. For example,
R(c;) < R(cy) in Figure 4.2.

Guideline 3: If two CNs connect to the same number of punctured nodes, the CN with
lower degree is more reliable. For example, R(c;/) < R(c;») in Figure 4.2.

From the two examples, for reducing the recovery error probability of punctured nodes,
the punctured nodes should have more SCNs and the reliability of these SCNs should
be higher.

Second, we show an example in Figure 4.3 to discuss about the error probability
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Figure 4.2: An example of check reliability.
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Figure 4.3: An example of the effect on-the neighboring VNs of a punctured node.

of other nodes if a candidate is-punctured. Consider the BEC with erasure prob-
ability €, if v is unpunctured, the correct probability of v, in-the first iteration is
(1 =€)+ (1 =€) — (= e if v is punctured; e, cannot pass message to v; in the
first iteration and the'€orrect probability of vy in the first iterationis (1 — €). Consider
the AWGN channel in Figure 4.3, If v is unpunctured; Nilgt)n = tot+ P11 —[1—(uo)?);
if v is punctured, ,uili())) = pg. If anode is punctured, the error probability of the neigh-
boring VNs of the puncturedmode will arise.

Guideline 4: If a node is punctured, the number of SCNs of some neighboring VNs will
decrease such as v, vy, v3 and vg in Figure 4.3; the recovery order of some neighboring
punctured nodes will increase such as v in Figure 4.3. Thus, the error probability of
these nodes are statistically higher.

Next, we classify the neighboring VNs whose SCNs will decrease if a candidate is punc-
tured. One is the neighboring unpunctured nodes which connect to SCN of the punc-
tured node if the recovery order of the punctured node is 1, for example, vy, vy, v3 in
Figure 4.2; Another is the neighboring punctured nodes of the punctured node despite
of its recovery order, for example, vs, vg in Figure 4.2. When a new punctured node is

determined, we need to take care of the neighboring VNs.
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Guideline 5: The recovery order of every punctured node needs to be under control
such that the punctured nodes have lower recovery order and avoid stopping set contain
only punctured nodes.

All in all, we select a new punctured node from candidates, the recovery error probability

and the effect on other nodes need to be considered.

4.2 Discovering Good Puncture Patterns

4.2.1 Notations and Definitions

Let P® denote the set of t-SR_punctured nodes. If A 'is.a set, let |A| be the
cardinality of the set A. Moreover,-we introduce an (-SR constraint to control the
recovery order of punctured nodes; that is when a candidate is punctured, the recovery
order of neighboring punctured nodes of the candidate can be only less than or equal to
[.

The next we define some quantities to measure which candidate is more suitable to
be punctured. For some v; € WV assume candidate v; 48 punctured (P = P|Jv;), we

propose the following five subroutines to ebtain appropriate information for puncturing:

e The number of SCNs of the neighboring punctured nodes of v; are observed in

Subroutine (A).
e The number of SCNs of v; is obtained in Subroutine (B).
e The sum of the degree of these SCNs of v; is obtained in Subroutine (C).

e [f the recovery order of v; is 1, the number of SCNs of the neighboring unpunctured

nodes which connect to SCN of v; are observed in Subroutine (D).

e If the recovery order of v; is ¢t and ¢ is lager than 1, the number of m-SR (0 < m <

(t — 1)) nodes which connect to SCNs of v; are observed in subroutine (E).
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In Subroutine (B), (C) and (E), we examine the recovery error probability of the
candidate punctured node. In Subroutine (A) and (D), we measure the influence
on previous selected punctured nodes and related unpunctured nodes, which is

caused when the candidate is selected to puncture.

Subroutine (A):

1. Let T0™(3) = {k|k € G(v;) () P™} denote the set of the neighboring m-SR punctured
nodes of v;.

2. The average number of SCN of the nodes in the set T'™)(7) is

_ , Far 1SeN(ug D ()] # 0
ST (3)) = keTm) (i) . (4.4)
0 D@ =0

Subroutine (B):

1. Assume the recovery order of v; is ¢, let the set Sgl)\l(vl) be the SCNs of v;,
2. The number of SCNs of v; is |Sg1)\1(v,)l

Subroutine (C):

Assume the recovery order of w; is ¢, The sum of the degree of these SCNs of v; is

dSCN Uz Z deg CJ (45)

]Esgl)\l(vz)

Subroutine (D):

1. Assume the recovery order of v; is 1, A(i) = {k|k € N(j) \ i ,j € SCN(UZ)} denotes
the neighboring unpunctured nodes which connect to SCN of 1-SR v;.

2. The average number of SCN of the nodes in the set A(i) is

keA (7)

Subroutine (E):

22



1. Assume the recovery order of v; is t(> 1), a§m) (v;) denotes the number of m-SR nodes
in the set {N(j) \ ¢}, where ¢; is the SCN of v,.
2. The sum of the number of m-SR nodes which each SCN of v; connects is
Ty = Y o™ (), (4.7)
7ESE (1)

where 0 <m < (t —1).
4.2.2 Proposed Algorithm

In our algorithm, the candidate set-isrcomposed of all the unpunctured nodes and
the candidate set is regenerated and reduced step by step such that a new punctured
node is acquired. Each step.is like a ”sieve” to discard some candidates according to the
quantities obtained by each subroutine. Several examples are illustrated to explain how
to reduce the candidaterset by-each-quantity. (Note that the candidate v; is assumed to
be punctured in the following examples (from Figure 4.4 to Figure 4.15).)

First, [-SR constraint is applied to candidates. If one of the nodes remained in
the candidate set is chosen to be punctured, it would not induce the recovery order
unexpected increment of the punctured nodes and the maximum recovery order of the
new punctured node is [ + 1. For example;if-0=SR _constraint is applied, the candidate
v; in in Figure 4.4 (a) is discarded; if 1-SR"constraint is applied, the candidate v; in
Figure 4.5 (a) is discarded. Notice that when 0-SR constraint is applied, it means that
the punctured nodes are at least a distance of four away in the Tanner graph.

Second, if a node remained in the candidate set after Subroutine (A) is punctured,
the average number of SCNs of its neighboring punctured nodes are larger than that
of selecting any node not belonging to the candidate set. Moreover, the neighboring
punctured nodes with lower recovery order should have stronger protection (let it have
more SCNs). If the recovery order of neighboring punctured nodes of a candidate are all
higher than those of other candidates, the priority of the candidate as a new punctured

node is lower. For example, S(T'W(i))=1 in Figure 4.6 (a); S(I'Y(i))=1.5 in Figure 4.6
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Figure 4.5: An example of [-SR constraint (II).
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Figure 4.7 Theneighboring punctured nodes of v; (II).

(b), so v; in Figure 4.6 (a) is discarded. S(FY(2))=1"in Figure 4.7 (a); S(T'V(4))=1.5 in
Figure 4.7 (b), no matter what the value S(I'®(4)) is, v; in Figure 4.7 (a) is discarded.
S(T'M(i))=1 in Figure 4.8 (a); S(T'W(4))=1 in Figure 4.8 (b); S(I'"(i))=0 in Figure
4.8 (c), so v; in Figure 4.8 (c) is discarded. S(I'®(i))=1 in Figure 4.8 (a); S(I'®(i))=2
in Figure 4.8 (b), so v; in Figure 4.8 (a) is discarded.

Third, The candidate punctured node with lower recovery order and more SCNs has
a higher priority as a new punctured node. For example, |Sé1131(vi)|: 2 in Figure 4.9
(a); \S(Cl&(vi)\: 3 in Figure 4.9 (b). In the comparison, v; in Figure 4.9 (a) is discarded.
|Sé212](vi)|: 1 in Figure 4.10 (a); |Sé212](vi)|: 2 in Figure 4.10 (b). In the comparison,

v; in Figure 4.10 (a) is discarded. The recovery order of v; in Figure 4.11 (a) is 2; the
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Figure 4.8: The neighboring punctured nodes of v; (I11).

recovery order of v; in Figure 4.11 (b) and (¢) is 1. The v; in Figure 4.11 (a) is discarded.
|Sé1131(vi)|: 2 in Figure 4.11 (b); |Sél&(vi)|: 1'in Figure 4.11/(¢).. Thus, v; in Figure 4.11
(c) is discarded. The next @we see the sum of degree 6f SCNs conditionally on the
candidates with the same number of SCNs. dsen(v;)=6 in Figure 4.12 (a); dscen(v;)=5
in Figure 4.12 (b). Thus, v; in Figure 4.12 (a) is discarded. dscn(v;)=3 in Figure 4.13
(a); dsen(v;)=2 in Figure 4.13 (b). Thus, v; in Figure 4.13 (a) is discarded.

Fifth, if the recovery order of the candidate punctured node is 1, we take care of
the neighboring unpunctured nodes which connect to SCNs of the candidate. i,e., the
amount of SCNs of these neighboring unpunctured nodes should be more. For example,
S(A(i))=0.5 in Figure 4.14 (a); S(A(i))=1 in Figure 4.14 (b); in the comparison, v; in
Figure 4.14 (a) is discarded.

Finally, if the recovery order of the candidate punctured node is ¢ and t is larger

than 1, we need to concern more about the SCN reliability. Notice that if the recovery
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Figure 4.11: Recovery order and SCN of candidate punctured node v;.
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Forth, conditionally on the candidates with the same SCN number, the candidate punc-
tured node with lower degree of their SCNs has a higher priority as a new punctured
node. For example, dsen(v;)=6 in Figure 4.12 (a); dscn(v;)=>5 in Figure 4.12 (b). Thus,
v; in Figure 4.12 (a) is discarded. dgcn(v;)=3 in Figure 4.13 (a); dson(vi)=2 in Figure
4.13 (b). Thus, v; in Figure 4.13 (a) is discarded.

(a) (b)

Figure 4.13: Degree of SCN of v; (II).
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Figure 4.14: Unpunctured nodes which connect to SCN of v; (the recovery order is 1).

order of the candidate punctured node is 1, the reliability of SCNs has been considered
by CN degree. Conditionally on the candidates with the same number of SCNs and the
same sum of the degreé of SCNs, ‘we compare 7™ (v;);where 0'< m < (t —1). If a SCN
connects to more unpunctured nodes and less punctured nodes and the recovery order
of these punctured nodes are lower, the reliability of the"'SCN is higher. For example,
70 (v;)=2 in Figure 4.15 (a); 7% (v;)=3 in Figure 4.15 (b); thus, v; in Figure 4.15 (a) is
discarded.

The proposed algorithm is listed in Table 4.1. After step 1, the maximum recovery
order of every punctured node is under control. In step 2, the SCN number of previous
punctured nodes is considered when a new punctured node is determined. Based on
taking care of previous selected punctured nodes, the recovery order and SCN number
of a new punctured node are considered in step 3. We further discuss the SCN reliability
of a new punctured node in step 4 and step 5. The SCN number of unpunctured nodes
is thought in step 5. In step 6, the new punctured node is randomly selected from the

candidate set and then the candidate set is regenerated by all unpunctured nodes and
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Table 4.1: Algorithm of Puncture Patterns Design

Initialization:
Set =0, P=¢,V={1,2,...,N},and t = 1.

Step 1:
The candidate set V' is regenerated such that the candidates in V satisfy [-SR constraint.
ftv=9¢

set [=1+1andt=1.
reset V. ={1,2,.., N} \ P.
If | = N, exit the algorithm.
go back to step 1.
end if
Step 2:
form=1:1
Obtain S(I‘ ( )) with P¢by Subroutine (A),.V v eV
V! = {i[S(Tt™(5)) = meg(S( (7))}
V=V’ (If max S(I‘(m (7)) =0, V is unchanged.)
end for
Step 3:
If no candidate punetured nodes is t-SR and ¢ < (I + 1), set t =t + 1.
Obtain |SgN(vZ)| with P by Subroutine (B), ¥ v; € V
= {il 1SEn (vi) = max |SEN @)1}
JEV
V=V
Step 4:
Obtain dgon(v;) with P by Subroutine (C), V v; € V|
V' = {ildson (vi) = mindgep(p)

V=V
Step 5:
ift=1

Obtain S(A(i)) with P by Subroutine (D), V v; € V
V7 = {ilS(A(D) = max S(A (7))}
end if
elseif t > 1
form=0:(t—1)
Obtain 7™ (v;) with P by Subroutine (E), V v; € V/
V7 = {ifn ™ (v;) = maxer ™) (v;)}

V =V’ (If max7(™(v;) =0,V is unchanged.)

jEV
end for
end if
Step 6:
Randomly select one node v; from V.
P=P U'Ui-

vV ={1,2,..,N}\ P.
If | P| is reached, exit the algorithm. 31
otherwise, go back to Step 1.



Chapter 5

Numerical Results and Related
Discussions

5.1 Relationship Between Indicator Parameters and
Error Probability

Several indicator parameters are observed in-analyzing the simulation results. The
indicator parameters include the number of SCNs and the degree of the SCNs and
the number of un-/punctured nodes which a SCN-¢onnects for each recovery order of
punctured nodes. Notice that the reliability of a CN is determined by its degree and the
connected nodes. In most cases, the recovery error probability can be inferred from these
indicator parameters. However, some cases are more complicated, it needs to observe
more detailed information, for example, the recovery order of punctured nodes which
connect to a SCN and the error rate of the nodes which a SCN connects.

The QC code with N = 576, K = 384, M = 192, and R = 2/3 in IEEE 2005
802.11n is simulated. The degree of VNs is 2, 3, 4; The degree of CNs is 9. When the
puncturing code rate is 3/4, the recovery order of punctured nodes in [7] and proposed
scheme are 1, 2. First, we see the 1-SR nodes. The average number of SCNs which a

1-SR punctured node has is approximately equal in the two schemes and the data is
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shown in Figure 5.1. The average number of unpunctured nodes which connect to a
SCN of a 1-SR node is also approximately equal in Figure 5.2. We can infer the average
recovery error probability of 1-SR nodes in the two schemes are approximately equal
and the simulation result is shown in Figure 5.4. Next, we see the 2-SR nodes. The
average number of SCNs which a 2-SR punctured node has in proposed scheme is more
than that in [7] and the SCN reliability of 2-SR nodes in two schemes is approximately
equivalent, so we can deduce that the average recovery error probability of 2-SR nodes
in proposed scheme is better than that in [7]. After 2-SR nodes are recovered, all the
message passing in Tanner graph works and thus the'2-SR nodes with better recovery
improves the performance of 1-SR nodes.

Both the average BER of unpunctured nodes and two recovery order of punctured
nodes are decreasing functions of the iteration number, as.is evidenced by the simulation
results shown in Figure 5.5." In Figure 5.6, we show that in the 100th iteration, the
average BER of unpunetured nodes, 1-SR and 2-SR nodes outperform than those in [7],
respectively. Another simulation is the QC.code with puncturing code rate 4/5, the
recovery order of punctured nodes in [7] are 1,72,:3, 4; in proposed scheme are 1, 2,
3. The average number of SCNs which a 1-SR punctured node has and the reliability
of these SCNs are approximately equivalent in the two schemes. The average recovery
error probability of 1-SR nodes in the two schemes is also approximately equal. The
average number of SCNs of 2-SR or 3-SR nodes and the average number of unpunctured
nodes which connect to a SCN of a 2-SR or 3-SR node in proposed scheme are all more
than those in [7], respectively. Moreover, in Figure 5.9, the average number of 1-SR
and 2-SR nodes which a SCN of a 3-SR node connects in proposed scheme are less than
those in [7], respectively. The average recovery error probability of 2-SR, 3-SR nodes in
proposed scheme outperform than those in [7], respectively. When the puncturing code
rate of the QC code achieves 5/6, the average number of SCNs of 1-SR nodes in proposed

scheme is less than that in [7] and the SCN reliability of 1-SR nodes is approximately
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equal, the average recovery error probability of 1-SR nodes in proposed scheme are worse
than that in [7]. The situations of other punctured nodes with different recovery order
in proposed scheme are all better, therefore the average recovery error probability of
them outperform than those in [7]. The neighboring VNs of 1-SR nodes in proposed
scheme are mainly composed of unpunctured nodes and 2-SR nodes, after 2nd iteration,
the error rate of 1-SR nodes are mainly affected by them. With increment of iteration
number, these nodes which have better recovery in proposed scheme pass more reliable
message out such that the average error rate of all kinds of nodes are better than [7]. The

analysis of simulation data about length-504 PEG code is similar to above description.

5.2 Simulation Results

Computer-simulated bit errorrate(BER) and frameerror rate (FER) performance
of two different puncturing schemes for LDPC codes are reported in this section. One
scheme is proposed in paper [7] and another s proposed scheme. The (576, 192) 2/3-
rate LDPC code defined in 2005-802.11n; the PEG(504,252) 0.5-rate LDPC code and
the (1920, 640) 1/3-rate Gallager LDPC code are used in/simulations. Sum product
decoding algorithm is taken and the:maximum number of iteration is set to be 100.

Figure 5.37 depicts the BER performance of the QC code. When the puncturing
code rate is 3/4, 4/5 and 5/6, the proposed scheme outperforms [7] by about 0.24 dB at
BER=3 % 107%, 0.25 dB at BER=6 * 1075 and 0.875 dB at BER= 107, respectively.

Figure 5.38 depicts the FER performance of the QC code. When the puncturing
code rate achieves 3/4, 4/5 and 5/6, the proposed scheme offers about 0.24 dB gain
around FER=10"%, 0.26 dB gain at FER=2 * 10~* and 1 dB gain at FER= 4 % 10~*
against [7], respectively.

Figure 5.39 depicts the BER performance of the PEG code. When the puncturing
code rate is 2/3 and 3/4, the proposed scheme outperforms [7] with 0.1 dB distance at
BER=6 * 1079 and 1 dB distance at BER=2 x 10~°, respectively.
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Figure 5.40 depicts the FER performance of the PEG code. When the puncturing
code rate achieves 2/3 and 3/4, the proposed scheme yields 0.2 dB gain around FER=2x
10~* and 1.2 dB gain at FER=6.5 x 10~* against [7], respectively.

Figure 5.41 depicts the BER performance of the Gallager code. When the puncturing
code rate is 2/3, the proposed scheme outperforms [7] by about 0.4 dB at BER=10"%.
Figure 5.42 depicts the FER performance of the code. When the puncturing code rate

is 2/3, the proposed scheme offers about 0.4 dB gain around FER=10"2 against [7].
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Chapter 6

Conclusions

We present a puncture pattern design scheme for finite-length LDPC codes. For use
in AWGN channels, we use GA fo analyze the error probability of variable nodes. Some
indicator parameters associated with-the recovery capability of punctured nodes and the
error-correcting performance of unpunctured nodes are obtained based on the analysis.
The design guidelinesrare derived from the relationships between these parameters and
error-rate performance. We also compare the decoding performance of our scheme with
that of existing approaches. The experimental results prove that the performance of the
proposed algorithm does’offer better performance in comparison with the method in [7],

which is consistent with the GA-based theoretical prediction.
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