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下鏈 LTE-A蜂巢式系統中協調式多點傳輸方法之研究

研究生：楊為守 指導教授：黃家齊 博士

國立交通大學電信工程研究所 碩士班

摘 要

協調式多點傳輸 (Coordinated Multi-Point Transmission，CoMP)是一種有效降低基

地台間干擾的方法。其主要概念是挑選數個基地台彼此合作以消除干擾，這衍生出一個

問題：哪些基地台該合作並形成一個協調式多點傳輸叢集 (CoMP Cluster)？針對下鏈傳

輸，我們提出一個動態建立叢集的方法。為了降低複雜度，我們使用一種基於區塊對

角化 (Block Diagonalization)的線性前置編碼器。模擬結果顯示出此動態方法優於另一

靜態方法。接下來，我們提出一最佳的功率分配方式，使得總傳輸功率最低並同時滿

足誤碼率 (Bit Error Rate)、資料傳輸率與天線傳輸功率限制。我們使用 Lagrange對偶分

解 (Dual Decomposition)來解決此非凸 (Non-Convex)的最佳化問題。和一固定的功率分

配方式比較後，模擬結果顯示此最佳化方法能提供較佳的效能，此外，各天線上的傳

輸功率也較少超出其限制。最後，我們提出了一個降低峰均值功率比 (Peak-to-Average

Power Ratio，PAPR)的方法，其使用疊代的方式來改變星座點以降低 PAPR。模擬結果

顯示僅需兩次的疊代就可獲得很好的 PAPR降低效果。
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ABSTRACT

Coordinated multi-point transmission (CoMP) is a promising way to suppress inter-base

station (BS) interference. The main idea of CoMP is to select several BSs which could coop-

erate together to mitigate interference, which raises an intrinsic problem of which BSs should

form a CoMP cluster. We propose a dynamic clustering method for downlink transmission,

which forms CoMP clusters adaptively. To reduce the complexity, a linear precoder based on

block diagonalization (BD) is used throughout this thesis. Simulation results show that our

dynamic scheme outperforms another static method. Next, we design an optimal power allo-

cation method that minimizes the total transmit power while satisfying bit error rate (BER),

user rate requirement and per-antenna power constraints. Lagrange dual decomposition is used

to solve this non-convex optimization problem. The numerical results reveal the great perfor-

mance gain against fixed power allocation, and the transmit power on each antenna seldom

exceeds the power limit. Finally, we propose a peak-to-average power ratio (PAPR) reduction

method, which reduces signal peak by altering signal constellations. The simulation results

show large PAPR reduction using an iterative procedure with only two iterations.
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CHAPTER 1

INTRODUCTION

With the demand of high data rate in the future wireless communication systems, multiple-

input multiple-output (MIMO) techniques have been proposed to improve the system through-

put. Besides, in a cellular network, the frequency band can be reused in a one cell fashion to

maximize the spectral efficiency. However, one cell frequency reuse limits the performance of

MIMO systems due to severe other-cell interference (OCI) [1]. Although the receiver can elim-

inate the interference by applying techniques like successive interference cancellation (SIC),

but in the downlink, this burdens the user equipment (UE) with high computational complex-

ity. Recently, a promising way called CoMP has been proposed by the long-term evolution

advanced (LTE-A) to suppress OCI. The idea of CoMP is to gather a group of BSs which share

channel state information (CSI) and/or user data via high speed backhaul. In this way, the BSs

can cooperate to lower the interference. On the other hand, since the channel varies with the

user location, we can allocate power in different domains like frequency and space according to

their channel quality. LTE-A prescribes orthogonal frequency division multiplexing (OFDM)

for downlink transmission, such a multi-tone system suffers from high PAPR, which reduces

the transmit power efficiency. In this thesis, we discuss the CoMP, power allocation and PAPR

reduction issues, and some algorithms suitable for BS coordination scenario are proposed. It

should be noted that ideal synchronization and perfect CSI estimation are assumed.
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Figure 1.1: Illustration for CoMP-JT mode. The solid arrows stand for the signal links.

1.1 CoMP Concept

In LTE-A downlink, there are two classes of CoMP schemes named joint transmission (JT)

and coordinated beamforming (CB). One can distinguish these two modes by the type of infor-

mation sharing. The former requires both CSI and data exchange and the latter needs only CSI

exchange.

The concept of CoMP-JT can be illustrated using Figure 1.1. Conceptually, the cellular

network which deploys CoMP-JT is equivalent to multi-user MIMO (MU-MIMO) with some

distinctions that the transmit antennas now belong to distributed BSs and the channels to differ-

ent users experience independent pathloss and shadowing. Joint transmission means the signal

intended for any user is jointly pre-processed and transmitted from all the BSs. Therefore, the

interfering links (a link is the channel from a BS to a user) are transformed into useful links.

The drawback of this mode is that the data for every user and the CSI of all the links need to be

shared among the BSs, which increases the backhaul overhead.

In the case of CoMP-CB (see Figure 1.2), as conventional single cell scheme, each BS trans-

mits the data to its users. But the BSs can cooperate to mitigate the interference to the UE in

2



Figure 1.2: Illustration for CoMP-CB mode. The solid arrows stand for the signal links and the

dashed ones are the interfering links.

the other cell by acquiring the CSI of the interfering links. In this mode, there is no data shar-

ing, which reduces the backhaul traffic. However, the design target is to eliminate the generated

interference but not to make use of it, which leads limited performance gain compared to CoMP-

JT. In both cases, the users need to feedback the CSI from all the links including the interfering

ones. In time division duplex (TDD) mode, the job of channel estimation can be placed in either

BS or user side, while in frequency division duplex (FDD) mode, user has to estimate the CSI

and feedback through uplink channels.

Plentiful research works on CoMP-JT can be found in the recent years [2]-[6]. [2] gives

an overview including the currently known techniques for CoMP-JT (also a part of CoMP-

CB), practical issues related to system complexity and main challenges for future CoMP design.

A straightforward way to implement CoMP-JT is to build a central coordinator (CC) which

collects all the CSI and then computes the precoding weights for all the users. The performance

analysis to this way, using nonlinear (dirty paper coding, DPC) and linear (zero-forcing, ZF and

minimum min square error, MMSE) precoding, was studied in [3] and [4], respectively. Such a

structure would be more complicated and infeasible as the size of the network increases. A way

3



to overcome this problem is dividing the BSs into several clusters [5], [6].

As for CoMP-CB, [7] proposed a beamforming algorithm which aims to find the interfering

users with similar channels. Another way to suppress interference using distributed resource

allocation is discussed in [8]. In this thesis, we mainly focus on CoMP-JT.

In order to reduce the overhead, there are only a limited number of BSs can be included in

a CoMP cluster. This leads to the question which BSs should form the clusters to maximize the

system performance at manageable complexity. Static [9] and dynamic [10] clustering are two

types of forming CoMP clusters. Static clustering can be performed in advance based on field

measurements or geographical relations. Whereas dynamic clustering exploits CSI and changes

the cluster groups over time. Algorithms for these two types can be found in Chapter 2.

1.2 Resource Allocation

After the BSs in the cellular network are grouped into several CoMP clusters, there are more

jobs we can do in each cluster to improve the system performance. OFDM is chosen to be

the modulation scheme for the downlink LTE-A, one advantage of the multicarrier system is

that the power and rate can be allocated over different tones according to their variety if the

transmitter has the CSI. In general, there are two objectives of resource allocation: the sum-rate

maximization and power minimization [11], [12]. We pay our attention on the latter in this thesis

for power saving.

Traditionally, resource allocation problems are formulated under sum-power constraint on

the transmit antennas. However, per-antenna power constraint would be more realistic since

each antenna has independent power amplifier. Besides, for avoiding inter-user interference,

many systems apply orthogonal frequency division multiple access (OFDMA) technique which

allows only one user on each subcarrier [11]. But the spectrum efficiency can be further im-
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proved by separating the users in the spatial domain when the transmitter equips multiple an-

tennas [13], in this way, multiple users can share the same subcarrier. As for the user terminals,

different users may have individual quality of service (QoS) requirements such as minimal data

rate and acceptable bit error rate (BER).

In Chapter 3, the power minimization problem under user rate and BER constraints as in

[12] is considered. To make this problem more general, we add additional per-antenna power

constraint and extend the system to a multi-cell scenario. The problem is non-convex since it

aims to find the optimal set among different subcarrier and user combinations, and the com-

plexity increases exponentially with the number of subcarriers and users. Therefore, efficient

solutions must be found to make the complexity feasible. Although the original problem is not

convex, it can be transformed to another problem based on Lagrange dual decomposition [12].

The transformed problem is always concave regardless of the convexity of the original problem.

In this way, conventional convex optimization techniques can be applied to solve this problem

efficiently.

1.3 PAPR Reduction

Although the average transmit power can be minimized via the techniques introduced in

Chapter 3, however, the power consumption of the power amplifier (PA) is dominated by the

peak power rather than the average power. One of the main drawbacks of OFDM is the large

PAPR, which makes the efficiency of the PA very poor (the definition of PAPR is left in section

4.3.1. In order to transmit a signal with wide power rang, an expensive PA is needed. For im-

proving the power efficiency, several classes of PAPR reduction techniques have been proposed

[14]-[16].

Tone reservation method [14] is one of the most popular PAPR reduction methods. It re-

5



serves some unused subcarriers and inserts signals to reduce the PAPR. This method causes

no distortion to the data-carrying subcarriers due to the orthogonality of subcarriers. However,

there exists a tradeoff between the PAPR reduction performance and the number of the reserved

subcarriers. Reserving more subcarriers yields better performance, but sacrifices the available

bandwidth for transmitting information data.

Another class called active constellation extension (ACE) tries to reduce PAPR by altering

the constellation of the data [15], [16]. Without reserving any subcarrier, this scheme maps the

original constellation to a constrained space which produces lower PAPR.

In Chapter 4, we first propose a suboptimal power allocation algorithm to reduce the av-

erage transmit power. As stated above, the power consumption depends mainly on the peak

power. Hence we introduce a PAPR reduction scheme which combines tone reservation and

constellation extension. This scheme is based on the idea of [15]. Additionally, we made some

modifications so that it is suitable for CoMP-JT systems. As a note, this approach is designed

for the signal which employs quadrature amplitude modulation (QAM).

1.4 Organization of this thesis

The rest of this thesis is organized as follows. In Chapter 2, we start with the CoMP clustering

concept. How does a cellular network implement CoMP and which BSs should form a CoMP

cluster will be illustrated. In Chapter 3, assuming all the CoMP clusters have been planned, we

design an optimal power allocation method for each cluster. For power saving, the objective is

to minimize the total transmit power. Chapter 4 deals with the problem of PAPR. A practical

PAPR reduction algorithm suitable for the CoMP system is proposed. Finally, Chapter 5 gives

the conclusion of this thesis. It should be noted that Chapter 2 - 4 have their own system models

and simulation results.

6



Throughout this thesis, we adopt some notations: Matrix and vectors are denoted by up-

percase and lower case boldface letters; IN is the N × N identity matrix; A [i, j] indicates the

element in the row i and column j of the matrix A; ∥ · ∥2F and ∥ · ∥2∞ are the Frobenius norm

and infinity norm; (·)∗, (·)T and (·)H represent the conjugate, transpose and conjugate transpose

operators.
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CHAPTER 2

CLUSTERING TECHNIQUES FOR COMP

2.1 System Model and Transmission Schemes

Consider a downlink cellular network consists of Nb BSs with Nt antennas each and Kb

active users in the bth cell with Nr antennas each. All the BSs operate on the same carrier

frequency so they will cause interference to each other. Assume that the BSs in the network

are divided into several clusters, each contains B BSs, where B ≤ Nb (see Figure 2.1). The

clusters are all non-overlapping groups. In other words, if one BS has been involved in a cluster,

it cannot join the others. Let G be one of the set of the selected BSs in a cluster. The received

signal of the kth user in the bth cell of the set G can be written as

yGk,b = Hb
k,bxk,b +

∑
i̸=k,i↔b

Hb
k,bxi,b +

∑
b∈G,b̸=b

∑
j↔b

Hb
k,bxj,b +

∑
b̃/∈G

∑
l↔b̃

Hb̃
k,bxl,̃b + nk,b, (2.1)

whereHb
k,b is theNr ×Nt MIMO channel from the BS b to the user k served by the BS b, xk,b is

theNt×1 transmitted signal and nk,b is the correspondingNr×1 received noise vector, in which

each element is a zero-mean complex Gaussian random variable with varianceN0. The first term

of (2.1) is the desired signal, the second is the inter-user interference (IUI) in the bth cell where

i ↔ bmeans the user i is served by the BS b, the third is the intra-cluster interference (ICI) from

the BSs in the cluster G except the BS b, and the last term is the outer-cluster interference (OCI)

from the BSs outside the cluster G.

8



Figure 2.1: A clustering example with B = 2 and Nb = 4.

2.1.1 Single Cell Processing

In this scenario, each BS serves its users without coordinating with the other BSs, i.e.,B = 1.

Assume the bth BS is considered. The transmit precoding matrices for the user k in the BS b are

designed in the following two cases respectively.

Case 1) Eigenmode Precoding for Kb = 1

When there is only one user per BS, the received signal of the user k in the cell b can

be written as

yk,b = Hb
k,bxk,b +

∑
b̸=b

∑
i↔b

Hb
k,bxi,b + nk,b. (2.2)

Note that the index for cluster is ignored here since there is no clustering concept when

B = 1. When each BS has only the CSI of its served user, the precoding matrix can be

designed by performing singular value decomposition (SVD) on Hb
k,b:

Hb
k,b = Ub

k,bSbk,b
(
Vb

k,b

)H
, (2.3)

where Sbk,b ∈ CNr×Nt is the matrix which contains the singular values, Ub
k,b ∈ CNr×Nr

and Vb
k,b ∈ CNt×Nt collects the left and right singular vectors, respectively. Let Pb

k,b be

the power allocation matrix for the user k in the BS b. Here we assume a simple equal

power allocation, that is

Pb
k,b =

(√
pcon/Nr

)
INr , (2.4)

9



where pcon is the sum power constraint per BS. The precoding matrix can be chosen as

Fb
k,b = Vb

k,b (2.5)

and the receive equalization matrix is

Qb
k,b =

(
Ub

k,b

)H
. (2.6)

Having the precoding matrix, the pre-processing can be done as

xbk,b = Fb
k,bPb

k,bdbk,b, (2.7)

where dbk,b ∈ CNr×1 represents the information data. After receive equalization, the

signal becomes

rk,b = Qb
k,byk,b

= Qb
k,b

Hb
k,bxk,b +

∑
b ̸=b

∑
i↔b

Hb
k,bxi,b + nk,b


=
(
Ub

k,b

)HUb
k,bSbk,b

(
Vb

k,b

)HVb
k,bPb

k,bdbk,b +Qb
k,b

∑
b̸=b

∑
i↔b

Hb
k,bxi,b +Qb

k,bnk,b

= Sbk,bPb
k,bdbk,b +

∑
b ̸=b

ibk,b + ñk,b, (2.8)

where ibk,b =
∑
i↔b

Qb
k,bHb

k,bxi,b is the equivalent interference from BS b. Therefore the

spatial streams can be extracted as

rk,b,l = sbk,b,l

√
pbk,b,ld

b
k,b,l + ibk,b,l + ñk,b,l, 1 ≤ l ≤ Nr, (2.9)

where dbk,b,l is the lth element of dbk,b, sbk,b,l and pbk,b,l are the corresponding singular value

and the power loading weight, respectively, ibk,b,l is the interference on the lth stream

and ñk,b,l is the complex Gaussian noise with variance N0. As a result, the Nr × Nt

MIMO channel Hb
k,b is decoupled into Nr parallel single-input single-output (SISO)

channels due to the effect of eigenmode precoding and equalization. In this case, the
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signal-to-interference plus noise ratio (SINR) of the lth stream for the user k in the BS

b is

SINReigen
k,b,l =

(
sbk,b,l

)2
pbk,b,l

E

[∑
b ̸=b

ibk,b,l

(
ibk,b,l

)∗]
+N0

(2.10)

and the capacity is

Ceigen
k,b =

Nr∑
l=1

log2
(
1 + SINReigen

k,b,l

)
. (2.11)

Case 2) Block Diagonalization (BD) [13] forKb > 1

In this case, the interference seen by the user k in the BS b can come from the other

users in the same BS and those in the other BSs. The received signal can be written as

yk,b = Hb
k,bxk,b +

∑
i̸=k,i↔b

Hb
k,bxi,b +

∑
b̸=b

∑
j↔b

Hb
k,bxj,b + nk,b. (2.12)

Having only the CSI of the users in its scope, each BS can apply BD to eliminate the

IUI, i.e., the second term of (2.12). There is a restriction on BD, which is Nt ≥ KbNr,

that is, the number of the transmit antennas must be larger than or equal to the sum of

the number of the receive antennas. We introduce the procedure of designing the BD

precoder below.

For simplicity, the index for BS is ignored here. The composite channel of all the users

in the cluster can be written as H =
[
HT

1 , . . . ,HT
K

]T ∈ CKNr×Nt . Then we collect the

interfering channels to the user k and apply SVD as

[
HT

1 , . . . ,HT
k−1,HT

k+1, . . . ,HT
K

]T
= UkSk

[
VkVk

]H
, (2.13)

where Vk ∈ CNt×(Nt−(K−1)Nr) is the matrix which contains the right singular vectors

that correspond to the zero singular values and therefore is the null space. The equiva-

lent channel to the user k after orthogonalization is given by

H̃k = HkVk. (2.14)
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Apply SVD again on H̃k and get

H̃k = ŨkS̃kṼk. (2.15)

Similarly, we can use eigenmode precoder to decompose the equivalent MIMO channel

H̃k. The transmit precoding matrix can be designed as

Fk = VkṼk (2.16)

and the receive equalization matrix is

Qk = ŨH
k . (2.17)

Hence, the users in the BD deployed BS will not observe interference from each other

because their channels aremutually orthogonal, although the interference from the other

BSs still remains. Since there areK users now, the power allocated to each user should

be divided by K. Thus, the power allocation matrix should be

Pk =
(√

pcon/KNr

)
INr . (2.18)

Since the inter-user interference is eliminated, the capacity for the user k can be repre-

sented in the same form as 2.11, the difference is that each BS now applies BD but not

eigenmode precoding.

2.1.2 Base Station Cooperation

In this section, we show where the BD algorithm should be modified when it is applied to a

multi-cell scenario. Assume a CoMP clustering algorithm is applied and some CoMP clusters

are formed. In JTmode, all the users' information data and channels are shared among the BSs in

the same cluster. Therefore, the grouped BSs can be seen as a huge BS with additional antennas.

In this scenario, each CoMP cluster applies BD to decouple the channels of all the users in its

12



scope. Themulti-cell BD can be done in a way similar to the Case 2 of single cell processingwith

some little differences that the transmit antennaNt becomes BNt and the sum power constraint

pcon changes to Bpcon. Like single cell BD, the channels of all the users in the same cluster will

become orthogonal to each other after multi-cell BD. Therefore, the interference only comes

from the BSs outside the cluster, and the received signal of the user k in the BS b of the cluster

G can be written as

yGk,b = HG
k,bx

G
k,b +

∑
b/∈G

∑
i↔b

Hb
k,bxi,b + nGk,b, (2.19)

whereHG
k,b is theNr×BNt multi-cell MIMO channel and xGk,b is theBNt×1 transmitted signal.

The joint BD precoding matrix is

FG
k,b = VG

k,bṼG
k,b, (2.20)

whereVG
k,b is the null space of the other users in G except the user k and ṼG

k,b is the matrix which

collects the first Nr right singular vectors of the projected channel H̃G
k,b = HG

k,bV
G
k,b. The jointly

pre-processed signal can be represented as

xGk,b = FG
k,bP

G
k,bd

G
k,b, (2.21)

where the power allocation matrix is

PG
k,b =

√Bpcon/
∑
b∈G

KbNr

 INr , (2.22)

(assume every BS has the same transmit power constraint pcon) and dGk,b is the information data.

If the user k chooses the equalization matrix to be

QG
k,b =

(
ŨG

k,b

)H
, (2.23)
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where ŨG
k,b contains the left singular vectors of the projected channel H̃

G
k,b. The equalized signal

at the receiver side can be derived following the similar steps of (2.8) and given by

rGk,b = QG
k,b

HG
k,bx

G
k,b +

∑
b/∈G

∑
i↔b

Hb
k,bxi,b + nGk,b


= QG

k,bH
G
k,bV

G
k,bṼG

k,bP
G
k,bd

G
k,b +

∑
b/∈G

∑
i↔b

QG
k,bH

b
k,bxi,b +QG

k,bn
G
k,b

=
(
ŨG

k,b

)H
ŨG

k,bS̃
G
k,b

(
ṼG

k,b

)H
ṼG

k,bP
G
k,bd

G
k,b +

∑
b/∈G

ibk,b + ñGk,b

= S̃Gk,bP
G
k,bd

G
k,b +

∑
b/∈G

ibk,b + ñGk,b. (2.24)

Being similar to (2.9), the multi-cell MIMO channel is decoupled and the lth spatial stream is

rGk,b,l = sGk,b,l

√
pGk,b,ld

G
k,b,l + ibk,b,l + ñG

k,b,l, 1 ≤ l ≤ Nr. (2.25)

The SINR of the lth stream for the user k in the BS b of the cluster G is

SINRCoMP
k,b,l =

(
sGk,b,l

)2
pGk,b,l

E

[∑
b/∈G

ibk,b,l

(
ibk,b,l

)∗]
+N0

(2.26)

and the capacity is

CCoMP
k,b =

Nr∑
l=1

log2
(
1 + SINRCoMP

k,b,l

)
. (2.27)

In BS cooperation scenario, the signal from different BSs will experience different delay. There-

fore, synchronization is an important topic. Nevertheless, to simplify our system, we assume

the synchronization is always perfect.

2.2 Clustering Algorithms

2.2.1 Static Clustering

Static clustering is a feasible way to form the clusters in the cellular network. It can be

designed offline based on geographic or averaged channel characteristics. Once the planning is
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determined, it will not change over time. The advantage of this clustering type is that routing

CSI and user data to a central coordinator (CC) is unnecessary. Instead, it requires a distributed

coordinator (DC) per cluster which controls the BSs. The cooperation only takes place in each

cluster and different clusters do not communicate with each other, which reduces the overheads.

Here we propose a static clustering algorithm as follow. In each cell, we assume there is only

one scheduled user, so the index for user can be ignored and the new notation Hb
b stands for the

channel from the BS b to its user.

Algorithm Static Clustering Algorithm.
1: Specify the CoMP cluster size B;

2: Each user measures channel gains and calculates his pilot SINR by

SINRpilot
b =

∥∥Hb
b

∥∥2/
 ∑

b̸=b,b∈Ib

∥∥∥Hb
b

∥∥∥2 +N0

 ,∀b, (2.28)

where Ib is set of the six first tier interfering BSs around BS b, i.e., only the pilots from the

neighboring BSs are regarded as the valid interference. If SINRpilot
b < γ, where γ is the

threshold, the user requests CoMP service to the BS b through uplink. Then BS b sends the

request to its DC;

3: DC finds the remaining B − 1 BSs which should cooperate with the BS b based on the pre-

defined clustering table (see Figure 2.2 for the case of B = 3), and makes them to form a

cluster;

4: Go back to step3 until all the CoMP needed users are satisfied;

The clusters are formed by neighboring BSs here. Since in average, they cause stronger in-

terference compared with those farther BSs. Although static clustering reduces the inter-cluster

communication overhead, it inherits the fairness problem from single cell scenario that the users

located at static cluster-edge still suffer from severe inter-cluster interference.
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Figure 2.2: Proposed static clustering table when cluster size B = 3.

2.2.2 Dynamic Clustering

Static clustering has very limited performance gain since the variation of the channel con-

dition is not fully exploited. As mentioned in the previous section, we select the neighboring

BSs to form static clusters. Since on average, they are the ones which cause strong interfer-

ence. Nevertheless, due to the effect of shadowing, a user might experience a better channel to

a farther BS, in other words, interference does not always come from near BSs. Therefore, it

is not flexible to form fixed clusters by grouping BSs which are close to each other. Besides,

users at the edge of the static cluster experience much more interference from the neighboring

clusters than the ones located around the center of the cluster, which causes fairness problem. In

order to overcome the aforementioned problems, the idea of dynamic clustering has been intro-

duced. Geographical relation is not the main concern anymore. Instead, we try to group the BSs

which cause the strictest interference before any cooperation. The proposed greedy algorithm

is illustrated in the following steps. Again, only one user per BS is assumed.
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Algorithm Dynamic Clustering Algorithm.
1: Specify the CoMP cluster size B;

2: Each user calculates his SINRpilot
b as defined in (2.28). If SINRpilot

b < γ, the user sends

CoMP request to the serving BS b;

3: The CC collects all the requests and chooses a CoMP needed user who has not been chosen

so far uniformly;

4: Find the remaining B − 1 BSs which maximize the utility function J
(
CCoMP

1 , . . . , CCoMP
B

)
with the user chosen in step 3, where CCoMP

b is the capacity given by (2.27). We let only the

first tier BSs around the selected user to be the candidates, i.e., b ∈ Ib. If the available BSs

is less than B − 1, the user cannot acquire CoMP service at this time slot, then CC drops

this user and picks another one uniformly;

5: Go back to step 3 until all the CoMP needed users find their partners;

We provide three choices of the utility function in this dynamic algorithm:

• Sum-rate (SR) utility:

J1 =
1

B

B∑
b=1

CCoMP
b (2.29)

• Proportional fair (PF) utility:

J2 =

(
B∏
b=1

CCoMP
b

)1/B

(2.30)

• Weighted sum (WS) utility:

J3 =
B∑
b=1

wbC
CoMP
b (2.31)

The purpose of the weight is to find the users who really need CoMP, i.e., the users with low

SINR. So the weight is set to the reciprocal of the SINR, which is

wb = c/qb, (2.32)
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where

qb = log2
(
1 + SINRpilot

b

)
(2.33)

is the transformed SINR which approximates capacity and

c =
1

B∑
b=1

q−1
b

(2.34)

is a normalization factor such that
B∑
b=1

wb = 1. Note that SINRpilot
b is the SINR experienced by

the users before CoMP. The user with larger SINRpilot
b will get lower weight, since the perfor-

mance gain is little when apply CoMP to the users with high SINR.

Figure 2.3 shows a snapshot of the dynamic clustering result. No matter which utility func-

tion is chosen, the CoMP clusters can be formed adaptively according to the change of channel

conditions. Hence there are no constant cluster edges and therefore no users will suffer from

more interference. However, there must exits a CC to run the dynamic clustering algorithm.

Besides, the overhead of routing the CSI and user data is higher than the static scheme.

Since the available BSs for selection are reducing through the dynamic algorithm, it benefits

the user that is chosen earlier in Step 3. To circumvent this fairness issue, we have to choose the

user uniformly. Therefore, on average, everyone obtains close performance gain.

Figure 2.3: A snapshot of the dynamic clustering.
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2.3 Simulation Results

We consider a downlink network consists of thirty-seven cells overall (Nb = 37), i.e., the

first three tiers of cells, each cell has one BS at its center. Every BS has two omnidirectional

antennas (Nt = 2) and each user has two antennas (Nr = 2). The cell radius is set to 1 Km. The

MIMO channel from the BS b to the user k served by the BS b is

Hb
k,b = Rb

k,b/

√
β
(
dbk,b

)α
sbk,b, (2.35)

where Rb
k,b is theNr ×Nt Rayleigh fading channel, in which the elements are all i.i.d. complex

Gaussian random variables, sbk,b is log-normal distributed with 8 dB standard deviation which

models the shadowing effect and dbk,b is the corresponding distance in Km. For the pathloss, the

3GPP LTE pathloss model [10] is used, where β = 1014.81 and α = 3.76. The noise power

spectral density is -174 dBm/Hz. Suppose that all of the BSs transmit on the same subcarrier

with 15 KHz subcarrier spacing, so the noise power is N0
∼= −162.2391 dBW. One user is

generated uniformly in each cell (Kb = 1, ∀b) to simulate the round-robin scheduling, and we

assume the user has not been handed off to another cell, i.e., the user generated in the cell b is

served by the BS b, although the strongest signal may come from another BS. The cluster size

B is fixed to three unless otherwise stated. We only observe the performance of the user in the

central cell in the network, whereas all of the users in the central cell and its first tier BSs (total

seven users) are allowed to request CoMP service. For our observed user in the central cell, only

the signals from the six first tier BSs are treated as interference. The six BSs could be CoMP or

non-CoMP BSs, which depends on the result of our clustering algorithm. If it is a CoMP BS,

it deploys multi-cell BD (see section 2.1.2) with its partners. Otherwise, it applies single cell

eigenmode precoding introduced in section 2.1.1.
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Figure 2.4: Average rate versus the edge-SNR.

Figure 2.4 shows the average rate as a function of the edge-SNRwhen the pilot SINR thresh-

old γ = −8.3 dB. The edge-SNR is defined as the SNRmeasured by the user located at cell-edge

without shadowing and interference, which is given by

SNRedge (dB) = pcon (dBW)− 10log10 (β)− 10αlog10 (rcell)−N0 (dBW) , (2.36)

where rcell is the cell radius. In (2.36), we count the transmit power from only one BS, but each

user receives multiple signal from all the BSs in the same CoMP cluster in our simulation. We

can see that all the clustering schemes outperform the non-CoMP one when SNRedge > 20 dB

since the interference is reduced. The three dynamic approaches provide better average rate gain

against the static clustering because they exploit the instantaneous CSI. Due to the target of the

utility function, using sum-rate utility gets the best average rate and weighted sum is better than

proportional fair.
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Table 2.1: The CoMP request ratio and the actual CoMP included ratio against different pilot

SINR threshold.

γ (dB)
Request

ratio

SR included

ratio

PF included

ratio

WS included

ratio

Static included

ratio

-20.8 2.88% 8.64% 9.12% 8.06% 8.78%

-18.3 4.74% 14.06% 13.58% 13.60% 13.26%

-15.8 6.88% 19.94% 20.74% 19.48% 20.00%

-13.3 10.90% 29.28% 28.96% 27.72% 29.04%

-10.8 15.58% 38.32% 38.62% 37.90% 38.34%

-8.3 20.42% 48.84% 45.52% 47.52% 49.36%

-5.8 27.44% 60.98% 60.84% 59.48% 61.12%

-3.3 36.16% 70.64% 71.98% 68.72% 73.10%

Table 2.1 gives the probability of the CoMP requesting users and the actual CoMP included

users with different pilot SINR threshold when SNRedge ∼= 30 dB. In both of the static and

dynamic algorithms, there are two types of users named the CoMP requesting users and the

CoMP included users. The CoMP requesting user is the one whose pilot SINR is lower than the

threshold, in other words, is the user who sends CoMP request. The CoMP included users are

the CoMP requesting user plus the B − 1 users who are forced to get CoMP service (see the

clustering algorithm in either section 2.2.1 or 2.2.2. For instance, if B = 3 and the user in the

BS 1 sends a CoMP request. The coordinator makes the users in the BS 2 and 3 to be the CoMP

partners of the user in the BS 1. Then the user served by the BS 1 is called the CoMP requesting

user and all of them are called CoMP included users. This table tells us the percentage of these

two types of users with different threshold. It is interesting to notice that the percentage of the
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static CoMP included users is higher than the three dynamic ones when the threshold is high.

Because when the threshold is getting larger, more and more users request CoMP. As a result,

some CoMP requesting users in the dynamic clustering algorithm cannot find sufficient BSs to

form a cluster.

Figure 2.5 plots the average rate versus different pilot SINR threshold when SNRedge ∼=

30 dB, which corresponds to pcon = 16 dBW. As stated in Table 2.1, with the increasing of the

threshold, more users can request CoMP and therefore the average rate is getting better with the

price of higher network overhead. The average rates saturate when the threshold is high enough

(about 15 dB above), since almost 100 % users are included in CoMP areas now. The static

scheme obtains relatively low performance gain compared to the three dynamic ones because

the variety of channel does not been fully utilized.
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Figure 2.5: The average rate versus different pilot SINR threshold.
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In Figure 2.6, the cumulative distribution function (CDF) of the capacity for the CoMP re-

questing users is plotted. The setup here is pcon = 16 dBW and γ = −8.3dB. The weighted

sum dynamic scheme outperforms the others since it makes the users with low SINR to form

the CoMP cluster and hence reduces the most interference. The black line with circle marker is

the users whose SINRpilot < γ but there is no CoMP service available in the network, which is

very poor compared with the other CoMP approaches.

Figure 2.7 is the CDF of the CoMP included users when the setup is the same as the one

in Figure 2.6. Seemingly, the sum-rate and the proportional fair schemes are better than the

weighted one. However, the reason is that they find the high SINR users to be the partners of

the CoMP requesting users. Note that if the SINR is already high, the effect of CoMP is limited

since the purpose of BS cooperation is to suppress interference. Therefore it is inefficient to

include users with high SINR in the CoMP cluster, even though it seems that the average rate of

the CoMP included users is increased.

Figure 2.8 plots the CDF of the last five percent users using the same setup as the one in

Figure 2.6. As mentioned above, we only observe the performance of the user in the central

cell. However, we can generate different samples of the user locations. For each sample, the

user capacity after running our BS clustering algorithms is calculated, and we sort the capacity

for all the samples and observe the ones with the lowest 5 % capacity. In general, the users with

such low capacity are located near cell-edge. So this figure shows the approximate performance

of the cell-edge users. It can be seen that the dynamic clustering scheme improves significant

fairness. The sum-rate approach provides less performance gain since it puts resource to the

users with good channel quality and sacrifices the cell-edge users.
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Figure 2.6: The CDF of the CoMP requesting users.
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Figure 2.7: The CDF of the CoMP included users.
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Figure 2.8: The CDF of the last five percent users.

Figure 2.9 illustrates the effect of increasing the CoMP cluster size when the setup is the

same as the one in Figure 2.6. As expected, the average rate increases with the cluster size since

more interference is eliminated. The drawback is the raise of network overhead.

In Figure 2.10, the CDF of the weighted sum scheme versus different CoMP cluster size is

plotted when the setup is the same as the one in Figure 2.6. Only the performance of the CoMP

requesting users is observed. In addition to sum rate benefit, increasing the cluster size provides

significant gain to the low SINR users (the CoMP requesting users).
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Figure 2.9: The average rate versus different CoMP cluster size.
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Figure 2.10: The CDF of the CoMP requesting users using weighted sum utility versus different

CoMP cluster size.
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CHAPTER 3

ADAPTIVE RESOURCE ALLOCATION

3.1 System Model and Transmission Schemes

In Chapter 2, we focus on a specific subcarrier and tackle the problem of BS clustering.

In this chapter, we extend the scenario to a more general multi-carrier system. Suppose some

CoMP clusters are formed in the cellular network based on a clustering algorithm. For the sake

of illustration, only one cluster is taken into consideration. Assume there areB BSs andK users

overall in this CoMP cluster, each BS equips Nt antennas and each user has Nr antennas. In

CoMP-JT mode, user data and CSI are shared across all the BSs in the same cluster, therefore,

a cluster is equivalent to a super BS with NT = BNt antennas which serves K users simul-

taneously. Let there are M available subcarriers, the downlink transmission can be illustrated

by Figure 3.1. In general, users are allocated to different subcarriers in order to avoid inter-user

interference. However, we can apply BD to decouple the channels of different users on the same

subcarrier. In this way, the spectral efficiency will be improved since multiple users can share

the same bandwidth.

Figure 3.1: Block diagram for downlink multi-user MIMO-OFDM.

27



Assume we place Km users on subcarrier m. After removing the cyclic prefix (CP) at the

user side, the signal can be processed in a per-subcarrierMIMO fashion. That is, the input-output

relation on every subcarrier can be represented in a MIMO structure. Ignoring the outer-cluster

interference, the received signal of the user k on the subcarrierm can be represented as

yk,m = Hk,mxk,m +
Km∑

n=1,n̸=k

Hn,mxk,m + nk,m, (3.1)

whereHk,m is theNr×NT MIMOchannel, xk,m is theNT×1 transmitted signal for the user k and

nk,m is the zero-mean complexGaussian noise vector with covariancematrixE
[
nk,m(nk,m)H

]
=

N0INr . After BD (refer to section 2.1.1) pre-filtering, the transmitted signal can be represented

as

xk,m = Fk,mPk,mdk,m (3.2)

where Pk,m is the Nr × Nr power allocation matrix and dk,m is the Nr × 1 data vector before

pre-filtering. The BD matrix is Fk,m = Vk,mṼk,m, where Vk,m makes the channel of the user k

to be orthogonal to the channels of the others, and Ṽk,m decouples the orthogonalized MIMO

channel of the user k intoNr parallel SISO channels. Following the derivation similar to (2.24)

and (2.25), the lth spatial stream for the user k is

rk,m,l = sk,m,l
√
pk,m,ldk,m,l + ñk,m,l, 1 ≤ l ≤ Nr, (3.3)

where sk,m,l is the lth singular value of the orthogonalized channel matrix of the user k on sub-

carrierm, pk,m,l is the power allocated on this stream, dk,m,l is the lth element in dk,m and ñk,m,l

is a zero-mean complex Gaussian noise with variance N0.

3.2 Problem Formulation

The mathematical problem of power minimization is formulated in this section. In order to

save power in each CoMP cluster, we try to find a power allocation approach which minimizes
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the transmit power while satisfies some constraints. In practice, users may have different QoS

requirements such as target data rate and tolerable BER. On the other hand, each antenna has its

own power amplifier and therefore has a unique transmit power constraint. Considering all the

issues above, the power minimization problem can be formulated as

minimize
pk,m,l

K∑
k=1

M∑
m=1

Nr∑
l=1

pk,m,l

subject to
M∑

m=1

Nr∑
l=1

rk,m,l ≥ Mrtark , 1 ≤ k ≤ K

K∑
k=1

M∑
m=1

Nr∑
l=1

|Fk,m [a, l]|2pk,m,l ≤ pcona , 1 ≤ a ≤ NT

pk,m,l ≥ 0, ∀k, m, l, (3.4)

where pk,m,l and rk,m,l is the transmit power and rate allocated on the lth stream of the user k

on the subcarrier m, rtark is the target data rate in bps/Hz, Fk,m [a, l] is the element in the ath

row and lth column of the BD matrix Fk,m, and pcona is the power constraint on transmit antenna

a. Note that if the bandwidth of each subcarrier is β, the total rate requirement per user of

one OFDM symbol is Mβrtark (bps), therefore, Mrtark bits are required during the period of one

OFDM symbol. The rate rk,m,l can be written as

rk,m,l = log2

(
1 +

pk,m,ls
2
k,m,l

τN0

)
, (3.5)

where τ is the SNR gap given by

τ = − ln (5BERtar)

1.5
, (3.6)

whereBERtar is the target BER specified by the users. Although the capacity is hard to achieve

in practice, it provides an upper bound that tells us how well we can do. The problem (3.4)

implies a user selection problem on each subcarrier. If pk,m =
Nr∑
l=1

pk,m,l = 0, the user k is absent

on the subcarrier m; otherwise, the user k is allocated on this subcarrier. Problem (3.4) is a
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modified version of the one in [12], which considers no power constraint. However, as the user's

target rate increases, the minimized power may exceed the transmit power limit. Therefore, we

want to see how the results will be when the per-antenna power constraints are added to the

power minimization problem.

3.3 Low Complexity Solution for Power Minimization

3.3.1 Optimization Based on Dual Decomposition

In this section, we propose a low complexity solution to (3.4) based on the Lagrange dual

transformation. For the sake of interpretation, we rewrite (3.4) in a new form:

minimize
r

f (r)

subject to
M∑

m=1

rm ≽ Mrtar

g (r) ≼ pcon, (3.7)

where r =
[
rT1 , . . . , rTm, . . . , rTM

]T , with rm = [r1,m, . . . , rk,m, . . . rK,m]
T , with rk,m =

Nr∑
l=1

rk,m,l

are the allocated rates, rtar = [rtar1 , . . . , rtarK ]T are the target rates, pcon =
[
pcon1 , . . . , pconNT

]T are the

per-antenna power constraints, f (·) and g (·) are the RMK → R and RMK → RNT mapping

functions, respectively, and a ≽ b means ai ≥ bi, ∀i. The constraints pk,m,l ≥ 0, ∀k,m, l in

(3.4) are removed temporarily and will be considered afterwards (in Appendix A.1). Although

the original objective function f (·) is not convex, it can be transformed into a dual function,

which is always concave regardless of the convexity of f (·). Hence traditional convex opti-

mization techniques can be used to solve the transformed problem. We start from the Lagrangian

of (3.7), which is

L (r,µ,κ) = f (r) + µT

(
Mrtar −

M∑
m=1

rm

)
+ κT (g (r)− pcon) , (3.8)
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where µ = [µ1, . . . , µK ]
T and κ = [κ1, . . . , κNT

]T are the vectors of Lagrange multipliers

correspond to the rate and power constraints in (3.7). The dual function is defined as

d (µ,κ) = L (r∗,µ,κ) , (3.9)

where r∗ = min
r

L (r,µ,κ). The dual problem can be formulated as

maximize
µ,κ

d (µ,κ)

subject to µ ≽ 0

κ ≽ 0. (3.10)

In another word, we let the Lagrange multipliers to be constants temporarily and find the r∗

which minimizes the Lagrangian L (r,µ,κ), this is the definition of the dual function d (µ,κ).

Next, we formulate the dual problem which aims to find the optimal Lagrange multipliers that

maximize the dual function. In contrast with the dual problem, the original problem (3.7) is

called the primal problem. The dual problem is equivalent to the primal problem if the original

objective function f (·) is convex, otherwise, there exists a duality gap between these two prob-

lems [18]. In our case, f (·) is not convex since it is a pointwise minimum of several convex

functions. Nevertheless, [19] shows that this gap can be reduced by increasing the subcarrier

sizeM . In order to find the r∗ in (3.9), we first express (3.8) in another form:

L̃ =
K∑
k=1

M∑
m=1

Nr∑
l=1

pk,m,l +
K∑
k=1

µk

(
Mrtark −

M∑
m=1

Nr∑
l=1

rk,m,l

)

+

NT∑
a=1

κa

(
K∑
k=1

M∑
m=1

Nr∑
l=1

|Fk,m [a, l]|2pk,m,l − pcona

)
. (3.11)

Since data rate is a function of power, therefore, finding the r∗ which minimizes L is equivalent

to finding p∗k,m,l, ∀k,m, l which minimize L̃, so we set the latter to be our new goal. After

making some arrangements to (3.11), it becomes

L̃ =
M∑

m=1

K∑
k=1

Nr∑
l=1

(
L (m, k, l)

)
+

K∑
k=1

µkMrtark −
NT∑
a=1

κap
con
a , (3.12)
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where

L (m, k, l) = pk,m,l − µkrk,m,l +

NT∑
a=1

κa|Fk,m [a, l]|2pk,m,l. (3.13)

In the dual function, µk and κa are treated as constants temporarily, so the last two terms in

(3.12) are unrelated terms. Therefore, minimizing L̃ is equivalent to minimizing L. On each

subcarrier, when the user selection has been determined, we can obtain the BD precoding ma-

trices Fk.m, ∀k,m, the minimal power and rate allocated on each spatial stream can be given

by

pk,m,l = max


µk

ln (2)
1

1 +
NT∑
a=1

κa|Fk,m [a, l]|2
− τN0

s2k,m,l

, 0

 (3.14)

and

rk,m,l = log2

max


µks

2
k,m,l

ln (2) τN0

(
1 +

NT∑
a=1

κa|Fk,m [a, l]|2
) , 1


 . (3.15)

For brevity, the derivations of (3.14) and (3.15) are left in Appendix A.1. We call this solution

the competitive water-filling solution. The reason for the name will be explained later.

Since BD can mitigate the inter-user interference on the same subcarrier, multiple users can

share the same bandwidth. The optimal user selection on each subcarrier would be to search

over 2K user combinations and find the one that minimizes

L̂ (m) =
K∑
k=1

Nr∑
l=1

L (m, k, l). (3.16)

For the overall M subcarriers, there would be M2K choices. As mentioned above, the duality

gap approaches zero when M goes to infinity. However, this will make user selection problem

to be computational infeasible. The complexity could be reduced by a suboptimal greedy user

selection introduced in [12]: For each subcarrier, allocate the user that minimizes L̂ (m) on

subcarrier m. Next, add another one from the remaining K − 1 users if L̂ (m) can be further

reduced, and so on. Note that if L̂ (m) ≥ 0, there is no user allocated on this subcarrier, since

32



positive L̂ (m)will not minimize L̃. As the number of users on this subcarrier increases, the BD

precoder will project each user's channel to a more restricted space (see section 2.1.1), which

makes the channels weak. Hence, it is not always the best to put all the users on each subcarrier,

even though they do not interfere to each other after BD. The suitable number of users that

allocated on each subcarrier can be found by the greedy user selection algorithm above. In this

way, the maximum combination of users over the totalM subcarriers becomesM
K−1∑
j=0

(
K−j
1

)
=

MK(K+1)
2

, which is small compared to M2K when K is large. As for the globally optimal

solution, even if the per-antenna power constraints are ignored and the minimal power which

satisfies the user rate constraint is obtained by the water-filling solutions (which are (3.14) and

(3.15) after setting κa = 0, ∀a), it still needs a search over 2KM possibilities to find the optimal

solution, which is computationally prohibitive.

So far, we have found the p∗k,m,l, ∀k,m, l that minimize L̃ and therefore the dual function

d (µ,κ) is obtained. Next, we need to find the optimal µ and κ that maximize d (µ,κ). Since

d (µ,κ) is concave, we can update µ and κ along some directions to find the optimal point. We

adopt a special searching direction named supergradient [20]. In general, the supergradient at a

point α ∈ Rn×1 is defined as a vector χ ∈ Rn×1 which satisfies

d (α̃) ≤ d (α) + χT (α̃−α) , ∀α̃ ̸= α. (3.17)

In our optimization problem (3.7), α comprises the Lagrange multiplier vectors µ and κ, and

χ can be decomposed into two directions χ1 and χ2, which are given by

χ1 = Mrtar −
M∑

m=1

r∗m (3.18)

and

χ2 = g (r∗)− pcon, (3.19)

where g (·) is the function defined in (3.7). The proofs are shown in Appendix A.2. Without
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changing the direction, we divide the first supergradient byM , that is,

χ1 = χ1/M =
[
χ1,1, . . . , χ1,k, . . . , χ1,K

]T
, (3.20)

where

χ1,k = rtark − 1

M

M∑
m=1

Nr∑
l=1

rk,m,l. (3.21)

The second supergradient remains the same, which is

χ2 = [χ2,1, . . . , χ2,a, . . . χ2,NT
]T (3.22)

where

χ2,a =
K∑
k=1

M∑
m=1

Nr∑
l=1

|Fk,m [a, l]|2pk,m,l − pcona . (3.23)

We update the two Lagrange multiplier vectors in an iteration manner:

µi+1
k = max

{
µi
k + δi1χ1,k, 0

}
(3.24)

and

κi+1
a = max

{
κi
a + δi2χ2,a, 0

}
, (3.25)

where i is the iteration index, δi1 and δi2 are the two positive step sizes for µ and κ, respectively.

As we can see in (3.21), if the allocated rate to the user k exceeds the its target, the direction

becomes negative and µk will be reduced in the next iteration. On the contrary, µk will increase

if it falls below the target rate. The similar actions can be observed in (3.23). Since the rate

(3.15) is directly proportional to µk but inversely proportional to ϕa, consider a case that a user

requests so much rate that the allocated power goes beyond the per-antenna power constraints,

then χ2 becomes positive and hence increases κ, as a consequence, the power will be dropped.

However, it will be raised again since the target rates are not satisfied due to insufficient power.

This causes a struggle situation in our iterative algorithm and that is why the allocation scheme is

named by competitive water-filling solution. On the other hand, if the required rates are not that
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much or the power constraints are set to very high, the allocated rate to each user will gradually

converge to their targets from an initial point without struggling.

3.3.2 Convergence Behavior Control

In this section, we design the initial point and step size for a faster convergence. Although

the concavity of the dual function promises that the power and rate will converge along the

supergradient, we can boost the speed of convergence by finding the proper initial values. The

choice of the step size also has great impacts. A small step size lengthens the convergence time,

while a large step size leads to coarse convergence result. The main design principle in this

section is based on [12]. In order to give the initial values of µ and κ, we let each subcarrier

is occupied by all the K users and BD is deployed to separate the users. Even though this is

not the optimal way, it gives a good starting point to our algorithm. Since the user selection has

been fixed now, we can apply the competitive water-filling solution (3.14) and (3.15), where the

initial values of κ0
a, ∀a are generated uniformly on an open interval (0, 1), and the initial values

of µ0
k, ∀k are chosen to the levels such that

M∑
m=1

Nr∑
l=1

rk,m,l = Mrtark , ∀k. (3.26)

The initial step sizes for updating µ and κ can be designed as

δ01 = η1

K∑
k=1

µ0
k

K∑
k=1

rtark

(3.27)

and

δ02 = η1

NT∑
a=1

κ0
a

NT∑
a=1

pcona

, (3.28)
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where η1 > 0 is a constant. There are two behavior when the algorithm is running, the first is

that µ and κ are changing in one direction, which can be expressed as

sign
(
χi
1,k

)
== sign

(
χi−1
1,k

)
, ∀k (3.29)

and

sign
(
χi
2,a

)
== sign

(
χi−1
2,a

)
, ∀a, (3.30)

where “==" is the equality judgment. Since the initial values may be far from the optimal

results, this situation tells us the µ and κ are approaching the optimal values. Therefore, we can

increase the step sizes to boost the convergence by adjusting

δi+1
1 = η2δ

i
1 (3.31)

and

δi+1
2 = η2δ

i
2, (3.32)

where η2 > 1 is a constant. On the other hand, if µ and κ are oscillating, which means that they

are already close to the optimal values. The oscillation behavior can be represented as

∃k such that
[
sign

(
χi
1,k

)
̸= sign

(
χi−1
1,k

)]
∩
[
sign

(
χi−1
1,k

)
̸= sign

(
χi−2
1,k

)]
, (3.33)

and the second direction is

∃a such that
[
sign

(
χi
2,a

)
̸= sign

(
χi−1
2,a

)]
∩
[
sign

(
χi−1
2,a

)
̸= sign

(
χi−2
2,a

)]
. (3.34)

In this case, we can stabilize them by changing

δi+1
1 = δi1/η3 (3.35)

and

δi+1
2 = δi2/η3, (3.36)
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where η3 > 1 is a constant. If the condition does not belong to anyone of these two, then δi1 and

δi2 remain the same. Besides, in order to prevent the step size from going unboundedly. We set

the upper and lower bounds for the step size, which are

δ
(max)
1 = η(max)δ01, δ

(max)
2 = η(max)δ02 (3.37)

and

δ
(min)
1 = η(min)δ01, δ

(min)
2 = η(min)δ02. (3.38)

where η(max) > 1 and 0 < η(min) < 1 are constants.

It should be noted that although the behavior of µ and κ have some relation, but they are not

fully identical. In other words, ifµ is moving in one direction, it is possible that κ is oscillating.

In short, our resource allocation algorithm can be illustrated by Figure 3.2.

Fixed user 
selection, get 
initial ț and ȝ

Clear all the users 
on each subcarrier

Adaptive user 
selection and 

resource 
allocation

Max 
iteration?

Compute 
supergradient

Update ȝ and ț

End

No

Yes

Figure 3.2: Flowchart of our resource allocation algorithm.
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3.4 Simulation Results

In the simulation of this chapter, we consider a downlink CoMP cluster consists of three

cells (B = 3), each cell is divided into three sectors and the BS cooperation takes place in the

neighboring sectors. One user is dropped uniformly in each sector (K = 3). This scenario is

shown in Figure 3.3. Each BS and user both have two antennas (NT = 6, Nr = 2), and the target

rate is set to rtark = 3 bps/Hz, ∀k, unless otherwise stated. We let the SNR gap be 3 dB, which

corresponds to the tolerable bit error rate BERtar ∼= 10−2. There are sixty-four subcarriers in

our system (M = 64) with 15 KHz bandwidth each. The noise power spectral density is -174

dBm/Hz, so the noise power within one subcarrier is N0
∼= −162.2391 dBW. The path loss

model is the same as the one in section 2.3. In order to show the effect of power allocation,

we apply a seven taps channel with the power delay profile defined in the extended pedestrian-

A ITU channel model [21], which is [0,−1,−2,−3,−8,−17.2,−20.8] dB. Multiple users are

allowed to occupy the same subcarrier, the number of user on each subcarrier is determined by

the greedy user selection algorithm introduced in section 3.3.1. Based on [12], the parameters

for the step size are set to η1 = 0.1, η2 = 1.1, η3 = 2, η(max) = 5 and η(min) = 0.1.

Figure 3.3: Illustration for three-sectorized CoMP.
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Assume the power constraint is equivalent among all the transmit antennas. We first show

the result of adaptive power allocation, for avoiding the competitive condition, we set the per-

antenna power constraints to an extremely high value, which is (NTp
con
a ) / (MN0) = 180 dB,

this corresponds to pcona
∼= 637W, ∀a.

Figure 3.4 plots the edge-SNR versus different target rates. The edge-SNR here is defined

as

SNRedge (dB) = PT (dBW)− 10log10 (β)− 10αlog10 (rcell)−MN0 (dBW) , (3.39)

where β = 1014.81 is the pathloss constant, α = 3.76 is the pathloss exponent and rcell = 1 Km

is the cell radius, note that in (3.39), PT =
NT∑
a=1

P t
a, where P t

a is the actual transmit power from

antenna a after power allocation. We can see that the required edge-SNR increases with the target

rate as expected. The ''Fixed Alloc'' is the initialization of our algorithm that each subcarrier is

occupied by the maximumK = 3 users. Our adaptive allocation method outperforms the fixed

one since it exploits the frequency-selectivity of the multipath channel and the degree of freedom

of multiple antennas.

Figure 3.5 shows the edge-SNR as a function of the number of antennas when pcona
∼= 637

W. In this figure, the number of antenna changes simultaneously at both the BS and user side.

For example, one antenna meansNr = Nt = 1 so it is a 3× 3MU-MIMO scheme and so on. It

is clear that multiple antennas can reduce the requirement of the edge-SNR under a given target

rate.

39



3 3.5 4 4.5 5
3

4

5

6

7

8

9

10

11

Target Rate (bps/Hz)

E
dg

e−
S

N
R

 (
d 

B
)

 

 
Fixed Alloc.
Adaptive Alloc.

Figure 3.4: Edge-SNR versus different target rate.
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Figure 3.5: Edge-SNR versus different number of antennas.
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Figure 3.6 and Figure 3.7 plot the user rate and sum-power versus the number of iterations

under the same channel realization. The setups of power constraint of the two figures are both the

same as the one in Figure 3.5. As stated in section 3.3.2, when the per-antenna power constraint

is relatively large, the rates of all the users will gradually converge to their target (rtark = 3 bps/

Hz, ∀k, in our case), and there is no waste of power since only the power which satisfies the user

rates are transmitted. Although the rates are fluctuating within the first 20 iterations, however,

the step sizes will be adjusted adaptively according to the convergence condition, so they will

become stable step by step.

Finally, we show the competitive condition. Figure 3.8 and 3.9 plots the transmit power on

antenna 1 over 100 independent channel realizations with different setups.In both of the two fig-

ures, the target user rates are increased to rtark = 5 bps/Hz, ∀k, the per-antenna power constraints

are reduced to (NTp
con
a ) / (MN0) = 161 dB, 153 dB, or equivalently, pcona

∼= 8.019, 1.271W, ∀a,

respectively. The power is normalized over pcona , so 0 dB is equivalent to the value of the an-

tenna power constraint. If the power constraints are removed, the goal is simply to find the

minimum power allocation which satisfies the target rates. Although the rate requirements are

achieved seemingly, however, the transmit power often exceeds the its constraint (up to about 8

and 16 dB in the two figures) so that the transmit power will be suppressed. Consequently, the

actual transmitted rate is less than the expected one. Whereas the scheme which considers per-

antenna power constraints tries to balance the transmit power on each antenna, we can see that

the maximum power is reduced to about 4 and 7 dB, and it fluctuates slightly compared to the

scheme without power constraints. The power on antenna 1 does not always falls below 0 dB,

the reason is that the rate constraints in (3.4) tries to increase the transmit power, which leads to

a competitive condition. It should be noted that the channel of the two scheme are independent

to each other, i.e., they experience different channel in channel realization i, 1 ≤ i ≤ 100.
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Figure 3.6: User rate convergence behavior.
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Figure 3.8: Normalized transmit power on antenna 1 over 100 channel realizations when pcona
∼=

8.019W.
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Figure 3.9: Normalized transmit power on antenna 1 over 100 channel realizations when pcona
∼=

1.271W.
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CHAPTER 4

PAPR REDUCTION FOR MU-MIMO SYSTEMS

4.1 System Model and Transmission Schemes

In this chapter, we consider the downlink transmission in only one cell with small scale

Rayleigh fading channels for brevity. This assumption is reasonable since in a CoMP cluster,

the BSs which apply JT are equivalent to a super BS with additional antennas which serves

multiple users. Therefore, the model in this chapter is a single cell MU-MIMO scheme, and it

can be extended to a multi-cell scenario by adding large scale components to the channel matrix.

Assume there areM subcarriers andK users in our system. The BS equipsNt antennas and

each user has Nr antennas. Ignoring the interference from the other BSs, the received signal of

the user k on the subcarrier m can be represented as the same as (3.1). We rewrite this signal

here for the sake of illustration:

yk,m = Hk,mxk,m +
Km∑

n=1,n̸=k

Hn,mxk,m + nk,m, (4.1)

whereKm is the number of user on the subcarrierm, Hk,m is theNr ×Nt MIMO channel, xk,m

is theNt×1 transmitted signal for the user k and nk,m is the zero-mean complex Gaussian noise

vector with covariance matrix E
[
nk,m(nk,m)H

]
= N0INr . After BD precoding and receive

equalization (see section 3.1), the lth spatial stream for the user k is

rk,m,l = sk,m,l
√
pk,m,ldk,m,l + ñk,m,l, (4.2)

where sk,m,l is the lth singular value of the orthogonalized channel matrix of the user k on the

subcarrier m, pk,m,l is the power allocated on this stream, dk,m,l is the lth element in dk,m and
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ñk,m,l is the zero-mean complex Gaussian noise with variance N0.

4.2 Suboptimal Power Minimization Algorithm

In this section, we consider a power minimization problem similar to the one in section 3.2.

For power saving, we try to find a way of power allocation that minimizes the total transmit

power while satisfies some constraints. The problem can be formulated mathematically as

minimize
pk,m,l

K∑
k=1

M∑
m=1

Nr∑
l=1

pk,m,l

subject to
M∑

m=1

Nr∑
l=1

bk,m,l ≥ Mrtark , 1 ≤ k ≤ K

bk,m,l ∈ S, ∀k, m, l

pk,m,l ≥ 0, ∀k, m, l, (4.3)

where pk,m,l and bk,m,l are the power and the bits allocated for the user k on the lth stream of

the subcarrierm, rtark is the rate requirement in bps/Hz and S is a set of the available number of

bits of different constellation, for example, if we use quadrature phase-shift keying (QPSK) and

16-QAM for modulation, then S = {0, 2, 4}. [22] shows that if QAM is deployed, then pk,m,l

is given by

pk,m,l =
N0

(sk,m,l)
2 ln

(
1

5BERtar

)
2bk,m,l − 1

1.5
, (4.4)

where BERtar is the target BER. Based on (4.4), we propose a suboptimal greedy algorithm to

solve (4.3) when only QPSK and 16-QAM are deployed, although it can be easily extended to

a higher order modulation. For brevity, the user selection is fixed such that each subcarrier is

occupied by all the K users, i.e.,Km = K, ∀k. The ∆pk,m,l in Step 2 is defined as

∆pk,m,l =
N0

(sk,m,l)
2 ln

(
1

5BERtar

)(
2bk,m,l+2 − 1

1.5
− 2bk,m,l − 1

1.5

)
. (4.5)

We set the bit step size to two because that S = {0, 2, 4} here.
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Algorithm Greedy Power Allocation Algorithm
1: Assign zero bits to all streams;

2: Find the stream l̂ that requires the least ∆pk,m,l;

3: Add two bits to l̂ if the bits on l̂ does not exceed the maximum number (4 in our case);

otherwise remove l̂ from the candidate list;

4: Terminate this algorithm when all the rate requirements are satisfied; otherwise go back to

step2;

4.3 Multiuser Active Constellation Extension Method

4.3.1 PAPR Definition and ACE Concept

In order to understand why OFDM suffers from large PAPR, we start from the definition of

the OFDM signal. An OFDM signal is the sum ofM independent signals, which is

xn =
1

M

M∑
m=1

Xme
j2πmn/M , 1 ≤ n ≤ M (4.6)

whereXm is the frequency doamin symbol (could be any type of modulation) on the subcarrier

m and xn is the nth time domain symbol. The definition of the PAPR for an OFDM symbol is

PAPR (x) =
∥ x ∥2∞

E [∥ x ∥2F ] /M
, (4.7)

where E [·] is the expectation operator and x = [x1, . . . , xM ]T . Based on the central limit theo-

rem, as M increases, xn approaches a Gaussian distributed random variable. Therefore, it may

become large under a certain probability and cause high PAPR. Since there is a saturation re-

gion in every power amplifier (PA), any signal exceeds the saturation threshold will be clipped.

Hence we need to widen the power range of the PA if the transmitted signal has large PAPR,

which is power inefficient.

Here we introduce the concept of active constellation extension (ACE) in [15]. ACE is a

46



methodwhich tries to alter the constellation to reduce PAPR. The idea can be illustrated in Figure

4.1 with QPSK modulation. The shaded regions represent the legal extension regions (could be

further extended). Suppose the received signal is corrupted with additive white Gaussian noise,

the decision boundaries of the maximum likelihood detector are the real and imagine axes which

divide the complex plane into four quadrants. Making any constellation point to be closer to the

boundaries will increase the BER. By setting the extension regions properly, ACE can modify

the constellation points without BER performance degradation .

Figure 4.1: Illustration for ACE with QPSK modulation.

This idea can also be applied to QAM. For the example of 16-QAM as depicted in Figure

4.2, the constellation points can be classified into three types according to their position: the

interior, exterior and corner points. Without increasing the BER, the interior points have to be

fixed, the exterior points can only be moved in one direction, and the corner points can be moved

inside the shaded regions. Hence, the higher the modulation order is, the less the flexibility of

the ACE extension region will be. Our goal is to find a combination of these additional signals

that can reduce time domain peaks.
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Figure 4.2: Illustration for ACE with 16-QAM.

4.3.2 Problem Formulation

In this section, we define the ACE PAPR reduction problem for MU-MIMO scheme. We

first define the Nt ×M frequency domain MIMO-OFDM signal as

X = [x1, . . . , xm, . . . xM ] , (4.8)

where

xm =
Km∑
k=1

xk,m

=
Km∑
k=1

Fk,mPk,mdk,m

=
Km∑
k=1

Fk,md̃k,m

= [F1,m, . . . ,FKm,m]

[(
d̃1,m

)H
, . . . ,

(
d̃Km,m

)H]H
= Fmd̃m (4.9)

is the column vector of X which sums the signals of all the Km users on the subcarrier m.

In (4.9), Fk,m is the BD precoding matrix, Pk,m and dk,m are the power allocation matrix and
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modulated symbol vector determined by the algorithm introduced in section 4.2. Then we obtain

the Nt ×M time domain signal by applying block-IDFT to each row of X:

W = Block− IDFT (X)

= [w1, . . . ,wa, . . . ,wNT
]T , (4.10)

where wT
a is the ath row vector of W. The frequency-time relation via block-IDFT can be

illustrated by Figure 4.3.

Figure 4.3: Illustration of block-IDFT.

We define the PAPR on the ath antenna as

PAPRa =
∥ wT

a ∥2∞
E [∥ wT

a ∥2F ] /M
(4.11)

and the PAPR of a MIMO system as

PAPRMIMO = max
a

(PAPRa) . (4.12)

With the definitions above, the ACE PAPR minimization problem can be formulated as

minimize
C∈C

PAPR
MIMO

, (4.13)

where C = [c1, . . . , cm, . . . cM ] is the extension matrix, C is the transformed legal ACE space

and PAPR
MIMO is the new PAPR after altering the original symbol by X = X+C. When there

are multiple users on each subcarrier, we can transform C back into the constellation domain by

em = inv (Fm) cm, (4.14)
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where Fm is the composite BD matrix defined in (4.9). Therefore, the signal on the subcarrier

m after ACE processing can be given by

xm = xm + cm

= Fmd̃m + Fmem. (4.15)

This equation tells us that finding cm is equivalent to finding a constellation extension vector

em. Hence we can reformulate (4.13) in a new form:

minimize
E∈E

PAPRMIMO
, (4.16)

where E = [e1, . . . , em, . . . eM ] and E are the ACE extension matrix and legal space in the

constellation domain, respectively. A low complexity algorithm for solving (4.16) will be in-

troduced in section 4.3.3.

4.3.3 An Efficient Algorithm for ACE

In this section, we propose a suboptimal algorithm to implement ACE. The main idea of

this algorithm is based on [15], we made some modifications so that it can be used in MU-

MIMO systems. Based on the Step 4 of the approximate gradient-project method, we know

that only the elements of em which corresponds to the data-carrying spatial streams would be

altered due to ACE region constraints. The remaining empty spatial streams (usually have bad

channel conditions) after power allocation can be fully used for PAPR reduction, which makes

our algorithm has a tone reservation-like property.

Algorithm Approximate Gradient-Project Method
1: Obtain X by applying BD and the power allocation algorithm introduced in section 4.2.

Determine the legal ACE extension regions according to the modulation results on each

spatial stream. Deploy block-IDFT to getW and set the iteration index i = 0;
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Algorithm Approximate Gradient-Project Method (continued)
2: Clip any signal which exceeds the threshold D:

W̃i [a, n] =


Wi [a, n] ,

∣∣Wi [a, n]
∣∣ ≤ D

Dejθ[a,n] ,
∣∣Wi [a, n]

∣∣ > D,

(4.17)

where

Wi [a, n] =
∣∣Wi [a, n]

∣∣ ejθ[a,n] (4.18)

is the element in the ath row and nth column of the matrixWi;

3: Compute the clipped portion:

Wclip = W̃i −Wi (4.19)

and transform it into frequency domain to obtain C:

C = Block− DFT (Wclip) ; (4.20)

4: For each subcarrier, compute em = inv (Fm) cm and remove the elements (real and/or imag-

inary part) outside the legal ACE regions to obtain ẽm;

5: Compute the time domain clipped portion which lies in legal region by

W̃clip = Block− IDFT (Fmẽm) . (4.21)

6: Compute

Wi+1 = Wi + δW̃clip, (4.22)

where δ is the step size.

7: Stop this algorithm if the target level of PAPRMIMO or the maximum number of iteration has

been reached. Otherwise, set i = i+ 1 and go back to Step 2.
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Next, we introduce an algorithm to find the δ in Step 6 of the approximate gradient-project

method. The best choice of δ would be

δ∗ = arg min
δ

∥
(
wi

amax

)T
+ δ
(
w̃i

clip,amax

)T ∥2∞

E[∥
(
wi

amax

)T
+ δ
(
w̃i

clip,amax

)T
∥2F ]/M

, (4.23)

where

amax = arg min
a

(PAPRa) (4.24)

and (
wi

amax

)T
=
[
wi

amax,1, . . . , w
i
amax,n, . . . w

i
amax,M

]
(4.25)

is the row amax ofWi. A heuristic way to find δ is to reduce the peak to another sample point:

∣∣∣Wi [amax, nmax] + δW̃i
clip [amax, nmax]

∣∣∣2 = ∣∣∣Wi [a, n] + δW̃i
clip [a, n]

∣∣∣2, (4.26)

where

nmax = arg max
n

([
| wi

amax,1 |, . . . , | w
i
amax,n |, . . . , | wi

amax,M |
])

. (4.27)

HenceW [amax, nmax] indicates peak location on antenna amax. This method needs a search over

MNT − 1 possibilities, i.e., it solves (4.26) for every sample [a, n] except [amax, nmax] and finds

the best δ that minimizes PAPRMIMO. To avoid solving such a quadratic equation so many

times, here we introduce a low complexity method to find the appropriate step size δ.

Algorithm Smart Gradient-Project Method
1: Find the peak magnitude on the antenna amax by

A =
∣∣Wi [amax, nmax]

∣∣ . (4.28)

2: For all the samples , compute the projection part ofWi
clip [a, n] along the phase ofWi [a, n]:

W̃proj
clip [a, n] =

Re
{
Wi [a, n]

(
W̃i

clip [a, n]
)∗}∣∣Wi [a, n]

∣∣ . (4.29)

52



Algorithm Smart Gradient-Project Method (continued)

3: Compute the candidates of step size for only the samples where W̃proj
clip [a, n] > 0 by solving

A+ δ [a, n] W̃proj
clip [amax, nmax] =

∣∣Wi [a, n]
∣∣+ δ [a, n] W̃proj

clip [a, n] . (4.30)

4: Choose the δ [a, n] that minimizes PAPRMIMO. If this δ [a, n] is negative, stop the entire

PAPR reduction algorithm (the reason is left below).

There are two cases for explaining why this projected method works:

Case 1) |Wclip [a, n]| ̸= 0

This is the clipped portion of the sample which exceeds the threshold D. Although it

will be distorted due to the ACE space constraints (the Step 4 of approximate gradient-

project method). But it is still likely that∠Wclip [a, n] ∼= ∠W̃clip [a, n]. Based on (4.17)-

(4.19), we know ∠Wclip [a, n] = −∠W [a, n], it implies that W̃proj
clip [a, n] holds the most

energy of W̃clip [a, n]. Hence, there is little loss between solving (4.26) and (4.30), but

the latter has lower complexity. Since ∠W̃clip [a, n] ∼= −∠W [a, n], if the δ [a, n] is

negative, it may increases the peak power. That's why we stop the algorithm if this

happens. In the Step 3 of the smart gradient-project method, we consider only the

samples where W̃proj
clip [a, n] > 0, since the W̃proj

clip [a, n] < 0 situations originate from

those samples with large amplitude, i.e., the |Wclip [a, n]| ̸= 0 samples. Reducing the

peak sample to the level of such samples will result in little PAPR reduction.

Case 2) |Wclip [a, n]| = 0

This is the sample which falls below the threshold D. Even with ACE distortion, it

is likely that
∣∣∣W̃clip [a, n]

∣∣∣ ∼= 0. Therefore, W̃clip [a, n] has little effect on the result of

PAPR reduction, so projecting these samples is nothing matter.
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4.3.4 Modifications of ACE

As mentioned above, it requires an expensive PA with wide power range to transmit a high

PAPR signal, that is the reason why we are eager to reduce PAPR. In practical implementations,

the signal before PA will be converted into analog type through a digital-to-analog (D/A) con-

verter. Generally, the peak power increases after D/A conversion. Therefore, the performance

of PAPR reduction will be reduced if we ignore the D/A effect.

To approximate the analog signal, we can oversample the digital signal by a factor of L.

Assume there is a frequency domain vector x = [x1, . . . , xM ]T with frequency-time relation

w = IDFT (x) . (4.31)

The L times oversampling can be implemented by insertingM (L− 1) zeros to x [23]:

wL = IDFT
(
[x1, . . . , xM , 0M+1, . . . 0ML]

T
)
. (4.32)

The effect of oversampling will be shown in the simulation results of this chapter.

One of the drawbacks of ACE is the increased average power. However, the power increment

can be kept to an acceptable value if we set a target peak level Dtar to our algorithm. If the PA

was able to transmit a signal with peak levelDtar, it is not necessary to reduce the peak far below

Dtar. Hence if the δ chosen by the Step 3 of the smart gradient-project method satisfies

A−
∣∣∣δW̃i

clip [amax, nmax]
∣∣∣ < Dtar, (4.33)

we can meet the target level by replacing δ with

δ =
A−Dtar∣∣∣W̃i

clip [amax, nmax]
∣∣∣ . (4.34)

Although we make this modification, the peak level may not be Dtar exactly, since the peak

location would be changed after every iteration of ACE. But our simulations show that it indeed

reduces the increment of average power.
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4.4 Simulation Results

Since the PAPR is not sensitive to the channel model, so for brevity, we consider only one

BS which serves two users (K = 2) in the simulation of this chapter. The BS equips four

antennas (Nt = 4) and each user has two antennas (Nr = 2). The total number of subcarrier is

256 (M = 256) with 15 KHz bandwidth each, unless otherwise stated. The channel is 17-taps

Rayleigh distributed with uniform power delay profile. At first, the OFDM symbols on each

antenna are generated by the power allocation algorithm introduced in section 4.2, the available

constellations are QPSK and 16-QAM and the rate requirement is rtark = 3, ∀k with tolerable

bit error rate BERtar = 10−2. Next, these signals are fed to the multiuser ACE algorithm. The

clipped level D is 4.86 dB above the average power.

We first show the performance of power allocation. Figure 4.4 plots the transmit SNR versus

different rate requirements. The transmit SNR is defined as

K∑
k=1

M∑
m=1

Nr∑
l=1

pk,m,l

MN0

=
Es

MN0

. (4.35)

Since in a wireless environment, the singular value (channel quality) of the main spatial stream

is usually much stronger than the others. So in the fixed allocation, only the main stream on

each subcarrier is used to carry data. At rtark = 3, the SNR gain is about 1.7 dB. This gain would

be even larger if the fixed scheme use the secondary spatial stream.

Figure 4.5 and 4.6 shows the distribution of the data symbols with QPSK and 16-QAM

after ACE. As expected, they lie in the constraint space and the symbols except the regular

constellation points increase the average transmit power.
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Figure 4.4: The SNR versus different rate requirements.
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Figure 4.5: A snapshot of the data symbols with QPSK modulation after ACE.
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Figure 4.6: A snapshot of the data symbols with 16-QAM modulation after ACE.

Figure 4.7 plots the complementary cumulative distribution function (CCDF) of the PAPR

after ACE. The upsampling factorL is set to two. The first iteration provides about 3.5 dB PAPR

reduction gain at probability 10−3, whereas the third provides negligible gains. Hence iteration

more than two is meaningless.

The effect of different oversampling factor is shown in Figure 4.8. Since Figure 4.7 tells us

that two iteration is sufficient, so we only show the performance up to iteration two. The scheme

with L = 4 provides only additional 0.2 dB gain at probability 10−3. However, the FFT size

will become two times larger and therefore increases the system complexity.

In Figure 4.7, the power increments of the three interations are 1.95, 2.49, 2.53 dB. They

can be kept low if we only reduce the PAPR to a certain level. Figure 4.9 plots the CCDF of the

PAPR with different PAPR targets at iteration two when L = 2. The power increments with the

PAPR targets 6.5 and 7.5 dB are reduced to 1.31 and 0.57 dB.
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Figure 4.7: The CCDF of the PAPR after ACE.
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Figure 4.8: The CCDF of the PAPR after ACE with different oversampling factors.
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Figure 4.9: The CCDF of the PAPR after ACE with different PAPR targets.
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Figure 4.10: The CCDF of the PAPR after ACE with different subcarrier sizes.
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Finally, we show the effect of different subcarier sizes. Figure 4.10 plots the CCDF of the

PAPR with subcarrier size 64 and 256. The upsampling factor is two. Larger subcarrier size

results in larger initial PAPR, however, it provides more space to design ACE signals, so the

PAPR reduction performance will be better after ACE.
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CHAPTER 5

CONCLUSION

In this thesis, we tackle three main problems including BS clustering, resource allocation and

PAPR reduction for downlink LTE-A cellular system. In chapter2, the BS clustering problem

is considered. CoMP is a promising way of suppressing inter-BS interference, but it requires

the CSI and/or user data sharing between BSs. In order to reduce the overhead, only a limited

number of BSs form a CoMP cluster. This raises the problem of which BSs should cooperate

in a cluster to maximize the system performance. A straightforward way is static clustering,

but it inherits the drawback that users in the edge of the static cluster still suffer from severe

interference. In this thesis, we propose a dynamic clustering method based on modifying the

method proposed in [10]. The method utilizes the instantaneous CSI and forms CoMP clusters

adaptively, hence there is no fixed cluster edge in this scheme and no user will always prone

to interference. Nevertheless, this dynamic method requires a central controller which runs the

clustering algorithm. We make some modifications to [10], which can be listed below:

1. We replace the simple zero-forcing and MMSE precoder with a more powerful BD pre-

coder.

2. In [10], it assumed the users always need CoMP regardless of their signal strength. But

CoMP provides only marginal gain to the users with high SINR. Hence, we let each user

measure their pilot SINR and feedback to the controller for making BS clustering deci-

sions.

3. We provide three utility functions for the dynamic algorithm and make it more flexible.
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In chapter 3, we consider the problem of resource allocation. Equal power allocation is

applied in chapter 2, however, the performance can be further improved by adaptively allocating

power to frequency and space domain. Based on [12], we introduce an optimal power allocation

method that minimizes the total transmit power while satisfying BER and user rate constraints.

Besides, we add practical per-antenna power constraints to the problem formulation. The main

idea is to use the Lagrange dual decomposition to transform the original non-convex problem

into convex form. In addition, an adaptive method is proposed to find the optimal solution.

Simulation results show that the adaptive allocation provides large performance gain over the

fixed allocation, and the transmit power on each antenna seldom exceeds the maximum power

limit, as compared with the result of [12]. This improves the overall system power efficiency.

In chapter 4, we address the PAPR reduction problem. Although the average power can

be reduced via power allocation, multicarrier systems still suffer from large PAPR. We adopt

the concept called ACE [15] to minimize PAPR. The downside of this method is the increased

transmit power, however, it can be kept low by achieving acceptable PAPR level. To get better

performance, we oversample the digital signal to approximate analog signal. Simulation results

shows that only two times oversampling and two iterations is sufficient to provide great PAPR

reduction. Our contributions to this topic are

1. We propose a low complexity power allocation algorithm tominimize the average transmit

power while satisfying user rate and constellation constraints. It also helps us to generate

MIMO-OFDM signals.

2. We modify the SISO ACE method in [15] to make it compatible to MU-MIMO systems.
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APPENDIX A

DERIVATIONS FOR CHAPTER 3

A.1 Derivation of Competitive Water Filling Solution

The Lagrangian (3.13) has become the new object function that to be minimized. We add

the constraint pk,m,l ≥ 0 here so that the problem can be formulated as

minimize
pk,m,l

(
pk,m,l − µkrk,m,l +

NT∑
a=1

κa|Fk,m [a, l]|2pk,m,l

)

subject to pk,m,l ≥ 0. (A.1)

We introduce a new Lagrange multiplier ν for the new power constraint, and write the La-

grangian of (A.1) as

L = pk,m,l − µkrk,m,l +

NT∑
a=1

κa|Fk,m [a, l]|2pk,m,l − νpk,m,l. (A.2)

Then we obtain the Karush-Kuhn-Tucker (KKT) conditions:

pk,m,l ≥ 0, (A.3)

ν ≥ 0, (A.4)

νpk,m,l = 0, (A.5)

∂L
∂pk,m,l

= 0. (A.6)

We do the partial differentiation of (A.6) and get

1 +

NT∑
a=1

κa|Fk,m [a, l]|2 − µk

ln (2)
1

τN0

s2k,m,l
+ pk,m,l

= ν ≥ 0, (A.7)
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where the inequality is based on (A.4). Replace the ν in (A.5) by the one in (A.7), we get

pk,m,l

1 +

NT∑
a=1

κa|Fk,m [a, l]|2 − µk

ln (2)
1

τN0

s2k,m,l
+ pk,m,l

 = 0. (A.8)

Case 1) 1 +
NT∑
a=1

κa|Fk,m [a, l]|2 < µk

ln(2)
1

τN0
s2
k,m,l

In this case, the inequality in (A.7) only holds if pk,m,l > 0. Therefore, the second term

in (A.8) must be zero, which yields

1 +

NT∑
a=1

κa|Fk,m [a, l]|2 = µk

ln (2)
1

τN0

s2k,m,l
+ pk,m,l

. (A.9)

Case 2) 1 +
NT∑
a=1

κa|Fk,m [a, l]|2 ≥ µk

ln(2)
1

τN0
s2
k,m,l

If pk,m,l > 0, it implies

1 +

NT∑
a=1

κa|Fk,m [a, l]|2 ≥ µk

ln (2)
1

τN0

s2k,m,l

>
µk

ln (2)
1

τN0

s2k,m,l
+ pk,m,l

, (A.10)

which contradicts (A.7). Hence pk,m,l must be zero.

Combine the results of Case 1 and Case 2, we get

pk,m,l =


µk

ln(2)1+
NT∑
a=1

κa|Fk,m[a,l]|2
− τN0

s2k,m,l
, µk

ln(2)

(
1+

NT∑
a=1

κa|Fk,m[a,l]|2
) > τN0

s2k,m,l

0 , µk

ln(2)

(
1+

NT∑
a=1

κa|Fk,m[a,l]|2
) ≤ τN0

s2k,m,l

(A.11)

which is equivalent to (3.14). This result is a transformation of the traditional water-filling

solution. In [24], it has been shown that if we write the water-filling in a general form:

p = max
{
κ− λ−1, 0

}
, (A.12)

where κ is the water-level and λ−1 is the riverbed. The capacity will be

c = log2 (1 + pλ) . (A.13)
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Substitute (A.12) into (A.13), we obtain

c = log2
(
1 +max

{
κ− λ−1, 0

}
λ
)

= log2 (1 +max {κλ− 1, 0})

= log2 (max {κλ, 1}) , (A.14)

where

κ =
µk

ln (2)
(
1 +

NT∑
a=1

κa|Fk,m [a, l]|2
) (A.15)

and

λ =
s2k,m,l

τN0

(A.16)

in our case. This verifies (3.15).

A.2 Derivation of Supergradient

To match the dual function in our power minimization problem, we rewrite the definition of

supergradient (3.17) by

d (µ̃, κ̃) ≤ d (µ,κ) + χT
1 (µ̃− µ) + χT

2 (κ̃− κ) (A.17)

Based on the definition of the dual function (3.9), we know

d (µ̃, κ̃)

=min
r

L (r, µ̃, κ̃)

=min
rm

{
M∑

m=1

fm (rm) + µ̃T

(
Mrtar −

M∑
m=1

rm

)
+ κ̃T

(
M∑

m=1

gm (rm)− pcon
)}

≤
M∑

m=1

fm (r∗m) + µ̃T

(
Mrtar −

M∑
m=1

r∗m

)
+ κ̃T

(
M∑

m=1

gm (r∗m)− pcon
)
. (A.18)
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We have the inequality because r∗ = min
r

L (r,µ,κ), which is not actually (but still possible) the

optimal solution that minimize L (r, µ̃, κ̃). After inserting some tricky terms, (A.18) becomes

d (µ̃, κ̃)

≤
M∑

m=1

fm (r∗m) + µT

(
Mrtar −

M∑
m=1

r∗m

)
+ (µ̃− µ)T

(
Mrtar −

M∑
m=1

r∗m

)

+κT

(
M∑

m=1

gm (r∗m)− pcon
)

+ (κ̃− κ)T
(

M∑
m=1

gm (r∗m)− pcon
)

=d (µ,κ) + (µ̃− µ)T
(
Mrtar −

M∑
m=1

r∗m

)
+ (κ̃− κ)T

(
M∑

m=1

gm (r∗m)− pcon
)

=d (µ,κ) +

(
Mrtar −

M∑
m=1

r∗m

)T

(µ̃− µ) +

(
M∑

m=1

gm (r∗m)− pcon
)T

(κ̃− κ) , (A.19)

which satisfies the definition of the supergradient (A.17) and hence verifies (3.18) and (3.19).
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