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The effect of nonparabolicity on amplification of total-reflection-mode acoustic surface waves in
piezoelectric semiconductor films has been investigated quantum mechanically in the gigahertz-
frequency region. Numerical results show that the amplification coefficient oscillates with the fre-
quency in the low- and high-frequency regions due to the intersubband transitions and these oscilla-
tions can be affected by the nonparabolicity of the energy band in semiconductors. Moreover, the
amplification coefficient depends also on the electronic screening effect, the temperature, the ap-
plied electric field, and the thickness of semiconductor films.

I. INTRODUCTION

The interaction of elastic surface waves with conduc-
tion electrons in a piezoelectric semiconductor provides a
useful tool to study the electronic band structure of solids.
In an elastic medium with a stress-free plane boundary,
acoustic waves can be propagated along the boundary of
an elastic half-space and reflected on the boundary.! Thus
the electrons localized in the surface region can be affect-
ed by the reflection of waves. When the sound velocity of
the propagation of waves c¢ lies between the transverse
sound velocity ¢, and the longitudinal sound velocity c;,
the longitudinal pressure wave will be totally reflected by
the solid surface.’> This is called the total-reflection
mode (TR mode). It has been shown that the effect of
nonparabolicity on amplification of surface waves be-
comes considerably important for the Rayleigh waves due
to the nonlinear nature of the energy band in semiconduct-
ors.> In piezoelectric semiconductors the interaction of
elastic acoustic surface waves with conduction electrons is
dominated by the deformation potential and piezoelectric
fields. The deformation of the crystal due to the surface
waves determines directly the deformation-potential force
acting on the conduction electrons. On the other hand,
the piezoelectric field, which is due to a polarization of
the medium, can be found only by a self-consistent solu-
tion involving Maxwell’s equations. In this paper, we
wish to investigate the amplification characteristics of
TR-mode acoustic surface waves in a piezoelectric semi-
conductor layer such as n-type GaAs using the quantum-
mechanical treatment in the gigahertz-frequency region
such that g/ > 1, where g is the wave number of acoustic
waves and / is the mean free path of electrons. In the cal-
culation of the amplification coefficient of surface-mode
waves, we make the following assumptions.

(1) The energy-band structure of the piezoelectric semi-
conductor is nonparabolic.

(2) The media are elastically isotropic, and the quasi-
free-electron description of conduction electrons is valid.

(3) The interaction of the acoustic surface waves and
conduction electrons is via deformation-potential and
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piezoelectric couplings.

(4) We disregard all defects and consider a thin film of
an ideal semiconductor with perfectly parallel boundary
planes, hence the scattering of surface irregularities®*° is
neglected.

In Sec. IT we describe the configuration of the layered
system of a piezoelectric semiconductor and an insulator
which we shall use for determining the amplification
characteristics and specify the eigenfunctions of conduc-
tion electrons for the nonparabolic band structure. In Sec.
I11, we calculate the amplification coefficient of TR-mode
acoustic surface waves in n-type GaAs films for the non-
parabolic band structure using the Born approximation.
In Sec. IV, some numerical results of the amplification
coefficient are presented for the epitaxial layer of an n-
type GaAs on a semi-insulating GaAs substrate. Finally,
a brief discussion is given.

II. ELECTRONIC STATES IN A THIN LAYER
OF SEMICONDUCTORS FOR NONPARABOLIC
BAND STRUCTURE

The configuration of the amplifier that we consider for
amplification of the TR-mode acoustic surface waves is
shown in Fig. 1(a). A thin layer with the thickness d of a
piezoelectric semiconductor is grown epitaxially on an in-
sulating substrate with the same elastic properties as the
semiconductor layer.® The Cartesian coordinates are fixed
so that the material occupies the half-space z >0 and has
the stress-free surface parallel to the x-y plane. If a shear
wave polarized in the vertical plane (SV wave) of a medi-
um is incident upon the stress-free boundary surface, the
SV wave and a pressure wave (P wave) come out as re-
flected waves from the surface. The longitudinal P wave
is totally reflected by the surface as shown in Fig. 1(b).
For this TR mode, the amplitude of the P wave decays ex-
ponentially away from the surface. In the work given by
Tamura and Sakuma,’ the TR mode was considered as the
special case of the SV-P mode in which the SV wave is in-
cident upon the surface with the angle of incidence being
larger than the critical angle 6, and the P wave is thus to-
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FIG. 1. (a) Thin layer with thickness d of a piezoelectric
semiconductor and an insulating material. (b) Longitudinal P
wave is reflected and travels along the surface of a medium and

penetrates into the medium only above a wavelength from the
surface. Transverse SV wave is polarized in the vertical plane.

tally reflected by the surface. However, it is not easy to
understand and establish this relationship between the TR
mode and the SV-P mode, because ¢ > ¢; in the SV-P mode
while ¢, <c <¢; in the TR mode.! Consequently, it seems
that we should treat the TR mode and the SV-P mode
separately.

The motion of conduction electrons parallel to the sur-
face may be described by plane waves, and those perpen-
dicular to the surface will be described by some type of
standing wave depending on the structure of the potential.
It is assumed that the potential along the z axis is a square
well which has infinitely high potential barriers at z=0
and z =d. Under this approximation, the field operator
Y(T) of conduction electrons in the second quantized
form takes the form’

12
W(F)= [—1— S Sbo exp(iE-i’)an(z)
S “~ - k,n
) VI
= |= S b explik-X)sin LI (1)
vV o’ ? k,n d
where T=(%,2)=(x,5,2), K=(ky,k,), V=dS is the
volume of the film with a surface area S, and bT{ . and its
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Hermitian conjugate bT , are annihilation and creation

operators of conductlon electrons, respectively, satisfying
the commutative relations of the Fermi type. The energy
of the conduction electrons E . for the nonparabolic

band structure is given by the relation®

E_ 2772 222 2
k,n ﬁk h
|1 : , n=123,... (2)
Ek,n[ + E, | 2m*  2m*d’

where E, is the energy gap between the conduction and
valence bands, and m* is the effective mass of the conduc-
tion electron. Since

(#K 2 ) /2m* +(m#n?) /2m*d ~kpT << E,

for piezoelectric semiconductors at low temperatures in
which we are interested (T <100 K), then Eq. (2) can be
expanded as

#K 2
~ ~—+E,+7Eza, , (3)
Ek,n +7 2 an+ 2m a,
with
a, =[1+Qm*#n?) /(m*d*E,)]""* . 4)

III. THEORETICAL FORMULATION

The quantization of the elastic wave field U(T,?) can be
expanded in terms of the expansion coefficients, a; and
T oacl
a;’, as
J ’

172
[a;d;(T)exp(—iw,t)

=2

J

2pcoJS
+aji%(Pexplio)], (5)

where p is the mass density of the medium, J =(dq,c,m) is
a suitable set of quantum numbers, d =(gy,q,) is a wave
vector parallel to the surface, ¢ is the phase velocity de-
fined by w;=c | G | =cq, and m specifies the propagation
mode of the acoustic waves. In the present case m indi-
cates TR mode. a; and its Hermitian conjugate a; are an-
nihilation and creation operators of surface-mode acoustic
waves, respectively, obeying the commutative relations of
the Bose type. The explicit expression of the wave func-
tion U, (¥) for the TR mode is given by’?

x(T) 12 igx/q iBgx/q iBgx/q
u,(7) |= Ez—B H exp(—agz) |ig, /q | +exp(—iBqz) |iBq,/q |+ G expliBgz) quy./q exp(ig %), (6)
u, (1) —a i —i
I
where G= (ﬁ2—1)2—4iaB’ = 46(32_1? . (8)
(B2—11+4iaB (B2—1*+4iaB
a=[1—(c/c;)*1'"?, B=I[(c/c;)*—1]'"*, (7)  Here, the phase velocity c takes a value between ¢, and ¢;.
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In the piezoelectric semiconductor, the conduction elec-
trons interact with the TR-mode acoustic surface waves
through the deformation potential, which is proportional
to the dilation caused by the acoustic field. These conduc-
tion electrons also interact with waves through piezoelec-
tricity. This induced electric field is proportional to the
strain in the piezoelectric coupling. The interaction Ham-
iltonian between conduction electrons and the TR-mode
waves may be written as’

HI:HD+HP’ ’ (9)

where Hp is the interaction Hamiltonian due to the
deformation-potential coupling and Hp is the interaction
Hamiltonian due to the piezoelectric coupling. For the
deformation-potential coupling, Hj can be expressed by

Hp=C [ ¥I(®)V-u(DW()dT

C

=53 2(1)%%",%,”(1,&"+H.c.), (10)

—

n,n’ K,J

where C is the deformation potential, and
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D;=¢€;E; +4mBijiSik » (12)

where D; is the electric displacement, E; is the electric
field, ¢; is the dielectric tensor, Bijk is the piezoelectric
tensor, and S;; is the strain tensor which can be written

explicitly in terms of the displacement vector U of the
medium as

au,' auj
+
Brj ar,-

1
2

If the electrostatic approximation is valid, the electric
field E can be derived from a scalar potential ®;,

E=—Vo,. (14)
Within insulating crystals, Gauss’s law is expressed as
V-D=0. (15)

Since we assume that the medium is isotropic in its elastic
properties, that is, €;; =€,5;; (g is the static dielectric con-
stant), then, from Egs. (12), (14), and (15), we have the
equation

172 2 4 aS
Aly—— |1 i V2¢,=?’Tﬁijk ™ (16)
n'n 47TPCB ¢ 0 i
J By using Egs. (6), (13), and (16), the electric potential pro-
% f SE(2)exp( —agz)b,(2)dz . (11)  duced by the acoustic vibration of acoustic surface waves
0 traveling with the wave vector  can be obtained as
| ®,(F)=&, (2)expli§ X
In a piezoelectric material, the polarization induced by ap- S(1) s(2)explid X)), an
plying a strain can be expressed by’ l with
R 4275 ) 172 172
$,(2)= ~{L H &\ 3aH(c,/cPexpl —agz)+i(28°—1)(c, /e {exp(—iBaz)— G expliBg2)]} . (18)
0 q

For the piezoelectric coupling, semiconductors with zinc-blende crystal structure have only three nonvanishing com-
ponents of the piezoelectric tensor B, i.e., B14=B25=P3s=Fp- In the acoustic wave model, the displacement vector of
the TR-mode wave can be expanded as Eq. (5), then the electric potential can be quantized as follows:

172

d(7)= a;®,(T)+H.c.

7 pr JS

(19)

Taking these results into account, the interaction Hamiltonian due to the piezoelectric coupling can be written as

~ 4w Bpe
o = = t
Hp=—e [ VI(D)B(DOW(T)dT= /S > %n,z;"(b
where
p 172
I
¢n’n_ 47TPCB

~|

b T{’na,q&i:n +H.c.), (20)

d
fo dn(2){3aH (¢;/c)*exp( —aqz)+i (2% —1)(c, /c)[exp( —ifgz) — G exp(iBgz)1}¢,(z)dz . (21)

We have taken the direction of the wave vector  along the [110] crystal axis for the TR mode. For the deformation-
potential coupling, conduction electrons could interact only with the longitudinal wave; however, for the piezoelectric
coupling, conduction electrons interact with both longitudinal and transverse waves. Consequently, we shall consider
both longitudinal and transverse coupling mechanisms in our present study.

It is known that conduction electrons never travel freely in a semiconductor but are scattered by a variety of sources
before and after they emit or absorb the acoustic surface waves we should observe. To calculate the amplification coeffi-
cient a’ we follow the Green’s-function method given in Ref. 7. o’ is related to the width of the acoustic surface wave
I'Y as I'V= —c#a’. By using the Hamiltonians (9), (10), and (20), and neglecting vertex corrections other than the screen-
ing effect of electrons, the width I'Y of the TR-mode waves can be expressed by’
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I‘J(ﬁw,)=22{[C(q)]2|Aﬁ,,,|2+[G(q)]2|¢ﬁl,,|2}f( e f—-——[f(e tiry) — £ (€))4, (K, )4, (K — G, e—Hiwr;)

(22)

where C(q)=C/€;(q), G(q)=4meBp/exe;(q), and €;(q) =1+ (4mnge’c}/exc*kyTq?). ng is the electron concentration,
i =1 denotes the electronic screening effect induced by the acoustic vibrations of the longitudinal waves with the longitu-
dinal sound velocity ¢;, and { =t denotes the electronic screening effect induced by the acoustic vibrations of the trans-
verse waves with the transverse sound velocity ¢,.!%!! The Fermi-Dirac distribution function is
fle)={exp[(e—u)/kgT]+1} !, where u is the chemical potential. A,,d?,e) is the spectral function of the one-electron
Green’s function with the quantized level n of conduction electrons. In the first approximation, we employ the Born ap-
proximation and then simply replace the spectral function by the 6 function,

A,,(l?,e):ZmS(e—E? BE 23)

In a situation where conduction electrons have a drift velocity V in the direction of the acoustic surface wave vector g,
we must replace #iw; by —#w,;X with the drift parameter X = | V| /c —1. Then

2| €E—
2kgT

fiw; X
fle—fiw;)—f(€)~— sech (24)

4kyT

From Egs. (22)—(24), the amplification coefficient a] of TR-mode waves for the i-type electronic screening effect in-
duced by the acoustic vibrations of longitudinal waves or transverse waves in the piezoelectric coupling can be obtained
as

(1"’ _ Bom(—ﬁa)JX)
e #ic
X 2 «3 172 o
= [%? ———#Z:T s§1(—1)s+1‘/§ exp[sP(q)/(kgT)] %:CXP[—SQ(%”,"')/(I(BT)]
2 167>
AL 2+ ——”B” 2| |, @
[e:(g)] eeilg
where 2’ indicates a summation over n and n’ with ns4n’ due to the Pauli exclusion principle,
P(q)=1E, +p—(m*/2¢*#)[ i, X —(g*# /2m*)] ,
and '
Q(g,n,n')=~+Ega,+(m*/2¢MP) | Eg[#iw; X —(q*# /2m*))a, —an)+ Eg(ay—an)} .
Functions | A}, |2 and | ¢, | % are given by
AL, 2= 647ig? | A2B(1— BB —1)Xnn" ) [1—(—1)" *"exp(—mA)]* 26)
” mpe | [(BP=1*+16a?B)[A%+(n'—n)*PP[A2+(n' +n)*]?
| 6l | 2= 2 BXB—1) 288a’(nn’)*[1—(—1)""*+"exp(—74)]*
" mpc | BI(B—1)*+16a*8%] | (1—a?) A +(n'—n)*P[A>+(n'+n)*)?

96082 —1)(2B*— 1)(nn’P[1—(—1)" +"exp(—7A4)][1—(—1)" *"cos(wB)]
(1—a®)(1+B)[A%+(n'—n)*)[4%+(n'+n)?][B2—(n'—n)*1[B* —(n'+n)?*]
(BP—1223—1)[8(nn’) >+ (n2+n'?)?4(2nn’' +B?)*]

(1482 B*—(n'—n)*}[B*—(n'+n)*]?
1682~ D*(2B*— DX(—1)" *"(nn’)’cos(wB) (B2 —1)4(28*—1)*cos(27B) o)

(1+BZ)2[BZ_(nI_n)2][B2__(nl+n)2]2 - (1+BZ)2[B2_(nI__n)Z][B2_(nl+n)2]

where A =aqd /m and B =qd /7.
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FIG. 2. Amplification coefficient of TR-mode acoustic sur-
face waves vs frequency at X =10 (E =88 V/cm) with (a)
T =77 K and (b) T=19.7 K. Solid curve: amplification coeffi-
cient for the screening effect of the transverse field. Broken
curve: amplification coefficient for the screening effect of the
longitudinal field.
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FIG. 3. Amplification coefficient of TR-mode acoustic sur-
face waves vs drift parameter or applied electric field at v=3
GHz with (a) T=77 K and (b) T =19.7 K. Solid curve: ampli-
fication coefficient for the screening effect of the transverse
field. Broken curve: amplification coefficient for the screening
effect of the longitudinal field.
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IV. NUMERICAL RESULTS AND DISCUSSION

In this section, a numerical example is developed for an
n-type GaAs thin film grown epitaxially on a semi-
insulating GaAs substrate. The relevant values of physi-
cal parameters are taken to be 8, =4.71x 10* esu/cm? for
q||[110], no=1.73 10" cm~3, m* =0. 07m0 (mg is the
mass of free electron), p=5.32 g/cm3, ¢€=12.9,
¢ =4x10° cm/sec, ¢;=5.17x10° cm/sec, ¢, =3.04 X 10°
cm/sec, C=7 eV, and E,=1.51 eV. The frequency
dependence of the amplification coefficient at X =10
(E =88 V/cm) is shown in Fig. 2. It can be seen that the
amplification coefficient increases with the frequency up
to v=20 GHz and then decreases with increasing the fre-
quency for the l-um thickness of an epitaxial semicon-
ductor film, while for d =10 um, the amplification coeffi-
cient increases with the frequency up to v=4 GHz and
then decreases with increasing frequency. Moreover, the
amplification coefficient oscillates with the frequency
from the frequency around v=25 GHz for the case d =10
pm, while in the case d =1 um the amplification coeffi-
cient oscillates with the frequency in the lower-frequency
region and then monotonically decreases with the frequen-
cy after v=60 GHz. This is quite different from the re-
sults of surface-mode elastic waves for the parabolic band
structure in n-type GaAs.” It is also shown that the am-
plification coefficient increases with temperature. More-
over, the amplification coefficient a, with the transverse
dielectric function is larger than that «; with the longitu-
dinal dielectric function due to the larger electronic
screening effect for the longitudinal waves. Figure 3
shows the amplification coefficients versus the drift pa-
rameter X (or the applied electric field E) with v=3 GHz.
It can be seen that there exists a maximum around X =9
(or E=80 V/cm) and the amplification coefficient de-
creases with the drift parameter (or the applied electric
field). We can also see that after passing the maximum
point the amplification coefficient decreases monotonical-
ly with increasing thickness of the semiconductor film
and decreasing of temperature.

We have calculated the amplification coefficient of the
TR-mode acoustic surface waves for the nonparabolic
band structure in piezoelectric semiconductor films. In
the high-frequency region, the contributions of the
deformation-potential coupling to the amplification be-
come important,’ the function | A}, |2 will thus play an
important role. However, the amplification coefficient
will decrease very rapidly in the hlgh frequency in our
present results and the function |7, |2, due to the
piezoelectric coupling, plays a comparable important role.
Some oscillations can be observed in the low-frequency re-
gion and the high-frequency region depending on the
thickness of semiconductor films. These oscillations come
from the contributions of the piezoelectric coupling in
which the factor |4, |? contains harmonic functions of
the frequency, cos(wB) and cos(27B), due to the relation
B =Bqd /m=2PBdv/c. When the thickness of semicon-
ductor films is small, some large and sharp cusp oscilla-
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tions appear in the lower-frequency region and the ampli-
fication coefficient decreases monotonically with increas-
ing the frequency in the high-frequency region due to the
piezoelectric coupling effect. However, when the thick-
ness of semiconductor films is larger, oscillations can be
observed in the high-frequency region. The amplitude of
oscillations can be affected by the quantum numbers n
and n'; thus these oscillations arise from the intersubband
transitions and are affected by the nonparabolicity of the
energy band in semiconductors due to the factor
Q(q,n,n'"). From Egs. (25)—(27), it can be seen that the
amplification coefficient changing with the drift parame-
ter (or the applied electric field) is dominated by the fac-
tors P(q) and Q(q,n n'), but not by the functions | A%, |2
and | 2., | 2 The dominant factor for
al vs X in Eq. (25) is

f(X)=X{exp[C1(X —C3)*—C3(n,n" )X —Cy]} ,

(28)

where C;, C,, Cs(n,n'), and C, are independent of X. It
can be shown that there exist at most two local extrema in
Eq. (28). These extrema depend on the quantum numbers
n and n’'. Thus the nonparabolicity of the energy-band
structure in semiconductors will affect these extrema. In
Fig. 3 only one maximum point appears; the second ex-
tremum could be degenerated to an inflection point at
d =10 um and disappears when the thickness of semicon-
ductor films is decreasing. After passing this maximum
point, the amplification coefficient decreases with increas-
ing the drift parameter (or the applied electric field), since
the energy of conduction electrons in semiconductor films
increases for the effect of the nonparabohc band structure
in semiconductors.

Figures 2 and 3 show that the amplification coefficient
also increases with temperature. This can be explained
from the expression for the amphfxcatlon coefficient given
in Eq. (25), which shows that «] is roughly proportional to

T3"%exp[ —F(n,n")/T] ,

where F(n,n’) is independent of the temperature. The
first factor T3/2 comes from the dielectric function
€;(g),!! while the second factor exp[ —F (n,n’)/T] is relat-
ed to the energy band of semiconductors. Consequently,
the temperature dependence of the amplification arises
from the electronic screening effect and the effect of the
nonparabolicity in semiconductors. The numerical
analysis presented here, therefore, shows that the amplifi-
cation coefficient depends on the temperature, the fre-
quency of sound waves, the applied electric field, and the
thickness of semiconductor films.
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