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碼同步之相量獲取方法 

 

學生：林群明      指導教授：高銘盛 博士 

 

國立交通大學 

電信工程研究所 

 

摘要    

 

「碼同步」在展頻通訊系統中是一項重要且值得探討的議題，而傳統的作法是在時域

上做序列比對。 藉著快速傅立葉轉換(FFT)，我們可以將碼序列轉變為相量，接著利

用逆傅立葉轉換(IFFT)，即可找到輸入序列和本地序列的相位差。當碼序列長度增加

時，所耗費的運算量也隨之增加。 

   本論文中，我們提出一個新的「碼同步」方法，它不需作逆傅立葉轉換以減少運算

量。這個方法主要利用複數相量之間的相位關係，藉此可以擷取所需的相位差。在分

析複數相量的統計特性之後，我們提出一個簡單的方法求相位差。接著， 我們進一步

提出一個進階的方法以提升系統的準確度。最後，我們利用電腦模擬驗證所提的理論，

其中分析的重點在於相位變異數的變化以及估測的準確度。模擬的結果顯示，所提方

法可減少許多運算量並在高 SNR 的環境下可以獲致良好的結果。 
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A Phasor Domain Acquisition Method for 

Code Synchronization 

 

Student: Chiun-Ming Lin      Advisor: Dr. Ming-Seng Kao 

Institute of Communication Engineering 

National Chiao Tung University 

Abstract 

 

   Code synchronization is a critical issue in spread spectrum communication systems. The 

traditional method to achieve code synchronization is via serial search in the time domain. 

By performing Fast-Fourier-Transform (FFT), the code sequence can be projected to the 

phasor domain. Then, code phase between local sequence and input sequence can be found 

via Inverse-Fast-Fourier Transform (IFFT). However, as the code length increases, the 

computation increases considerably. 

   In this thesis, we propose a new method for code synchronization in the phasor domain 

without IFFT. The method is based on the phase relationship of complex phasors, whereby 

we can extract code phase via phasor phases. We analyze the statistical property of complex 

phasors and design a simple method to extract the code phase. Moreover, we further design 

an improved method to enhance the accuracy under noisy condition. Computer simulation is 

performed to verify the proposed scheme, which focuses on variance reduction and 

estimation accuracy. It can be demonstrated that the proposed method works well without 

much computation while acceptable accuracy is achievable in high SNR environment. 
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Chapter 1 

Introduction 

 

 

I. Overview 

In the traditional digital communication system as shown in Fig-1.1, the information source 

generates particular symbols at a specific rate. The source encoder translates these symbols 

into sequences of 0's and 1's. Next, the channel encoder further translates the obtained 

sequences into another sequences of 0's and 1's, so as to realize high transmission reliability 

and efficiency. Following the channel encoder, the modulator accepts the encoded bit stream 

and converts them to signal waveforms suitable for transmission. After passing through the 

channel, the waveform suffers from amplitude/phase distortion due to the noise, 

transmission delay and multipath effect. Therefore, the waveform we get at the receiving 

end might not be the same as the transmitting one. So the primary objective of a 

communication system is to suppress the bad effects coming from the channel as much as 

possible. 

The inverse process takes place at the destination side. The demodulator converts the 

signal waveforms to sequences of 0's and 1's, and then the channel decoder translates this 

sequence to the original one. It also performs error correction and clock recovery. The 

source decoder finally translates the sequence of into original signals. Recovering the 

information sequence from the distorted waveform is the main purpose of a communication 

receiver.
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Synchronization in telecommunications networks is the process of aligning the time scales of 

transmission and switching equipment so equipment operations occur at the correct time and 

in the correct order. Synchronization requires the receiver clock to acquire and track the 

periodic timing information in a transmitted signal. The transmitted signal consists of data 

that is clocked out at a rate determined by the transmitter clock. Signal transitions between 0’s 

and 1’s contain the clocking information and detecting these transitions allows the clock to be 

recovered at the receiver.  

 

II. Our work 

Our work will not focus on how to recover the information sequence from the distorted 

waveform, instead the main objective we are interested in is the “code synchronization”, i.e. 

to find the code phase shift between the incoming sequence and the local sequence at the 

receiver. This issue is critical in spread spectrum systems where code synchronization must be 

achieved before signal demodulation.  

In order to simplify the problem, we consider the noiseless condition first. When there is 

no noise accompany with the input sequence, some phase delay exists between the input 

sequence and the local one. We denote q as the particular shift between them. If the accurate 

value of q is got, the synchronization is completed.  Assume ),....,,( 110  NI xxxS  is the 

input sequence and ),...,,( 110  NL yyyS  is the local sequence, where qkk xy   and N  is 

the code length. Our goal is to find the code-phase shift between IS  and LS , i.e. the value 

of q. We’ll introduce the classic way on dealing with this problem, i.e. the Fast Fourier 

Transform (FFT) method. By transforming the sequences to the frequency domain via FFT, 

we find that “q” is imbedded in the phases of complex phasors. Thus we can get it accurately 

by performing Inverse Fast Fourier Transform (IFFT). In general, N is a large number so that 

the computation of FFT and IFFT grows rapidly when N increases. To reduce the computation 
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load, we propose a new scheme which can accurately estimate “q” without IFFT. 

   The main idea is a little bit tricky. Because the information of q is embedded in the phase 

of each phasor in frequency domain, we can estimate the code phase via inner product of 

different phasors. However, even though in high SNR condition, we can’t be sure if the 

observed phase is close enough to the correct one because of the disturbance coming from 

noise. The intuitive solution is to reduce the noise variance to some extent such that the 

estimated code phase will have little probability to be erroneous. Therefore, we design a 

simple but effective method to decrease the noise variance. It can be proved that the proposed 

scheme can reduce the computation without losing much accuracy. 

 The thesis is organized as follows. In Chapter 2, we will introduce the phasor concept of 

FFT and analyze its properties. Next, the details of the proposed system will be described in 

Chapter 3 and simulation results will be demonstrated in Chapter 4. Finally, we present the 

conclusions of this study in Chapter 5. 

 

 

 

Fig-1.1: The traditional communication system 
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Chapter 2 

Properties of Phasors  
 

 

 Suppose that IS  is the input sequence and LS  is the local sequence, given as 

0 1 1( , ,...., )I NS x x x   and ),...,,( 110  NL yyyS , where )1,1(, ii yx . We assume q phase shift 

between these two sequences, i.e. qkk xy  . 

 

I. Noiseless condition 

In the beginning, we consider the noiseless condition which is easy to be analyzed. For the 

two sequences of interest, when FFT is performed we get 
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where i  and i  denote the phases of iX  and iY , respectively. 

  Since qkk xy  , we get the relationship between iX  and iY  as follows: 



 

 5 

                     

iq
N

j

i

iq
N

jqki
N

j

qk

N

k

ik
N

j

qk

N

k

ik
N

j

k

N

k

i

eX

eex

ex

eyY









2

2
)(

21

0

21

0

21

0



































                      (2.5) 

   

Note that iX  and iY  share the same amplitude but differ by
2

iq
N


 in their phases, where 

Ni ,...,2,1,0 . Thus we have  
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Next, we define  
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Assume IS  and LS  are maximum-length sequences (m-sequences), it can be proved that  
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From (2.10) we know that the code phase “q” is embedded in the phase of iV . Note that 0V  

contains no information about q , which is ignored in the following analysis.  

Using (2.10), we can get the value of q via IFFT. Let kv denote the IFFT of iV , given as 

follows: 
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When qk  , we get 
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When qk  , we get 
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Therefore, by looking for the maximum among }{ kv , the correct code phase can be got.   

 

II. Noisy condition  

A. Signal model 

Under noisy condition, a gaussion noise denoted as k  is added to the transmitted sequence. 

In this case, the input sequence becomes ),....,( 10  NI wwS  and kw  is given by 

 

   )s g n ( kkk xw                            (2.14) 

 

where “ )sgn( ” denotes the sign function, i.e. 1)sgn( z  if 0z , 1)sgn( z , if 0z . To 

ease the analysis, we model kw as  

 

                               kkkk xxw                             (2.15) 

 

where )2,0(k  and kx  denotes the inverse of kx . When 2k , we have 
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   kk xw                                (2.16) 

                            

which means error occurs due to k . When 0k , we have  

 

   kk xw                                 (2.17) 

   

which means no error occurs.  

Let eP  denote the chip error probability. From (2.15), it is easy to have the following 

probabilities: 

 

 ek PP  )2(                            (2.18) 

 

    ek PP  1)0(                           (2.19) 

 

Thus, if eP  is known, the statistical property of kw can be derived. 

For the input sequence ),...,,( 110 Nwww , we perform FFT to get 
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Note that iW  is a complex random variable whose mean is given as  
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Since 
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Let iA  denote the mean of iW , then 
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Using iA , we can model iW  as  
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where in  is a zero-mean complex random variable.  

The variance of in , denoted as 2

n , can be derived as follows:   
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It can be proved that  
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From (2.9) , we get  
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When N  is large, we can model in  as a zero-mean gaussian random variable whose 

variance is given as above. This signal model will be used in the following analysis.  
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B.. Vector analysis 

  Now, we would like to apply the concept of vector to help analysis. Let 
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where i  is the phase of iW . As shown in Fig. 2.1, if we look iW , iA  and in  as vectors in 

the complex plane, from (2.25) the following relationship holds: 
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Fig. 2.1: The vector concept of iW  

 

In Fig. 2.1, we have  
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where i  is the phase angle of iA , which is the same as that of iX , while i  is the phase 
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angle between iW


 and iA


. Note that i  is a random phase caused by noise. Let  
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Obviously, the phase of iV  still contains the information of q , but is disturbed by i . When 

IFFT is performed, we obtain:  

 

                     
ik

N
j

i

N

i

k eVv

21

0






    , 1,...,1,0  Nk                    (2.34) 

 

If qk  , then 
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From (2.7) we get 
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N
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q
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i
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






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






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            (2.37) 

 

Owing to the symmetric property of FFT, the imaginary part of qv  is zero so that 

 

                         ii

N

i

q WNv c o s||1
1

0






                       (2.38) 

 

Note that for a given iW , because i  is a random variable so that iiW cos||  is random 

too.  
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Chapter 3  

The Proposed Method 

 

 

Since the computation of FFT and IFFT is proportional to logN N , it results in considerable 

computation when N is large. Therefore, we intend to reduce the computation by using the 

phase information of complex phasors. It is found that the proposed method can much reduce 

the computation in high SNR condition. The details of our method are described below. 

 

I. Noiseless condition  

First, we review the formulas got in the previous chapter under noiseless condition. Assume 

0 1 1( , ,...., )I NS x x x   is the input sequence and ),...,,( 110  NL yyyS  is the local sequence, 

where qkk xy  . When FFT is performed, we get  

 

                    
ik

N
j

k

N

k

i exX

21

0





   , 1,...,2,1,0  Ni                     (3.1) 

 

                    
ik

N
j

k

N

k

i eyY

21

0





    , 1,...,2,1,0  Ni                     (3.2) 

 

                    
iq

N
j

i

iii

eX

YXV

2

2

*

||





  , 1,...,2,1,0  Ni                    (3.3) 

 

When 0i , it is obvious that the phase of iV  contains the information about q. Note that 

because  
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2 2

( 2 )j iq j iq n
N Ne e
 

  

                           (3.4) 

 

for any integer n , there is phase ambiguity in the phase of iV . This fact should be carefully 

considered in estimating q .  

From (3.3) we get 

 

                           
2

* 2

1 1 1 1| |
j q

NV X Y X e




                            (3.5) 

 

Because 10  Nq  so that 


2
2

0  q
N

, there is no phase ambiguity presents in the 

phase of 1V . Thus we can obtain q directly from the phase of 1V  under noiseless condition. 

However, the problem becomes complicated when noise presents.  

 

II. Noisy condition 

In noisy condition, the input sequence becomes ),...,,( 110  NI wwwS , where kxk xw   

and k  is a gaussian noise. As before, we perform FFT to get 

 

                   
ik

N
j

k

N

k

i ewW

21

0





   ,   1,....,1,0  Ni                   (3.6) 

 

We can express iW  as 

 

                                ij

ii eWW


 ||                             (3.7) 

 

where i  is the phase of iW . Let 

                         ij

iiii eVYWV


 ||*                           (3.8) 
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From (2.34), the phase of iV  is given as 

 

                              ii iq
N





2

                           (3.9) 

 

where i  is a random phase caused by noise. Apparently, i contains the information of q, 

which can be employed to estimate the code phase. 

Under noisy condition, from (3.9) we get 

 

                              1 1

2
q

N


                               (3.10) 

 

where 1  is the random phase caused by noise. Define  

 

                        )
2

( 11 


N
r o u n dq                           (3.11) 

 

where “ )(zround ” denotes the closest integer of z . We may take 1q  as the 1
st
 estimation of 

q and define           

  

                                 1 1q q q                               (3.12) 

 

where 1q  indicates the error between q1  and q . 

It is noteworthy to mention that 
2

N


 is a huge number when N is large, which means 

the error phase in 1  could possibly be amplified by a large factor in (3.11). In other words, 

a tiny phase deviation of 1  may result in a significant deviation of 1q . 
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III. A simple phase estimation method 

Using the phases of 1V  given in (3.10), we can get the 1
st
 estimation and then obtain q1. 

However, the random phase 1  and a large value of N may result in unacceptable estimation 

error. This problem can be resolved with the help of other phases of iV  . 

The intuitive way to improve the estimation accuracy is to reduce the variance caused by 

1  as much as possible. According to the Law of Large Numbers, the average of random 

variables obtained from a large number of trials is close to their expected value, and tends to 

become closer as more trials are performed. It is obvious that the terms Vi  (for i>1) can be 

used since they do contain the information of q. However, we can’t employ them directly due 

to the inherent phase ambiguity accompanied with their phases. In order to overcome phase 

ambiguity, we propose the following approach. Let 

 

                        
0 1

2
( )

*

0 0 1 0 1| | | |
j q

NF V V V V e


  

      

       
2 3

2
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*

1 2 3 2 3| | | |
j q

NF V V V V e


  

                                                                     

       
4 5

2
( )

*

2 4 5 4 5| | | |
j q

NF V V V V e


  

     

      ‧ 

      ‧ 

      ‧ 

                  
2 1

2
( )

*

2/ 2 2 1 2 1| | | |
N Nj q

N
N N N N NF V V V V e


   

                     (3.13) 

 

In general, 

                     
2 2 1

2
( )

*

2 2 1 2 2 1| | | |
i ij q

N
i i i i iF V V V V e


   

                      (3.14) 
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where each 
i  in (3.13) is an independent random variable. Eq. (3.14) could be rewritten as  

 

            
)

2
(

122 ||||
iq

N
j

iii eVVF





                         (3.15) 

 

where 122  iii  . Note that the phase of Fi can be divided into two terms, i.e. the 

co-phase term iq
N

2
 and the random phase term i . 

When the set of }2,...,1,0,{  NiFi  is available, we define  

 

          i

M

i

F
M

f 





1

0

1
                            (3.16) 

 

where M  is an integer. We may express f  as 

 

                                jf f e                               (3.17) 

 

where   is the phase of f . When N is sufficiently large, according to the Law of Large 

Numbers we get 

 

    
2

q
N


                              (3.18) 

 

Therefore,  could be expressed as 

 

               '
2




 q
N

                           (3.19) 

 

where '  is a random phase. Note that the standard deviation of '  will be much smaller 
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than of βi, which will result in more precise estimation of 
2

q
N


. We will demonstrate it 

with the simulation to be presented in Chapter 4. 

After   is got, we define  

 

  )
2

(2 


N
r o u n dq                           (3.20) 

 

where 2q  denotes the 2
nd

 estimation of q. Obviously, 2q will be more accurate than q1. 

Moreover, the error of the 2
nd

 estimation is given as  

 

               22 qqq                                            (3.21) 

  

IV. The improved method 

    As shown above, we may apply the Law of Large Numbers to lower the variance in 

phase estimation. However, the estimation error may not be small enough since it should be 

less than N/2  in order to get a correct estimate of q . When N is large, as is usually the 

case, 2q  may not be small enough. Therefore, we are obliged to further reduce the variance 

by using the special relationship given in (3.8). 

In probability theory, if X is a random variable and a  is a constant, we have the 

following equality: 

 

                  )(
1

)(
2

XV a r
aa

X
V a r                          (3.22) 

 

where “ )(zVar ” denotes the variance of a ransom variable z . When 1a , the variance of 

aX /  is reduced by a factor of 2a . This fact will be employed to reduce phase variance.  
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After the 2
nd

 estimation, we take   as the estimate of q
N

2
, which may deviate from 

q
N

2
 by a random phase ' . Assume k  is an integer and 2k . If   is close to q

N

2
, it 

is expected that k   is close to 
2 k

q
N


.  The idea is: if we can get a good estimate of 

2 k
q

N


, then a better estimate of q

N

2
 is got due to the multiplication factor of k . However, 

the phase ambiguity problem possibly occurring in the term 
2 k

q
N


 should be carefully 

considered. 

Now, we begin to describe the proposed method. Assume 2k  is a given integer. Let 

 

      
0
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
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1 1

2
( )

*

1 1 1 1 1| | | |
kj kq

N
k kG V V V V e


   

                     

      
2 2

2
( )

*

2 2 2 2 2| | | |
kj kq

N
k kG V V V V e


   

                    ( 3.23) 

      ‧ 

      ‧ 

      ‧ 

         
( 2 ) / 2 ( 1 ) / 2

2
( )

*

( 1) / 2 ( 1) / 2 ( 1) / 2 ( 1) / 2 ( 1) / 2| | | |
N k Nj kq

N
N N k N N k NG V V V V e


    

           

 

In general,  

 

    
2

( )
* | | | |

i k ij q
N

i i k i i k iG VV V V e


   

                        (3.24) 

 

Note that due to the symmetric property of FFT, we only take i=1~
1

2

N 
 in the above 

equation.  
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    Asαi, i=0,1,2,…, N-1, are independent random variables, the term ( )i i k    could be 

expressed as a random variable i  whose variance is the same as i . Then we obtain  

 

               
2

( )
* 1

| | | | , i=1,2,3,.....,  
2

ij kq
N

i i k i i i k

N
G VV V V e




 


                (3.25) 

 

where i i i k      and 

 

 )()( ii VarVar                             (3.26) 

 

Next, by summing iG  we get 

 

            i

M

i

G
M

g 





1

0

1
                            (3.27) 

 

Assume 

 

                                jg g e                               (3.28) 

 

where 

 

 
2

( ') mod 2
k

q
N


                         (3.29) 

 

In (3.29), the variance of '  will be much smaller than of i . Note that because of the 

mod- 2 operation, in general   is not equal to 
2

'kq
N


 . This fact should be taken into 

account in estimating q .  
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For a given  , from (3.29) we have the following equality:  

 

   
2

' 2
k

q n
N


                             (3.30) 

 

where n  is an unknown integer since q  is still unknown. Suppose that n  is known, then  

 

2 2 'n
q

k N k

   
                           (3.31) 

 

Let  

  
2 2 'n

h q
k N k

   
                          (3.32) 

 

We take h  as the estimation of 
2

q
N


, whose mean is given by  

 

                           
2 [ ' ] 2

h

E
q q

N k N

  
                          (3.33) 

 

where [ '] 0E    is assumed. On the other hand, the variance of h  is given by 

 

 

2 2 2

2

'2

'
[( ) ] [( ) ]

1

h hE h E
k

k



 



  



                      (3.34) 

 

where 
2

'  denotes the variance of ' . It is easy to see the variance of h  can be much 

reduced if k  is large.  

It’s noteworthy to mention that in estimating the phase of 
2 k

q
N


, we approximate it as 
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k  , where q
N

2
 . When we multiply   by k, the error phase accompanied with   

is also amplified. As a result, although a large k is desired to reduce the variance of h , it also 

increases the risk of erroneous mod- 2 operation. Therefore, choosing an appropriate value 

of k is a critical issue. 

When k   is close to 2n , it is probably for erroneous mod- 2 operation to occur. 

Accordingly, we choose k   to be around (2 1)n  to avoid it. Because the larger of k, the 

more risk of erroneous mod- 2 operation, for safety reason in the beginning we take  

 

     3k                                 (3.35) 

 

In turn k  is calculated as 

 

        
3

( )k round





.                          (3.36) 

 

When 3k    is taken, we get 1n  in (3.30). After a more accurate value of 
2

q
N


 is 

got, we can increase k  by taking a larger n  so as to further reduce the error phase. Thus, 

we may design a recursive algorithm to gradually increase k . The algorithm is shown in Fig. 

3.1, whose operation is described below. 

 Assume q
N

2
  has been obtained. First, we take 1n  and get 1kk   with 

(3.36). After a more accurate estimate of q
N

h
2

  is got, we set 1 nn  and get 2kk   

to obtain a more accurate estimate of q
N

2
. The process can be repeated until the required 

accuracy is met.  
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Fig 3.1: The estimation flow chart 
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V.  New local sequence 

In the above method, when q is small the estimated q
N

2
  will be close to zero, in this 

case k will be a rather large number to make 3k   . Under this circumstance, it has high 

risk for erroneous mod- 2 operation. Therefore, we have to design a scheme to resolve this 

problem.  

As shown in Fig. 3.2, we assume the incoming sequence IS  and the local sequence LS  

has a small code phase shift in between so that the estimated value of q , denoted as q̂ , is 

small. Then we design a local sequence ZL, where },...,,{ 110  NL zzzZ  and 'k k qz x  . We 

take 'q  such that 
2

'q
N


 is much larger than q

N
ˆ

2
 and qqq  ˆ' . Our purpose is to use 

LZ  as a new local sequence whose code phase shift with IS  is away from zero.  

   

      0 1 1( , ,...., )Nx x x   

SI 

      q̂     0 1 1( , , . . . . , )Ny y y  

SL     

            △q          

                        

         'q  

 

Fig 3.2: A new local sequence ZL. 

 

Under noiseless condition, we have qq ˆ . When FFT is performed, we get the following 

equation: 

             

0 1 1( , ,...., )Nz z z   

ZL 
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                     (3.37) 

 

Let iU  be defined as  

 

                         *

i i iU X Z  , 1,...,2,1,0  Ni                     (3.38) 

 

The relationship between iV  and iU  is given by 
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It’s obvious that there is 
2

i q
N


  phase difference between Vi  and Ui. In (3.25), we have 

 

               
2

( )
* 1

| | | | , i=1,2,3,.....,  
2

ij kq
N

i i k i i i k

N
G VV V V e




 


                (3.40) 

 

Similarly, we define a new factor Pi  for iU  as 
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                     (3.41) 

As shown in Fig 3.3, the two phasors iG  and iP  have a phase difference of 
2

q
N


  in 

between. By choosing an appropriate value of q , it is easy to make '
2

q
N


 away from zero. 

Thus, when LZ  is used as the new local sequence, the same algorithm can be applied to get 

the estimate of 'q . After 'q  is got, it is easy to obtain qqq  ' , while q  is a known 

parameter which represents the code phase between LS  and LZ . 

 

                Im 

                                           

                         

  

 

 

                                                       

                                                         

      Re 

Fig 3.3: The vectors concept of iP  and iG  
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Chapter 4  

Simulation Results 

 

 

After introducing the proposed algorithm, we will show simulation results in this chapter. We 

will perform the algorithm shown in Fig3.1 and find estimation results under different SNR 

conditions.  

Firstly, we consider the case of an m-sequence whose length is N=2
10

-1, and q=100 is 

assumed. The algorithm depicted in Fig. 3.1 could be simplified as that in Fig. 4.1.  

 

 

                  i             i              i              i  

                                '              
1
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k


             

2

'

k
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      1
st
 estimation 1q    2

nd
 estimation 2q    3

rd
 estimation 3q    4

th
 estimation 4q  

 

Fig 4.1 The flow chart in simulation. 

 

I. First Estimation 

Recall that in the first step, we employ 1V  which contains information of q without phase 

ambiguity as the initial guess, and then obtain q1 as the 1
st
 estimation. The equations involved 

in this estimation are given as follows: 
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                              1 1

2
q

N


                                (4.2) 

 

                         )
2

( 11 


N
r o u n dq                          (4.3) 

      

                                1 1q q q                                   (4.4) 

 

Fig 4.2 illustrates the standard deviation (STD) of i  (in degrees) with respect to SNR. We 

see that the STD is large when SNR is low. Since our estimation is determined from N legal 

phases, a wrong estimation occurs if the deviation is over )176.0(
2

2

1 o

N


 . Obviously, the 

accuracy is unacceptable even in high SNR conditions (5dB~10dB). 

 

 

 

Fig 4.2 The standard deviation of i  in terms of SNR. 
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Fig 4.3 The standard deviation of q1. 

 

Fig 4.3 shows the standard deviation of the error in the 1
st
 estimation, i.e. the STD of 1q . As 

expected, the STD of 1q  is proportional to that of i  and its accuracy is generally 

unacceptable even in high SNR condition. For example, when SNR=10dB, the STD of 1q  

is greater than one, which means most of the estimation of q  is erroneous. This result is not 

strange, since the estimation is just based on the phase of 1V , which is not very reliable even 

in high SNR cases.  

 

II. Second Estimation 

  In the second estimation, we transfer iV  to be iF  which contains the information of q as 

well. Since the random phase of iF , denoted as i , is equal to 1i i   , the variance of i  

is larger than of i . However, we may apply the Law of Large Number to lower the variance 

by summing phasors. The equations involved in this procedure are shown as follows: 
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where '  is the error phase in  . As shown in Fig. 4.4, the STD of '  is much reduced 

compared with that of i , which indicates the accuracy of   is much improved due to the 

summation process. 

 

 

Fig 4.4 The standard deviation of i  and '  under different SNR conditions. 

Now, we would like to analyze the relationship between i  and ' . In probability 
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theory, if iX , ni ,...,2,1 , are independent and identically distributed random variables, we 

have  
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                      (4.10) 

 

Substituting 
1

2

N 
 for n  in (4.1) and take square root in both sides, the relationship 

between the STDs of '  and i  are given by  
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                         (4.11) 

 

Because i  and '  are random phases in the complex domain, there are two special 

properties of them: 

 

(1) The range of phase is [ , ]  , 

 (2) ( 2 )j j ke e   . 

 

These two properties make the relationship between )'(  and )( i  becomes nonlinear, 

but not the linear one given in (4.11). However, Eq.(4.11) is still an important reference for 

our simulation, because it is close to the simulated result when SNR is high.  

Fig 4.5 shows the STD of 2q  in terms of SNR. Obviously, the STD of 2q  is much 

improved in high SNR cases due to the reduced variance of ' . Therefore, after the 2
nd

 

estimation we would have an accurate estimation of q  for dBSNR 5 . 
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Fig 4.5: The standard deviation of q2. 

 

 

III. Third Estimation 

In the third estimation, we use the prior estimation to get a more accurate result. The 

corresponding 1k  is obtained from
3

( )round



, which means the accuracy relies on the prior 

estimation of  . The equations involved in the third estimation are listed as follows: 
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For the case of 100q  assumed in the simulation, the parameter 1k  is calculated as  

 

 

1

3
( )

2

3
( )

2

3 1023
( ) 15

2 100

k round
q

N

N
round

q

round









 



                        (4.16) 

 

Since i  has the same distribution as i , they are supposed to share the same STD as 

demonstrated in Fig4.6.  

 

 

 

Fig 4.6: The standard deviations of i  and i . 

 

Next, we focus on the ratio of ( ')   to 1( '/ )k  . The simulation result is shown in Fig 4.7, 

where the STD of 1/' k  is reduced when SNR > -5dB. But it even increases when SNR < 

-5dB. It is because of the undesired mod- 2 operation that leads to the increase of 1( '/ )k   
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in low SNR cases. Recall that 1k  is obtained from
3

( )round



, which means if 1

2 q
k

N


  is 

larger than 4  or smaller than 2 , the undesired mod- 2 operation occurs. From (4.15), we 

could infer that it will result in increased STD since we add or subtract a factor of 
1

2

k


 in the 

calculation.  

 

 

Fig 4.7: The standard deviations of '  and 
1

'

k


. 

 

 The STD of 3q  is shown in Fig. 4.8. Apparently, the STD of 3q  is much improved 

for dBSNR 0 , which indicates the 3
rd

 estimation can significantly improve the performance 

when SNR is high.  
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Fig 4.8: The standard deviation of q3. 

 

IV. Recursive algorithm  

In the third estimation, we figure out that the improvement in estimation accuracy is closely 

relate to 1k . And the reliability of 1k  depends on the accuracy of prior estimation. Now, 

since we have more accurate result after the third estimation, we can proceed to improve the 

accuracy with the recursive algorithm described before. 

  In the beginning, we take 2kk   and repeat the process similar to the 3
rd

 estimation as 

follows:  
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The corresponding 2k  should be   
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Fig 4.9: The standard deviation of '  and 
2

'

k


 

 

As depicted in Fig 4.9, we find that the performance is still bad when SNR is low, but it 

is improved for dBSNR 5 . This result is similar to the 3
rd

 estimation.  

The comparison between )/'( 1k  and )/'( 2k  is shown in Fig 4.10. Since the 

proposed method relies on the accuracy of prior estimation, the relationship between 

)/'( 1k  and )/'( 2k  is not meaningful in low SNR condition. Thus, we merely show the 

simulation result for  dBSNR 100 . From Fig 4.10, the ratio of )/'( 1k  to )/'( 2k  
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is pretty close to the expected value of 
15

56
. Recall that a wrong estimation occurs once the 

deviation is over )176.0(
2

2

1 o

N


 , the correct probability of  the 4

th
 estimation is much better 

than that of the 3
rd

. 

 

 

Fig4.10: The standard deviation of 
1

'

k


 and 

2

'

k


 

 

Finally, we present the correct probabilities in detecting the code phase with the 

recursive algorithm with 6,5,4,3n  in Fig. 4.11. As shown in the figure, the correct 

probability is enhanced with the recursive algorithm. Since the recursive algorithm is based 

on the prior estimation, we can’t increase the correct probability even if we increase the 

number of iterations in low SNR cases. The result reveals that a more accurate estimation 

method is needed for the 1
st
 estimation when SNR is low.  
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Fig. 4.11: The correct probabilities of recursive algorithm n=3,4,5,6 
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Chapter 5 

Conclusions 

 

 

In this thesis, we propose an effective method to achieve code synchronization. In Chapter 2, 

we introduce basic principle of the FFT method to achieve code synchronization. By 

performing FFT, the input sequence is projected to the phasor domain, where we get Xi. Then 

we compare the phase of iX with the local phasor Yi. It is found that there is a regular phase 

difference within which the code phase q is embedded. Thus we define a factor Vi  as the 

inner product of Xi and Yi, and it contains information of q. However, due to the inherent 

phase ambiguity, we could not interpret the code phase q directly from Vi. Furthermore, we 

employ the phasor concept and perform analysis to understand the statistic properties of these 

phasors.  

   In general, the sequence length N is a large number. It is known that the computation of 

FFT and IFFT is in the order of NN log , which means considerable computation is required 

when the sequence length is long. Therefore, we intend to reduce the computation by using 

the phase relationship between phasors. By the mathematic analysis, we find every term of Vi 

contains information of q, but it can’t be used to get q  directly due to inherent phase 

ambiguity. If we can solve the phase ambiguity problem, the computation caused by IFFT can 

be saved. Then, by observing the phase of inner product of Vi and Vi+1, we find it contains 

information of q without phase ambiguity in noiseless condition. However in noisy condition, 

the estimation will be strongly affected by noise, which leads to erroneous estimation. In 

order to improve it, we propose a simple solution to reduce error phase by using the Law of 

Large Number. 

   Because our estimation chooses the most possible phase among N legal phase, if the phase 



 

 41 

deviation is larger than 
2

N


, a wrong estimation occurs. From the simulation result, even a 

tiny phase deviation may lead to incorrect value of q . Thus, we propose an improved method 

to further reduce error phase. By referring to the simple estimation before, we can get the 

approximated phase angel of Vi
*
Vi+k. Likewise, when all the terms Vi

*
Vi+k are summed, we 

can obtain a phase whose value is k multiple of q
N

2
, and it has the same noise variance as 

Vi
*
Vi+1. Then the variance of error phase is divided by k so that a more accurate estimate is got. 

Note that the idea of the improved method can be recursively operated to get more accurate 

estimation. However, the more estimation the more computation required, so the number of 

calculations in the recursive algorithm should depend on the SNR. 

   In Chapter 3 we also design a method to overcome the problem occurring when q  is 

small. It is equivalent to shifting the estimated phase angle to a large value such that the 

multiplication factor k  will not be too large. This method does not reduce noise variance, 

but requires additional computation. Thus, it is not a necessary process, which is applied only 

when the estimated phase is close to zero. 

  In chapter 4, we demonstrate our theory by simulation under different SNR conditions. By 

analyzing the performance in each step of estimation, we interpret the simulation results and 

try to overcome the difficulties when SNR is low. Since our method is based on the prior 

estimation, which means the error may propagate through the process, the only way to 

enhance the accuracy in low SNR is doing more estimations and costing more computation.  

  In the future, we may design a more accurate method for the 1
st
 estimation, which will 

improve the performance of the recursive algorithm in low SNR conditions. Moreover, when 

SNR is known, we can determine the optimum nk  so as to have the least computation. This 

would save much computation in high SNR conditions. 
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