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Abstract

Code synchronization is a critical issue in spread spectrum communication systems. The
traditional method to achieve code synchronization is via serial search in the time domain.
By performing Fast-Fourier-Transform (FFT), the code sequence can be projected to the
phasor domain. Then, code phase between local sequence and input sequence can be found
via Inverse-Fast-Fourier Transform (IFFT). However, as the code length increases, the
computation increases considerably.

In this thesis, we propose a new method for code synchronization in the phasor domain
without IFFT. The method is based on the phase relationship of complex phasors, whereby
we can extract code phase via phasor phases. We analyze the statistical property of complex
phasors and design a simple method to extract the code phase. Moreover, we further design
an improved method to enhance the accuracy under noisy condition. Computer simulation is
performed to verify the proposed scheme, which focuses on variance reduction and
estimation accuracy. It can be demonstrated that the proposed method works well without

much computation while acceptable accuracy is achievable in high SNR environment.
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Chapter 1

Introduction

I. Overview

In the traditional digital communication system as shown in Fig-1.1, the information source
generates particular symbols at a specific rate. The source encoder translates these symbols
into sequences of 0's and 1's. Next, the channel encoder further translates the obtained
sequences into another sequences of O's and 1's, so as to realize high transmission reliability
and efficiency. Following the channel encoder, the modulator accepts the encoded bit stream
and converts them to signal waveforms suitable for transmission. After passing through the
channel, the waveform suffers from amplitude/phase distortion due to the noise,
transmission delay and multipath effect. Therefore, the waveform we get at the receiving
end might not be the same as the transmitting one. So the primary objective of a
communication system is to suppress the bad effects coming from the channel as much as
possible.

The inverse process takes place at the destination side. The demodulator converts the
signal waveforms to sequences of 0's and 1's, and then the channel decoder translates this
sequence to the original one. It also performs error correction and clock recovery. The
source decoder finally translates the sequence of into original signals. Recovering the
information sequence from the distorted waveform is the main purpose of a communication

receiver.



Synchronization in telecommunications networks is the process of aligning the time scales of
transmission and switching equipment so equipment operations occur at the correct time and
in the correct order. Synchronization requires the receiver clock to acquire and track the
periodic timing information in a transmitted signal. The transmitted signal consists of data
that is clocked out at a rate determined by the transmitter clock. Signal transitions between 0’s
and 1’s contain the clocking information and detecting these transitions allows the clock to be

recovered at the receiver.

I1. Our work
Our work will not focus on-how-to recover the information sequence from the distorted
waveform, instead the main objective we are interested in is the “code synchronization”, i.e.
to find the code phase shift between the incoming sequence and the local sequence at the
receiver. This issue is critical in spread spectrum systems where code synchronization must be
achieved before signal demodulation.

In order to simplify the problem, we consider the noiseless condition first. When there is
no noise accompany with the input sequence, some phase delay exists between the input
sequence and the local one. We denote q as the particular shift between them. If the accurate

value of g is got, the synchronization is completed. Assume S, =(X,,%,....,Xy_4) 1S the
input sequence and S, = (Yo, ¥y, Yyp) IS the local sequence, wherey, =X, and N is

the code length. Our goal is to find the code-phase shift between S, and S, , i.e. the value
of g. We’ll introduce the classic way on dealing with this problem, i.e. the Fast Fourier
Transform (FFT) method. By transforming the sequences to the frequency domain via FFT,
we find that “q” is imbedded in the phases of complex phasors. Thus we can get it accurately
by performing Inverse Fast Fourier Transform (IFFT). In general, N is a large number so that

the computation of FFT and IFFT grows rapidly when N increases. To reduce the computation



load, we propose a new scheme which can accurately estimate “q” without IFFT.

The main idea is a little bit tricky. Because the information of g is embedded in the phase
of each phasor in frequency domain, we can estimate the code phase via inner product of
different phasors. However, even though in high SNR condition, we can’t be sure if the
observed phase is close enough to the correct one because of the disturbance coming from
noise. The intuitive solution is to reduce the noise variance to some extent such that the
estimated code phase will have little probability to be erroneous. Therefore, we design a
simple but effective method to decrease the noise variance. It can be proved that the proposed
scheme can reduce the computation without losing much accuracy.

The thesis is organized as-follows. In Chapter 2, we will introduce the phasor concept of
FFT and analyze its properties. Next, the details of the proposed system will be described in
Chapter 3 and simulation results will be demonstrated in Chapter 4. Finally, we present the

conclusions of this study in Chapter 5.

Information Source

Input Source Channel Digital
transducer [ Encoder ™ Encoder [P modulator

[puuey)
OEIIUNWWO))

Recovered Information

1

Output  |g4 Source |g=f Channel | Digital
transducer Decoder decoder demodulator

<u

Fig-1.1: The traditional communication system



Chapter 2
Properties of Phasors

Suppose that S, is the input sequence and S, is the local sequence, given as

S, =(Xor Xpyeeen Xy_y) AN S; = (Yy, Yyuo-r Y1) » Where x; y; € (L-1) . We assume ¢ phase shift

between these two sequences, i.e. Y, =X, .

I. Noiseless condition

In the beginning, we consider the noiseless condition which is easy to be analyzed. For the

two sequences of interest, when FFT is performed we get

NoL Py
N

X =S xe N i=012,..,N-1 2.1)
k=0
NS, -2k
Y=>» ye "V ,i=012..,N-1 (2.2)
k=0
Let
X, =| X; [¢" (2.3)
Y Y, |ej¢' (24)
where 6, and ¢ denote the phases of X, and Y,, respectively.

Since y, =X, ,, we get the relationship between X; and Y; as follows:

4
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Note that X, and Y, share b 2—”iq in their phases, where

i=012,..,N.Thus

(2.6)

2.7)

Next, we defi

(2.8)
Assume S, and S, are maximum-length sequences (m-sequences), it can be proved that

| X, HY, =1 it i=0

=JN+1 if i%0 29)

Using (2.9) we get



2 _ (2.10)

From (2.10) we know that the code phase “q” is embedded in the phase of V,. Note that V,

contains no information about q , which is ignored in the following analysis.

Using (2.10), we can get the value of g via IFFT. Letv, denote the IFFT of V., given as

follows:

(2.11)

When k=q

(2.12)

When k #q, we get



! iZig %%
=D X, e N N
i=0
& X P j%i(Q—k)
i=0 I
, 2 , %@k
=X F+Y) X [Pen (2.13)

Therefore, b [ an be got.

I1. Nois '
A. Signal mode
Under no d sequence.

In this case
(2.14)

where “sgn(-)” denotes the sig if z>0,sgn(z)=-1, if z<0. To

ease the analysis, we model w, as
W, =X, + B X, (2.15)

where g, €(0,2) and X, denotes the inverse of x, . When g, =2, we have



W, = X, (2.16)

W, = X, (2.17)

which means no error occurs.
Let P, denote the asy to have the following

probabilities:

(2.18)
(2.19)
Thus, ifP, i
For the
(2.20)

Note that W, is a complex random variable whose mean is given as



NPT
EWI=E. we "]
k=0
2,

=E[Y, (% +A%X)e "]

S L = -i%Zik
=E[D. xe N +> BXe V] (2.21)
k-0 k-0
N-1 _jZik
=E[Xi+z Bxe N1
k=0

Since
(2.22)
Thus
(2.23)
= (1-2R)X,
Let A denote the mean o
A =(1-2P)X, (2.24)
Using A, we can model W, as
W, = A +n, (2.25)



where n, isazero-mean complex random variable.

The variance of n,, denoted as &, can be derived as follows:

o, =E[nn]]
=E[(W. — —_A)
[ - AW -AYT (2.26)
=EWW, - AW, - AW, + AA]
=E[\NiWi* _| A |2
It can be proved tha
EIWW. 4 { (2 2 7)
Thus
(2.28)
From (2.9) , we get
o2 =4P,N —4P*(N +1) ~ 4P,(1-P,)N (2.29)

When N is large, we can model n, as a zero-mean gaussian random variable whose

variance is given as above. This signal model will be used in the following analysis.

10



B.. Vector analysis

Now, we would like to apply the concept of vector to help analysis. Let

W, W, [ ¢ (2.30)

where Q, isthe phase of W,.As shown in Fig. 2.1, if we look W,, A and n, as vectors in

the complex plane, from (2.2 e follow

(2.31)

In Fig. 2.1, we have

Q=6 +a (2.32)

where @, is the phase angle of A, which is the same as that of X,, while ¢; is the phase

11



angle between W, and A, . Note that «, is a random phase caused by noise. Let

v, =W,

=W, []Y, | -7 (2.33)

2.
ig+a;

W, [|Y, | e 'V

Obviously, the phase of V, still contains th rmation of g, but is disturbed by «;. When

IFFT is performed, we @

(2.34)
If k=q
(2.35)
N-1 ) 2m
:z IW, [I'Y; |ellaramn) e
i=0
From (2.7) we get
0-4-—2iq 236)

Hence

12



=\/m.z |W, | el (2.37)

N-1
=VN+1-O. [W[cosg+ (> |W[sim)
i i=0
Owing to the symmetric property of FFT, the imaginary part of v, is zero so that

N+1-> |W[cos (2.38)

i=0

Note that for a g is random

too.

13



Chapter 3
The Proposed Method

Since the computation of FFT and IFFT is proportional to N -log N , it results in considerable
computation when N is large. Therefore, we intend to reduce the computation by using the
phase information of complex phasors. It is found that the propoesed method can much reduce

the computation in high SNR condition. The details of our method are described below.

I. Noiseless condition
First, we review the formulas got in the previous chapter under noiseless condition. Assume

S, =(Xy, X0 Xy 4) IS the input sequence and S, = (Yo, ¥i.-., Yno) IS the local sequence,

where y, =X, .. When FFT is performed, we get

Nl Wer |
X, = xe N 0=012,....N -1 (3.1)
k=0
N-1 _j27frik
Y=Y ye N =012 ,N-1 (3.2)
k=0
V, = XiYI*
—jz—”iq 1i :0)1’21"'1N _1 (33)
=X e ™

When 10, itis obvious that the phase of V, contains the information about g. Note that

because

14
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JNq:eJ(Nq2) (3.4)
for any integer n, there is phase ambiguity in the phase of V,. This fact should be carefully
considered in estimating q.

From (3.3) we get

.27
q

Vi = X1Y1* = X, |2 'e_JW (3.5)

Because 0<gq<N-1 so that O g%q < 27 , there is no phase ambiguity presents in the

phase of V,. Thus we can obtain g directly from the phase of V, under noiseless condition.

However, the problem becomes complicated when noise presents.

I1. Noisy condition
In noisy condition, the input sequence becomes S, =(W,,W,,...,w, ), where. w, =X, +&,

and &, is agaussian noise. As before, we perform FFT to get

Rl 2Tk
W=> we N ,  1=0L... ,N-1 (3.6)
k=0
We can express W, as
W, W, |e** (3.7)

where Q,; is the phase of W,. Let
Vi :WiYi* =V, |ej\yi (3.8)

15



From (2.34), the phase of V, is given as
(3.9)

where ¢; is a random phase caused by noise. Apparently, ¥, contains the information of g,

which can be employed to estimate the code phase.

Under noisy condition, from (3.9) we get
‘I’lz—z—7zq+oz1 (3.10)
N
where ¢ is the random phase caused by noise. Define
N
g =round—wY,) (3.11)
27

where “round(z)” denotes the closest integer of z.We may take @, as the 1% estimation of

g and define

Aql =0—-0q, (3-12)

where Ag, indicates the error between g; and q.

. . N . . .
It is noteworthy to mention that o is a huge number when N is large, which means
Vi

the error phase in ¥, could possibly be amplified by a large factor in (3.11). In other words,

a tiny phase deviation of ¢, may result in a significant deviation of Ag; .

16



I11. A simple phase estimation method

Using the phases of V, given in (3.10), we can get the 1% estimation and then obtain ;.
However, the random phase ¢, and a large value of N may result in unacceptable estimation
error. This problem can be resolved with the help of other phases of V. .

The intuitive way to improve the estimation accuracy is to reduce the variance caused by
a, as much as possible. According to the Law of Large Numbers, the average of random
variables obtained from a large number of trials is close to their expected value, and tends to
become closer as-more trials are performed. It is obvious that the terms V; (for i>1) can be
used since they do contain the-information of ¢. However, we can’t employ them directly due
to the inherent phase ambiguity accompanied with their phases. In order to overcome phase

ambiguity, we propose the following approach. Let

2
WCI"'U‘O -a)

« i(
Fo :V0V1 :|Vo |'|V1 | €

2—ﬂ+az—oz)
* Nq P e)

i(
I:1 :V2 V3 :|V2 |'|V3 |'e

2—”q+a —ag)
N 4 =05

- 1(
I:2 :V4V5 =|V4 |'|V5 |'e

2z
* Wq'*'aN—Z_aN—l)

i(
FN—Z/Z :VN—ZVN—l :|VN—2 |'|VN—1 | € (3-13)

In general,

. 2r
“* I A+agi—a g )
F :VZiV2i+l :|V2i |‘|Vzi+1 | I (3-14)

17



where each ¢; in (3.13) is an independent random variable. Eq. (3.14) could be rewritten as

iGZarp)

F =Vl 1V le N (3.15)
where S = a,; — a,;,, . Note that the phase of F; can be divided into two terms, i.e. the
co-phase term 2Wﬂiq and the random phase term g, .

When the set of {F,,i=0
(3.16)
where
(3.17)
where © is aw of Large
Numbers we ge
(3.18)
Therefore, © could be expressed as
27 ,
0= Wq +p4 (3.19)

where f' is a random phase. Note that the standard deviation of £' will be much smaller

18



than of 3, which will result in more precise estimation of %q. We will demonstrate it

with the simulation to be presented in Chapter 4.

After ® is got, we define
g,=rou r(e‘“—@) (3.20)
2r

where @, denotes the 2" estimation of g. Obviously, g, will be more accurate than ;.

Moreover, the error of the 2™ estimation is given as
AQ;=0-0, (3.21)

IV. The improved method
As shown above, we may apply the Law of Large Numbers to lower the variance in
phase estimation. However, the estimation error may not be small enough since it should be

less than 2z/N "in order to get a correct estimate of .q. When N is large, as. is usually the
case, Ag, may not be small enough. Therefore, we are obliged to further reduce the variance
by using the special relationship given in (3.8).

In probability theory, if X is a random variable and a is a constant, we have the
following equality:

Va (%) :%-Va €X) (3.22)

where “Var(z)” denotes the variance of a ransom variablez. When a >1, the variance of

X /a is reduced by a factor of a®. This fact will be employed to reduce phase variance.

19



After the 2" estimation, we take © as the estimate of %q, which may deviate from
27 , . . . 27 .
Wq by a random phase S'. Assume k isanintegerand k>2.If ® isclose tqu, it

Is expected that k-® is close to ZNqu, The idea is: if we can get a good estimate of

%kq , then a better estimate of %q Is got due to the multiplication factor of k. However,

the phase ambiguity problem possibly occurring in the term ZT”kq should be carefully

considered.

Now, we begin to describe the proposed method. Assume k> 2 is a given integer. Let

n i(
Go :VOVk :|Vo |'|Vk l'e

2
qu-*—ao—ak)
v
i kg o -a.y)

G =V Vk+1* =V [ [V 1€ N

.2
J(W”kq+az—ak+z)

G, =V M., =|V2 |‘|Vk+2 |-e (3.23)
* j(%kqﬂl’(m 2 )% N- ()
G(N—l)/Z :V(N—l)/2vk+(N—1)/2 :|V(N71)/z |'|Vk+(N—l)/2 |-e
In general,
. 2r
* J(Wq+ai_ak+i)
G =V AVil-[Viile (3.24)

Note that due to the symmetric property of FFT, we only take i:1~¥ in the above
equation.

20



Asai, 1=0,1,2,..., N-1, are independent random variables, the term (¢, —¢,,) could be

expressed as a random variable y, whose variance is the same as f,. Then we obtain

G VLV [V €N im0, NT"l (3.25)

where y, =, —¢;,, and

(3.26)
Next, by su

(3.27)
Assume

(3.28)
where
E= (%kqﬂﬂ) mod 2« (3.29)

In (3.29), the variance of y' will be much smaller than of y,. Note that because of the
mod- 27z operation, in general ¢ is not equal to %quﬂ/'. This fact should be taken into

account in estimating g.

21



For a given ¢, from (3.29) we have the following equality:

2—”kq+}/'=g+2n7r (3.30)

where n is an unknown integer sinceq is still unknown. Suppose that n is known, then

(3.31)
Let
(3.32)
We take .k
(3.33)
where E[y"1=0
(n= Y 1= ELC)'
L, (3.34)
=—0..
k2 4

where o-f. denotes the variance of y'. It is easy to see the variance of h can be much
reduced if k is large.
. . N 27k . .
It’s noteworthy to mention that in estimating the phase of %q , We approximate it as

22



k-®, where © z%ﬂq. When we multiply ® by k, the error phase accompanied with ©

is also amplified. As a result, although a large k is desired to reduce the variance of h, it also
increases the risk of erroneous mod- 2z operation. Therefore, choosing an appropriate value
of k is a critical issue.

When k-© is close to 2nz, it is probably for erroneous mod- 2 operation to occur.

Accordingly, we choose k-® to be around (2n+1) to avoid it. Because the larger of k, the

more risk of erroneous mod- 2z operation, for safety reason in the beginning we take
k-© 3z (3.35)

Inturn k iscalculated as

k =round (%T) . (3.36)

When k-®=3x is taken, we get n=1 in (3.30). After a more accurate value of %q is

got, we can increase k Dby taking a larger n so as to further reduce the error phase. Thus,
we may design a recursive algorithm to gradually increase k. The algorithm is shown in Fig.

3.1, whose operation is described below.

Assume O =~ %q has been obtained. First, we take n=1 and get k=k, with
(3.36). After a more accurate estimate of h~ %q is got, we set n=n+1 and get k =Kk,

. . 2 . .
to obtain a more accurate estimate of Wﬁq. The process can be repeated until the required

accuracy is met.

23
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v

The n™ estimation

Fig 3.1: The estimation flow chart
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V. New local sequence

In the above method, when q is small the estimated © z%q will be close to zero, in this

case k will be a rather large number to make k-® =3z . Under this circumstance, it has high
risk for erroneous mod- 27 operation. Therefore, we have to design a scheme to resolve this
problem.

As shown in Fig. 3.2, we assume the incoming sequence S, and the local sequence S,

has a small code phase shift in between so that the estimated value of ¢, denoted as ¢, is

small. Then we design a local sequence Z, where Z, ={z,,z,...,zy,} and z =x.. We

take @' such that %q' is much larger than %”q and g'=§+ Aqg. Our purpose is to use

Z, as anew local sequence whose code phase shift with 'S, is away from zero.

(Xgs Xy eeees Xy 1)
Si
q (Yoo Yoo - Mo
5 >
Aq

< > (2y,2),000, 2y 1)
7, i« »

ql

Fig 3.2: A new local sequence Z,.

Under noiseless condition, we have §=q. When FFT is performed, we get the following

equation:

25
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>
=~
T
-D.
(¢
=4

- (3.37)

Let U, be defined as

(3.38)

The relations

(3.39)

It’s obvious that there is %iAq phase difference between V; and U;. In (3.25), we have

2~ +7i) . —
G =VVyi =V, [ IVii |'eJ(N ) y), 1=1,23,....., N-1

(3.40)

Similarly, we define a new factor P; for U, as

26



=V, N Vi

RN LN
=V, Vv, -eN (3.41)
=Gi.ej%kAq

As shown in Fig 3.3, the two phasors Gi and Pi have a phase difference of 2W”Aq in

between. By choosing an appropriate value of Aq, it is easy to make ZW”q' away from zero.

gorithm can be applied to get

0 S
/ got, it is easy to obtain g while Aq is a known

Thus, when Z, is

the estimate of q'.

parameter w presents the coae

Re

Fig 3.3: The vectors concept of Pi and Gi
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Chapter 4
Simulation Results

After introducing the proposed algorithm, we will show simulation results in this chapter. We
will perform the algorithm shown in Fig3.1 and find estimation results under different SNR
conditions.

Firstly, we consider the case of an m-sequence whose length is N=2'°-1, and q=100 is

assumed. The algorithm depicted in Fig. 3.1 could be simplified as that in Fig. 4.1.

i=1 ﬂ i=1 kl i=1 . k2

1" estimation ¢, 2™estimation g, 3“estimation g, 4" estimation g,

Fig 4.1 The flow chart in simulation.

l. First Estimation

Recall that in the first step, we employ V, ‘which contains information of q without phase
ambiguity as the initial guess, and then obtain q; as the 1* estimation. The equations involved

in this estimation are given as follows:

Vv, =Wy =V g (4.1)

28



‘I’lz—z—ﬂq+a1 (4.2)
N
N
g =round—wY,) 4.3)
27

Aq1 =Qq-q, (4-4)

Fig 4.2 illustrates the standard deviation (STD) of «; (in degrees) with respect to SNR. We

see that the STD is large when SNR is low. Since our estimation is determined from N legal

phases, a wrong estimation occurs if the deviation is over %-%(0.176"). Obviously, the

accuracy is unacceptable even in high SNR conditions (5dB~10dB).

Standard Deviation of o, degree

o{a]

Fig 4.2 The standard deviation of ¢; interms of SNR.
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Fig 4.3 The standard deviation of ;.

Fig 4.3 shows the standard deviation of the error in the 1* estimation, i.e. the STD of Ag,. As
expected, the STD of Aq, is proportional to that of «i and its accuracy is generally
unacceptable even in high SNR condition. For example, when SNR=10dB, the STD of Aqg,
is greater than one, which means most of the estimation of g is erroneous. This result is not
strange, since the estimation is just based on the phase of V,, which is not very reliable even

in high SNR cases.

I1. Second Estimation

In the second estimation, we transfer V. to be F which contains the information of q as
well. Since the random phase of F,, denoted as g, is equal to ¢; —¢;,,, the variance of S,
is larger than of ¢«;. However, we may apply the Law of Large Number to lower the variance
by summing phasors. The equations involved in this procedure are shown as follows:

i%Fars)

*

F =WV :lvi |'|Vi+1|'e

i Vivi+l

(4.5)
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< - iCZ%p)
f=>Fi=|f|-e?=|f|-e N
i=1

(4.6)

0= ZW” q+ 4" (4.7)

g,=rou r(d\'_@)) (4.8)
2r

Ad, =Q—0, (4.9)

where ' is the error phase in_® . As shown in Fig. 4.4, the STD of A" IS much reduced

compared with that of i, which indicates the accuracy of ® is much improved due to the

summation process.

o]

Standard Deviation of [ degree
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Fig 4.4 The standard deviation of g and g' under different SNR conditions.

Now, we would like to analyze the relationship between g and g'. In probability

31



theory, if X., i=12,..,n, are independent and identically distributed random variables, we
have

Var(%zn: X:) =%Var(xi) (4.10)

i=1

Substituting NT_l for n in (4.1) and take square root in both sides, the relationship

between the STDs of g' and g, are given by

1
Nz‘l (4.11)

1
=——.0o
22.616

o(f'F

(5)

Because £ and p* are random phases in the complex domain, there are two special

properties of them:

(1) The range of phase is [-7, 7],

(2) ej6’ — ej(49+2kzr) )

These two properties make the relationship between o(f') and o(f) becomes nonlinear,
but not the linear one given in (4.11). However, Eq.(4.11) is still an important reference for
our simulation, because it is close to the simulated result when SNR is high.

Fig 4.5 shows the STD of Aqg, in terms of SNR. Obviously, the STD of Aqg, is much
improved in high SNR cases due to the reduced variance of f'. Therefore, after the 2"

estimation we would have an accurate estimation of q for SNR>5dB.
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Fig 4.5: The standard deviation of q.

I11. Third Estimation

In the third estimation, we use the prior estimation to get a more accurate result. The

corresponding k; is obtained from round (%T), which means the accuracy relies on the prior

estimation of ®. The equations involved in the third estimation are listed as follows:
3
k, =round (6) (4.12)

.2
](Wqu+7i)

G :Vi\/k1+i =V, |'|Vi+k1 |-e (4.13)
M-1 e j(ZN—”qu+7 '
g=>.G =|g|-e¥ =|g|-e (4.14)
i=1
hoftem 2z . v (4.15)

¢ N ¢
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For the case of q=100 assumed in the simulation, the parameter k, is calculated as

3z
k, =round (@)
N
=round (3—N) (4.16)
2q

= round (%) =15
2-100

Since y, has the same distribution as f,, they are supposed to share the same STD as

demonstrated in Fig4.6.

120

Standard Deviation of yi and i degree

100

a0

B0

alyi] ofRi]

40

20

Fig 4.6: The standard deviations of £ and y,.

Next, we focus on the ratio of o(y") to o(y'/ki). The simulation result is shown in Fig 4.7,
where the STD of »'/k; is reduced when SNR > -5dB. But it even increases when SNR <

-5dB. It is because of the undesired mod- 27 operation that leads to the increase of o (y ki)
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in low SNR cases. Recall that ki is obtained from round(%r), which means if ki-

larger than 47 or smaller than 2z , the undesired mod- 27z operation occurs. From (4.15), we

27

1

in the

could infer that it will result in increased STD since we add or subtract a factor of

calculation.

Standard Deviation of y degree

Fig 4.7: The standard deviations of »' and i:—

1

The STD of " Aq, is shown in Fig. 4.8. Apparently, the STD of Aq, is much improved
for SNR > 0dB, which indicates the 3" estimation can significantly improve the performance

when SNR is high.
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Fig 4.8: The standard deviation of s,

IV. Recursive algorithm
In the third estimation, we figure out that the improvement in estimation accuracy is closely
relate to_k,. And the reliability of k; depends on the accuracy of prior estimation. Now,
since we have more accurate result after the third estimation, we can proceed to improve the
accuracy with the recursive algorithm described before.

In the beginning, we take k =k, and repeat the process similar to the 3" estimation as

follows:

k, = round (%) (4.17)

.2
J(szqu}/i)

Gi :Vivk2+i* :|V| |'|Vi+k2 |'e (4-18)
T i)

6=5'6, =[gl-e" =g| (419
i=1
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e+2r 2n  y'
h=——=—"q+*+— 4.20
TN (4.20)

The corresponding k, should be

k, =round (%)

N

=round (ﬁ) (4.21)
2q

11-1023
2-100

= round ( )

=56

Standard Deviation of y degree
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Fig 4.9: The standard deviation of »' and

As depicted in Fig 4.9, we find that the performance is still bad when SNR is low, but it
is improved for SNR >-5dB . This result is similar to the 3" estimation.

The comparison between o(y'/k;) and o(y'/k,) is shown in Fig 4.10. Since the
proposed method relies on the accuracy of prior estimation, the relationship between
o(y'1k) and o(y'/k,) is not meaningful in low SNR condition. Thus, we merely show the
simulation result for SNR=0-10dB. From Fig 4.10, the ratio of o(y'/k,) to o(y'/k,)
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Is pretty close to the expected value of T Recall that a wrong estimation occurs once the

deviation is over %-%(0.176") , the correct probability of the 4™ estimation is much better

than that of the 3".

Standard Deviation of v degree

Fig4.10: The standard deviation of 7;— and E—
. 2

Finally, we present the correct probabilities in detecting the code phase with the
recursive algorithm with n=34,56 in Fig. 4.11. As shown in the figure, the correct
probability is enhanced with the recursive algorithm. Since the recursive algorithm is based
on the prior estimation, we can’t increase the correct probability even if we increase the
number of iterations in low SNR cases. The result reveals that a more accurate estimation

method is needed for the 1% estimation when SNR is low.
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The Correct Probabilities of Recursive Algorithm
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Chapter 5
Conclusions

In this thesis, we propose an effective method to achieve code synchronization. In Chapter 2,
we introduce basic principle of the FFET .method to achieve code synchronization. By
performing FFT, the input sequence is projected to the phasor domain, where we get X;. Then
we compare the phase of X, with the local phasor Y;. It is found that there is a regular phase
difference within which the code phase q is embedded. Thus we define a factor V; as the
inner product of X; and Yj, and it contains.information of gq. However, due to the inherent
phase ambiguity, we could not interpret the code phase g directly from V;. Furthermore, we
employ the phasor concept and perform analysis to understand the statistic properties of these
phasors.

In general, the sequence length N is a large number. It is known that the computation of
FFT and IFET is in the order of N -log N , which means considerable computation is required
when the sequence length is long. Therefore, we intend to reduce the computation by using
the phase relationship between phasors. By the mathematic analysis, we find every term of V;
contains information of g, but it can’t be used to get q directly due to inherent phase
ambiguity. If we can solve the phase ambiguity problem, the computation caused by IFFT can
be saved. Then, by observing the phase of inner product of Vjand Vi.1, we find it contains
information of g without phase ambiguity in noiseless condition. However in noisy condition,
the estimation will be strongly affected by noise, which leads to erroneous estimation. In
order to improve it, we propose a simple solution to reduce error phase by using the Law of
Large Number.

Because our estimation chooses the most possible phase among N legal phase, if the phase
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deviation is larger than N a wrong estimation occurs. From the simulation result, even a

tiny phase deviation may lead to incorrect value of q. Thus, we propose an improved method
to further reduce error phase. By referring to the simple estimation before, we can get the

approximated phase angel of V; Vis. Likewise, when all the terms V; Vi. are summed, we

can obtain a phase whose value is k multiple of %q, and it has the same noise variance as

Vi Vi+1. Then the variance of error phase is.divided by k so that a more accurate estimate is got.
Note that the idea of the improved method can be recursively operated to get more accurate
estimation. However, the more estimation the more computation required, so the number of
calculations in the recursive algorithm should depend on the SNR.

In Chapter 3 we also design-a-method to overcome the problem occurring when q is
small. It is equivalent to shifting the estimated phase angle to a large value such that the
multiplication factor k will not be too large. This method does not reduce noise variance,
but requires additional computation. Thus, it IS not a necessary process, which is applied only
when the estimated phase is close to zero.

In chapter 4, we demonstrate our theory by simulation under different SNR conditions. By
analyzing the performance in each step of estimation, we interpret the simulation results and
try to overcome the difficulties when SNR is low. Since our method is based on the prior
estimation, which means the error may propagate through the process, the only way to
enhance the accuracy in low SNR is doing more estimations and costing more computation.

In the future, we may design a more accurate method for the 1% estimation, which will
improve the performance of the recursive algorithm in low SNR conditions. Moreover, when

SNR is known, we can determine the optimum k. so as to have the least computation. This

would save much computation in high SNR conditions.
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