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摘要 

本論文的內容是結合地面、船載、測高與空載重力資料計算台灣與周邊海域

的大地起伏模型。空載重力資料是在平均高度5156公尺下利用LaCoste and 

Romberg (LCR) System II 空載/船載重力儀所測得。為了得到最佳的大地起伏模

型，本文研究兩個主要的課題。第一，考慮三種計算剩餘地形效應的方法，這三

種方法分別為快速傅立葉轉換、柱狀體法與高斯求積法。在柱狀體法中，將考慮

二維地質密度模型的影響。第二，快速傅立葉轉換與最小二乘配置法應用於向下

延續的計算。在快速傅立葉轉換計算時，高斯與維納濾波將用平滑向下延續的重

力值。最小二乘配置法則分為直接與間接大地起伏計算方法。此外，本文大地起

伏計算策略為去除回覆法並搭配最小二乘配置法。 

空中重力異常與地表重力比較後發現，兩者間較大的差值分部於高山地區，

其主要原因為此區域缺乏地面重力資料。在交叉點分析方面，在bias-only改正前

後的交叉點差值的均方根分別為4.92 和 2.88 mgal。在重複分析比較方面，150

秒的濾波寬度是平滑空載重力值的最佳濾波寬度。在剩餘地形效應的研究方面，

用快速傅立葉轉換計算此效應的大地起伏模型具有最佳的精度。此外，雖然考慮

地質密度變化後，大地起伏面會比僅考慮地質密度常數的大地起伏模型有著4公

分的變化量，但對改善大地起伏精度卻非常有限。在向下延續分析方面，先把重

力向下延續到海水面(包括利用高斯與維納濾波的快速傅立葉轉換與最小二乘配

置法)，再計算大地起伏的方法，所表現出的大地起伏模型很相似。然而採用最

小二乘配置法直接計算大地起伏所得到的模型與其他方法所計算的比較，在某些

區域有著30公分的差值。大致上來說，結合地面與空載重力所計算得到的大地起
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伏，其精度要比僅用地面重力所計算得的要佳，在部分山區可達到10公分以內的

精度。 
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Abstract 
This dissertation is aimed at geoid modeling over Taiwan and the surrounding 

seas by land-based, shipborne, altimeter, and airborne gravity data. Airborne gravity 

data was obtained from an airborne gravity survey over Taiwan using a LaCoste and 

Romberg (LCR) System II air-sea gravimeter at an average altitude of 5156 m. In 

order to model the best geoid, two main topics are studied. First, three computational 

methods of the residual terrain model (RTM) effects are considered. The three 

methods are the fast Fourier transform (FFT), prism, and Gaussian quadrature 

methods. A 2-D density model of terrain is used in the prism method. Second, the 

FFT and least squares collocation (LSC) methods are adopted for the computation of 

the downward continuation (DWC). Both Gaussian and Wiener low-pass filters are 

used to smooth the downward-continued data by using FFT. Direct and indirect geoid 

computations are studied in LSC DWC. The methodology of the geoid modeling is 

mainly based on the remove-compute-restore (RCR) procedure by using LSC. 

The airborne gravity anomalies are compared with the surface values. Large 

discrepancies are found to occur over high mountains due to the sparse surface gravity 

data coverage. The RMS crossover differences before and after a bias-only adjustment 

are 4.92 and 2.88 mgal. A filter width of 150 s is the optimal width for filtering the 

airborne gravity data, according to a repeatability analysis. In the investigation of the 

RTM, the FFT method in the RTM-derived effect computation produces the best 

geoid accuracy. Although the density variation considered in the geoid modeling 

yields a 4-cm change in the geoid surface from that using a geological constant, the 
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improvement in the geoid accuracy is extremely small. In the DWC analysis, the 

methods of DWC to sea level, including FFT with the Gaussian and Wiener filters 

and LSC, perform similar in geoid modeling. The method of direct geoid 

determination by LSC provides an obviously different geoid result due to the 30-cm 

differences of geoid surface from the other geoid models over some areas. Generally, 

the accuracies of the geoid models from the surface and airborne gravity data 

outperform the surface-gravity-only geoid models. The improvement in geoid 

accuracy reaches 10 cm over some high mountainous areas.  
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Chapter 1 

Introduction 
 

1.1 Background 
Taiwan experiences a large amount of seismic activity because it is located over 

the junction of the Eurasia plate and the Philippine Sea plate. The uplift and 

subsidence of land are created due to the collision of these two plates. Most areas of 

Taiwan Island are subjected to northwest-southeast compression at an average rate of 

8.2 cm/year (Yu et al., 1997). The subduction of the Philippine Sea plate into the 

Eurasia plate creates a deep trench and large negative gravity anomalies to the east of 

Taiwan. On the other hand, it also creates the Central Range with a high terrain and 

huge positive gravity anomalies on land. The maximum altitude is at the Central 

Range, reaching 3952 m, which corresponds to the highest peak in East Asia. In 

eastern Taiwan and the surrounding sea, the mountains and the seabed, which are only 

several km away from the coast, reach heights of approximately 2000 m and –5000 m, 

respectively. Due to the extremely rough terrain and bathymetry (Fig 1-1), geoid 

modeling over Taiwan Island and its surrounding marine areas is quite a challenge for 

geodesists and geophysicists. 

Geoid determination with high accuracy is a primary goal for geoscientists. The 

importance of the geoid for geodesists is that it is a reference surface for orthometric 

heights. Once a reference surface is established, orthometric heights referred to the 

local vertical datum are obtained. In addition, it is feasible to determine the 

orthometric heights by using GPS. A high accuracy geoid is the key factor for 

obtaining orthometric heights without leveling. If we have a high quality geoid model, 

orthometric heights can be efficiently and economically computed using GPS-derived 

ellipsoidal heights. For oceanographers, the geoid is useful for the investigation of 

currents, tides, and sea surface topography. For geophysicists, the geoid can be used 

to understand the characteristics of the earth’s interior sources. Besides geodetic 

purposes, the geoid is also applied in mapping, photogrammetry, and remote sensing. 

This is why most countries around the world are making efforts to compute their own 

precise geoid models. 

The estimation of the topographic effect is important for geoid determination, 

especially over mountainous areas. This estimation can be used to calculate the effects 
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of high frequency on gravity and the geoid; these cannot be calculated using the 

geopotential model and local gravity data. In most investigations related to the 

topographic effect, it is assumed that the density of the topographic mass is constant. 

However, several studies in recent years have taken into consideration the influence 

of the density variation of the topographic mass. In addition, the chosen method and 

digital elevation models (DEM) used in topographic effect computations also need to 

be focused upon in order to obtain a more precise result in an efficient manner. 

Airborne gravimetry is a method to determine the gravity field by measurements 

from an aircraft. Based on this method’s feature, airborne gravity data are valuable for 

areas with sparse gravity data, such as high mountains where data are always 

collected along the roads in valleys. Airborne gravity data are also useful for coastal 

regions wherein the gravity data coverage, especially over shallow water areas, 

obtained from satellite altimetry and land gravimetry data is of poor quality. 

Therefore, airborne gravimetry is suitable for Taiwan Island where over 75% of the 

terrain comprises hills and high mountains and 70% of the coast is near shallow water 

areas. Poor gravity data coverage results in poor accuracy of geoid modeling. 

Airborne gravity surveys with equally spaced tracks can make data coverage denser 

and bring improvements in the geoid computation. 

Another interesting topic in the recent years has been how to combine different 

kinds of gravity data to compute a precise geoid. These data include terrestrial, 

shipborne, airborne, and altimeter-derived gravity. The combination of different types 

of gravity measurements is a challenging task for geodesists due to their different 

resolutions and characteristics. Airborne gravity data have an unusual property in that 

the gravity field level is different from that of other types of data. Thus, the technique 

of downward continuation (DWC) is important for airborne data to press aerial 

gravity field to the level which we are interested in. 

The objective of this thesis is to determine the most accurate geoid over Taiwan 

and its surrounding sea area by the use of surface, altimeter-derived and airborne 

gravity. Based on this objective, there are several main issues to be investigated in this 

dissertation: (1) Which is the best method for topographic effect computation? (2) Is 

the consideration of the density variation of the topographic mass necessary in 

topographic effect computation? Can it be ignored? (3) What is the quality of the 

airborne gravity data used in the geoid modeling over Taiwan? (4) What is the best 

DWC method that can be applied to airborne data? (5) What is the ideal geoid model 
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by combining all types of gravity data? All these topics are important and have been 

investigated in this geoid modeling study. In brief, this dissertation focuses on how to 

obtain the most accurate geoid over Taiwan by selecting the best (1) topographic 

effect computation method, (2) DWC technique, and (3) geoid determination method. 

 

1.2 Literature Review 
Geoid determination has been of interest to geodesists for more than a century. 

Basically, two types of methods are usually used for local geoid 

determination—Stokes integration and least-squares collocation (LSC). They are 

deterministic and stochastical methods, respectively. Stokes integration can be 

performed very quickly using the fast Fourier transform (FFT) on gridded data. On 

the contrary, LSC requires a larger computational effort. Stokes integration generally 

only uses one data type with uniform noise. However, LSC can accept hybrid data 

with individual noises. Stokes integration is usually used for the continental areas and 

geoid models over several regions around the world (e.g., Boziane, 1996; Denker et 

al., 1997; Forsberg et al., 1996; Smith and Milbert, 1999; Sideris, 1995). The 

application of LSC in physical geodesy has been discussed in detail by Moritz (1980). 

The first centimeter geoid was computed for an area around Hannover in Germany in 

1987 (Denker and Wenzel, 1987) by LSC. This method was subsequently used in 

many countries and was met with success (e.g., Sevilla, 1997; Hwang, 1997; 

Tscherning et al., 2001). Compared to Stokes integration, LSC gives error estimates 

and error covariances that reflect the data distribution and quality. For modeling the 

local gravity and geoid field at present, the LSC method has been proven to be a 

powerful technique. 

Geoid modeling using Remove-Compute-Restore (RCR) procedure by Stokes 

integration over Taiwan was first investigated by Tsuei (1995). In subsequent years, a 

number of studies based on RCR procedure by LSC were carried out, e.g. Hwang 

(1997, 2001, 2003, 2005), Hwang et al. (2006a, 2006b, 2007b). Most of these results 

show a geoid accuracy of several centimeters over the west plain but of 1~2 

decimeters over high mountains. 

The topographic effect in geoid determination has also been studied for many 

years, especially in rough terrains. The relevant investigations can be divided into two 

main parts: (1) the effects of the residual terrain model (RTM) and (2) Helmert’s 
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second method of condensation. There are several methodologies to determine the 

topographic effect. An earlier research containing the complete computation of this 

effect can be found in Forsberg (1984). It presented the FFT and prism methods to 

calculate the RTM-derived effect. Sjoberg (2000) used Helmert’s second method of 

condensation to reduce the topography. Omang and Forsberg (2000) investigated 

three different methods of dealing with topography in geoid modeling: the isostatic, 

Helmert condensation, and RTM methods. Other studies about the topographic effect 

in geoid modeling include Forsberg (1985), Nahavandchi and Sjoberg (2001), and 

Flury (2006). Furthermore, we usually assume that the density of the topographic 

mass is constant (2.67 g/cm3) while computing the topographic effect, but recently, 

several investigations have been performed to study the impact of more realistic 

density variations of the topographic masses. Martinec (1998) showed that the geoid 

can be changed approximately to the decimeter level by considering the lateral density 

variation of the topographical masses. Pagiatakis et al. (1998) reported that the effect 

of lateral density variations on the geoid can reach nearly 10 cm in the Skeena region 

in Canada, where the terrain is hilly. Huang (2002) showed that the total density 

variation effect on the geoid heights ranges from –7.0 cm to 2.8 cm in the Canadian 

Rocky Mountains. It is evident that the use of the digital topographical density model 

will significantly improve the accuracy of the geoid. Other studies about density 

variations can be found in Huang et al. (2001), Hunegnaw (2001), Smith (2002), 

Kuhn (2003), and Sjoberg (2004). 

Airborne gravity surveys have been performed for over forty years, but 

geodesists have been paying more attention to them recently due to the advancement 

of the methodology, improvement in instrumentation, and development of the precise 

kinematic GPS in the past decade. Due to the recent and rapid development of these 

techniques, 1~2 mgal and half wavelengths of 3–4 km can be achieved by airborne 

gravity surveys (Schwarz and Li, 1997). The first test of the airborne gravity survey 

was made by Thompson and LaCoste (1960). The main objective of this flight is to 

show that gravity measurement from a flying aircraft is feasible. The first large-scale 

airborne gravity experiment was performed over Greenland (Brozena, 1992). In 

addition, several airborne gravity surveys have also been performed in places whose 

terrains are similar to that of Taiwan, such as the Rocky Mountains, the Alps, and 

Malaysia. 

Airborne gravimetry tests are often conducted in the Rocky Mountains due to the 
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complex topography. In 1995, an airborne gravity survey (Wei and Schwarz, 1998) 

was carried out over the Rocky Mountains. The gravity system includes an inertial 

navigation system (INS) and two GPS receivers on the aircraft. The survey lines 

contain four flights with the same trajectory, which has an east-west profile of 250 km. 

The flying altitude and speed were 5.5 km and 430 km/h, respectively. The gravity 

result shows that the repeatability standard deviation is about 2 mgal with a filter 

length of 120 s and about 3 mgal with a filter length of 90 s. The standard deviation of 

the difference between the airborne gravity and upward continued ground gravity is 

about 3 mgal for both filter lengths. In the next year, another airborne gravity survey 

was conducted in the Rocky Mountains again (Glennie and Schwarz, 1999). The 

mission was carried out over a single 100 ×  100 km2 area with a line spacing of 10 

km. The analyses of the crossover differences showed a root mean square (RMS) 

agreement at the level of 1.6 mgal. 

In 1998, an airborne gravity survey was carried out over the Alps (Verdun et al., 

2003). The mission consisted of 18 NS and 16 EW survey lines with a line spacing of 

10 and 20 km, respectively. The gravimeter, which is a LaCoste & Romberg relative 

air/sea gravimeter (type SA), was mounted in a DeHavilland Twin Otter aircraft 

flying at a constant altitude of 5100 m and a mean ground speed of about 280 km/hr. 

Seven ground based GPS reference stations were used to determine the positions of 

the aircraft. The accuracies of the Bouguer anomaly are determined from the 

crossover analysis (15.34 mgal RMS before adjustment and line selection) and the 

ground upward continuation (UWC) (7.68 mgal RMS for a spatial resolution of 8 

km). 

Airborne gravimetry in Malaysia was carried out by National Land Survey and 

Cadastre (KMS) of Denmark. The airborne gravity survey over the entire peninsula 

and Brunei was conducted with a 5 km line spacing, using an An-38 aircraft. More 

than 600 hours were flown with LaCoste and Romberg gravimeters (models S-93 and 

S-99) to collect the basic airborne gravity data at a flight speed of 150–250 km/hr and 

an aircraft altitude of less than 4500 m, which typically corresponds to a height of 

300–1000 m above the topography, depending on the weather conditions. The 

resulting gravity anomalies of the crossover analysis were higher than 2 mgal RMS. 

Airborne gravity surveys are still conducted in many countries and regions. 

These areas include North Carolina (Brozena and Peters, 1988), Skagerrak (Kearsley 

et al., 1998), Azores Islands (Bastos et al., 1998), Antarctica (Bell et al., 1999), the 
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Nordic/Baltic area (Forsberg and Solheim, 2000), Greenland/Svalbard (Forsberg et al., 

2003a), the Arctic sea (Childers et al., 2001 and Forsberg et al., 2003b), Lincoln Sea 

and Wandel Sea (Olesen et al., 2003), Baltic Sea, the Great Barrier Reef, Crete Island, 

and Mongolia. These missions yielded an average RMS error of 2 mgal based on the 

crossover comparisons and an average interior geoid accuracy of 5 cm based on 

reliable GPS/leveling data. 

The precision of geoid modeling has improved in recent years due to the 

development of airborne gravimetry. Forsberg et al. (2000) showed that the routine 

accuracy of airborne gravimetry is at the 2 mgal level, which may translate into a 

geoid accuracy of 5–10 cm on a regional scale. Kearsley et al. (1998) indicated that 

the gravity field determined from an aircraft with flight separations of 5 to 10 km can 

be used to evaluate precise (2 cm) relative geoid heights over north Jutland. Schwarz 

and Li (1996) pointed out that a centimeter geoid can be obtained if the minimum 

wavelength resolved is about 14 km in flat areas and 5 km in mountainous areas. In 

the airborne gravimetry in Malaysia as mentioned above, the data contributed to a 

geoid accuracy of smaller than 5 cm. Combining the different types of gravity data for 

geoid determination is also an interesting topic. Novak et al. (2003) reported that the 

first geoid model computed using the combination of airborne and global gravity data 

had a difference standard deviation of 5.5 cm; this is comparable to the reference 

geoid computed only from the ground gravity data. The second geoid model, based on 

the combination of the airborne and ground gravity data, had a difference standard 

deviation of 4.7 cm by comparison of the same reference geoid. Jekeli and Kwon 

(2002), and Serpas and Jekeli (2005), used the horizontal components of airborne 

gravity observations and also reported a sub-decimeter precision in the determination 

of the relative local geoid. Other research about geoid determination using airborne 

gravity data include, among others, Kern et al. (2003), Novak (2003), Olesen (2003), 

Li (2000), Serpas (2003), Bayoud and Sideris (2003), and Olesen et al. (2002). 

 

1.3 Outline of Thesis 
In chapter 2, the main principles of geoid modeling, including the spherical 

harmonic function, Stokes integration, and LSC, are presented. In addition, the RCR 

procedure and the theorem of UWC and DWC are also described. 

All data except the airborne gravity data used in geoid modeling are introduced 
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in chapter 3. These data include the surface gravity, altimetry data, global geopotential 

model (GGM), DEM, density model, and GPS/leveling points for evaluating the geoid 

accuracy. 

Geoid modeling results using three RTM-derived effects methods are presented 

in chapter 4. The three methods are FFT, prism and Gaussian quadrature. Besides, the 

influence of the density variation of the topographic mass on the geoid is also 

discussed. 

In chapter 5, a description of the airborne gravimetry theorem and an airborne 

gravity survey over Taiwan are presented. Furthermore, three methods to evaluate the 

accuracy of airborne gravity data are mentioned. 

In chapter 6, the application of airborne gravity data is discussed. The data are 

processed by the DWC technique and are used for the geoid computation. A 

comparison between the downward-continued airborne gravity data by the FFT and 

LSC is analyzed and described. Two low-pass filters used in the frequency domain 

and two types of geoid modeling by the LSC DWC are also investigated. 

A summary, conclusions, future research, and suggestions are presented in the 

final chapter. 
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Fig. 1-1 Terrain and bathymetry around Taiwan (Hwang et al., 2007b). The inset is a 

tectonic map of Taiwan from Angelier et al. (1997). The Philippine Sea plate moves 

towards the Eurasia plate at a speed of 8.2 cm/year. 
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Chapter 2 

Principles of Geoid Determination and Upward/Downward 

Continuations 
 

2.1 Introduction 
The strategy of geoid modeling used in this study is based on the 

remove-compute-restore (RCR) procedure, which is useful for high-resolution local 

gravity or geoid determinations. Geoid modeling takes into account information 

regarding three parts of the gravity field, namely, the long-, intermediate-, and 

short-wavelength parts. In this study, the long-wavelength part is determined from the 

global geopotential model by using a spherical harmonic function; the 

intermediate-wavelength part, from local gravity observations by using least squares 

collocation (LSC); and the short-wavelength part, from the high-resolution digital 

terrain model. 

Upward/downward continuation (UW/DWC) is a method that can be used to 

transform the gravity potential on a surface into that on a higher/lower surface 

(Blakely, 1995). In other words, UWC and DWC are performed in order to obtain 

gravity functional from one level surface to another. It is important to apply both 

continuations to airborne gravity data in order to calculate the geoid by using gravity 

data at a different surface level. 

 

2.2 Methodologies of Geoid Determination 

On the global scale, the geoid can be represented in terms of a spherical 

harmonic expansion. On local and regional scales, a geoid model based on gravity can 

be obtained by using Stokes integration and LSC. The spherical harmonic 

representation and Stokes integration are deterministic, while LSC is stochastic. 

 

2.2.1 Spherical Harmonic Representation of Gravity Field 

According to Newton’s law of gravitation, the earth gravitation at point P can be 

expressed as (Fig 2-1) (Torge, 1989) 
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where r ′  and r are the geocentric position vectors of the element mass dm and the 

attracted point P.  

 

 
Fig. 2-1 Potential at point P due to the earth mass. 

 

The corresponding potential V and the earth gravitation b have the relationships 

 

Vgradb =                                                        (2-2) 

 

Thus, the gravitational potential of the earth can be given by 
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where ρ  and dv  are the earth’s density and volume element, respectively. 
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∞→
V

r
. V is harmonic outside the spheroid and can be determined by using a 

spherical harmonic function given by (Torge, 1991) 
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where a  is the semimajor axis of the ellipsoidal earth model and GM is the 

geocentric gravitational constant with respect to the total mass. λ , ϑ , and r are 

spherical coordinates and nmC  and nmS  are fully normalized spherical harmonic 

coefficients, which are mass integrals that represent the mass distribution within the 

central body. nmP  is the associated Legendre function with degree n and order m. 

The gravity anomaly and geoid undulation in the spherical harmonic function can be 

expressed as (Heiskanen and Moritz, 1967) 
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where R is the radius of the earth. The long-wavelength features of the earth’s 

external gravity field are determined by using satellite gravimetry and are modeled as 

a series of solid spherical harmonics truncated at the maximum values of n and m. The 

spherical harmonic function is usually used along with the spherical harmonic 

coefficients to determine the global long-wavelength geoid or gravity field. 

 
2.2.2 Stokes Integration 

As shown in Heiskanen and Moritz (1967), the disturbing potential, T, can be 

determined by Stokes integration as 
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where g∆  is gravity anomaly. σ  represents the unit sphere and σd  denotes the 

element of solid angle. )(ψS  is Stokes’ kernel and is expressed as  
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Using Bruns’ formula, we can obtain the geoid undulation as 

 

∫∫ ∆=
σ

σψ
πγ

gdSRN )(
4

                                              (2-9) 

 

where γ  denotes the normal gravity. In theory, Stokes integration can simply be 

calculated by using global gravity data coverage. However, in a geoid computation 

task, the RCR procedure is required in order to determine the geoid surface more 

accurately. Stokes integration is usually calculated rapidly in the frequency domain by 

using a fast Fourier transform (FFT) technique. On a sphere, a rigorous 

implementation of FFT can apply the spherical FFT or multi-band FFT technique 

(Forsberg and Sideris, 1993). 

 

2.2.3 Least Squares Collocation 

LSC can be used to determine an anomalous gravitational field by using different 

combinations of geodetic observations. The basic principle of LSC is given by 

(Moritz, 1980) 

 

lDCCs llsl
1)( −+=                                                 (2-10) 

 

where s and l are sets of signals and observations, respectively. llC  is the covariance 

matrix of l and slC  is the covariance matrix between s and l. D is the matrix of the 

noise vector, which functions as a filter and weight in LSC computations. To estimate 

the error of signal s, the error covariance matrix is computed as (Moritz, 1980) 

 

lsllslssss CCCCE 1−−=                                               (2-11) 

 

where ssE  denotes the error covariance matrix. In the case of geoid determination by 

LSC, the formulae of signal and error are 
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and 
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where vector g∆  contains gravity anomalies. NgC  and ggC  are covariance 

matrices for geoid-gravity and gravity-gravity, respectively. gD  is a diagonal matrix 

containing error variances of gravity anomalies. In (2-13), s is a scale factor, which 

can be determined by 
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where g∆  is the average gravity anomaly, 2gδ  is error variance of gravity 

anomalies, ggc  is error variance of the gravity anomalies derived from a geopotential 

model, and  m is the number of gravity data points. 

The covariance function provides the covariance between two signals, between 

two observations, and between a signal and an observation, and it is used in LSC to 

predict those signals that are of interest to us. The key factor for a precision geoid 

model by LSC is covariance functions. Thus, it is essential to find a suitable 

covariance function for use in LSC computation. In this study, for up to 360 degrees, 

we adopt the error anomaly degree variances of a geopotential model ; for higher 

degrees, we adopt the Tscherning-Rapp anomaly degree variance model 4. The 

Tscherning-Rapp model is generated from an empirical covariance function 

developed by Tscherning and Rapp (1974). The Model 4 of anomaly degree variance 

is expressed as 
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s can be expressed as 
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where n denotes the selected degree. A and B are both free parameters whose values 

are adopted to be 425.28 mgal2 and 24 in this study and BR  is the radius of the 

Bjerhammar sphere. r  and r′  are the distances of points P and Q from the earth’s 

center. We can determine the covariance between two points by using data obtained at 

different levels, such as airborne and surface gravity data. Eq (2-15) is used only for 

360>n . Based on the combination of the geopotential model and the 

Tscherning-Rapp degree variance model 4, the covariance functions between two 

gravity anomalies, between two disturbing potentials, and between a gravity anomaly 

and a disturbing potential for points P and Q can be expressed as 
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where ),(~ ggn ∆∆σ , ),(~
Qpn TTσ , and ),(~

Qpn gT ∆σ  are the error variances between 

two gravity anomalies, between two disturbing potentials, and between a gravity 

anomaly and a disturbing potential, respectively; these error variances are associated 

with the corresponding geopotential model coefficients. nP  is the Legendre 

polynomial of degree n and PQΨ  is the spherical distance between P and Q. γ  

denotes normal gravity. More covariance functions such as those between two geoid 

gradients, between a geoid gradient and a gravity anomaly, and between a geoid 

gradient and a disturbing potential can be found in Tscherning and Rapp (1974). 
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The rapid developments in LSC over the past few years clearly demonstrate that 

LSC is being used as the primary technique for local geoid determination because it 

can accurately estimate the signals of interest to us by using heterogeneous data 

having different resolutions. Due to the multi-resolution characteristic of LSC, we 

select LSC for the primary geoid modeling methodology in this study.  

 

2.3 Remove-Compute-Restore Procedure 
The RCR procedure is one of the most well-known strategies used for regional 

geoid determination. The RCR procedure is also called the remove-restore technique. 

In theory, geoid determination can only be performed for gravity data having a global 

coverage; however, a global gravity field model may represent data far beyond the 

area of interest. If the RCR procedure is used, gravity field data beyond the area of 

interest can be removed. In areas with complex topographies, it is very important to 

remove and subsequently restore the potential of the topography. For these areas, 

terrestrial gravity values are usually available locally at accessible spots; the remove 

procedure makes these values more smooth and representative. For many years, 

because of the valuable characteristics of the RCR procedure, considerable attention 

has been focused on the application of the RCR procedure to geoid modeling. 

Furthermore, when performing geoid determination, long-wavelength and 

short-wavelength errors may arise if the RCR procedure is not properly applied. 

The geoid and gravity field can be divided into three parts: long-wavelength 

(low-frequency), intermediate-wavelength (intermediate-frequency or so-called 

residual), and short-wavelength (high-frequency) parts. Therefore, both the height 

anomaly ζ  and the gravity anomaly g∆  can be expressed as 

 

shortreslong ζζζζ ++=                                               (2-21) 

and 

shortreslong gggg ∆+∆+∆=∆                                           (2-22) 

 

where longζ  and longg∆  are the long-wavelength height anomaly and gravity 

anomaly, respectively; shortζ  and shortg∆ , the short-wavelength height anomaly and 

gravity anomaly, respectively; and resζ  and resg∆ , the residual height anomaly and 
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gravity anomaly, respectively. Fig 2-2 shows geoid undulations at three different 

wavelengths. In the RCR procedure, the long- and short-wavelength parts are 

attributed to geopotential-derived and residual terrain model (RTM)-derived effects, 

respectively. Local gravity observations subtracted from the two gravity effects can be 

used in Stokes integration or LSC to determine the intermediate-wavelength geoid. 

Subsequently, the geopotential-derived and RTM-derived geoid effects can be 

restored to obtain the final geoid.  

 

 

 
Fig. 2-2 Three different wavelengths of geoid undulation. longN , resN , and shortN  

denote the long-, intermediate- (residual), and short-wavelength parts of geoid 

undulation, respectively. 

 

In this study, the long-wavelength gravity and geoid are based on a global 

geopotential model, and the intermediate geoid is obtained by local gravity data by 

LSC. 

 

2.3.1 Long-Wavelength Reference Geopotential Model 

The global geopotential model (GGM) is a model that can represent the earth’s 

potential field. This model is important for regional geoid determination because it 

takes care of the long-wavelength part of geoid.  

For geopotential-derived gravity, the higher the degree and order used for the 

geopotential coefficients, the smaller is the area required with local gravity data, but 

errors in high-degree coefficients can be a problem if not carefully modeled. The 

factors influencing the accuracy of the GGM include the amount and quality of local 

gravity and satellite tracking data and the maximum degree of the model. In addition, 

shortreslong NNN ++  
reslong NN +longN  

Ellipsoid
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the GGM usually yields an absolute geoid height error (so-called long-wavelength 

error) of the order of a few decimeters due to biases. However, the relative geoid 

height is often accurate because the biases at two computational points will largely be 

canceled out when differential geoid height computations are performed. 

 

2.3.2 Residual Terrain Model 

The RTM represents the residual part between the true and mean elevation 

surfaces (Fig 2-3). For determining the short-wavelength geoid in high mountainous 

regions, it may be insufficient to use only the geopotential model and local gravity 

observations. This is due to the signal contribution of the topography, which is 

particularly strong at short wavelengths for a rough terrain. The effect of the RTM can 

represent these short-wavelength signals appropriately.  

 

 

 

 

 

 

 

Fig. 2-3 Residual terrain model (RTM), which represents the difference between the 

true and mean elevation surfaces. 

 

The RTM-derived effect can be expressed as the difference between two 

surface-derived effects. In a planar approximation, the potential of point P due to an 

RTM mass is 
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where dm is a mass element of RTM and ( px , py , pz ) and (x, y, z) are the 

coordinates of point P and every mass element dm, respectively. It is important to use 

both the true and mean elevation surfaces in geoid computation. The true elevation 

surface should be represented by a digital elevation model (DEM) containing detailed 

 True elevation surface 

Mean elevation surface 

P 

RTM 



 18

information in order to take into account high-frequency signals. The mean elevation 

surface should be selected in such a manner that it represents the global distribution of 

the regionally varying signal characteristics as far as possible. The practical 

computational methods for the RTM-derived effects are described in chapter 4. Three 

such methods used for computing the effects are investigated. 

 

2.4 Quasi-Geoid Correction 
The difference between the geoid and a quasi-geoid is that the geoid corresponds 

to a datum of orthometric height and the quasi-geoid to that of normal height (Fig 2-4). 

By considering the normal gravity gradient with respect to the surface of the mean 

reference ellipsoid, the quasi-geoid is defined as a function of the normal height 

(Vanicek et al., 1999). In practice, when orthometric heights are used for determining 

the vertical datum, a quasi-geoid correction is applied to the fundamental formula of 

physical geodesy in order to accurately determine the geoid.  

 

 

 
Fig. 2-4 Physical surface of the earth. h, OH , NH , N, and ζ  denote the ellipsoid 

height, orthometric height, normal height, geoid undulation, and quasi-geoid 

undulation, respectively. 

 

The relationship between the height anomaly ζ  and the geoid undulation N is 

expressed as (Heiskanen and Moritz, 1967) 
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where Bg∆  is the Bouguer anomaly, γ  is normal gravity, and H is the topographic 

height. Eq (2-24) can also be written as 

 

22 HGN
γ
ρπζ −≈                                                (2-25) 

 

where ρ  is the density of the terrain mass and G is the gravitational constant. 

ρπG2  is the Bouguer term. The difference between the geoid and the quasi-geoid is 

minute over moderate topographies, but it can reach several decimeters over high 

mountainous areas. Thus, the quasi-geoid correction cannot be ignored over rough 

terrains. 

 

2.5 Upward and Downward Continuations 
UW/DWC is employed to calculate the potential at any point above/below a 

planar surface having a known potential. It is important to apply UWC and DWC to 

airborne gravimetry for assessing the quality of airborne gravity data and for 

computing geoid undulation. However, the characteristics of the two continuation 

operations are different. UWC is a smooth operation that is characterized as a 

well-posed problem, whereas DWC is an unstable operation that is characterized as an 

ill-posed problem. 

An inverse problem is expressed as the solution of an operator equation by the 

following expression: 

 

)(mAd =                                                         (2-26) 

 

where m is a function obtained from a metric space of model parameters, d is an 

element obtained from a metric space of data sets, and A is an operator. According to 

the classical theory of inverse problems, there are three definitions for well-posed and 

ill-posed problems (Zhdanov, 2002). A well-posed problem must satisfy the following 

conditions. 

(1) Solution m of Eq (2-26) exists. 

(2) Solution m of Eq (2-26) is unique. 
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(3) Solution m depends continuously on the left-hand side of the equation, i.e., on d. 

The problem in Eq (2-26) is ill-posed if one of the three conditions fails. The gravity 

potential outside the mass of earth satisfies the Laplace equation 

 

0=∇g                                                           (2-27) 

 

The gravity potential at some level z = 0 is assumed as 
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where ),( yxf  is some known function. If the problem is to calculate the potential 

from z = 0 to any other level z = h, it is called an UWC of the gravity potential. In 

contrast to UWC, if the problem is to compute the potential from z = h to z = 0, it is 

called a DWC of the gravity potential. We can write an operator equation of the 

relationship between the potentials at z = h and z = 0 as 
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where A is an operator used for calculating the UW/DWC of the gravity potential. 

 UWC is usually used to assess the accuracy of airborne gravity observations. 

These airborne data can be compared with the surface gravity data that are upward 

continued to the flight altitude. DWC plays a key roll in geoid determination when 

using airborne gravity data. On the other hand, the estimation of downward-continued 

data is sensitive to noise. Therefore, some types of noise suppression operations are 

required to enhance the data quality.  

 In this study, two UW/DWC methods, FFT and LSC, are taken into 

consideration. Both methods have been applied to UWC and DWC for many years. 

 

2.5.1 Continuation by Fast Fourier Transform 

UW/DWC by the FFT method is based on the integral Poisson formula. If an 

airborne gravity survey is carried out at a constant altitude, DWC can be readily 
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implemented by using FFT in the frequency domain. Let the vertical component of 

the gravity field in the z = 0 and z = h planes be  

 

 )0,,(|),,( 0 === zyxgzyxg z                                          (2-30) 

and 

),,(|),,( hzyxgzyxg hz ===                                          (2-31) 

 

where z is the altitude of gravity field g. For the three-dimensional condition, the 

relationship between )0,,( =zyxg  and ),,( hzyxg =  can be written as (Buttkus, 

2000) 
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We can use a convolution integral to represent Eq (2-32) as 
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h
zupward yxw 0|),( =  is the impulse response function for UWC from the z = 0 plane to the 

z = h plane. On the other hand, the two-dimensional Fourier transform is given by 
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where ),( yxw is a nonperiodic function of real variables x and y. ),( yx ffW  

represents ),( yxw  in the two-dimensional wavenumber domain. xf  and yf  

denote the numbers of cycles per unit distance. If ),( yxw  is substituted in Eq 

(2-34), the corresponding wavenumber response function becomes 
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where 22
yxr fff += . Therefore, the UWC from the z = 0 plane to the z = h plane 

can be expressed in the wavenumber domain as 

 

0
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In contrast to UWC, the wavenumber response function of DWC from the z = h plane 

to the z = 0 plane is given by 
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DWC by FFT is essentially a high-pass filtering operation that will amplify 

short-wavelength noise in data processing. Therefore, the DWC procedure used for 

airborne gravity is a very unstable process, and it will result in a rapid increase in 

noise, particularly at high flight altitudes. To reduce the noise, a filtering or smoothing 

technique should be applied to the FFT downward-continued method. Thus, Eq (2-38) 

becomes 

 

hzyx
hf

zyx ffGeffG r
== = |),(|),( 2

0
π ),( yx ffS                          (2-39) 

 

where ),( yx ffS  is a low-pass filter in the wavenumber domain. If rf  

approximates to infinity, 0|),( =zyx ffG  approximates to zero such that 

 

0),(|),(lim 2 == =∞→ yxhzyx
hf

f
ffSffGe r

r

π                               (2-40) 

 

In this study, UWC by FFT will be used to compare airborne and surface gravity 
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data, and DWC by FFT will be applied to geoid modeling. These investigations are 

described in chapter 5 and chapter 6, respectively. 

 

2.5.2 Continuation by Least Squares Collocation 

UW/DW C can also be performed by LSC in either the spectral domain or the 

spatial domain (Sideris, 1995). Although processing by LSC is not performed as 

rapidly as that by FFT, the advantage of LSC is that it provides a scheme that can 

combine airborne gravity data with surface gravity or other heterogeneous data. The 

equation for the case in which the gravity field at level 1h  UW/DWC to level 2h  

can be expressed as 

 

( ) ( ) ( )
111212

1
hggggh gDCCg

hhhh
∆+=∆

−                                     (2-41) 

 

where 
21 hh ggC  is the covariance matrix for gravity at level 1h  and level 2h  and 

1hgC  is the covariance matrix for gravity at level 1h . 
1hgD  is the variance of noise of 

the gravity data obtained at level 1h . In this study, 
21 hh ggC and 

1hgC are both 

determined by using the combination of GGM and the Tscherning-Rapp degree 

variance model 4. DWC by LSC in spatial domain will be used for investigating geoid 

modeling in chapter 6. Eq (2-41) is just one of the LSC downward continuation 

methods used in this study. Another method that involves direct use for geoid 

determination is also introduced in chapter 6. 
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Chapter 3 

Data for Geoid Modeling 

 

3.1 Introduction 
The data used for geoid modeling in this study mainly include the local gravity 

data, GGM, and DEM. They are used in the calculation of the residual 

long-wavelength and short-wavelength gravity or geoid. In addition, the 

altimeter-derived data and a density model are also considered in geoid modeling. In 

this study, the airborne gravity data is the most important; it has been discussed in 

detail in chapter 5. To evaluate the gravimetric geoid models, 38 high-quality 

GPS/leveling points are employed to assess the geoid accuracy. 

 

3.2 Surface Gravity 
3.2.1 Land Gravity 

Land data (Fig 3-1(a)) were collected during 1980–2003 by Academia Sinica, 

Base Survey Battalion and Ministry of Interior (MOI), Taiwan (Yen et al., 1990; Yen 

et al., 1995; Hwang, 2001; Chen, 2003), using LaCoste&Romberg gravimeters (LCR, 

1997) tied to some absolute gravity stations. These data were mainly measured along 

roads at intervals of 2 km between two observations and on geodetic control points. 

The average data accuracy of Hwang (2001) and Chen (2003) are about 0.04 mgal; 

they are both based on the adjustments of the relative gravity networks. The total 

number of land data is 3641. Most land gravity measurements are performed on the 

west plain. There are only a few gravity points over the Central Range due to the 

difficulty in performing the survey. Gravity anomalies over flat regions are moderate; 

however, they become large over the high mountains, reaching values of 

approximately 200–300 mgal. 

 

3.2.2 Shipborne Gravity 

A part of the shipborne gravity data was surveyed by the National Central 

University (NCU) using the gravimeter R/Vl’ Atalante KSS30 in 1996 (Hsu et al., 

1998) and the other part was obtained from the National Geophysical Data Center 

data set of the National Oceanic and Atmospheric Administration (NOAA), USA. In 

this study, the data was only considered for the locations between 119.2–122.8 E and 
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21.2–25.8 N (Fig 3-1(b)). Most shipborne data are located over the Pacific Ocean and 

Bashi Channel. However, fewer data are located over the Taiwan Strait. The standard 

deviation of the crossover analysis by the NCU and the total shipborne data are 2.6 

and 11.2 mgal, respectively. Some bad-quality shipborne data were removed and not 

subsequently used in geoid modeling. The total number of shipborne data after 

eliminating the outliers was 4084. There is an obvious local low near the eastern coast, 

reaching approximately –250 mgal, and the other shipborne data show moderate 

gravity anomalies. 

 

3.3 Altimeter-Derived Gravity  
Recently, altimeter-derived data has assumed more importance in marine geoid 

computations due to the major developments in satellites with altimetry missions and 

a rapid increase in the altimeter-derived data coverage. Although the altimeter-derived 

data usually provides lower accuracy than shipborne gravity data, it is sometimes 

more useful than shipborne data in geoid modeling; this is because obtaining a 

considerable amount of data for marine gravimetry is time-consuming and expensive. 

In this study, we select the data from the KMS02 model for the geoid modeling 

investigations. KMS02 gravity field was modeled according to the GEOSAT mission 

and ERS using the DGM-E04 and JGM-3 orbit models (Anderson et al., 2003). The 

gravity model improved the quality and coverage of the altimetric height observations, 

particularly in the coastal regions. The region located between 119.2–122.8 E and 

21.8–25.8 N was selected with a 2-min grid spacing (Fig 3-1(c)). Some outliers, 

particularly near the coast and over shallow water, were removed to enhance the geoid 

accuracy. As compared to shipborne gravity, the KMS02 data exhibited better 

coverage over the Taiwan Strait; therefore, it could compensate for the lack of 

shipborne gravity data and enhance the geoid accuracy over this area. 

 

3.4 Geopotential Model 
We adopted the EIGEN-GL04C coefficients for the computations of the 

long-wavelength geoid and gravity and of the error anomaly degree variances from 2° 

to 360° in the LSC. The EIGEN-GL04C coefficients were determined by GFZ 

Potsdam and GRGS Toulouse. These coefficients were determined from the GRACE 

and LAGEOS missions (from 2003 to 2005) and the 0.5° × 0.5° gravimetry and 
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altimeter-derived data (GFZ, 2006); with regard to spherical harmonic coefficients, 

degree and order 360 up to a wavelength of 110 km was developed. 

The EIGEN-GL04C model significantly improves the knowledge of the gravity 

field of the Earth. As compared to the other geopotential models (e.g., EGM96, 

EIGEN-CG01C, and EIGEN-CG03C), the EIGEN-GL04C model exhibits an 

improvement of approximately 3–10 cm in the geoidal heights obtained from the 

GPS/leveling points over USA, Canada, and Europe. Fig 3-2 shows the gravity 

anomalies and geoidal heights of EIGEN-GL04C up to degree and order 360 globally 

and over Taiwan. Both gravity anomalies and geoid heights over Taiwan significantly 

vary from 200 to –200 mgal and 12 to 28 m, respectively, because of the complex 

terrain. Both these parameters are higher over the Central Range and lower at the 

Ryukyu arc. 

 

3.5 Digital Elevation Model 
Three DEMs with different resolutions— 99 ′′×′′ , 0909 ′′×′′ , and 66 ′×′ —are 

used in the RTM investigation (Fig 3-3). Because bathymetry is not considered in this 

study, all the elevations at sea level in the three DEMs are zero. The 99 ′′×′′  and 

0909 ′′×′′  models, which are both considered to be true elevation surfaces, are 

applied to the inner and outer zone computations. The 66 ′×′  model is considered to 

be the mean elevation surface. The reason for the division of the RTM computation 

task into two zones has been described in chapter 4. 

All these DEMs were sampled from a high-resolution DEM, which is formed on 

a 33 ′′×′′  grid (with a horizontal resolution of approximately 80 m) using 

photogrammetry by the Aerial Survey Office belonging to the Forest Bureau (Hwang 

et al., 2003a), Taiwan. The accuracy of the 33 ′′×′′  DEM is approximately 4 m rms 

determined by comparing with the hundreds of benchmarks with precise elevations. 

 

3.6 Density Model 
The density data used in this study were provided by Chiou (1997). According to 

the distribution of rocks over Taiwan, the density data were obtained by associating 

each type of rock with an average density and stored in a 55 ′×′  grid. The density 

model has been validated by reliable seismology data. Fig 3-4 shows a color map of 

the density over Taiwan. The densities are relatively low and are mostly below 2.0 g 
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cm–3 over the west plain. Over the high mountains, the densities are much higher, and 

the highest density can reach approximately 3.0 g cm–3. In Fig 3-4, the average 

density on land is 2.35 g cm–3. Therefore, the rock density over Taiwan has an obvious 

variation and cannot be assumed to be the global density constant—2.67 g cm–3. 

 

3.7 GPS/Leveling Points for Evaluation 

The general method for the evaluation of a geoid is a comparison with external 

data. Geoid height differences can be compared with the differences obtained from 

the GPS/leveling points. According to this method, the gravimetric geoid models are 

compared to the available GPS/leveling benchmarks with the observed geoidal 

heights. An observed geoidal height is the difference between the GPS-derived 

ellipsoidal height (from 24-h observations and at cm-level accuracy) and the precision 

leveling-derived orthometric height (at mm-level accuracy). Rigorous orthometric 

corrections have been incorporated into these GPS/leveling routes (Hwang and Hsiao, 

2003; Hwang et al., 2007a). These GPS/leveling benchmarks can be divided into four 

routes (Fig 3-5). The north route is located at the northern coast of Taiwan; the east 

route lies in a valley, and the center and south routes are situated from the hills to the 

mountains and plains to the mountains, respectively. Geoid variation is moderate 

along the north (approximately 1 m) and east routes (approximately 3 m); however, it 

is considerable along the center and south routes (approximately 8 m).  
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Fig. 3-1 Distributions and free-air gravity anomalies of surface and altimeter-derived 

gravity. (a) Land data. (b) Shipborne data. (c) Altimeter-derived data. The total 

number of land, shipborne, and altimeter-derived data are 3641, 4084, and 10228, 

respectively. 
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Fig. 3-2 (a) Gravity anomalies and (b) geoid heights globally and over Taiwan 

obtained from the EIGEN-GL04C coefficients. 
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Fig. 3-3 DEMs used in the geoid modeling. The resolutions of the DEMs are (a) 9 s, 

(b) 90 s, and (c) 6 min. The elevations at the sea level are zero. 
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Fig. 3-4 Density model over Taiwan (unit: g/cm3). Data are stored in a 5-min grid. 

The average density on land is 2.35 g/cm3. 
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Fig. 3-5 Four leveling routes for evaluating the geoid accuracy. Circles represent the 

benchmarks along the north leveling route, which lies along the north coast; stars 

denote the center route, which is spread from the hills to the high mountains; triangles 

represent the south route, which is located from the plains to the high mountains; 

squares correspond to the east route, which lies at a valley. The colors denote the 

topography. 
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Chapter 4 

RTM Effects in Geoid Modeling: Comparison of Three 

Methods 

 

4.1 Introduction 

We investigate three different methods—FFT, prism, and Gaussian 

quadrature—for the computation of RTM-derived effects in order to determine the 

most appropriate one for geoid modeling. Among these, the FFT method is a gridwise 

computation technique and the other two are pointwise computation methods. In the 

prism method, a density model of a topographic mass is taken into consideration. 

 

4.2 RTM Effects by FFT 
Although various methods are available for RTM-derived effects computation, 

the most commonly used method is the FFT technique due to its computational speed. 

The main characteristic of this method is that it uses gridded information and returns 

the RTM-derived effect values for all the points on a grid. RTM-derived effects can be 

considered as the difference between two Bouguer reductions of true and mean 

topographic surfaces. Thus, the computation in this method requires at least two 

DEMs representing the two surfaces. The approximate expression for the 

RTM-derived effect on gravity can be expressed as follows (Forsberg, 1984): 

 

( ) ( ) ( )pprefppRTM yxchhGyxg ,2, −−=∆ ρπ                              (4-1) 

 

where ( )pp yxc ,  is the terrain correction at point P; h  and refh , the elevations of 

the true and mean DEMs, respectively; G, the gravitational constant; and ρ , the mass 

density. ( )pp yxc ,  can be computed in frequency domain. The terrain correction term 

in Eq (4-1) can be expressed in the convolution form as follows (Schwarz et al., 

1990): 

 

( ) [ ]ghfhhfhGyxc pppp
22 )(2

2
1, +∗−∗= ρ                              (4-2) 
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where 3

1
r

f = , ∫= E
dxdy

r
g 3

1 , 22 yxr += , and E is the domain of integration in 

the X-Y plane. Further, ph  is the elevation of point P; E, the domain of integration in 

the X-Y plane; and ∗ , the convolution operator. If fht ∗= 2
1  and fht ∗=2 , they 

can be expressed by Fourier transform as follows: 

 

)()()()( 22
1 fFhFfhFtF =∗=                                       (4-3) 

and 

)()()()( 2 fFhFfhFtF =∗=                                         (4-4) 

 

Subsequently, 1t  and 2t  can be obtained by inverse Fourier transform as follows: 

 

( ))()( 21
1 fFhFFt −=                                                (4-5) 

and 

( ))()(1
2 fFhFFt −=                                                 (4-6) 

 

It is necessary to introduce the equation for deriving the RTM gravitational potential 

at point P to model RTM-derived geoid effects. This equation can be expressed as 

follows: 
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According to Bruns formula, which is given by γTN = , the RTM-derived effect on 

geoid yields 
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where γ  implies normal gravity. If we assume that the terrain effect on the geoid is 

small, the term 
l
1  becomes 
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where 0l  is the planar distance. On substituting Eq (4-9) in Eq (4-8), we get 
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Eq (4-10) is a linear expression and its higher-order terms are ignored. It can be 

expressed in the convolution form as follows: 

 

( ) ( ) ghhGyxN refppRTM *, −=
γ
ρ                                       (4-11) 

 

where 
( ) ( )∫ ∫

−+−
=

x y
pp yyxx

dxdyg
22

. Eq (4-11) can be expressed by Fourier 

transform as 
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)()( gFhFG
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where refres hhh −= . Subsequently, the RTM-derived geoid ( )ppRTM yxN ,  at point P 

can be obtained by inverse Fourier transform as follows: 
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( ) ( ))()(, 1 gFhFFGyxN resppRTM ∗= −

γ
ρ                                 (4-13) 

 

On comparison with other algorithms, the obvious advantage of FFT is its rapid 

computation, but the unavoidable edge effects and cyclic convolution should be 

eliminated carefully by 100% zero-padding. 

 

4.3 RTM Effects by Prism 
The prism method is a simple technique to estimate RTM-derived effects by 

pointwise computation. The RTM-derived effects on geoid RTMN  and gravity 

RTMg∆  at point P due to the residual terrain mass can be expressed as 
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These effects can be decomposed into a combination of many prisms. We can 

calculate the effect at point P(xp, yp, hp) as the sum of the mass of each prism (Fig 4-1) 

and add all the prism-derived effects within a selected zone. Thus, the RTM-derived 

gravity or geoid effects can be obtained. The equations for calculating these two 

effects by the prism method can be expressed as follows: 
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where x∆ , y∆ , and z∆  are the lengths of each prism in the x, y, and z directions, 

respectively. Therefore, x∆  and y∆  can be considered as the grid sizes of the used 
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true DEM and z∆ , its residual elevation. Residual elevation is the difference between 

the mean and true elevations. The total number of prisms selected is n. In this study, in 

addition to the case where ρ  is constant, we also consider the case where ρ  is 

variable. Subsequently, Eq (4-16) and (4-17) become 
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Because the prism method is a pointwise computation technique, it requires a 

considerable amount of time to complete the computational task. To reduce the 

time-consuming calculation, the most efficient strategy is to split the computational 

area into two parts—an inner zone with a fine elevation grid and an outer zone with a 

coarse elevation grid. Fig 4-2 shows the decomposed prisms of the inner and outer 

zones. The inner zone comprises thinner prisms from the detailed DEM and outer 

zone comprises thicker ones from the coarser DEM. Theoretically, the prism method 

is considered the most accurate, but it may be not suitable for the computation of 

high-resolution output due to its inefficiency. 
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Fig. 4-1 Geometry of the RTM-derived effects in the prism method. This method 

calculates the potential at point P due to the mass of a prism. 

 

 

  
Fig. 4-2 Computational inner and outer zones at point P. The black thin and the grey 

thick prisms shown on the right hand side in the above figure belong to the inner and 

outer zones, respectively. The residual height denotes the difference between the 

elevations obtained from the true and mean DEMs. 
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4.4 RTM Effects by Gaussian Quadrature 
The Gaussian quadrature method is a useful technique to obtain the integration of 

a function over a domain. The Gaussian quadrature theorem is based on a weighted 

sum of the function values at specified points within the integration domain. This 

method also belongs to pointwise computation methods. It was successfully employed 

by Hwang et al. (2003b) in the study of terrain correction. 

 

 
Fig. 4-3 Geometry depicting an RTM-derived effect in the Gaussian quadrature. 

 

According to Eq (4-7), the RTM-derived effects of gravity RTMg∆  and geoid 

RTMN  due to the topographic mass above and below a point at P( ppp hyx ,, ) (Fig 4-3) 

can be derived as follows: 
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The RTM-derived geoid is only considered as a linear effect term which is the same as 

FFT. For a given area bounded by X1 (west), X2 (east), Y1 (south), and Y2 (north), Eq 

(4-20) and (4-21) can be numerically integrated as follows (Hwang et al., 2003b): 
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),(),()(
1

2

1

yxfwdxyxfyc ig

N

i

x
i

X

Xg ∆
=

∆ ∑∫ ≈=                 (4-24) 

and 

),(),()(
1

2

1

yxfwdxyxfyc in

N

i

x
i

X

Xn ∑∫
=

≈=                                 (4-25) 

 

where y
j

x
i ww  and  are the weighting coefficients; ix  and jy , the nodal coordinates; 

and M and N, the numbers of the weighting coefficients and nodes along the x and y 

axes over the domains ],[ and ],[ 2121 YYXX , respectively (Press et al., 1989). To 

obtain the highest possible precision, M and N should be the numbers of the given 

grids along the x and y directions. The values of the function c(y) at nodes ix  and 

jy  were interpolated using the Newton-Gregory forward polynomial (Gerald and 

Wheatley, 1994) from the evenly spaced function values on a given grid. For the 

interpolations required in Eq (4-24) and (4-25), we experimented with various 
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polynomial degrees and found that the use of degrees higher than six yields no further 

improvement in the interpolation accuracy. This computation of one-dimensional case 

was proven to be successful by Press et al. (1989). However, Hwang et al. (2003b) 

have reported the successful usage of the required two-dimensional Gaussian 

quadrature. 

The main advantage of using the Gaussian quadrature method is the very 

high-order accuracy it provides with fewer points. This is useful in the cases wherein 

a function requires a long time to compute by the pointwise method. However, it is 

also a time-consuming task. Therefore, the Gaussian quadrature method also requires 

the segregation of the computational area into inner and outer zones to make the 

computation more efficient. Practical tests reveal that the computation time required 

by the Gaussian quadrature method is more than that required by the FFT method but 

less than that required by the prism technique. 

 

4.5 Design of Experiments 
The primary objective of this study is to determine the most suitable method for 

computing RTM-derived effects in geoid modeling. The local gravity data used in this 

study include land and shipborne data. The altimeter-derived data are not considered. 

In order to compare the three methods stated above, three geoid models whose 

RTM-derived effects are created by these methods are compared to the GPS/leveling 

points to assess their accuracies. 

The geoid modeling procedure employed in this study, which is also based on the 

RCR procedure, is shown in Fig 4-4. In this figure, while carrying out the remove and 

restore steps during the computation of short-wavelength gravity and geoid, the three 

methods are taken into account individually. The process of geoid modeling is divided 

into four cases. The only discrepancy between these cases is that their RTM-derived 

effects are delivered by the FFT method (case 1), prism method with a constant ρ  

(case 2), prism method with a variable ρ  (case 3), and Gaussian quadrature method 

(case 4). 

The selected radii of the inner and outer zones and the sizes of the output grids of 

the RTM-derived effects computation are summarized in Table 4-1. Because the FFT 

method is a rapid computational technique, it does not require the usage of an outer 

zone in practical calculation. On the other hand, since cases 2~4 are based on the 
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prism and Gaussian quadrature methods, they require inner and outer zones to reduce 

the time required for computation. Further, in order to make the computations more 

efficient, the resolutions of the output grids in cases 2~4 have to be stored in coarser 

grids the resolution of which is set to 1 min in this study. With regard to the radii 

chosen for the inner and outer zones, the gravity effect will decay more rapidly than 

the geoid effect with the increase in the distance between the RTM mass and point P. 

Thus, the RTM-derived geoid computation requires longer inner and outer zones’ 

radii than the RTM-derived gravity computation. In cases 2~4, the radii of the inner 

and outer zones for the gravity computation are 15 and 100 km, respectively, and for 

geoid computation, 30 and 300 km, respectively. In case 1, the radii of the inner zone 

for the gravity and geoid computations are 50 and 100 km, respectively. 

 

Table 4-1 Radii of the inner and outer computational zones for the RTM-derived 

effects and the resolutions of the output grids in the four case models 

Case Effect Radius of the inner 
zone 

Radius of the outer 
zone 

Output grid 
resolution 

RTM gravity  50 km -  

Case 1 RTM geoid 100 km - 

 

9 s 

RTM gravity  15 km 100 km  

Case 2 RTM geoid 30 km 300 km 

 

1 min 

RTM gravity  15 km 100 km  

Case 3 RTM geoid 30 km 300 km 

 

1 min 

RTM gravity  15 km 100 km  

Case 4 RTM geoid 30 km 300 km 

 

1 min 

 

During computation, the grid sizes of the long-, residual-, and short-wavelength 

geoid parts are varied taking into account the different resolutions of the GGM, local 

gravity data, and DEM. The long- and residual-wavelength geoid effects are stored in 

the 3-min and 1-min grids, respectively. In order to make the grid sizes of the 

different wavelength geoid effects the same, we employ the GMT package (Wessel 

and Smith, 1995) to sample all the grids and add individual geoid effects to obtain the 

final geoid models. The grids sizes of the geoid models obtained in the four cases 

stated above are equivalent to their RTM geoid models. Therefore, the grids sizes of 

these four geoid models (cases 1~4) are 9 s, 1 min, 1 min, and 1 min, respectively. 
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Fig. 4-4 Flowchart for the geoid modeling procedure. The only discrepancy between 

the four cases is with regard to the method used for the computation of RTM-derived 

effects. 
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4.6 Results 
4.6.1 Results from RTM-Derived Gravity and Geoid 

The RTM-derived gravity anomalies for the four cases are shown in Fig 4-5. The 

gravity anomaly points consist of land and shipborne gravity data. In this figure, 

greater gravity anomalies are observed over high mountainous areas with maximum 

values reaching over ±100 mGal. The anomalies on the western plane and at the sea 

are very small. Table 4-2 lists the statistics of the results of the four cases. The 

anomalies in case 1 (FFT) are relatively larger than in the other cases. On the other 

hand, the anomalies in case 4 (Gaussian quadrature) are slightly smaller than in the 

other cases. In a few areas with high mountains, the difference between the values 

calculated by the different methods at the same point is significant, reaching ±30 mgal, 

but most differences are minor. The average difference between case 2 (constant ρ ) 

and case 3 (variable ρ ) is 2 mgal. This implies that the influence of density variation 

on RTM-derived gravity computation is unremarkable. The standard derivations in 

cases 1~4 are 25.2, 25.1, 22.9, and 20.9 mgal, respectively. 

 

Table 4-2 Statistics for RTM-derived gravity anomalies (mgal) 

Case Max Min Mean Std. dev.  

Case 1 114.1 –165.8 –8.7 25.2 

Case 2 115.2 –148.5 –6.7 25.1 

Case 3 116.1 –145.7 –5.2 22.9 

Case 4 134.5 –143.7 –5.2 20.9 

 

 

The RTM-derived geoid effects for the four cases are shown in Fig 4-6. The 

values are computed on regular grids the sizes of which are 9 s for case 1 and 1 min 

for the other cases. Some high values can reach over 1 m over high mountains, but 

most values in mild areas are very small. The statistics of the results obtained in the 

four cases are listed in Table 4-3. In comparison to the effects on gravity anomaly, the 

geoid heights obtained in case 1 and case 4 are relatively smaller and bigger, 

respectively, than those obtained in the other cases. The differences between the 

RTM-derived geoid effects obtained in the four cases at the same computation point 
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can reach ±10 cm over some rough terrain. 

The average difference between case 2 (constant ρ ) and case 3 (variable ρ ) is 

about 7 cm. This clearly reveals that the influence of density variation is much 

stronger on RTM-derived geoid than on RTM-derived gravity. The standard 

derivations obtained in cases 1~4 for RTM-derived geoid are 0.103, 0.172, 0.166, and 

0.184 m, respectively.  

 

Table 4-3 Statistics for RTM-derived geoids (m) 

Case Max Min Mean Std. dev. 

Case 1 0.915 –0.306 0.000 0.103 

Case 2 0.949 –0.325 0.017 0.172 

Case 3 1.035 –0.286 0.024 0.166 

Case 4 1.105 –3.650 0.013 0.184 

  

 

4.6.2 Results of Geoid Modeling 

In the residual geoid computation by LSC, the covariances of gravity-gravity 

anomaly, geoid-gravity anomaly, and geoid-geoid anomaly based on the combination 

of the EIGEN-GL04C model and Tscherning-Rapp degree variance model 4 are 

shown in Fig 4-7. The covariances containing shorter spherical distances have higher 

values. The patterns of the covariance values tends to be mild when the spherical 

distance exceeds 0.4º. In addition, the variations in the quality of the gravity data must 

be taken into account in order to determine the noise for different data types. We 

assign 0.1 and 1.0 mgal data noise to land and shipborne gravity anomalies, 

respectively. These values are empirical and yield the best results. 

The residual gravity anomalies obtained by subtracting the EIGEN-GL04C- and 

RTM-derived effects from the original gravity anomalies are shown in Fig 4-8. The 

residual geoid effects obtained by LSC are shown in Fig 4-9. In these two figures, 

four distinct local low can be observed over the northern, central, and southern 

regions on land and the eastern region at sea. The minimum value of the residual 

gravity anomalies and geoids can reach over –150 mGal and –1.5 m, respectively. On 

the other hand, in the case where higher RTM-derived gravity anomalies are obtained, 
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smaller residual gravity anomalies are observed. The same result is obtained for the 

RTM-derived and residual geoids in the four cases considered in this study. 

After restoring long and residual wavelength parts of the geoid and considering 

quasi-geoid correction, we can obtain the final geoid models for the four cases (Fig 

4-10). Fig 4-10(a) obviously contains more detailed signals (or noises) over the 

Central Range due to the higher-resolution grids (9 s). Fig 4-11 shows the differences 

between the case 1 geoid model and the others. In most areas, the differences are less 

than ±0.1 m, but there exists a large difference area over the east coast, especially in 

Fig 4-11(c), reaching 0.5 m. Other large differences occur in the Central Range, 

which contains complex geoid variations. 

Table 4-4 lists the statistics of the differences between the observed and modeled 

geoidal heights at the four leveling routes. The standard deviations of these 

differences in the four cases on the north and east routes are all within 8 cm. Most 

standard deviations on the center and south routes where the current land gravity data 

are sparsely distributed and the geoid variation is large are over 10 cm. However, we 

can conclude that case 1 presents the best accuracy as compared to the other cases as 

it offers the smallest standard deviation, especially in the center route; the standard 

deviation of 0.144 m in this case is 3~4 cm better than that in the other cases. A 

comparison of the mean values of case 2 and case 3 listed in Table 4-4 reveals that the 

maximum difference between the geoid surfaces obtained in these two cases is 4 cm. 

However, their standard deviations are within 1 cm. This implies that the density 

variation considered in geoid modeling results in only a very limited improvement in 

the accuracy of the geoid over the Taiwan Island. 

The FFT method is thus more suitable for geoid modeling over Taiwan due to its 

computational speed and the accuracy of the results obtained in this study, which was 

the best of all the three methods considered. In the subsequent investigations on geoid 

modeling, the RTM-derived effects are all delivered by the FFT method. 
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Table 4-4 Statistics regarding the differences (m) between the observed and modeled 
geoidal heights at four leveling routes 
Method  Leveling route Max Min Mean Std. dev. 

North –0.034 –0.205 –0.130 0.062 

East –0.186 –0.399 –0.312 0.068 

Center –0.195 –0.577 –0.350 0.144   

Case 1 

South –0.330 –0.476 –0.379 0.046 

North –0.046    –0.265 –0.154 0.071 

East –0.213    –0.454 –0.321 0.080 

Center –0.208    –0.775 –0.435 0.176 

Case 2 

South –0.235    –0.524 –0.399 0.139 

North –0.027 –0.210 –0.138 0.067 

East –0.294 –0.529 –0.365 0.082 

Center –0.200 –0.799 –0.444 0.180 

Case 3 

South –0.227    –0.539 –0.381 0.149 

North –0.140    –0.351 –0.249 0.070 

East –0.292    –0.576 –0.433 0.079 

Center –0.308    –0.884 –0.543 0.195 

Case 4 

South –0.233    –0.496 –0.377 0.141 
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Fig. 4-5 RTM-derived gravity anomalies. (a) FFT method (case 1), (b) prism method: 

constant density (case 2), (c) prism method: variable density (case3), and (d) Gaussian 

quadrature method (case 4). 
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Fig. 4-6 RTM-derived geoids. (a) FFT method (case 1), (b) prism method: constant 

density (case 2), (c) prism method: variable density (case 3), and (d) Gaussian 

quadrature method (case 4). 
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Fig. 4-7 Covariances for (a) surface gravity-surface gravity covariance matrix, (b) 

geoid-surface gravity covariance matrix, and (c) geoid-geoid covariance matrix. 
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Fig. 4-8 Residual gravity anomalies. (a) FFT method (case 1), (b) prism method: 

constant density (case 2), (c) prism method: variable density (case 3), and (d) 

Gaussian quadrature method (case 4). 
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Fig. 4-9 Residual geoids. (a) FFT method (case 1), (b) prism method: constant density 

(case 2), (c) prism method: variable density (case 3), and (d) Gaussian quadrature 

method (case 4).  
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Fig. 4-10 Geoid models obtained in (a) case 1, (b) case 2, (c) case 3, and (d) case 4. 
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Fig. 4-11 Geoid differences between the geoid models of (a) case 1 and case 2, (b) 

case 1 and case 3, and (c) case 1 and case 4.  
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Chapter 5 

Airborne Gravity Data of Taiwan 
 

5.1 Introduction 
Airborne gravimetry can be used over regions with sparse gravity data coverage. 

As mentioned in chapter 1, Taiwan’s terrain is complex, and it would be difficult to 

conduct a land gravity survey over its mountainous regions. In order to bridge the 

gaps in the existing ground gravity coverage (mainly in inaccessible areas), the 

Ministry of the Interior (MOI) of Taiwan sponsored an airborne gravity survey over 

the period from May 2004 to May 2005. The entire project including the survey work 

and software development was carried out by National Chiao Tung University, 

Taiwan, and National Survey and Cadastre (KMS), Denmark. The survey area covers 

the entire Taiwan Island and its surrounding seas. 

 

5.2 Data Reduction in Airborne Gravity 
5.2.1 Gravity Reduction 

Airborne gravimetry can be classified into two types—scalar and vector types. 

The scalar-type gravimetry employs a relative gravimeter and can be implemented in 

airborne and oceanic surveys. However, the vector-type component measurements 

employ the accelerometer of inertial measurement units (IMU), whose accuracy is 

generally lesser than that of the scalar-type but suitable for gravity measurements of 

3D gravity components. The basic equation for a vector-type gravimetry is  

expressed as follows (Schwarz and Li, 1996): 

 

( ) fvP2Ωvg −+−= &                                                (5-1) 

 

where g  represents the vector of gravity, and v  and v&  represent the vectors of 

velocity and acceleration, respectively, of the aircraft. f  represents the specific force 

sensed by an IMU. Ω  and P  are both skew-symmetric matrices, which are 

expressed as (Olesen, 2003) 
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where ω  represents the angular velocity of the earth’s rotation in an inertial frame, 

and λ& , the angular velocity along the east–west direction of an aircraft in an 

Earth-fixed Cartesian frame. The term ( )vP2Ω +  is the sovoEt &&&&  effect (Harlan, 

1968), which is attributed to the difference between the angular velocity of an aircraft 

and that of stationary objects. Thus, the gravitational attraction exerted on the aircraft 

slightly increases or decreases when the aircraft moves along the east or west 

direction. Eq (5-1) can be separated into three components; these components are 

expressed as 
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where eg , ng , and ug  represent the components of gravity along the east–west, 

north–south, and vertical directions of the aircraft. ev& , nv& , and uv&  represent the 

accelerations along the east–west, north–south, and vertical directions of the aircraft. 

ef , nf , and uf  are specific force components as observed by a gravimeter. ev  and 

nv  represent the velocities along the east–west and north–south directions, 
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respectively, of the aircraft.  N MR and R  represent the radii of curvatures along the 

meridian and prime vertical, respectively. φ  and h represent the latitude and flight 

height of the aircraft.  

Because the airborne gravimeter is placed in a strap-down system, the navigation 

frame is not the same as the frame of the gravimeter sensors. The sensor frame should 

be converted into the navigation frame. This means that we need to consider the small 

difference between the horizontal accelerations recorded by the gravimeter and the 

GPS measurements. Thus, the rotation of specific forces in Eq (5-1) into the local 

coordinate frame results in (Olesen, 2003) 

 

( ) RfvP2Ωvg −+−= &                                               (5-7) 

 

where R represents the rotation matrix that converts the sensor frame into a navigation 

frame. This transformation yields 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
++−−
+−+

=
αβαββ

αγαβγαγαβγβα
αγαβγαγαβγβγ

sincossincossin
sincoscossinsincoscossinsinsincossin
sinsincossincoscossinsinsincossincos

R   (5-8) 

 

where α , β , and γ  represent the three components of the tilt angles of the 

gravimeter platform. α , β , and γ  can be expressed as 
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where xf , yf , zf  and xq , yq , zq  represent the three components produced by 

the gravimetry sensor and navigation system. c represents the conversion factor 

between f and q. If this correction is considered, Eq (5-6) becomes 
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( )})coscos1(sincossin zyx fff ⋅−−⋅−⋅+ αβαββ                   (5-10) 
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represent the sovoEt &&&&  effect and tilt correction of the vertical components, 

respectively.  

 

5.2.2 Aircraft Positioning 

The position, velocity, and acceleration of the aircraft play an important role in 

airborne gravity surveys (Schwarz and Li, 1997, and Kennedy, 2002). The GPS 

positioning for airborne gravity used in this survey not only provides a precise flight 

trajectory position of the aircraft but, more importantly, precisely estimates the first 

and second derivatives with respect to time for computing the velocity and 

acceleration required for airborne gravimetry data processing. It is possible to achieve 

an accuracy of the order of centimeters for the aircraft position (Goad and Yang, 

1997). Highly accurate velocities and accelerations can be obtained based on these 

positions by the use of a precise numerical technique. In this study, the trajectories of 

the aircraft are determined by using Bernese 5.0 (Beutler et al., 2004) with the IGS 

precise ephemeris of the GPS. 

In the kinematic positioning using Bernese, a number of parameters included in 

the double-differenced phase observations were estimated together with the aircraft 

position. These parameters are grouped into two subsets in normal equations (Hwang 

et al., 2007b): 
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where 11N , 21N , 1N 2 , 22N , 1C , and 2C  are the submatrices of the normal equations; 

subset 1x  contains the ground station coordinates, tropospheric parameters, and 

phase ambiguities, while subset 2x  contains the epoch-by-epoch kinematic positions 

of the aircraft. Subset 2x  can be inverted as follows: 
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We substitute 2x  in Eq (5-11). This yields a new normal equation for 1x  

 

)cNN(cx)NNN(N 2
1

221211
1

21
1

221211
−−− −=−                               (5-13) 

 

Then, subset 1x  can be solved as 
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To obtain this solution, the standard stochastic model of the GPS-phase observables 

was used (Seeber, 2003). In this case, the double-differenced phase observables 

between the aircraft and the eight tracking stations are selected and used to obtain the 

final coordinates. The initial values of the kinematic positions (parameter subset 2x ) 

are required for the linearization of the nonlinear GPS observation equations.  

 

5.3 A Taiwan Airborne Gravity Survey 
5.3.1 Survey Campaign 

The survey lines are shown in Fig 5-1(a). These lines consist of 64 north–south, 

22 east–west, 10 northeast–southwest, and 6 northwest–southeast oriented lines with a 

spacing of 4.5 km, 20 km, 5 km, and 30 km, respectively. The west–east and 

northwest–southeast lines are mainly used for crossover analyses. The survey area 

covers the whole of Taiwan Island and its offshore regions. The survey area is 

approximately 75,000 km2 and the total distance covered by the survey lines is 

approximately 53,000 km.  

A scalar-type gravimeter called LaCoste and Romberg (LCR) Air-Sea Gravity 

System II (serial number: S-133) (Fig 5-1(b)) mounted on a laser gyro-stabilized 

platform is used to record the airborne gravity data at 1 Hz. This gravimeter has a 

resolution of 0.01 mgal and an accuracy of 1 mgal, as seen from the shipborne test 

(LCR, 2003). It uses spring tension and beam velocity measurements to obtain the 

relative gravity variations. Additional information on the Air-Sea Gravity System II 

gravimeter is summarized in Table 5-1. The gravimeter is placed in a medium-size 
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aircraft, Beechcraft-200 (Fig 5-1(c)), flying at an average altitude of 5156 m (The 

spatial resolution is approximately 6 km (Torge, 1989)) at a mean ground speed of 

approximately 306 km/h. Both the airborne gravimeter and aircraft belong to the 

Ministry of the Interior, Taiwan. 

The King-Air Beechcraft-200 is equipped with a Trimble 5700 GPS receiver (Fig 

5-1(d)) that samples data at 2 Hz. For the kinematic positioning of the aircraft, eight 

ground-based GPS reference stations (Fig 5-1(a)) around Taiwan are used to 

determine the kinematic solutions. The eight stations are YMSM, SNAM, KDNM, 

PKGM, TMAM, FLNM, KMNM, and MZUM. The sampling rate of these reference 

stations is 2 Hz except that of SNAM station, which is 1 Hz. CCK, shown in Fig 

5-1(a), is the Taichung airport, where aircraft take off and landing occurred. 

The reference gravity value can be determined by a land gravimeter based on the 

absolute gravity reference points at the Taichung FG5 (Micro-g, 1999) absolute 

gravity station. The gravity value at the aircraft parking spot was recorded using a 

Graviton-EG gravimeter (LCR, 2002). The standard error of this gravity value is 0.04 

mGal based on the relative gravity network adjustment. A number of gravity base 

readings of the airborne gravity system need to be obtained during the field survey 

period to obtain a smooth drift of the airborne gravimeter. 

The airborne gravity survey was carried out from May 2004 to May 2005. The 

survey took 43 days, including 3 days of re-flights where bad data were found. The 

number of flight hours exceeds 200. 

 

 

Table 5-1 Overview of the L & R Air-Sea Gravity System II 

Resolution 0.01 mGal 

Accuracy <1.00 mGal 

Size 71 × 56 × 84 cm 

Weight 116 kg 

Power supply 240 W (avg), 450 W (max) 

Sampling rate 1 Hz 
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(a) (b) 
                                 

(c) (d) 

Fig. 5-1 (a) Airborne gravity survey lines and GPS tracking stations (solid circles) for 

precise aircraft positioning. The star represents the Taichung (CCK) airport, where the 

King-Air Beechcraft-200 is based. (b) The L&R Air-Sea Gravity System II gravimeter 

and (c) the King-Air Beechcraft-200 aircraft; the circle denotes the antenna. (d) Inside 

of the King-Air Beechcraft-200; the L&R Air-Sea Gravity System II and Trimble 

5700 are mounted inside the aircraft. 
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5.3.2 Data Processing 

Kinematic GPS solutions are obtained by using the combination of eight 

different GPS based stations and processed using Bernese 5.0 (Beutler et al., 2004) 

and the IGS precise ephemeris ( http://igscb.jpl.nasa.gov/ ). In order to determine the 

velocity and acceleration of the aircraft, we use the program DERIV of the 

International Mathematical and Statistical Library (IMSL) to perform the numerical 

differentiations. DERIV first computes the spline interpolants to the input functions 

(i.e., coordinate components x, y, and z) and then differentiates the spline interpolants 

to obtain their derivatives (Hwang et al., 2006b). Following the GPS procedure, two 

data processing techniques have to be considered: correction for time shift and 

filtering of raw gravity observations.  

The time systems of the raw GPS and the gravimeter observations are 

inconsistent. The gravimeter time associated with a gravity reading is obtained from 

the clock of the computer attached to the gravimeter. Therefore, the gravimeter is not 

synchronous with the GPS clock and requires correction. In order to synchronize the 

two time systems, the time series of the raw gravity reading and vertical aircraft 

acceleration can be used (Olesen, 2003). Because gravity signals are much smaller 

than the vertical accelerations of the aircraft in common weather conditions, most raw 

readings recorded by the gravimeter are those of the vertical accelerations of the 

aircraft. Thus, the patterns of the raw gravity readings of the gravimeter and vertical 

acceleration readings of the GPS receiver are very similar. According to this 

characteristic, the shift between these two time series can be determined using a 

correlation analysis (Hwang et al., 2006b). 

It is necessary to use an along track filter for raw airborne gravity data containing 

considerable noise due to turbulence. We use a Gaussian filter with a filter width of 

150 s to eliminate high-frequency signals. The chosen filter width is a trade-off 

between noise reduction and gravity signal preservation and is proved to be the 

optimum width in the latter part of this study. 

A description of the software that fulfils many of the requirements summarized 

above can be found in Shih (2004), Hwang (2005), and Hwang et al. (2006b and 

2007b). The procedure for the airborne data processing is summarized in Fig 5-2. 
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Fig. 5-2 Flow chart of the airborne gravity data process implemented by NCTU. xf , 

nf , and uf  are the three components of the gravimeter measurements. ϕ , λ , and h 

represent the latitude, longitude, and ellipsoidal height. ϕ& , λ& , h& , and ϕ&& , λ&& , h&&  

represent the three components of the velocities and accelerations of the aircraft, 

respectively. g is the output gravity at the flight altitude. 
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5.4 Results of the Airborne Gravity Survey 

Fig 5-3 shows the free-air gravity anomalies at 5156 m using a Gaussian filter 

with a width of 150 s. The free-air gravity anomalies vary at an altitude of 5156 m 

over Taiwan and around the sea ranges from approximately –200 mGal over the east 

trench to 300 mGal over the high mountains (Fig 5-3). The values in the range of ±50 

mGal nearly vary over the mild areas. Compared to the surface free-air gravity 

anomalies (Fig 3-1), the airborne gravity anomalies are much smoother. 

 

5.5 Accuracy Assessment 
The quality of the airborne gravity data can be evaluated by using three methods: 

repeatability analysis, crossover analysis, and comparison with surface gravity data. 

Repeatability and crossover analyses are used to evaluate the internal accuracy of the 

airborne data. External accuracy of airborne gravity can be obtained by comparison 

with surface gravity. 

 

5.5.1 Repeatability Analysis   

Repeatability analysis is a basic method to quantify the accuracy of airborne 

gravity measurements based on the gravity difference between two repeatable flight 

lines. Parts of Lines 26 and 55 (Fig 5-3) were flown over twice for repeatability 

analysis. The repeatability standard deviation is chosen as an index of the 

measurement precision and is calculated as the standard deviation of the differences at 

all repeat measurement points. Fig 5-4 shows the difference of the standard deviations 

of repeat lines 26 and 55 on different filter widths. For both the lines, the standard 

deviation decreases with increasing filter width but becomes flat beyond a certain 

filter width. At filter widths smaller than 75 s, the standard deviations of Line 26 are 

higher than those of Line 55; moreover, beyond 75 s, the standard deviation of Line 

55 surpasses that of Line 26. The most important factor that the repeat flights of Line 

55 lead to the larger repeatability standard deviation is on the GPS positioning. In the 

first flight over Line 55, some of the estimated aircraft coordinates appear to be 

erroneous due to changes in the number of visible GPS satellites and disturbances 

from unknown sources. The iterative Gaussian filter cannot eliminate these errors. As 

shown in Fig 5-4, at a filter width of 150 s, the repeatability standard deviation of 

Line 26 is approximately 3 mgal, and it does not decrease significantly as the filter 
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width increases. Since an increase in the filter width will eliminate detailed gravity 

information, it appears that a filter width of 150 s is a trade-off between noise 

reduction and gravity signal preservation. 

 

5.5.2 Crossover Analysis 

Crossover analysis can be used to assess the quality of an airborne gravity survey 

based on the differences of all the intersecting points. One method of crossover 

analysis is based on quality weighting assignments using a variance criterion (Mittal, 

1984, and Wessel, 1989). However, our approach is to solve the bias and drift at each 

survey line and corrupt the observed gravity values. The basic expression for 

crossover analysis is 
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where q
rg  represents the observed gravity value at point r along survey line q and 

q
rg  is corrupted by a bias, a drift, and a random error. qa  and qb  represent the bias 

and the drift, respectively, pertaining to survey line q. q
re  is the random error and 

q
rt is the time at point r relative to the beginning time of line q. q

rg  is the true gravity 

value. At all intersecting points, the observation equations are given by 
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where kl
px  represents the differenced gravity value at crossover point p pertaining to 

lines k and l; kl
px  is the residual; i + m and n are the number of survey lines and 

crossover points, respectively. Eq (5-16) can be expressed by a matrix representation, 

such that 

 

AXLV =+                                                       (5-17) 

 

where V, L, and X are the vectors containing residuals, observations, and parameters 

(bias and drift), and A is the design matrix. In order to avoid the rank defect, at least 

one survey line must be fixed. This line should contain the most stable weather 
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condition of the flight and GPS positioning result.  

Fig 5-5 shows the crossover differences (total 736) and a histogram of these 

values. Most differences are within ±7 mGal, except for a fewer large ones due to 

inaccurate GPS data and turbulences. If the large differences exceed 15 mgal, they are 

considered as outliers and not used for the subsequent analyses. The distribution of 

crossover differences approximately follows a normal distribution, suggesting that 

these differences are largely due to random noises. Before and after the bias and drift 

correction on each flight line, the standard deviations of the differences are 4.92 and 

2.88 mgal, respectively. The data quality obtained by crossover analysis is consistent 

with those of other airborne gravity campaigns conducted in other parts of the world. 

 

5.5.3 Comparison with Surface Gravity Data 

In order to assess the external accuracy of the airborne gravity data, surface 

gravity (land and shipborne gravity) must continue upward to the flight altitude and 

must be compared with airborne gravity measurements. According to Eq (2-37), the 

UWC of the gravity field from plane z = 0 to z = 5156 in the wave-number domain is 

formulated by 

 

),(),( 0
2

5156 yx
hf

yx ffGeffG rπ−=                                     (5-18) 

 

where ),(5156 yx ffG  and ),(0 yx ffG  denote the gravity fields at elevations of 

5156 m and 0 m, respectively. h equals 5156 m. Because Eq (5-18) is based on the 

FFT technique, the surface gravity observations need to be interpolated into regular 

grids before comparison. This method of interpolation is based on LSC due to the 

unequal data qualities of land and shipborne data. 

In the FFT process of DWC and UWC, 100% zero-padding must be considered 

to eliminate cyclic convolution errors and edge effects. Fig 5-6 shows 100% 

zero-padding grids used in DWC and UWC. All grids in Fig 5-6, except gravity grids, 

are set to 0. The spectrum of UWC obtained in this study is shown in Fig 5-7. The 

spectrum response decreases rapidly as the spectrum frequency rapidly increases. In 

order to reduce the topographic effect, we use Bouguer anomalies as the gravity field 

for FFT UWC. The Bouguer correction applied to the airborne data was calculated by 

Gaussian quadrature (Hwang et al., 2007b) with 15 km and 100 km inner-zone and 
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outer-zone radii. Fig 5-8(a) shows the airborne gravimetry-derived Bouguer 

anomalies at an elevation of 5156 m. In comparison to airborne free-air anomalies 

(Fig 5-3), the values over mountains or plains are both small but are almost the same 

at sea. Figs 5-8(b) and (c) show the surface Bouguer anomalies gridded from the 

surface gravity data by LSC and its upward-continued Bouguer anomalies 

implemented by FFT. The surface data used in Fig 5-8(b) are those of land and 

shipborne gravity (Figs 3-1(a) and (b)). On comparing Figs 5-8(c) and (b), the 

upward-continued field at 5156 m becomes much smoother than that at 0 m. Fig 5-8(d) 

shows the differences between the surface-upward-continued (Fig 5-8(c)) and 

airborne (Fig 5-8(a)) Bouguer anomalies, both at the locations of the airborne data. 

Most of the differences in Fig 5-8(d) are very small; however, some large differences, 

reaching approximately 50 mgal, occur over high mountains. The standard deviation 

of the differences is 11.2 mgal. These large differences can be attributed to (1) errors 

in airborne gravity measurements, (2) data density and quality of surface gravity data, 

(3) large gravity gradients at areas with rough gravity fields, and (4) possible 

computation error in UWC. It is observed that the gravity fields over the Central 

Range (low surface data density) and the ocean trench to the east of Taiwan (high 

surface data density) are equally rough; however, large differences are observed only 

over the Central Range. This indicates that the differences in Fig 5-8(d) are largely 

due to surface data density rather than the errors in the airborne gravity 

measurements.  

In order to compute a precise geoid model, airborne data can be used in 

combination with land, shipborne, and altimetry data. This study is described in 

chapter 6. 
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Fig. 5-3 Gravity anomalies at the average flight altitude of 5156 m. 

 
Fig. 5-4 Standard deviation of the differences in the gravity anomalies obtained from 

two repeat flights (Hwang et al., 2007b). 
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Fig. 5-5 Distribution and histogram of the crossover differences of gravity anomalies 

(Hwang et al., 2007b). 
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Fig. 5-6 Zero-padding (100%) of the used gravity field ),( yx ffG  in UWC and 

DWC. 

 

 

  
Fig. 5-7 The 1D (left) and 2D transfer functions of UWC; 22

yxr fff += . The unit 

of frequency along the x and y directions is the same as that shown in Fig 5-6. 
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Fig. 5-8 (a) Bouguer anomalies at an altitude of 5156 m, (b) Bouguer anomalies of 

surface gravity data on the grid (from land and shipborne data), (c) 

Surface-upward-continued Bouguer anomalies (at 5156 m), (d) differences between 

surface (upward-continued) and airborne Bouguer anomalies. 
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Chapter 6 

Geoid Modeling Using Combined Airborne and Surface 

Gravity Data 

 

6.1 Introduction 
In this study, airborne gravity anomalies, combined with land, shipborne, and 

altimeter-derived gravity anomalies, are used for the determination of the gravimetric 

geoid. The strategy is also based on the RCR procedure by LSC. Two different 

methods that use airborne gravity data for geoid determination are introduced. The 

first method involves first performing the DWC to sea level, and then merging it with 

the surface gravity to compute the geoid. The DWC of this method can be performed 

by FFT or LSC. The second method is direct use for geoid modeling, whose DWC 

can be performed only by LSC. 

 

6.2 Continuation to Sea Level and Merging with Surface Gravity 
The airborne gravity data would first be downward continued to sea level. Then, 

all the gravity data, including land, shipborne, altimeter-derived, and 

downward-continued airborne data, would be used to compute the residual geoid. As 

mentioned in chapter 2, FFT is an efficient technique to perform the DWC. UWC 

using FFT has been previously performed for a comparison of airborne and surface 

gravity data. According to the principle of DWC by FFT (Eq (2-39)), a low-pass filter 

must be used to eliminate noise. In this study, we adopt two common low-pass 

filters—Gaussian and Wiener filters—to smooth the downward-continued gravity 

signals. LSC is also used in this DWC. 

 

6.2.1 DWC by FFT with Gaussian Filter 

The Gaussian filter has a number of desirable properties that make it the most 

commonly used smoothing filter. For example, the Gaussian filter is the only low-pass 

filter that has good localization properties in both the spatial and frequency domains. 

Second, the Gaussian filter is decomposable and rotationally invariant. Moreover, the 

Gaussian filter is closely related to the technique of multi-resolution or multi-scale 

processing because it can be employed to create input data with varying resolutions 
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from coarse to fine. The transfer function corresponding to Gaussian smoothing (for 

equally spaced and weighted measurements) is formulated as (Attila, 1984) 

 
22

rfk
Gau eS =                                                        (6-1) 

 

where k is the semi-bandwidth of the Gaussian function. The degree of smoothing is 

determined by k. When k increases, the degree of smoothing increases. Thus, the 

smoothed downward-continued gravity using the Gaussian filter is expressed as 
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where )( rfg  is the original gravity field, and )( rdown fg  is the new field after DWC. 

 

6.2.2 DWC by FFT with Wiener Filter 

The characteristic of the Wiener filter is that it converts a specified input into a 

specified output such that the sum of the squares of the differences between the 

desired output and actual output is minimum (Gunn, 1972). The theory of the Wiener 

filter was originally developed by Wiener (1949). The Wiener filter is often used to 

reduce the noise in input data and is applied to DWC and other techniques used in 

geophysical research. In the frequency domain, the Wiener filter can be expressed as 

(Forsberg and Skourup, 2005) 
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where parameter k also determines the degree of smoothing of the Wiener filter. 

Therefore, the smoothed downward-continued gravity using the Wiener filter is given 

by 
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No matter which filter is used, Gaussian or Wiener, parameter k affects the result 

of the downward-continued data. Thus, the choice of k values must be considered 

rigorously and should represent an appropriate compromise between noise reduction 

and signal detail. 

 
6.2.3 DWC by LSC 

In this subsection, airborne gravity anomalies are first downward continued to 

the sea level by LSC. Second, the downward-continued gravity anomalies are merged 

with other surface gravity anomalies for geoid modeling by LSC again. This method 

may be categorized as indirect use for geoid determination by LSC. The residual 

gravity anomalies of the downward-continued airborne data can be represented as 
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where downair
resg _∆  represents the downward-continued residual anomalies; air

resg∆ , the 

input airborne residual anomalies; airsur ggC
∆∆

 and airgC
∆

, the covariance matrices for 

surface gravity anomaly–airborne gravity anomaly and airborne gravity 

anomaly–airborne gravity anomaly, respectively; and airgD , the variance of the noise 

of the input air gravity data. Then, the downward-continued data and surface gravity 

data can be combined for geoid modeling by Eq (2-12).  

 

6.3 Direct Use for Geoid Modeling 
An attempt in this study has been made to perform DWC of airborne gravity and 

determination of residual geoid simultaneously. Compared to the indirect method 

mentioned in 6.2.3, this method is a direct geoid determination method. In this study, 

the corresponding equation for LSC computation is given by 
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where surgnC
∆

, surgC
∆

, airgnC
∆

, surair ggC
∆∆

, airsur ggC
∆∆

, and airgC
∆

 are the covariance 

matrices for geoid–surface gravity anomaly, surface gravity anomaly–surface gravity 

anomaly, geoid–airborne gravity anomaly, airborne gravity anomaly–surface gravity 

anomaly, surface gravity anomaly–airborne gravity anomaly, and airborne gravity 

anomaly–airborne gravity anomaly, respectively. surg
D

∆
 and airg

D
∆

 are the 

variances of the noises of the input surface and airborne gravity data. 

The direct use for geoid modeling is a more efficient process. However, the 

disadvantage of this method is that the downward-continued gravity data cannot be 

first evaluated by surface gravity data and the outliers cannot be removed before 

geoid computation. 

 

6.4 Design of Experiments 

An interesting point to note is that a free-air or Bouguer anomaly field performs 

better in DWC by FFT and agrees better in geoid modeling. Hwang et al. (2007b) 

used free-air gravity anomalies for this application. In this study, we use Bouguer 

anomalies in order to reduce the influence of the topographic effect. A comparison of 

the two results for geoid modeling is discussed in section 6.6. 

The computation of the Bouguer correction for the airborne data is also based on 

the Gaussian quadrature mentioned in chapter 4. After performing DWC on the 

airborne Bouguer anomalies, we must restore the topographic effect in order to 

acquire the free-air anomalies, and then remove the long- and short-wavelength 

effects to obtain the residual gravity anomalies. After that, the data are combined with 

the surface and altimeter-derived residual gravity anomalies to calculate the residual 

geoid by LSC. 

Downward-continued gravity anomalies are stored in a 22 ′×′  grid, both for the 

FFT and LSC processes, which is the same as that with the KMS02 gravity data. In 

order to avoid data points located in the same grid, the grids of the KMS02 and 

downward-continued gravity data are staggered in 1-min spaces. Fig 6-1(a) shows the 

entire gravity data set used in this geoid modeling. This data set includes land (black), 

shipborne (black), altimetry (blue), and downward-continued airborne gravity (red) 

data. Fig 6-1(b) shows a zoomed-in view of the black rectangular area in Fig 6-1(a). 

There is no data overlaying due to the staggered regular grids of the altimeter-derived 

and downward-continued airborne gravity data. 
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DWC by LSC is also based on the combination of the EIGEN-GL04C 

geopotential model and Tscherning-Rapp degree variance model 4. The covariances 

used in this study are shown in Fig 6-2. However, this anomaly degree model is for 

free-air anomalies not Bouguer anomalies. Therefore, we use free-air anomalies for 

the LSC DWC. Furthermore, the noises for different data types have to be determined 

both in indirect and direct geoid determination by LSC. We assign 0.1, 1.0, 5.0, and 

3.0 mgal data noise to land, shipborne, altimeter-derived, and airborne gravity 

anomalies, respectively. 

The procedure for geoid modeling in this study is shown in Fig 6-3. The 

discrepancy between the geoid models of the five cases is solely governed by the 

DWC methods of the airborne gravity data. In case A, there are no airborne data used 

for the geoid computation. The DWCs in cases B and C are performed by FFT with 

Gaussian and Wiener low-pass filters, respectively. In cases D and E, airborne gravity 

data are processed by LSC DWC. Airborne gravity data of cases D is continued 

downward to sea level first. However, cases E performs DWC of airborne gravity data 

and determination of the geoid simultaneously. Cases D and E belong to the types of 

indirect and direct geoid determination, respectively. 
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(a) 

 

(b)    

Fig. 6-1 (a) All the input gravity data for geoid computation. (b) Zoomed-in view of 

the black rectangular area in (a). Black, blue, and red points denote land\shipborne, 

altimeter-derived and downward-continued airborne data, respectively. 
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Fig. 6-2 Covariances: (a) Surface gravity–airborne gravity covariance matrix. (b) 

Airborne gravity–airborne gravity covariance matrix. (c) Airborne gravity–geoid 

covariance matrix. 
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case A                  case B         case C      case D     case E 
 

Fig. 6-3 Flow chart of geoid modeling. Case A excludes airborne data. The 

downward-continuation methods of cases B and C are based on FFT by Gaussian and 

Wiener filters, respectively. Cases D and E use LSC DWCs of the indirect and direct 

types, respectively, for geoid determination. gaussdcbg _∆ , gaussdcg _∆ , and gaussdc
resg _∆  denote 

downward-continued Bouguer, free-air, and residual anomalies smoothed by the 

Gaussian filter. wienerdcbg _∆ , wienerdcg _∆ , and wienerdc
resg _∆  denote those smoothed by the Wiener 

filter. lscdc
resg _∆  represents the downward-continued residual anomalies by LSC. “FFT 

DC” and “LSC DC” mean FFT and LSC DWCs, respectively. 
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6.5 Evaluating Downward-Continued Airborne Gravity Data 
6.5.1 Results of DWC by FFT 

Fig 6-4 shows the spectrum of the DWC. Compared to UWC (Fig 5-7), the 

spectrum response of the DWC increases rapidly with increasing frequency. For the 

DWCs in cases B and C, the ideal values for parameter k must be estimated first. We 

use k = 5, 10, 15, 20, 25, and 30 in this work and attempt to identify the suitable k 

value. Figs 6-5 and 6-6 present 1D and 2D frequency responses of the Gaussian filter 

at k = 5, 10, 15, 20, 25, and 30. Those of the Wiener filter at k = 5, 10, 15, 20, 25, and 

30 are shown in Figs 6-9 and 6-10. If parameter k becomes larger, the responses decay 

faster. The decreasing trend of the frequency responses of the two low-pass filters can 

diminish the increasing responses of the DWC (Fig 6-4). Figs 6-7 and 6-11 present the 

downward-continued Bouguer anomalies by the Gaussian and Wiener filters, 

respectively, for the conditions of k = 5, 10, 15, 20, 25, and 30. As k increases, the 

downward-continued Bouguer anomalies become smoother.  

In order to determine which value of k is the best choice, some selected surface 

gravity data with highly accurate Bouguer anomalies are used. Figs 6-8 and 6-12 

show the Bouguer anomaly differences between the surface and downward-continued 

data by the Gaussian and Wiener filters individually. The statistics of the differences 

are summarized in Table 6-1. In the result by the Gaussian filter, the standard 

deviations of the differences are 11.4, 8.5, 8.7, 9.3, 10.2, and 11.1 mgal at k = 5, 10, 

15, 20, 25, and 30, respectively. It is obvious that k = 10 provides the best result 

because it has the smallest standard deviation. For k > 10, the standard deviations 

become increasingly larger as k increases. Besides the standard deviation, k = 10 also 

exhibits excellent maximum, minimum, and mean values, as compared to the other k 

values. In the result by the Wiener filter, the standard deviations of the differences are 

13.5, 8.5, 8.3, 8.6, 9.1, and 9.8 mgal at k = 5, 10, 15, 20, 25, and 30, respectively. 

Obviously, k = 15 is the best selection, again, due to the smallest standard deviation. 

The differences in the cases of both the Gaussian and Wiener filters are not correlated 

with topography in this study. 

In brief, k = 10 for the Gaussian filter and 15 for the Wiener filter are the ideal 

values in order to obtain more accurate results from DWC. Thus, a Gaussian filter 

with k = 10 and a Wiener filter with k =15 are the best choices of all. 
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6.5.2 Results of DWC by LSC 

Fig 6-13 shows some results of the airborne data by LSC DWC, which is an 

indirect-use type method of geoid determination. Fig 6-13(a) presents the free-air 

anomalies at 5156 m. The RTM-derived anomalies at 5156 m performed by Gaussian 

quadrature are shown in Fig 6-13(b). Fig 6-13(c) expresses the residual gravity 

anomalies at 5156 m from which the EIGEEN-GL04C-derived and RTM-derived 

anomalies have been removed. Fig 6-13(d) indicates the downward-continued residual 

gravity anomalies. The differences between the residual gravity anomalies of the 

selected surface and downward-continued data are shown in Fig 6-14. The statistics of 

the differences are summarized in Table 6-2. In Fig 6-14, some large differences are 

found over the Central Range, reaching approximately 70 mgal, but most of the 

differences, even over this highly mountainous area, are not large. The standard 

deviation of these differences is 16.0 mgal. 

 

Table 6-1 Statistics of the differences between surface gravity anomalies and DWC 

(FFT) gravity anomalies. 

Filter K parameter Max Min Mean Std dev 

5 131.0 –116.2 -0.4 11.4 

10 50.5 –35.8 -0.3 8.5 

15 55.6 –39.3 -0.1 8.7 

20 62.5 –43.9 0.1 9.3 

25 69.4 –48.9 0.3 10.2 

Gaussian 

filter 

30 75.8 –53.7 0.4 11.1 

5 177.2 –159.1 -0.4 13.5 

10 50.3 –34.1 -0.4 8.5 

15 50.9 –33.7 -0.3 8.3 

20 53.3 –36.7 -0.1 8.6 

25 59.9 –41.4 0.2 9.1 

Wiener 

filter 

30 66.2 –47.1 0.4 9.8 
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Table 6-2 Statistics of the differences between surface gravity anomalies and DWC 

(LSC) gravity anomalies. 

Max Min Mean Std dev 

68.6 –67.2 –0.1 16.0 

 

 

6.6 Results of Geoid Modeling 
Fig 6-15 presents the geoid models of cases A to E. Fig 6-16 shows the 

differences between the geoid models of cases A and B, cases A and C, cases A and D, 

and cases A and E. The largest differences are located over mountainous and offshore 

areas and reach approximately ±40 cm. The reason why such large differences occur 

over high mountains is the contribution of airborne gravity data. By comparing Figs 

6-16(a) and (b), it is apparent that the geoid surfaces of cases A and B are very similar. 

This implies that for geoid modeling, the distinction between the use of Gaussian or 

Wieners filters in FFT DWC is small. In Fig 6-16(c), there are two obvious local lows, 

as in (a) and (b), over central and south Taiwan. However, the geoid surface still has a 

difference of 20 cm as compared to (a) and (b) over some areas. The differences in 

Fig 6-16(d) are considerably distinct from those in (a), (b), and (c). The differences 

between the geoid surfaces of case E and those of the other cases reach 40 cm over 

some areas. This implies that there is some doubt regarding whether direct geoid 

determination by LSC is feasible.  

In order to evaluate the external accuracy of the five geoid models, four 

GPS/leveling routes are used. Fig 6-17 presents the differences between the observed 

and modeled geoidal heights (cases A~E) along the four GPS/leveling routes. The 

statistics of the differences are summarized in Table 6-3. Compared to case A, the 

geoid accuracies in cases B~D have obvious improvements along the south route, but 

lesser improvements along the center route. On the contrary, the geoid accuracy in 

case E improves along the center route, but is degraded along the south route instead. 

On the other hand, although the geoid surface of case E greatly differs from those of 

the other cases, the standard deviation in Table 6-3 still indicates a good geoid 

accuracy in case E, especially along the center route. 

Besides the five cases, the geoid developed by Hwang (2005) is also evaluated 

along the four GPS/leveling routes, and the statistics are also summarized in Table 6-3. 
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The airborne data used in this geoid model are downward continued by FFT and using 

free-air gravity anomalies. The chosen filter is a Gaussian filter in the space domain 

with a 15-km filter width realized by using the GMT package. This filter width was 

proven to be the best in Hwang (2005). Compared to cases B and C, which use 

Bouguer anomalies for DWC, the geoid accuracy of Hwang (2005) is worse than that 

of the two cases. According to the comparison, Bouguer anomalies of the gravity type 

are recommended for FFT DWC. 

The standard errors in the geoid models can be determined by Eq (2-13). Such 

errors represent the internal accuracies of the geoid models. However, the external 

accuracy, which is evaluated by four GPS/leveling routes, does not agree with the 

internal accuracy. The internal errors should be adjusted to the external errors. 

According to Table 6-3, the external accuracy of the geoid models in the east route is 

quite uniform (range: 5~8 cm), having an average standard deviation 6 cm. Thus, the 

estimated standard errors in the geoid models can be adjusted to fit the external geoid 

accuracy at the east GPS/leveling points. Table 6-4 shows the average standard geoid 

errors by Eq (2-13) in the east GPS/leveling points. The standard errors of the five 

geoid models are 0.084, 0.128, 0.108, 0.171, 0.054 m, respectively. Compared to 

external accuracy, they are obviously different. Therefore, we use GMT package to 

adjust the geoid errors to about 6 cm at the east GPS/leveling points. After the 

adjustment, the absolute geoid errors are changed but the relative errors remain the 

same. Fig 6-18 shows the adjusted geoid errors. In Fig 6-18, it is obvious that the 

geoid models using airborne gravity data (case B~E) have smaller errors than the case 

of not using such data (case A). In Fig 6-18(a), the geoid errors can reach 20 cm over 

high mountains. However, most errors in Fig 6-18(b)~(e) are reduced and are below 

10 cm. 
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Table 6-3 Statistics of differences (in meter) between the observed and modeled 

geoidal heights at four leveling routes 

Case Leveling route Max Min Mean Std dev 

north –0.036 –0.159 –0.096 0.040 

east –0.229 –0.404 –0.316 0.065 

center –0.193 –0.604 –0.353 0.154 

Case A 

south –0.244 –0.504 –0.348 0.073 
north –0.065 –0.152 –0.116 0.028 

east –0.192 –0.379 –0.276 0.054 

center –0.124 –0.545 –0.280 0.166 

Case B 

south –0.280 –0.370 –0.333 0.034 

north –0.064 –0.152 –0.116 0.028 

east –0.193 –0.388 –0.281 0.056 

center –0.123 –0.545 –0.279 0.167 

Case C 

south –0.279 –0.369 –0.331 0.034 

north –0.047 –0.282 –0.159 0.078 

east –0.084 –0.314 –0.254 0.069 

center –0.110 –0.389 –0.299 0.081 

Case D 

south –0.105 –0.592 –0.440 0.144 

north 0.006 –0.072 –0.037 0.022 

east 0.059 –0.193 –0.029 0.084 

center 0.105 –0.249 0.131 0.114 

Case E 

south 0.011 –0.401 –0.254 0.143 

north 0.138 –0.230 –0.063 0.134 

east –0.235 –0.533 –0.397 0.079 

center –0.297 –0.786 –0.559 0.158 

Hwang 

(2005) 

south –0.036 –0.455 –0.234 0.159 
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Table 6-4 The original average geoid errors (in meter) in the east route. 

Case The average geoid errors 

Case A 0.084 
Case B 0.128 
Case C 0.108 
Case D 0.171 
Case E 0.054 

 

 

 

  
Fig. 6-4 Transfer functions for 1-D (left-hand-side) and 2-D cases of DWC; 

22
yxr fff += . The unit of frequency along the x and y directions is the same as that 

shown in Fig 5-6. 
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Fig. 6-5 1D frequency response of Gaussian filter. (a) k = 5 (b) k = 10 (c) k = 15 (d) k 

= 20 (e) k = 25 (f) k = 30. 
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Fig. 6-6 2D frequency response of Gaussian filter. (a) k = 5 (b) k = 10 (c) k = 15 (d) k 

= 20 (e) k = 25 (f) k = 30. 
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Fig. 6-7 Downward-continued Bouguer anomalies by Gaussian filter. (a) k = 5 (b) k = 

10 (c) k = 15 (d) k = 20 (e) k = 25 (f) k = 30. 

 



 89

 
Fig. 6-8 Differences between the Bouguer anomalies of the surface and 

downward-continued airborne data by Gaussian filter. (a) k = 5 (b) k = 10 (c) k = 15 (d) 

k = 20 (e) k = 25 (f) k = 30. 
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Fig. 6-9 1D frequency response of Wiener filter. (a) k = 5 (b) k = 10 (c) k = 15 (d) k = 

20 (e) k = 25 (f) k = 30. 
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Fig. 6-10 2D frequency response of Wiener filter. (a) k = 5 (b) k = 10 (c) k = 15 (d) k 

= 20 (e) k = 25 (f) k = 30. 
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Fig. 6-11 Downward-continued Bouguer anomalies by Wiener filter. (a) k = 5 (b) k = 

10 (c) k = 15 (d) k = 20 (e) k = 25 (f) k = 30. 
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Fig. 6-12 Differences between the Bouguer anomalies of surface and 

downward-continued airborne data by Wiener filter. (a) k = 5 (b) k = 10 (c) k = 15 (d) 

k = 20 (e) k = 25 (f) k = 30. 
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Fig. 6-13 (a)Free-air anomalies of airborne data at 5156 m. (b) RTM-derived effects 

of airborne data at 5156 m. (c)Residual gravity anomalies of airborne data at 5156 m. 

(d) Downward-continued residual gravity anomalies by LSC method. 
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Fig. 6-14 Differences between the residual gravity anomalies of surface and 

downward-continued data by LSC method. 
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Fig. 6-15 The geoid models. (a) case A. (b) case B. (c) cases C. (d) case D (e) case E. 
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Fig. 6-16 Differences between all the geoid models. (a) Between cases A and B. (b) 

Between cases A and C. (c) Between cases A and D. (d) Between cases A and E. 
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Fig. 6-17 Differences (in m) between the observed and modeled geoidal heights 

(cases A~E) along four leveling routes. Dark-gray and light-gray bars indicate 

positive and negative differences, respectively. The colors denote topography. 
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Fig. 6-18 The adjusted geoid errors for (a) case A. (b) case B. (c) cases C. (d) case D 

(e) case E. 
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Chapter 7 

Summary, Conclusions, and Recommendations 

 

7.1 Summary  
In the study described in this dissertation, we investigated the best computational 

method for obtaining RTM-derived effects and the most ideal DWC technique used in 

airborne gravity data. The purpose of this study is to model the best geoid over 

Taiwan and the surrounding seas. 

In chapter 2, we presented detailed methodologies for geoid modeling and 

UW/DWCs. The strategy of the geoid modeling was based on the RCR procedure. 

The long-wavelength part was based on a geopotential model and the 

short-wavelength part was obtained using the principle of RTM. The residual geoid 

was determined by LSC. UW/DWCs were performed by using the FFT and LSC. For 

the FFT, a smoothing filter was considered. 

The data used for the geoid modeling in this study were introduced in chapter 3 

(excluding airborne gravity data). The data include surface gravity and 

altimeter-derived data for the residual geoid, the GGM for long-wavelength gravity 

and geoid computation, the DEM and a density model for short-wavelength gravity 

and geoid computation, and some GPS/leveling points for assessing the geoid 

accuracy. The surface gravity data comprise land and shipborne gravity data. 

Altimeter-derived data and GGM used in this study are from KMS02 and 

EIGEN-GL04C models. The DEMs involve three resolutions—9 s, 90 s, and 6 min. 

In chapter 4, three computation methods for determining the RTM-derived 

effects were applied to the investigations of short-wavelength gravity and geoid 

computations. These methods were the FFT, prism, and Gaussian quadrature 

techniques. The topographic density variation was also considered in this study. The 

result shows that if the FFT is used to compute the RTM-derived effects, it provides 

the best geoid accuracy through the evaluation of the GPS/leveling points. Moreover, 

if the density variation is considered in geoid modeling, the maximum difference 

between the new and original geoid surfaces is 4 cm.  

The principle of airborne gravimetry and the airborne gravity survey of Taiwan 

were introduced in chapter 5. The airborne gravity signals possess information 

pertaining to the sovoEt &&&&  effect, tilt correction, and vertical acceleration of the 



 101

aircraft. The airborne gravity survey of Taiwan was sponsored by the MOI and 

implemented in 2004~2005 to fill the gaps in the existing ground gravity coverage In 

comparison to UWC. The survey work and software development for this project 

were performed by NCTU and KMS together. In the repeatability analysis, the filter 

width of 150 s used in the raw airborne gravity observations is a compromise between 

noise reduction and gravity signal preservation. In the crossover analysis, most 

differences vary from 7 to –7 mgal and have a standard deviation of 2.88 mgal after 

bias and drift corrections. In comparison to UWC, most Bouguer anomaly differences 

between the surface and the airborne data are small; however, some large differences 

over high mountains can reach approximately 50 mgal.  

In the investigations in chapter 6, one of the main topics was the application of 

DWC to airborne data and the other was geoid determination by combining the 

surface and downward-continued data. Two DWC methods, the FFT and LSC, were 

applied to process the data from the airborne gravity survey of Taiwan. In the FFT, 

Gaussian and Wiener filters were used to eliminate noises due to the ill-posed 

problem. From a comparison with ground Bouguer anomalies, the Gaussian and 

Wiener filters were found to provide the best DWC results when the parameter k was 

equal to 10 and 15, respectively. On the other hand, LSC is divided into direct and 

indirect geoid determinations. Downward-continued data combining land, shipborne, 

and altimeter-derived gravity data were used for the geoid modeling; the 

short-wavelength part of the model was computed using the FFT method. The geoid 

models in the five cases showed an apparent improvement in the geoid accuracies 

over some areas with high mountains. A relative geoid accuracy under 10 cm could be 

achieved over these rough terrains. However, the geoid that was directly determined 

using airborne gravity data was considerably different from that obtained from the 

data that was downward-continued to the sea level. The difference between the geoid 

models of the two determinations could reach 30~40 cm.  

 

7.2 Conclusions 
The primary contribution of the research described in this dissertation is with 

regard to the enhancement in the geoid accuracy over Taiwan, particularly over areas 

with high mountains. The major contribution is from airborne gravity. 
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Among the three computation methods for the RTM-derived effects, FFT 

provides the best result through the evaluation of GPS/leveling points. One major 

reason is that the RTM-derived gravity and geoid data computed using FFT are stored 

on 9-s grids and those computed using prism and Gaussian quadrature are stored on 

1-min grids. Both the prism and Gaussian quadrature methods are pointwise methods 

and are impracticable for high-resolution computational tasks. The DEM of Taiwan 

has been developed to very high resolutions. Therefore, FFT is the best choice for the 

computation of the RTM-derived effects. Furthermore, even if the difference of 

standard deviations is small, the consideration of density variation in the geoid 

modeling is still important since the resulting change in the geoid model compared to 

the use of a constant density is not small. 

The overall accuracy of the airborne gravity survey of Taiwan is approximately 2 

to 3 mgal based on the analyses of crossover and repeatability differences. The level 

of accuracy conforms to that of other airborne gravity surveys around the world. In 

addition, over most areas, the airborne gravity anomalies agree well with the existing 

surface gravity data that are upward continued to the flight altitude. Although some 

large differences still occur between the airborne and the surface data over high 

mountains due to the sparse coverage of the surface gravity data, the airborne gravity 

data can fill the gaps in the surface gravity data. 

In the five cases considering different downward-continuation methods, although 

four GPS/leveling routes agree well with the improvements in these geoid accuracies, 

some large differences among the geoids in these models still occur; this is 

particularly true in the case of the geoid model involving the direct determination of 

the geoid using LSC. The reason is that the covariance model used in this study may 

be not suitable for airborne and surface data for directly computing the geoid. In 

addition, Bouguer anomalies used in the FFT DWC are better than free-air anomalies 

in geoid modeling. 

The best geoid model obtained in this study is expected to aid in GPS leveling, 

ocean circulation determination, and linking Taiwan’s height datum to the world 

height datum. However, an improved geoid can be obtained after the gravimetrically 

determined geoid has been corrected a bias and tilt hiding in the long-wavelength 

geoid by using well-distributed GPS/leveling points. 

 



 103

7.3 Recommendations for Future Work 
To further improve the geoid accuracy, there are several topics that need to be 

investigated in future work. 

 

(1) New data for geoid modeling  

The data used for the geoid computation has been increasing in recent years. 

With regard to the local gravity data, more land, shipborne, and airborne gravity data 

measured over Taiwan and the surrounding seas will be acquired soon. We can further 

improve the geoid accuracy using these data. Besides the local gravity data, a 

high-resolution GGM, such as EGM06 coefficients, has been developed to degree 

2190. It represents the earth potential more explicitly and provides more precise 

long-wavelength effects for geoid modeling. On the other hand, a 5-m resolution of 

the DEM over Taiwan is to be achieved by photogrammetry and LIDAR. This DEM 

is useful to refine the accuracy of the short-wavelength effects. 

 

(2) 2D density model used in FFT and Gaussian quadrature 

In chapter 4, a 2D density model was used only in the prism method. Its use in 

the FFT and Gaussian quadrature methods should be investigated. 

 

(3) 3D density data 

We considered only a 2D density when computing the RTM-derived effects. 

Three-dimensional density data should fit in with the real topographic density 

variation 

 

(4) Investigation of a more suitable covariance model  

In this study, the Tscherning-Rapp degree variance model may not be suitable for 

the DWC of the direct geoid determination method. Other methods for constructing 

new covariance models should be investigated. 

 

(5) Use of band-limited covariance function 

The gravity data used in this study are from variety of sources. Unlike land 

gravity anomalies, most of the high-frequency gravity anomalies were removed from 

the original sources. Therefore, these gravity data are of limited spatial resolutions.  
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Therefore, a more rigorous method of geoid modeling than the method used in this 

study is to use band-limited covariance functions in LSC or band-limited kernel 

functions in the Stokes integral (Novak and Heck, 2002). 
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