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Surface wave dispersion analysis of planar corrugated surfaces by asymptotic
corrugations boundary conditions

Student @ p< 4% Advisor : Dr. Malcolm Ng Mou Kehn

Institute of Communications Engineering
National Chiao Tung University

ABSTRACT

Electromagnetic_bandgap (EBG) structures had been widely investigated in
literature in recent.years, and the planar. corrugated surface is one of them. In
studying such structures, the-dispersion and reflection phase diagrams are two of
the most important characteristics. In this thesis, we will study how to retrieve
the dispersion diagram of the corrugations accurately. and rapidly. By an
asymptotic method and the use of classical vector potentials, we can derive the
characteristic equation, thereby obtaining the -surface-wave dispersion diagram.
To demonstrate its accuracy and quickness, the method we proposed will be
compared to a full wave simulator and the transverse resonance technique (TRT),
the latter being a traditional method for getting the dispersion diagram. Finally,
we fabricated a corrugation, and measure its scattering parameters to indirectly
verify the dispersion diagram obtained by the method we proposed.

In traditional studies of corrugations, surface-wave propagations along only
the two principal directions are considered, pertaining to the so-called soft and
hard surfaces. In this thesis, we will further explore the situation whereby the
wave propagates obliquely on the surface. By observing the dispersion diagram
of the corrugations, we will notice its difference compared to normal periodic
structures, and then explain the wave propagation properties on the corrugation
surface.

At the measurement stage, it is difficult to get the dispersion diagram directly,
and usually the scattering parameters are used to explain the width and position



in the frequency spectrum of the bandgaps. In the thesis, the relationship of the
scattering parameters and wavenumbers are discussed, so that the measured
scattering parameters can be transformed to the dispersion diagram effectively.
So far we succeed in transforming the simulated scattering parameters to the
dispersion diagram, and we hope this method can be applied to measured data in
the future.
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l. Introduction

Corrugations have been an objective of keen interest in electromagnetic theory for many
decades. Elliott was one of the earliest pioneers, who studied the surface wave propagation
over a corrugated metallic ground plane, and has been concerned with the problem where the
directions of wave propagation across the surface is normal to the corrugations [1]. Since the
wave propagation direction will not always be normal to the corrugation, Hougardy and
Hansen studied the surface wave propagation along an oblique angle with the orientation of
the corrugations [2].

Theoreticians and computational enthusiasts were not the only ones captivated by this
structure. Experimentalists and practical engineers have, likewise for the past many years,
been making use of corrugations to develop improved microwave devices such as waveguides
and antenna. The most known applications for corrugation are soft and hard surfaces, and the
ideas were first introduced by Kildal [3] [4]. These surfaces triggered interests from enormous
researchers because they can control the behavior of wave propagation over them. In other
words, wave propagation.can either be suppressed (soft) or enhanced (hard) on these surfaces,
as shown in Fig.1. For examples, the soft surface is often called “‘chokes” and used to reduce
the cross-polarizationand sidelobes-in particular directions. The hard surface is used to design
hard horns which have high aperture efficiency or reduce scattering.from masts that block the
radiation field of an‘antenna [5].

The soft and hard surfaces have similar notions with the electromagnetic bandgap (EBG)
structures, whereby both demonstrate the wave propagation existed in some frequency band
and prohibited in others. In [6], the EBG structures are defined as artificial periodic objects
that prevent/assist the propagation of electromagnetic waves in a specified band of frequency
“for all incident angles” and‘all polarization-states, while only for some specular angles for
soft and hard surfaces. The EBG ‘structures have become a popular topic in the antenna
community since its useful application. The attracting features include designing an efficient
low profile wire antenna near a ground plane [7], being applied for high gain resonator
antennas [8], and for surface wave suppression [9]. Despite the numerous works on
corrugated surfaces found in literature, none has studied them in terms of the dispersion
diagram conveying the surface-wave passband and stop-band properties, or presented
characteristic equations from which the aforementioned diagram is obtained. Field
distributions of the surface wave modes supported by the corrugations are also nowhere to be
found.

The main properties when investigating the periodic structures will be the dispersion
diagram and reflection phase. In this thesis, we will focus on the points with the dispersion
diagram of the corrugation. Due to the complexity of the EBG structures, it is usually difficult
to characterize them by analytical methods. So we can utilize approximate boundary
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(b)

(a)

Figure1: (a) Hard (b).soft surfaces

conditions (ABC) to provide an approximate relationship. between the electric and magnetic
field on a chosen surface. The simplest case might be the first order impedance conditions,
sometimes referred ‘to as SIBC(Standard Impedance  Boundary Conditions), which are
applicable at the surface of a lossy dielectric. For some cases, the accuracy of SIBC is not
sufficient, so generalized impedance boundary condition (GIBC) with more degrees of
freedom is proposed to have higher accuracy. The works in [10]-and [11] have used such
approximate impedance boundary conditions to study corrugated surfaces. In fact, some
approximations have been around for a long time, even though the classical condition E, =0
at the surface of a metal is regarded as exact, but actually-it is-also the approximation even at
microwave frequencies.

In early periods, in order to analyze corrugated and strip-loaded surface accurately, the
fields must be expanded to Floquet modes or parallel plate waveguides modes which are very
difficult and complicated. In [12], Kildal presented asymptotic corrugation and strip-loaded
boundary conditions (ACBC and ASBC) for analysis of corrugated and strip-loaded surfaces,
respectively. In this thesis, ACBC is used to derive the characteristic equation and thus obtain
the dispersion diagram of planar corrugated surfaces, which has not been studied in other
literatures so far. After observing the dispersion diagram, the unique and special characteristic
of the corrugation will be discussed.

So far in the literature, most of the studies for periodic structures were working on
achieving entire bandgap capabilities, especially seeking for a wider bandgap, for example,
the mushroom-like surface and its modified types [13][14], as shown in Figs 2. However, not
all applications require the suppression of surface-wave propagation in all directions on the
surface. In fact, there may potentially be numerous situations where such entire bandgap
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behavior is actually not needed at all, and some may even require suppression along only
some directions but permission in all others. In other words, surface-waves are suppressed in
certain directions but prohibited in other directions. The corrugated surface is one object we
found which can achieve this idea. The reason is that corrugations can simultaneously process
different bandgaps with respect to the different angles of incident surface waves. The
phenomenon may also occur in other periodic structures, but we will show later that
corrugations can reach the best effect.

In the final section of this thesis, we will introduce the relationship between the scattering
parameters and the wavenumbers. The original goal was to obtain the dispersion diagram, but
when it comes to the measurement stage, unfortunately, it is impossible to measure the
wavenumbers directly. So most of the time in the literature, the way to explain the width and
position in the frequency spectrum of bandgaps is through the scattering parameters, which
are reflection and transmission coefficient ( | S;3 | and | Sy | ). For structures that can be
represented by equivalent circuits; it is possible to get the relationship between the scattering
parameters and wavenumbers by the ABCD matrix. But-for more complex structures, the
computation may be too elaborate. In [14];-a-method was described to retrieve the complex
permittivity and permeability. We shall herein_employ it to the scattering parameters of the
corrugated surface to construct the-dispersion diagram; which is then verified with the one
generated by the characteristic equation derived from ACBC.
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Figure 2: (a) Mushroom-like EBG structures, (b) multi-via cascaded

mushroom-like EBG structures.



I1. Theory

2-1 Characteristic equation of the corrugation

The total E and H field are obtained by the superposition of the individual field due to A
and F, where A and F represent the magnetic and electric vector potential, respectively.

E=E,+E, =[joA- j—— V(V-A)]+(EVxF) W
wus &

H=H,+H. = (VXA joF)+[]—— V(V+F)] 2
r oL

(1) and (2) can be expanded and be written as

a1 @A &‘ZAy 8AZ 1 oF, OF,
E=al-joA Ja)ug(axz oy axed ey @

1 az/s& A L PA OF ), \oF

ra oA T axay oy ayaz)_Z(a_zx— o (32)
R | ] oA A, 10F oF
ok J (axaz ayaz oz® )= ( OX ay)]
R\ T, o oA [OA
= doR L (o - ooy oxdr y(ay ~2
o . 10 OF F, , O°F,, A 0A aAZ
.+a[-joF, Ja),ug(axﬁy o 8yaz) (az )]... (3b)

. 1 0°F, O°F,0 *F,, 1,0A, @
ra-joF, - (Ex e T C0 )+—(ﬁ—i)]
wus 0Xoz oyor oz M OX
Since we want the field expressions that are independent of the coordinate system, for the
transverse magnetic (TM) modes, it is acceptable to let the vector potential A have only a
component, and the remaining components of A as well as all of F are set to be zero. To

express the surface waves on the corrugation in Fig. 3, we derive the field expressions that are
TMtoy. Let

A=a A (xY,2) (4a)

F=0 (4b)



dy = period
Figure 3: Infinite-long planar corrugated surface.

Then
E, =
E,=-]
Ez =-] (5)
Similarly, we let the F i 7 in.the y direction, and set the
remaining component  transverse electric (TEY) modes.
Let
A=0 (6a)
F=aF(xy,2) (6b)
Then
oF o°F
EX — l_y , HX — _J 1 y
g 01 e OX0y
1,0
E, =0, HyZ—Jw—ﬂg(W"‘ﬂz)Fy
o°F
Ezz_lﬁ’ ,=— i y )
£ OX wue 0yor

The next step is to discuss the fields for two cases, in the groove region and above the
corrugations, respectively, and two different modes for each case. At first, we consider the

fields within the grooves of TE” and TMY modes, and the boundary conditions are as follows:
5



Ex(z=i%)= LE (y=0)=0

Ey(z=i%)=0,EZ(y=0):0

Also we assume the expression of the vector potential A is as:

ks,
F(xy 2)=¢"

Then with (9) substituted into (5) and (7),

(8)

“[C* cos(k, y) +C:" sin(k, yYHC™ cos[k, (z + %)] +CS"sin[k, (z + %)]} 9)

[ Agroove ]
Are
E groove Sz S Yre
Xey _ p7Z' e*jkxox ggroove 10
H groove | g ATgroove ( a)
™Y C C
Z " Ym
L /ugroove |
E groove
TEy _
H groove | (10b)
ATgroove ]
E groove A Cz SyTE
Loy k e groove 10
groove J Algroove ( C)
S z C Yrm
:ugroove |
groove k e— kg X Agroove k grooveC C
TE‘/
E groove groove k groove S S (10d)
groove groove Ar
groove _ k groove groove \ 2
H Yiey T AF [kgroove - (kyTE ) ]CZSY (106)
2

E gTr:gve groove groove A? v [kgroove - (k)gTr;ove ) ]Sz CYTM

TEy
groove groove|, groove
E groove groove A'r k C S

H groove Jk x p / groovekgrooves C
[ } {Ar } (10f)

where

cos[M (z +g)]
g 2

{ Z} CyT;} {cos(k grone y)]
S )| sinfPZ (24 9
g 2

, and .
{ sm(kfjﬁOove y)



in which £ may be the E or H, and p is the 0,1,2....

Next we discuss the fields in the region above corrugations (y > d), and assume its vector
potential A is as follows:

Jk X 7Jkab0ve(y d) jkaboveZ

A{;\bove (X y > d Z) above e e YTMm e 2 (11)

Then using (5) and (7) to substitute for (11)

Eabove above J e — jky, X e—JkS‘T";“e(y d) e—JkZ"b"Ve _ above
ey _ E I1e
Eabove - £ k (128.)
Zoy | above %o
Eabove
Yigy
ove | =0 (12b)
H above
yTMy n
above b
H X B above above _k &
TeY above e*Jk X e*lkyTE (y— d)e IS X YrE
above | __ E (|, @bovey2
H Yrey o Ja)ﬂ z above (kyTE ) (12C)
above aboveFaboye k above k above
H .y Yie Ite i
above above. |
E _ i above above _k k
Xy above e*Jk X e Ty (V= d)e Tkay 2 X0 Y
above | __ M above \ 2
EV - above - (kyTM ) (12d)
™ jou, €
above above™above kabove above
E Y Ym ™ i
b b
H :l bo;/e above J e o X e_Jkir:Xe(y d)e L :Ave kzabove
aTt:j)ve = I (128)
H Y Habeve _kXo

The unit vectors parallel and orthogonal'to the corrugations are defined as a, and a

0 H

respectively. According to [12], the asymptotic corrugation boundary conditions are stated as
follows:

Egroove -8, =0 (13a)
E®.4 =0 (13b)
E oo & = E™" ., (13c)

Hooome - & = H®* -2, (13d)

Assuming pte=0 and ptm=0, i.e. we only consider the dominant mode of TE and absence
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of all the TM modes. When p1g=0, Ef“’y"ve =0 in (10a), meanwhile E** =0 when we

™Y

ignore the TM modes, so the boundary conditions of (13a) is automatically satisfied. As for
(13b), we require

By =0)+ B (=) =0 a4

For phase continuity, we can get k™ =k, and k™ =k*** =k***. So we can obtain

x0

e Jk“”” M bi e g™ _ (15a)
JOL,E ey
Then
sbove _ a;ﬂbkyl: _ pabore (15b)
As for (13c), we require
BT =) FEE =0l | e s By o) a9

in which the second.term on left hand side is vanished since we assumed that no TM modes
exist within the groove. Using (10c), (12a), and (12d) to substitute in (16)

Z A]E;roove kao — jkunivy sin (k groove 4 ) jkinvig,
E
i

groove
k ) above |, univ . ) (17)
above J J™x0 e — jkunivy e jk;"z _ pabove Ym z e_jk;m'vxe,jkgmvz
- E M -
d,—0
8abv J a)/uabv gabv

where i is the groove index, noting how the left-hand side quantity varies with z in a stepwise
manner, with each term of its summation being a piecewise constant within the i groove, i.e.
id, — g/2 <z <id; + g/2. Now we only focus on the ith groove, so the summation over the
groove index on the left-hand side is removed, resulting in

(18)

idz—%<z<idz+%

gg roove abv

H - above|, univ
A?roove JkXO sin (k groove ) e jkm™id, above kaO _ pabove ymm 0z e jkinivz
E Yre d _ 0 E M -
e Ja)luabv abv

And as the period d, tends to zero, the e " factor on the right-hand side of (18) becomes
approximately e %" . This expresses that the continuous variation with z can be
approximated as a piecewise discrete constant over the i groove of nearly zero width. Hence
the resultant e ™" gets canceled out on both sides, leading to



groove jkxo Si n k grooved __ pabove jkxo __ pabove ;bh:ve k;“'V (193.)
ArE Vie — e M .
gg roove gabv J a):uabv gabv

Using (15b) to substitute for A3 in (19a), yielding

k 2 . k 2 + (k univ )2
A?Eroove % sin ( k 3Tr;)ove d ) — agove % z (19b)
ggroove gabove

As for (13d), we require

groove
H X

FHE (y=0)

7 =H2(y =d)+ H2" (y =d) (20)

Pmm =0

in which again the second term on the left hand side is vanished.
To replace (20) in (10a), (10d, and (12¢)

Kk groove :
_Z Argroove X0 yre e - jky™x cos ( K grooveq )e— jkenid,
o Yre
groove groove (2 1)

above jkumv
above X0y — kUi jkunivz above
_ A]' Vi TE e JKy e JK; +

E -
d,—0 w,
: J oy € v Hany

And as the same process from (17)-t0-(19), we can modify (21), leading to

kunle67 jk;miVZ

A e =

groove above J k univ
__ pgroove X0 "yre groove ) _ _ pabove x07yre above J"z
AL 0 _cos(k9d ) = — AR ey A0e 1 (22a)
a):ugroove ggroove J w:uabvgabv /uabv

Using (15b) to substitute for AZ** in (22a), yielding

k kgroove above k2 kabovekabove +0)2,U (kuniV)Z
groove X0 yre groove J %o Y1E aboveEabove \K;
Ao 00 cos (k& d ) = - e (22b)
a):ugrooveggroove luabove above X0 Y™

As observed, we can see that since the left hand side is pure real (k™" is real), the right

hand side must be real. In order for this, the ijbEOVG and k;":“e must be pure imaginary such

k above

that their product in numerator becomes real, whereas the remaining in denominator

causes the whole right hand side equation to be imaginary. This conforms with what we

k above

expect of and k;bh;’“e, being wavenumbers along vertical direction perpendicularly away

from corrugation xz-surface, which should be indeed be imaginary in order for surface wave
along xz plane surface of corrugation, i.e. decaying fields as one observe perpendicularly
away from corrugation surface. Hence



kabove - _ J a;b;ve kabove - _ J aabove (23)

Yre Ym

Thus, with two replacement made, (22b) becomes

groove k 2 (k univ ) k 2 above above
A](:;roove X0 yrg coS (k groove ) __ pabove above X VTE )’TM (2 4)
E Yre - 'YE above
a)lugroove ggroove luabove above k C(

Dividing (19b) by (24)

:Uabovekx0 3b0ve |:k2 (k;niv )2 :|

;ugroove kX0 tan(k grooved )

groove k2 kuniv k2 above _ above (25)
yre above ( z ) RS ayTE ayTM
The general formula for k2 is given by
Y1
\2 2
groove __ 2 univ groove
kyTE \/C{) :ugrooveggroove - ( kx ) N ( kz ) (268‘)

Again we only consider the dominant mode under ACBC, which means pre=prm=0, so k7
IS zero, i.e.
k¥ = per/g = pry/ 9=0, under ACBC (26b)

So (26a) becomes

koo — \/wzﬂgmveggm ~(ke™)°.; Under ACBC (26c)

Yte

We may equate both TE and. TM-attenuation constants along the vertical y direction for the
upper half-space region above corrugation as the explanation just after (14), yielding

bove __ bove __ bove
" =ay, " = (26d)
With
above 2 univ 2 univ 2 2
(ay ) - (kx ) +(k2 ) — O ooy Eapy (266)

At last, based on (26a) to (26e), we can modify (25) as

Habove |:kfo + (k;niv )2 :| \/kf0 + (kumv ) - k:bove /ug
= tan(‘\, k2roove - kf d) =0 (27)
kr:_bove (k;miv )2 - |:k)§0 + (k;an ) - kazbove j| \I k;oove ’ ’

where

kgroove = 27[ f x'l:ugrooveggroove ! kabove = 27[ f ﬂabvgabv (28)

Eq.(27) is the characteristic equation of the corrugation.
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2-2 Refinement factor of the characteristic equation

The surface impedance looking down at y=d towards the PEC floor of the corrugations is
defined as follows:

;E EZgI‘OOVe (y — d)
roove - _ TEY 29a
s H)?royove (y _ d) ( )
substituting (10a) and (10f) into (29a), yielding
TE
29 = oo tan (k) (29b)

Yre

where g1y, [k is the familiar TEy modal impedance Z.', therefore obtaining the

familiar input impedance of a shorted transmission line of length d.
Similarly, the input impedance looking up at y=d interface into the upper-half space is:

TE Eabove(y:d) / E;\Tl:;ve(y:d) i

7 above __ Xgy
st

& 5 | I _ Jott, (30)
HE"(y=d)  HEe(y=d) \/(k:”‘V)er(kz“””)z—kz ne

above

being the familiar TE modal impedance, where as

T Exor(y=d) E™(y=d)~ \/’( K)o (ke kg |y

Z above __ ™Y
st T

HZbMO:l/e(y:d) \ H)?Tt:;’e(y:d) - ja)gabv ja)gabv

(31)

being the familiar TM modal impedance.

The whole Exand E; inthe numerators of the expressions for these impedances seems exist,
but actually it is only under the ACBC conditions. /As mentioned, ACBC is an approximate
method to analyze corrugation, and its hypothesis‘is that we assume the ridge is tending to
zero. For the real case, there exist widths for the ridges, so (27) may produce some errors in
its results compared to the simulation or measurement The Exand E; vanish over the top PEC
surfaces of the metallic ridge, hence, it is fairly presumed that the E**® fields on the
corrugation surface may be corrected by an incremental (> 1) factor d,/g, where d; is the
corrugation period and g is the groove-width. By doing this, in reality, the E****® fields on the
corrugation surface with the reduction factor (< 1) (as required by the fractional existence of
the tangential E-field components over only apertures of the grooves, and vanishing over the
ridge-top) will neutralize that aforementioned incremental factor, thereby maintaining the
abovementioned impedances, since there is no for these impedances to be changed.

The equation containing E®*® should all be modified, which are (14) and (16), and it can
be seen that this multiplicative correction factor would get canceled throughout (14), meaning
that only (16) should be modified, which is

11



Egroove(y d) g|:Eabove(y d)+Eabove(y d):| (323.)

again using (10c), (12a), and (12d) to substitute in (32a), obtaining

. k ) d k d above k ;nlv
A?Eroove J X0 sin (k ;]TrEoove d ) _ above J xO a'\tjlove Mz Y — O (32b)
ggroove g ‘9 g J a)/uabvgabv

so the last characteristic equation is also changed to

Hapove |:kfo + (k;niv )2 :| \/kfo + kumv ) k:bove

d
g k;bove (k;miV )2 - |:k30 + (k;mv ) - k;bove :|

Depending on which two of the following three quantities: (i) frequency f = w/(2x), (ii)
ke, and (iii) k"™ we choose, thethird quantity remains as the only unknown in this (33),

;ugroove y 2 2
\jw: tan( kgroove k d ) 0 (33)
groove

which may then be solved. for as roots of this characteristic equation. Doing so yields the
required information for plotting various.path-regions of the dispersion diagram (O—>Z,
Z>M, M->X, or X->0). If we know-the frequency and set k" as zero, we can get the root
of k', which is the:O=>Z of the dispersion diagram, where Z refers to the Brillouin limit, z /
d.. Similarly, setting the 'k“"as Brillouin limits, and solve the root for, we can get Z->M part.
The dispersion diagrams generated by the present ACBC-based method are compared with
commercial full-wave simulator software: CST Microwave Studio®  Two arbitrary examples
shall be studied as follow.

2-3-1 An arbitrary example

The parameters are as follow: period d; = 2mm, groove-width g = 0.85*d,, depth d = 8mm,
Erelygroove = 2 and srel,groove = 1. As seen, the roots of the characteristic equation produce a

univ at various resonant

dispersion trace which takes on the form of cyclic ‘peaking’ of the k;
frequencies in Fig. 4(a). Moreover, the trace just ‘grazes’ the light-line, i.e. it is tangent to it,
occurring at frequencies slightly above those whereby the trace has dropped back to its local
minima and begun to rise again. In fact, the backward trace of the dispersion diagram in Fig.
4(a) is not exist, the reason why it appears is because the magnitude of the ‘backward’ part is
small, and even though it is small, the algorithm we used in Matlab still can detect these roots.
The comparison to the CST simulation results will be shown in the next section, and we will
see that no backward trace is shown in the simulation results.

Interesting aspect is now pointed out. The frequencies at which the peaks occur coincide
perfectly with the so-called “soft” frequencies [3] of the corrugations, defined as

12
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£ = c(2n+1)/(4d [t gooe ) (34)

where n is an integer representing the order of the soft boundary condition, c is the speed of
light in vacuum, ds is the depth of the corrugations at which the soft boundary condition
holds, and erelgroove IS the relative permittivity of the dielectric filling the grooves.

2-3-2 ACBC method compared to CST

The parameters are as follow: period of the unit cell d, = 3mm, groove-width g = 0.55*d,,
depth d = 4mm, &rel,groove = 3 aNd irel,groove = 1. The dispersion diagram obtained in this section
is from Eq. (38), which are corrected characteristic equation, but not Eq. (27), and we will see
the good match between the corrected ACBC methods and CST. The comparison between the
uncorrected and corrected ACBC methods will be discussed in the next section. As additional
results and still on this second-example, the dispersion graphs for three other paths of the
typical “O>X->M->Y=2>0” dispersion-diagram _typical of two-dimensional periodic EBG
structures are given in Figs. 5(b), 5(c), and_5(d), providing the “X->M”, “M->Y”, and
“Y2>0” (Z=>M, M>X, and X>O-for the present example) portions, respectively. However,
for the present case of corrugations, there Is actually no periodicity in the direction (x here)
along them. Nonetheless, we shall still set the Brillouin limit along this direction as z divided
by the same period (along z) of the corrugations, thus assuming a-square unit cell (although
strictly, the unit cell'is-an infinitely long strip_in the zx plane of the corrugations, infinitely
long along x, the orientation of the corrugations). For the “O->X” (O->Z for the present
example) part shown in Fig. 5(a), as observed, only the rising parts of the ‘peaking’ trace after
the ‘grazing’ are relevant, which is because-just as mentioned, the algorithm we use may
detect some small deviated data which are negligible. But the comparisons between the
present ACBC method and CST for all three graphs of Fig. 5(b) through 5(d) demonstrate fine
agreement, thereby further substantiating the present technique.
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2-4 Influence of refinement factor

In this section, the accuracy of the refinement factor for the characteristics equation will be
shown, and we study the O—>Z part first. The parameters we choose are as follows: d, = 1mm,
d =5mm, &rel,groove = 3, trel,groove = 1, @nd comparing two different example which are g/d, =0.2
and g/d, =0.7. Just as mentioned, ACBC is an “approximate” method to analyze the
corrugation, and the approximation is that ridge tends to be zero. In other words, if the width
of the ridge is larger in a period, the result showed by uncorrected ACBC methods will be
more inaccurate, so that is why we need the refinement factor. Fig. 6(a) and Fig. 6(b) show
the comparison of the dispersion diagram for the O->Z part resulting from Eq. (27)
(uncorrected ACBC methods) and Eq. (33) (corrected ACBC methods), and both are
discussed in two cases which are g/d, =0.2mm and g/d, =0.7mm, respectively. Since the
accuracy of the corrected ACBC methods has been proven in the last section, it will be used
as a standard here. It can be seen that no matter what value of g/d;, is, it does not affect the
dispersion diagram resulting from ACBC method without correction method, and for which is
not so practical. As the groove width gets.smaller; which means the condition gets farther than
the uncorrected ACBC, the improvement effects from the correction factor gets better. The
similar situations also happened to-the Z->M part, which are shown in Fig 7(a) and Fig 7(b).
In fact, from our simulation results for the entire parametric space, we found that the accuracy

~s=ACBC method without correction factor
=+=ACBC method with correction factor
—light-line

23
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o
i

T - onRR R A _—

i i i i i
400 600 800 1000 1200
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i
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Figure 6(a): Comparison between the uncorrected and corrected
ACBC method for O—>Z path as the g/d, =0.2.
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of the unrefined ACBC method is properly satisfactory when g/d, is greater than 0.7, but
degrades rapidly as the ratio falls below this threshold value, for which the refined dispersion
relation of Eq. (33) would then be required.

2-5 ACBC method compared to TRT

Actually, the dispersion diagram of the corrugation has been investigated decades ago,
which is transverse resonant technique (TRT). The characteristic equation is obtained by
matching impedance in [15], whereas with the assumption that only the TM modal exist for
y>d. We will briefly introduce how its characteristic equation comes.

The impedance looking upward is that of a TM wave propagating in the y-direction,
yielding
k)’
Zupward = (35)
we,

the impedance looking down into the corrugation would be

w ,,U
Z = L tan (K g0, d 36
downward W +t g, ( groove ) ( )

where W is the period and t is the ridge width, We can see that (36) is quite similar to (29b),
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the former one is for TM modal while the latter one is for TE modal, and also (36) has already

considered the incremental factor

W +t
So by TRT theory, matching impedance at y=d requires that

Zupward = _Zdownward (37)
resulting in
2 Wrf i,

k, = J4(ﬁf) ﬂogo+4ﬂogo(mj grj tan’ (27 fd [z, | (38)
for O>Z part. And

W\/4(7rf)2 Hogo —K; 1, 2

=% tan d\/ &q| 4(7f g—kz)
W+t grg ( :urg rg|: (77 ) /uo 0 xi| (39)

= JK k2 —4(r 1Y sy
for Z->M part.

Figs. 8 show the comparison between the ACBC method and TRT method which is from the
book written by Carlton H Walter.-The dimension is the same as Fig. 5(a). We can see from
Fig. 8(a), for O>Z part, TRT method matches well to the corrected. ACBC methods, and also
the information is obtained that corrected ACBC method really improves the accuracy for the
uncorrected ACBC method (since we have already proved in Fig..5(a) that corrected ACBC
method matches well to the CST software, we use the former one as the standard). Just like
the ACBC method, the cyclical ‘peaking” of the k; at various resonant frequencies is also
exhibited by the TRT, and'its traces also just ‘graze’ the light-line, i.e. are tangent to it.
However, Fig. 8(b) for oblique surface-wave-propagation reveals that the TRT leads to severe
errors in the dispersion diagrams. Only at the Bragg condition (Brillouin limit), i.e. left edge
of Fig. 8(b) that links to the right edge of Fig. 8(a), will the accuracy of the TRT be
satisfactory, but degrades rapidly as the surface wave vector departs from the principal
direction. For such acute inaccuracies, even the uncorrected ACBC method of (27) provides
better characterization of oblique surface wave propagation.
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2-6 Field distributions

Fig. 9(a) and 9(b) show the variation of the magnitude of the E-field components against
the vertical y-direction for various frequencies within the first surface wave passband (0 to
10GHz according to Fig. 5(a)), whereas the graphs of Figs. 10. are for the H-field components.
As the frequency rises and moves deeper into the first surface-wave regime (2.05 through
9.05 GHz in 1GHz steps, as selected for plotting), the corresponding increased surface-wave

phase constant k™ beyond k.. =w\u, e, and thus strengthened attenuation constant

a;* along the vertical y direction is indeed demonstrated by the progressively steepened

exponential decay of the various field components with increasing frequency. In addition, the
continuity of the |E,|, |Hy and |H,| components across the y = d interface between the
corrugations and the upper half region is.observed as required.

+2.05GHz
-3.05GHz
+4,05GHz
1-+5,05GHz
46.05GHz
-+ 7.05GHz
+8,05GHz
9.05GHz

Figure 9(a): | E,| plotted against y-direction
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[11. Sectorial band gap

3-1 Dispersion diagram corresponding to Brillouin zone

For most of the studies in the literature, the EBG structures usually are used to deal with
the entire bandgap, i.e. within the certain frequency bands, the surface waves are all
suppressed on the EBG surfaces. There are potentially some applications which do not need a
bandgap for all directions but just certain directions. Despite not potentially able to provide
entire bandgap, planar corrugated surfaces are classically known to possess the capacity of
offering surface-wave pass-bands and stop-bands along the directions parallel and
perpendicular to the grooves and ridges, respectively, which are known as hard and soft
surfaces as mentioned. However, no works have yet studied their candidature for serving as
sectorial bandgap structures. We will demanstrate that planar corrugations are able to exude
this capability. By capitalizing on the rapid-surface-wave solution provided by the ACBC, we
shall use the planar corrugated surface as the vehicle to .illustrate how sectorial bandgap
structures can be designed efficiently. This is something which no other periodic structures
without analytic surface-wave solutions can readily afford.

Before we demonstrate the idea of sectorial band-gap and band-pass, we need to introduce
the basis of the dispersion diagram and. Brillouin zone. Brillouin zone is the set of

Figure 11: Brillouin zone
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wavenumbers which can describe the propagation of electromagnetic waves in

two-dimension photonic crystals, as shown in Fig.11, where ko is the wavenumber in free
space. Since we only consider the surface wave, the wavenumber which is vertical to the
corrugation must be pure imaginary, which leads to

ksurface = \fkf + kz2 > k0 (40)

so we just need to consider the region outside the circle for the surface wave case. As shown
in Fig 11, each arrow constitutes a certain surface wavenumber for a certain frequency, but for
the most important aspect here, there is not just only one surface-wave vector-arrow for any
one certain frequency. This will be discussed deeper later.

In Section Il, we show four parts (O—Z, Z—M, M—X, and X—0) of the dispersion
diagram. As mentioned, any one of these parts is obtained by fixing two of these three
unknowns, (i) kx, (ii) k; and (iii) frequency, and then the roots for the remaining unknown are
solved for. If we set ky as an.unknown, and set

k =k, tan(e) (41)
where ¢ is the angle between the-propagation path of the surface wave and the z axis. Then
10
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Figure 12(a): Dispersion diagram for oblique wave as ¢ is 15 degrees
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Figure 12(b): Dispersion diagram for oblique wave as.¢ is 45 degrees

the roots for k, are solved we can get the dispersion diagram for the surface waves
propagating along the path which has ¢ degrees with the z-axis. For the extreme case, we can
take the X—O part as the 90 .degrees cases turning from'O—2Z part. Two arbitrary different
examples are shown in Fig«12,.the.dimensions are as follows: d, = 3mm, d=4mm, &rel,groove =
3 and the values of ¢ are 10 and 45 degrees; respectively.

3-2 Concept of sectorial bandgap

Refer to the fictitious dispersion diagram in Fig. 13 below, which shows traces for various
azimuth ¢ (measured from the z-axis perpendicular to the corrugations) directions of
surface-wave modal propagation, i.e. each trace pertaining to a certain fixed ¢, with the
original dispersion paths of O>Z, Z->beyond included for reference. Let the frequency
corresponding to the Brillouin limit be denoted as f;. The associated surface-wavevector at
this frequency is shown by the arrow in Fig. 14 with magnitude ke™ = 7/d, and directed
along z perpendicular to the corrugations. As the surface-wavevector enters the oblique
nonzero ¢ regime (¢ measured from the z-axis perpendicular to the corrugations), but with k;
maintained at 7/d,, i.e. now the surface-wavevector component along z (k;) is no longer zero,
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both the eigen-frequency and modal surface-wavenumber increases further, the relationship
between them as indicated by the traces corresponding to ks values greater than syt ™ = 7/d,.
For illustration, the surface wavevector at an example frequency of f, (labeled in Fig. 13) is
represented in Fig. 14 by the arrow with magnitude ke . Due to symmetry about both
horizontal and vertical axes, two arrows with magnitude k.t > are shown in Fig. 14 (the same
applies for other oblique surface-wavevectors). As the frequency rises further up to the point
where the next higher-order surface-wave mode starts to emerge at f3 as shown in Fig. 13, the
surface-wavevector is directed towards an even larger ¢ angle as represented by the arrow
with magnitude keus ™ in Fig. 14.

As it can be seen in Fig.13, the original stopband region for zero angular span (phi=0) is
between f; and f3, and for the case when phi is “@p” degrees, the stopband zone is from f; to fs,
so it means as the phi gets larger, the stopband areas get smaller. In other words, we can say
that during the period from f; to fs, there is“‘at least” “op” degrees sectorial band gap area. It
is easily misunderstanding the above -idea in another expression which is Brillouin zone as
shown in Fig.14. The sectorial bandgap angle (dssca, in degrees) is between f1 and f2, but not
between 2 and 3. Also by applying the above idea, we can define the boundary between the
conventional soft andshard surfaces,-which:is the surface-wavevector ks.;" in Fig.14, i.e. the
sectorial bandgap angle corresponding to the frequency which the next mode just appears.

A
)
C
(]
=}
O
(]
o
Specified
.‘ﬂ
o= fs [T A A T
fe
fo= fo .
\15 ecified
g R
>
ksurff:l = ﬂ/dZ st
[rad/m]

Figure 13: Fictitious dispersion diagram
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Figure 14: Top view schematic of corrugation

As mentioned, ‘between frequencies f, and fs;, no surface wave can propagate within the
sector between the two symmetric arrows With k™. (each being.the surface-wavevector at
f2). We call the range between the T, and.f; as sectorial bandgap width (SBGW=f;-f,, indicated
in Fig.14), which means in this area, no surface-waves can propagate within the angular size
with at least “@sgca (Which is. ¢y, in this case)™ degrees. But-why is the SBGW upper-limited
by f3? As the frequency just exceeds this frequency, the next higher-order surface-wave mode
starts to appear and propagate along the x-direction. This of course falls inside the sector and
thus disqualifies frequencies above f; from being included in the SBGW.

3-3 Sectorial bandgap corrugations design

The theory of the sectorial bandgap had been introduced in the previous section, and it will
be convenient if the relationship between the dimension of the corrugation and the sectorial
bandgap angle is known. For example, if the height of the corrugation is known, and also the
target frequency is given, it is possible to provide relationship between the groove material
and the sectorial bandgap angle it can reach. The idea can be done by using the Eq. (31) again.
Substituting Eq. (31) by Eq. (41), setting the k; as Brillouin limit and an arbitrary frequency,
so the relative permittivity of the groove can be solved as the roots.

The dimensions of the corrugation in this example are as following: d = 4mm, d,=2mm,
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and g=1.6mm. Figure 15 shows O—Z path of dispersion diagram obtained by corrected
ACBC method as the relative permittivity is 4.2, and as it is shown, the first and second
stopbands start (which also means the initial point of the Z—M path) from 9GHz and
27.5GHz, respectively. Figures 16 show the relationship between the groove material and the
sectorial bandgap angle, and three different frequencies are discussed here, which are 9GHz,
15GHz, and 27.5GHz. As shown in Fig. 16(a), there are two exponential curves which
represent the first and second mode. Just as mentioned, 9GHz is the start of the first stopband,
and it is shown that the first point (solution) of the first mode starts when the relative
permittivity is 4.2, which corresponds to the initial condition. For the case as the frequency
changes to 15GHz in Fig. 16(b), it is shown that both curves (modes) will move down, which
means that the sectorial bandgap angle gets larger compared to Fig 16.(a) for the first mode.
As the frequency becomes 27.5 GHz, which is the start point of the second stopband, there are
two roots when the relative permittivity is 4.2, as shown in Fig. 16(c). One thing should be
mentioned here, once the new mode enters the passband, even though there has solution for
the first mode, the bandgap-will-be covered by the second mode, so that the phenomenon will
not be seen. There is one thing should be
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Figure 15: O—>Z path of the dispersion diagram for present case
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noticed that the predicted sectorial bandgap angle shown in Figs. 16 are ideal, which is
because the loss tangent of the material in the grooves does not considered in ACBC method,
so the results might have deviations, but the phenomenon still exist.

The same phenomenon may occur in other periodic structures, but the corrugation can
achieve the best result. The reason is that we can notice that compared to the normal periodic
structures, the slope of the Z—M part of the dispersion diagram for the corrugation is steep,
as shown in Fig. 17. Since the slope is steep, the corrugation does not have “any direction”
bandgap, but this special characteristics caused the corrugation achieve the sectorial bandgap
idea. For the normal periodic structures whose slopes are flat, the SBGW may be too small to
clarify which cause the difficulty to reach the idea.

3-4 Simulation results

For the reality, it is difficult to get the dispersion diagram directly, and for most of the
literature, the simplest way to explain the dispersion-diagram will be the scattering parameters.
In this section, the simulation results-for the sectorial bandgap will be shown, and we use the
transmission coefficient to verify the sectorial bandgap theory. Theresults are verified by CST
software.
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Figure 18(a): O—Z part of the dispersion diagram as the material of the

groove is FR4.
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In this section, the dimensions we choose are as following: d = 4mm, d,=2.6mm, and
g=1.6mm, also we examine two different cases, for which the material we choose are FR4 and
Rogers RT6010, whose_relative permittivity is 4.2 and 10.2 respectively. At first, the 0—Z
part of the dispersion diagram.obtained by the ACBC methods for above mentioned
dimensions are shown in Figs. 18. The start frequencies of the stopband in Fig. 18(a) are
8.8GHz and 26GHz, and about 17GHz and 29GHz in Fig. 18(b). Figs. 19 show the top view
of the corrugation in CST simulations, and we use the two identical waveguides as sources
and receivers (the cutoff frequency for the waveguides is 1.53GHz), since the limitation in
CST setting, for verifying the oblique waves on corrugation surface, we rotate the corrugation
for 30 degrees meanwhile fixing the distance of the waveguides. The transmission coefficients
for two different cases are shown in Figs. 20, which represent the relative permittivity as 4.2
and 10.2, respectively. By observing the 0 degree in Fig 20(a), it can be seen that stopband
bandwidth is wider than the prediction as shown in Fig 20(a). The reason is just as mentioned
that it is because that in ACBC method, loss tangent of the material in the grooves is not
considered, so that when dealing with the practical cases, some surface waves may decay in
the grooves. For the material such as Rogers RT6010, the value of loss tangent is much
smaller than FR4, so the simulation error compared to ACBC methods is also smaller, which
is shown in Fig. 20(b). In Figs. 20, the transmission coefficients of oblique waves for 30

34



Transmission coefficient | S21 |

(a) Waveguide (b)
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Figure 20:(b): Transmission coefficient results using-Rogers RT6010 as
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degrees are also simulated. Just as-presumed, the stopband bandwidth gets smaller as the
angle decreases. Take Fig 20(a) as example, 7.5GHz 1s-f; as the symbol in Fig. 14, 9 GHz is f;,
and 12GHz is f;. So during. 9GHz to 12GHz, we can get “at least” 30 degrees sectorial
bandgap angle, and the SBGW 1s:3GHz (which is due to 12GHz-9GHz).

3-5 Measurement results

In this section, the measurement results will be shown. The dimensions of the corrugation
we fabricate are as followings: d, = 2mm, g=1.6mm, d = 4.5mm, and é&el,groove = 4.3. The
structure is shown in Figs. 21, and the dispersion diagram retrieved from ACBC method is in
Fig.22. Two k-band (from 18GHz to 26.5GHz) horn antennas are used as the source and
receiver, and they are put on the corrugation surface. Since the aperture of the horn antenna is
tall from the surface, the absorbers are stuck on the apertures and just leave a thin gap in the
bottom in order to be closer as a surface wave. In the beginning, two horn antennas are placed
face to face, and theoretically, the energy is 100% through so that the value of S,; should be
0dB. But we want the wave to be more like a surface wave propagating on corrugation surface,
the absorbers are added to block most areas of the aperture, so the energy is absorbed. The
setting framework described above is shown in Fig. 23, and the section view is in Fig.24.As

we can see in Fig. 25 that the reference is about -22dB. Then we put the corrugation under the
36
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Figure 21(b): Side view of the fabricated corrugation
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horns, and it can be observed that there exists a stopband region between 21GHz to 26GHz,
for which this region is also the stopband area in dispersion diagram obtained from ACBC
method as shown inFig. 22. Figure 26 shows the comparison as the corrugation rotates 0
degree and 30 degrees. The trends are similar to the simulation results. The larger angles the
corrugation rotates, the start frequency of the stopband will be higher, which means that the
stopband bandwidth is smaller.

40



IV.Relationship between scattering parameters and

dispersion diagram

4-1 Introduction

Most of the time, in order to obtain knowledge of just the width and location in the
frequency spectrum of bandgaps of periodic structures, the use of two-port scattering
parameters is more direct than the dispersion diagram. Nonetheless both approaches have
their own benefits. Scattering parameters can characterize the center frequency, bandwidth,
and the attenuation level of the stop band, while dispersion diagram can show the relationship
between the frequency and wavenumber, further allowing the retrieval of data such as the
phase velocity. For most research in the literature, dispersion diagrams are generated by full
wave simulators, and when it comes to the measurement stage, the diagrams are difficult to
gauge directly, so the scattering parameters-are -used-to explain the dispersion diagram instead.
But scattering parameters-are after all only intermediate results, shedding no insights at all
aboupt the wavenumber at that frequency. It will be more convenient if we could know the
relationship between the scattering parameters.and dispersion diagram, and then we could use
the directly measurable S-parameters to generate the measured dispersion diagram.

For a normal periodic structure whose equivalent circuit is not.complicated, it is easy to
get the expression of the wavenumber by ABCD matrix, which will be briefly introduced later.
But for a more complicated periodic structure, the equivalent circuit is complex, resulting in
the difficulty to deal with the matrix.in the previous method. Since the equivalent circuit is too
complex to analyze, it is a good way to treat this complex-unit cell as a uniform material. In
other words, the scattering parameters are obtained at first, and then we reconsider the unit
cell as a uniform material, deriving the relationship between the scattering parameters and
wavenumbers, finally substituting the measured scattering parameters into the relationship. In
this section, we will show the process of deriving based on a simple theory, and the accuracy
for the transformed dispersion diagram is good.

In [16], Pozar analyzed a periodically loaded transmission line, and its equivalent circuit
is shown in Fig.27, where d is the distance between two unit cells, and b is the value of
susceptance. Since it can be seen as a cascade of identical two port networks, we can use
ABCD matrix to relate the voltages and currents on either side of the unit cell:

= (42)
In C D II’H—l
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Figure 27: Equivalent circuit model of an infinite long periodically
loaded transmission line.

where
cosg jsin— cosg 'sing
A 819 £%7 51 o PN (43)
C D| |..6 o |jp 1] .. 6 0
jsin— cos— jsin— cos—
2 2 2 2

From Eqg. (43), we can get
AD-BC =1 (44)

Now consider the phase_difference between the nth and (n+1)th terminals

V.., =V, exp(=Yd) (45.a)

I, =1,exp(=Yd) (45.b)

Substituting Eq. (45.a) and Eq. (45.b) into Eq. (42), we can get

A_eYd B Vn+1 _ O (46)
C D _eYd In+1
For nontrivial solutions, the determinant of the matrix in Eq. (46) must vanish, leading to
cosh Yd = A+D (47)

For a lossless periodic structure and symmetric network

cospd=A (48)
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Since we know the relationship between p and matrix element A in Eq. (48), and also the
relationship between matrix element A and scattering parameters in two-port networks is
already known, we can easily get the dispersion diagram if we have scattering parameters
data.

4-2 Theory

The relationship between the scattering parameters and wavenumbers introduced by Pozar
is only suitable for simple cases. For a more complex periodic structure, the equivalent circuit
IS not easy to retrieve. Even though the equivalent circuit can be retrieved, the susceptance
would be too complicated, causing difficulties with the calculation using the abovementioned
method. To solve this problem, we can think of it from another perspective, which is by
treating the complex unit cell as a uniform material whose effective relative permittivity and
permeability are & and p,, ‘respectively, as shown.in Fig.28. The representations of the
reflection and transmission coefficients are stated as follow:

<= Fin = S11 (49)
Vr
VT . =Tout = SZl (50)

Considering the multi-reflections in the material as shown In Fig 29, the total reflection
coefficient in Eq. (49) can be represent as

1_‘in = 1_‘12 +T12T21r23 eXp(_2 Jﬂl) +T12T21F§3F21 eXp(_4 Jﬂl) +..

=T, + T, Tl s exp(=2j 4l )ZF23F21 exp(-2jAl) (51)

n=0

Utilizing the formula of sum of the geometric series, which is

o0 0 1
DX 1 x (52)

n=0

we can represent Eq. (51) as

. =I.. + T, T, exp(=2j 1) (53)

; . 1—F23F21 EXp(—Zjﬁl)

Now we assume that both medium in the left-hand side and right-hand side of the material are

air, resulting in
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r12 = _rz3
and we know

Ip,=-Ty
T, =1+,
T, =1-T",

Substituting Eq. 14(a) to Eqg. 14(d) into Eq. (13), we can obtain

_ (A—exp(=2jp)Iy,
" l_rlzz eXp(_Zj/BI)

Similarly, we can obtain the total transmission coefficient

Tout = Ty (LT o) eXPEI ) + Tog (LT05) €XR(=3 AT 150 50 )

Now the common ratio is exp(-2jB1)I'121 23, SO by applying Eq. (52), we can get:

_ Ty @+ T5)exp(—jAl) )
out 1— eXp(_Z J,BI )(r12F23)

Again substituting Eq. 54(a) to Eq. 54(d) into Eq. (57), resulting in

_ @—T%)exp(— D)
T 1 exp(—2j NI,

)

Eliminating the exponential terms in Eg. (55) and Eq. (58), we can get
1—‘122811 -1, (8121 - S221 +D)+ S, =0
Also we can present I'17 in terms of the intrinsic impedance:

- -1
| S B W , Where 7, = A

mtmn o+l &

Substituting Eq. (60) into Eq. (59) results in

—+ (ZI-WLSM)2 _8221
- S11)2 _8221

71
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Similarly, we can eliminate the I'12 in Eq. (55) and Eq. (58), which is

: , S
exp(— A1) = exp(=jkonl) = - —*— (62)
11

or

_(3121 B S221 _1) * \l(slzl - S221 _1)2 - 48221
25,

exp(-Jfl) = (63)

where ko is the free space wavenumber, and n is the refractive index. Also assuming
exp(-jBl)=z, we can present refractive index as:

n= %{[In(z)" +2mz]— j[In(z)]} (64)

where m is an integer.

Here we should set the. conditions for this method. Since we are considering passive
structures, it is subject to the criterion dictating proper choices of the signs of 1 and n, which
are:

720 g NS0 (69

At last, we can retrieve the effective relative permittivity and permeability easily through Eq.
(61) and Eq. (64)

E =" =N7 (66)
7

The wavenumbers can be obtained from Eq. (65)

K =\[&o&, o4, (67)

It should be noticed that the retrieved effective relative permittivity and permeability will
have variation with the frequency since the input data of scattering parameters are functions of
the frequency. Also it is important to know that they are not the only solutions. The reason is
that we can notice in Eq. (64), as different integer m is chosen, different n will be obtained,
yielding different results in Eq. (66). That is the reason we need to build the conditions of Eq.
(65). To make this method reasonable, it is necessary to use another value of m manually if we
find that n or n does not satisfy the conditions in Eq. (65).
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4-3 Verification

In the beginning, the rationalities of the retrieved data in Eq. (67) will be examined. We
construct a new homogeneous material whose effective permittivity and permeability are the
data retrieved by the above mentioned method, and then inspecting the scattering parameters of
the new material. Figure 30 shows the comparison between the corrugation and new material
for the scattering parameters. The deep of S,; obtained by retrieving method is shallow, which
is caused by the limit when setting a dispersive material in the full-wave simulators, but it is
clear that the range of the stopband is similar, which means that characteristic of the new
material can indeed be equivalent to the one of corrugation.

Two arbitrary cases will be proved, and the dimensions are as following: d = 8mm,
d,=1.8mm, g=1.6mm, and the relative permittivity are 10.2 and 6.15, respectively. Figures 31
show the scattering parameters for:these two cases, and Figs. 32 are their corresponding
dispersion diagrams in ACBC method and retrieving method. We can see that retrieving
method matches to the ACBC method almost perfectly. By using this method, we can get not
only just the scattering parameters,-but also more information which is like phase velocity at
measurement stage in.the future.
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Figure 30: Comparison between the new material and the corrugation for the S,;.
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V. Conclusion

In this thesis, a new approximation to analyze slow waves on planar corrugated surfaces
has been proposed. Based on the ACBC, we can derive the characteristic equation of the
corrugation via applying the vector potential method. Also compared to the CST software and
TRT, it is shown that for the ACBC method, its accuracy is as good as CST and the speed is as
fast as TRT, i.e. extracts the advantages from both.

Meanwhile, a novel idea has also been proposed by applying the characteristic equation
obtained by ACBC method, which is called sectorial bandgap. Indeed, for most of the
periodic structures which are always designed for wider bandgap for any direction, there are
potential applications that the bandgap may be needed just in some directions over a certain
frequency range. For example, the corrugations may be used for controlling the direction of
signal propagation in microwave circuits..Another potential application is the reduction of the
cross polarization of some antennas. In"Chapter-11l, we also present a kind of guideline to
show how to design a sectorial bandgap corrugation, which cannot be done for other periodic
structures without their own characteristic equations.

At last, the relationship of the-scattering parameters and the - wavenumbers is introduced.
Due to the complex equivalent circuit of the corrugations, the use of ABCD matrix is not
proper here. Instead, an interesting aspect based-on [17] is shown, which is to take the
corrugation as a new whole structure, and the last dispersion diagram transformed from
scattering parameters are matched well to.the ACBC method.

The work in this thesis is not the end but a pioneer, since we hope to reach the potential
application we mentioned above in the future, and also we wish to provide a more accurate
guideline to let the designers reach their standard.
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