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利用漸近邊界條件分析表面波於皺褶結構之色散 

學生：嚴大龍 指導教授：黃謀勤 博士 

 

 

國立交通大學電信工程研究所碩士班 

摘 要       

電磁能隙(Electromagnetic Bandgap, EBG)結構在近年來被廣泛的研究

與應用，而皺褶性結構是其代表之一。在探討 EBG 結構時，色散圖

(Dispersion diagram)和反射相位(Reflection phase)是兩個最重要的特

性。在此篇論文中，我們將研究如何準確及快速地獲得皺褶性結構的色散

圖，藉由近似法和邊界條件，從基本向量勢與電磁場的關係中推導出其特

徵方程式，從方程式進而得到完整的色散圖。接著我們會與傳統獲取色散

圖的方法: 橫向共振技術 (Transverse Resonance Technique, TRT)以及

模擬軟體來做比較，藉此來評估其準確性及快速性。我們最後也實際建造

了一個皺褶性結構，藉由散射參數來間接證明此特徵方程式所得的色散

圖。 

 

傳統上研究皺褶性結構時，會著重當波行進方向為在皺褶結構表面上 0

度或者 90 度時的情況，也就是所謂的軟和硬表面(Soft/Hard surfaces)。

此篇論文會進一步探討波斜向入射時的情況。藉由觀察皺褶性結構的色散

圖，我們將會發現其與一般週期性結構不一樣的地方，故我們亦會研究此

特性對於不同方向的表面波在皺褶性結構上行進時會有何影響。 

 

  在量測階段時，通常無法直接獲取色散圖，而必須透過散射參數來間接

說明，然而我們希望能夠透過量測還原出色散圖。因此在此篇論文，我們

探討散射參數與波數之間的關係，期許可以將量測的散射參數有效地還原

成色散圖。目前我們已經可以將模擬的散射參數數據還原成色散圖，期許

將來可以應用在實際地量測數據。 
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ABSTRACT 

Electromagnetic bandgap (EBG) structures had been widely investigated in 

literature in recent years, and the planar corrugated surface is one of them. In 

studying such structures, the dispersion and reflection phase diagrams are two of 

the most important characteristics. In this thesis, we will study how to retrieve 

the dispersion diagram of the corrugations accurately and rapidly. By an 

asymptotic method and the use of classical vector potentials, we can derive the 

characteristic equation, thereby obtaining the surface-wave dispersion diagram. 

To demonstrate its accuracy and quickness, the method we proposed will be 

compared to a full wave simulator and the transverse resonance technique (TRT), 

the latter being a traditional method for getting the dispersion diagram. Finally, 

we fabricated a corrugation, and measure its scattering parameters to indirectly 

verify the dispersion diagram obtained by the method we proposed.  

In traditional studies of corrugations, surface-wave propagations along only 

the two principal directions are considered, pertaining to the so-called soft and 

hard surfaces. In this thesis, we will further explore the situation whereby the 

wave propagates obliquely on the surface. By observing the dispersion diagram 

of the corrugations, we will notice its difference compared to normal periodic 

structures, and then explain the wave propagation properties on the corrugation 

surface. 

At the measurement stage, it is difficult to get the dispersion diagram directly, 

and usually the scattering parameters are used to explain the width and position 
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in the frequency spectrum of the bandgaps. In the thesis, the relationship of the 

scattering parameters and wavenumbers are discussed, so that the measured 

scattering parameters can be transformed to the dispersion diagram effectively. 

So far we succeed in transforming the simulated scattering parameters to the 

dispersion diagram, and we hope this method can be applied to measured data in 

the future. 
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I. Introduction 

Corrugations have been an objective of keen interest in electromagnetic theory for many 

decades. Elliott was one of the earliest pioneers, who studied the surface wave propagation 

over a corrugated metallic ground plane, and has been concerned with the problem where the 

directions of wave propagation across the surface is normal to the corrugations [1]. Since the 

wave propagation direction will not always be normal to the corrugation, Hougardy and 

Hansen studied the surface wave propagation along an oblique angle with the orientation of 

the corrugations [2].  

Theoreticians and computational enthusiasts were not the only ones captivated by this 

structure. Experimentalists and practical engineers have, likewise for the past many years, 

been making use of corrugations to develop improved microwave devices such as waveguides 

and antenna. The most known applications for corrugation are soft and hard surfaces, and the 

ideas were first introduced by Kildal [3] [4]. These surfaces triggered interests from enormous 

researchers because they can control the behavior of wave propagation over them. In other 

words, wave propagation can either be suppressed (soft) or enhanced (hard) on these surfaces, 

as shown in Fig.1. For examples, the soft surface is often called “chokes” and used to reduce 

the cross-polarization and sidelobes in particular directions. The hard surface is used to design 

hard horns which have high aperture efficiency or reduce scattering from masts that block the 

radiation field of an antenna [5].   

 The soft and hard surfaces have similar notions with the electromagnetic bandgap (EBG) 

structures, whereby both demonstrate the wave propagation existed in some frequency band 

and prohibited in others. In [6], the EBG structures are defined as artificial periodic objects 

that prevent/assist the propagation of electromagnetic waves in a specified band of frequency 

“for all incident angles” and all polarization states, while only for some specular angles for 

soft and hard surfaces. The EBG structures have become a popular topic in the antenna 

community since its useful application. The attracting features include designing an efficient 

low profile wire antenna near a ground plane [7], being applied for high gain resonator 

antennas [8], and for surface wave suppression [9]. Despite the numerous works on 

corrugated surfaces found in literature, none has studied them in terms of the dispersion 

diagram conveying the surface-wave passband and stop-band properties, or presented 

characteristic equations from which the aforementioned diagram is obtained. Field 

distributions of the surface wave modes supported by the corrugations are also nowhere to be 

found. 

The main properties when investigating the periodic structures will be the dispersion 

diagram and reflection phase. In this thesis, we will focus on the points with the dispersion 

diagram of the corrugation. Due to the complexity of the EBG structures, it is usually difficult 

to characterize them by analytical methods. So we can utilize approximate boundary  
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conditions (ABC) to provide an approximate relationship between the electric and magnetic 

field on a chosen surface. The simplest case might be the first order impedance conditions, 

sometimes referred to as SIBC (Standard Impedance Boundary Conditions), which are 

applicable at the surface of a lossy dielectric. For some cases, the accuracy of SIBC is not 

sufficient, so generalized impedance boundary condition (GIBC) with more degrees of 

freedom is proposed to have higher accuracy. The works in [10] and [11] have used such 

approximate impedance boundary conditions to study corrugated surfaces. In fact, some 

approximations have been around for a long time, even though the classical condition Etan =0 

at the surface of a metal is regarded as exact, but actually it is also the approximation even at 

microwave frequencies.  

In early periods, in order to analyze corrugated and strip-loaded surface accurately, the 

fields must be expanded to Floquet modes or parallel plate waveguides modes which are very 

difficult and complicated. In [12], Kildal presented asymptotic corrugation and strip-loaded 

boundary conditions (ACBC and ASBC) for analysis of corrugated and strip-loaded surfaces, 

respectively. In this thesis, ACBC is used to derive the characteristic equation and thus obtain 

the dispersion diagram of planar corrugated surfaces, which has not been studied in other 

literatures so far. After observing the dispersion diagram, the unique and special characteristic 

of the corrugation will be discussed.  

So far in the literature, most of the studies for periodic structures were working on 

achieving entire bandgap capabilities, especially seeking for a wider bandgap, for example, 

the mushroom-like surface and its modified types [13][14], as shown in Figs 2. However, not 

all applications require the suppression of surface-wave propagation in all directions on the 

surface. In fact, there may potentially be numerous situations where such entire bandgap 

(a) 
(b) 

Figure 1: (a) Hard (b) soft surfaces 
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behavior is actually not needed at all, and some may even require suppression along only 

some directions but permission in all others. In other words, surface-waves are suppressed in 

certain directions but prohibited in other directions. The corrugated surface is one object we 

found which can achieve this idea. The reason is that corrugations can simultaneously process 

different bandgaps with respect to the different angles of incident surface waves. The 

phenomenon may also occur in other periodic structures, but we will show later that 

corrugations can reach the best effect.   

In the final section of this thesis, we will introduce the relationship between the scattering 

parameters and the wavenumbers. The original goal was to obtain the dispersion diagram, but 

when it comes to the measurement stage, unfortunately, it is impossible to measure the 

wavenumbers directly. So most of the time in the literature, the way to explain the width and 

position in the frequency spectrum of bandgaps is through the scattering parameters, which 

are reflection and transmission coefficient (︱S11︱ and︱S21︱). For structures that can be 

represented by equivalent circuits, it is possible to get the relationship between the scattering 

parameters and wavenumbers by the ABCD matrix. But for more complex structures, the 

computation may be too elaborate. In [14], a method was described to retrieve the complex 

permittivity and permeability. We shall herein employ it to the scattering parameters of the 

corrugated surface to construct the dispersion diagram, which is then verified with the one 

generated by the characteristic equation derived from ACBC.   

 

 

 

(a) (b) 

Figure 2: (a) Mushroom-like EBG structures, (b) multi-via cascaded 

mushroom-like EBG structures. 
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II. Theory 

2-1 Characteristic equation of the corrugation 

    The total E and H field are obtained by the superposition of the individual field due to A 

and F, where A and F represent the magnetic and electric vector potential, respectively.  

1 1
[ ( )] ( )A FE E E j A j A F

 
                                    (1) 

1 1
( ) [ ( )]A FH H H A j F j F
 

                                  (2) 

(1) and (2) can be expanded and be written as  

22 2

2

22 2

2

22 2

2

1 1
[ ( ) ( )]

1 1
[ ( ) ( )]

1 1
[ ( ) ( )]

y yx z z
x x

yx xz z
y y

y yx xz
z z

A FA A F
E a j A j

x x y x z y z

AA FA F
a j A j

x y y y z z x

A FA FA
a j A j

x z y z z x y


 


 


 

   
      

      

  
      

      

  
      

      

                (3a) 

22 2

2

22 2

2

22 2

2

1 1
[ ( ) ( )]
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[ ( ) ( )]
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[ ( ) ( )]

y yx z z
x x

yx xz z
y y

y yx xz
z z

F AF F A
H a j F j
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FF AF A
a j F j

x y y y z z x

F AF AF
a j F j

x z y z z x y


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
 


 

   
      
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      

      

  
      

      

               (3b)   

Since we want the field expressions that are independent of the coordinate system, for the 

transverse magnetic (TM) modes, it is acceptable to let the vector potential A have only a 

component, and the remaining components of A as well as all of F are set to be zero. To 

express the surface waves on the corrugation in Fig. 3, we derive the field expressions that are 

TM to y. Let 

( , , )y yA a A x y z                                                      (4a) 

 0F                                                                  (4b) 
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Then 

        
2

1 y

x

A
E j

x y


 

 
,          

1 y

x

A
H

z


 


 

       
2

2

2

1
( )y yE j A

y





  


,   0yH   

 
2

1 y

z

A
E j

y z


 

 
,         

1 y

z

A
H

x





                                    (5)                            

Similarly, we let the F vector potential have only a component in the y direction, and set the 

remaining components F and A as zero, then we can get the transverse electric (TE
y
) modes. 

Let 

    0A                                                                  (6a) 

 ( , , )z zF a F x y z                                                        (6b) 

Then 

        
1 y

x

F
E

z





,         

2
1 y

x

F
H j

x y


 

 
 

        0yE  ,            
2

2

2

1
( )y yH j F

y





  


                            

     
1 y

z

F
E

x


 


,       

2
1 y

z

F
H j

y z


 

 
                                     (7) 

The next step is to discuss the fields for two cases, in the groove region and above the 

corrugations, respectively, and two different modes for each case. At first, we consider the 

fields within the grooves of TE
y
 and TM

y
 modes, and the boundary conditions are as follows: 

Figure 3: Infinite-long planar corrugated surface. 

pa  

oa  
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    ( ) 0
2

x

g
E z    , ( 0) 0xE y    

( ) 0
2

y

g
E z    , ( 0) 0zE y                                               (8)  

Also we assume the expression of the vector potential A is as: 

cos sin cos sin( , , ) [ cos( ) sin( )]{ cos[ ( )] sin[ ( )]}
2 2

xo
jk x

y y y y y z z z z

g g
F x y z e C k y C k y C k z C k z


      (9) 

Then with (9) substituted into (5) and (7), 
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                                     (10a) 
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                                                           (10b) 
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                                     (10c) 
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                                (10d) 
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    
    
     

                     (10e) 

xo

yTE TE TE

y TE TMTM

jk xgroove groove groove
z TE y z y

groove groove groove
groove groovez TM y z y

p
eH A k S Cg

j uE A k C S



 


   
     
     

                               (10f) 

where 

cos[ ( )]
2

sin[ ( )]
2

z

z

p g
z

C g

S p g
z

g





 
  

  
    
 

, and 
cos( )

sin( )

T T

T T

groove
y y

groove
y y

C k y

S k y

 

 

  
  
     
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in which ξ may be the E or H, and p is the 0,1,2…. 

Next we discuss the fields in the region above corrugations (y > d), and assume its vector 

potential A is as follows: 

( )

( , , ) e
above above
y zxo TM TM

jk y d jk zjk xabove above

y TMA x y d z A e e
  

                                (11) 

Then using (5) and (7) to substitute for (11) 

( )

e
above above
y zxo TE TE

y TETE

oyTE

above jk y d jk z abovejk xabove
x zTE

above
above xz

E kA j e e

kE 

     
    
     

                             (12a) 

0
yTE

yTM

above

y

above

y

E

H

 
  
 
 

                                                            (12b) 

( )

2 2e
( )

above abovey o TETE y zxo TE TE

y TETE

TE TEyTE

above above
x x yjk y d jk zjk xabove
above aboveTE
y above y

above above above aboveabove
y zz

H k k
A e e

H k k
j

k kH
 

  

   
   
    
   

    

                       (12c) 

( )

2 2e
( )

above abovey o TMTM y zxo TM TM

y TMTM

TM TMyTM

above above
x x yjk y d jk zjk xabove
above aboveTM
y above y

above above above aboveabove
y zz

E k k
A e e

E k k
j

k kE
 

  

   
   
    
   

    

                       (12d) 

( )

e
above above
y zxo TM TM

y TMTM

oyTM

above jk y d jk z abovejk xabove
x zTE

above
above xz

H kA j e e

kH 

     
    

     

                              (12e) 

   The unit vectors parallel and orthogonal to the corrugations are defined as pa  and oa  , 

respectively. According to [12], the asymptotic corrugation boundary conditions are stated as 

follows: 

ˆ 0groove pE a                                                                    (13a) 

ˆ 0above

pE a                                                                    (13b) 

? above

groove o oE a E a                                                                (13c) 

? above

groove p pH a H a                                                            (13d) 

Assuming pTE=0 and pTM=0, i.e. we only consider the dominant mode of TE and absence 
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of all the TM modes. When pTE=0, 0
yTE

groove

xE   in (10a), meanwhile 0
yTM

groove

xE   when we 

ignore the TM modes, so the boundary conditions of (13a) is automatically satisfied. As for 

(13b), we require 

( ) ( ) 0
y yTE TM

above above

x xE y d E y d                                                  (14) 

For phase continuity, we can get 
0

univ

x xk k  and 
TM TE

univ above above

z z zk k k  . So we can obtain 

univ univ
x z

univ
jk x jk zabove z

TE

abv

jk
A e e



 


univ univ
TM x z

univ above

x y jk x jk zabove

TM

abv abv

k k
A e e

j 

 
 0                    (15a)          

Then 

   

TM

univ
above aboveabove z
TM TEuniv above

x y

k
A A

k k


                                                (15b)                   

As for (13c), we require 

0  = 0

( ) ( ) ( ) ( )
y y y yTE TM TE TM

TE TM

groove groove above above

z z z z
p p

E y d E y d E y d E y d


                      (16) 

in which the second term on left hand side is vanished since we assumed that no TM modes 

exist within the groove. Using (10c), (12a), and (12d) to substitute in (16) 

 0

0

0

sin
univ univ
x z z

TE

univ univuniv univ
TMx xz z

z

jk x jk idgroove groovex
TE y

i groove

above univ

y zjk x jk xjk z jk zabove abovex
TE TM

d
abv abv abv

jk
A e k d e

k kjk
A e e A e e

j



  

 

  





              (17) 

where i is the groove index, noting how the left-hand side quantity varies with z in a stepwise 

manner, with each term of its summation being a piecewise constant within the i
th

 groove, i.e. 

idz – g/2 < z < idz + g/2. Now we only focus on the ith groove, so the summation over the 

groove index on the left-hand side is removed, resulting in 

 0 0

0
2 2

sin
univ univ

TMz z z

TE
z z z

above univ

y zjk id jk zgroove groove above abovex x
TE y TE TM g g

d id z id
groove abv abv abv

k kjk jk
A k d e A A e

j   

 

    

 
  

 

  (18) 

And as the period dz tends to zero, the 
univ
zjk ze  factor on the right-hand side of (18) becomes 

approximately
univ
z zjk id

e
 . This expresses that the continuous variation with z can be 

approximated as a piecewise discrete constant over the i
th
 groove of nearly zero width. Hence 

the resultant 
univ
z zjk id

e
  gets canceled out on both sides, leading to 
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 0 0sin TM

TE

above univ

y zgroove groove above abovex x
TE y TE TM

groove abv abv abv

k kjk jk
A k d A A

j   
                             (19a) 

Using (15b) to substitute for above

TMA  in (19a), yielding 

 
2 2 2( )

sino o

TE

univ

x x zgroove groove above

TE y TE

groove above

k k k
A k d A

 


                                    (19b) 

As for (13d), we require 

0  = 0

( ) ( ) ( ) ( )
y y y yTE TM TE TM

TE TM

groove groove above above

x x x x
p p

H y d H y d H y d H y d


                      (20) 

in which again the second term on the left hand side is vanished. 

To replace (20) in (10a), (10d, and (12e) 

 0

0

0

cos
univ univ

TE x z z

TE

univ univuniv univ
TE x xz z

z

groove

x y jk x jk idgroove groove

TE y

i groove groove

above univ
x y jk x jk xjk z jk zabove above z

TE TM
d

abv abv abv

k k
A e k d e

k k jk
A e e A e e

j

 

  

 

  





 


                          (21) 

And as the same process from (17) to (19), we can modify (21), leading to  

 0 0
cosTE TE

TE

groove above univ
x y x ygroove groove above above z

TE y TE TM

groove groove abv abv abv

k k k k jk
A k d A A

j    
                     (22a) 

Using (15b) to substitute for above

TMA  in (22a), yielding 

 
2 2 2

0
( )

cos o TE TMTE

TE

o TM

above above univgroove above
x y y above above zx ygroove groove TE

TE y above

groove groove above above x y

k k k kk k jA
A k d

k k

  

   


          (22b)    

As observed, we can see that since the left hand side is pure real (
TE

groove

yk  is real), the right 

hand side must be real. In order for this, the 
TE

above

yk  and 
TM

above

yk  must be pure imaginary such 

that their product in numerator becomes real, whereas the remaining 
TM

above

yk  in denominator 

causes the whole right hand side equation to be imaginary. This conforms with what we 

expect of 
TE

above

yk and 
TM

above

yk , being wavenumbers along vertical direction perpendicularly away 

from corrugation xz-surface, which should be indeed be imaginary in order for surface wave 

along xz plane surface of corrugation, i.e. decaying fields as one observe perpendicularly 

away from corrugation surface. Hence  
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TE TE

above above

y yk j  and 
TM TM

above above

y yk j                                      (23) 

Thus, with two replacement made, (22b) becomes 

 
2 2 2

0
( )

cos o TE TMTE

TE

o TM

univ above abovegroove

above z x y yx ygroove groove above

TE y TE above

groove groove above above x y

k k kk k
A k d A

k

 

    


                  (24) 

Dividing (19b) by (24)  

 

 

2
2

2
2 2

tan( )
o TM o

o

TE

TE
o TE TM

above univ

above x y x z
groove x groove

ygroove univ above above
y above z x y y

k k kk
k d

k k k k

 

 

 
  


                               (25) 

The general formula for 
TE

groove

yk  is given by 

   
2 2

2

TE

groove univ groove

y groove groove x zk k k                                          (26a) 

Again we only consider the dominant mode under ACBC, which means pTE=pTM=0, so groove

zk  

is zero, i.e. 

0groove

z TE TMk p g p g    , under ACBC                                     (26b)    

So (26a) becomes 

 
2

2

TE

groove univ

y groove groove xk k    , under ACBC                                   (26c) 

We may equate both TE and TM attenuation constants along the vertical y direction for the 

upper half-space region above corrugation as the explanation just after (14), yielding  

TE TM

above above above

y y y
say

                                                         (26d) 

With  

     
2 2 2

2above univ univ

y x z abv abvk k                                             (26e)   

At last, based on (26a) to (26e), we can modify (25) as 

   

   

2 2
2 2 2

2 2

2 2 2 22 2 2

tan( ) 0
o o

o

oo

univ univ

above x z x z above
groove

groove x
univ univ

groove xabove z x z above

k k k k k
k k d

k kk k k k k

 
   
     

    
  

      (27)   

where 

2groove groove groovek f   , 2above abv abvk f                                  (28) 

Eq.(27) is the characteristic equation of the corrugation. 
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2-2 Refinement factor of the characteristic equation 

  The surface impedance looking down at y=d towards the PEC floor of the corrugations is 

defined as follows: 

( )

( )

yTE

yTE

groove
TE

z
groove

s groove

x

E y d
Z

H y d


 


                                                  (29a) 

substituting (10a) and (10f) into (29a), yielding 

 tan
TE

TE

TE
groove groovegroove

ys groove

y

Z j k d
k




                                              (29b) 

where 
TE

groove

groove yk  is the familiar TEy modal impedance Zc
TE, therefore obtaining the 

familiar input impedance of a shorted transmission line of length d. 

Similarly, the input impedance looking up at y=d interface into the upper-half space is: 

   
2 2

2

( ) ( )

( ) ( )

y yTE TE

y yTE TE

above above
TE

x z
above abv abv

s above above above
univ univz x y
x z above

E y d E y d j j
Z

H y d H y d
k k k

 



 
    

 
 

       (30)  

being the familiar TE modal impedance, where as 

   
2 2

2( ) ( )

( ) ( )

y yTM TM

y yTM TM

above above univ univ aboveTM
x z x z above yabove

s above above

z x abv abv

E y d E y d k k k
Z

H y d H y d j j



 

   
    

 
         (31)  

being the familiar TM modal impedance. 

  The whole Ex and Ez in the numerators of the expressions for these impedances seems exist, 

but actually it is only under the ACBC conditions. As mentioned, ACBC is an approximate 

method to analyze corrugation, and its hypothesis is that we assume the ridge is tending to 

zero. For the real case, there exist widths for the ridges, so (27) may produce some errors in 

its results compared to the simulation or measurement The Ex and Ez vanish over the top PEC 

surfaces of the metallic ridge, hence, it is fairly presumed that the E
above

 fields on the 

corrugation surface may be corrected by an incremental (> 1) factor dz/g, where dz is the 

corrugation period and g is the groove-width. By doing this, in reality, the E
above

 fields on the 

corrugation surface with the reduction factor (< 1) (as required by the fractional existence of 

the tangential E-field components over only apertures of the grooves, and vanishing over the 

ridge-top) will neutralize that aforementioned incremental factor, thereby maintaining the 

abovementioned impedances, since there is no for these impedances to be changed.   

The equation containing E
above

 should all be modified, which are (14) and (16), and it can 

be seen that this multiplicative correction factor would get canceled throughout (14), meaning 

that only (16) should be modified, which is  
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( ) ( ) ( )
y y yTE TE TM

groove above abovez
z z z

d
E y d E y d E y d

g
     
 

                              (32a) 

again using (10c), (12a), and (12d) to substitute in (32a), obtaining 

 0 0sin 0TM

TE

above univ

y zgroove groove above abovex xz z
TE y TE TM

groove abv abv abv

k kjk jkd d
A k d A A

g g j   
                    (32b) 

so the last characteristic equation is also changed to 

   

   

2 2
2 2 2

2 2

2 2 2 22 2 2

tan( ) 0
o o

o

oo

univ univ

above x z x z above
groovez

groove x
univ univ

groove xabove z x z above

k k k k k
d

k k d
g k kk k k k k

 
   
     

    
  

    (33) 

Depending on which two of the following three quantities: (i) frequency f = ω/(2π), (ii) 
univ

xk , and (iii) univ

zk  we choose, the third quantity remains as the only unknown in this (33), 

which may then be solved for as roots of this characteristic equation. Doing so yields the 

required information for plotting various path-regions of the dispersion diagram (OZ, 

ZM, MX, or XO). If we know the frequency and set univ

xk  as zero, we can get the root 

of univ

zk , which is the OZ of the dispersion diagram, where Z refers to the Brillouin limit, π / 

dz. Similarly, setting the univ

zk as Brillouin limits, and solve the root for, we can get ZM part. 

The dispersion diagrams generated by the present ACBC-based method are compared with 

commercial full-wave simulator software: CST Microwave Studio
® .

 Two arbitrary examples 

shall be studied as follow. 

 

2-3-1 An arbitrary example 

The parameters are as follow: period dz = 2mm, groove-width g = 0.85*dz, depth d = 8mm, 

εrel,groove = 2 and μrel,groove = 1. As seen, the roots of the characteristic equation produce a 

dispersion trace which takes on the form of cyclic „peaking‟ of the kz
univ

 at various resonant 

frequencies in Fig. 4(a). Moreover, the trace just „grazes‟ the light-line, i.e. it is tangent to it, 

occurring at frequencies slightly above those whereby the trace has dropped back to its local 

minima and begun to rise again. In fact, the backward trace of the dispersion diagram in Fig. 

4(a) is not exist, the reason why it appears is because the magnitude of the „backward‟ part is 

small, and even though it is small, the algorithm we used in Matlab still can detect these roots. 

The comparison to the CST simulation results will be shown in the next section, and we will 

see that no backward trace is shown in the simulation results. 

 Interesting aspect is now pointed out. The frequencies at which the peaks occur coincide 

perfectly with the so-called “soft” frequencies [3] of the corrugations, defined as 
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 Figure 4 (a): OZ path of the dispersion diagram 

Figure 4 (b): ZM path of the dispersion diagram 
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   ,2 1 4soft

n soft rel groovef c n d                                   (34) 

where n is an integer representing the order of the soft boundary condition, c is the speed of 

light in vacuum, dsoft is the depth of the corrugations at which the soft boundary condition 

holds, and εrel,groove is the relative permittivity of the dielectric filling the grooves. 

 

 

2-3-2 ACBC method compared to CST 

   The parameters are as follow: period of the unit cell dz = 3mm, groove-width g = 0.55*dz, 

depth d = 4mm, εrel,groove = 3 and μrel,groove = 1. The dispersion diagram obtained in this section 

is from Eq. (38), which are corrected characteristic equation, but not Eq. (27), and we will see 

the good match between the corrected ACBC methods and CST. The comparison between the 

uncorrected and corrected ACBC methods will be discussed in the next section. As additional 

results and still on this second example, the dispersion graphs for three other paths of the 

typical “OXMYO” dispersion diagram typical of two-dimensional periodic EBG 

structures are given in Figs. 5(b), 5(c), and 5(d), providing the “XM”, “MY”, and 

“YO” (ZM, MX, and XO for the present example) portions, respectively. However, 

for the present case of corrugations, there is actually no periodicity in the direction (x here) 

along them. Nonetheless, we shall still set the Brillouin limit along this direction as π divided 

by the same period (along z) of the corrugations, thus assuming a square unit cell (although 

strictly, the unit cell is an infinitely long strip in the zx plane of the corrugations, infinitely 

long along x, the orientation of the corrugations). For the “OX” (OZ for the present 

example) part shown in Fig. 5(a), as observed, only the rising parts of the „peaking‟ trace after 

the „grazing‟ are relevant, which is because just as mentioned, the algorithm we use may 

detect some small deviated data which are negligible. But the comparisons between the 

present ACBC method and CST for all three graphs of Fig. 5(b) through 5(d) demonstrate fine 

agreement, thereby further substantiating the present technique. 
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Figure 5 (a): Comparison between the CST simulation results and corrected 

ACBC method for OZ path. 

Figure 5 (b): Comparison between the CST simulation results and 

corrected ACBC method for ZM path. 
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Figure 5 (c): Comparison between the CST simulation results and 

corrected ACBC method for MX path. 

 

Figure 5 (d): Comparison between the CST simulation results and corrected 

ACBC method for OX path (conventional OY path.). 
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2-4 Influence of refinement factor 

  In this section, the accuracy of the refinement factor for the characteristics equation will be 

shown, and we study the OZ part first. The parameters we choose are as follows: dz = 1mm, 

d = 5mm, εrel,groove = 3, μrel,groove = 1, and comparing two different example which are g/dz =0.2 

and g/dz =0.7. Just as mentioned, ACBC is an “approximate” method to analyze the 

corrugation, and the approximation is that ridge tends to be zero. In other words, if the width 

of the ridge is larger in a period, the result showed by uncorrected ACBC methods will be 

more inaccurate, so that is why we need the refinement factor. Fig. 6(a) and Fig. 6(b) show 

the comparison of the dispersion diagram for the OZ part resulting from Eq. (27) 

(uncorrected ACBC methods) and Eq. (33) (corrected ACBC methods), and both are 

discussed in two cases which are g/dz =0.2mm and g/dz =0.7mm, respectively. Since the 

accuracy of the corrected ACBC methods has been proven in the last section, it will be used 

as a standard here. It can be seen that no matter what value of g/dz is, it does not affect the 

dispersion diagram resulting from ACBC method without correction method, and for which is 

not so practical. As the groove width gets smaller, which means the condition gets farther than 

the uncorrected ACBC, the improvement effects from the correction factor gets better. The 

similar situations also happened to the ZM part, which are shown in Fig 7(a) and Fig 7(b). 

In fact, from our simulation results for the entire parametric space, we found that the accuracy  

  

 

Figure 6(a): Comparison between the uncorrected and corrected 

ACBC method for OZ path as the g/dz =0.2. 
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Figure 6(b): Comparison between the uncorrected and corrected 

ACBC method for OZ path as the g/dz =0.7. 

Figure 7(a): Comparison between the uncorrected and corrected 

ACBC methods for ZM path as the g/dz =0.2. 
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of the unrefined ACBC method is properly satisfactory when g/dz is greater than 0.7, but 

degrades rapidly as the ratio falls below this threshold value, for which the refined dispersion 

relation of Eq. (33) would then be required. 

 

2-5 ACBC method compared to TRT 

   Actually, the dispersion diagram of the corrugation has been investigated decades ago, 

which is transverse resonant technique (TRT). The characteristic equation is obtained by 

matching impedance in [15], whereas with the assumption that only the TM modal exist for 

y>d. We will briefly introduce how its characteristic equation comes. 

    The impedance looking upward is that of a TM wave propagating in the y-direction, 

yielding 

y

upward

o

k
Z


                                                              (35) 

the impedance looking down into the corrugation would be 

 tanr
downward groove

r

jW
Z k d

W t







                                            (36) 

where W is the period and t is the ridge width, We can see that (36) is quite similar to (29b), 

Figure 7(b): Comparison between the uncorrected and corrected 

ACBC methods for ZM path as the g/dz =0.7. 
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the former one is for TM modal while the latter one is for TE modal, and also (36) has already 

considered the incremental factor 
W

W t
.  

So by TRT theory, matching impedance at y=d requires that 

upward downwardZ Z                                                        (37) 

resulting in 

   
2

2 2

0 0 0 04 4 tan 2
rg

z g g

rg

W f
k f fd

W t


       



 
   

 
                     (38) 

for OZ part. And 
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

  

       

  

                    (39) 

for ZM part. 

 Figs. 8 show the comparison between the ACBC method and TRT method which is from the 

book written by Carlton H Walter. The dimension is the same as Fig. 5(a). We can see from 

Fig. 8(a), for OZ part, TRT method matches well to the corrected ACBC methods, and also 

the information is obtained that corrected ACBC method really improves the accuracy for the 

uncorrected ACBC method (since we have already proved in Fig. 5(a) that corrected ACBC  

method matches well to the CST software, we use the former one as the standard). Just like 

the ACBC method, the cyclical „peaking‟ of the kz at various resonant frequencies is also 

exhibited by the TRT, and its traces also just „graze‟ the light-line, i.e. are tangent to it.   

However, Fig. 8(b) for oblique surface-wave propagation reveals that the TRT leads to severe 

errors in the dispersion diagrams. Only at the Bragg condition (Brillouin limit), i.e. left edge 

of Fig. 8(b) that links to the right edge of Fig. 8(a), will the accuracy of the TRT be 

satisfactory, but degrades rapidly as the surface wave vector departs from the principal 

direction. For such acute inaccuracies, even the uncorrected ACBC method of (27) provides 

better characterization of oblique surface wave propagation. 
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Figure 8(a): Comparison between the corrected ACBC method 

and TRT for OZ path. 

 

Figure 8(b): Comparison between the corrected ACBC method 

and TRT for ZM path. 
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2-6 Field distributions 

Fig. 9(a) and 9(b) show the variation of the magnitude of the E-field components against 

the vertical y-direction for various frequencies within the first surface wave passband (0 to 

10GHz according to Fig. 5(a)), whereas the graphs of Figs. 10. are for the H-field components. 

As the frequency rises and moves deeper into the first surface-wave regime (2.05 through 

9.05 GHz in 1GHz steps, as selected for plotting), the corresponding increased surface-wave 

phase constant univ

zk  beyond 
above abv abvk    and thus strengthened attenuation constant 

above

y  along the vertical y direction is indeed demonstrated by the progressively steepened 

exponential decay of the various field components with increasing frequency. In addition, the 

continuity of the |Ez|, |Hx| and |Hy| components across the y = d interface between the 

corrugations and the upper half region is observed as required.  

 

 

 

Figure 9(a): |Ey| plotted against y-direction 
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Figure 9(b): |Ez| plotted against y-direction 

 

Figure 10(a): |Hx| plotted against y-direction 
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Figure 10(b): |Hy| plotted against y-direction 

 

Figure 10(c): |Hz| plotted against y-direction 
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III. Sectorial band gap  

3-1 Dispersion diagram corresponding to Brillouin zone 

   For most of the studies in the literature, the EBG structures usually are used to deal with 

the entire bandgap, i.e. within the certain frequency bands, the surface waves are all 

suppressed on the EBG surfaces. There are potentially some applications which do not need a 

bandgap for all directions but just certain directions. Despite not potentially able to provide 

entire bandgap, planar corrugated surfaces are classically known to possess the capacity of 

offering surface-wave pass-bands and stop-bands along the directions parallel and 

perpendicular to the grooves and ridges, respectively, which are known as hard and soft 

surfaces as mentioned. However, no works have yet studied their candidature for serving as 

sectorial bandgap structures. We will demonstrate that planar corrugations are able to exude 

this capability. By capitalizing on the rapid surface-wave solution provided by the ACBC, we 

shall use the planar corrugated surface as the vehicle to illustrate how sectorial bandgap 

structures can be designed efficiently. This is something which no other periodic structures 

without analytic surface-wave solutions can readily afford. 

   Before we demonstrate the idea of sectorial band-gap and band-pass, we need to introduce 

the basis of the dispersion diagram and Brillouin zone. Brillouin zone is the set of  

 

 

φ 
kz 

kx 

Figure 11: Brillouin zone 
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wavenumbers which can describe the propagation of electromagnet ic waves in 

two-dimension photonic crystals, as shown in Fig.11, where k0 is the wavenumber in free 

space. Since we only consider the surface wave, the wavenumber which is vertical to the 

corrugation must be pure imaginary, which leads to 

 
2 2

0surface x zk k k k                                                        (40) 

so we just need to consider the region outside the circle for the surface wave case. As shown 

in Fig 11, each arrow constitutes a certain surface wavenumber for a certain frequency, but for 

the most important aspect here, there is not just only one surface-wave vector-arrow for any 

one certain frequency. This will be discussed deeper later.   

In Section II, we show four parts (O→Z, Z→M, M→X, and X→O) of the dispersion 

diagram. As mentioned, any one of these parts is obtained by fixing two of these three 

unknowns, (i) kx, (ii) kz and (iii) frequency, and then the roots for the remaining unknown are 

solved for. If we set kx as an unknown, and set  

tan( )x zk k                                                               (41) 

where φ is the angle between the propagation path of the surface wave and the z axis. Then  

 

Figure 12(a): Dispersion diagram for oblique wave as φ is 15 degrees 
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the roots for kz are solved we can get the dispersion diagram for the surface waves 

propagating along the path which has φ degrees with the z-axis. For the extreme case, we can 

take the X→O part as the 90 degrees cases turning from O→Z part. Two arbitrary different 

examples are shown in Fig. 12, the dimensions are as follows: dz = 3mm, d=4mm, εrel,groove = 

3 and the values of φ are 10 and 45 degrees, respectively.     

 

3-2 Concept of sectorial bandgap 

 Refer to the fictitious dispersion diagram in Fig. 13 below, which shows traces for various 

azimuth  (measured from the z-axis perpendicular to the corrugations) directions of 

surface-wave modal propagation, i.e. each trace pertaining to a certain fixed , with the 

original dispersion paths of OZ, Zbeyond included for reference. Let the frequency 

corresponding to the Brillouin limit be denoted as f1. The associated surface-wavevector at 

this frequency is shown by the arrow in Fig. 14 with magnitude ksurf 
f1

 = /dz and directed 

along z perpendicular to the corrugations. As the surface-wavevector enters the oblique 

nonzero  regime ( measured from the z-axis perpendicular to the corrugations), but with kz 

maintained at /dz, i.e. now the surface-wavevector component along z (kz) is no longer zero, 

Figure 12(b): Dispersion diagram for oblique wave as φ is 45 degrees 
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both the eigen-frequency and modal surface-wavenumber increases further, the relationship 

between them as indicated by the traces corresponding to ksurf values greater than ksurf 
f1

 = /dz. 

For illustration, the surface wavevector at an example frequency of f2 (labeled in Fig. 13) is 

represented in Fig. 14 by the arrow with magnitude ksurf 
f2

. Due to symmetry about both 

horizontal and vertical axes, two arrows with magnitude ksurf 
f2

 are shown in Fig. 14 (the same 

applies for other oblique surface-wavevectors). As the frequency rises further up to the point 

where the next higher-order surface-wave mode starts to emerge at f3 as shown in Fig. 13, the 

surface-wavevector is directed towards an even larger  angle as represented by the arrow 

with magnitude ksurf 
f3

 in Fig. 14.  

As it can be seen in Fig.13, the original stopband region for zero angular span (phi=0) is 

between f1 and f3, and for the case when phi is “φb” degrees, the stopband zone is from f2 to f3, 

so it means as the phi gets larger, the stopband areas get smaller. In other words, we can say 

that during the period from f2 to f3, there is “at least” “φb” degrees sectorial band gap area. It 

is easily misunderstanding the above idea in another expression which is Brillouin zone as 

shown in Fig.14. The sectorial bandgap angle (SBGA, in degrees) is between f1 and f2, but not 

between f2 and f3. Also by applying the above idea, we can define the boundary between the 

conventional soft and hard surfaces, which is the surface-wavevector ksurf 
f3

 in Fig.14, i.e. the 

sectorial bandgap angle corresponding to the frequency which the next mode just appears.  
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Figure 13: Fictitious dispersion diagram 
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 As mentioned, between frequencies f2 and f3, no surface wave can propagate within the 

sector between the two symmetric arrows with k
f2

surf  (each being the surface-wavevector at 

f2). We call the range between the f2 and f3 as sectorial bandgap width (SBGW=f3-f2, indicated 

in Fig.14), which means in this area, no surface-waves can propagate within the angular size 

with at least “SBGA (which is φb in this case)” degrees. But why is the SBGW upper-limited 

by f3? As the frequency just exceeds this frequency, the next higher-order surface-wave mode 

starts to appear and propagate along the x-direction. This of course falls inside the sector and 

thus disqualifies frequencies above f3 from being included in the SBGW.   

 

3-3 Sectorial bandgap corrugations design 

The theory of the sectorial bandgap had been introduced in the previous section, and it will 

be convenient if the relationship between the dimension of the corrugation and the sectorial 

bandgap angle is known. For example, if the height of the corrugation is known, and also the 

target frequency is given, it is possible to provide relationship between the groove material 

and the sectorial bandgap angle it can reach. The idea can be done by using the Eq. (31) again. 

Substituting Eq. (31) by Eq. (41), setting the kz as Brillouin limit and an arbitrary frequency, 

so the relative permittivity of the groove can be solved as the roots.     

The dimensions of the corrugation in this example are as following: d = 4mm, dz=2mm, 

     

f

2
 

f

3
 

Z 
f1 

f2 

f3 

kf3
surf 

kf2
surf 

kf1
surf 

φb 

Figure 14: Top view schematic of corrugation 

Sectorial bandgap angle (SBGA, in 

degrees) 

Sectorial bandgap width  
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and g=1.6mm. Figure 15 shows O→Z path of dispersion diagram obtained by corrected 

ACBC method as the relative permittivity is 4.2, and as it is shown, the first and second 

stopbands start (which also means the initial point of the Z→M path) from 9GHz and 

27.5GHz, respectively. Figures 16 show the relationship between the groove material and the 

sectorial bandgap angle, and three different frequencies are discussed here, which are 9GHz, 

15GHz, and 27.5GHz. As shown in Fig. 16(a), there are two exponential curves which 

represent the first and second mode. Just as mentioned, 9GHz is the start of the first stopband, 

and it is shown that the first point (solution) of the first mode starts when the relative 

permittivity is 4.2, which corresponds to the initial condition. For the case as the frequency 

changes to 15GHz in Fig. 16(b), it is shown that both curves (modes) will move down, which 

means that the sectorial bandgap angle gets larger compared to Fig 16.(a) for the first mode. 

As the frequency becomes 27.5 GHz, which is the start point of the second stopband, there are 

two roots when the relative permittivity is 4.2, as shown in Fig. 16(c). One thing should be 

mentioned here, once the new mode enters the passband, even though there has solution for 

the first mode, the bandgap will be covered by the second mode, so that the phenomenon will 

not be seen. There is one thing should be 

 

 

 Figure 15: OZ path of the dispersion diagram for present case 
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Figure 16(b): Relationship between relative permittivity and sectorial 

bandgap angle in 15GHz. 

Figure 16(a): Relationship between relative permittivity and sectorial 

bandgap angle in 9GHz. 
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Figure 16(c): Relationship between relative permittivity and 

sectorial bandgap angle in 27.5GHz. 

Corrugation 

Normal periodic structures 

Figure 17: Comparison between corrugations and normal periodic structures 

Surface wavenumbers 
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noticed that the predicted sectorial bandgap angle shown in Figs. 16 are ideal, which is 

because the loss tangent of the material in the grooves does not considered in ACBC method, 

so the results might have deviations, but the phenomenon still exist.  

    The same phenomenon may occur in other periodic structures, but the corrugation can 

achieve the best result. The reason is that we can notice that compared to the normal periodic 

structures, the slope of the Z→M part of the dispersion diagram for the corrugation is steep, 

as shown in Fig. 17. Since the slope is steep, the corrugation does not have “any direction” 

bandgap, but this special characteristics caused the corrugation achieve the sectorial bandgap 

idea. For the normal periodic structures whose slopes are flat, the SBGW may be too small to 

clarify which cause the difficulty to reach the idea.    

 

3-4 Simulation results 

For the reality, it is difficult to get the dispersion diagram directly, and for most of the 

literature, the simplest way to explain the dispersion diagram will be the scattering parameters. 

In this section, the simulation results for the sectorial bandgap will be shown, and we use the 

transmission coefficient to verify the sectorial bandgap theory. The results are verified by CST 

software. 

 

Figure 18(a): O→Z part of the dispersion diagram as the material of the 

groove is FR4. 
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In this section, the dimensions we choose are as following: d = 4mm, dz=2.6mm, and 

g=1.6mm, also we examine two different cases, for which the material we choose are FR4 and 

Rogers RT6010, whose relative permittivity is 4.2 and 10.2 respectively. At first, the O→Z 

part of the dispersion diagram obtained by the ACBC methods for above mentioned 

dimensions are shown in Figs. 18. The start frequencies of the stopband in Fig. 18(a) are 

8.8GHz and 26GHz, and about 17GHz and 29GHz in Fig. 18(b). Figs. 19 show the top view 

of the corrugation in CST simulations, and we use the two identical waveguides as sources 

and receivers (the cutoff frequency for the waveguides is 1.53GHz), since the limitation in 

CST setting, for verifying the oblique waves on corrugation surface, we rotate the corrugation 

for 30 degrees meanwhile fixing the distance of the waveguides. The transmission coefficients 

for two different cases are shown in Figs. 20, which represent the relative permittivity as 4.2 

and 10.2, respectively. By observing the 0 degree in Fig 20(a), it can be seen that stopband 

bandwidth is wider than the prediction as shown in Fig 20(a). The reason is just as mentioned 

that it is because that in ACBC method, loss tangent of the material in the grooves is not 

considered, so that when dealing with the practical cases, some surface waves may decay in 

the grooves. For the material such as Rogers RT6010, the value of loss tangent is much 

smaller than FR4, so the simulation error compared to ACBC methods is also smaller, which 

is shown in Fig. 20(b). In Figs. 20, the transmission coefficients of oblique waves for 30  

Figure 18(b): O→Z part of the dispersion diagram as the material of 

the groove is Rogers RT6100. 
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(a) (b) Waveguide  

Figure 19: Top view of the corrugation in (a) 0 and (b) 30 degrees rotation in 

CST simulations.  

Figure 20 (a): Transmission coefficient results using FR4 as the material 

of the grooves. 
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degrees are also simulated. Just as presumed, the stopband bandwidth gets smaller as the 

angle decreases. Take Fig 20(a) as example, 7.5GHz is f1 as the symbol in Fig. 14, 9 GHz is f2, 

and 12GHz is f3. So during 9GHz to 12GHz, we can get “at least” 30 degrees sectorial 

bandgap angle, and the SBGW is 3GHz (which is due to 12GHz-9GHz). 

3-5 Measurement results 

   In this section, the measurement results will be shown. The dimensions of the corrugation 

we fabricate are as followings: dz = 2mm, g=1.6mm, d = 4.5mm, and εrel,groove = 4.3. The 

structure is shown in Figs. 21, and the dispersion diagram retrieved from ACBC method is in 

Fig.22. Two k-band (from 18GHz to 26.5GHz) horn antennas are used as the source and 

receiver, and they are put on the corrugation surface. Since the aperture of the horn antenna is 

tall from the surface, the absorbers are stuck on the apertures and just leave a thin gap in the 

bottom in order to be closer as a surface wave. In the beginning, two horn antennas are placed 

face to face, and theoretically, the energy is 100% through so that the value of S21 should be 

0dB. But we want the wave to be more like a surface wave propagating on corrugation surface, 

the absorbers are added to block most areas of the aperture, so the energy is absorbed. The 

setting framework described above is shown in Fig. 23, and the section view is in Fig.24.As 

we can see in Fig. 25 that the reference is about -22dB. Then we put the corrugation under the  

Figure 20 (b): Transmission coefficient results using Rogers RT6010 as 

the material of the grooves. 
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Figure 21(a): Top view of the fabricated corrugation 

Figure 21(b): Side view of the fabricated corrugation 
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Figure 22: O→Z part of the dispersion diagram 

Figure 23: Measurement framework. 
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Figure 25: Measurement results for the existence of the corrugation. 

Absorber 

Horn aperture 

Figure 24: Section view 
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horns, and it can be observed that there exists a stopband region between 21GHz to 26GHz, 

for which this region is also the stopband area in dispersion diagram obtained from ACBC 

method as shown in Fig. 22. Figure 26 shows the comparison as the corrugation rotates 0 

degree and 30 degrees. The trends are similar to the simulation results. The larger angles the 

corrugation rotates, the start frequency of the stopband will be higher, which means that the 

stopband bandwidth is smaller.   

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Comparison for the results as the corrugation rotates 0 

degree and 30 degrees. 
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IV. Relationship between scattering parameters and   

dispersion diagram 

4-1 Introduction 

   Most of the time, in order to obtain knowledge of just the width and location in the 

frequency spectrum of bandgaps of periodic structures, the use of two-port scattering 

parameters is more direct than the dispersion diagram. Nonetheless both approaches have 

their own benefits. Scattering parameters can characterize the center frequency, bandwidth, 

and the attenuation level of the stop band, while dispersion diagram can show the relationship 

between the frequency and wavenumber, further allowing the retrieval of data such as the 

phase velocity. For most research in the literature, dispersion diagrams are generated by full 

wave simulators, and when it comes to the measurement stage, the diagrams are difficult to 

gauge directly, so the scattering parameters are used to explain the dispersion diagram instead. 

But scattering parameters are after all only intermediate results, shedding no insights at all 

aboupt the wavenumber at that frequency. It will be more convenient if we could know the 

relationship between the scattering parameters and dispersion diagram, and then we could use 

the directly measurable S-parameters to generate the measured dispersion diagram. 

    For a normal periodic structure whose equivalent circuit is not complicated, it is easy to 

get the expression of the wavenumber by ABCD matrix, which will be briefly introduced later. 

But for a more complicated periodic structure, the equivalent circuit is complex, resulting in 

the difficulty to deal with the matrix in the previous method. Since the equivalent circuit is too 

complex to analyze, it is a good way to treat this complex unit cell as a uniform material. In 

other words, the scattering parameters are obtained at first, and then we reconsider the unit 

cell as a uniform material, deriving the relationship between the scattering parameters and 

wavenumbers, finally substituting the measured scattering parameters into the relationship. In 

this section, we will show the process of deriving based on a simple theory, and the accuracy 

for the transformed dispersion diagram is good. 

In [16], Pozar analyzed a periodically loaded transmission line, and its equivalent circuit 

is shown in Fig.27, where d is the distance between two unit cells, and b is the value of 

susceptance. Since it can be seen as a cascade of identical two port networks, we can use 

ABCD matrix to relate the voltages and currents on either side of the unit cell: 

1

1

n n

n n

V VA B

I C D I





    
    
    

                                               (42) 
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where 

cos sin cos sin
1 02 2 2 2

1
sin cos sin cos

2 2 2 2

j j
A B

C D jb
j j

   

   

   
      

       
      

      

                          (43)   

From Eq. (43), we can get  

1AD BC                                                (44) 

Now consider the phase difference between the nth and (n+1)th terminals 

1 exp( )n nV V d                                          (45.a)      

1 exp( )n nI I d                                           (45.b) 

Substituting Eq. (45.a) and Eq. (45.b) into Eq. (42), we can get 

1

1

0
d

n

d
n

VA e B

IC D e







   
   

   
                               (46) 

For nontrivial solutions, the determinant of the matrix in Eq. (46) must vanish, leading to 

cosh
2

A D
d


                                        (47) 

For a lossless periodic structure and symmetric network 

     c o s d A                                        (48) 

     

+ 

- 

+ 

- 

Vn Vn+1 

Figure 27: Equivalent circuit model of an infinite long periodically 

loaded transmission line. 
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    Since we know the relationship between β and matrix element A in Eq. (48), and also the 

relationship between matrix element A and scattering parameters in two-port networks is 

already known, we can easily get the dispersion diagram if we have scattering parameters 

data. 

 

4-2 Theory 

The relationship between the scattering parameters and wavenumbers introduced by Pozar 

is only suitable for simple cases. For a more complex periodic structure, the equivalent circuit 

is not easy to retrieve. Even though the equivalent circuit can be retrieved, the susceptance 

would be too complicated, causing difficulties with the calculation using the abovementioned 

method. To solve this problem, we can think of it from another perspective, which is by 

treating the complex unit cell as a uniform material whose effective relative permittivity and 

permeability are εr and μr, respectively, as shown in Fig.28. The representations of the 

reflection and transmission coefficients are stated as follow: 

11

ref

in

inc

V
S

V
                                                                 (49) 

21
tra

out

inc

V
T S

V
                                                                (50) 

Considering the multi-reflections in the material as shown in Fig 29, the total reflection 

coefficient in Eq. (49) can be represent as 

2

12 12 21 23 12 21 23 21exp( 2 ) exp( 4 ) ...in T T j l T T j l             

12 12 21 23 23 21

0

exp( 2 ) exp( 2 )n n

n

T T j l j l 




                              (51) 

Utilizing the formula of sum of the geometric series, which is 

0

1

1

n

n

x
x








                                                              (52) 

we can represent Eq. (51) as  

12 21 23
12

23 21

exp( 2 )

1 exp( 2 )
in

T T j l

j l





 
   

  
                                             (53) 

Now we assume that both medium in the left-hand side and right-hand side of the material are 

air, resulting in 
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Figure 29: Multi-reflections in the material 
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12 23                                                                     (54a) 

and we know 

12 21                                                                     (54b) 

21 121T                                                                    (54c) 

12 121T                                                                    (54d) 

Substituting Eq. 14(a) to Eq. 14(d) into Eq. (13), we can obtain 

12

2

12

(1 exp( 2 ))

1 exp( 2 )
in

j l

j l





  
 

 
                                             (55) 

Similarly, we can obtain the total transmission coefficient 

21 23 21 23 12 23(1 )exp( ) (1 )exp( 3 )( ) ...outT T j l T j l                               (56) 

Now the common ratio is exp(-2jβl)Γ12Γ23, so by applying Eq. (52), we can get: 

21 23

12 23

(1 )exp( )
)

1 exp( 2 )( )
out

T j l
T

j l





 


   
                                               (57) 

Again substituting Eq. 54(a) to Eq. 54(d) into Eq. (57), resulting in  

2

12

2

12

(1 )exp( )
)

1 exp( 2 )
out

j l
T

j l





 


  
                                                  (58) 

Eliminating the exponential terms in Eq. (55) and Eq. (58), we can get 

2 2 2

12 11 12 11 21 11( 1) 0S S S S                                                      (59) 

Also we can present Γ12 in terms of the intrinsic impedance: 

2 1
12

2 1

1

1

r

r

  

  

 
  

 
 , where r

r

r





                                             (60) 

Substituting Eq. (60) into Eq. (59) results in 

2 2

11 21

2 2

11 21

(1 )

(1 )
r

S S

S S


 
 

 
                                                      (61) 
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Similarly, we can eliminate the Γ12 in Eq. (55) and Eq. (58), which is  

21
0

11

exp( ) exp( )
1

S
j l jk nl

S
   

 
                                         (62) 

or 

2 2 2 2 2 2

11 21 11 21 21

21

( 1) ( 1) 4
exp( )

2

S S S S S
j l

S


      
                                         (63) 

where k0 is the free space wavenumber, and n is the refractive index. Also assuming 

exp(-jβl)=z, we can present refractive index as: 

" '

0

1
{[ln( ) 2 ] [ln( )]}n z m j z

k l
                                                (64) 

where m is an integer. 

Here we should set the conditions for this method. Since we are considering passive 

structures, it is subject to the criterion dictating proper choices of the signs of η and n, which 

are: 

' 0   and  
" 0n                                                                   (65) 

At last, we can retrieve the effective relative permittivity and permeability easily through Eq. 

(61) and Eq. (64) 

,r r

n
n  


                                                        (66)                         

The wavenumbers can be obtained from Eq. (65) 

0 0r rk                                                                   (67) 

It should be noticed that the retrieved effective relative permittivity and permeability will 

have variation with the frequency since the input data of scattering parameters are functions of 

the frequency. Also it is important to know that they are not the only solutions. The reason is 

that we can notice in Eq. (64), as different integer m is chosen, different n will be obtained, 

yielding different results in Eq. (66). That is the reason we need to build the conditions of Eq. 

(65). To make this method reasonable, it is necessary to use another value of m manually if we 

find that η or n does not satisfy the conditions in Eq. (65).  
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4-3 Verification 

In the beginning, the rationalities of the retrieved data in Eq. (67) will be examined. We 

construct a new homogeneous material whose effective permittivity and permeability are the 

data retrieved by the above mentioned method, and then inspecting the scattering parameters of 

the new material. Figure 30 shows the comparison between the corrugation and new material 

for the scattering parameters. The deep of S21 obtained by retrieving method is shallow, which 

is caused by the limit when setting a dispersive material in the full-wave simulators, but it is 

clear that the range of the stopband is similar, which means that characteristic of the new 

material can indeed be equivalent to the one of corrugation. 

Two arbitrary cases will be proved, and the dimensions are as following: d = 8mm, 

dz=1.8mm, g=1.6mm, and the relative permittivity are 10.2 and 6.15, respectively. Figures 31 

show the scattering parameters for these two cases, and Figs. 32 are their corresponding 

dispersion diagrams in ACBC method and retrieving method. We can see that retrieving 

method matches to the ACBC method almost perfectly. By using this method, we can get not 

only just the scattering parameters, but also more information which is like phase velocity at 

measurement stage in the future. 

  

Figure 30: Comparison between the new material and the corrugation for the S21. 
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Figure31 (a): Scattering parameters for the relative permittivity of the 

grooves as 10.2. 

Figure 31 (b): Scattering parameters for the relative permittivity of the 

grooves as 6.15. 
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Figure 32(b): Comparison between the TRT method and retrieving method from scattering 

parameters as the relative permittivity is 6.15. 

Figure 32(a): Comparison between the corrected ACBC method and retrieving method from 

scattering parameters as the relative permittivity is 10.2. 
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V. Conclusion 

  In this thesis, a new approximation to analyze slow waves on planar corrugated surfaces 

has been proposed. Based on the ACBC, we can derive the characteristic equation of the 

corrugation via applying the vector potential method. Also compared to the CST software and 

TRT, it is shown that for the ACBC method, its accuracy is as good as CST and the speed is as 

fast as TRT, i.e. extracts the advantages from both. 

  Meanwhile, a novel idea has also been proposed by applying the characteristic equation 

obtained by ACBC method, which is called sectorial bandgap. Indeed, for most of the 

periodic structures which are always designed for wider bandgap for any direction, there are 

potential applications that the bandgap may be needed just in some directions over a certain 

frequency range. For example, the corrugations may be used for controlling the direction of 

signal propagation in microwave circuits. Another potential application is the reduction of the 

cross polarization of some antennas. In Chapter III, we also present a kind of guideline to 

show how to design a sectorial bandgap corrugation, which cannot be done for other periodic 

structures without their own characteristic equations. 

   At last, the relationship of the scattering parameters and the wavenumbers is introduced. 

Due to the complex equivalent circuit of the corrugations, the use of ABCD matrix is not 

proper here. Instead, an interesting aspect based on [17] is shown, which is to take the 

corrugation as a new whole structure, and the last dispersion diagram transformed from 

scattering parameters are matched well to the ACBC method. 

   The work in this thesis is not the end but a pioneer, since we hope to reach the potential 

application we mentioned above in the future, and also we wish to provide a more accurate 

guideline to let the designers reach their standard.   

 

 

 

 

 

 



51 

 

Reference 

[1] R. S. Elliott, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag., 

pp. 71-81, Apr 1954. 

[2] R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas – oblique surface 

waves over a corrugated conductor,” IRE Trans. Antennas Propag., pp. 370-376, Oct 

1958. 

[3] P.-S. Kildal, “Definition of artificially soft and hard surfaces for electromagnetic waves,” 

Electronic Letters, vol. 24, no. 3, pp. 168-170, Feb. 1988. 

[4] P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Transactions 

on Antennas & Propagation, vol. 38, no. 10, pp. 1537-1544, Oct. 1990. 

[5] J.A.Aas and P.-S. Kildal, “Reduction of forward scattering from struts in reflector 

antennas,” Proc. 18
th

 European Microwave Conf., Stockholm, Sept. 1988, pp.494-499 

[6] F. Yang and Y. Rahmat-Samii, “Electromagnetic Band Gap Structures in Antenna 

Engineering,” Cambridge RF and Microwave Engineering Series, Cambridge Univ. Press, 

Nov 2008. 

[7] F. Yang and Y. Rahmat-Samii, ”A low-profile circularly polarized curl antenna over an 

electromagnetic bandgap (EBG) surface,” Microwave Optical Tech. Lett., vol.31, no. 4, 

264-7, November 2001. 

[8] A. R. Weily, L.Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, “A planar resonator 

antenna based on a woodpile EBG material,” IEEE Transactions on Antennas & 

Propagation, vol.53, no. 1, 216-23,2005. 

[9] R. Coccioli, F.R. Yang, K.P. Ma, and T. Itoh, “Aperture-coupled patch antenna on 

UC-PBG substrates,” IEEE Trans. Microwave Theory Tech, vol. 47, 2131-8, 1999. 

[10] T. M. Uusitupa, “Usability studies on approximate corrugation models in scattering 

analysis,” IEEE Trans. Antennas Propag., vol. AP-54, no. 9, pp. 2486-2496, Sep 2006. 

[11] H. A. Kalhor, “Approximate analysis of electromagnetic scattering from corrugating    

conducting surfaces by surface impedance modeling,” IEEE Trans. Antennas Propag., vol. 

AP-25, pp. 721-722, Sep 1977. 

[12] P.- S. Kildal, A. Kishk, and Z. Sipus, “Asymptotic boundary conditions for strip-loaded     

and corrugated surfaces,” Microw. Opt. Technol. Lett., vol. 14, no. 2, pp. 99-101, Feb. 

1997. 

[13] D.Sievenpiper, L.Zhang, R. F. J. Broas, N.G. Alexopolus, and E. 

Yablonovitch, ”High-impedance electromagnetic surfaces with a forbidden frequency 

band,” IEEE Trans. Microwave Theory Tech., vol.47, 2059-74,1999. 

[14] Wei-Zhang, Chang-Hong Liang, Tong-Hao Ding, and Bian Wu, “A novel broadband 

EBG using multi-via cascaded mushroom-like structure,” 2009 Asia-Pacific Microwave 

Conference, Singapore , Dec.2009. 



52 

 

[15] C. H. Walter, Traveling Wave Antennas, Chapter 6, pp. 259-260, Peninsular Publishing, 

1965. 

[16] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998. 

[17] A. M. NICOLSON and G.F. Ross, “Measurement of the Intrinsic Properties of Materials 

by Time-Domain Techniques,” IEEE TRANSSACTIONS ON INSTRUMENTATION AND 

MEASUREMENT, vol. IM-19, No. 4. Nov. 1970. 

 

 


