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Abstract

A computer program is developed in the thesis for calculating torsional, vertical,
horizontal, coupling and rocking impedances in frequency domain for axial-symmetric
foundations embedded in layered medium. In this process of formulating the impedances,
the soil medium is divided into interior and exterior domains. The analytical solutions are
formed separately with unknown coefficients for both domains. In order to find the
unknown coefficients for both domains, the variational principle is employed using the
continuity conditions (both displacements and stresses) at the interfaces between interior
and exterior domains, interior domain and foundation, and exterior domain and foundation
to find impedance functions.

To solve those problems, the analytic solution for the interior domain is the
combination of a homogeneous solution and a particular solution, the exterior domain is
described by a homogeneous solution only. To obtain the homogeneous solution, one has to
solve the complex root of the transcendental equations. A numerical scheme has been
proposed. The wave numbers of transcendental equations have been employed for finding
impedance matrices. Some numerical results:of torsional, vertical, horizontal, coupling and
rocking impedances with different embedded depths will be presented in layered medium
and comments on the numerical scheme will be given.

The impedance matrices -of axial-symmetric foundations embedded in an elastic
half-space medium approximated using analytical solutions in layer. To approximate the
situation of half-space medium, the thickness of one layer medium gradually increased to
see if the impedance function is approaching those for the case of half-space medium.
However, as the thickness increases the numerical instability problem will be arisen. To
overcome this numerical problem, a new numerical technique will be developed. Some
numerical results of torsional, vertical, horizontal, coupling and rocking impedances with
different embedded depths will be presented in an elastic half-space medium and

comments on the numerical scheme will be given.

Key words : transcendental equations, impedance matrix, soil-structure interaction.
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Chapter 1
Introduction

1.1 Motivation of the research
Soil-structure interaction effect plays important roles in the seismic analysis of heavy and
stiff structures. Many approaches may be considered to deal with the soil-structure interaction

analysis problems. Along with the substructure method, hybrid modelling of soil domain can

be employed to investigate soil-structure interaction effects. In hybrid modelling, the far-field
of a semi-infinite soil domain is represented by an impedance matrix at the interface of the
far-field and the near-field. Finite element method is used for the near-field [1]. Also, several
modelling techniques have been developed for infinite soil medium. These included viscous
boundary [2,3], transmitting boundary [4], boundary element method [5], and infinite element
methods [6]. Among the above anentioned-modelling, boundary element method requires
boundary discretization which can reduce some computational cost while compared to that of
finite element method. In boundaty element -method, Green function is used as a fundamental
solution to generate the impedance functions at the assumed boundary of structure [7].
However, using Green function in the formulation, one has to deal with the singularity problem.
To avoid this situation, the analytical solutions for the layered medium with prescribed
harmonic displacement time history on the surface are derived by Liou [8].

To obtain the impedance matrix for the surface foundation, some analytic approaches are
available [9-12]. In these analytical approaches, the interaction tractions at the interface of
foundation and soil medium are assumed to be piecewise linear or piecewise constant.

Regarding analytical or semi-analytical approaches for embedded foundation, Aviles and
Perez [13] solved the problem of torsional impedance for foundation embedded in layered
medium, Tassoulas and Kansel [14] used layer elements to obtain torsional, vertical, horizontal,

and rocking impedance functions, and Wolf and Preisig [15] employed cone model to calculate



impedance functions. Also, cone model was developed to calculate approximately the dynamic
response of a disk on the surface of a soil layer resting on flexible rock subjected to harmonic
excitations [16]. Furthermore, the concept of cone model was extended to calculate the
dynamic stiffness of a foundation embedded in a multiple-layered half-space [15,17].

Sezawa [18] has developed a procedure to separate the dilatational and the rotational
waves to solve the wave equation in cylindrical coordinates for the half-space medium. Tzong
and Penzien [1] extended this solution to find impedance matrix of a single-layer half-space
system. Regards of analytical solution technique, Liou has developed a technique to
decompose the boundary conditions to fit the general solutions of wave equations in cylindrical
coordinates for the cases of layered media. The technique has been successfully applied to find
the impedance functions for foundations on layered half-space medium [10] and axial
symmetric foundation embedded in-layeredsmedium [11,19].

1.2 Scope of the thesis

The organization of the thesis is#shown in Fig. 1=1. In chapter 2, a numerical scheme is
developed to generate complete impedance functions for foundation embedded in layered
medium. The impedance functions will be frequency dependent functions. To obtain the
impedances, the analytical solutions of three dimensional wave equations in cylindrical
coordinates in layered medium with satisfying the necessary boundary conditions are employed
[8]. In the process of formulating the impedances, the soil medium is divided into interior and
exterior domains. The analytical solutions are formed separately with unknown coefficients for
both domains. And the interaction stresses at the interface between foundation and surrounding
soil are assumed to be piecewise linear in ; direction or r direction of the cylindrical
coordinates. Then, the continuity conditions of stresses and displacements at the interface
between both domains and the interface between the foundation and surrounding soil are

applied to generate the impedance functions. In the process of applying the continuity
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conditions and generating the impedance functions, variational principle and reciprocal
theorem are employed.

Some numerical aspects will be investigated in order to show the effectiveness and
efficiency of the presented scheme. And the results for torsional, vertical, horizontal, coupling
and rocking impedances of a cylindrical foundation embedded with different depths will also be
presented to show the importance of embedment effect.

In chapter 3, we will employ the analytic solution for soil-structure interaction in layered
media to develop a general-purpose program of the transcendental equations. In developing
the program, the transient wave propagation problems in layered media should be calculated
and the wave numbers for the soil-structure interaction in layered media will be analytically
predicted. In this chapter, the wave numbers of transcendental equations for soil-structure
interaction in layered media will besderivedsanalytically and numerically.

In Chapter 4, the cases of foundation embedded in layered half-space medium, one can
employ the technique by increasing the thickness of layered medium to simulate the half-space

medium. However, some numerical problem‘arises as the thickness of layer increases. This is

vz

due to upward propagation waves which vary along z -direction with €"* or € and

downward propagation waves which vary along z -direction with ¢ ° or € = in

magnitude. The v and V' are the vertically apparent wave numbers for shear and

compressional waves respectively. The magnitude difference between € = and € ' ( or

e or e ) becomes enormously huge for the modes with large real part of vz and v'z.

This phenomenon will make the contribution of upward propagation wave cover up the
contribution of downward propagation wave of this mode. However, in the real situation for
the modes with large real part of vz or vz, the contribution of downward wave should be

much more important than that of upward wave if the thickness of the layered medium is very



large, since the diving force to cause wave propagation is located at the place near free surface.

To remedy the numerical problem stated above, the upward propagating wave for the
modes with large real part of v'L, in which L is the thickness of large should be suppressed
or neglected. The chapter 4 is devoted to deal with this problem. Therefore, the procedure
developed in chapter 2 for layered medium will be employed as basis and modified in order to
simulate the cases of layered half-space medium. To simulate half-space, the thickness of
layered is gradually increased. As the real part of 'L for some modes is greater than 25, the
upward propagating waves for these modes are suppressed. Thus, the expressive for
displacements and tractions at the interfaces between interior and exterior domains, interior
domain and foundation and exterior domain and foundation will be derived by considering
downward propagating wave only. The numerical results show that considering only
downward propagation waves for,the modes with large real part of v'L is satisfactory. Also,
the thicknesses of large needed-to"simulate half-space medium will be shown for different
damping ratios of medium. Finally, “the conclusions of this work as well as the further

researches are summarized in chapter 5.
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Chapter 2

Impedance matrices for circular foundation embedded in layered medium

Summary

A numerical scheme is developed in the chapter for calculating torsional, vertical,
horizontal, coupling and rocking impedances in frequency domain for axial-symmetric
foundations embedded in layered media. In the scheme, the whole soil domain is divided
into interior and exterior domains. For the exterior domain, the analytic solutions with
unknown coefficients are obtained by solving three dimensional wave equations in
cylindrical coordinates satisfying homogeneous boundary conditions. For the interior
domain, the analytical solutions are «also obtainéd by solving the same three dimensional
wave equations satisfying the ‘homogeneous ‘boundary conditions and the prescribed
boundary conditions. The prescribed conditions are the interaction tractions at the interfaces
between embedded foundation and surrounding soil. The interaction tractions are assumed
to be piecewise linear. The piecewise linear tractions at the bottom surface of foundation
will be decomposed into a series of Bessel functions which can be easily fitted into the
general solutions of wave equations in cylindrical coordinates. After all the analytic
solutions with unknown coefficients for both interior and exterior domains are found, the
variational principle is employed using the continuity conditions (both displacements and
stresses) at the interfaces between interior and exterior domains, interior
domain and foundation, and exterior domain and foundation to find impedance functions.
Some numerical results of torsional, vertical, horizontal, coupling and rocking impedances
with different embedded depths will be presented and comments on the numerical scheme

will be given.



2.1 Derivations for 3D wave progation problems

The total soil system with prescribed tractions ; (o~ and ; .~ having time harmonic

variations at the sidewall and the bottom of the cylindrical cavity respectively is shown in
Fig. 2-1 The prescribed tractions can be expressed in terms of Fourier components with

respect to the azimuth as follows:

[ "(2) cos(nb) i
TN in(no)

L (0.0) = iF(H)tl’,’,(z) _ i T;(Z){cos(nﬁ)} r=a, and 0<z<d (2-1)

n=0 n=0 Sin(l’l@)

" () —sin(nd)
_T"g ¢ cos(nd)

and

E i {cos(n@)}_
7, ()9 .

L sin(n®)
(01 = S FOXL () =Y. a;;m{c"s(”@)} e=d and 0<r<q, (2-2)

n=0 n=0 Sln(ne)

., {— sin(n@)}
7,.(r)
| cos(nb)

where o7(z), 7'(z)» 7(z)> 7.(r)> o’(r), z.(r) are the stress amplitudes of the "

Fourier component (either a symmetric component or an anti-symmetric component ). To
solve the wave propagation problem with the prescribed tractions of Egs. (2-1) and (2-2) as
shown in Fig. 2-1, Liou [8] has proposed a technique to decompose each Fourier

component of the prescribed boundary condition at s, surface. This decomposed boundary

condition can be easily fitted into the general solutions of 3D wave equations in cylindrical

coordinates. By following the procedure of the technique, the solutions in interior domain



consist of particular solutions which satisfy the boundary conditions of prescribed traction in
Eq. (2-2) and rigid base; =1 in Fig. 2-1, and homogeneous solutions which satisfy the
homogeneous boundaries at free surface(Traction free) ;-4 and rigid base ;=r. The
solutions for exterior domain contain only homogeneous solutions which satisfy the
homogeneous boundaries at free surface ;-0 and rigid base ;=_L1. Since the solving
process is the same for all the Fourier components, the superscript » in Egs. (2-1) and (2-2)
will be omitted in the following derivations of homogenous solutions and particular
solutions.

The solution (e.g. traction) for interior domain in Fig. 2-1 is the combination of

homogeneous and particular solutions as follows :

(1) L 4(@) (@) -
PEEIEEE (2-3)

The particular solution ¢ must satisfy theboundary conditions of Eq. (2-2) and rigid base
condition z=_L (zero displacement), and the homogeneous solution " satisfies the

boundary conditions of rigid base and the free surface (zero traction).

From the general solutions of 3D wave equations, the stress and the displacement fields in a
layer can be expressed in terms of the displacements and tractions on the upper boundary of
the layer [8]. By employing the continuity conditions of displacements and tractions
consecutively at the horizontal interface between two layers, one obtains

Y = Jaa, ., -ad Y =JTOT ¥ (2-4)

m-1"



. . . . . . ~\T . .
where Y!” = (uf_’) u? 0 e uy P )n is the displacement-stress vector on the m"
horizontal interface in Fig. 2-1, j is the Bessel function matrix and the aj’s are the

transfer matrices given by Egs. (Al), (A2), (A3) and (A4) in the Appendix. Using Egs.

(A2)-(A4) for the matrices a; ’s, T@® can be written as

—t](]i) tg) 11(3:‘) t](f 0 0
o 00
TS 0o @5
ST FE O FE 14

0 0 0 0 19 ©
0 0 0 0 1@ 9

By applying the homogeneous boundary conditions-of rigid base at ;=1 and free surface

at ; =4, one obtains

o] [+ 00 ,
0|=J 10 0 o |J"u (2-6)
0 0 0 ¥ g |

where

J! (kr) 0 %J,,(kr)
J=| 0  kJI,tr) O (2-7)
%J,,(kr) 0 J! (kr)

The Eq. (2-6) gives the transcendental equations

(1) o (i) D)) _ _
tl; tzlz _tlé tzll =0 (2 8)



for the wave numbers representing Rayleigh modes, and

1 =0 (2-9)

for the wave numbers representing Loves modes. For each wave number ¢, a root of Eq.

(2-8) or (2-9), the tractions at depth ; on the vertical interface (s, in Fig. 2-1 ) between

the exterior and the interior domains can be expressed in terms of the displacement-stress

vector on the free surface as follows :

t;i)(z) =(J\F, +JZF2)ej(z _hj—l )Ejjlajfl h 'aljilyo(i) (2-10)

where  ¢7(z) _(p0 0 OY mn the ~j* “layer, and the matrices J, , J, ,

Fe(z—h, )E; and Fe,(z—h_)E. are given. by Eqgs. (A5)-(A8) in the Appendix.
Substituting the root of Eq. (2-8) into Eq. (2-4) and making use of the free surface

conditions, one can easily show that J'Y,” in Egs. (2-4) and (2-10) can be written as

JYP=(1 & 0 0 0 0)fa? (2-11)
for the i* Rayleigh mode, in which £ :_%:_% and ¢ is the unknown modal
LA 5

participation factor. Similarly, substituting the root of Eq. (2-9) into Eq. (2-4), one can

obtain

JYP=0 00 01 0fa? (2-12)

J

-10-



for the j» Love mode, in which " is the unknown modal participation factor. Because

Egs. (2-8) and (2-9) have an infinite number of roots, the displacement and stress fields in
the interior domain can be approximated by a finite number of lower modes. Substituting
Egs. (2-11) and (2-12) into Egs. (2-4) and (2-10), the displacement and stress vectors at the

vertical interface (vertical surface s, in Fig. 2-1) due to homogeneous solutions can be

implicitly expressed by the combination of these modes with unknown participation factors

as follows

W) () =N (Da” . r=q, (2-13)
and

60 (2) =Gl (1)@ HEEa (2-14)

where N®(z) and G"”(z) are’ the” matrices of modal displacements and stresses

respectively, and «@ is the vector of unknown modal participation factors. By use of Egs.

(2-11), (2-12) and (2-4), one can express the displacement and traction vectors at the

surface 5, of interior domain due to the homogeneous solutions in terms of the vector

a® as follows :

w), =N a5 - 13

and

t) (r)=0 s z=d (2-16)

-11 -



To obtain the particular solutions for interior domain, the »” Fourier component of the
prescribed traction in Eq. (2-2) can be expressed in a form compatible to finite element

model of foundation structure. The variation of ¢,(r) in Eq. (2-2) is assumed to be
piecewise linear in r direction. Also, by the same reason, the variation of ¢ (z) in Eq.

(2-1) is assumed to be piecewise linear in ; direction for generating impedance functions.

For Eq. (2-1), the depth of embedded foundation 4 is divided into ,, subintervals with

equal width , _ 4 . Then " (z) in Eq. (2-1) can be approximated as
q b bl

m,
ml-1
j=1
. ml-1 2'17
() = Y b (D) p; + h@)py + 1, (2 P, -17)
j=
ml-=1
7,0 (25 Zhj(z)sj + 1y (2)sy % 1, (2)s,,
J=1
or
()= H! P (2-18)
where
1+ Z_bfb, if (j-Db<z<jb and 1<j<m,
h(2) = 1_Z_bfb, if  jb<z<(j+Db and 0<j<m —I (2-19)
0, otherwise,

matrix H[ =diag[h” .h" k"] in which h"is the vector contains element h(z) in Egs.
(2-19), vector P" =(q",p".s") in which vectors ¢",p" and s" contains the elements g,

p, and s, respectively in Egs. (2-17), and ¢,, p, and s, are the intensities of traction at

-12 -



node ; for o7(z), 7.(z) and () inEgs. (2-17) respectively.

Similarly, the foundation radius a, can be divided into m, subintervals and the traction

t;,(r) of each Fourier component in Eq. (2-2) can also be approximated by

ty,(r)=H; P, (2-20)

where matrix H? =diaglh” ,h" ,h"] with vector h being similar to vector h defined in

Egs. (2-19) except the piecewise linear variable ; is replaced by , , vector

P/ =(q".p".s") and g, p, and 5, are the intensities of traction at node ; for ¢ (r,

o"(r) and 72 () respectively. Itshouldrbe noted that H and H) are 3x3(m, +1) and
3x3(m, +1) matrices respectively: Because the traction: ¢;,(r) must be fitted in the general

solutions of 3D wave equations in'.cylindrical coordinates for interior domain, the traction

t!,(r) can be decomposed as follows [8] :

T'nz(r) 1 n n O 1 n n
() =| ()| =] 0= 55+ 1 o) +| 0|2 (2-21)
7 (r) | [-1 0 1

and

7, (r)-7,(r) _ <
- 2 & = Z ki<l)‘,rz+l(k<l)ir)Ai + k(gl)‘,rwl(k(g])r)AO

B ! (2-22)
cl(r)=> kDI, (k"B + kT, (k) B,

j=1
T (r)+7,(r)
el =

Dk, C + kT (k) C

i=1

-13-



where the k"’s, k”’s and k*’s are the roots of J ,(k"a))=0, J, (ki’a,)=0 and
J, (kPa,)=0 respectively, for i,j,l=12,---,00, and choosing k(" =0.5k", k® =0.5k?
and k¥ =05k in order to satisfy the boundary condition at r=q, and z=d. The

Bessel functions in Eqs. (2-22), except the first term, are orthogonal to each other with

respect to the weighting function w(r)=r in the interval (0,4,). The A’s, B,’sand C,’s

can be determined from the orthogonal property as follows :

_7.(ay) —75(ay) (2-23)
’ 2k(§1)‘]n+l(k(§1)a0)

[R—— 5 L T () — B LT k) T (K 20)

k;nj‘:“ J2 (kD ryrdr

n+l

__ o.(a) (2-25)
Pk, (kg ag)

. [ ri)d, kP rydr - k7B, [T, (k) K Pr)rdr (2-26)

j ap
k;z)jo an (kj(.Q)r)rdr

_ 7.(ay) + 74 (ay) (2-27)
P2k, (kgVay)

a T+ Ty 3) 3) o 3) (3)
r(—=—%yJ k:7’rdr —k,”C J k7'r)J k7 ryrdr
c,:IO (K dr =k C [, UV () (2.28)

KO 2 KO ryrdr

In Egs. (2-22), the A’s, B,’sand C,’s are defined as the modal participation factors with
respect to the wave numbers k" ’s, k?’s and k” ’s respectively. Since vectors

[, o, =1, [0, 1, of, [, 0, 1] are the eigenvectors of Jin Eq. (2-7) with respective
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eigenvalues k.J,  (k.r), k.J, (k;r),and k.J, _ (kr), one can substitute Eq. (2-20) into Eq.

jvn

(2-21) and make use of Egs. (2-22)-(2-28) to obtain

o) 1], o 0o, .
- +
") =| o (r) |=| 0 |2 27&)+ Len)+|0|Crtte 27&)
_r;(r) -1 0 1
byt o0 -prt| 0o 0 o] D" 0 DM 52
=QJP 0 0 0 [+>J210 D 0|+>JP 0 0 0 )P, (2-29)
= o-p 0o p* | Jo o of ™ |Dp 0o D"
— (ZJ'(ll)BinH +ZJ,(12)5;’ _,r_z.]'(f)ﬁlnfl)Pz :G;ijgz (r)P2
i=0 Jj=0 1=0
where
@ — @ O m
D;’*‘:lj hJ,M(ki“)r)rdr+l[1]j J"*‘(kolr)f"”(lfl rrdr (2-30)
2 0 2 : ké )‘]lwl(k(; )r)
1 ca— 1o i L, (k)T (kP r)rdr
D= (" @ STl & 2-31
? 2_[0 hJ (k; r)rdr+2[1]IO ) ( )
ay — uo ©) ©)
D = Lk, Ry e D i nrdr (2-32)
2% 2550 kLT

where vector h is defined in Eq. (2-20), all the elements in vector [1], except the last

element is equal to 1, are 0, and J", J and J!” are the matrix J in Eq. (2-7) with
wave numbers k", k¥ and k' respectively. Substituting each mode in Eq. (2-29) into

the general solutions of Eq. (2-4) and making use of rigid base condition z=L, one can

obtain the displacement field at the surface s, of interior domain due to particular solutions

as follows :

ul =0 J 0 D + > JPQPD! +> 0D P, =N (r)P, (2-33)
i=0 Jj=0 1=0
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where Q", @ and Q% can be obtained using Egs. (2-4) and (2-5) with wave numbers

k", k', and g respectively as follows :

. . -1 . .
(@) (@) (@) @)
oty 0y ny 0
Q=) 4 0| |8 s 0 2-34)
(D) (@)
0 0 1t 0 0 14

and elements 7 in Eq. (2-34) are defined in Eq. (2-5). From the derivations above,
t) (r) is equal to ¢, in Egs (2-20) or (2-29). For each mode in Egs. (2-33) and (2-29),
vectors J 'uls and J'tUy can be combined into the vectors J'Y” in Eq. (2-10).
Therefore, if one truncates high medes in Eqs. (2-33) and (2-29), the displacement and
traction fields due to the prescribed traction ' ¢'.(r) in Eq. (2-20) at the vertical interface g,

between interior domain and exterior domainsican have similar expressions to Egs. (2-13)

and (2-14) respectively.

uf) @)=Nys P, 5 r=q, (2-35)
and
15, =G\ )P, 5  r=q (2-36)

For the exterior domain in Fig. 2-1, only homogeneous solutions are involved since the
solutions have to satisfy the homogenous boundaries at z=0 and z=L. Therefore, one
just follows the procedures of finding homogeneous solutions for interior domain to obtain

the solutions. To do this, one can express the displacement and stress fields in terms of
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displacement-stress vector at the top surface (z=0) of the layered medium like the
procedure to obtain Egs. (2-4) and (2-10) except the Bessel function matrix J is replaced
with Hankel function matrix H . Matrix H is similar to matrix J in Eq. (A1) except the

element J (kr) and J!(kr) are replaced by the second kind of Hankel functions H, (kr)
and H’(kr). Then the displacement and stress at the vertical surface s +s, in Fig. 2-1 can

be written by the combination of a finite number of modes with unknown participation

factors similar to Egs. (2-13) and (2-14).

w . @=N@a 5, r=q, (2-37)

and

15,5, (=G (D' sor=a, (2-38)

where matrices N“(z) and G'“(z)"'contain all the considered modal shapes of

displacement and stress respectively, and «'® is the vector of unknown modal participation

factors.

2.2 Formulation of impedance matrix
In Fig. 2-2, the solutions at the boundaries of interior domain and exterior domain have
been shown by using of Egs. (2-37) and (2-38) for exterior domain and Egs. (2-3),
(2-13)-(2-16), (2-20 or 2-29), (2-33), (2-35) and (2-36) for interior domain. Also, in the
following derivations, the variation with respect to @ (cos(n0) ot sin(n@)) will be omitted in

the expression, and the integrations with respect to @ will be automatically calculated.
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By applying the stress continuity condition to vertical surface s +s,, the variational

principle

ISI U (@) (2)—t")dS = 0 gives

K, -K,a" =K,_P,-V,P

ee

where

K, = j N ()G, (z)dS

S, +85

K, = [N ()G, (z)d8
S

K, = [ NSy)G ' (2)dS

S3

V= jN ALV H Y (29dS

S

(2-39)

(2-40)

(2-41)

(2-42)

(2-43)

Similarly, imposing the displacement ‘continuity condition, the variational principle of

[, @@ @)~ u')ds =0 gives

(e) i) _
-K,a“"+K, ,a" =-K, P

he hp © 2

where

K, = [G}} (2)N“(2)ds
Ss

K, =[G ()N (2)dS
S5

K, =[G, @N}; ()as

S3

- 18 -
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(2-45)

(2-46)

(2-47)



Eqgs. (2-39) and (2-44) can be combined as

K =Kol o |_| Ko pol Vo lp (2-48)
K, K, |la”| |-k, | 0] )
he wm L& hp

Therefore, the unknown modal participation factors of the homogeneous solutions in the

exterior and interior domains can be expressed in terms of the stress intensity vectors P,

and P, in Egs. (2-18) and (2-20) respectively as follows:

o' B ¢ ¢
o ek e o

Consequently all the displacement and_the-stress.components at any arbitrary location in the
soil domain can be obtained for the arbitrarily prescribed piecewise linear tractions at the
surface of cylindrical cavity. Now, referring to Fig. 2-2 and making use of Eqgs. (2-49),

(2-18) and (2-20), the displacement and traction at surfaces s, and s, can be written as

. us (z) | | N“(2)¢, N(z)¢, P, (2-50)
" ug ()| | NS E NG (DE N () || P,
and
;= ts](Z) _ HI(Z) 0 Pl (2_51)
“ltg,r)| | 0O H,(r)| P

To form the impedance matrix, one can use Egs. (2-50) and (2-51). The variational
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principle gives the virtual work of the system as follows :

j Ot uyds
5P | H/ (z) 0 N “(2)¢&, N “(2)¢, s p (2-52)
HI(r) [N (&, (N (& + N ()
— 5PT|:Q” QIZ :|P — 5PTQP
QZI 22
where
0, = HI@N @0, (2-53)
0, =['HI ()N “ ()¢, (2-54)
Q, = ["HI(@N, (ryrdré, (2-55)
and
j H I (r)IN5 @EEGRN D (r)]rdr (2-56)

For the foundation itself, the displacement field of-the foundation for the n” Fourier
component (either a symmetric or‘an anti-symmetfic component as shown in Egs.(2-1) or

(2-2)) can be assumed as

7, = N (2-57)

S

where matrix N is comprised of the displacement shape functions at the interface between
foundation and surrounding soil, and vector v is comprised of the generalized
displacements at the nodal rings of the finite element model of foundation. Similarly, the

virtual work of the system is obtained by applying the variational principle

oW = &, u,dS = oP" H"N dSv = 6P" By (2-58)

S1+S2 S1+S2
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Equating Eq. (2-52) to Eq. (2-58) and factoring out SP”, it is obtained.

QP = By (2-59)
or

V =By (2-60)

where the elements of vector V are the generalized displacements at the nodal rings of the

assumed piecewise linear traction model. Eq. (2-60) gives the relationship between the

nodal generalized displacements of the assumed stress model of Eqgs. (2-18) and (2-20) and

the finite element model of Eq. (2-57). To obtain the corresponding force-stress relationship

for both models, the reciprocal theorem can be used. This leads to the following equation.

Fi=B'P (2-61)

where the elements of vector F are the generalized forces at the nodal rings of the finite

element model. Substituting P =Q 'By from Eq. (2-59) into Eq. (2-61) yields

F=B"Q'Bv=0I (2-62)

where the matrix I is the impedance matrix for the n” Fourier component. It is noted

that I matrix is symmetric matrix.
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2.3 Numerical investigations

A rigid massless circular foundation embedded in a stratum of single layer subjecting to
time harmonic torsional, vertical, rocking and horizontal excitations is used as an example
to demonstrate the effectiveness and efficiency of the presented scheme. In this example,
0.05 hysteretic damping ratio is chosen for soil medium and the poisson ratio of soil is
assumed to be 0.33. For the torsional time-harmonic and vertical time-harmonic vibrations
of foundation, the anti-symmetric and symmetric Fourier components with n=0 in Egs.
(2-57), (2-1) and (2-2) are involved respectively in the analysis. For the rocking and
horizontal time-harmonic vibrations of foundation, the Fourier component involved in the
analysis is the symmetric component with n=1 in Egs. (2-57), (2-1) and (2-2).

Since the Love modes and Rayleigh modes are involved in the homogeneous solutions,
Eq. (2-8) and Eq. (2-9) are employed to find:the wave numbers for homogeneous solutions
of interior domain. And a similar way can be used to find the homogeneous solutions for
exterior domain.

To obtain the Love and Rayleigh wave numbers of Eqs. (2-8) and (2-9) numerically,
reference 8 proposed a scheme to locate approximately all the roots in a specified region on
complex plane. Then, Mullers method is employed to find the more accurate roots [19].

For validation of the proposed numerical scheme, the convergence study is performed

first. In the study, L_ 2 with d_ 0 (see Fig. 2-1) and non-dimensional frequency

a, ay

oa,

0 _0.01 are chosen. The results for the case are shown in Table 2-1~2-5. In these
Re(C,)

tables, i and j are the numbers of homogeneous modes for exterior and interior domains

respectively (Eq. (2-8)) or (Eq. (2-9)) used in the analysis, [ is the number of particular

modes for interior domain (Eq. (2-22)), m, is the number of subintervals for piecewise
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linear in z direction (Eq. (2-17)), m, is the number of subintervals for piecewise linear in
r direction (Eq. (2-20)), Re(C,) is the real part of shear wave velocity of soil medium,
K, 1s the torsional impedance, K, is the vertical impedance, K,, is the horizontal

impedance, K are the coupling impedance, K,, is the rocking impedance, G is

rn = Kur
the shear modulus of soil medium and o is frequency. Also, one should notice that for

torsional impedance, i and j are the numbers of Love modes for respective exterior and
interior domains, and m, and [ are the numbers of subintervals and roots of J,(ka)=0
(Eq.2-22) respectively for traction z,_, for vertical impedance i and j are the numbers of
Rayleigh modes for respective domains, m, is the number of subintervals for both tractions
r. and o_ and [ is the number of rootsofsJ,(ka)=0 and J (ka)=0 (the total number
of roots is 21 ), and for horizontal; coupling and rocking impedances, i and j are the

numbers of Love or Rayleigh modes for respective domains (the total numbers are 2; and

2j ), m, isthe numbers of subintéryals for tractions z_, o_ and 7, and [ isthe

number of roots of J, (ka)=0, J,(ka)=0 and J,(ka)=0 (the total number of roots is 37).

In the tables, i=10 and j=15 are enough for exterior and interior domains respectively,
when non-dimensionalized frequency —“%__ _ 1. However, for higher frequency i and j
e(C,

should be larger .

From Table 2-1~2-5, one can see that as / and m, become larger, the results are

converging and approaching the results of Liou and Lee [11]. Also one can observe from
these tables that the number of particular solutions must be larger than the number of

sub-interval m,. This means [>m, +1. The reason to this restriction is that the number of

particular modes employed in the analysis must be greater than the number of unknown
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nodal intensities of piecewise linear traction. If / <m, +1, then matrix @ in Eq. (2-52) will

be singular.
From the preliminary study, 20 Love or Rayleigh homogeneous modes for both exterior

and interior domains are enough for obtaining results of torsional and vertical impedances

%% _ _(~1. For the horizontal, coupling
27z Re(C))

with good accuracy in the frequency range
and rocking impedances, 40 homogeneous modes(20 Love modes and 20 Rayleigh modes)
are enough for obtaining results with good accuracy in the frequency range mentioned
previously.

For the case of rigid foundation on one layer stratum, Figs. 2-3~2-7 show the numerical

results of impedance functions with m, =2;3,4,5. In these figures, i=j=20 and /=6 are
selected after some convergence study has been performed. From these figures, one can
observe that the results are approaching the results by Eiou and Lee [11], as m, becomes

larger.

In order to investigate the effects of embedment on impedance functions, the ratios of

embedded depth to the radius of foundation (i) are selected to be ¢ and 1. In

a

MW

)

SN

1
4

il

0

the investigation, j=;j=20, m,=5 and m =5, in which m is the number of the
subintervals for vertical surface S, in Fig.2-2, are employed according to the preliminary

numerical study . Also, the results for the case i:] are compared to that by Tassoulas

ay

and Kausel [14] and good consistency of both results is observed. Figs.2-8~2-12 show the
results of torsional, vertical, horizontal, coupling and rocking impedances for rigid circular
foundation embedded in one layer stratum. From these figures, one can see that the

impedances except coupling impedance are generally getting larger especially in low
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frequency range as the embedded depth increases. This means embedment effect is very

important.

2.4 Concluding remarks

After generating torsional, vertical, horizontal, coupling and rocking impedances
numerically for foundation embedded in different depth, the following observations can be
obtained : (1) The presented scheme can be easily employed to calculate impedances for
foundation embedded in a multiple layer stratum. (2) From the above derivation, the scheme
can be extended to calculate the impedances for flexible foundation with arbitary shape. (3)
The computational cost for generating impedances by the presented scheme is much
inexpensive while compared to that.by-other traditional methods; e.g. Finite Element
Method and Boundary Element Method. (4) The presented scheme can also be extended to
approximately calculate all impedance functions for foundation in layered half-space

medium, if the bottom layer of stratumis thick enoeugh.
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Table 2-1 Non-dimensionalized Torsional Impedance Koy for — =0, L =72 and @wdy  _ 0.01
Ga; a, a, Re(C,))
i j 1 m,=2 m,=3 m,= m,=
10 15 3 4.79+0.000591 — —
10 15 4 4.83+0.000581 | 4.91+0.000611 — —
10 15 5 4.91+0.00056i | 5.01+0.000571 | 5.07+0.00055i —
10 15 6 4.99+0.00056i | 5.02+0.00053i | 5.11+0.00051i | 5.21+0.00048i

Liou and Lee [11]

5.254282+0.000441

K, d

Table 2-2 Non-dimensionalized Vertical Impedance —Y for — =), =72 and =0.01
Ga, a, a, Re(C,))
1 ] 1 m,=2 m,=3 m,= m,=
10 15 3 9.27+0.0115i, i — —
10 15 4 9.32+0.01141 9.38+0.01211 — —
10 15 5 9.33+0.0114i 9.41+0.01111 9.43+0.01071 —
10 15 6 9.33+0:0114i 0:43+0.01081 9.46+0.01051 9.62+0.00891
Liou and Lee [11] 9.852558+0.000158 i
Table 2-3 Non-dimensionalized Horizontal Impedance @ for i =0, L =72 and @wdy  _ 0.01
Ga; a, a, Re(C,))
i ] 1 m,=2 m,=3 m, =4 m,=5
10 15 3 5.746+0.0143i —
10 15 4 5.787+0.014581 | 5.846+0.0158i —
10 15 5 5.783+0.014541 | 5.841+0.01571 | 5.921+0.00173i —
10 15 6 5.788+0.014591 | 5.855+0.01591 | 5.891+0.00168i | 5.966+0.01841

Liou and Lee [11]

6.003748 +0.000148 1
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Table 2-4 Non-dimensionalized Coupling Impedance h for i =0, L =2 and @4 _ 0.01
Gag a, a, Re(C,))
i j 1 m,=2 m, =3 m,= m,=
10 15 3 -0.2498+0.0081i — — —
10 15 4 -0.2514+0.00855i1 -0.2194+0.01111 — —
10 15 5 -0.249+0.00848i -0.227+40.0113i -0.194+0.0144 —
10 15 6 -0.2508+0.008591 | -0.225+0.01131 | -0.204+0.0134i | -0.183+0.0167i
Liou and Lee [11] -0.3105359-0.00003881 i
T . . . . K e d L wa
able 2-5 Non-dimensionalized Rocking Impedance —%& for — —, =2 and —0 (.01
GCIS a, a, RG(CX)
i ] 1 m,=2 — m,=4 m,=5

10 15 3.828+0.00761i o — —

10 15 3.873+0.00766i +3:986+0:010331 | 4.07+0.01321 —

3

10 15 4 3.907+0.007611 | 3.97+0.01041Li — —
5
6

10 15 3.893+0.00758i-| 3.992+0.010361 | 4.04+0.01291 | 4.19140.01251

Liou and Lee [11] 4214673 +0.0003247 i
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Fig. 2-3. Comparison of non-dimensionalized torsional impedance with Liou’s results for /g =2
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Fig. 2-10 Non-dimensionalized horizontal impedance with different depths for [/ g =2
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Chapter 3
Solving of the transcendental equations for the analysis of transient wave
propagation in layered media

Summary

In this chapter, we use an efficient method to solve the wave numbers of transient
wave propagation in layered media. The whole soil domain is divided into interior and
exterior domains. To solve those problems, the analytic solution for the interior domain is
the combination of a homogeneous solution and a particular solution, the exterior domain is
described by a homogeneous solution only. To obtain the homogeneous solution, one has
challenge to solve the complex root:of the transcendental equations will be discussed. For
the soil-structure interaction problem, the wave number of transient wave propagation in
layered media will be used for the impedance matrix of embedded axial symmetric

foundation.

3.1 Analytical derivations for three-dimensional wave propagation problems
The total system is shown in Fig. 2-1. The whole soil domain is divided into interior and
exterior domain. The general equation of wave propagation for the homogeneous solution
was derived in chapter 2. The wave number k's are responding to the exterior domains of
the complex roots equations. For the case of the wave number k is representing Love

modes, we obtain

tss = Cosh[v'L]1=0 (3-1)

2 2
where k is the wave number of the mode, v =_[k* — (%) , v = Jk* - (%) , Cy is
P N
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the shear wave velocity and C, 1s the compressional wave velocity, @ 1is natural

frequency. Methods to solving the wave problem from equation (3-1) can be expressed as

Cosh[v'L]= Cos[iv'L]=0 (3-2)

The wave number k& can be determined as

2 2 2
k, = i\/m_z_w,]v ~ 0123 (3-3)
C? h

Where CS:\/E and G =1+2&i.
P

For the case of the wave number k 1is representing Rayleigh modes, we obtain

tily =5l 5=0 (3-4)
For the Eq. (3-4), we will use an‘efficient method to solve the wave numbers of transient
wave propagation in layered media.
Due to Egs. (3-1) and (3-4) have an infinite number of root, all the roots must satisfying the

radiation condition in exterior domain. As r — o, H ;2) (kr) 1is the Hankel function of the

second kind of order n . It can be expressed as asymptotic form:

4n® -1

—+... _
11(8ikr) | (3-5)

2 nmw
H P (kr) ~ (=) exp( —ikr + — — Z)[1 +
. (kr) (ﬂkr) xp( —ikr 5 4)[

If k=A+iB is an eigenvalue with eigenvector, then —k is another pair. In order to
satisfying the radiation condition in Eq. (3-5), we should choose the wave number k

whichis B <0.
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3.2 Root searching scheme for transcendental equations
Egs. (3-1) and (3-4) have an infinite number of roots on the complex plane. The

transcendental function can be expressed as
f(2)=®(x,y)+i¥(x,y) (3-6)
Where z =x-+iy isacomplex variable, ®(x,y) and W¥(x,y) are the real and the
imaginary parts of f(z). The scheme is to find the approximate z such that
f(2)=D(x,y)+i¥Y(x,y)= 0 (3-7)
To find all the approximate root’s, one needs to divide the region into the mesh shown in
Fig. 3-1. Fig. 3-2 show typical grid pattern. If any two function values at the four corners of
the grid have different signs. To determine the root above two functions, we have two linear
equations -
[ (x,y)=ax+by+c =0 (3-8)
[.(x,y)="asx+b,y+c,=0 (3-9)
Where a, =y —y¢, b, =Xg — X5, ¢, = XsYs —XsYs5, Gy =Y, =Yg, b, =x, —x, and

¢, = X,yg — Xgy,, to determine the root in the grid, the approximate root is

Z, =X, iy, (3-10)
- +
Where y =992 =6 Gnre) e, o B t6) g
b,a, —ba, a, a,
a, 2 a,

3.3 Numerical investigations
A rigid massless circular plate resting on a single layer stratum is shown in Fig. 4. Form
Love mode of Eq. (3-1), Figs. 3-4 ~3-6 are show v =04, o =2 and o =6 of an

analytical wave numbers of undamping system of real part k versus imaginary part k.
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Form the Fig. 3-4, when N =0,1,2--- are show the position of analytical complex wave

numbers, we can find that the analytical complex wave numbers of k, only exist in
imaginary axial and k, v 1s another pair of the roots. The Fig. 3-5 and Fig 3-6 are show

when the natural frequency is increasing, the analytical complex wave numbers from
imaginary axial close to real axial. Figs. 3-7 ~3-9 are show @ =04, o =2 and v =6
of an analytical wave numbers of 0.05 hysteretic damping ratio is chosen. At the same
time, it is observation that analytical complex wave numbers exist in both real part and
imaginary part.

Figs. 3-10~3-12 are shown the numerical wave numbers of undamping system for real part
k versus imaginary part k on o =04, =2 and o =6, and Figs. 3-13~3-15 are
shown the numerical wave numbersiof 0.05_hysteretic damping ratioon o =0.4, o =2
and o = 6. Respectively, it is-interesting to find that the analytical solution of Figs.
3-4~3-9 match well the numerical solution in-Figs. 3:10~3-15. Form Rayleigh modes, we
can use the numerical method to solve the transcendental equations of Rayleigh wave
numbers in Eq. (3-4). Figs. 3-16~3-18 are shown numerical wave numbers of 0.05

hysteretic damping ratioon v =0.4, w =2 and ®» =6.

3.4 Concluding remarks

We have used an efficient technique to solve the complex roots in the transcendental
equations. In this procedure, the wave numbers of transient wave propagation can be
calculated numerically and analytically, the mathematical model of the transient wave
propagation is being used for constructing the impedance matrices of foundation embedded

in layered medium.
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Fig.3-1 Mesh of the region —a<x<aand —H< y<(0 on complex plane
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23, y3)

z1(x, %)

78

Fig. 3-2 typical grid patterns
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Numerical example

/

Rigid Plate
[ |
Soil properties !
Hysteretic damping ratio £
Shear modulus G = 1+ 2¢&i .y

Poisson’s ratio 7 = 0.3333
Mass density p =1

Rigid bedrock

Fig. 3-3 Soil profile of example
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Fig. 3-4 Analytical wave number values of undamping system .
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Fig. 3-6 Analytical wave number values of undamping system .
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Fig. 3-7 Analytical wave number values of damping system .
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Fig. 3-8 Analytical wave number values of damping system .
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Fig. 3-9 Analytical wave number values of damping system .
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Fig. 3-10 (b) Numerical wave number values of undamping system .
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Fig. 3-11 (a) Numerical solution of ®(x, y) =0 and W(x, y)=0
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Fig. 3-11 (b) Numerical wave number values of undamping system .
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Fig. 3-12 (a) Numerical solution of ®(x, y)=0and Wx,y)=0
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Fig. 3-12 (b) Numerical wave number values of undamping system .
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Fig. 3-13 (a) Numerical solution of ®(x, y) =0 and¥(x,y)=0
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Fig. 3-13 (b) Numerical wave number values of damping system .
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Fig. 3-14 (a) Numerical solution of ®(x, y) =0 and¥(x, y)=0
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Fig. 3-14 (b) Numerical wave number values of damping system .
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Fig. 3-15 (a) Numerical solution of ®(x, y) =0 and¥(x, y)=0
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Fig. 3-15 (b) Numerical wave number values of damping system .
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Fig. 3-16 (a) Numerical solution of d(x, y) =0 and ¥{x, y)=0
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Fig. 3-16 (b) Numerical wave number values of damping system .
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Fig. 3-17 (a) Numerical solution of ®(x, y) =0 and ¥(x, y)=0
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Fig. 3-17 (b) Numerical wave number values of damping system .
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Fig. 3-18 (b) Numerical wave number values of damping system .
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Chapter 4
Impedance matrices for axial symmetric foundation embedded in
half-space medium by layered approximation

Summary

In this Chapter, the impedance matrices of axial-symmetric foundations embedded in
an elastic half-space medium approximated using analytical solutions in layer. To
approximate the situation of half-space medium, the thickness of one layer medium is
gradually increased to see if the impedance function is approaching those for the case of

half-space medium. However, as the thickness increases the numerical problem will arise

'L L. . .
due to extremely large numbers «0f € mand- € - in which V' and Vv are appearing

wave numbers in vertical direction for shear and compressional waves. To solve this

numerical problem, a new scheme for the modes with large e’ and €™ will be
developed. The numerical results show that the new numerical scheme is effective and the
solutions in layered medium can be expanded to obtain the results for layered half-space
medium. Some numerical results of torsional, vertical, horizontal, coupling and rocking
impedances with different embedded depths will be presented and comments on the

numerical scheme will be given.

4.1 Derivations of the approximate model shapes functions for exterior and interior
domains

Impedance matrices for circular foundation embedded in layered medium was successful

developed in chapter 2. All the solutions at the boundaries of interior domain and exterior
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domain have been summarized in Fig. 2-2. In the figure, vector P, represents the nodal
intensities of interaction tractions of piecewise linear model, matrices N and G represent
all model shapes of displacements and tractions respectively interfaces, and vector o and
a'” represent the unknown participation factors of all the modes of homogenous solutions
for interior and exterior domains respectively. By intuition, it is possible to approximate
impedance matrices for circular foundation embedded in half-space medium by using the
same method. In order to find the impedance matrices by Liou’s method for circular
foundation embedded in half-space medium, the thickness L of layer should be gradually

increased until the impedance value approaching that for half-space case [10]. However, as

. . . 'L VL .
L increases, the magnitudes difference between €' and e will become enormously
huge for the modes with large real:part of v'L; and the truncation error will contain the

numerical results. Therefore, sonie measure has'to be taken in order to avoid this containing
) . .S 'L L. .
for these modes. This containing is due to the order of e (or e ) is much greater than
L 'L . . ) )
e" (or e"). This will cause significant figures lose in the process of calculation and

e’ (or €”) represents the vertical variation of upward propagation wave. This does not
exist in half-space medium case. So, this upward propagation waves must be suppressed in
order to simulate the case of half-space medium. The procedure to find the impedance
matrix for foundation embedded in half-space medium is similar to that for the case of
layered medium which has been presented in details in chapter 2, except for the modes with
large real part of V'L, the expressions of displacements and tractions at the interfaces
between interior and exterior domains, interior domain and foundation, and exterior domain
and foundation, must be revised by neglecting upward propagation wave. Therefore, the

followings will briefly give the revisions.
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Sezawa [18] have solved the wave equations for a homogeneous half-space in
cylindrical coordinates. In the solutions, only downward propagation waves are taken into
account. After some mathematical manipulation, the displacement field of each mode for

interior and exterior domains can be expressed as

ur
u=su, = HK e(z)A 1)
u,
where
n
H' (kr) 0o  ZH (k)
r
H= o  (H, () 0 (4-2)
H k) 0 H' (kr)
.
ki =v'" 0
K, =| v k0 (4-3)
0 O il

vector A =(A, B, C,)" is the unknown coefficient will be determined by boundary

’
vz

conditions, matrix e(z) =diag(e ™ e e™), H ,(kr) is the second kind of

dH , (kr)

r

th

Hankel founction of order n, and H)(kr)= , subscript n is n"™ Fourier

component with respect to @, in Fig 2-1 and the Hankel function will be replaced by Bessel

function J, (kr) for interior domain [8].

For the modes of particular solution of interior domain, the traction field on

horizontal plane can be shown as [11]:
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7, (r,z)
t=<0,.(r,z);=JK,e(z-d)A

7,(r,2)

(4-4)

where

—2kGv G2k’ —k;) 0
K,=|GQ2k’ —k;) - 2kGv' 0 (4-5)
0 0 1

2
in which % 5= /%, G is the shear modulus, and matrix J is similar to H of Eq(4-2)
S

except Hankel function H  (kr) arereplaced by Bessel function J, (kr).

The modes for exterior domain contain only homogeneous solutions which satisfy the
homogeneous boundaries at frée. surface ;=0 and rigid base :=Lr. The unknown

coefficients in vector A in Eq. (4-1) can'be expressed as follows:
-1 -1
A=K 'H 'u, (4-6)

where u{” is displacement vector at free surface (z = 0). Substituting Eq. (4-6) into (4-1),

one obtains
“) = H, H 'uy”’
u' = Ha,(z )H u, (4-7)

Where
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kZe—vz _vvrefv'z (efvz _eﬂ"z )kV’

0
l§2—vv' . k?—vv'
a,(z)=Ke(@)K'=| e v ke —we (4-8)
k= —w' ke —w'
0 0 e’

According reference 14, H 'u!® can be expressed as (1 &, 0) «, for Rayleigh modes
and (0, 0 1) e, for Love modes. For the above expressions, ¢, is unknown mode
participation factor and ¢, is the scale factor of the mode which is defined in reference 8.

Also, after some mathematical manipulation of using Eq(4-7), the tractions at depth ; on

the vertical interface (s, +s, in Fig. 2-1 ) for the exterior domain with only considering

downward propagation wave can be expressed as the following:

O-rr (r,Z)
[ = Trz("az) :(H1F1+H2F2)e(z)K1_]H u (4-9)
T,,(r,z)
Where
0  kH,(kr) 0
H, =|H'(kr) 0 LH (k) (4-10)
r
0 0 0
T Sy 10T . s
r r r r
H,= 0 0 (4-11)

H! 2 2
DH () -5 H (kr)  —( k) K
r r r

)+(r—2—7)H,,(kr)
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- 2kGv G(2k* - k;) 0

F =|G2v’+k)) 2kGv' 0 (4-12)
0 0 -Gv'
2kG -2Gv 0
F, = (4-13)
0 0 2G

For the interior domain shown in Fig. 2-2, the solution is the combination of particular
solution and homogeneous solution. For the modes of homogeneous solution, the

expression for displacement and traction are similar to those shown in Eqs (4-1)~ (4-13)

. ) = = . —v'(z—d —v(z-d
except the exponential functions' € "t andue teplaced with € YED and e

and Hankel matrices H, H, H, s replaced with Bessel matrices J,J,,J, in which

Hankel functions are replaced with<Bessel functions: For the modes of particular solution,

one should refer to reference 10 in which the transformation matrix @,, which transform

piecewise linear traction at z =4, should be revised as follow :

- v'k; k2w’ - 2k* +k;)
2 ’ 2 252 2 ’ 2 252 0
G4k w' =2k —ky)") GM@Ek"wW —(2k™ —k;)7)
0, =K K, =|_KOw -2k +k;) ~ vk 0 (4-14)
G(4k*vw' = (2k* —kp)®)  GAk*w' = (2k* —k})?)
0 0 _1,
Gv

The traction at the interface between interior and exterior domains for the mode can be

obtained by using Eq. (4-8) with replacement of Hankel functions with respective Bessel
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! v'(z—d)
a

. - - . - -d
functions and € “and € with e )

nd e respectively.

The above expressions are only employed for the modes with large real part of v'L,
saying Re(v'L) > 25. For the modes with smaller real part of V'L ( saying Re(v'L) > 25),
the expression presented by Liou and Chung are explored [19]. Then, the compatibility
condition variation principle and reciprocal theorem are employed to generate the
impedance functions as reference chapter 2.

4.2 Numerical investigations
In this numerical study, 32 significant figures of numbers in calculation are used. This
means that quadruple precision of numbers are defined in computer program. Therefore,
after extensive study, if the real part of v'L for the modes is greater than 25, the
expression derived in previous section will be employed, one should also note that real part

of vL is always greater than that of y'L for-there modes with real part of Re(v'L)>25.

For those modes with real part of v'L. smaller than25, the expression in Reference 19 are
employed.

In calculating the numerical results of impedance function, poisson ratio of soil medium is
selected to be 0.33 and damping ratios is assigned to be 0.02, 0.05 and 0.1. All the
impedance functions shown are non-dimensionalized by shear modulus G and foundation
radius a, and the frequencies are non-dimensionalized by « and real part of complex
is the vertical

shear wave velocity Re(C,), K, 1is the torsional impedance, K

T w

impedance, K,, is the horizontal impedance, K, =K,, are the coupling impedance,
K,. 1s the rocking impedance and o is frequency. In order to simulate the case of

half-space, one has to increase the thickness of the layer and compare the results of
impedance functions to that for the case of half-space medium. Figs 4-1~4-5 show

In these figures, damping ratio & = 0.05, the thickness of layer is gradually increased from
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a

% _05 to TO

-0 = 0.1, and the numerical results are compared to that of Liou’s previous
L

work [10]. In general, one can observed that the results of impedance functions for the case

of layer stratum is approaching that for the case of half-space medium, as afo is getting

smaller. Also, the fluctuation of the result is getting less dramatic as the layer is getting
thicker. The reason for the phenomenon is that the traveling path of waves become longer
as L increases. This longer path will make the energy loss of reflection waves from rigid
bedrock ( upward propagation waves ) larger. Furthermore, if one compares Fig. 4-1 with
Fig. 4-5, one can see that the fluctuations in Fig. 4-1. is less severe and the torsional
impedance for case of layered medium approaches that for half-space medium ( Fig. 4-1) in

4o

terms of faster than the vertical impedance in Fig. 4-2.

This is because only shear waves are involved in calculating torsional impedance and shear
wave length is shorter than compréssional wave Tength which dominates in vertical vibration
of foundation. This means the reflection shear waves need shorter distance to damp out
energy. This kind of observation can also be found, if one compares Fig. 4-1 with Figs
4-2-4-5. Therefore, to simulate the case of half-space medium, thickness layer can be used

for generating torsional impedance. From these figures ( Figs 4-1-4-5 ), one can conclude

that afo =0.1 is good enough for layered medium to simulate half-space medium, if

damping ratio is 0.05 for the media and non-dimensionalized frequency — %% _ ¢ ..
27 Re(Cy)

For the cases of damping ratios & =0.1 and & =0.02 are show in Figs 4-6~4-10 and Figs
4-11~4-15, although investigation has been done just like the study for & =0.05 presented

above. The behaviors are similar to those presented above except the thicknesses of layer
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medium need to simulates half-space are different for different damping ratio. In general,

small damping ratio in the medium means thicker layer need to simulate half-space medium.

For examples, for the case & =0.02 afo must be 0.08 and afo just be 0.15 for the case

£ =0.1. Figs 4-16~4-20 show the simulated numerical results of non-dimensionalized

torsional, vertical, horizontal, coupling and rocking impedances respectively for circular

3

b b

formulation embedded in half-space medium with embedded depths d _ 0, %
a,

b

1
2
and 1. In the figures, the green curves are presented with the results for & =0.02 are

calculated by using afo =0.08, the blue curves are presented with the results for & =0.05

are calculated by using afo =0.1 and the red curves are presented with the results for

&

£ =0.1 are calculated by using =0.15. From these figures, one can observe that the

impedance generally tend to be greater as the-embedded depth increases. Also, higher

damping will make the impedances a little higher.

4.3 Concluding remarks

The procedure to calculate impedance functions for foundation embedded in layered
medium can be explored to calculate that for the case of half-space medium by using
enough thickness of layered medium. Although increasing the thickness of layered medium
will give rise to the numerical problem in the process of computation. One just needs to
suppress the upward propagation waves for the modes with large real part of /L. In the
study, with quadruple precision number ( about 32 significant figures ) defined in computer

program, the upward propagating waves for the modes with Re(v'L)>25 should be
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. 'L L . ! _
suppressed to avoid the values e""“and e contaminate the value e " and e "

Also, to simulate the case of half-space medium, the thickness of layer can be less, if the

a a

damping ratio is greater. For examples, TOZ 0.15 for £=0.1, TO =0.1 for &£=0.05,
a,
7 0.08 for £=0.02.
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Chapter 5
Conclusions and Further research

5.1 Conclusions
The study presented in this thesis focused on not only the investigation of calculating
torsional, vertical, horizontal, coupling and rocking impedances in frequency domain for
axial-symmetric foundations embedded in layered medium, but also on axial-symmetric
foundations embedded in an elastic half-space medium approximated using analytical

solutions in layer. From this study, conclusion can be made as follows :

1. The analytic solutions of impedance matrices for axial-symmetric foundations embedded
in layered media has been derived and numerical results of torsional, vertical, horizontal,

coupling and rocking impedances with different embedded depths has been presented.

2. We have employed the analytic solution-for 'soil-structure interaction in layered media to
develop a general-purpose program’ of' the transcendental equations and numerical

results of solving the complex root of the transcendental equations has been discussed.

3. The procedure to calculate impedance functions for foundation embedded in layered
medium is explored to calculate that for the case of half-space medium by using enough
thickness of layered medium. To approximate the situation of half-space medium, a
computer program of calculating torsional, vertical, horizontal, coupling and rocking
impedances with different embedded depths in half-space medium has been presented

numerically.
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4. The computational cost for generating impedances by the presented scheme is much
inexpensive while compared to that by other traditional methods; e.g. Finite Element

Method and Boundary Element Method.

5.2 Further research
After generating torsional, vertical, horizontal, coupling and rocking impedances

numerically for foundation embedded in different depth, the following observations can be
obtained :

1.The presented scheme can be easily employed to calculate impedances for foundation
embedded in a multiple layer stratum.

2. From the above derivations,.the schéme can be.extended to calculate the impedances
for flexible foundation with arbitrary shape.

3. The presented scheme can also. be‘extended to.approximately calculate all impedance
functions for foundation in a multiple layered half-space medium, if the bottom layer of

stratum is thick enough.
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Appendix A

The Bessel function matrix J in Eq. (2-5)

J'(kr) 0 0 0 27 Ckr) 0
r
0 kT Ckr) 0 0 0 0
' i
7= 0 0 J!Ckr) 0 0 . J, (Ckr) (A1)
0 0 0 kT, Ckr) 0 0
2 Ckr) 0 0 0 J! (k) 0
r
0 0 27 Ckr) 0 0 J! (k)
L r i

. . . . . . dJ (kr
in which J (kr) is the first kind of Bessel function with order n and J'(kr) = %)
r
The transfer matrices a j's in Eq. (2-5) canbe expressed as follows :
_ -1 _ al 0 A2
a;=Eeeh)E; = 0 (A2)
2
in which
% k SH -1 SH k
= (cH- R 1) S L —(SH -k —(H-
kzﬂ(CH CH)+CH kz[(?k )= ~WH| G<§( SH-K=5) G{Z(CH CH))
k SH % k 1 SH
— [vSH- (24— ) > CH-=- ((H-CH — (H-CH — (WSH-K>=
al kzﬂ[VSH @ -Ky) 1/] kz( ) G‘zzx( ) G{;(V ‘/)
e R-K) SH. %G, ., 5 k . L SH
— — g —_ _ = _ —_ 2 H_ —_ S
G(kzﬂ VSH z G2 z QK X CH -CH) z (CH-CH')+CH' kfx( VSH (K ~K;)=5)
%—ZG(QkZ—kf,)(CH—CH’) G- _zk”) S ) %((ﬂcz—kf,)g—ZVSH’) ar- X a-an (A3)
| & govE K2 v ©

and
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) SH'
a - CH o
Gv'SH' CH' (A4)

(H = coshvd, CH' = cosh V'd/- , SH =sinhvd, SH' = sinh V'd/- ,

Kk, = a72 , G is the shear modulus, v' = [£* - (QVZJ RS [ayzj ’
c’ o ”

(', is the shear wave velocity and (' is the compressional wave velocity. Matrices J,

S

and J, in Eq. (2-10) can be expressed as follows :

0 kJ, (kr) 0
L=lT(kr) 0 %Jn (kr) (A5)
0 0 0

J! (kr) n’

- S k) (k)= (k)
J, = 0 0 (A6)

)y K ey

The matrix Fle(z—hjfl)Ej’l and er(z—hjfl)EjT' in Eq (2-10) can be expressed as

follows :

Fez—hy )E;' =
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kG

G H'
— (4k*vSH - (2k* —k,)’ S ) —(2k” —k,)(CH —CH")
k, v k,
kG '
2 —(=(2v* +k,)CH +(2k* —k,)CH") ]%((218 —ky)(2v* +ky) Sh,[ —4k’v'SH")
s s v
0 0 (A7)
2 ’ 7
2k cH -cny+cn *orr -3 _yysm) 0 0
k2 k2 B v
B B
k
—2(2V'SH'—(2v2+k§)S—H) i((2v2+k§)CH—2k2CH’) 0 0
k, v kf,
0 0 Gv'SH' CH'

2
N 2G(%(CH—CH’)+CH’) y‘—ZG(ZV'SH'—(Zkz—kf,)ﬁ)
Fe(z—h;, )E; = ks s v
0 0 (A3)
2w sy X em-cy o 0
kg v ky
0 0 26er 38

’
v
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