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Abstract 
 

       A computer program is developed in the thesis for calculating torsional, vertical, 
horizontal, coupling and rocking impedances in frequency domain for axial-symmetric 
foundations embedded in layered medium. In this process of formulating the impedances, 
the soil medium is divided into interior and exterior domains. The analytical solutions are 
formed separately with unknown coefficients for both domains. In order to find the 
unknown coefficients for both domains, the variational principle is employed using the 
continuity conditions (both displacements and stresses) at the interfaces between interior 
and exterior domains, interior domain and foundation, and exterior domain and foundation 
to find impedance functions. 
     To solve those problems, the analytic solution for the interior domain is the 
combination of a homogeneous solution and a particular solution, the exterior domain is 
described by a homogeneous solution only. To obtain the homogeneous solution, one has to 
solve the complex root of the transcendental equations. A numerical scheme has been 
proposed. The wave numbers of transcendental equations have been employed for finding 
impedance matrices. Some numerical results of torsional, vertical, horizontal, coupling and 
rocking impedances with different embedded depths will be presented in layered medium 
and comments on the numerical scheme will be given. 
     The impedance matrices of axial-symmetric foundations embedded in an elastic 
half-space medium approximated using analytical solutions in layer. To approximate the 
situation of half-space medium, the thickness of one layer medium gradually increased to 
see if the impedance function is approaching those for the case of half-space medium. 
However, as the thickness increases the numerical instability problem will be arisen. To 
overcome this numerical problem, a new numerical technique will be developed. Some 
numerical results of torsional, vertical, horizontal, coupling and rocking impedances with 
different embedded depths will be presented in an elastic half-space medium and 
comments on the numerical scheme will be given. 
     

 
Key words�transcendental equations, impedance matrix, soil-structure interaction. 
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Chapter 1 
Introduction 

 
1.1 Motivation of the research 

 
Soil-structure interaction effect plays important roles in the seismic analysis of heavy and 

stiff structures. Many approaches may be considered to deal with the soil-structure interaction 

analysis problems. Along with the substructure metho�� hybrid modelling of soil domain can 

be employed to investigate soil-structure interaction effects. In hybrid modelling, the far-field 

of a semi-infinite soil domain is represented by an impedance matrix at the interface of the 

far-field and the near-field. Finite element method is used for the near-field [1]. Also, several 

modelling techniques have been developed for infinite soil medium. These included viscous 

boundary [2,3], transmitting boundary [4], boundary element method [5], and infinite element 

methods [6]. Among the above mentioned modelling, boundary element method requires 

boundary discretization which can reduce some computational cost while compared to that of 

finite element method. In boundary element method, Green function is used as a fundamental 

solution to generate the impedance functions at the assumed boundary of structure [7]. 

However, using Green function in the formulation, one has to deal with the singularity problem. 

To avoid this situation, the analytical solutions for the layered medium with prescribed 

harmonic displacement time history on the surface are derived by Liou [8].  

To obtain the impedance matrix for the surface foundation, some analytic approaches are 

available [9-12]. In these analytical approaches, the interaction tractions at the interface of 

foundation and soil medium are assumed to be piecewise linear or piecewise constant. 

Regarding analytical or semi-analytical approaches for embedded foundation, Aviles and 

Perez [13] solved the problem of torsional impedance for foundation embedded in layered 

medium, Tassoulas and Kansel [14] used layer elements to obtain torsional, vertical, horizontal, 

and rocking impedance functions, and Wolf and Preisig [15] employed cone model to calculate 
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impedance functions. Also, cone model was developed to calculate approximately the dynamic 

response of a disk on the surface of a soil layer resting on flexible rock subjected to harmonic 

excitations [16]. Furthermore, the concept of cone model was extended to calculate the 

dynamic stiffness of a foundation embedded in a multiple-layered half-space [15,17].  

Sezawa [18] has developed a procedure to separate the dilatational and the rotational 

waves to solve the wave equation in cylindrical coordinates for the half-space medium. Tzong 

and Penzien [1] extended this solution to find impedance matrix of a single-layer half-space 

system. Regards of analytical solution technique, Liou has developed a technique to 

decompose the boundary conditions to fit the general solutions of wave equations in cylindrical 

coordinates for the cases of layered media. The technique has been successfully applied to find 

the impedance functions for foundations on layered half-space medium [10] and axial 

symmetric foundation embedded in layered medium [11,19]. 

1.2 Scope of the thesis 
 
The organization of the thesis is shown in Fig. 1-1. In chapter 2, a numerical scheme is 

developed to generate complete impedance functions for foundation embedded in layered 

medium. The impedance functions will be frequency dependent functions. To obtain the 

impedances, the analytical solutions of three dimensional wave equations in cylindrical 

coordinates in layered medium with satisfying the necessary boundary conditions are employed 

[8]. In the process of formulating the impedances, the soil medium is divided into interior and 

exterior domains. The analytical solutions are formed separately with unknown coefficients for 

both domains. And the interaction stresses at the interface between foundation and surrounding 

soil are assumed to be piecewise linear in z  direction or r  direction of the cylindrical 

coordinates. Then, the continuity conditions of stresses and displacements at the interface 

between both domains and the interface between the foundation and surrounding soil are 

applied to generate the impedance functions. In the process of applying the continuity 
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conditions and generating the impedance functions, variational principle and reciprocal 

theorem are employed. 

Some numerical aspects will be investigated in order to show the effectiveness and 

efficiency of the presented scheme. And the results for torsional, vertical, horizontal, coupling 

and rocking impedances of a cylindrical foundation embedded with different depths will also be 

presented to show the importance of embedment effect. 

In chapter 3, we will employ the analytic solution for soil-structure interaction in layered 

media to develop a general-purpose program of the transcendental equations. In developing 

the program, the transient wave propagation problems in layered media should be calculated 

and the wave numbers for the soil-structure interaction in layered media will be analytically 

predicted. In this chapter, the wave numbers of transcendental equations for soil-structure 

interaction in layered media will be derived analytically and numerically.    

In Chapter 4, the cases of foundation embedded in layered half-space medium, one can 

employ the technique by increasing the thickness of layered medium to simulate the half-space 

medium. However, some numerical problem arises as the thickness of layer increases. This is 

due to upward propagation waves which vary along z -direction with zve ′
 or vze  and 

downward propagation waves which vary along z -direction with zve ′−  or vze−  in 

magnitude. The v  and v ′  are the vertically apparent wave numbers for shear and 

compressional waves respectively. The magnitude difference between zve ′
 and zve ′−  ( or 

vze  or vze−  ) becomes enormously huge for the modes with large real part of vz  and zv′ . 

This phenomenon will make the contribution of upward propagation wave cover up  the 

contribution of downward propagation wave of this mode. However, in the real situation for 

the modes with large real part of vz  or zv′ , the contribution of downward wave should be 

much more important than that of upward wave if the thickness of the layered medium is very 
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large, since the diving force to cause wave propagation is located at the place near free surface.  

To remedy the numerical problem stated above, the upward propagating wave for the 

modes with large real part of Lv′ , in which L  is the thickness of large should be suppressed 

or neglected. The chapter 4 is devoted to deal with this problem. Therefore, the procedure 

developed in chapter 2 for layered medium will be employed as basis and modified in order to 

simulate the cases of layered half-space medium. To simulate half-space, the thickness of 

layered is gradually increased. As the real part of  Lv′  for some modes is greater than 25, the 

upward propagating waves for these modes are suppressed. Thus, the expressive for 

displacements and tractions at the interfaces between interior and exterior domains, interior 

domain and foundation and exterior domain and foundation will be derived by considering 

downward propagating wave only. The numerical results show that considering only 

downward propagation waves for the modes with large real part of Lv′  is satisfactory. Also, 

the thicknesses of large needed to simulate half-space medium will be shown for different 

damping ratios of medium. Finally, the conclusions of this work as well as the further 

researches are summarized in chapter 5. 
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Chapter 2 
Impedance matrices for circular foundation embedded in layered medium 

 
 

Summary 

 

A numerical scheme is developed in the chapter for calculating torsional, vertical, 

horizontal, coupling and rocking impedances in frequency domain for axial-symmetric 

foundations embedded in layered media. In the scheme, the whole soil domain is divided 

into interior and exterior domains. For the exterior domain, the analytic solutions with 

unknown coefficients are obtained by solving three dimensional wave equations in 

cylindrical coordinates satisfying homogeneous boundary conditions. For the interior 

domain, the analytical solutions are also obtained by solving the same three dimensional 

wave equations satisfying the homogeneous boundary conditions and the prescribed 

boundary conditions. The prescribed conditions are the interaction tractions at the interfaces 

between embedded foundation and surrounding soil. The interaction tractions are assumed 

to be piecewise linear. The piecewise linear tractions at the bottom surface of foundation 

will be decomposed into a series of Bessel functions which can be easily fitted into the 

general solutions of wave equations in cylindrical coordinates. After all the analytic 

solutions with unknown coefficients for both interior and exterior domains are found, the 

variational principle is employed using the continuity conditions (both displacements and 

stresses) at the interfaces between interior and exterior domains, interior  

domain and foundation, and exterior domain and foundation to find impedance functions.  

Some numerical results of torsional, vertical, horizontal, coupling and rocking impedances 

with different embedded depths will be presented and comments on the numerical scheme 

will be given.  
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2.1 Derivations for 3D wave progation problems 

 
The total soil system with prescribed tractions ti

b et ω

1
 and ti

b et ω

2
 having time harmonic 

variations at the sidewall and the bottom of the cylindrical cavity respectively is shown in 

Fig. 2-1 The prescribed tractions can be expressed in terms of Fourier components with 

respect to the azimuth as follows: 
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where )(zn
rrσ , )(zn

rzτ , )(zn
rθτ , )(rn

rzτ , )(rn
zzσ , )(rn

zθτ  are the stress amplitudes of the thn  

Fourier component (either a symmetric component or an anti-symmetric component ). To 

solve the wave propagation problem with the prescribed tractions of Eqs. (2-1) and (2-2) as 

shown in Fig. 2-1, Liou [8] has proposed a technique to decompose each Fourier 

component of the prescribed boundary condition at 
2S  surface. This decomposed boundary 

condition can be easily fitted into the general solutions of 3D wave equations in cylindrical 

coordinates. By following the procedure of the technique, the solutions in interior domain 
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consist of particular solutions which satisfy the boundary conditions of prescribed traction in 

Eq. (2-2) and rigid base Lz =  in Fig. 2-1, and homogeneous solutions which satisfy the 

homogeneous boundaries at free surface(Traction free) dz =  and rigid base Lz = . The 

solutions for exterior domain contain only homogeneous solutions which satisfy the 

homogeneous boundaries at free surface 0=z  and rigid base Lz = . Since the solving 

process is the same for all the Fourier components, the superscript n in Eqs. (2-1) and (2-2) 

will be omitted in the following derivations of homogenous solutions and particular 

solutions.  

The solution (e.g. traction) for interior domain in Fig. 2-1 is the combination of 

homogeneous and particular solutions as follows� 

 

                           ( ) ( ) ( )i i i
h pt t t= +                                 (2-3) 

 

The particular solution i
pt ( )  must satisfy the boundary conditions of Eq. (2-2) and rigid base 

condition Lz =  (zero displacement), and the homogeneous solution i
ht
( )  satisfies the 

boundary conditions of rigid base and the free surface (zero traction).                     

From the general solutions of 3D wave equations, the stress and the displacement fields in a 

layer can be expressed in terms of the displacements and tractions on the upper boundary of 

the layer [8]. By employing the continuity conditions of displacements and tractions 

consecutively at the horizontal interface between two layers, one obtains 
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θθ τστ  is the displacement-stress vector on the thm  �

horizontal interface in Fig. 2-1, J  is the Bessel function matrix and the ja ’s are the 

transfer matrices given by Eqs. (A1), (A2), (A3) and (A4) in the Appendix. Using Eqs. 

(A2)-(A4) for the matrices ja ’s, )(iT  can be written as 
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By applying the homogeneous boundary conditions of rigid base at Lz =  and free surface 

at dz = , one obtains 
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The Eq. (2-6) gives the transcendental equations 
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21

)(
12

)(
22

)(
11 =−

iiii tttt                        (2-8) 
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for the wave numbers representing Rayleigh modes, and 

 

              0)(
55 =

it                             (2-9) 

 

for the wave numbers representing Loves modes. For each wave number k , a root of Eq. 

(2-8) or (2-9), the tractions at depth z  on the vertical interface (
3S  in Fig. 2-1 ) between 

the exterior and the interior domains can be expressed in terms of the displacement-stress 

vector on the free surface as follows� 

 

          1 1
1 1 2 2 1 1 1 0

− −

− −
= + − L

( ) ( )( ) ( ) ( )i i
j j j j jt z J F J F e z h E a a J Y                 (2-10) 

 

where )()( zt i
j ( )

0

)()()(

ar

Ti
z

i
rz

i
rr

=

= θττσ  in the thj  layer, and the matrices 1J , 2J , 

−

−
−

�

� �
( )j j jF e z h E  and −

−
−

�

� �
( )j j jF e z h E  are given by Eqs. (A5)-(A8) in the Appendix. 

Substituting the root of Eq. (2-8) into Eq. (2-4) and making use of the free surface 

conditions, one can easily show that )(
0

1 iYJ −  in Eqs. (2-4) and (2-10) can be written as  

                 )(
0

1 iYJ − ( ) )(00001 i
i

T
i αξ=                         (2-11) 

for the thi  Rayleigh mode, in which 
)(

22

)(
21

)(
12

)(
11

i

i

i

i

i t

t

t

t
−=−=ξ  and )(i

iα  is the unknown modal 

participation factor. Similarly, substituting the root of Eq. (2-9) into Eq. (2-4), one can 

obtain 

  

                  )(
0

1 iYJ − ( ) )(010000 i
j

T
α=                        (2-12) 
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for the thj  Love mode, in which )(i
jα  is the unknown modal participation factor. Because 

Eqs. (2-8) and (2-9) have an infinite number of roots, the displacement and stress fields in 

the interior domain can be approximated by a finite number of lower modes. Substituting 

Eqs. (2-11) and (2-12) into Eqs. (2-4) and (2-10), the displacement and stress vectors at the 

vertical interface (vertical surface 
3S  in Fig. 2-1) due to homogeneous solutions can be 

implicitly expressed by the combination of these modes with unknown participation factors 

as follows� 

 

          
3 3

α=
( ) ( ) ( )
, ,( ) ( )i i i

h s h Su z N z  ,  
0ar =                   (2-13) 

and 

          
3 3

α=
( ) ( ) ( )

, ,( ) ( )i i i
h s h St z G z   , 

0ar =                  (2-14) 

 

where )()( zN i  and )()( zG i  are the matrices of modal displacements and stresses 

respectively, and )(iα  is the vector of unknown modal participation factors. By use of Eqs. 

(2-11), (2-12) and (2-4), one can express the displacement and traction vectors at the 

surface 
2S  of interior domain due to  the homogeneous solutions in terms of the vector  

)(iα  as follows� 

 

           
2 2

α=
( ) ( ) ( )
, ,( ) ( )i i i

h s h Su r N r   ,  dz =                (2-15) 

and 

              0)()(
, 2

=rt i
sh      ,  dz =                (2-16) 
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To obtain the particular solutions for interior domain, the thn  Fourier component of the 

prescribed traction in Eq. (2-2) can be expressed in a form compatible to finite element 

model of foundation structure. The variation of  )(2 rt n
b  in Eq. (2-2) is assumed to be 

piecewise linear in r  direction. Also, by the same reason, the variation of )(1 zt n
b  in Eq. 

(2-1) is assumed to be piecewise linear in z  direction for generating impedance functions. 

For Eq. (2-1), the depth of embedded foundation d  is divided into 
1m  subintervals with 

equal width 
1m

d
b = . Then )(1 zt n

b  in Eq. (2-1) can be approximated as 
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or 

                        111 )( PHzt Tn
b =                                   (2-18) 

where 
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)( 1

1

otherwise

mjandbjzjbif
b

jbz

mjandjbzbjif
b

jbz
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   (2-19) 

 

matrix ],,[1
TTTT hhhdiagH =  in which Th is the vector contains element ( )jh z  in Eqs. 

(2-19), vector ),,(1
TTTT spqP =  in which vectors Tq , Tp  and Ts  contains the elements jq , 

jp  and 
js  respectively in Eqs. (2-17), and jq , jp  and 

js  are the intensities of traction at 
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node j  for )(zn
rrσ , )(zn

rzτ  and )(zn
rθτ  in Eqs. (2-17) respectively. 

Similarly, the foundation radius 0a  can be divided into 2m  subintervals and the traction 

)(2 rt n
b  of each Fourier component in Eq. (2-2) can also be approximated by 

 

                           222 )( PHrt Tn
b =                               (2-20) 

 

where matrix ],,[2
TTTT hhhdiagH =  with vector h  being similar to vector h defined in 

Eqs. (2-19) except the piecewise linear variable z  is replaced by r , vector 

),,(2
TTTT spqP =  and 

jq , 
jp  and 

js  are the intensities of traction at node j  for )(rn
rzτ , 

)(rn
zzσ  and )(rn

zθτ  respectively. It should be noted that TH1  and TH2  are )1(33 1+× m  and 

)1(33 2 +× m  matrices respectively. Because the traction )(2 rt n
b  must be fitted in the general 

solutions of 3D wave equations in cylindrical coordinates for interior domain, the traction 

)(2 rt n
b  can be decomposed as follows [8���
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where the )1(
ik ’ s, )2(

jk ’ s and )3(
lk ’ s are the roots of 0)( 0

)1(
1 =+ akJ in , 0)( 0

)2(
=akJ jn  and 

0)( 0
)3(

1 =
−

akJ ln  respectively, for ,,,2,1,, ∞= Llji  and choosing )1(
1

)1(
0 5.0 kk = , )2(

1
)2(

0 5.0 kk =  

and )3(
1

)3(
0 5.0 kk =  in order to satisfy the boundary condition at 0ar =  and dz = . The 

Bessel functions in Eqs. (2-22), except the first term, are orthogonal to each other with 

respect to the weighting function rrw =)(  in the interval ),0( 0a . The iA ’ s, jB ’ s and lC ’ s 

can be determined from the orthogonal property as follow���

�
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In Eqs. (2-22), the iA ’ s, jB ’ s and lC ’ s are defined as the modal participation factors with 

respect to the wave numbers )1(
ik ’ s, )2(

jk ’ s and )3(
lk ’ s respectively. Since vectors 

[ ]T1,0,1 − , [ ]T0,1,0 , [ ]T1,0,1  are the eigenvectors of J in Eq. (2-7) with respective 
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eigenvalues )(1 rkJk ini +
, )( rkJk jnj , and )(1 rkJk lnl −

, one can substitute Eq. (2-20) into Eq. 

(2-21) and make use of Eqs. (2-22)-(2-28) to obtain�
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where 

              =
+1n

iD [ ]0 0
(1) (1)

(1) 1 0 1
1 (1) 2 (1)0 0

0 1 0
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where vector h  is defined in Eq. (2-20), all the elements in vector [1], except the last 

element is equal to 1, are 0, and )1(
nJ , )2(

nJ  and )3(
nJ  are the matrix J  in Eq. (2-7) with 

wave numbers )1(
ik , )2(

jk  and )3(
lk  respectively. Substituting each mode in Eq. (2-29) into 

the general solutions of Eq. (2-4) and making use of rigid base condition Lz = , one can 

obtain the displacement field at the surface 
2S  of interior domain due to particular solutions 

as follow���
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where )1(
nQ , )2(

nQ  and )3(
nQ  can be obtained using Eqs. (2-4) and (2-5) with wave numbers 

)1(
ik , )2(

jk , and )3(
lk  respectively as follows� 
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and elements )(i
ijt  in Eq. (2-34) are defined in Eq. (2-5). From the derivations above, 

)()(
, 2

rt i
Sp  is equal to 

�

n
bt  in Eqs (2-20) or (2-29). For each mode in Eqs. (2-33) and (2-29), 

vectors )(
,

1
2

i
SpuJ −  and )(

,
1

2

i
SptJ −  can be combined into the vectors )(

0
1 i

n YJ −  in Eq. (2-10). 

Therefore, if one truncates high modes in Eqs. (2-33) and (2-29), the displacement and 

traction fields due to the prescribed traction )(2 rt n
b  in Eq. (2-20) at the vertical interface 

3S  

between interior domain and exterior domains can have similar expressions to Eqs. (2-13) 

and (2-14) respectively. 

 

              2
)(
,

)(
, )()(

33
PzNzu i

Sp
i

sp =   ,  
0ar =               (2-35) 

and 

              2
)(

,
)(
, )()(

33
PzGzt i

Sp
i
sp =   ,  

0ar =               (2-36) 

 

For the exterior domain in Fig. 2-1, only homogeneous solutions are involved since the 

solutions have to satisfy the homogenous boundaries at 0=z  and Lz = . Therefore, one 

just follows the procedures of finding homogeneous solutions for interior domain to obtain 

the solutions. To do this, one can express the displacement and stress fields in terms of 
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displacement-stress vector at the top surface ( 0=z ) of the layered medium like the 

procedure to obtain Eqs. (2-4) and (2-10) except the Bessel function matrix J  is replaced 

with Hankel function matrix H . Matrix H  is similar to matrix J in Eq. (A1) except the 

element )(krJn  and )(krJn′  are replaced by the second kind of Hankel functions )(krHn  

and )(krHn′ . Then the displacement and stress at the vertical surface 
31 SS +  in Fig. 2-1 can 

be written by the combination of a finite number of modes with unknown participation 

factors similar to Eqs. (2-13) and (2-14). 

 

               )()()(
, )()(

31

eee
SSh zNzu α=+

  , 
0ar =              (2-37) 

and 

              )()()(
, )()(

31

eee
SSh zGzt α=+

   , 
0ar =              (2-38) 

 

where matrices )()( zN e  and )()( zG e  contain all the considered modal shapes of 

displacement and stress respectively, and )(eα  is the vector of unknown modal participation 

factors. 

 

2.2 Formulation of impedance matrix 

   In Fig. 2-2, the solutions at the boundaries of interior domain and exterior domain have 

been shown by using of Eqs. (2-37) and (2-38) for exterior domain and Eqs. (2-3), 

(2-13)-(2-16), (2-20 or 2-29), (2-33), (2-35) and (2-36) for interior domain. Also, in the 

following derivations, the variation with respect to θ  ( ( )cos nθ or ( )sin nθ ) will be omitted in 

the expression, and the integrations with respect to θ  will be automatically calculated.  
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By applying the stress continuity condition to vertical surface 
31 SS + , the variational 

principle  

∫ +
=−

31

)()()( 0))()((
SS

iee dStztzuδ  gives 
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Similarly, imposing the displacement continuity condition, the variational principle of  
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Eqs. (2-39) and (2-44) can be combined as 
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Therefore, the unknown modal participation factors of the homogeneous solutions in the 

exterior and interior domains can be expressed in terms of the stress intensity vectors 1P  

and 2P  in Eqs. (2-18) and (2-20) respectively as follows: 
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Consequently all the displacement and the stress components at any arbitrary location in the 

soil domain can be obtained for the arbitrarily prescribed piecewise linear tractions at the 

surface of cylindrical cavity. Now, referring to Fig. 2-2 and making use of Eqs. (2-49), 

(2-18) and (2-20), the displacement and traction at surfaces 
1S  and 

2S  can be written as 
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To form the impedance matrix, one can use Eqs. (2-50) and (2-51). The variational 
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principle gives the virtual work of the system as follows�� �
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where 
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10

)(
112 )()( ξ∫= d eT dzzNzHQ                              (2-54) 

                
40

)(
,221

0

2
)()( ξ∫= a i

Sh
T rdrrNrHQ                           (2-55) 

and  

               ∫ +=
0

220

)(
,2

)(
,222 )]()()[(

a i
Sp

i
Sh
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For the foundation itself, the displacement field of the foundation for the thn  Fourier 

component (either a symmetric or an anti-symmetric component as shown in Eqs.(2-1) or 

(2-2)) can be assumed as 

 

               Nvu =0                                       (2-57) 

 

where matrix N  is comprised of the displacement shape functions at the interface between 

foundation and surrounding soil, and vector v  is comprised of the generalized 

displacements at the nodal rings of the finite element model of foundation. Similarly, the 

virtual work of the system is obtained by applying the variational principle  

∫ ∫+ +
===

21 2100SS

T

SS

TTT BvPvdSNHPdSutW δδδδ              (2-58) 
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Equating Eq. (2-52) to Eq. (2-58) and factoring out TPδ , it is obtained. 

 

                          BvQP =                                    (2-59) 

or 

                            BvV =                                   (2-60) 

 

where the elements of vector V  are the generalized displacements at the nodal rings of the 

assumed piecewise linear traction model. Eq. (2-60) gives the relationship between the 

nodal generalized displacements of the assumed stress model of Eqs. (2-18) and (2-20) and 

the finite element model of Eq. (2-57). To obtain the corresponding force-stress relationship 

for both models, the reciprocal theorem can be used. This leads to the following equation. 

 

                            PBF T
=                                 (2-61) 

 

where the elements of  vector F  are the generalized forces at the nodal rings of the finite 

element model. Substituting BvQP 1−
= from Eq. (2-59) into Eq. (2-61) yields 

 

                           IvBvQBF T
==

−1                            (2-62) 

 

where the matrix I  is the impedance matrix for the thn  Fourier component. It is noted 

that I  matrix is symmetric matrix. 
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2.3 Numerical investigations 

   A rigid massless circular foundation embedded in a stratum of single layer subjecting to 

time harmonic torsional, vertical, rocking and horizontal excitations is used as an example 

to demonstrate the effectiveness and efficiency of the presented scheme. In this example, 

0.05 hysteretic damping ratio is chosen for soil medium and the poisson ratio of soil is 

assumed to be 0.33. For the torsional time-harmonic and vertical time-harmonic vibrations 

of foundation, the anti-symmetric and symmetric Fourier components with 0=n  in Eqs. 

(2-57), (2-1) and (2-2) are involved respectively in the analysis. For the rocking and 

horizontal time-harmonic vibrations of foundation, the Fourier component involved in the 

analysis is the symmetric component with 1=n  in Eqs. (2-57), (2-1) and (2-2). 

   Since the Love modes and Rayleigh modes are involved in the homogeneous solutions, 

Eq. (2-8) and Eq. (2-9) are employed to find the wave numbers for homogeneous solutions 

of  interior domain. And a similar way can be used to find the homogeneous solutions for 

exterior domain.  

To obtain the Love and Rayleigh wave numbers of Eqs. (2-8) and (2-9) numerically, 

reference 8 proposed a scheme to locate approximately all the roots in a specified region on 

complex plane. Then, Mullers method is employed to find the more accurate roots [19]. 

For validation of the proposed numerical scheme, the convergence study is performed 

first. In the study, 2
0

=
a
L  with 0

0

=
a
d  (see Fig. 2-1) and non-dimensional frequency 

01.0
)Re(

0
=

sC
aω  are chosen. The results for the case are shown in Table 2-1~2-5. In these 

tables, i and j  are the numbers of homogeneous modes for exterior and interior domains 

respectively (Eq. (2-8)) or (Eq. (2-9)) used in the analysis, l  is the number of particular 

modes for interior domain (Eq. (2-22)), 1m  is the number of subintervals for piecewise 
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linear in z  direction (Eq. (2-17)), 2m  is the number of subintervals for piecewise linear in 

r  direction (Eq. (2-20)), )Re( sC  is the real part of shear wave velocity of soil medium, 

TTK  is the torsional impedance, VVK  is the vertical impedance, HHK  is the horizontal 

impedance, HRRH KK =  are the coupling impedance, RRK  is the rocking impedance, G is 

the shear modulus of soil medium and ω  is frequency. Also, one should notice that for 

torsional impedance, i and j  are the numbers of Love modes for respective exterior and 

interior domains, and 2m  and l  are the numbers of subintervals and roots of 1( ) 0J ka =  

(Eq.2-22) respectively for traction zθτ , for vertical impedance i and j  are the numbers of 

Rayleigh modes for respective domains, 2m  is the number of subintervals for both tractions 

rzτ  and zzσ  and l  is the number of roots of 0 ( ) 0J ka =  and 1( ) 0J ka =  (the total number 

of roots is 2 l ), and for horizontal, coupling and rocking impedances, i and j  are the 

numbers of Love or Rayleigh modes for respective domains (the total numbers are 2i  and 

2 j  ), 2m  is the numbers of subintervals for tractions rzτ , zzσ  and zθτ  and l  is the 

number of roots of 0 ( ) 0J ka = , 1( ) 0J ka =  and 2 ( ) 0J ka =  (the total number of roots is 3 l ). 

In the tables, 10i =  and 15j =  are enough for exterior and interior domains respectively, 

when non-dimensionalized frequency 01.0
)Re(

0
=

sC
aω . However, for higher frequency i and j  

should be larger . 

From Table 2-1~2-5, one can see that as l  and 2m  become larger, the results are 

converging and approaching the results of Liou and Lee [11]. Also one can observe from 

these tables that the number of particular solutions must be larger than the number of 

sub-interval 2m . This means 12 +≥ ml . The reason to this restriction is that the number of 

particular modes employed in the analysis must be greater than the number of unknown 
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nodal intensities of piecewise linear traction. If 2 1l m< + , then matrix Q  in Eq. (2-52) will 

be singular. 

 From the preliminary study, 20 Love or Rayleigh homogeneous modes for both exterior 

and interior domains are enough for obtaining results of torsional and vertical impedances 

with good accuracy in the frequency range 0 0 ~ 1
2 Re( )s

a
C

ω

π
= . For the horizontal, coupling 

and rocking impedances, 40 homogeneous modes(20 Love modes and 20 Rayleigh modes) 

are enough for obtaining results with good accuracy in the frequency range mentioned 

previously. 

For the case of rigid foundation on one layer stratum, Figs. 2-3~2-7 show the numerical 

results of impedance functions with 2 2,3, 4,5m = . In these figures, 20i j= =   and 6l =  are 

selected after some convergence study has been performed. From these figures, one can 

observe that the results are approaching the results by Liou and Lee [11], as 2m  becomes 

larger. 

In order to investigate the effects of embedment on impedance functions, the ratios of 

embedded depth to the radius of foundation 
0

( )
d
a

 are selected to be 1 2 3
0, , ,

4 4 4
 and 1. In 

the investigation, 20i j= = ,  2 5m =  and 1 5m = , in which 1m  is the number of the 

subintervals for vertical surface 1s  in Fig.2-2, are employed according to the preliminary 

numerical study . Also, the results for the case 
0

1
d
a
=  are compared to that by Tassoulas 

and Kausel [14] and good consistency of both results is observed. Figs.2-8~2-12 show the 

results of torsional, vertical, horizontal, coupling and rocking impedances for rigid circular 

foundation embedded in one layer stratum. From these figures, one can see that the 

impedances except coupling impedance are generally getting larger especially in low 



 - 25 - 

frequency range as the embedded depth increases. This means embedment effect is very 

important.  

 
2.4 Concluding remarks 

 
After generating torsional, vertical, horizontal, coupling and rocking impedances 

numerically for foundation embedded in different depth, the following observations can be 

obtained : (1) The presented scheme can be easily employed to calculate impedances for 

foundation embedded in a multiple layer stratum. (2) From the above derivation, the scheme 

can be extended to calculate the impedances for flexible foundation with arbitary shape. (3) 

The computational cost for generating impedances by the presented scheme is much 

inexpensive while compared to that by other traditional methods; e.g. Finite Element 

Method and Boundary Element Method. (4) The presented scheme can also be extended to  

approximately calculate all impedance functions for foundation in layered half-space 

medium, if the bottom layer of stratum is thick enough. 
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Table 2-1 Non-dimensionalized Torsional Impedance 
3
0Ga

KTT  for 
0

0
d
a
= , 2

0

=
a
L  and 01.0

)Re(
0
=

sC
aω  

 
i j l 2m =2 2m =3 2m =4 2m =5 

10 15 3 4.79+0.00059i � � � 
10 15 4 4.83+0.00058i 4.91+0.00061i � � 
10 15 5 4.91+0.00056i 5.01+0.00057i 5.07+0.00055i � 
10 15 6 4.99+0.00056i 5.02+0.00053i 5.11+0.00051i 5.21+0.00048i 

Liou and Lee [11] 5.254282+0.00044i 

 
 
 
 
 

Table 2-2 Non-dimensionalized Vertical Impedance 
0Ga

KVV  for 
0

0
d
a
= , 2

0

=
a
L  and 01.0

)Re(
0
=

sC
aω  

 
i j l 2m =2 2m =3 2m =4 2m =5 

10 15 3 9.27+0.0115i � � � 
10 15 4 9.32+0.0114i 9.38+0.0121i � � 
10 15 5 9.33+0.0114i 9.41+0.0111i 9.43+0.0107i � 
10 15 6 9.33+0.0114i 9.43+0.0108i 9.46+0.0105i 9.62+0.0089i 

 Liou and Lee [11] 9.852558+0.000158 i 

    
 
 
 
 
 

Table 2-3 Non-dimensionalized Horizontal Impedance 
3
0Ga

K HH  for 
0

0
d
a
= , 2

0

=
a
L  and 01.0

)Re(
0
=

sC
aω  

 
i j l 2m =2 2m =3 2m =4 2m =5 

10 15 3 5.746+0.0143i � � � 
10 15 4 5.787+0.01458i 5.846+0.0158i � � 
10 15 5 5.783+0.01454i 5.841+0.0157i 5.921+0.00173i � 
10 15 6 5.788+0.01459i 5.855+0.0159i 5.891+0.00168i 5.966+0.0184i 

Liou and Lee [11] 6.003748 +0.000148 i 

 
 
 
 
 
 
 
 



 - 27 - 

 
 

Table 2-4 Non-dimensionalized Coupling Impedance 
3
0Ga

K RH  for 
0

0
d
a
= , 2

0

=
a
L  and 01.0

)Re(
0
=

sC
aω  

 
i j l 2m =2 2m =3 2m =4 2m =5 

10 15 3 -0.2498+0.0081i � � � 
10 15 4 -0.251+0.00855i -0.219+0.0111i � � 
10 15 5 -0.249+0.00848i -0.227+0.0113i -0.194+0.014i � 
10 15 6 -0.2508+0.00859i -0.225+0.0113i -0.204+0.0134i -0.183+0.0167i 
Liou and Lee [11] -0.3105359-0.00003881 i 

 
 
 
 
 
 

Table 2-5 Non-dimensionalized Rocking Impedance 
3
0Ga

K RR  for 
0

0
d
a
= , 2

0

=
a
L  and 01.0

)Re(
0
=

sC
aω  

 
i j l 2m =2 2m =3 2m =4 2m =5 

10 15 3 3.828+0.00761i � � � 
10 15 4 3.907+0.00761i 3.97+0.01041i � � 
10 15 5 3.873+0.00766i 3.986+0.01033i 4.07+0.0132i � 
10 15 6 3.893+0.00758i 3.992+0.01036i 4.04+0.0129i 4.191+0.0125i 
Liou and Lee [11] 4.214673 +0.0003247 i 

�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 - 28 - 

�

Rigid bedrock

Fig. 2-1 Total soil system with prescribed tractions. 
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Fig. 2-10 Non-dimensionalized horizontal impedance with different depths  for 
�

������ �� �� �� � =
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Chapter 3 

Solving of the transcendental equations for the analysis of transient wave 
propagation in layered media 

 

 
Summary 

 

In this chapter, we use an efficient method to solve the wave numbers of transient 

wave propagation in layered media. The whole soil domain is divided into interior and 

exterior domains. To solve those problems, the analytic solution for the interior domain is 

the combination of a homogeneous solution and a particular solution, the exterior domain is 

described by a homogeneous solution only. To obtain the homogeneous solution, one has 

challenge to solve the complex root of the transcendental equations will be discussed. For 

the soil-structure interaction problem, the wave number of transient wave propagation in 

layered media will be used for the impedance matrix of embedded axial symmetric 

foundation. 

 
 

3.1 Analytical derivations for three-dimensional wave propagation problems 
 
The total system is shown in Fig. 2-1. The whole soil domain is divided into interior and 

exterior domain. The general equation of wave propagation for the homogeneous solution 

was derived in chapter 2. The wave number sk '  are responding to the exterior domains of 

the complex roots equations. For the case of the wave number k  is representing Love 

modes, we obtain 

0][55 =′= LvCosht                        (3-1) 

where k  is the wave number of the mode, )( 2

2
2

PC
kv
ω

−= , )( 2

2
2

SC
kv
ω−=′ , SC  is 
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the shear wave velocity and PC  is the compressional wave velocity, ω  is natural 

frequency. Methods to solving the wave problem from equation (3-1) can be expressed as  

 

0][][ =′=′ LviCosLvCosh                        (3-2) 

The wave number k  can be determined as 

L3,2,1,0,
)5.0(

2

22

2

2

=+−±= N
h

N
C

k
S

N
πω

                   (3-3) 

Where 
ρ
G

C S =  and iG ξ21+= . 

For the case of the wave number k  is representing Rayleigh modes, we obtain 

021122211 =− tttt                                (3-4) 

For the Eq. (3-4), we will use an efficient method to solve the wave numbers of transient 

wave propagation in layered media. 

Due to Eqs. (3-1) and (3-4) have an infinite number of root, all the roots must satisfying the 

radiation condition in exterior domain. As ∞→r , )()2( krH n  is the Hankel function of the 

second kind of order n . It can be expressed as asymptotic form: 

]
)8(!1
14

1)[
42

exp()
2

()(
2

)2(
L+

−
+−+−≈

ikr
nn

ikr
kr

krH n
ππ

π
      (3-5) 

If iBAk +=  is an eigenvalue with eigenvector, then k−  is another pair. In order to 

satisfying the radiation condition in Eq. (3-5), we should choose the wave number k  

which is 0<B . 
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3.2 Root searching scheme for transcendental equations 

   Eqs. (3-1) and (3-4) have an infinite number of roots on the complex plane. The 

transcendental function can be expressed as 

                   ),(),()( yxiyxzf Ψ+Φ=                      (3-6) 

Where iyxz +=  is a complex variable, ),( yxΦ  and ),( yxΨ  are the real and the 

imaginary parts of )(zf . The scheme is to find the approximate z  such that 

0),(),()( ≈Ψ+Φ= yxiyxzf                      (3-7) 

To find all the approximate root’s, one needs to divide the region into the mesh shown in 

Fig. 3-1. Fig. 3-2 show typical grid pattern. If any two function values at the four corners of 

the grid have different signs. To determine the root above two functions, we have two linear 

equation��    

0),( 111 =++= cybxayxlr                      (3-8) 

0),( 222 =++= cybxayxli                      (3-9) 

Where 651 yya −= , 561 xxb −= , 56651 yxyxc −= , 872 yya −= , 782 xxb −=  and 

78872 yxyxc −= , to determine the root in the grid, the approximate root is  

 nnn iyxz +=                                 (3-10) 

Where 
2112

1221

abab
acac

yn
−

−
= , 

1

11 )(
a

cyb
x n

n

+
−= , if 21 aa ≥ , 

2

22 )(
a

cyb
x n

n

+
−= , if 

12 aa ≥ .  

3.3 Numerical investigations 

   A rigid massless circular plate resting on a single layer stratum is shown in Fig. 4. Form 

Love mode of Eq. (3-1), Figs. 3-4 ~3-6 are show 4.0=ω , 2=ω  and 6=ω  of an 

analytical wave numbers of undamping system of real part k  versus imaginary part k . 
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Form the Fig. 3-4, when L2,1,0=N  are show the position of analytical complex wave 

numbers, we can find that the analytical complex wave numbers of Nk  only exist in 

imaginary axial and Nk �is another pair of the roots. The Fig. 3-5 and Fig 3-6 are show 

when the natural frequency is increasing, the analytical complex wave numbers from 

imaginary axial close to real axial. Figs. 3-7 ~3-9 are show 4.0=ω , 2=ω  and 6=ω  

of an analytical wave numbers of 05.0  hysteretic damping ratio is chosen. At the same 

time, it is observation that analytical complex wave numbers exist in both real part and 

imaginary part.  

Figs. 3-10~3-12 are shown the numerical wave numbers of undamping system for real part 

k  versus imaginary part k  on 4.0=ω , 2=ω  and 6=ω , and Figs. 3-13~3-15 are 

shown the numerical wave numbers of 05.0  hysteretic damping ratio on 4.0=ω , 2=ω  

and 6=ω . Respectively, it is interesting to find that the analytical solution of Figs. 

3-4~3-9 match well the numerical solution in Figs. 3-10~3-15. Form Rayleigh modes, we 

can use the numerical method to solve the transcendental equations of Rayleigh wave 

numbers in Eq. (3-4). Figs. 3-16~3-18 are shown numerical wave numbers of 05.0  

hysteretic damping ratio on 4.0=ω , 2=ω  and 6=ω .  

 
3.4 Concluding remarks 

 
We have used an efficient technique to solve the complex roots in the transcendental 

equations. In this procedure, the wave numbers of transient wave propagation can be 

calculated numerically and analytically, the mathematical model of the transient wave 

propagation is being used for constructing the impedance matrices of foundation embedded 

in layered medium.   
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Numerical example
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Fig. 3-5 Analytical wave number values of undamping system . 
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Fig. 3-6 Analytical wave number values of undamping system . 
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Fig. 3-7 Analytical wave number values of damping system . 
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Fig. 3-8 Analytical wave number values of damping system . 
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Fig. 3-9 Analytical wave number values of damping system . 
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Fig. 3-13 (b) Numerical wave number values of damping system . 
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Fig. 3-14 (b) Numerical wave number values of damping system . 
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Fig. 3-14 (a) Numerical solution of                    and   0),( =Φ yx 0),( =Ψ yx
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Fig. 3-15 (b) Numerical wave number values of damping system . 
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Fig. 3-16 (b) Numerical wave number values of damping system . 

Fig. 3-16 (a) Numerical solution of                    and   0),( =Φ yx 0),( =Ψ yx
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Fig. 3-17 (b) Numerical wave number values of damping system . 

Fig. 3-17 (a) Numerical solution of                    and   0),( =Φ yx 0),( =Ψ yx
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Fig. 3-18 (b) Numerical wave number values of damping system . 
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Chapter 4 

Impedance matrices for axial symmetric foundation embedded in 
half-space medium by layered approximation 

 

 
Summary 

 

In this Chapter, the impedance matrices of axial-symmetric foundations embedded in 

an elastic half-space medium approximated using analytical solutions in layer. To 

approximate the situation of half-space medium, the thickness of one layer medium is 

gradually increased to see if the impedance function is approaching those for the case of 

half-space medium. However, as the thickness increases the numerical problem will arise 

due to extremely large numbers of Lve ′
 and vLe  in which v′  and v  are appearing 

wave numbers in vertical direction for shear and compressional waves. To solve this 

numerical problem, a new scheme for the modes with large Lve ′
 and vLe  will be 

developed. The numerical results show that the new numerical scheme is effective and the 

solutions in layered medium can be expanded to obtain the results for layered half-space 

medium. Some numerical results of torsional, vertical, horizontal, coupling and rocking 

impedances with different embedded depths will be presented and comments on the 

numerical scheme will be given.  

 
�� 

4.1 Derivations of the approximate model shapes functions for exterior and interior 
domains 

 
Impedance matrices for circular foundation embedded in layered medium was successful 

developed in chapter 2. All the solutions at the boundaries of interior domain and exterior 
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domain have been summarized in Fig. 2-2. In the figure, vector 2P  represents the nodal 

intensities of interaction tractions of piecewise linear model, matrices N  and G  represent 

all model shapes of displacements and tractions respectively interfaces, and vector )(iα  and 

)(eα  represent the unknown participation factors of all the modes of homogenous solutions 

for interior and exterior domains respectively. By intuition, it is possible to approximate 

impedance matrices for circular foundation embedded in half-space medium by using the 

same method. In order to find the impedance matrices by Liou’ s method for circular 

foundation embedded in half-space medium, the thickness L  of layer should be gradually 

increased until the impedance value approaching that for half-space case [10]. However, as 

L  increases, the magnitudes difference between Lve ′
 and Lve ′−  will become enormously 

huge for the modes with large real part of Lv′ , and the truncation error will contain the 

numerical results. Therefore, some measure has to be taken in order to avoid this containing 

for these modes. This containing is due to the order of  Lve ′
(or vLe ) is much greater than 

vLe (or Lve ′
). This will cause significant figures lose in the process of calculation and 

zve ′
(or vze ) represents the vertical variation of upward propagation wave. This does not 

exist in half-space medium case. So, this upward propagation waves must be suppressed in 

order to simulate the case of half-space medium. The procedure to find the impedance 

matrix for foundation embedded in half-space medium is similar to that for the case of 

layered medium which has been presented in details in chapter 2, except for the modes with 

large real part of Lv′ , the expressions of displacements and tractions at the interfaces 

between interior and exterior domains, interior domain and foundation, and exterior domain 

and foundation, must be revised by neglecting upward propagation wave. Therefore, the 

followings will briefly give the revisions.   
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    Sezawa [18] have solved the wave equations for a homogeneous half-space in 

cylindrical coordinates. In the solutions, only downward propagation waves are taken into 

account. After some mathematical manipulation, the displacement field of each mode for 

interior and exterior domains can be expressed as  
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vector A TCBA )( 111=  is the unknown coefficient will be determined by boundary 

conditions, matrix )(ze  )( zvzvvz eeediag ′−′−−
= , )(krH n  is the second kind of 

Hankel founction of order n , and 
dr

krdH
krH n

n

)(
)( =′ , subscript n  is thn  Fourier 

component with respect to θ , in Fig 2-1 and the Hankel function will be replaced by Bessel 

function )(krJ n  for interior domain [8].  

     For the modes of particular solution of interior domain, the traction field on 

horizontal plane can be shown as [11]: 
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in which 
2

2

SC
k

ω
β = , G  is the shear modulus, and matrix J  is similar to H  of Eq(4-2) 

except Hankel function )(krH n  are replaced by Bessel function )(krJ n . 

The modes for exterior domain contain only homogeneous solutions which satisfy the 

homogeneous boundaries at free surface 0=z  and rigid base Lz = . The unknown 

coefficients in vector A  in Eq. (4-1) can be expressed as follows: 
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where )(
0
eu  is displacement vector at free surface ( 0=z ). Substituting Eq. (4-6) into (4-1), 

one obtains 
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According reference 14, )(
0

1 euH −  can be expressed as ( ) i
T

i αξ 01  for Rayleigh modes 

and ( ) i
T
α10,0  for Love modes. For the above expressions, iα  is unknown mode 

participation factor and iξ  is the scale factor of the mode which is defined in reference 8. 

Also, after some mathematical manipulation of using Eq(4-7), the tractions at depth z  on 

the vertical interface (
1S +

3S  in Fig. 2-1 ) for the exterior domain with only considering 

downward propagation wave can be expressed as the following: 
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For the interior domain shown in Fig. 2-2, the solution is the combination of particular 

solution and homogeneous solution. For the modes of homogeneous solution, the 

expression for displacement and traction are similar to those shown in Eqs (4-1)� (4-13) 

except the exponential functions 
zve ′−

and 
vze−  replaced with 

)( dzve −′−
and 

)( dzve −−

 

and Hankel matrices 21,, HHH  is replaced with Bessel matrices 21,, JJJ  in which 

Hankel functions are replaced with Bessel functions. For the modes of particular solution, 

one should refer to reference 10 in which the transformation matrix nQ , which transform 

piecewise linear traction at dz = , should be revised as follow � �  
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The traction at the interface between interior and exterior domains for the mode can be 

obtained by using Eq. (4-8) with replacement of Hankel functions with respective Bessel 
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functions and 
zve ′−

and 
vze−  with 

)( dzve −′−
and 

)( dzve −−

 respectively. 

     The above expressions are only employed for the modes with large real part of Lv′ , 

saying 25)Re( ≥′Lv . For the modes with smaller real part of Lv′ ( saying 25)Re( ≥′Lv ), 

the expression presented by Liou and Chung are explored [19]. Then, the compatibility 

condition variation principle and reciprocal theorem are employed to generate the 

impedance functions as reference chapter 2. 

4.2 Numerical investigations 

   In this numerical study, 32 significant figures of numbers in calculation are used. This 

means that quadruple precision of numbers are defined in computer program. Therefore, 

after extensive study, if the real part of Lv′  for the modes is greater than 25, the 

expression derived in previous section will be employed, one should also note that real part 

of vL  is always greater than that of Lv′  for there modes with real part of 25)Re( ≥′Lv . 

For those modes with real part of Lv′  smaller than 25, the expression in Reference 19 are 

employed. 

In calculating the numerical results of impedance function, poisson ratio of soil medium is 

selected to be 0.33 and damping ratios is assigned to be 0.02, 0.05 and 0.1. All the 

impedance functions shown are non-dimensionalized by shear modulus G  and foundation 

radius a , and the frequencies are non-dimensionalized by a  and real part of complex 

shear wave velocity )Re( SC , TTK  is the torsional impedance, VVK  is the vertical 

impedance, HHK  is the horizontal impedance, HRRH KK =  are the coupling impedance, 

RRK  is the rocking impedance and ω  is frequency. In order to simulate the case of 

half-space, one has to increase the thickness of the layer and compare the results of 

impedance functions to that for the case of half-space medium. Figs 4-1~4-5 show 

In these figures, damping ratio 05.0=ξ , the thickness of layer is gradually increased from 
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5.00
=

L
a  to 1.00

=
L
a , and the numerical results are compared to that of Liou’s previous 

work [10]. In general, one can observed that the results of impedance functions for the case 

of layer stratum is approaching that for the case of half-space medium, as 
L
a0  is getting 

smaller. Also, the fluctuation of the result is getting less dramatic as the layer is getting 

thicker. The reason for the phenomenon is that the traveling path of waves become longer 

as L  increases. This longer path will make the energy loss of reflection waves from rigid 

bedrock ( upward propagation waves ) larger. Furthermore, if one compares Fig. 4-1 with 

Fig. 4-5, one can see that the fluctuations in Fig. 4-1. is less severe and the torsional 

impedance for case of layered medium approaches that for half-space medium ( Fig. 4-1) in 

terms of 
L
a0  faster than the vertical impedance in Fig. 4-2. 

This is because only shear waves are involved in calculating torsional impedance and shear 

wave length is shorter than compressional wave length which dominates in vertical vibration 

of foundation. This means the reflection shear waves need shorter distance to damp out 

energy. This kind of observation can also be found, if one compares Fig. 4-1 with Figs 

4-2-4-5. Therefore, to simulate the case of half-space medium, thickness layer can be used 

for generating torsional impedance. From these figures ( Figs 4-1-4-5 ), one can conclude 

that 1.00
=

L
a  is good enough for layered medium to simulate half-space medium, if 

damping ratio is 0.05 for the media and non-dimensionalized frequency 1~0
)Re(2

0
=

SC
a

π

ω . 

For the cases of damping ratios 1.0=ξ  and 02.0=ξ  are show in Figs 4-6~4-10 and Figs 

4-11~4-15, although investigation has been done just like the study for 05.0=ξ  presented 

above. The behaviors are similar to those presented above except the thicknesses of layer 
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medium need to simulates half-space are different for different damping ratio. In general, 

small damping ratio in the medium means thicker layer need to simulate half-space medium. 

For examples, for the case 02.0=ξ  
L
a0  must be 0.08 and 

L
a0  just be 0.15 for the case 

1.0=ξ . Figs 4-16~4-20 show the simulated numerical results of non-dimensionalized 

torsional, vertical, horizontal, coupling and rocking impedances respectively for circular 

formulation embedded in half-space medium with embedded depths  0
0

=
a
d , 

4
1 , 

2
1 , 

4
3 , 

and 1. In the figures, the green curves are presented with the results for 02.0=ξ  are 

calculated by using 08.00
=

L
a , the blue curves are presented with the results for 05.0=ξ  

are calculated by using 1.00
=

L
a  and the red curves are presented with the results for 

1.0=ξ  are calculated by using 15.00
=

L
a . From these figures, one can observe that the 

impedance generally tend to be greater as the embedded depth increases. Also, higher 

damping will make the impedances a little higher. 

 
4.3 Concluding remarks 

 
The procedure to calculate impedance functions for foundation embedded in layered 

medium can be explored to calculate that for the case of half-space medium by using 

enough thickness of layered medium. Although increasing the thickness of layered medium 

will give rise to the numerical problem in the process of computation. One just needs to 

suppress the upward propagation waves for the modes with large real part of Lv′ . In the 

study, with quadruple precision number ( about 32 significant figures ) defined in computer 

program, the upward propagating waves for the modes with 25)Re( ≥′Lv  should be 
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suppressed to avoid the values Lve ′
and vLe  contaminate the value Lve ′−  and vLe − . 

Also, to simulate the case of half-space medium, the thickness of layer can be less, if the 

damping ratio is greater. For examples, 15.00
=

L
a  for 1.0=ξ , 1.00

=
L
a  for 05.0=ξ , 

08.00
=

L
a  for 02.0=ξ .  
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Fig. 4-1. Comparison of non-dimensionalized torsional impedance with Liou’ s results for 
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Fig. 4-2. Comparison of non-dimensionalized vertical impedance with Liou’ s results for 
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Fig. 4-4. Comparison of non-dimensionalized coupling impedance with Liou’ s results for 
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Fig. 4-5. Comparison of non-dimensionalized rocking impedance with Liou’ s results for 
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Fig. 4-6. Comparison of non-dimensionalized torsional impedance with Liou’ s results for 
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Fig. 4-7. Comparison of non-dimensionalized vertical impedance with Liou’ s results for 
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Fig. 4-10. Comparison of non-dimensionalized rocking impedance with Liou’ s results for 
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Fig. 4-11.  torsional impedance for                with damp ratio 0.02
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Chapter 5 

Conclusions and Further research 
 

5.1  Conclusions 
      

The study presented in this thesis focused on not only the investigation of calculating 

torsional, vertical, horizontal, coupling and rocking impedances in frequency domain for 

axial-symmetric foundations embedded in layered medium, but also on axial-symmetric 

foundations embedded in an elastic half-space medium approximated using analytical 

solutions in layer. From this study, conclusion can be made as follows� 

 
1. The analytic solutions of impedance matrices for axial-symmetric foundations embedded 

in layered media has been derived and numerical results of torsional, vertical, horizontal, 

coupling and rocking impedances with different embedded depths has been presented.  

. 
2. We have employed the analytic solution for soil-structure interaction in layered media to 

develop a general-purpose program of the transcendental equations and numerical 

results of solving the complex root of the transcendental equations has been discussed. 

 
3. The procedure to calculate impedance functions for foundation embedded in layered 

medium is explored to calculate that for the case of half-space medium by using enough 

thickness of layered medium.�To approximate the situation of half-space medium, a 

computer program of calculating torsional, vertical, horizontal, coupling and rocking 

impedances with different embedded depths in half-space medium has been presented 

numerically. 
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4. The computational cost for generating impedances by the presented scheme is much 

inexpensive while compared to that by other traditional methods; e.g. Finite Element 

Method and Boundary Element Method. 

 

 
                           5.2 Further research 
 

   After generating torsional, vertical, horizontal, coupling and rocking impedances 

numerically for foundation embedded in different depth, the following observations can be 

obtained :  

1.The presented scheme can be easily employed to calculate impedances for foundation 

embedded in a multiple layer stratum.  

2. From the above derivations, the scheme can be extended to calculate the impedances 

for flexible foundation with arbitrary shape.  

3. The presented scheme can also be extended to approximately calculate all impedance 

functions for foundation in a multiple layered half-space medium, if the bottom layer of 

stratum is thick enough. 
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Appendix A 
 
The Bessel function matrix J  in Eq. (2-5) 
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in which � �
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� ��  is the first kind of Bessel function with order n and ′ = � �
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The transfer matrices ja s′  in Eq. (2-5) can be expressed as follows : 
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ν= ����
�

�� �  , ν′ ′= ����
�

�� �  , ν= �� � �
�

� � �  , ν′ ′= �� � �
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� � �  , 

β
ω=

�

�
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�
�

 , G is the shear modulus, ων
 ′ = −   

�
�

�

�

�
�

 , ων
 = −   

�
�

�

�

�
�

 , 

�
�  is the shear wave velocity and 

�
�  is the compressional wave velocity. Matrices 

�
J  

and 
�

J  in Eq. (2-10) can be expressed as follows : 
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The matrix 1
1 1

−

−
−( )j jF e z h E  and 1

2 1
−

−
−( )j jF e z h E  in Eq (2-10) can be expressed as 

follows : 
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