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ABSTRACT

Effective utilization of on-chip memories has always been an important factor to im-

prove the performance of a program. Caching techniques has been studied for decades,

whilst recently scratch-pad memory is getting more and more attention, because of its

lower cost and lower power-consumption compared to the cache.

Due to the nature of scratch-pad memory, it is required to modify current program

to effeciently utilize the scratch-pad memory. Hence, for legacy programs, compiler re-

searchers have proposed automatic loading methods of source program into scratch-pad

memory. However, the ILP framework employed by previous study prevents efficient

application of such method for larger programs.

In this thesis, we focus on the dynamic loading of parts of program to on-chip

scratch-pad memory to improve the performance.

Previous dynamic approach applies the ILP framework to solve the problem of de-

ciding optimal set of dynamically-loaded program parts, but it is not feasible when

program size grows. Hence, a heuristic to solve the problem of deciding dynamically

loading parts of a program into scratch-pad memory is proposed and evaluated in this



thesis. Our heuristic is based on the idea of ‘divide-and-conquer’. Here ‘divide’ means

the decomposition of nested loops, and ‘conquer’ means to an one-dimensional 0/1

knapsack-packing method.

Evaluation results shows that our heuristic outperforms the static approach, and

the performance of software-controlled dynamically-loaded code in scratch-pad mem-

ory produced by our method is comparable to traditional I-cache. This suggests a viable

path for larger applications to efficiently utilize the scratch-pad memory.
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Chapter 1

Introduction

The idea of using a small, fast memory to store frequently referenced code or data is

not new. Caching techniques has been studied for decades, whilst recently scratch-pad

memory is getting more and more focuses on it, because of its lower cost and lower

power-consumption comparing to the cache.

The scratch-pad memory has a two-dimensional array structure, often consists of

SRAM memory cells. Like conventional memories, it access the memory cells through

the decoding logic and the column circuitry. Usually the scratch-pad memory is located

on-chip, as in Figure 1.1.

In this thesis, we assume that the scratch-pad memory occupies one distinct part of

the entire memory addressing space, while access to the rest part of the address space

will go via the external bus. In short, the scratch-pad memory in our model can be

viewed as a fast on-chip memory with the same way to access like main memory, but

the nature of on-chip SRAM makes its access faster than external memory (especially

when DRAM is employed as main memory). Therefore, any use of scratch-pad memory

shall be accomplished explicitly via software. Also, due to the cost of real estate on the

silicon, the capacity of typical scratch-pad memories fall in the range of several kilobytes.
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Processor Core

Scratchpad
Memory

Address Bus

Main
Memory
(Details Omitted)

Typical SoC System

Memory
Array

Column
Circuitry

Decoder

Data Bus

Figure 1.1: Block diagram for Scratch-pad Memory and its relative location to processor

core and external memory

A comparison between scratch-pad memory and cache memory is briefed in Table

1.1. Further qualitative and quantitative comparisons between scratch-pad memory

and cache memory are available in Banakar et al. [2001].

In general, it is the responsibility for a compiler to select parts of program or data

to be placed in the limited on-chip scratch-pad memory. In this paper we mainly focus

on a static, heuristic selection of program parts to be loaded into scratch-pad memory

dynamically during execution.
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Table 1.1: Comparison between Cache and Scratch-pad Memory

Cache Scratch-pad

Memory

Accessing Image of Main Memory Disjoint Address

Range from

Main Memory

Area Cost 1 0.66

[See Banakar et al., 2001]

Loading Time Dynamic Static or Dy-

namic

Loaded by Hardware Software

Transparency Transparent to Software Requires Ex-

plicit Modifica-

tion in Software

1.1 Related Work

Previous works [Banakar et al., 2001, Steinke et al., 2001, 2002] on the utilization

of scratch-pad memory focus on the energy optimizations. Though their objective is

mainly on reducing energy usage, the reduction of program execution time is also men-

tioned in Steinke et al. [2001, 2002]. In [Hajj et al., 2000], the problem of packing

loops into a dedicated simple cache (called L-Cache) is studied. Though the under-

lying hardware is different from the scratch-pad memory, their formulated problem is

quite similar to our problem in a higher abstraction level, and their solving techniques

provides a different approach to this probelm. Basically their heuristic approach is to

greedily select these basic blocks to be placed into the L-Cache, based on their execu-

tion frequencies and (nested) loop depths.
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In this paper, there are two approaches directly related to our work: a static and a

dynamic approach. They are described in section 1.1.1 and section 1.1.2.

1.1.1 Static Approach

In Steinke et al. [2002], a static packing of program parts and variables into scratch-

pad memory are presented. The selected program parts are never changed during the

lifetime of program execution in this study. As there might be several hot-spots in

program, Steinke et al. [2001] mentioned that such static approach may suffer from the

constraint which all hot-spots must be packed into the scratch-pad memory at the same

time.

The packing algorithm used in Steinke et al. [2002] is based on the one-dimensional

0/1 knapsack packing, where the knapsack capacity is set to the size of scratch-pad

memory. Items to be packed into scratch-pad memory are the variables and basic

blocks in the program. Then, a value is assigned to each item based on its number of

access (for the variable case) or execution (for the case of program code) times the size

of this item. Finally a knapsack packing solving algorithm is applied to determine the

best static assignment of program codes and variables in scratch-pad memory.

1.1.2 Dynamic Approach

A ‘dynamic’ packing algorithm is proposed in Steinke et al. [2001]. The word ‘dynamic’

means the selected program parts in scratch-pad memory may be dynamically-loaded,

although the definition of these selected program parts is still accomplished at compile

time. In that study, they extend the work in Steinke et al. [2002], letting each selected

program parts pairing a ‘copy function’ to load the selected program parts at the point

of copy function into scratch-pad memory. The principles of selecting copy function for

8



a selected program part in Steinke et al. [2001] can be summarized as follows:

1. A selected program part can be assigned exactly one of the copy functions located

at its surrounding loop entries.

2. The program parts that share the same copy function are copied to the scratch-

pad memory simultaneously.

3. Different copy functions may share the scratch-pad memory at the same time,

but the sum of all coexisting copies of selected program parts can not exceed the

capacity of scratch-pad memory.

These principles are then formulated as integer linear programming (ILP) [Nehmhauser

and Wolsey, 1988] constraints. Then, the optimal selection of program parts, along with

the locations of their copy function, and allocation of scratch-pad memory is decided

using an ILP solver simulataneously.

Though significant improvements are observed using this approach for small pro-

grams, the NP-completeness of solving integer linear programming problems [Nehmhauser

and Wolsey, 1988] makes the application of their methodology feasible only to small

problem size.

1.1.3 Summary on Related Work

In the view of problem solving, the static approach [Steinke et al., 2002] models the

static packing problem as an one-dimesional 0/1 knapsack packing problem (i.e., only

single knapsack), while the dynamic approach in Steinke et al. [2001] models the dy-

namic packing as a multidimensional knapsack packing problem. The one-dimensional

version mentioned above has a well-known polynomial time solution using dynamic pro-

gramming, while the multidimensional knapsack packing problem is currently solvable
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Table 1.2: Comparison between Static, Dynamic [Steinke et al., 2001], and Our Ap-

proach

Static Approach Dynamic Approach

Problem

Modeling

One-Dimensional 0/1

Knapsack Packing

Multi-Dimensional

0/1 Knapsack Pack-

ing

Subject Basic Blocks Basic Blocks, packed

in different loops

Solution 1-D 0/1 Knapsack

Packing

ILP Solver

Solution

Quality

Optimal Optimal

through ILP framework. A comparison between these methods, as long as the approach

presented in this thesis is listed in Table 1.2.

1.2 Motivation and Objectives

As mentioned above, dynamically approach [Steinke et al., 2001] models the problem as

a multidimensional packing problem, solvable by an Integer Linear Programming (ILP)

Solver, whilst the number of knapsacks and capacity of each knapsack is also required

to be solved at once. The solution of the multi-dimensional knapsack packing problem

whill help determining the optimal set of selected program parts and their correspond-

ing copy function. However, this approach is NP-complete, which is not feasible when

program size grows.

To deal with this issue, this thesis aims to construct a divide-and-conquer heuristic

10



approach for this problem, based on a few observations which are described later in

chapter 2.

Unlike previous works which focus on energy savings, this thesis aims at reducing

the total execution time of program by utilizing scratch-pad memory through software

means to copy program code into it.

1.3 Organization of This Thesis

This thesis is organized as follows: In chapter 2 we put emphasis on the approach

employed in this paper. Chapter 3 evaluates our design, with compare to the static

approach and cache. Finally, chapter 4 concludes this thesis.
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Chapter 2

Approach

In this chapter, we discuss the approach employed in this thesis and the design of our

divide-and-conquer heuristic to the dynamic loading problem. This chapter is organized

as follows: section 2.1 presents a few observations to the nature of dynamic-loading

problem and how to divide this into subproblems, section 2.2 then propose the solution

for these subproblems. Section 2.3, section 2.4, and section 2.5 discusses the motiva-

tion and method to further partition these subproblems. In section 2.6 an algorithm

is proposed to solve the problem using decomposition method and knapsack packing.

Finally, section 2.7 proposes a mechanism achieving dynamically loading, which is also

used in our evaluation in next chapter.

2.1 Some observations to the Dynamically-Loaded

Code

In order not to confuse reader with the term of ‘selected program part’ mentioned above,

we shall define a term here to describe the program parts selected for our approach to

dynamic loading into scratch-pad memory. In the following text, we shall call it us-

ing the term of ‘dynamically loaded code’. Informally, a dynamically loaded code is a

12



piece of program which shall be loaded into scratch-pad via software assist before its

execution. Dynamic loaded code need not to be continuous in the control flow graph

of program it belongs to. Instead, they are merely a collection of some basic blocks,

but are loaded into scratch as a whole during the transfer of control from somewhere

outside the dynamically loaded code.

With the following observations, the goal of this thesis is to construct a divide-and-

conquer heuristic approach to this problem. Here we have the following observations

to the properties of dynamically loaded code:

1. A dynamically loaded code is worthy of loading only if it is inside one or more

loops.

2. The set of suitable reloading points of a dynamically loaded code should be the

entries of its surrounding loop(s).

3. For sufficiently large scratch-pad memories, the best reloading point of a dynam-

ically loaded code is at the entry point of the outermost loop it belongs to.

The first observation is due to the software controlled nature of scratch-pad memory.

Unlike cache, the loading of code into scratch-pad memory entirely relies on another

piece of software. Hence, a higher loading cost is expected. It follows that only a piece

of code residing in a loop can offer sufficient temporal and spatial locality to take ad-

vantage of being software-controlled dynamically-loaded into scratch-pad memory.

Before explaining observation 2, we shall first define the reloading point of a given

piece of code. The reloading point of a piece of code is a point in the program which

does the job of loading the code into scratch-pad memory. Since a reloading creates

major overhead, the number of re-loadings must be at small as possible.
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Hence the reloading point of a dynamically loaded code should at least be the entry

of the closest surrounding loop, and in most cases the outer loop entry the reloading

point resides at, the smaller total reloading cost will be. In general the outer loop

executes less frequently than the inner loop, and the entry of outermost loop of a dy-

namically loaded code is only executed once. If the reloading point of a dynamically

loaded code has been placed at the outermost surrounding loop, it will require minimal

reloads. Also, a reloading point prior the entry of the outermost loop of its corre-

sponding dynamically loaded code virtually creates no extra benefits but occupation of

precious scratch-pad memory. Thus we have the observation 3.

The three observations above can give us a rough image of the way to divide the

problem: Since all basic blocks inside a nested loop do not have to put their reloading

points prior to the entry of outermost loop they belongs to, two disjoint nested loops

need not to share the same reloading point. Hence it is then reasonable to divide the

problem of deciding set of dynamically-loaded code and their corresponding reloading

points to subproblems consists of outermost loops in the program. Also, since the set

of of each subproblem (i.e., disjoint nested loop) does not overlap, each subproblem

can then be independently solved. After each subproblem is solved (i.e., the best set of

basic blocks and loading points are decided), the problem is solved.

It is worth noting that, as observation 3 suggests, each solution of a subproblem is

mapped to at least one dynamically-loaded code. In next section we shall describe the

way to ‘conquer’ the subproblem we defined above. In section 2.3, we shall follow these

observations and further discuss them.
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2.2 Solving subproblems

In previous section we have discussed a way to partition the problem (the basic parti-

tioning), but the solving method for each subproblem is yet discussed. In this section,

we shall present the way to solve such problem.

The main issue of Steinke et al. [2001] is that they modeled the problem into a

multi-dimensional knapsack packing problem, which is NP-complete.Hence we shall try

another approach:

• Define each subproblem as a unit of dynamically-loaded code.

• Pack each subproblem using one-dimensional, 0/1 knapsack packing indepen-

dently.

• If a subproblem shows it may be beneficial to have more than one parts of

dynamically-loaded code, further divide the subproblem

This approach keeps the packing algorithm considering only one packing problem

at a time. Hence the knapsack size shall be the entire scratch-pad memory. And the

problem deciding the number of knapsacks are reduced to the problem of deciding the

partitions. Note that we do not constrain ourself to the basic partitioning mentioned

above. Instead we consider the possibilities to further divide a partition, creating better

chance for dynamically-loading of code into scratch-pad memory.

We shall describe the way to further divide a subproblem (partition) in section 2.4

and section 2.5
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2.3 How to Determine a Partition of Problem?

We define a partition of problem as a subproblem discussed in the last paragraphs of

section 2.1. As section 2.1 suggests, such a partition are the outermost loop in program.

We can define ‘the outermost loop’ more formally as follows:

The set of nested loops of a program are the subset of the strongly-connected com-

ponent [Tarjan, 1972] of the control flow graph of the program.

Definition: A strongly connected component is a maximal subgraph of a directed

graph such that for every pair of vertexes u, v in the subgraph, there is a directed path

from u to v and a directed path from v to u.

The set of nested loops are the subset of the set of strongly-connected components

of the control flow graph, because any statements which do not belong to any loop

are considered itself as a strongly-connected component. However such statement is

not worthy for dynamically loading since no locality presents for these statements. For

convenience, we shall ignore these ‘orphan’ statements in later discussions.

Now, we can say a partition defined above is a strongly-connected component of

control flow graph. We define such partitioning method as the Basic Partitioning of

problem. According to observation 3 in section 2.1, the basic partitioning shall be the

best partitioning if scratch-pad memory have sufficient capacity to load the maximum-

sized partition.
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2.4 Discussion on SCC

In previous section, we have defined the basic partitioning of the problem as the

strongly-connected component of control flow graph of the program. In this section,

we discuss some issues caused by scratch-pad memory capacity constraints. Consider a

nested loop with two inner loops, which behave as “Hot-Spots 1,” as shown in Figure

2.4.

Assume that our scratch-pad memory do not have enough capacity to hold both hot-

scratch-p ad  M e m o ry

K n ap sack -P ack i n g  E n ti re  S C C
A t O n ce

Inner Loop 1 Inner Loop 2

O u t er Loop

��� � � � ���	� 
��� � 


Figure 2.1: Nested Loop, with two frequently executed inner loops

spots. Since the knapsack- packing is applied on the whole partition (i.e., on the set of

basic blocks belongs to the partition), there must be some part of the hot-spots lost the

chance to be selected into the scratch-pad memory. However, suppose the outer loop

is omitted as in Figure 2.2, there do not exist a path from “Inner Loop 2” to “Inner

Loop 1”, hence “Inner Loop 2” and “Inner Loop 1” falls in different strongly-connected

components of the control flow graph. This means they falls in different partition of

problem, hence they are then knapsack-packed independently. As a result, at run time,

1Parts of code with high temporal locality. Often in the form of tight loop.
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the dynamically-loaded “Inner Loop 1” and “Inner Loop 2” are using the scratch-pad

memory in turns. If the loop iteration count for both inner loops are large enough, the

benefit from execution in scratch-pad memory could balance the cost of reloading both

loops.

scratch-p ad  M e m o ry

scratch-p ad  M e m o ry

At run time, replace SPM before execution 
of I nner L oop 2

I n n e r L o o p  1 I n n e r L o o p  2

L o o p  1
K n ap sack -
P ack e d
S e p arate l y

L o o p  2
K n ap sack -
P ack e d
S e p arate l y

O u te r L o o p  ( R e m o v e d  f ro m  S C C )

Figure 2.2: Exposed Inner Loops

2.5 Further Partitioning

In section 2.4, an example has been shown to illustrate the potential benefit by remove

outer loop in a large strongly-connected component. Then, two subsequent questions

arise:

1. When to break the outer loop? (i.e., when to further partition a partition?)

2. How to break the outer loop?

18



We shall answer these two questions in section 2.5.1 and section 2.5.2.

2.5.1 Decompose Nested Loops

In this section, we discuss the means to break the “outer loop” of a program partition.

Effectively, it shall decompose the corresponding strongly-connected component of the

partition. That is, we further partition a partition of packing problem by decomposing

it. First we have the following assumption:

In the case of nested loops, outer loop is executed less frequently than inner loops.

This assumption holds in most cases, except for the case when inner loop is guarded

by a rarely-hold conditional (e.g. guarded by a seldom hold if() ... construct in the

C programming language). Then we can break the outer loop by finding and removing

the arc with fewest execution count in the control flow graph of the strongly-connected

component corresponding to the problem partition of interest. Figure 2.3 illustrates

this.

��� � ����� 	 	�


� � ����� 	�	�
 Inner loop
Break This Arc

Figure 2.3: Decompose Nested Loops by Breaking Outer Loop

After breaking outer loop, we can then re-apply the algorithm finding all strongly-

connected component in the modified control flow graph. In most cases this will cause

the inner loops to be exposed, if they present. If there is no inner loops beneath the

outer loop, decompose such loop will cause it to become a series of statements. The

latter case, however, can be avoided if we can estimate the potential benefit from de-

composition, and avoid any blind decomposition if there exists no benefit anyhow. The
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way to estimate the effect after decomposition will be discussed in section 2.5.2.

2.5.2 Observations on the Decomposition Method

As mentioned above, our “decomposition” is to decompose the strongly connected com-

ponents of the control flow graph, in a progressive and selective fashion. Recall that

a strongly connected component of the control flow graph is our basic partition of the

problem. Then, the following observations are made:

1. Further partitioning can reduce the size of a partition, with the cost of extra

re-loadings.

2. When a partition already fits in the scratch-pad memory, no further partitioning

is necessary.

Observation 1 holds when a decomposition breaks original nested loops into several

non-overlapping loops or statements. Or, in the terms of graph theory, when a decom-

position effectively breaks original SCC in the control flow graph into several SCCs in

the modified control flow graph. Since each SCC in modified control flow graph now

possess more reloading chances, extra loadings can be expected.

It is worth noting that sometimes a single step of decomposition may not really

decompose a strongly-connected component if there still exists a path of execution be-

tween each pair of nodes inside the strongly-connected component after decomposition.

Based on observation 1, we can see that if a partition already fits in the scratch-pad

memory, the reloading count of every basic blocks inside the partition is at most the

number of entries of the SCC representing the partition. (Branch with its branch target

SCC equal to the SCC in which this branch site resides does not cause a reloading)
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However, if such partition is further partitioned, the reloading count of each basic block

can increase whilst no more basic blocks get the benefit from being dynamically loaded

into scratch-pad memory since every basic block can already be put into scratch-pad

memory simultaneously before further partitioning. This argument is the basis of ob-

servation 2.

In other words, further partitioning a partition can be beneficial if the following

conditions are met:

1. It increases the potential number of basic blocks to be dynamically loaded into

scratch-pad memory.

2. The reloading incurred by further partitioning does not exceeds the benefit from

1.

We shall describe the metric used in condition 2 in section 2.5.3. Note that if the parti-

tion is knapsack-packed, then it must fit in the scratch-pad memory, hence observation

2 also holds for this case. That is, a knapsack-packed partition is unnecessary to apply

any further partitioning on it (i.e., more decomposition of the SCC corresponding to

this partition in the (possibly modified) control flow graph is not necessary).

2.5.3 The Metric

To decide on which step to apply on a partition (either decomposition of the corre-

sponding SCC of the partition or knapsack-packing its basic blocks), a unified metric is

required to estimate the net benefit earned by either decomposition or knapsack pack-

ing. In this section, the metric used in our algorithm is presented.

The idea is to define estimated total earned cycles if we dynamically load a partition

into scratch-pad memory. Since decomposition breaks original partition into smaller
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partitions whilst knapsack packing may “strip” the original partition, we shall simply

evaluate the effect of decomposition by summing up the net benefit of all partitions

created by decomposing current partition.

So we can then define the net benefit of a partition p as follows:

NetBenefit(p) = Profit(p)− Cost(p)

To make things clear, first we define the Memory Speed Gap to be the slow down of

main memory from scratch-pad memory, minus 1:

Memory Speed Gap =
Access Latency of Main Memory

Access Latency of Scratch-pad Memory
− 1,

and TotalExecutedInstructions(p) being total executed instructions in a partition p:

TotalExecutedInstructions(p) = Σ{Size of B×Execution Count of B | Basic Block B ∈ p}

then the profit obtained from loading a partition p into scratch-pad memory can be

defined as follows:

Profit(p) = (Memory Speed Gap)× (TotalExecutedInstructions(p)),

also the cost:

Cost(p) = (Number of Reloading of partition p)× (Reloading Cost of partition p)

It is worth noting that, since decomposition method introduce more partitions by

dividing the current partition, the estimated benefit of decomposition of such partition

shall be the sum of NetBenefit(p) of each partition p created from decomposition, with

non-negative net benefit. The reason why only these partition with non-negative net

benefit is counted is because only those partitions with non-negative net benefit are

capable to be loaded dynamically in scratch-pad memory. That is, only these parti-

tions with non-negative net benefit for dynamic loading will be chosen by the compiler

as the potential dynamic loading objects. These “dynamic loading objects”, and the
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corresponding dynamic loading mechanism are described in section 2.7.

Finally, with the function evaluating the performance of a given partition of problem,

we are prepared to introduce our algorithm in section 2.6.

2.6 The Algorithm

In this section we introduce the algorithm employed to solve the problem in a divide-

and-conquer fashion. As mentioned above, the ‘divide’ is accomplished by the process

of dividing problem into subproblems (i.e., the process of decomposing an SCC), and

further divide these subproblem (i.e., further decompose the SCC in modified control

flow graph) if further benefit can be expected by dynamically-loading parts of the sub-

problem in turn. Then, each partition of problem is solved by one-dimensional 0/1

knapsack packing algorithm.

As stated in section 2.5, we shall begin further dividing of subproblems when it has

more benefit than just knapsack-pack it. And the metric used to evaluate both steps

(decomposition or knapsack-packing) are also introduced in section 2.5.3.

Now we are ready for the algorithm:

Algorithm:

Iteratively taking the following steps:

1. Taking a SCC from the control flow graph

2. Making two copies of this SCC, named copy 1 and copy 2

(a) Applying decomposition on copy 1 to produce several SCCs, and estimate

total reduced cycles
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(b) Apply Knapsack Packing instead of Decomposition on the other copy, copy

2.

3. Commit the best performing copy from step 2-1 or 2-2. If an SCC is decomposed,

regenerate all SCCs.

4. Repeat step 1-3 until every SCC (either introduced from partitioning or from

original CFG) is all Knapsack-packed.

In next section, we shall talk about more details of a dynamic loading mechanism

employed during evaluation of our design.

2.7 The Dynamic Loading Mechanism

This section focuses on the supporting mechanism of dynamically-loading code into

scratch-pad memory.

For convenience, we define the term ‘knapsack’ as follows:

• A knapsack is a dynamically loaded code in 2.1

• A knapsack is effectively a knapsack-packed strongly-connected component in

modified control flow graph computed using the algorithm defined in section 2.6.

That is, we call the dynamically-loaded code generated using our divide-and-conquer

approach as ‘knapsacks’.

2.7.1 Assumption

Before we introduce our dynamic loading mechanism, a few assumption must be men-

tioned:

Assume all branch sources and targets are known at compile time.

Some cases in which above assumption may not hold are listed below:
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• Use of function pointers

• Dynamically loaded libraries

• Interrupt handling code

One shall note that cases violating above assumptions can still keep the correctness,

but requires extra techniques and may cost extra instructions and execution time dur-

ing compile-time and run-time. Here we assume that, at least in our evaluation, above

cases do not happen. Hence the following subsections describing our dynamic loading

mechanism shall be based on above assumptions.

The dynamic loading mechanism can be roughly divided into two stages, which are

compile-time actions and run-time actions, respectively. We start describing the first

stage from the point after the set of knapsacks are determined, using the algorithm

described in section 2.6.

2.7.2 Compilation Actions for Dynamically-loaded Code

We shall describe a mechanism supporting dynamically loading of code into scratch-pad

memory in this section. This mechanism are used as the model in our evaluation stage.

After the decision of contents of every knapsacks, every branch involving these

knapsacks (whatever they are branch targets or branch sources) requires special care

to guarantee correctness. As described in section 2.7.1, we assume every pair of branch

source and branch target are known at compile time.

The basic idea of this mechanism is to put the task of loading the knapsack in which

the branch target resides in to the branch site. Under abovementioned assumptions, we

can be sure about the knapsacks in which branch source/target reside (In the following

text, we shall simply call them “source knapsack” and “target knapsack” respectively).
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For these branch source/target pairs with different source/target kanpsacks, we in-

sert a jump to the loading code of the target knapsack, as illustrated in Figure 2.4.
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Figure 2.4: Dynamic Loading Mechanism

And, for the remainder case which branch source/target pairs belongs to the same

kanpsacks or when the reloading is not required (e.g., branch source is from the code

executed in main memory, and the content of scratch-pad memory already contains the

target knapsack).
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Chapter 3

Evaluation

In this chapter, we evaluate our proposed algorithm in the following aspects:

1. Time Complexity

2. Reduction of Problem Size

3. Quality of Solution

They are presented in detail in the rest of this chapter.

3.1 Time Complexity of Our Heuristic Method

In this section we briefly describe the asymptotic upper bound of the time complexity

of our algorithm. Since our algorithm is based on iterative decomposition of SCC of

control flow graph, and suppose there are E edges in the control flow graph, there will

be at most E iterations of decompositions executed.

For each iteration of decompostion, our heuristics executes the following tasks:

1. Finding SCCs in the control flow graph

2. Knapsack-Packing each SCC
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The first task have θ(V + E) if the Tarjan’s method is applied, where V is the

number of nodes in the control flow graph. The second step takes θ(SV ) for each SCC.

While there are at most V SCCs, an asymptotic upper bound of time complexity of this

algorithm is O(ESV 2). However, since there are total V nodes in control flow graph,

suppose Vi is the number of nodes in ith SCC, then:

∑

i

Vi = V

Hence:
∑

i

SVi = S
∑

i

Vi = SV

which is the asymptotic upper bound of each iteration of decomposition. So a closer

asymptotic upper bound should be: O(ESV ).

3.2 Reduction of Problem Size

Table 3.1 shows how our SCC decomposition algorithm partitions the problem under

different scratch-pad memeory constraints, in terms of percent of basic blocks per SCC.

It shows that our method can effectively reduce the problem size, hence there are

opportunties for integrating ILP-based methods along with our decomposition method,

as some sort of trade-off between solution time and quality.

3.3 Quality of Solution

In this section we analysis the quality of solution produced by our algorithm, at the

following aspects:

1. Lower Bound of Solutions Produced by Our Method

2. Empirical Results
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Table 3.1: Percent of Basic Blocks per SCC

Scratch-pad Memory Capacity CJPEG DJPEG EPIC UNEPIC

32K 32.95% 32.99% 33.10% 32.83%

16K 32.95% 32.99% 33.10% 32.83%

8K 32.95% 32.99% 33.10% 32.83%

4K 32.60% 24.35% 33.10% 31.95%

2K 10.30% 12.53% 12.84% 7.96%

1K 1.47% 0.92% 3.58% 6.95%

512Bytes 1.21% 0.71% 3.35% 1.40%

256Bytes 1.24% 0.69% 3.05% 1.11%

128Bytes 1.15% 0.58% 2.67% 0.74%

Average 16.31% 15.42% 17.54% 16.51%

Because our method partitions the problem only if the result after partition out-

performs the result by just knapsack-packing, our method is guaranteed to outperform

static knapsack packing method given the same profiling data. Hence, the lower bound

of the solution produced our method is the static method.

In next section, we further analyse the performance of our methods by empirical

means.

3.4 Empirical Results

In this section, the performance (in terms of execution time improvement) of following

configurations are evaluated in different memory capacity constraints:

1. Cache
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(a) A Two-way Set-Associative Instruction Cache, with block size setting to 32

bytes

2. Scratch-pad Memory with the following packing methods:

(a) Static Knapsack Packing of Program

(b) Dynamic approach with our decomposition method for partitioning prob-

lems, and knapsack packing for ‘solving’ subproblems.

The experiment methodologies for above two scratch-pad memory packing approaches

and the simulation of cache are illustrated in Figure 3.1.

The rest of this section is organized as follows: Subsection 3.4.1 shows the experi-

ment setting. In subsection 3.4.2 we present the experiment results. Finally subsection

3.4.3 discusses the experiment results.

3.4.1 Experiment Settings

Benchmarks

The following benchmark programs are selected from the MediaBench [Lee et al., 1997]

with the criterion of similar sizes (Program size between 16K-32K), and similar appli-

cation (still image compression and decompression) to reflect the typical workload of

a still-image capturing and compression/decompression environment commonly seen in

embedded devices. These two descriptions are adopted from Lee et al. [1997]:

JPEG A standardized compression method for full-color and gray-scale images. JPEG

is lossy, meaning that the output image is not exactly identical to the input image.

EPIC An image compression utility that is based on a wavelet decomposition and a

combined run-length/Huffman entropy coder.
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Table 3.2: Benchmark programs

Benchmark Program Name Description

JPEG cjpeg JPEG Encoder

djpeg JPEG Decoder

EPIC epic EPIC Encoder

unepic EPIC Decoder

Both benchmark programs consists of two programs: the encoder and the decoder,

respectively. Hence total four programs are benchmarked, see Table 3.2 for details

about these benchmark programs.

Experiment Environment

To approximate an typical embedded system, we employ the ARM7TDMI [Jaggar,

1996] as our target processor. The compiler is the one comes from ARM Developer

Suite (ADS) 1.2. Also, since our simulation environment is trace-driven, as illustrated

in Figure 3.1, our instruction trace is obtained from the armsd ARM symbolic debug-

ger. Finally, to convert the trace to control flow graph, we wrote a tool to construct the

control-flow graph of trace (as an approximation of actual control flow graph in source

program) from instruction traces. The whole flow is presented in Figure 3.2.

The construction of “control flow graph” from trace is about to find the “basic

blocks” in trace. Note these “basic blocks” are not equal to actual basic blocks in

source program if the trace do not cover all possible execution paths in the executable.

To find a “basic block”, we apply the following procedure:

1. Assume that every instruction trace address belong to a different “basic block.”

2. If two instruction addresses are consecutive in the instruction trace, add an edge
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to the “basic blocks” these instruction belongs to.

3. Merge these consecutive “basic blocks” with single entry and single exit.

3.4.2 Experiment Results

Figure 3.3 to Figure 3.6 shows the experiment results of our divide-and-conquer ap-

proach , which is labeled as ‘Our method’ on these figures. We compare its result to

the performances of: a two-way set associative instruction cache, and the static knap-

sack approach (labeled as ‘Knapsack, Static’).

Every figures lists the average cycle per instruction fetch (the label ‘Avg. cycle per

I.F’ in y-axis in Figure 3.3 to Figure 3.6), while their x-axis are different scratch-pad

memory capacity, ranging from 32 kilobytes to 128 bytes except for the case of cache.

The performance of cache is obtained by applying the instruction trace on a instruction-

cache simulator, with block size set to 32 bytes, and the cache size is set to be the same

as the corresponding scratch-pad memory size.

In all four benchmarks, our method has the lowest average cycle per instruction

fetch. Comparing to static knapsack packing approach, results from cjpeg, djpeg and

unepic show our approach will obtain some advantages by allowing multiple hot-spots

in these benchmark programs use the scratch-pad memory in turn.

For epic, our method and static knapsack packing almost match. It implies that

even in smaller-sized scratch-pad memory, knapsack-packing methods still performs

better than the decomposition method. After investigating the source of epic, we can

find the cause of such phenomenon: there is only a major, non-nested loop in the EPIC

encoder. That may be the reason why the decomposition does not work.

As a result, experiment shows that our approach best performed when given appli-

32



cations with multiple hot-spots and nested loops. With the collaboration of knapsack-

packing and decomposition, whether there exists multiple hot-spots or not, appropriate

strategy can be composed. In the case without explicit multiple hotspots, our method

is likely to degenerate to the static knapsack-packing method.

3.4.3 Discussion

Our current design use a ‘always-flushing’ scheme for replacement in scratch-pad mem-

ory. It means any existing knapsacks in scratch-pad memory must be flushed before

loading of any new knapsacks. This effectively forbids any co-existing of knapsacks.

However, it may be beneficial if we allows two knapsacks to co-exist in the scratch-pad

memory if free space of scratch-pad memory allowing us to do so.

In the following sections, we do an experiment to explore the possible benefit by

construct an imaginary, ideal replacement mechanism for the scratch-pad memory.

Experiment on allowing co-existing knapsacks in scratch-pad memory

This experiment is to explore the upper-bound of possible benefit from allowing co-

existing of knapsacks in scratch-pad memory if there is sufficient space in scratch-pad

memory.

Before showing results, we present our assumptions in this experiment:

• An ideal replacement strategy that has access to entire program trace.

• No consideration of internal or external fragments caused by replacement.

• No maintaining overhead of space allocation and deallocation.
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Above assumptions implies only the action of copy knapsacks between main mem-

ory and the scratch-pad memory are concerned. Thus, it can be viewed as an ideal

model for us to explore the potential profit of ‘co-existing knapsacks’ for our divide-

and-conquer approach.

Table 3.3 shows the percentage of eliminated unnecessary re-loadings, as long as

the percentage of total execution cycles earned from these reloading, comparing to an

always-flushing scheme.

The baseline of this comparison is based on the always-flushing scheme. The scratch-

pad memory capacity ranges from 32 kilobytes to 128 bytes, in binary exponential de-

scending order.

The result of this experiment shows, though at most 71% of reloadings are saved in

djpeg, the contribution of such scheme to total execution time is still non-significant,

as being just 3.8%. Except for djpeg,all benchmark programs here show at most 1.65%

reduction in total execution cycles. One shall note that, above performance evaluation is

base on an ideal model, rather than a realistic ‘co-existing’ mechanism. That means if a

realistic co-existing mechanism is applied, with realistic overheads and costs introduced

by the software implementing allocation algorithm, replacement algorithm, etc, such

co-existing scheme is unlikely to be an attractive approach.
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Table 3.3: Upper-bound of performance improvement using the ‘co-existence’ scheme

Scratch-

pad Mem-

ory Capac-

ity

Bench-

mark

32K 16K 8K 4K 2K 1K 512B 256B 128B

Re-

loadings

CJPEG 0% 0% 0% 0% 0% 14.05% 8.57% 8.43% 0.06%

avoided, DJPEG 0% 0% 0% 0% 0% 0.78% 0.26% 71.20% 5.78%

comparing EPIC 0% 0% 0% 0% 2.25% 0.31% 0% 0% 0%

to always-

flushing

scheme

UNEPIC 0% 0% 0% 0% 0% 0% 5.75% 1.21% 0%

Saved CJPEG 0% 0% 0% 0% 0% 0.95% 1.65% 0.44% 0%

Cycles DJPEG 0% 0% 0% 0% 0% 0% 0.04% 3.80% 0.21%

comparing EPIC 0% 0% 0% 0% 0% 0% 0% 0% 0%

to always-

flushing

scheme

UNEPIC 0% 0% 0% 0% 0% 0% 0.01% 0% 0%
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Figure 3.1: The experiment flow of scratch-pad memory packing schemes and cache
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Figure 3.2: The Flow of Experiment: Obtaining “Control Flow Graph” of trace
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Figure 3.3: Comparisons among our methods, Static Knapsack-Packing, and Cache.
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38



���������	
�����	

� � �
� ���� �

������
�	�

����
�	������� � ����	� 
� �����

�

�� �

�

�� �

�

�� �

�

�� �� � � � �
� �
	
� �
�	

� �
��
	

� � 	 
 � � �  
 � � 
 � � � �  �

�
�
�
��
��
��
	�


	�
��
�

� � �
�����

� ��
��� 
���

 �������! �

������
"�	�
��#�

$ % 
& � ��

�	�������
����

Figure 3.5: Comparisons among our methods, Static Knapsack-Packing, and Cache.
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Figure 3.6: Comparisons among our methods, Static Knapsack-Packing, and Cache.

Benchmark: unepic
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Chapter 4

Conclusion and Future Directions

This chapter concludes this thesis. In Section 4.1 we summarize and conclude this

study. Section 4.2 points out some possible issues worth further investigation.

4.1 Conclusion

In this thesis, a heuristic to solve the problem of dynamically loading program into

scratch-pad memory is proposed and evaluated. This heuristic is based on the idea

of ‘divide-and-conquer’. Here ‘divide’ means the decomposition of nested loops, and

‘conquer’ means the one-dimensional 0/1 knapsack packing. Table 4.1 summaries the

differences between our proposed method and previous methods.

The evaluation result is then compared to the static packing approach and a degener-

ation of above approach to evaluate the effectiveness of decomposition method. Result

shows that, our approach performs the best with programs with multiple hot-spots

and nested loops. The evaluation result also shows that, without hardware support,

our software-controlled loading of program code can still outperform a two-way set-

associative I-Cache.

Furthermore, experiment shows that a dynamic loading mechanism with the always-
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Table 4.1: Comparison between Static, Dynamic [Steinke et al., 2001], and Our Ap-

proach

Static Approach Dynamic Approach Our Approach

Problem

Modeling

One-Dimensional

0/1 Knapsack

Packing

Multi-Dimensional

0/1 Knapsack

Packing

Heuristically-

Partitioned In-

stances of 1-D 0/1

Knapsack Packing

Subject Basic Blocks Basic Blocks,

packed in different

loops

Basic Blocks,

packed in SCCs in

CFG

Solution 1-D 0/1 Knapsack

Packing

ILP Solver Heuristic Partition-

ing and 1-D 0/1

Knapsack Packing

Static or Dynamic

Solution

Quality

Optimal Optimal Suboptimal

Distingushing

Feature

Packing all hot-

spots into a single

SPM context

Optimal dividing of

SPM contexts and

packing hot-spots

into them through

ILP framework

Divide SPM con-

texts by SCC de-

composition, then

independently pack

each SPM context
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flushing replacement strategy can be sufficiently close to the ideal case, in which multiple

knapsacks can co-existing in scratch-pad memory if its capacity allows. Thus, with the

simpleness of always-flushing, it will be the best replacement strategy for a dynamic

loading mechanism to work in conjunction with our heuristic, divide-and-conquer based

packing algorithm.

4.2 Future Directions

Still, there are some other issues worth further investigation, such as:

1. Take the interaction between knapsacks into consideration

2. Relax the constraint of strict partitioning of program parts between scratch-pad

memory and main memory

3. Integrate this algorithm to a real compilation environment

The selection criteria of knapsacks to be dynamically loaded into scratch-pad mem-

ory is based solely on its estimated “earned” cycles. However, in some cases we may earn

more cycles by not loading a knapsack which will introduce “threshing” in scratch-pad

memory. That is, it is beneficial to consider the interaction between knapsacks along

with their (worst-case) reduced cycles.

The second issue is to relax the modeling of “partitioning” (i.e. partition the set of

basic blocks to two subsets: those who are executed in main memory, and those who

are executed in scratch-pad memory). A knapsack can have different reduced cycles

while dynamically-loaded into scratch-pad memory in differnt execution paths. Hence,

a generalization in the problem modeling, instead of paritioning, is possible to save
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more cycles by making a knapsack to be dynamically-loaded into scratch-pad memory

in one path, but executed in main memory in the other.

Finally, our study currently bases on an approximation of compilation environment.

In the future we shall integrate this into a real compilation environment to further

validate its performance in typical, real embedded systems.
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