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摘      要 

  本論文提出一個可有效描繪半透明度材質的快取技術。此快取技術主

要靈感來源為 irradiance caching。我們首先採用 irradiance caching 的基本架

構當作我們的基礎。接著提出分割圓(split-disk) 模型決定 cache 的分布並且

轉換 dipole diffusion approximation 方程式，推導出 gradient of subsurface 
illuminance，最後利用已存好的 cache 以及 gradient of subsurface illuminance
來內插圖像。實驗結果顯示，我們只需要很少量的 cache 便可內插出整張圖

像，整體加速約為 5~15 倍，且內插所產生的視覺誤差幾乎可以忽略。 
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ABSTRACT 

   This thesis presents an efficient rendering technique for translucent materials 

using caches. The proposed caching scheme, inspired by the irradiance caching 

method, is integrated into a hierarchical rendering technique for translucent 

materials. We propose a split-disk model to determine the cache distribution and 

derive the subsurface illuminance gradient used for interpolation by reformulating 

the equation of dipole diffusion approximation as a 3D convolution process. Our 

experiments show that only a few caches are required to interpolate the entire 

image, while the visual difference is negligible. The speedup could be achieved 

up to one order of magnitude. 
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Chapter 1 

Introduction 
 

Accurately modeling the behavior of light to produce realistic images is a great 

challenge in computer graphics. Over the years, many illumination models have been 

developed for realistic image synthesis, trying to describe the scattering of light from 

materials. Most of them focus on developing models for the bidirectional reflectance 

distribution function (BRDF) [Jensen 2001], which assumes that light enters and 

leaves a material at the same point on the surface. In some cases like metals, this 

assumption is valid, and results in convincing visual appearances. But when 

accounting for translucent materials, which exhibit significant light transport below 

the surface, BRDF is not enough. Light hitting a translucent material does not just 

bounce from surfaces. Instead, light beams penetrate below the surface, scatter inside 

the material, and leave the object at a different point on the surface. This phenomenon 

is known as subsurface scattering.  

Subsurface scattering diffuses the incident light, blurs the effects of small 

geometric details on the surface, and softens the overall looks. In addition, scattered 

light may pass through an object, which lights up thin geometric details when the 

objects are illuminated from behind. These effects create a distinct look that cannot be 

achieved with simple BRDF model. It is therefore necessary to go back to the more 

general models with bidirectional surface scattering reflectance distribution function 

(BSSRDF) [Jensen 2001] to simulate subsurface scattering. While BRDF models are 

just approximations of BSSRDF models, the BSSRDF can describe light transport 

between any two points on the surface. This requires treating the material as a 
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participating medium with a boundary surface. It therefore needs huge amount of time 

to simulate all the effects of subsurface scattering. 

 

1.1   Literature Review 

Traditionally, subsurface scattering has been approximated as Lambertian diffuse 

reflection that make final images look hard and distinctly computer-generated. In 

computer graphics, the first model dealing with subsurface scattering was proposed by 

Hanrahan and Krueger [Hanrahan and Krueger 1993]. They proposed an analytic 

expression for single scattering in a homogeneous, uniformly lit slab and also a 

method for simulating subsurface scattering by tracing photons through the material. 

But in the end they used a BRDF to represent the final model. 

 Dorsey et al. [Dorsey et al. 1999] later used photon mapping to simulate full 

subsurface scattering for the rendering of weathered stones. Pharr and Hanrahan 

[ Pharr and Hanrahan 2000] proposed the idea of non-linear scattering equations and 

demonstrated how the scattering equations could be used to simulate subsurface 

scattering more efficiently than traditional Monte Carlo ray tracing. Though these 

approaches could fully simulate the subsurface scattering, they suffered from very 

costly computational efferts because they are both based on path sampling techniques. 

They are particularly inefficient for highly scattering materials, in which light could 

scatter several hundred times before exiting the materials. 

 For highly scattering material, Stam [Stam 1995] first introduced the diffusion 

theory to computer graphics. The diffusion theory could model multiple scattering as 

a diffusion process which works particularly well in highly scattering materials. Stam 

also proposed a multi-grid method to solve a diffusion equation approximation, and 

used this approach to render clouds with multiple scattering. However, while the 

multi-grid method is suitable for rendering clouds, it is still too costly to render 

common translucent materials such as milk and skin. 

 A major breakthrough was recently proposed by Jensen et al. [Jensen et al. 2001]. 

They applied the dipole diffusion approximation [Farrell et al. 1992] to simulate the 
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subsurface scattering in homogenous semi-infinite plane-parallel media, thus greatly 

reducing computation time. Jensen et al. [Jensen et al. 2001] achieved more than two 

orders of magnitude speedup compared to the approach of using full Monte Carlo 

simulation, whereas Jensen and Buhler [Jensen and Buhler 2002] made a quantum 

leap further. They decoupled the computation of irradiance at the surface from the 

evaluation of scattering inside the material and used a hierarchical integration 

technique to evaluate the dipole diffusion approximation. This dramatically reduces 

the computation time from several minutes to a few seconds. In addition, they showed 

that the contribution from single scattering is almost negligible, and considering only 

multiple scattering could produce well enough visual appearances. They also found 

that although the dipole diffusion approximation is only valid for planar, infinitely 

large and thick media, mis-using it for curved surfaces still yields very plausible 

images. The analytical BSSRDF model proposed by Jensen et al. [Jensen et al. 2001] 

has so great impact that it is adopted by the following researches on the rendering of 

translucent materials. 

Another acceleration scheme for Jensen's BSSRDF model was proposed by 

Lensch et al [Lensch et al. 2002]. They used a mixture of radiosity-like finite element 

computations and texture filtering to evaluate the BSSRDF integral. Although this 

method can render objects interactively with moving light sources at several frames 

per second, it requires significant precomputation for a texture atlas, form factors, and 

filter kernels.  

 The concept of radiosity-like finite element computation was then further 

improved by Mertens et al. [Mertens et al. 2003]. They used a hierarchical boundary 

element method inspired by the hierarchical radiosity with clustering to solve the 

integral describing the subsurface scattering based on Jensen’s analytical BSSRDF 

model. Instead of using Jensen’s hierarchical point sampling approach, they derived a 

semi-analytical integration method that allows for computing necessary point-to-patch 

form-factor efficiently and accurately. They showed that high-quality renderings of 

deformable translucent objects consisting of tens of thousands of polygons can be 

obtained from scratch in fractions of a second. 

 More recently, Hao et al. [Hao et al. 2003] proposed a simple lighting model to 
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simulate the effects on translucent meshes. Their approximations are based on the 

observation that subsurface scattering is relatively local due to its exponential falloff. 

They modified the traditional local illumination model into a run-time two-stage 

process. The first stage involves the computation of reflection and transmission of 

light on surface vertices. The second stage bleeds scattering effects from a vertex’s 

neighborhood to generate the final result. They then merged the run-time two-stage 

process into a run-time single-stage process using pre-computed integrals. By using 

this approach, they achieved interactive frame rates with about one to two orders of 

magnitude speedup compared to the previous methods. However, in their method, a 

large memory storage is required to record the pre-computed integrals. This problem 

was later alleviated by Hao and Varshney [Hao and Varshney 2004]. They compressed 

the data by spherical harmonic basis functions and used the “reference points” scheme 

to reduce the extra storage from 200 bytes per vertex to 20 bytes per vertex. 

 

1.2   Thesis Overview 

1.2.1   Motivation 

Although recent researches [Lensch et al. 2002; Carr et al. 2003; Dachsbacher and 

Stamminger 2003; Hao et al. 2003; Mertens et al. 2003; Hao and Varshney 2004] have 

improved the speed of rendering translucent materials to some extent, none of them 

could be easily integrated into existing renderers. They require either complex 

rendering algorithms, or some specific data structures (e.g., the pre-computed integral 

storage and “reference points” scheme used in [Hao and Varshney 2004]). In other 

words, most of them are isolated systems for the pure purpose of experiments. The 

algorithms used in these rendering systems are not suitable for movie industry, where 

some specific renderers must be used, and objects are often not mesh-based. 

In this thesis, we seek a rendering technique suitable for rendering translucent 

materials in production, i.e., in the film industry, since it is the major application of 

rendering translucent materials. Currently, the analytic BSSRDF for rendering 
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translucent materials [Jensen et al. 2001] is being used in almost all visual effects for 

movies and it indeed offers the visual effects industry a mean to circumvent producing 

computer-generated human faces that look plastic and unconvincing on the silver 

screen. 

To devise an efficient rendering technique for the film industry, we investigate 

the effect of subsurface scattering and find that it has distinguishing characteristics 

just as the effect of indirect lighting in the global illumination. They both tend to 

change slowly and require a lot of sample points to compute. This inspires us to use 

the classic irradiance caching technique introduced by Ward et al. [Ward et al. 1988] 

as a basis, and to extend it for calculating the subsurface illuminance, which can be 

defined as the light flux per unit area arriving at an inner surface point within 

materials via subsurface scattering from the nearby surfaces.  

Irradiance caching was originally designed for accelerating the computation of 

indirect illumination in a Monte Carlo ray tracer [Ward et al. 1988]. It is a method for 

caching and re-using irradiance values (via interpolation) on Lambertian surfaces. It 

uses a split-sphere model to estimate the amount of change in the irradiance. By using 

this error estimate, it can decide whether to interpolate or to directly compute 

irradiance at a location, and calculate the weights for interpolation. In 1992, Ward and 

Heckbert [Ward and Heckbert 1992] further improved the caching technique by 

deriving a formulae for the irradiance gradients. They found that the gradient can be 

estimated from the rays used to sample the indirect diffuse illumination. By using the 

formulae for the irradiance gradient, they achieved a significantly more accurate 

image than that in [Ward et al. 1988]. The irradiance caching technique was later 

extended to accelerate the computation of ambient occlusion in production 

[Christensen 2003]. In this thesis, we show that it is feasible to extend the irradiance 

caching technique to accelerate the computation of the subsurface illuminance as well. 

1.2.2  Contribution 

The contributions we achieve in this thesis can be summarized as: 

 

 We show that the classic irradiance caching originally used in the ray tracing field 
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for computing indirect illumination could also be extended to render translucent 

materials. 

 We conclude that the dipole diffusion approximation is a 3D convolution process. 

 We reformulate the calculation of the gradient of subsurface illuminance using 

convolution. 

 We propose a split-disk model analogous to Ward’s split-sphere model [Ward et al. 

1988] to determine the spacing of samples. 

 We successfully integrate the irradiance caching technique [Ward et al. 1988] into 

the rapid hierarchical rendering technique for translucent materials [Jensen and 

Buhler 2002] with up to one order of magnitude speed-up. 

 

1.2.3  Outline 

The remainder of the thesis is organized as follows: Chapter 2 gives the fundamentals 

of realistic rendering and the essential theory behind rendering of translucent 

materials. Chapter 3 presents the caching technique we propose for accelerating the 

rendering of translucent materials, which includes some derivations and algorithms. 

Chapter 4 gives some experimental results from our implementation of the proposed 

method. Finally, some concluding remarks and future work are presented in Chapter 

5. 
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Chapter 2 

Backgrounds 
 

This chapter lays the groundwork for creating plausible images with translucent 

materials. It is divided into three parts: the first part gives the foundation of physically 

accurate rendering in computer graphics. The second part deals with the essential 

theory behind the rendering of translucent materials. Finally, the third part introduces 

the dipole diffusion approximation – the practical equation, on which recent relevant 

researches are based to render translucent materials.  

 

2.1  Fundamentals of Realistic Image Synthesis 

In this section, we firstly introduce radiometry, the basic terminology used to describe 

light. Next, we briefly discuss the interaction of light and surface, and then introduce 

the most important component in realistic image synthesis, rendering equation. Finally, 

we present how to display the high-dynamic-range images realistically on 

low-dynamic-range devices, i.e., the so called tone-reproduction operator. 

 

2.1.1 Radiometry 

There are several models developed since middle of 1600 attempting to explain the 

behavior of light, such as ray optics (also known as geometrical optics, which is the 

most commonly used model in computer graphics), wave optics, electromagnetic 

optics, and photon optics [Jensen 2001]. The basic terminology used among them is 
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radiometry, a measurement of optical radiation, which is electromagnetic radiation 

within the frequency range between 3*10  and 3*10  Hz.11 16  This range corresponds to 

wavelength between 0.01 and 1000 micrometers (µm), and includes the regions 

commonly called the ultraviolet, the visible, and the infrared.  

Before we introduce the quantities and units used in radiometry, we explain two 

basic terms: projected area and solid angle.  

 

Projected area is defined as the orthogonal projection of a surface of any shape onto 

a plane normal to the unit vector. The differential form is dAproj = cos(β)dA, where β 

is the angle between the local surface normal and the line of sight. We can integrate 

dAproj over the visible surface area to get  

dAA
A

proj ∫= βcos . 

Here we list some common examples of projected area assuming that there are no 

obstacles in the line of sight (Table 2.1). 

 
Shape Area (visible parts) Projected area 

Flat rectangle WidthLengthA ⋅=  βcos⋅⋅= WidthLengthAproj  

Circular disc 2rA π=  βπ cos2rAproj =  

Sphere 22 rA π=  2rAproj π=  

Table 2.1 Some examples of projected area 

 

Solid angle is an extension of plan angle from two dimensions to three dimensions. 

Recall the definition of a plane angle [Palmer 2003] is “One radian is the plane angle 

between two radii of a circle that cuts off on the circumference an arc equal in length 

to the radius.” And the definition of a solid angle [Palmer 2003] extends to “One 

steradian (sr) is the solid angle that, having its vertex in the center of a sphere, cuts 

off an area on the surface of the sphere equal to that of a square with sides of length 

equal to the radius of the sphere.” The solid angle of an object is thus the area of the 

projection of the object onto a unit sphere. Note that two objects different in shape can 

still subtend the same solid angle. We can think of the differential solid angle as 
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representing both a direction and an infinitesimal area on the unit sphere. 

        
Figure 2.1: Plane angle and solid angle [Palmer 2003] 

 

The most basic quantity in radiometry is the photon. The energy eλ of a photon 

with a wavelength λ is  

λλ
hce = , 

where  is Planck’s constant, and c is the speed of light. esJh ⋅⋅≈ −341063.6 λ is 

measured in joules (J). 

 

Spectral radiant energy Q  in nλ λ photons with wavelength λ is  

λλλλλ
hcnenQ == . 

 

Radiant energy Q is the energy computed by integrating the spectral radiant energy 

over all possible wavelengths: 

∫
∞

=
0

λλdQQ . 

 

Radiant flux or radiant power Φ is the time rate of flow of radiant energy: 

dt
dQ

=Φ , 

where t is measured in second. Radiant flux is often just called the flux. 
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Radiant flux area density M or B or E is defined as the differential flux per 

differential area at a surface location x: 

dA
dxBxM Φ

== )()(   

and 

dA
dxE Φ

=)( , 

where M is referred to as radiant existence, which is the flux leaving a surface, B is 

referred to radiosity, which is exactly the same as radiant existence; and E is referred 

to as irradiance, which is the flux arriving at a surface. 

 

Radiant intensity I is defined as the differential flux per differential solid angle dw: 

dw
dwI Φ

=)( . 

 

Radiance L is defined as the differential flux per differential projected area per 

differential solid angle: 

dAdw
dwxL
θcos

),(
2Φ

= . 

Radiance is a five-dimensional quantity (three for position and two for direction), 

which is the most important quantity in radiometry, since it could most closely 

represent the color of an object. Most light receivers, such as cameras and the human 

eye, are sensitive to radiance, while the response curve of these sensors may be 

different. 

 

2.1.2  Light Scattering 

The interaction of light and material is complicated in real worlds. In this section, we 

will introduce two theoretical frameworks used to model the scattering of light by 

materials. 

 

The Bidirectional Scattering Reflectance Distribution Function or BSSRDF S is 
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the most general description of light transport, which relates the differential reflected 

radiance dLr at x  in direction w  to the differential incident flux dΦ  at xo o i i from 

direction w [Jensen 2001]: i 

),(
),(

),,,(
iii

oor
ooii wxd

wxdL
wxwxS

Φ
= . 

The BSSRDF is eight-dimensional (four for two positions in local two-dimensional 

coordinates and four for two directions) and costly to evaluate, so there are only a few 

papers in computer graphics that really accounts for BSSRDF. 

 

     

Figure 2.2: BSSRDF and BRDF [Jensen et al. 2001] 

 

The Bidirectional Reflectance Distribution Function or BRDF fr is an 

approximation of the BSSRDF, which assumes that light enters and leaves the 

material at the same point (i.e., x  = xo i) [Jensen 2001]. This reduces the BRDF to a 

six-dimensional function (two for position in local two-dimensional coordinates, four 

for two directions): 

iiii

or

ii

or
oir dwnwwxL

wxdL
wxdE
wxdL

wwxf
))(,(

),(
),(
),(

),,(
⋅

==  

where n is the normal at x. BRDF defines the relationship between differential 

reflected radiance and differential incident irradiance and is widely used in 

photo-realistic rendering. It has some interesting properties: 

 The BRDF can take any positive value, and varies with wavelength.  

 The BRDF is independent of the direction, in which light flows (based on 

Helmholts’s law of reciprocity): 
11 



),,(),,( ioroir wwxfwwxf =

∫ ∫ ⋅== dwnwwxLwwxfwxdEwwxfwxL ))(,(),,(),(),,(),(

∫ ∀≤⋅ .,1))(,,( wdwnwwwxf

).,(),(),( oroeoo wxLwxLwxL

 

This is a fundamental property that is used by most global illumination algorithms, 

since that makes it possible to trace light path in both directions. 

 The value of the BRDF for some incident direction wa is independent of the 

possible presence of irradiance along other incident direction wb, so the BRDF 

behaves as a linear function with respect to all incident directions. If we know the 

incident radiance from the hemisphere of all incoming directions and their 

respective BRDFs, we can compute the reflected radiance Lr in any direction by 

integrating the incident radiance Li:  

Ω Ω iiiioirioiror (2.1) 

where n is the normal at x, and Ω is the hemisphere of incoming directions at x. 

 The BRDF must satisfy the following constraint due to energy conservation: 

Ω ioooir  

 

2.1.3  The Rendering Equation 

The rendering equation is a mathematical formulation of the steady-state equilibrium 

distribution of energy in a scene without participating media. It forms the 

mathematical basis for producing realistic images. The rendering equation expresses 

the outgoing radiance Lo as the sum of the emitted radiance Le and the reflected 

radiance Lr: 

+=

.))(,(),,(),(),( ∫ ⋅+= dwnwwxLwwxfwxLwxL

 

By using Equation 2.1 to replace the reflected radiance we get: 

  (2.2) 
Ω iiiioiroeoo

This is the basic form of the rendering equation describing all light transport in a 

scene without participating media. There are some other forms of the rendering 

equation for specific global illumination algorithms. 
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2.1.4  Tone-reproduction Operator 

Up to now, all we discuss about is computing the correct radiometric values for each 

pixel in the final images. These values are measured in radiance that can be computed 

at a specific point in space and in a specific direction. However, these physically 

based radiance values do not appropriately indicate how the human eye perceives the 

environment because the human visual system is very complicated and does not 

simply respond linearly to changing levels of illumination. 

 Tone-reproduction operator, or tone-mapping operator, is therefore presented to 

solve this problem by exploiting the limitations of the human visual system to display 

a high-dynamic-range picture onto a low-dynamic-range display device. There are 

various tone-mapping operators have been presented in literatures. In general, they 

function by creating a local scale factor for each pixel in the high-dynamic range 

image based on the local adaptation luminance of the pixel and the 

high-dynamic-range value of the pixel. The resulting value produced by tone-mapping 

operators is typically an RGB value in the range from 0 to 1 that can be displayed on 

the output device. 

 

2.2  Light Transport Theory 

The rendering equation described in section 2.1.3 considers the interaction of light 

only at the surfaces of objects within an environment without participating media. It 

assumes the light propagates instantaneously through vacuum without any absorption. 

However, to render translucent materials, we must take light scattering in participating 

media (or inside materials) into account. Light transport theory is what could describe 

the propagation of light in materials. It is a heuristic approximation of electromagnetic 

scattering theory, but is unable to predict diffraction, interference, or quantum effects 

[Hanrahan and Krueger 1993].  

In light transport theory, photons traveling in a medium will collide with the 

medium, causing them to be absorbed or change directions (scattering). Absorption 
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means the energy carried by photons is converted into other types of energy, for 

instance, the energy could be converted from radiation to kinetic energy of particles in 

the medium. 

The probability that a photon gets absorbed in a medium, per unit of distance 

along its direction of propagation, is called the absorption coefficient σa(x) and the 

probability that a photon gets scattered in a medium is called the scattering coefficient 

σs(x). These two coefficients are all measured in 1/m. This means that a photon 

traveling a distance ∆x in a medium has a chance σa∆x and σs∆x of being absorbed 

and scattered, respectively.  

The change in radiance L in the direction w due to out-scattering could be 

modeled as the following equation: 

),()(),()( wxLxwxLw sσ−=∇⋅ ,       (2.3) 

and the change due to absorption could be modeled as: 

),()(),()( wxLxwxLw aσ−=∇⋅ .       (2.4) 

(x) as  We often combine the two coefficients to the extinction coefficient σt

)()()( xxx ast σσσ += , 

and the combined loss in radiance is given by: 

),()(),()( wxLxwxLw tσ−=∇⋅ .       (2.5) 

On the other hand, when photons move through the media, there will also be a gain in 

radiance due to in-scattering of light from other directions. The change due to 

in-scattering is modeled by: 

∫Ω=∇⋅
π

σ
4

),(),,(),()( iiiis dwwxLwwxpwxLw ,    (2.6) 

where the incident radiance, L , is integrated over all possible directions. p(x,w,wi i) is 

the phase function describing the distribution of the scattered light. We assume that 

the phase function is normalized, , and is a function only of the 

phase angle, 

1),,(
4

=∫Ω π ii dwwwxp

),(),,( wwxpwwxp ′⋅=′ . The mean cosine g of the scattering angle is 

defined as 

∫Ω ′′⋅′⋅=
π4

)()( wdwwpwwg . 

It indicates the type of scattering in the medium. If g is positive, the medium is 
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predominantly forward scattering; if g is negative, the medium is predominantly 

backward scattering; if g equals zero, the phase function is constant and the medium 

results in isotropic scattering. Most translucent materials are strongly forward 

scattering with g > 0.7. Such strongly peaked phase functions are costly to simulate in 

media with multiple scattering since the probability of sampling in the direction of the 

light source will be low in most situations. In this case we can benefit from a powerful 

technique known as the similarity of moments [Jensen et al. 2002], which allows us to 

change the scattering properties of the medium without significantly influencing the 

actual distribution of light [Jensen et al. 2001]. Specifically, we can modify the 

medium to have isotropic scattering by changing the scattering coefficient to 

( )gss −=′ 1σσ , 

sσ ′where  is the reduced scattering coefficient. The absorption coefficient remains 

unchanged, and we get the reduced extinction coefficient ast σσσ +′=′ . 

In addition to the gain in radiance due to in-scattering, there is also a gain in 

radiance due to volume emission Le from the medium (i.e., a flame), and it is given 

by: 

),()(),()( wxLxwxLw eaσ=∇⋅ .       (2.7) 

By combining Equation 2.5, 2.6, and 2.7 we get a linear integro-differential equation, 

which is the so called light transport equation, or radiative transport equation:  

∫Ω+−=∇⋅
π

σσσ
4

),(),',(),()(),()(),()( iiistea dwwxLwwxpwxLxwxLxwxLw  (2.8) 
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2.2.1  The Volume Rendering Equation 

In computer graphics, the light transport equation is often represented in another form, 

which is derived by integrating Equation 2.8 on both sides for a segment of length s 

subject to the appropriate boundary conditions [Jensen 2001] [Dutré et al. 2003]. 

∫ += −s

ea
xx dxxLxewxL

0

)',( ')'()'(),( στ  

∫ ∫Ω
−+

s

iiiis
xx dxdwwxLwwxpxe

0 4

)',( '),'(),,'()'(
π

τ σ  

),(),( wswxLe swxx ++ +−τ ,        (2.9) 

)',( xxτ  (often called optical depth) is given by: where 

∫=
'

)()',(
x

x t dzzxx στ . 

Equation 2.9 is the so called volume rendering equation, which is much more 

complicated than the rendering equation because the light is influenced by light at 

every point in space, not just the points on other surface. 

 

2.2.2  The Diffusion Approximation 

The light transport equation, either in the form of Equation 2.8 or Equation 2.9, is a 

five-dimensional equation with integrals, which is very difficult to solve even when 

the light is scattered isotropically in the medium. Therefore, we need to use the 

diffusion approximation to make it feasible to solve the light transport equation. The 

diffusion approximation is based on the observation that as the number of scattering 

events increases, the angular dependence tends to be smoothed out, i.e., the light 

distribution in highly scattering media tends to become isotropic.  

 The diffusion approximation begins by dividing the radiance into two 

components: the unscattered radiance (or reduced radiance) Lu and the scatterd 

radiance (or diffuse radiance) Ld. The unscattered radiance is the radiance that 

reaches point x directly from a light source, or from the boundary of the participating 

medium. It decreases exponentially with the distance traveled through the medium 

[Jensen et al. 2002] [Stam 1995]: 
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),(),( wxLewxxL u
x

u
t∆′−=∆+ σ . 

The diffuse radiance is radiance scattered one or more times in the medium. As stated 

above, after many scattering events, the angular dependence of diffuse radiance tends 

to be smoothed out, so the diffusion approximation can use the first four terms of the 

spherical harmonic expansion to represent Ld [Jensen et al. 2002] [Stam 1995]: 

wxExwxLd ⋅+≈ )(
4
3)(

4
1),(

r

π
φ

π
,     (2.10) 

where  is the 0∫Ω ′′=
π

φ
4

),()( wdwxLx d
th-order spherical harmonic, called the radiant 

fluence and  is the 1∫Ω ′⋅′⋅′=
π4

),()( wdwwxLxE d

r st-order spherical harmonic, called 

the vector irradiance. 

 Substituting the diffusion approximation (Equation 2.10) to the light transport 

equation (Equation 2.8) yields the classic diffusion equation [Jensen et al. 2002] 

[Stam 1995]: 

)(3)()()( 10
2 xSDxSxxD a ∇+−=∇ ϕσφ ,   (2.11) 

t

D
σ ′

=
3
1where ; and S0(x) and S1(x) represents the 0th st-order and the 1 -order 

spherical harmonic expansions of the source term, respectively.  

The diffusion equation can be solved analytically for special cases [Jensen et al. 

2001], or numerically by using a multigrid method [Stam 1995]. However, in the case 

of translucent materials, we are only interested in the outgoing radiance at the material 

surface as a function of the incoming radiance. Therefore we can further simplify the 

solution of the diffusion equation using the dipole diffusion approximation, which we 

will describe in next section. 

17 



2.3  The Dipole Diffusion Approximation 

The dipole diffusion approximation, which approximates the volumetric source 

distribution using a dipole (i.e. two point sources), was originally developed in 

medical physics community. The idea was proposed by Eason [Jensen et al. 2001] for 

modeling the back-scattering of light by blood. Farrell et al. [Farrell et al. 1992] used 

a single dipole to represent the incident source distribution for the noninvasive 

determination of tissue optical properties in vivo. Jensen et al. [Jensen et al. 2001] 

then introduced the dipole diffusion approximation to computer graphics community 

for modeling the subsurface light transport.  

The dipole diffusion approximation consists of positioning two point sources 

near the surface to approximate an incoming light (see Figure 2.3). One point source, 

the positive real light source, is locate at the distance zr beneath the surface, and the 

other one, the negative virtual light source, is located above the surface at a distance 

zv.  

 

 

Figure 2.3: An incoming ray is transformed into a dipole source for the diffusion 

approximation [Jensen et al. 2001] [Poirier 2003]. 
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By using the dipole diffusion approximation to solve diffusion equation, we can 

get the following expression for the radiant exitance  at surface location x)( 0xM
ix 0 

due to incident flux Φ(x ) at x  (see [Jensen et al. 2002] for the details of derivation): i i

( ) ( ) ⎥
⎦

⎤
⎢
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⎡
+++

′
Φ=

−−

33 11
4

)()(
v

s

vv
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rriox s
esz

s
eszxdxdM

vr

i

σσ

σσ
π
α , (2.12) 

t

s

σ
σ

α
′
′

=′  is the reduced albedo (
t

s

σ
σ

α =where is the albedo, describing the relative 

importance of scattering versus absorption); taσσσ ′= 3 is the effective transport 

coefficient; 22
rr zrs += is the distance from x  to the positive real light source; 0

22
vv zrs += is the distance from x  to the negative virtual light source; 0

)
3
41( Alz uv += is the distance from x  to x ur lz =io xxr −= ; and  and o i  are the 

distance from the dipole source to the surface (shown in Figure 2.3). The mean-free 

path l
t

ul σ ′
=

1 is the average distance at which the light is scattered: u . Finally, the 

boundary condition for mismatched interfaces is taken into account by the A term 

which is computed as 
dr

dr

F
F

A
−
+

=
1
1

, where the diffuse Fresnel term Fdr is 

approximated from the relative index of refraction η by [Jensen 2001]: 

η
ηη

0636.0668.0710.0440.1
2 +++−=drF . 

By using Equation 2.12, the subsurface illuminance then could be computed as: 
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where Ê(x ) = Fi dt(η)E(x ) and E(x ) is the irradiance at point xi i i. The diffuse Fresnel 

transmittance Fdt(η) is defined as   

Fdt(η) = 1 – Fdr(η),  

and  

)(
))((

),(
ii

o
oid xd

xn
DxxR

Φ
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−=
φr

  

( ) ( ) ⎥
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⎣

⎡
+++

′
=

−−

33 11
4 v

s

vv
r

s

rr s
esz

s
esz

vr σσ
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π
α , 

which is the diffuse BSSRDF defined as the ratio of radiant exitance to incident flux 

[Jensen et al. 2001]. Figure 2.4 shows the graph of Rd (which has exponentially 

decreasing property that we can employ in Chapter 3). 

Finally, since the diffusion approximation already includes a diffuse Fresnel 

transmittance, the diffuse radiance L is computed as: 

( ) πη
η )(

,1

),( o

dt

t

o
xS

F

wF
wxL

⎟⎟
⎠

⎞
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⎝

⎛

= , 

where F  is the Fresnel transmittance. t

Alternatively, we could omit the fresnel terms and assume a diffuse radiance: 

π
)(

),( o
o

xS
wxL = . 
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Figure 2.4: The graph of Rd. 

 

The dipole diffusion approximation introduced by Jensen et al. [Jensen et al. 

2001] is widely used by the following researchers in the computer graphics 

community. However, we find that this model could possibly be improved by using 

the equation proposed by [Kienle and Patterson 1997] from the medical physics 

community. They expressed the reflectance as the integral of the radiance over the 

backward hemisphere and considerably reduced the error in deriving the optical 

coefficients of translucent materials. By integrating their model into [Jensen et al. 

2001], we expect that the measured parameters for translucent materials could be 

more accurate than [Jensen et al. 2001] and the final appearance could be more 

plausible as well. 
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Chapter 3  

A Caching Technique for Rendering 

Translucent Materials 
 

Our development of a caching technique for rendering translucent materials is based 

on the following observations: 

 

 Although the diffusion approximation with a hierarchical integration technique 

[Jensen et al. 2002] is a very effective way of approximating multiple scattering, it 

typically requires more than two hundred sample points per pixel to evaluate 

surbsurface illuminance for each pixel. 

 

 The subsurface illuminance tends to change slowly because the subsurface 

scattering diffuses the incident light, blurs the effect of small geometric details on 

the surface, and softens the overall looks. The smooth appearance is distinct 

especially for high translucent materials and objects with small sizes. 

 

 The resulting subsurface illuminance value is view-independent because the 

subsurface scattering effect is only dependent on object geometry, object material 

properties, and how the object is illuminated. 

 

It appears that for the sake of efficiency, we should not recalculate subsurface 

illuminance at each pixel, but should, instead, calculate it using a small set of 
22 



previously computed values at nearby surfaces. The size of the small set of computed 

values should be independent of image size, thus high resolution images could be 

produced efficiently. Also, since subsurface illuminance does not depend on 

viewpoints, these computed values could be reused for many images, which is useful 

for animation production. 

In this chapter, we propose a caching technique for rendering translucent materials. 

The framework of irradiance caching [Ward et al. 1988] is adopted. To do this, we 

derive an exact solution to calculate the gradient of subsurface illuminance and 

propose a split-disk model to determine the spacing of samples. Finally, we integrate 

the caching scheme into Jensen’s hierarchical evaluation method [Jensen et al. 2002]. 

 

3.1  Dipole Diffusion Approximation as a Convolution 

Process 

Recall that the subsurface illuminance function (Equation 2.14) is 

iAp oidio
i∈

dpppRpEpS ∫= ),()(ˆ)(

)(ˆ pE

,       (3.1) 

where is the irradiance scaled by Fresnel term and R (p ,pd i oi ) is the diffuse 

BSSRDF expressed as: 
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+++= 33 11
4

),(
v

vv
r

rroid s
sz

s
szppR σσ

π
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where 
tσ
sσ

α
′

=′ taσσσ ′= 3 is the reduced albedo; 
′

is the effective transport 

coefficient; 22 += rr zrs is the distance from p  to the positive real light source; o

22 zrs += is the distance from p  to the negative virtual light source; ovv

io ppr −= lz is the distance from pi to po; and ur =  and )41( Klz +=
3uv  are the 

distance from the dipole source to the surface (shown in Figure 2.3). The mean-free 
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path 
t

u σ ′
l =

1  is the average distance at which the light is scattered. Finally, the 

boundary condition for mismatched interfaces is taken into account by the K term that 

is computed as 
drF−1
drF

K
+

=
1

, where the diffuse Fresnel term Fdr is approximated from 

the relative index of refraction η by: 

η0636.0668.0710.0440.1
+++−=F

),( oid ppR

. 
ηη 2dr

In the assumption of semi-infinite plane-parallel medium, becomes a 

function of distance between p  and p  only. By replacing parameter p  and pi o i o with the 

offset oi pp −

),,,(),,,,,(),( ppppppRppppppRppR

and expressing the vector parameter in terms of scalar values, we can 

rewrite Rd as follows: 
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dxdydzpppzyxRzyxEpppS zyxdzyx ∫ ∫ ∫= ),,,,,(),,(ˆ),,(

dxdydzpzpypxRzyxEpppS zyxszyx ∫ ∫ ∫ −−−= ),,(),,(ˆ),,(

. (3.3)  

Note that Rs is a three-dimensional radial function with its value decaying 

exponentially with the distance. 

The original equation (Equation 3.1) integrates pi over the surface A. It seems 

that the integration is a two-dimensional process. But actually the integration is 

performed in three-dimensional space because pi is a three-dimensional point. So we 

change the integral domain and rewrite the Equation 3.1 in a form of three 

dimensions: 

.   (3.4) 
X Y Z

Substituting the Equation 3.3 into Equation 3.4 yields:  

. 
X Y Z

Because the R  is a symmetric function, we can change the sign of the parameter: s
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dxdydzzpypxpRzyxEpppS
X Y Z

zyxszyx ∫ ∫ ∫ −−−= ),,(),,(ˆ),,( . (3.5) 

Obviously, the resultant equation is in the form of the following three-dimensional 

convolution of two functions: 

sRES ⊗= ˆ . 

3.2  Calculating the Subsurface Illuminance Gradient 

Given the subsurface illuminance function (Equation 3.1), it is not clear how to 

calculate the gradient of the subsurface illuminance. With the reformulated 

convolution form in Equation 3.5, the gradient could be derived straightforwardly.  

 Recall that the derivative of a convolution function is: 

dx
dgfg

dx
dfgf

dx
d

⊗=⊗=⊗ )( . 

The gradient of the subsurface illuminance is then derived as follows: 
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As shown in the Equation 3.6 and Equation 3.7, once we have either  or , 

we could calculate the gradient of subsurface illuminace. However, since Ê does not 

have an analytic form, it is impossible to calculate  analytically. Therefore, in 

our implementation, we choose Equation 3.7 to calculate the gradient of subsurface 

illuminance. Note that 
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And the problem is reduced to evaluating the integral of convolution: 
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 (3.8) 

Although the integrals still do not have an analytic solution, by exploiting the 

properties of (see Figure 3.1), we could use some integration techniques such as 

Monte Carlo and quadrature methods to get a good approximation.  

sR∇

-2 -1 1 2
distHmmL

-0.4

-0.2

0.2

0.4

Rd'Hmm^- 3L

Skimmilk B channel

Skimmilk G channel

Skimmilk R channel

 

x
Rs

∂
∂

Figure 3.1: The graph of . 
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Notice that if we choose  
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to calculate the gradient of subsurface illuminance, it would be infeasible to get a 

good approximation even using the Monte Carlo method because the  could not 

be easily sampled. 

Ê∇

3.3  Applying the Gradient to Interpolation 

Once we calculate the gradient of subsurface illuminance, we could use the gradient 

to interpolate the subsurface illuminance more accurately. We use the same weighted 

average as proposed in Ward’s caching technique [Ward et al. 1992] to interpolate the 

subsurface illuminance value:  
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)(

)()(
)( ,      (3.9) 

where 

p is the position of the point to be computed, 

Pk is the position of cache k, 

wk(p) is the weight of cache k with respect to p, 

C is the set of valid caches, {cache k: wk(p) > 1/a}, 

Sk is the computed subsurface illuminance of cache k, 

kS∇  is the computed gradient of subsurface illuminace of cache k, and 

a is a user-specified error bound. 

 

The next problem is how to determine the spacing of samples, i.e., how to 

determine the weight of each sample, or how to estimate the error of each sample. The 
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simplest and theoretically most accurate solution is directly using the inner product of 

the offset  and derived in last section as our error estimate)( kpp − kS∇ ε  

(assuming that the error due to interpolation is proportional to the estimated 

directional change of subsurface illuminance), i.e., 
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∂

∆=∆∝ε . 

Unfortunately, this will lead to bias the calculation. Since gradient is a very local 

property, areas that just happen to have small subsurface illuminance gradient would 

be sampled at low density, even though there could still be sudden changes in the 

subsurface illuminance value due to nearby surfaces. A possible solution is to use 

some approximation models to capture the largest expected gradient in determining 

the sample density so that we could not miss anything relevant.  

To estimate the largest expected gradient, we introduce a split-disk model 

analogous to the split-sphere model proposed by Ward et al. [Ward et al. 1988]. The 

split-disk model, based on the assumption that the geometry is locally flat, relates the 

subsurface illuminance gradient to the variance V of the irradiance values within 

nearby surfaces. It assumes that a surface element is located at the center of a disk 

which approximates nearby surfaces (see Figure 3.2). The radius of the disk, R, is 

heuristically determined according to the material scattering property. Half of the disk 

is totally bright with constant irradiance K and the other half is totally dark with 

constant irradiance of zero. Because the variance of the irradiance values within the 

disk is V, we can conclude that K=2V. The split disk has the largest expected gradient 

possible for surfaces with variance V.  

An approximate bound to the change of subsurface illuminance in the split 

disk,ε , is given by the first order Taylor expansion of the function S of one variable: 

u
Suuu
∂
∂

−≤ )()( 0ε , 

where uo is the center of the disk and u is some other point on the disk. Note u  and uo  

are both one-dimensional value because we only care about the distance between two 

points. 
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Sector of circle A 

 

Figure 3.2: The split-disk model. A surface element is located at the center of a 

half-dark disk. 

 

To derive 

⎟
⎠
⎞

⎜
⎝
⎛
∆
∆

=
∂
∂

→∆ u
S

u
S

u 0
lim ,  

we firstly consider a surface element moving from uo to u, the change of S could be 

computed as twice of an integral over sector of circle A plus an integral over right 

triangle B (see Figure 3.2): 
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Unfortunately, we cannot find an analytic solution of the integral describing 

subsurface scattering over right triangle ∆SB. Inspired by [Mertens et al. 2003] where 

a semi-analytical integration method is derived to solve the integral describing 

subsurface scattering over an arbitrary triangle, we can approximate ∆S by an integral 

u∆

R 

θR

Right triangle B 

E = 2V E = 0

u u o
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over four sectors of circle, i.e.,  

ASS ∆≈∆ 4 . 

The derivation of ∆S is as follows:  
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We can extend our approximation to more complicated geometries by replacing u 

with vector-derived values: 
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As in [Ward et al. 1988], the inverse of the error estimate  
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is then used as our weight. 

Substituting Equation 3.10 into Equation 3.9, the subsurface illuminance of some 

point of interest then can be computed by interpolating nearby caches. Additionally, 

the interpretation of the subsurface illuminance gradient allows us to perform the 

calculation separately for each sample wavelength or to combine into a spectral 

average. The latter was chosen for our implementation to save storage costs and 

evaluation time, although this may cause some blurring artifacts when the difference 

of scattering properties within each sample wavelength is too large. 

 

3.4  A Three-Pass Technique for Rendering Translucent 

Materials  

 

To integrate our model into Jensen’s hierarchical evaluation method [Jensen et al. 

2002], we use a three-pass approach, in which the first pass consists of computing the 

irradiance at selected points on the surface, the second pass generates all the necessary 

cache samples whose values including subsurface illuminance, gradient of subsurface 

illuminance, and variance of irradiance over nearby surface are computed by using the 

precomputed irradiance values, and the last pass re-uses the caches to produce the 

final image via interpolation.  

Note that the second pass in our three-pass approach only generates caches. It 

doesn’t use caches to interpolate any value. The interpolation using caches is done in 

the third pass. The reason why we do not combine generating caches and re-using 

caches into a single pass is discussed in section 3.5. 
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Pass 1: Sampling Irradiance 

To solve Equation 3.1, firstly, we need to sample the irradiance function E(x). There 

are a number of methods to generate sampling positions on the surface. In [Jensen et 

al. 2002], Turk’s point repulsion algorithm [Turk 1992] is used to obtain a uniform 

sampling of points on a polygon mesh. However, a uniform sampling seems irrelevant 

in their hierarchical approach as each sample point is weighted by the area associated 

with it. Instead of using the Turk’s point repulsion algorithm, which is complicated to 

implement, we use a very simple method to obtain the sampling positions on the 

polygon mesh. We directly use the centroid of each face as our sample point and 

assign the area of the face as the area associated with this sample point. If a model is 

too coarse and results in low-frequency noise in final image, we subdivide the model 

until the noise disappears. 

For each sample point, we store the position, the area associated with the point, 

and a computed irradiance estimate. Since we focus on caching technique in this 

thesis, we do not use any rendering technique that accounts for global illumination 

(such as photon mapping and distributed ray racing) to compute the irradiance. We 

simply sum up irradiance contributions from each light source for evaluating direct 

illumination on each sample point.  

 As stated in [Jensen et al. 2002], the irradiance samples described in above 

section should be stored in a hierarchical structure so that,by clustering distant 

samples, we can exploit the exponential shaped fall-off of Rd, thus facilitating the 

evaluation of diffusion approximation. There are a number of hierarchical structures 

that we can use to store irradiance samples. Here we choose an octree as proposed by 

Jensen et al. [Jensen et al. 2001] in our implementation. Each node in the octree stores 

some information representing all irradiance samples inside the voxel associated with 

the node: the total flux Φ, the total area A, and the average position P. Note that the 

leaf node could have up to 8 irradiance samples for efficiency issue. The Φ, A, and P 

are computed as follows: 

∑
∑=

j

jj
i A

PA
P∑Φ=Φ ji ∑= ji AA, , , 
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where node j is node i’s child and if node i is a leaf node,  

∑=Φ kki AÊ ∑= ki AA, , 
∑
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k

kk
i A
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P

]])[[(]var[ 22 IEIEI −=
22 ])[(][ IEIE −=

, 

where irradiance sample k is within node i. 

 Furthermore, because our split-disk model needs to compute the variance of 

irradiance samples over nearby surface and the variance is derived as 

, 

,         (3.11) 

where I is the irradiance distribution over nearby surface. 

E[I]can be computed as 

∑
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where  is the irradiance of nearby sample i scaled by Fresnel term, and Ai is 

associated area of nearby sample i.  

 For the sake of E[I2], which is computed as 
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we store additional information M  in each node: i

∑= MM , 

where node j is node i’s child and if node i is a leaf node,  

AEM ∑= 2  

where irradiance sample k is within node i. 

 

Pass 2: Generating All the Necessary Caches 

Before we state how to find where all the necessary caches should be generated, 

we present how to compute the values stored in each cache. The values we stored in 

each cache are subsurface illuminance S, gradient of subsurface illuminance , and 

variance V of irradiance over nearby surface. All these values are computed by using 

S∇
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the precomputed irradiance values (distributed in Pass 1) stored in a hierarchical 

structure.  

To compute the subsurface illuminance and the gradient of subsurface 

illuminance, we need to solve the integral in Equation 3.1 and Equation 3.8, 

respectively. If we directly sum the contribution from all the irradiance samples, i.e., 

solve the integral in Equation 3.1 and Equation 3.8 using uniform sampling, the 

computation would be too costly. Thus Jensen et al. proposed to use a hierarchical 

integration technique [Jensen et al. 2002], i.e., find a set of points N (see Figure 3.3) 

that could effectively represent all the irradiance samples to compute the integral. 

Pre-computed irradiance samples 
(distributed in Pass 1) 

Representative points of a cluster of 
pre-computed irradiance samples 

An interested point 

The set N 
 

Figure 3.3: The set N. 

Finding the set N 

To find the set N with respect to a point p, we follow the algorithm proposed by 

Jensen et al. [Jensen et al. 2002], and begin by traversing the octree from the root. For 
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each node, we first check whether the node is a leaf. If it is, we include all the 

irradiance samples within it to set N; otherwise, we then check whether p is inside the 

voxel associated with the node. If p is inside the voxel, we continue to traverse down 

to the children; if not, we then compare the solid angle with respect to the voxel with 

a user-specified value m, which controls the error. If the solid angle is larger than m, 

we traverse down to the children; otherwise, we add the representative point of the 

node to the set N. The pseudo code is listed below: 

Traverse_octree(location p, node i) 

{ 

IF node i is a leaf node 

Add all irradiance samples within voxel i to set N 

ELSE IF point p is inside voxel i 

 FOR each child j of node i 

  Traverse_octree(p, j) 

ELSE IF the solid angle of voxel i > m 

 FOR each child j of node i 

  Traverse_octree(p, j) 

ELSE  

 Add representative point of node i to set N 

} 

 

Computing S, , and V S∇

iAp idi dpppRpEpS
i∈

),()()(  

iiAp id dppEppR
i

)(),(∫ ∈
=

After we find the set N with respect to a point p, the subsurface illuminance at p 

is computed by summing up the contribution from point i in N:  

∫=

 

i
i
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As for evaluating the gradient of subsurface illuminance at p, ideally, we should 

use some integration technique exploiting the properties of sR∇ ( Figure 3.1) to solve 

Equation 3.8. Also, the solution to the integral should be evaluated very fast, or the 

cost for computing the gradient will cancel out the gain from the interpolation and 

extrapolation. Fortunately, we don’t need to devise some sophisticated integration 

technique to solve the integral. We could directly use the set N as our sample point to 

hierarchically solve the integral, just as we use the set N to solve Equation 3.1, though 

the plots of Rs (Figure 2.4) and  (Figure 3.1) are not quite the same. The 

gradient of subsurface illuminance could be computed as follows: 

sR∇

∑
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−−−∇=∇
Ni

zizyiyxixs PpPpPpRpS ,,()( ,,,

]])[[( 22 IEIEV −=
22 ])[(][ IEIE −=

Φ i)  

Note that intuitively, it seems that we should use vector Pi - p as our parameter to 

calculate the gradient, but we use vector p - Pi instead. This is due to the sign change 

during the derivation of the convolution process (Equation 3.5). 

Another value we have to compute is the variance V of irradiance over nearby 

surface (see Equation 3.11, 3.12, and 3.13): 
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where I is the irradiance samples within nearby surface. Note we again use the set N 

to calculate the variance. 

 

Determining where the caches should be generated 

 To determine where all the necessary caches should be generated, we firstly use 

ray casting to find a set of visible points X. For each point xi in X, we check if there is 

any previously computed cache at nearby surface that could be used for interpolation, 

i.e., any cache k with  Wk(x ) > 1/a. If any, we leave xi i to next pass; otherwise, we 

generate a new cache at point x , evaluate S(x ) and ∇i i  associated with the 

cache. Note that checking each point x  in X in different order could change the i
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resulting distribution of the caches. Here we choose bottom-up scan-line order in our 

implementation.  

 As stated is [Ward et al. 1988], each previously computed cache is only valid for 

interpolation in some finite space. The “valid domain” of each cache is computed as 

follows: 
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By using this “valid domain”, we could store these computed caches in an 

efficient data structure so that nearby caches can be located fast. As in [Ward et al. 

1988], we choose an octree to store our computed caches. We begin by using the 

object’s bound box as the root of the octree. When a new cache is generated at some 

location, the octree is subdivided on demand to contain this value. Each cache value, 

with valid domain rk, should be contained in an octree node whose side length is 

greater than 2*rk, but not more than 4*rk. This guarantees that the stored caches could 

be located in no more than 8 cubes on its own octree level, and a cache with a small 

valid domain will only be examined in close-range searches (typically only one or two 

cubes need to be traversed). An analogous two-dimensional extreme case is shown in 

Figure 3.4.  

38 



Maximum node 
containing the 
cache 

Minimum node 
containing the 
cache 

The cache 

r 

 

Figure 3.4: An extreme case of 2D octree node containing a cache with valid domain r. 

The pseudo code for storing computed caches is listed below: 

 

StoredCaches(cache k, node i) 

{ 

 IF (rk < (side length of node i) / 4) 

  IF node i does not have child 

Split node i into node j, for j = 1 ... 8 

Determine which child j containing cache k 

  StoredCaches(k, j) 

 ELSE 

  Store cache k into node i 

} 

shell of node i 

S 
2S 

node i 

 

Figure 3.5: The shell of a node is obtained by expanding its side length from S to 2S. 
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To search the octree for a cache k whose valid domain rk contains test point x, the 

following recursive procedure is used: 

 

FindAnyValidCache(point x, node i) 

{ 

 FOR each caches k stored in node i 

  IF |x-pk| < rk

   Return True; 

 FOR each child j of node i 

  IF x is within the “shell” of the node j (Figure 3.5) 

   Return FindAnyValidCache(x, j) 

 Return False; 

} 

 

Pass 3: Reusing Caches to Interpolate Image 

After we generate all the necessary caches, we evaluate each point xi in X (which is a 

set of visible points computed by ray casting) using Equation 3.9. Again, we use the 

octree to find the set of valid caches C. The pseudo code is listed below: 

FindAllValidCache(point x, node i) 

{ 

 FOR each cache k stored in node i 

  IF |x-pk| < rk

   Include cache k to C 

 FOR each child j of node i 

  IF x is within the “shell” of the node j (Figure 3.5) 

   FindAllValidCache(x, j) 

} 
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3.5  Discussion 

 In Ward’s original paper [Ward et al. 1988], though the split-sphere model is only 

a crude estimate of the gradient magnitude, generating cache and reusing cache were 

proposed to be done in a single pass. This results in some rather disturbing artifacts 

due to inaccurate interpolation and extrapolation. Figure 3.6 shows an example of 

inaccurate interpolation.  

 

C3

C2

C1

P 

Figure 3.6: Inaccurate interpolation due to a single pass scan-line rendering. 

In single-pass scan-line rendering (assuming in bottom-up scan-line order), the four 

points P, C1, C , and C  are examined in the order of C , P, C , and C2 3 1 2 3. Assuming that 

we generate C , C , and C1 2 3 as caches; and P is within their valid domains, we can find 

that when we examine point P, the cache C2 and C3 have not yet been generated, thus 

we will use only one cache C1 to interpolate point P. If we use two pass, i.e., the first 

pass generates the cache C , C , and C1 2 3; then the second pass interpolates P using 

these three caches. That way will get more accurate interpolation. 

To solve this problem, Ward then proposed irradiance gradient [Ward and 

Heckbert 1992], which computes actual irradiance gradient, not just a directionless 

upper bound, to make the interpolation and extrapolation significantly more accurate, 

thus avoiding separating generating cache and reusing cache into two passes. 

However, in our translucent caching technique, although we have successfully 

computed the gradient of subsurface illuminance, we still need two-pass calculation to 
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get an acceptable image. This is mainly due to the fact that subsurface illuminance 

gradient is much greater than irradiance gradient. Figure 3.7 compares images 

rendered in one-pass and two-pass approaches. 

    

Figure 3.7: Left: two-pass approach. Right: one-pass approach. 

 

 As for computing the variance of irradiance for split-disk model, we didn’t use 

the most accurate calculation (Equation 3.14). The most accurate calculation should 

be evaluated using 
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where Ip is the irradiance at the location p. Because using this equation didn’t affect 

the final image quality very much, it is not worthy of re-sampling irradiance at each 

pixel unless the cost of re-sampling irradiance is negligible. 

 Instead of the split-disk model, we could use other approaches to determine the 
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sR∇cache distribution. One alternative is applying a filter to , i.e., convolving  

with some filter function G (e.g., Gaussian function): 
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And then by using the resultant functions, we can derive average subsurface 

illuminance gradient:  

. zyx

This approach has advantages of capturing the average subsurface illuminance 

gradient more accurately and computing by using the same hierarchical 

integration technique for S and . Unfortunately, we didn’t find any filter function 

that could produce analytic solutions of function F. Thus we leave this study as our 

future work. 
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Chapter 4 

Results 
 

In this chapter we present several results from our implementation of the rendering 

technique. All the images are rendered by a Monte Carlo ray tracer at the resolution of 

1024x1024 pixels. Our timings are recorded on a PC with an AMD Athlon XP 1800+ 

(1.53GHz) processor and 512 MB main memory. 

To validate our algorithm, we have implemented Jensen’s hierarchical rendering 

technique [Jensen et al. 2002] and compare the images generated by Jensen’s 

hierarchical rendering technique with ours (Figure 4.1). The Dragons are rendered 

with material Skimmilk [Jensen et al. 2001]. Our approach gives almost the same 

visual appearance while achieving about one order of magnitude speedup.  

Table 4.1 illustrates the performance and timing statistics of our approach with 

different models. N is the number of samples for sampling irradiance. C is the number 

of total caches. H is the number of total hit pixels. R is the ratio of C to H. RMS is the 

root-mean-squared error with respect to the averaged RGB value of each pixel. T1 and 

T2 are the rendering times used in Jensen’s approach and ours, respectively. The time 

for sampling the irradiance and computing the specular term is not taken into account. 

Note the ratio of total caches to total hit pixels is about 2%. Other 98% pixels could 

be calculated via interpolation. While we only use such small amount of caches, we 

still get very good visual appearance with RMS smaller than 0.01. The speedup ratio 

is dependent on the average cost for computing subsurface illuminance of each cache. 

The more the computation of subsurface illuminance costs (e.g. for better image 

quality), the higher speedup we get. Typically, it varies from 5 to 15.  
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Figure 4.1: Top: the image rendered using Jensen’s hierarchical rendering technique.  

Bottom: the image rendered using our caching technique. 

 
Model Buddha Dragon Igea Teapot 

N 293,232 202,520 268,686 261,632 
C 6,845 8,207 8,240 5,991 
H 342,124 446,781 491,436 316,046 
R 1.84% 2.00% 1.68% 1.90% 

RMS 0.0058 0.0062 0.0040 0.0049 
T1 (sec.) 62.50 76.47 88.09 41.17 
T2 (sec.) 7.53 6.50 7.89 4.84 
Speedup 8.30 11.76 11.16 8.51 

Table 4.1: Overview of performance with different models. 
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Figure 4.2 shows distribution of the caches and Figure 4.3 show the direct 

illumination. Figure 4.4 shows the visualization of the gradient of subsurface 

illuminance , where the XYZ channel of the gradient is mapped to the RGB 

channel in the images. The brightness of a pixel corresponds to the magnitude of the 

gradient. Figure 4.5 is the variance V of the irradiance. Figure 4.6 then shows these 

four models rendered with material Marble. Note the models are rendered at scale of 

7cm. 

S∇

   

 

  

Figure 4.2: The cache distribution. 
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Figure 4.3: The irradiance E (direct illumination only). 
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S∇ . Figure 4.4: The visualization of 
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Figure 4.5: The variance V. 
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Figure 4.6: Different models rendered with material Marble. 
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Finally, we show that our caching scheme could be tailored to different sizes of 

objects and different kinds of materials. In Figure 4.7, the scale of Buddha changes 

from 7cm, 5cm, 3cm, 1cm, to 5mm. And the dragons in Figure 4.8 are rendered with 

material Skin1 and Skin2 [Jensen et al. 2001]. 

 

Figure 4.7: Changing the scale of subsurface scattering for Marble. 

 
Figure 4.8: Top: dragon with material Skin1.  

Bottom: dragon with material Skin2 [Jensen et al. 2001]. 
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Chapter 5 

Conclusion and Future Work 
 

In this chapter, we give a brief summary of the thesis, and suggest some directions of 

future work. 

5.1  Summary 

We present an efficient caching technique for rendering translucent materials. We 

successfully integrate irradiance caching technique proposed by Ward et al. [Ward et 

al. 1988] into a rapid hierarchical rendering technique for translucent materials 

proposed by Jensen and Buhler [Jensen and Buhler 2002]. Our approach is efficient 

for producing high-quality images with high resolution and is particularly useful in 

animations. It also integrates seamlessly with Monte Carlo ray tracing, scanline 

rendering, and global illumination methods. Our results demonstrate the speedup 

could be achieved up to one order of magnitude compared to the hierarchical 

rendering technique proposed by Jensen and Buhler [Jensen and Buhler 2002] with 

negligible visual difference in the final images. The success of our approach is mainly 

due to the caching technique using the gradient of subsurface illuminance. 

The contributions we achieve in this thesis can be summarized as: 

 We show that the classic irradiance caching originally used in the ray tracing field 

for computing indirect illumination could also be extended to render translucent 

materials. 

 We conclude that the dipole diffusion approximation is a 3D convolution process. 

 We reformulate the calculation of the gradient of subsurface illuminance using 
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convolution. 

 We propose a split-disk model analogous to Ward’s split-sphere model [Ward et al. 

1988] to determine the spacing of samples. 

 We successfully integrate the irradiance caching technique [Ward et al. 1988] into 

the rapid hierarchical rendering technique for translucent materials [Jensen and 

Buhler 2002] with up to one order of magnitude speed-up. 

 

5.2  Future Directions 

Further improvements include exploring more complex models to determine the cache 

distribution and devising a reasonable model to determine the radius of split-disk and 

the upper bound of valid domain of each cache, which are set heuristically in our 

implementation. 

Combining our caching technique with programmable graphics hardware is also 

an interesting topic. The vertex sent to graphics pipeline could be treated as cashes in 

our caching scheme and the interpolation using subsurface illuminance gradient could 

possibly be implemented in fragment shader. This approach should enhance the image 

quality of recent researches [Mertens et al. 2003; Hao and Varshney 2004; Hao et al. 

2003; Lensch et al. 2002; Carr et al 2003; Dachsbacher and Stamminger 2003], which 

are all restricted to mesh-based objects with Gouraud Shading.  

Finally, it would also be useful to investigate the accuracy of the dipole diffusion 

approximation in the presence of complex geometries and to find the solution 

methods for the heterogeneous materials, which is still a big challenge for current 

researchers.  
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