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Symbolic Gray Code as a Perfect Multiattribute
Hashing Scheme for Partial Match Queries
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Abstract-In this paper, we shall show that the symbolic Gray code
hashing mechanism is not only good for best matching, but also good
for partial match queries. Essentially, we shall propose a new hashing
scheme, called bucket-oriented symbolic Gray code, which can be used
to produce any arbitrary Cartesian product file, which has been shown
to be good for partial match queries. Many interesting properties of
this new multiattribute hashing scheme, including the property that it
is a perfect hashing scheme, have been discussed and proved.

Index Terms-Bucket- oriented symbolic Gray code, Cartesian product
file, multiattribute file organization, partial match query, perfect hash-
ing, symbolic Gray code.

I. THE PARTIAL MATCHING PROBLEM
IN this paper, we are concerned with partial match query

systems [1], [3], [5], [6], [10], [18]-[21], [23]. We
assume that we are dealing with a multiattribute file consisting
of a set of multiattribute records. Each record is characterized
by attributes Al, A2, -- ,AN. A partial match query is a
query of the following form: retrieve all records where Ai, =
all, * * *, Aik= aik where O< k <N.
We shall assume that all of the records are divided into buck-

ets and stored in disks. Each time a partial match query is
processed, one or more disk accesses are performed. Since the
disk accessing is much more time-consuming than any other
processing in the internal main memory, we shall measure the
performance of our file system by the number of buckets
necessary to be examined.
Let us consider Tables I and II. In both tables, a query

(A I = a, A2 = *) denotes a partial match query which retrieves
all of the records with A equal to a and A 2 can be any value,
i.e., a don't care condition. It can be seen that the average
number of buckets to be examined, over all possible partial
match queries, is 2 for the file system in Table II and 4 for file
system in Table I.
Thus, our multiattribute file system design problem for

partlal match queries can be stated as follows: given a set of
multiattribute records, the problem is to arrange the records
in such a way that the average number of buckets to be exam-
ined, over all possible partial match queries, is minimized.
Unfortunately, a solution to the above stated problem is

still at large. In other words, given an arbitrary set of multi-
attribute records, there is no efficient algorithm to fimd an
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TABLE I
(A) AN ARRANGEMENT OF 16 RECORDS INTO FOUR BUCKETS.

(B) BUCKETS TO BE EXAMINED FOR ALL POSSIBLE QUERIES FOR (A)

(A) Bucket 1 Bucket 2 Bucket 3 Bucket 4
(a,a) (a, b) (a,c) (a,d)
(b,b) (b,c) (b,d) (b,a)
(c,c) (c,d) (c,c) (c ,b)
(d,d) (d,a) (d, b) (d,c)

(B) Queries Buckets to be examined
(a,TM) 1,2,3,4
(b,*) 1,2,3,4
(c,T) 1,2,3,4
(d,*) 1,2,3,4
(T,a) 1,2,3,4
(*,b) 1,2,3,4
(c,C) 1,2,3,4
(*,d) 1,2,3,4

TABLE II
(A) ANOTHER ARRANGEMENT OF 16 RECORDS INTO FOUR BUCKETS.
(B) BUCKETS TO BE EXAMINED FOR ALL POSSIBLE QUERIES FOR (A)

(A) Bucket 1 Bucket 2 Bucket 3 Bucket 4
(a,a) (a,c) Cc,a) (c,c)
(a,b) (a,d) (c,b) (c,d)
(b,a) (b,c) (d,a) (d,c)
(b,b) (b,d) (d,b) (d,d)

(B) Oueries Buckets to be examined
(a,*) 1,2
(b,T*) 1,2
(c,*) 3,4
(d,*) 3,4
(M,a) 1,3
(T,b) 1,3
(*c) 2,4

d) 2,4

optimal arrangement of records into buckets. However, if all
records are present, under certain conditions, it is possible to
have an optimal solution.
We shall elaborate this in the following section.

II. THE CARTESIAN PRODUCT FILE CONCEPT
Before presenting the Cartesian product file concept, let us

assume that each record is characterized by N attributes Al,
A2, *- - ,AN. Each Ai is associated with a set Di, which is
the domain of Ai. The size of domain Di is denoted as qi.
The domain of the file F, consisting of all possible records, is

0098-5589/82/0500-0235$00.75 © 1982 IEEE

235



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 3, MAY 1982

thus DI X D2 X * * - X DN. The total number of records, or the
size of F, denoted as NR, is q, q2 ... qN. We shall assume that
the entire file is divided into NB buckets: B1 , B2, , BNB.
Definition: A file system is called a Cartesian product file

if all records in every bucket are in the form of D1SI, D2S2,
DNsN where Di.1 is a subset of Di. This bucket is de-

note4das [sI,s2, SN
Example 2.1: Let D1 {a, b, c, d} D2 . LetD1I =D21 =

{a, b} and D12 = D22 = {c, d}. Then the following file system
is a Cartesian product file:

Bucket [1, ] = DI X D21 = {(a, a), (a, b), (b, a), (b, b)}
Bucket [1,2] =DII XD22 = {(a,c),(a,d),(b,c),(b,d)}
Bucket [2, 2] = D12 X D22 = {(c, c), (c, d), (d, c), (d, d)}
Bucket [2, 11 = D12 X D21l = {(c, a), (c, b), (d, a), (d, b)}.

The reader should note that the above file system is exactly
the same as that shown in Table II. This is not accidental.
As first pointed out by Lin et al. [19], many good file sys-
tems, such as those designed by Rivest [211, Rothnie and
Lozano [23], as well as Liou and Yao [20], are all Cartesian
product files. Aho and Ullman [1] explored the problem of
designing optimal multiattribute file systems whose probabili-
ties of an attribute being specified are not equal. This file
system is also a Cartesian product file. In [6], more properties
of Cartesian product files were discussed.
The physical meaning of a Cartesian product file discussed in

Example 2.1 can be vi-sualized by considering Fig. 1 where
each dot represents a record. In Fig. 1, each bucket corre-
sponds to a square. In this case, it is easy to see that this
Cartesian product file divides records into natural clusters. If
we want to retrieve all records with A., equal to a, only two
buckets (Bucket [1, 1] and Bucket [1, 2] ) have to be accessed.
Similarly, if we want to retrieve all records with A2 = b, again,
only two buckets (Bucket [1, 1] and Bucket [2, 1]) have to
be retrieved.
If we do not use the Cartesian product file concept and in-

stead we use the file system shown in Table I, the reader can
verify for himself that within each bucket, records are not
similar to one another at all, as shown in Fig. 2.
In [19], it was pointed out that good multiattribute file

systems all exhibit some kind of clustering property. That
is, within each bucket, records should be similar to one an-
other. It just happens that Cartesian product files do cluster
similar records together.
Example 2.2: Cartesian product files do not necessarily

group records into squares, as shown in Fig. 2. For the case
.in Example 2.1, we may also have the following Cartesian
product file:

DI, = {a}, D12 = {b}, D13 = {c}, D14 = {d}.
D21 =D2 = {a,b,c,d}.
Bucket [1,1] = {(a,a), (a, b), (a, c), (a, d)}
Bucket [2,1] = {(b, a), (b, b), (b, c), (b, d)}
Bucket [3,1] {(c, a), (c, b), (c, c), (c, d)}
Bucket [4, 1 ] = {(d, a), (d, b), (d, c), (d, d)}.

The above file system is shown in Fig. 3, where each long
strip corresponds to a bucket. This file system performs very
well if the user specifies AI and very poorly if the user speci-
fies A2 -
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Fig. 1. Simple geometry representation of Table II(A).
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Fig. 2. Geometry representation showing that records not similar to

one another are within each bucket.
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Fig. 3.
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Simple geometry representation which prefers some attribute.

Because of the clustering properties of Cartesian product
files, they are also useful for nearest neighbor searching [2],
[41, [9], [14], [17], [22], [24]. Du and Sobolewski [10]
used the Cartesian product files for parallel processing in
multiple disk systems.
Given two records R1 = (rI1, rI2, ,rlN) and R2 = (r2I,

r22 , r2), the Hamming distance between RI and R2 is
defined as follows:

N
d(Ri,R2) L6(rj1,r21)

i -1

where

6(r1i,r2 ) 1 ifr1i r2i
=0 ifrli r2i.

One of the most important properties of Cartesian product
files is that it is possible to arrange records in a Cartesian
product file such that the Hamming distance [19] between

I L I
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TABLE III
USING INDEX PAIRS TO DENOTE EACH BUCKET NUMBER OF TABLE II(A)

(a,a)
Bucket (ci,b)

[1,1]J(b, b)
(b,a)
(b, c)

Bucket (b,d)
[1,2] (a ,d)

i (a,c)
(c,c)

Bucket (c,d)
[2,21 (d,d)

(d,c)
(d,a)

Bucket (d,b)
[2,1] (c, b)

(c,a)

USING INDEX PAIRS

Bucket I

Bucket I

Bucket I

TABLE IV
TO DENOTE EACH BUCKET NUMBER

Bucket [4,1]

(a,a)

(a, b)

(a,c)

(a,d)
(b,d)

(b,c)

(b,b)

(b,a)

(c,a)
(c,b)

(c,c)

(c,d)
(d,d )

(d,c)
(d b)
(d,a)

two consecutive records in the file is equal to one. For ex-

ample, consider the two files in Examples 2.1 and 2.2, respec-

tively. They can be displayed in Tables III and IV. The reader
may verify that in both files, for any pair of consecutive rec-

ords, the Hamming distance between them is equal to one.

Thus Cartesian product files exhibit the consecutive retrieval
property advocated by Ghosh [16 ].

Note that the Cartesian product file concept is only a method
to organize records physically. We still need an indexing
scheme to locate the records. Since this indexing scheme
occupies memory space, it will be desirable to eliminate it.
This can only be achieved by using some kind of multiattri-
bute hashing scheme [9], [23] which maps a record directly
to its address space without the help of any indexing file.
In this paper, we shall show that we have a multiattribute

hashing method for Cartesian product files. That is, for every

Cartesian product file, we can easily design a multiattribute
hashing which produces such a file. This hashing method has
the property of being a minimum perfect hashing method [8],

TABLE V
USING SYMBOLIC GRAY CODE TO HASH ALL OF THE POSSIBLE RECORDS

OF EXAMPLE 3.1

Records

(a,a)
(a, b)
(a,c)
(a,d)
(b,d)
(b,c)
(b, b)
(b,a)
(c,a)
(c,b)
(c,c)
(c,d)
(d,d)
(d,c)
(d ,b)
(d,a)

Location

2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16

[11 ], [25] in the sense that no collision occurs and no memory
space is wasted. Our hashing scheme is based upon symbolic
Gray code [9] which will be discussed in the next section.

III. SYMBOLIC GRAY CODE

The symbolic Gray code concept was proposed by Du and
Lee [9]. While the exact algorithm of this hashing function
is rather complicated, its meaning is easy to understand. Con-
sider the following example.
Example 3.1: Let us assume that DI =D2 = {a, b, c, d}.

The symbolic Gray code will always hash all of the possible
records as shown in Table V.

It was shown in [9] that the symbolic Gray code has the
following interesting properties.
Property 1-Address to Key Transfornation Property: All

hashing functions provide a key to address transformation.
But symbolic Gray code hashing also provides the address to
key transformation. That is, given an address in the address
space, we can calculate the record stored in that location. For
instance, for location equal to 5, we can easily show that the
record stored there is (b, a).
Property 2-The One-to-One Correspondence: Let us de-

note KAT and AKT as the key to address transformation and
the address to key transformation, respectively. Property 2
means that if KAT(R) = i, then AKT(i) = R.
Property 3-No Collision in the Table: This is a consequence

of Property 2.
Property 4-No Waste of Memory Space: This is a conse-

quence of Properties 1 and 2.
Property 5-The Nearest Neighbor Property: If symbolic

Gray code is used, the Hamming distance between every pair
of two consecutive records in the resulting file is always equal
to one. This means that they are nearest neighbors to each
other.
Property 6-TheMultiattribute TreeProperty: For a detailed

discussion of this property, consult [9].
From the above properties, one can easily see that the sym-

bolic Gray code hashing is a minimal perfect hashing [25]

237



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 3, MAY 1982

(perfect means no collision and minimal means no waste of
memory space).
In spite of the above desirable properties, the symbolic Gray

code nevertheless suffers from one disadvantage-it is not good
for partial match queries. Consider Table V. Let us assume
that every four records are stored in one bucket. Then, if our
query specifies the first attribute, only one bucket has to be
examined. On the other hand, if our query specifies the sec-
ond attribute, all buckets have to be examined. We may say
that the consecutive retrieval properties among the attributes
are not balanced.

If there are three attributes, this imbalance is even more pro-
nounced. A typical file produced by symbolic Gray code in-
volving three attributes is now shown in Table VI.
Note that the symbolic Gray code does produce Cartesian

product files. The unfortunate thing is that it cannot be used
to produce a Cartesian product file specified by us. For in-
stance, it cannot produce the file shown in Table III.
In this paper, we shall propose a new symbolic Gray code,

called bucket-oriented symbolic Gray code as a multiattribute
hashing scheme to produce any Cartesian product file that we
want, in particular, a Cartesian product file suitable for partial
match queries.

IV. BUCKET-ORIENTED SYMBOLIC GRAY CODE
We indicated before that symbolic Gray code always pro-

duces a special kind of Cartesian product file. This can be
modified. Note that for a Cartesian product file, each bucket
is associated with an index and the index itself can be consid-
ered as a record. For instance, in Example 2.1, the indexes
associated with the four buckets are

(1, 1)
(2, 2)
(2, 1)
(1,2).

If we consider the above 2-tuples as multiattribute records, we
can use symbolic Gray code to order them into the following
sequence:

(1, 1)
(1,2)
(2,2)
(2, 1).

For the first bucket, there are four records:

(a,a)
(b,b)
(a,b)
(b, a).

We can again use symbolic Gray code to order them into the
following sequence:

(a,a)
(a,b)
(b,b)
(b, a).

TABLE VI
A THREE-ATTRIBUTE FILE PRODUCED BY SYMBOLIC GRAY CODE

Record RL(ALV.A2.AVA)
(Al1. A21. A31)

(All A21. A32)
(A1. A21. A33)
(A12. A22. A33)

(A11' A22f A32)

(A12. A22. A31)

(A12. A22. A31)

(A12. A2n A32)

(A12. A221 A33)

(A12. A21, A33)

(A12. A21, A32)

(A12 § A21 A31
(A13 . A21 A31)
(AW3 A21' A32)

(A13. A21. A33)
(A13' A22. A33)
(An. A22. A32)

(Aa . A22* A3 ),

Now consider the second bucket:
records are as follows:

Address L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Bucket [1, 2]. The four

(a,c)
(a,d)
(b, c)
(b, d).

We can use symbolic Gray code to order them into the follow-
ing sequences:

(a,c)
(a,d)
(b,d)
(b, c).

For reasons that will become obvious later, we may reverse the
above ordering without affecting the consecutive retrieve prop-
erty. The reversed order will be

(b, c)
(b,d)
(a,d)
(a, c).

The above process can be applied to each bucket and finally
we shall obtain the file in Table VII.
The reader can now see that we can use the symbolic Gray

code to obtain a Cartesian product file specified by us. Since
it is not the symbolic Gray code as originally proposed by Du
and Lee [9], we shall call the new code bucket-oriented sym-
bolic Gray code.
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TABLE VII
USING INDEX PAIRS TO DENOTE EACH BUCKET NUMBER OF TABLE II(A)

(a,Q)

Bucket [1,1] (a b)

(b,b)
(b,a)
(b,c)

Bucket [1, 21 (a,d)
(a,c)
(c,c)

Bucket [2,2](2 d)
(d,d)
(d c

(d b)

Bucket 12 ,11 (d,a)

__________ (C,b)

V. BUCKET-ORIENTED SYMBOLIC GRAY CODING AS A

MULTIATTRIBUTE HASHING FUNCTION

In the previous section, we gave an outline about how sym-
bolic Gray code can be used as a hashing to create any arbi-
trary Cartesian product file. In this section, we show the exact
algorithm.
We are given a set of records characterized by N attributes

A I, A2,, AN. The domain of Ai is denoted as Di. The

domain size of Ai is qi. Each record is denoted as R = (Alb1b
A2b2 ,ANmN) where 1 <bi qi. Each Di is divided

into ti subdomains and the size of each subdomain is denoted
as zi. Each bucket is in the form of

D1, D2S2, *, DNSN

where Disi is a subdomain of Di. This bucket will be denoted
as

Bucket [s 1, S2, * * * , SNI

Our algorithm to hash a record R = (A ji I, A2iI2,- , ANiN)
to an address consists of two main steps. In the first step, we
determine the order of the bucket which will contain this
record. In the second step, the exact location of this record
inside the bucket is determined.
Given a record R = (Alb 1, A2b2X*2 ANbN)9 the bucket

[S1, S2, SN] which will contain this record is determined
by the following formula:

Si=[

for 1 S i SN where zt is the size of a subdomain of Di and [xI
is the smallest integer greater than or equal to x.

The order of [Sl, S2, , SN] is determined through Algo-
rithm A which is essentially the key to address transformation
algorithm of the symbolic Gray code discussed in [9].

Algorithm A: The Algorithm which Determines the
Order ofa Bucket [S1, S2, , SN]
Input:

[S1, S2, ,SN]
[tl, t2,* tN

where ti is the number of subdomains of the domain of attri-
bute Ai.
Output: The order of the bucket [SI, S2, ,SN].
Step 1: Determine an N-tuple (al, a2, * *', aN) through the

following rules.
a) For i = 1, let ai = si - 1. That is, a, =s - 1.
b) For I<iN, let

L2 =a + I
L3 =aIt2 +a2 +

Li =aI(t2t3 ** ti1) +a2(t3t4 -* ti1) +* *+aj-1 + 1

LN =al(t2t3 . . . tN 1) +a2(t3t4 . . . tN l)
+ **+ aN -l +;

if Li is odd, ai= - 1;

if Li is even, ai tiSit
Step 2: The order of Bucket [Sl, S2, , SN] is now calcu-

lated as follows:

P=al(t2 tN)+a2(t3t4 tN)+ **+aN-ltN+aN+l.

Example 5.1: Consider Example 2.1 again. In this case we
have four buckets:

Bucket [1, 1]
Bucket [1, 2]
Bucket [2, 2]

and

Bucket [2, 1]

Let us now determine the order of Bucket [1, 1]. Since

SI =S2=1 and tl =t2=2

we have

a, = Sl - 1 = 1 - 1 = 0

L2=a + 1 0 + I I is odd.

Therefore,

a2 =S2 - 1 = 1 - 1 = 0

(a1,a2)= (, 0)
P=alt2 + a2 + 1 = 0 X 2 + 0 +1 = 1.

The order of Bucket [1, ] is 1. For Bucket [2, 1], we have

SI = 2
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and

S= 1

a =sl - 1=2- 1 =1

L2 =a1+ 1= 1 + 1 =2 is even.

Therefore,

a2 = t2 - S2 = 2 - 1 = 1

(al,a2)=(1, 1)

P=alt2 + a2 + 1 = 1 X 2+ 1 + 1 =4.

The order of Bucket [2, 11 is 4.
Having deterrnined the order of the bucket which will con-

tain the record, we can determine the relative address of the
record inside the bucket. Again, we apply the symbolic Gray
code to all of the records inside the bucket. If the order of the
bucket is even, the ordering is reversed. The following algo-
rithm determines the relative address of a record inside the
bucket containing it. After determining both the order of the
bucket and the relative address, the absolute address of the
record can be easily determined.

Algorithm B: The Algorithm which Calculates the
Absolute Address ofa Record
Input: Record

R = (Alb1,A2b2 ..,ANbN)
(Zj,Z2r ,ZN)

(t,t2r ,tN)
where zi is the size of each subdomain of Di and ti is the num-
ber of subdomains of Di.
Output: The absolute address of R.
Step 1: Fori I toN,

rbilSi= [i1
Step 2: For i l to N,

bz bi - (Si - 1) X Zi.

Step 3:
a) For i = 1, let as = b1 1. That is,al 1z4 - 1
b) For 1 <i<N,let

L2 =a + 1
L3 =a1z2 +a2 + 1

Li =a1(Z2Z3 ... zi-1) +a2(Z3Z4 ... zi-1) + - +ai- +

LN aI(Z2Z3 ZN-1) +a2(Z3Z4 ZN-1)
+ - - * +aN-l + 1;

ifLiisodd,ai=b- 1;

if Li is even, ai = Zi bs

c) m= a1(Z2Z3 * ZN)+ a2(Z3Z4 ... ZN) + +aN-lZN
+ aN + 1.
Step 4: Apply Algorithm A to (SI, S2, * , SN) and (t1, t2,

* , tN) to determine the order P of Bucket [sI, S2, ,* , SN]-
Step S: If P is even,m'=zlz2 .zN-m+1. IfPisodd,

m = m. (Note that m' is the relative address ofR inside Bucket
[SI S2, SN] which will contain R.)
Step 6: The absolute address L of R is determined by the

following formula:

L=(Z1Z2 --ZN)X(P 1)+m.

The above procedure is called the key to address transforma-
tion (KAT) of the bucket-oriented symbolic Gray code.
Example 5.2: Consider Example 5.1 again; in this case we

have four buckets:

Bucket [1, 1]
Bucket [1, 2]
Bucket [2, 2]

and

Bucket [2, 1]

Let us now determine the absolute address of some record in
this file system.
Case 1: For the recordR=(a,c)=(A11,A23),(bl,b2)

(1,3).
After applying Algorithm B (or AKT), since z1 = Z2= 2 and

tl = t2 = 2, we have

and

b22S2 = b2 = p3 = 2.

So we know that the record will be contained in Bucket [1, 2].
Next, we have

b b1 -(si - 1)Xz1
= 1 - (1 - 1) X 2
= 1

and

2= b2 - (S2 - 1) X Z2
=3-(2- 1)X2
=3- 2
= 1.

From Step 3, we have

a b - 1 = 1 - 1 =0

L2 =a, + 1 1 is odd.

Therefore,

a2 = b - 1 = 1 - 1 = 0

m=az2 +a2 + 1=0X 2+0+1 = 1.

For Bucket [1, 21, we have (s,, s) = (1, 2).
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By applying Step 4 (or Algorithm A) to (sI, s2) = (1, 2) and
(t1, t2) = (2, 2), the order of Bucket [1, 2] is determined to
be 2. That is, P = 2.
For P is even, the relative address of R inside Bucket [1, 2]

is

m' zIz2-m+l=2X2- 1+1=4.

Hence, the absolute address L ofR is

L=Z1Z2 X(P- l)+mt
2 X 2 X (2 - 1) + 4

=4 + 4 = 8.

That is, Record (a, c) is stored at the eighth address after
applying this KAT technique.
Case 2: For record R=(c, d)=(A13, A24), (bl, b2)=

(3, 4).
After applying Algorithm B (or KAT), since

z1=z2=2 and t1=t2=2,

we have

and

S2= 1 = ] = 2.
So we know that the record will be contained in Bucket

[2, 2]. Next we have

b1 =bi -(s, - 1)Xz =3-(2- l)X2=1

and

2b =b2 - (s2 - 1) X z2 = 4 - (2 - 1) X 2 = 2.

For Step 3, we have

aG =-bl71 = 1- 1=0

L2 =a, + 1=0+1 = 1 isodd.

Therefore,

a2 = b2f-1 = 2 - 1 =

m =a1Z2 +a2 + 1 =0X 2 + 1 + 1 = 2.

For Bucket [2, 2], we have (sI, s2) = (2, 2).
By applying Step 4 (or Algorithm A) to (si , s2) = (2, 2) and

(tl, t2) = (2, 2), the order of Bucket [2, 2] is determined to
be 3. That is, P = 3.
For P = 3 is odd, the relative address ofR inside Bucket (2, 2]

is m'= m = 2.
Hence, the absolute address L ofR is

L =zIz2 X (P-1)+m'=2X 2X(3- 1)+2=10.

That is, Record (c, d) is stored at the tenth address after
applying this KAT technique.

If the reader consults Example 2.1 with Table III, he will
discover that the addresses of (a, c) and (c, d) are just the same

as those in Table III. In fact, if Algorithm B is used, all records
in D, X D2 will be organized as shown in Table III.

Let us now conclude this section by stating the fact again
that given an arbitrary Cartesian product file, we can apply the
bucket-oriented symbolic Gray code to determine the address
of every record in the file. In other words, the bucket-oriented
symbolic Gray code can be used as a multiattribute hashing
function to produce any arbitrary Cartesian product file.

VI. SOME PROPERTIES OF USING BUCKET-ORIENTED
SYMBOLIC GRAY CODE TO ORGANIZE ANY

CARTESIAN PRODUCT FILE
In this section, we shall present some interesting properties

of using the bucket-oriented symbolic Gray code to produce
Cartesian product file systems.
Property 1-The Address to Key Transformation: While

most hashing functions provide "key to address transforma-
tion" only, our bucket-oriented symbolic Gray code also
provides an "address to key transformation" (AKT) which
maps an address to a unique record. Let us note that the
total number of possible records of a file D1 X D2 X * X DN
is q lq2 * * * qN, where qi is the size of Di. Suppose all of the
records are stored in NB buckets. In the following, we shall
show that we have an address to key transformation.

Algorthm C: To Convert an Address
to its Associated Record
Input:

(Z 1,Z2, ,ZN)
(q1,q2c XqN)

L,1.L.q1q2..-qN
where qi and zi are the sizes of Di and each subdomain of Di,
respectively.
Output:

(Alb1j A2b2 - ,ANbN)
where R = (Alb , 2b2 ANbN) is a record which is asso-

ciated with the address L.
Step 1: Calculate

m L- ] I XZ1Z2 *-ZNZ1Z2 ZN

where m' is the relative address of the record RL inside the
bucket containing it.
Step 2: Calculate

L-P=;
ZIZ2 . .. ZN

ifPis odd, mm';
if Pis even, m Z1Z2 ... ZN - m +.

P is the order of the bucket containing RL.
Step 3:

a) Determine an N-tuple (al, a2, , aN) through the
following equation:
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P= a l(t2 t3 . . . tN) + ii2 (t3 t4 ..tN)

+ *-+aN ltN +aN+ I

where ti = q/lzi and P is obtained in Step 2.
b) For i = 1 to N, determine as follows:

p
si =a + 1, if ti ti+1 * *tN is odd.

si=t1-a1, itj+l tN] is even.

[S1 , S2, ,SNI is the bucket containing RL.
Step 4:

a) Determine an N-tuple (a,, a2, ,aN) through the
following equation:

m = al (Z2Z3 ... ZN) + a2-(Z3Z4 ZN)
+ +aN.lZN + aN + 1

where a!s are all integers and m is obtained in Step 2.
b) For i = 1 to N, determine b' as follows:

b>.=a, + 1, if [ . l is odd.ziZi+1 . ZN

bz=Zi - ai, if [ ] is even.
Zi i+1 ..ZN

StepS: Foril= toN,

bi= zi X (s - 1)+b;'
Step 6:

(A blb ,A2b 2' ''

** ANfbN) iS RL *

The above procedure is called the address to key transforma-
tion (AKT) of the bucket-oriented symbolic Gray code.
Now, let us show how the AKT can be applied to the data in

Table III.
Example 6.1: Consider the case where L 10, ql = q2 = 4

andZ1 =Z2 = 2.
Step 1:

m' 10 -
2X
10 l I1 X 2 X 2 = 10 - 8 = 2

Step 2:

12X2= =3.
m m = 2 becausePis odd.

Step 3:
a) t1 = q1 /z =2 and t2 = q2/Z2 =2; we have

3 =alt2 +a2 + 1
= 2a1 +a2 + 1

This gives (a,, a2) = (1, 0)
b) Because

[k1f21 =[| 21= 1 is odd, sl =a1+1=1+ 1 =2.

Because

t= [2- =2 is even, S2 = t2 -a2 =2- 0=2.

[2, 2] is the bucket in which R10 is stored.
Step 4:

a) m =a1z2 +a2 + 1.
We have

2=a1 -2+a2 + I

This gives (a1, a2) = (0, 1).
b) Because

1= [ =1 is odd, b' =a +1= 0 + 1= 1.

Because

[-] =2[ 1 is odd, b2 = a2 + 1 = 1 + 1 = 2.

Step 5:

b, =z -(s, - 1)+b'1 =22-(2- 1)+1
=3

b2 =z2 (s22- l)+b =2-(2- 1)+2
=4.

Therefore, we have RI0 = (A 13, A24).
Property 2-The One-to-One CorrespondenceProperty: We

have shown the key to address transformation (KAT) mecha-
nism of the bucket-oriented symbolic Gray code hashing func-
tion. We have also shown the address to key transformation
(AKT) in the hashing function. We now ask: What is the
relationship between these two transformations?
The following theorem depicts that there is a one to one

correspondence relationship between the addresses and records.
Theorem 6.1: For every record R EDI X D2 X* X DN,

if KAT(R) = L, then AKT(L) = R. (The proof of this theorem
can be found in Appendix A.)
The reader can verify this point by checking into Table III.

If he applies the AKT to any address I SL S 16, he will
obtain the record stored in that location and if he applies the
KAT to the record already stored there, he will obtain exactly
the same address.
Property 3-No Collision in the Hash Table: For most hash-

ing functions, there will be collisions in the hash table because
two distinct records may be hashed into the same address.
From Property 2, we know that ifR i is different from R2, the
address of R1 will be different from that of R2 . Thus there
will be no collisions in the hash table. We may say that the
bucket-oriented symbolic Gray code can be considered as a
perfecthash function [8], [11], [25].
Property 4-No Waste ofMemory Space: For most hashing

functions, if we know that the total number of records to be
stored is M and some kind of hashing function is used, we

usually must reserve more than M locations. It is not the case
when this hashing function is used. Because of Property 2 and
Property 1, we only have to reserve exactlyM locations. Thus,
the bucket-oriented symbolic Gray code is a minimal perfect
hash function.
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Property 5-The Nearest Neighbor Property: For I AL <
NR = q1 q2 - - qN, the Hamming distance between the record
RL stored at location L and the record RL+1 stored at loca-
tion L + 1 is always 1. Because of this special property, every
pair of consecutive records in the hash table are nearest neigh-
bors to each other. This is a very desirable property for or-
ganizing records for a best match searching system [2], [4],
[9], [12]-[14], [22].
Theorem 6.2: Let there be N sets: D1, D2, , DN where

Di {Ai1, Ai2, * - - ,Aiqi} and qi > 1. Let RL denote the
record associated with L by applying Algorithm B (KAT) to L.
Let NR denote the total number of records in DI X D2 X ...

X DN. Then the Hamming distance between Ri and Ri+I is 1,
for 1 < i <NR. (The proof of this theorem can be found in
Appendix B.)
Property 6-Appropriate for Partial Match Searching: It

was shown in [6] that Cartesian product files were suitable for
partial match searching. Since any Cartesian product file can
be produced by using the bucket-oriented symbolic Gray
code, we shall say that this hashing scheme is good for partial
match searching.
Property 7-For any Partial Match Query, It is Easy to De-

termine All Buckets Necessary to Be Examined: Assume a
partial match query is of the following form. Retrieve all
records where A1l =Aibi, Ai2 =Ai2bi2 A. =AAfb j
and i1 . i2 ... ii. Assume each Akbik is inDi 1 Sikk ~lkSik~
k .j. The buckets we have to examine are [SI S2, * *NI 's,
where Sk is any value ranged from 1 to tk, (tk is the number of
subdomains of the domain of attribute A k) if k * ip, 1 < p .1
and Sk = Si I if otherwise.
For instance, in Table III, consider the query (AI = c, A2 =

*). That is, the query is (A 13, *). Since A 13 is in D12, s1 = 2
and S2 can be from 1 to 2. So there are two buckets [2, 1]
and [2, 2] to be examined. By applying Algorithm A to these
two buckets,WF have the order of these buckets being 4 and
3, respectively. Hence we can conclude that bucket 3 and
bucket 4 must be examined for the query (A1 = c, A2 = *)
Property 8-The Multiattribute Tree Property: Assume that

we have a sequence of buckets, BK1 , BK2, and BKNB pro-
duced by the bucket-oriented symbolic Gray code. This se-
quence of buckets can be viewed as a tree whose structure is
explained as follows.

1) The top node of the tree corresponds to all buckets.
2) For level 1 of the tree, there are tl nodes: B,, B2, **

Bt,. Each node corresponds to a set of t2t3 * tN buckets.
Thus the first node on level 1 consists of buckets ordered from
1 to t2 t3 ... tN. The second node consists of buckets ordered
from t2 t3 * tN + I to 2(t2 t3 * * * tN), etc.
3) Each node on level 1 is split into t2 nodes on level 2.

Thus there are t1 t2 nodes on level 2. Each node corresponds
to t3 t4 * tN buckets. Thus the first node on level 2 consists
of buckets ordered from 1 to t3 t4 *. tN. The second node
corresponds to buckets ordered from t3 t4 . . tN + 1 to
2(t3 t4 . tN), etc.
4) In general, there are tl t2 * t, nodes on level i of the

tree. Each node corresponds to ti+1 t4+2 ... tN buckets.
5) Within each node on level i, S1, S2, * * , si assume the

same value, for all buckets in this node.

B2 =ig3 2 BK2 l[21 2]B31t BK4= [,1,211
BK5= ([2,2,]/X~~~D2 BK7 [21 2]2

1 B411 BKu= [4,2,11

\~~~~~~~D~I BK5 = [4,2,1]

D12B2 BK6 = [4,2,21
B4 D21 ~ 3 421 BK9 = 14,1,2]

D2B D31
3 YB422 BK16= [4,1,1]

Fig. 4. A multiattribute tree.

Example 6.2: Consider a three-key records set:

D1= {A11,A12,A13,A14,A15,A16,A17,A8}

and

D3= {A31 ,A32,A33,A34,A35,A36}.

LetD1 = {A1A12},D12 = {AD3,A24},D13 = 3,22
={A17,A 1= {A21B,A222},D22 = {A23,A24},D31 =

{A31,A32,A33jJ,andD32 = D{A34,A35,A36}1
NR=q1-*q2-*q3-8X4X6= 192

BZ=z1 *Z2*Z3=2X2X3=12

NB=t1 * t * t3 = q X2 X =4X 2X 2= 16.
z1 z2 z3

The tree corresponding to the buckets in which all the rec-
ords in this case is stored is now depicted as in Fig. 4.
For level I of the tree, the first node B1 corresponds to buck-

ets ordered from 1 to 4. On the second level of the tree, the
second node B12 corresponds to buckets ordered in 3 and 4.
For records in B1, the first key is in D16 = {Alj, A 12 } for all
records. In B2, the first key is in D11 and the second key is
inD22 = {A2 3,A24} for allreords.
This kind of-structure is called multiple-attribute tree [7],

[15].@
VII. CONCLUDING REMARKS

In this paper, we proposed the bucket-oriented symbolic
Gray code as a multiattribute minimal perfect hash function.
This hashing function can be used to produce any arbitrary

Cartesian product file. Since Cartesian product file systems
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have been shown to be appropriate for partial match queries,
our bucket-oriented symbolic Gray code is appropriate for
partial match queries. We would like to emphasize here that
hashing is good in this case because no index file is necessary.
Our next job is to investigate how our multiattribute hashing

function can be used to organize files where some possible
records are missing.

APPENDIX A
PROOF OF THEOREM 6.1

Definition: Let

I.L.qlq2 *-qN
L =al(q2q3 ..*qN) + a2(q3q4 qN)

+ * * aN-2(qN- 1qN) +aN_ 1qN +aN + 1

where

ai is an integer, 0 S ai < qi.
This N-tuple (a,, a2, * * *, aN) is called the qi representation

of L. For example, consider the case where q1 = 3, q2 = 2,
q3 = 3, and L = 6. Then q2q3 = 2 X 3 and q3 = 3. Therefore,
6 = 0(2 X 3) + 1(3) + 2 + 1. This means (a1, a2, a3) = (0, 1,
2).
The qi representation of 6 is (0, 1, 2).
Lemma 1: Let A = (a,, a2, * * *, aN) be the qi representa-

tion of L and B = (b1, b2, -** , bN) be the qi representation of
L + 1, then the Hamming distance between A and B is m > 1
and

a) ai=bi, for I.i.N- k,k m
b) aN-k+l + 1 = bN-k+l
c) ai=qi- 1 forN-k+2SiSN and bi =O
Proof: For any integer L, 1 < L < q1 q2 ... qN, there is

only one N-tuple (a1, a2, , aN) such that L = a1q2q3 ...

qN+a2q3 -

* qN * +a_IqN+aN+ 1,whereOSai<qi.
(1)

For integer L + 1, 1 S L + 1 < q1 q2 * qN, there is only
one N-tuple (b1, b2, - , bN), such that L + 1= bIq2q3 ...

QN +b2q3 *qN +* +bN-,qN +bN + 1, where 0.bi S
qi. So, L= b q2q3 qN + b2q3 ** qN + bN-1qN+ bN (2)
Compare (1) and (2)-there are two possibilities.
Case 1:

0 <aN <qN - 1, 0 <aN + I <qN-

Assume bN = aN +l and b1= ai, i = 1, 2, - ,N- 1. In this
case, the Hamming distance between (a,, a2, ,aN) and
(bC,ba2 bN) is 2
Case 2:

aN =qN - l,aNl -qN-l - 1, * ,aN-k+2 =qN-k+2.- 1

and

aN-k+l <qN-k+l -1, for some k, 1< k .N.

In this case,

bN-k+l =aN-k+l +1,

bN-k+2 =bN-k+3 *bN-1 =bN=O
and

bi=ai, i=1,2,- ,N- k.

The Hamming distance between (a,, a2,- -- , aN) and (bI,
b2, - - -, bN) is m, where 1 m < k.
In general, the Hamming distance between (a,, a2, - ,a-N)

and(bl,b2, - - - ,bN)ism> 1 and

ai =bi for 1 i.<N- k,

and

aN-k+l + 1 = bN-k+l - Q.E.D.

Lemma 2: Let A = (a,, a2, * * *, aN) be the qi representa-
tion of L where I < L < q1q2 ... qN. Then

L

|qiqi +l
. QN

is equal to

a,(q2q3 * * qi-.) +a2(q3q4 . qi-,1)+ * * * +ai-, + 1.

Proof- Since A = (a, , a2, - - , aN) is the qi representation
of L, we have L = alq2q3 * * * qN + a2q3 ** qN + * +

aN.4qN+aN + 1,

[a L2]

Iqiqi+l 4NiN

_ al q2q3"* * qN + a2q3 ... qN + *, + aN-lqN + aN +I

=a (q2q3 .-. qi-) + a2(q3q4 qi-q) + *+ ai-1 +

[aiqi+l qN +ai+lqI+2 ...qN+ +aN-lqN+aN+1
qiqi I qN

Since ai < qi, we have ai < qi - 1 and

1 .aiqi+l ... qN +ai+lqj+2 qN

+ * * * +aN-,qN +aN + I

< (qi 1)qi+l - qN + (qi+l -)q1+2 qN

+ + (qN-1 - I)qN + (qN - )+ I

=qiqi+l ,qN-

Hence

aiqi+l ...qN+ ai+lqi+2 qN +- .+aN-qN +aN + =1
qiqi+l a + qN

That is,

L q~l is a,(q2q3 - qi-)
qiqi+l * qN

We have the proof. Q.E.D.
Lemma 3: Let A = (a,, a2, * * *, aN) be the qi representa-

tion of u and B = (b I, b2, * * *, bN) be the qi representation of
V. Let X= (XI, X2, * **, XN) and Y = (Yl, Y2, , YN) be
two N-tuples which are defined as follows:
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xi =-ai + 1, if
u

isodd,
iqi[qqi qN

xi =qi - ai, if is even,
qi qi+1. QN

and

yi bi + 1, if is odd,
qiqi+l ..QN

v

yi qi bi, if is even.
,qiqi+l ..qN

If Iu - v = 1, the Hamming distance between X and Y is 1.
Proof: Because Iu - v = 1, we may suppose that v = u + 1.

Let A = (a1, a2, * , aN) be the qi representation of u and
B = (b1, b2, * * , bN) be the qi representation of u + 1. By
Lemma 1, the Hamming distance between A and B is m > 1

and

ai=bi for 1.i<N-k,k>m.

aN-k+l + 1 = bN-k+l
By Lemma 2, we have

(1)

(2)

[qiqi+l ]qN
= al q2 ... qi-l + a2 q3 * * * qi-l.

+ --+ai-l +1

=b Iq2 - qi-l +b23 ql

[+q--ibiN+

=qiqi+l -fqN N
for Il Ai<N- k+ l. (3)

Equations (1)-(3) imply that

Yi'xi for 1.i.N-k

and

YN-k+l /ZXN-k+1
Consider

[qjqj+i -1~ Iand [ v' ]

for N- k+22i.N.
In this case,

1=alq2 ... qi-1 + a2q3 ... qi-
qiqi+l ..qN

=(alq2 ..qi-l +a2q3*..qi-l
+* * +aNkqNk+l .

qi-l

+ aN-ks qN-k+2 ... qi-l
+ [(qN-k+2 - 1)qN-k+3 ...qi-l
+(qN-k+3 - I)qN-k+4 qi-l

(4)

= Iaq2 ... qi-l +a2q3 ... qi-l

+- +aN-k+lqN-k+2 qi-l

+ QN -k +2qN -k+3 ..qi- 1

V
qiqi+l... q

b, q2 ***qi-l + b2Q3 ... qi-l

.+- - -+bi- l+I

=[a,q2 ... qil+a2q3 ... qi-l
+ ' + aN-kqN-k+l ..qi-l]

+ (aN-k+l + I)qN-k+2 ..qi-l +1

=a,q2 - * qi-l +a2q3 * - qi-l

+.. + aN-kqN-k+l qi-l

+ aN-k+l qN-k+2
-

qi-l

+qN-k+2 ... qi-l + 1

= qiqi+l ..

+ 1.

Case 1: [ulqiqi+l ... qyNl is even. In this case ,xi = qi - ai =

qi - (qi - 1) = 1, since ai = qi - 1. Then [vlqiqi+l * qN1 is
odd. Therefore, yi = bi + 1 = 0 + 1 = 1, since bi = 0. We have
xi =yi= 1.

Case 2: [u/qiqi+l * *qNl is odd. In this case, xi =ai + 1 =

(qi - 1) + I = qi, since ai = qi - 1.
vlqiqi+l *... qNl is odd. Therefore, yi = qi - bi = qi - 0 =

qi. We have xi = yi qi in this case.

Hence, xi = yi for N - k + 2 < i <N. Combining (4) and (5),
we conclude that the Hamming distance between X and Y is 1.

Q.E.D.
Lemma 4: Let F be a function, F: (fi, f2, fn) -K,

fi < qi, defined by following equation:
K =a,(q2q3 ... qN) +a2(q3q4 ..qN)

where the N-tuple (a,, a2, * * *, aN) is determined through the
following rules:

a) a=flf - 1.
b) For 1< i <N

L2 =a, + 1
L3 =a, (q2) + a2 + 1

Li =a,(q2q3 - * qi-1)+a2(q3q4 ...qi-. )
+ -+aj-,+ I

LN = a, (q2 q3 * * * QN-1 ) + a2 (q3q4 ..**QN -1 )
+ - - +aN-1 + 1;

if Li isodd, ai=fi- 1
if Li is even, ai =qi -fi.

Let G be a function, G: m-(g1, -

,mgN)I.m<
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qlq2 * qN, gi = qi - bi, if [m/qiqi+l ... qNl is even, gi =
bi + 1, if [m/qiqi+l ... qNvl is odd, where the N-tuple (bI, b2,

.* , bN) is determined through the following equation:

m=bl(q2q3 - *qN)+b2(q3q4 qN)

+ ***+ bN qN +bN + I

Then G = F-1.
Proof: For any N-tuple (f, f2, fN),F: (fl, f2, ,

fN) -+ K,

K = a1(q2q3 ... qN) + a2 (q3q4 * qN)

where a,, a2, , aN are determined by

a) a1 =f1- 1
b) for 1<iN,

if al(q2q3 " * * q11j) + a2(q3q4 **q-)
+ - +aj-1+ I is odd, -ai=fj - ; (1)

if al(q2q3 * * * qj-. ) + a2 (q3q4 ... qj_l)
+ --*+ai1 +1 -iseven, ai=qi- fi. (2)

We shall show that

G(F(fi, f2,* ,N)) =(fi,f2 ,fN)
or

- G(K) =(fi, , 2, * * N)-

Suppose G(K) (gl, 92, * gN) For i 1, since K.
q1q2 *

- qN = q1q1+1 ... qN, [K/qiqi+l ... qNl = 1 is odd,
we have g1 =a1 + 1 or a1 =g1 - 1. By Lemma 2, since
(g1 , g2, * * gN) is the qi representation of K, we have

[qKqj+i.. =a,(q2q3 *qi-) +a2(q3q4 ... qi-l)
qiqj+l qN

Because of the conditions of the G function, if [K/qiqi+1
*..qN] is odd, gi=ai+1. If [Kf/qiqi+I *-qN] is even,
gi = qi- ai. That is, if al(q2q3 . . . qi-,) + a2(q3q4
qj-1)+* + ai- + I is odd,

gi =a1+ 1 or ai =gi- 1; (3)

if al(q2q3 qi-) + a2(q3q4 qi-,) + + a11 +I1 is
even,

gi=qi-ai or ai=qi-gi (4)

Comparing (1) and (3), (2) and (4), we havegi = fi. So, G(F(fi,
f2,, fN)) = G(K) = (fl, f2, ,fN). That is, G =F'1.

Q.E.D.
Theorem 6.1: For every record R ED1 X D2 X * X DN,

if KAT(R) = L, then AKT(L) = R.
Proof Let R =(Alb1, A2b2 * ANbN) where the ad-

dress associated with R is determined by the KAT (Algorithm
B). Let KAT(R) = L. We shall now show that the record (rLl,
rL2, , rLN) associated with L determined through the use
of AKT (Algorithm C) is exactly (A 1b1, A2b2b 2 * ANbN)-
From KAT, we finally have L=Z1Z2 ... ZN(P- l)+m'.

Let ZlZ2 *--ZN=C. Then L=C(P- 1)+m', where m' is
either C- m + I or m. By Step 3,

m =a1(Z2Z3 * * * ZN) + a2(Z3Z4 ZN)
+.- +aNlZNN+aN+l,

where O< ai <zi and ai, zi are integers.
We have

O(Z2Z3 ... ZN) + O(Z3Z4 ... ZN) + + OZN +O + 1

< m <- (Z- 1) (Z2Z3 . ZN) + (Z2 -)(Z3Z4 ...ZN)
+ + (ZN-1 )ZN + (ZN - 1) + 1.

So.1m.zlz2 .zN,i.e.,l.m.C. Hence,l.m'.C.
Consider L C(P - 1) + m', and I <m'< C. We have L -

C(P- l)=m', 1 .L - C(P- 1).C. Therefore,

+I+ >PL-.
C C

Since P is an integer,

LC |+> > C-
Because

LC Cl
we have

Lc cL

So

P = [C- if L C(P- 1) +m'

and

m' =L -
[Li

- 1) -C.

In this case,

=ZJZ2 +Zmzz...ZN-+

=C L+([C] 1) .C+ 1 if [c] iseven.

m=m' L-(F-1l)I C( if [L] isodd.

Consider the AKT procedures. For an address L, we have

mLL (ZIZ2 .' ZNl ')ZlZ2 ..ZN

r L (rE~L 1) L

PL Z1Z2 ... ZNl [c
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if is odd m=m = L ([Cl 1 C.

if
C

is even, mL =Z1Z2 ZN -mL+

=[jC-L+1.
C

So,mL =mandPL P.
Let F: (b , b,... , bXr) --m, by using the procedures of

Step 3 in Algorithm B and G: mL L(b51, bl2, , bL) by
using the procedures of Step 4 in Algorithm C.
By Lemma 4, we have G = F 1 . Since mL = m, we have

(14k,bt 2,.**, bt) =(b;, b, ... , b%). In similar manner,
let H: (S1, S2 SN) +P by using the procedures of Step 4
in Algorithm B and T: PL -* (SLI, SL2, , SLN) by using the
procedures of Step 3 in Algorithm C. By Lemma 4, we have
T =H-1
Since PL =P, we have (SL1, SL2,* * ,SLN) =(SI, S2,

SN). For Step 1 and Step 2 in Algorithm B, we have

si [ bi and b =bi - (si - l)zi, respectively.
zi

That is,

bi = b'+(Si - 1)'Zt.

Pi=[]
and

P+ =

For [i/Cl and [i + 1/CI, we have two cases to consider.
Case 1:

[t] = [C 1] = integer.

In this case m + m+1 and Pi+I = Pi. If Pi =Pi,, is odd,
mi =14 and mj+ = ml+1, we have mj+1 = mi + 1.
For Pi =Pi+, is even, mi =C- mi + andm+= C- m;+ +

1,wehavemi=mj+j + 1.
So we can conclude that

mi+1 - mi = 1.

If Pi+1 =Pi, we have

(SilwSi2,a *SiN) =(S(i+l) S(i+n)2edS(f+oll)
where sii's and s(j+j)j's are deflned as follows:

stat++l tN

si= tj - ai, if [ pit1+l t

is odd

is even
(1)

For Step S in Algorithm C, we have

bLizl(Ll-1) +b'1 (2)bLi =_ Zi(SLi ) bLi-(2

Since b' = b i and si = SLi, comparing (1) with (2), we have
bLi = b1. In other words,

(rL1,rL2, ,rLN)=(AIbLIA2bL2, ANbLN)
- (A lbl, A2b,2S, ANbN). Q.1).D

APPENDIX B
PROOF OF THEOREM 6.2

Theorem 6.2: Let there be N sets: D1, D2, DN where
Di = {Ail, Ai2,, Aiqj} and qi > 1. Let RL denote the
record associated with L. Let NR denote the total number of
records in DI X D2 X * X DN. Then the Hamming distance
between Ri and Ri+j is 1, for 1 S i <NR.

Proof: (z1z2,- ,ZN) and (q1, q2, *,qN) are given.
Let C=ZlZ2 * ZN- Let Ri = (ri, ri2,**, rN), and Ri+j =
(r(i+,)l , r(i+1)2, * ,r(i+,)N)- ;N

We want to show that d(Ri, R1+..) = Sf' 6(rij, r(i+l)) = 1-
By applying AKT (or Algorithm C), we have

M~~+,(Ci+1 1 I)-

and

s(i+)j=a(1+l)1+ 1, if [ttj l tN is odd

SqE+i) t= - a(q+l), if [ I svs(i+,)j,, ~~~tjtj+l tN
i ee

then (ail, ai2, ,a1N) is the t1 representation of Pi and
(a(il), a(1+1)2, * * , a(i+ )) is the t1 representation ofPi+.
Since jmM+l - m11 = 1, by Lemma 3, we have (b;1, b;2,
b;N) and (b1i+1)1, b+i)2, ,)N) as two N-tuples
which are defined as below and the Hamming distance be-
tween them is 1.

*if Z-Z-if' ZN
is odd

b ~--,-z a i1, if is even

, j I ZjZj+ . ZN

and

b(i+i -= a(i+l)i + 1, if m1+
ZjZj+l ..*ZN

o+v= Zj - a(u+w)1, if [ *
ZZ1 ZNI

is odd

is even

where (aiI, ai2, , ajN) is the zJ representation of mi and
(a(i+,)I, a(i+,)2, * * -, a(i+)N) is the z1 representation of mi+ .
For b1j = z; - (s - 1) + blt and b(q+1) = Zi * (si, - 1) + bi+,)i,
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j = 1, 2, * , N, since the Hamming distance between (b;I, Mb2,
bN) and (b'i+1)1, b(1+1)2, * , b'i+1)N) is 1, there exists

a k, such that bik b(i+I)k and b, = bi+1)- for all j = 1, 2,
*,N, j*k.
Since si1 = S(i)f, for all j = 1, 2, ,N, we have only one

bik.:b(i+l)k and bij=b(i+l)b, for all j= 1, 2 N, j k.
Because rij = A1bi and r(i+1)j = A1b(i+1)1, we have rij = ry+j);
for all j 1, 2, - * *, N,j k and rik# r(i+l)k. Therefore,

N
d(Ri,Rjj)= (rij, r( +1)i)=1

j=l

Case 2:

[ntis]stio and e.

In this situation, for ri/Cl = e, we have

e- l< - <e.
C

If i/C<e, ori<Ce, we have

'i+ I
i.Ce-l, i+1<Ce, C e.

So [i+ 1/Cl .e, which is contradict to [i+ 1/Cl e+ 1.
Hence we have i/C = e, that is i = Ce.
In this case, we have two possibilities.
1) If Pi = e is odd, then Pi+, = e + 1 is even, we have

mi=mi,=i-(e- l)-C=i-eC+C=C

Mi+l =C- mt+1 + 1 C- [(i + 1) - eC] + I

=C- i+eC=C.

That is, Mi = mi+.. =C.
2) If Pi = e is even, then Pi+, = e + I is odd, we have

mi=C- [i- (e- 1)-C] + 1 C- i+(e- 1) *C+ 1= 1

and

mrn+1 =Mi+ i + 1 - eC= 1.

That is, Mi = Mi+1 1.
So we have concluded that if [i/Cl = e and [i + 1/Cl = e + 1,

mi = mi+l and Pi+, = Pi + 1.
For Pi+l =Pi + 1, by Lemma 3, we have (sil, s S2,*,siN)

and (s(i+l)i, S(i+1)2, S(i+)N) or two N-tuples which are
defined as below and the Hamming distance between them is 1:

1,jtj+l f. tN]

sij=t- a11, if +Pi

is odd

is even

and

s(i+I)j = a(i+1)j + 1, if [Pil
tjtj+l ... tN

is odd

s(j)j = t1 - a(j+i)j, if [t ti+1 1 is even

where (ail, ai2 , ajN) is the t1 representation of Pi and
(a(i+) I, a(i+1)2, , aq+r) is the t, representation ofPi+,.
Formj+j. mi, we have (b1, bi2,* b =(b(i+l)i, b(i+l)2,
*,bi+)N), where b1 's and bji+1)1's are defined as follows:

bg = aii + 1, if [ Z is odd
ZjZj+I.. ZN

b;1=z1- ai, if rn zN] is even

and

bl(i+l) = a(i+l)j + 1, if [ ZN]
ZjZj+l ...ZN

is odd

is even

where (ail, ai2,* * , aiN) is the z; representation of mi and
(a(i+), a(i+1)2, ***,a(+)N) is the zi representation of mi+,.
For b11 = zj(sij - 1) + b,' andb(i+l)1 = zj(s(1+1)i - 1) + bl

since the Hamming distance between (sil, Si2 , siN) and
(s(i+l) 1 iS(i+)2 i+)) is 1, there exists a w, such that
Aiw Aq(i+l)w and sij = ss+)j,for all j= 1, 2, ,N, j w.

Since b! = b(1+1, for all j=1, 2,* ,N, we have bi +
b(i+l)w and bij = b(i+l)j, for allj 1, 2, ,N, j# w. Since
rij = Ajb,, and r(1+1)j = Ajb(i+)1, riw / r(i+l)w.and rij = r(i+1),
for allj 1,2, N, j#w. Hence, d(Ri, R1+.) = i
r(I+l)1) = 1. Q.E.D.
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