
利用快取增加 IPv6 下的封包分類效能

Performance Improvement of Packet Classification with Caching for IPv6

研 究 生：何凱元 Student：Ho Kai-Yuan

指導教授：陳耀宗 博士 Advisor：Dr. Yaw-Chung Chen

國 立 交 通 大 學

資 訊 工程 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 i

利用快取增加 IPv6 下的封包分類效能

研究生：何凱元 指導教授：陳耀宗 博士

國立交通大學資訊工程學系

中文摘要

封包分類技術，是將封包依照其標頭的內容，將封包分類成不同

的類別。封包分類目前應用在網路安全、網路服務分級、路由搜尋、

流量分散等項目上。而目前的封包分類方式，可分為軟體及硬體實做

兩種。而目前大部分的封包分類方式，在網路環境升級成 IPv6 後，

由於標頭內容大幅增長，使得分類效能下降，整體網路效能大幅下滑。

在本篇論文中，我們提出使用快取方式，來增進封包分類在 IPv6

下的效率。我們對不同的快取記憶體容量、記憶體架構、以及快取內

容的替換選擇方式等項目做了測試。在我們的實驗中，當快取記憶體

的大小為 1024 格的情形下，快取的命中率可以達到 9 成以上，大幅

增加封包分類的效率。

 ii

Performance Improvement of Packet Classification with Caching for IPv6

student：Ho Kai-Yuan Advisors：Dr. Yaw-Chung Chen

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Packet classification is a technique that classifies flows into different class by the

headers in packets. Packet classification is applied in network security, QoS, routing,

load balancing, and etc. Currently, algorithms of packet classification are categorized

into hardware or software solutions. Almost packet classification implementations can

not be efficient enough when the network environment is upgraded to IPv6 because

the much longer fields in the header.

In this thesis, we proposed that use a cache memory to improve performance of

packet classification in IPv6. We also simulated the performance under different cache

sizes, architectures, replacement policies, and etc. According to the simulations, our

schemes can achieve hit rates more than 90% when cache size is more than 1024 in

4-way associative cache memory architecture.

 iii

Table of Contents

中文摘要 ...ii

ABSTRACT... iii

Table of Figures and Tables ..vi

CHAPTER 1 INTRODUCTION.....................................1

CHAPTER 2 BACKGROUND3

2.1 Related work..3

CHAPTER 3 RANDOM BIT-SELECTION4

3.1 Overview ...4
3.2 Sample of traffic data ..4
3.3 Range of selection ...6

3.3.1 shortened protocol number ...7
3.4 Preparation for experiment..7

CHAPTER 4 CACHE ARCHITECTURE FOR IPV6

HEADER CACHING ..8

4.1 Overview ...8
4.2 The structure of cache memory ...8

4.2.1 Parameters of cache memory ..8
4.2.2 Fields in cache memory ..9

4.3 Replacement policies...10
4.3.1 LRU...10
4.3.2 LFU...10
4.3.3 Random...10

4.4 Associativity ..11
4.4.1 Full associativity ...11
4.4.2 N-way associativity...11

4.5 Hash functions...12
4.5.1 Hash function I..12

 iv

4.5.2 Hash function II ..13
4.5.3 Hash function III ...14
4.5.4 Collision analysis ..15

4.6 Dealing with rule updates..15

CHAPTER 5 MEASUREMENTS.................................16

5.1 Simulation of random bit-selection ...16
5.1.1 Experimental procedure ..16
5.1.2 Types of range...16
5.1.3 Experimental result ...16

5.2 Simulation of IPv6 header caching ...21
5.2.1 Miss ratios...21
5.2.2 Misclassification ratios ...24
5.2.3 Hardware complexity..26

CHAPTER 6 CONCLUSIONS27

CHAPTER 7 FUTURE WORK.....................................28

7.1 IPv6 protocol chain problem ...28
7.2 Special layer-4 protocol processing ..28
7.3 Use of flow label ...29

REFERENCES ..30

 v

Table of Figures and Tables

Table 3.1 Analysis of sample 1 and sample 2…………………..5

Figure 3.1 Analysis of traffic samples (in packets)…………….5

Figure 3.2 Analysis of traffic samples (in flows)……………….6

Figure 4.1 Structure of a Cache entry…………………………..9

Figure 4.2 Hash function I.…………………………………....13

Figure 4.3 Hash function III…………………………………..14

Table 4.1 Collision analysis of the three hash functions………15

Table 5.1 Random bit-selection evaluation on sample 1 (number

of collisions)…………………………………………………..18

Table 5.2 Random bit-selection evaluation on sample 1 (in

collision ratios)………………………………………………..18

Figure 5.1 Random bit-selection evaluations on sample 1……19

Table 5.3 Random bit-selection evaluation on sample 2 (number

of collisions)…………………………………………………..19

Table 5.4 Random bit-selection evaluation on sample 2 (in

collision ratios)………………………………………………..20

Figure 5.2 Random bit-selection evaluations on sample 2……20

Table 5.5 Miss rates with different replacement policies and

 vi

associativities (# of entries=65536)…………………………...22

Figure 5.3 Miss times with different replacement policies and

associativities (# of entries=65536)…………………………...22

Table 5.6 Miss Rates with different associativities and cache

sizes (Replacement policy: LRU)……………………………..23

Figure 5.4 Miss Ratios with different associativities and cache

sizes (Replacement policy: LRU)……………………………..23

Figure 5.5 Miss ratios with different replacement policies and

cache sizes (Replacement policy: LRU)………………………24

Table 5.7 Misclassification ratios with different replacement

policies and associativities (# of entries=65536)……………...25

 vii

CHAPTER 1

INTRODUCTION

There are a number of services that required packet classification, such as access

control of firewall, QoS (Quality of Service), DiffServ (Differentiated quality of

Service), and policy based routing.

The packet classification process determines which flow a packet belongs to

based on one or more fields in the packet header.

Performance of packet classification affects the network throughput very

obviously. With increasing speed of current network environment, for decreasing

packet sizes of some real time network applications such as online games, it is very

important to deliver high speed and low latency packet classification functionality at

low cost.

The problem of packet classification is a generalization of the one-dimensional

IP route lookup problem, but is much harder and requires much more resources to

perform.

It has been well established that memory access delays limit the classification

speeds. As memory speeds have not kept pace with the rest of the hardware advances,

classification speeds are limited by memory access latency.

Memory access latencies are about 50 to 60 ns in DRAM, 5 to 20 ns in SRAM,

and 1 to 2 ns in on-chip SRAM. Even with on-chip SRAM to store the classification

table, the classification process can only afford about 4 memory lookups at 40Gbps.

To be compatible with current high speed network, we have an idea of caching

the recently matched flows. The process of packet classification must be executed

 1

only on a cache miss. Cost of cache is reasonable, and cache has been widely used in

modern computer architecture for many years.

In this thesis, we try to evaluate cache performance with real IPv6 traffic, and we

propose hash functions to compress IPv6 flow ID in order to save cache space. Finally,

we evaluate miss rate and misclassification rate for our hash function.

 2

CHAPTER 2

BACKGROUND

2.1 Related work

We identify a flow by the 5-tuple: <Source Address, Destination Address, Source

Port, Destination Port, Protocol>. We call the 5-tuple <SA, DA, SP, DP, protocol>

“Flow ID”.

 Source and destination addresses in IPv4 are 32-bit long. But in IPv6, the fields

are 128-bit long. Source and destination ports are 16-bit long, and protocol is 8-bit

long. A flow ID is 104-bit long in IPv4, 296-bit long in IPv6.

There have been a number of related studies in this area. Recent studies show

that the arrival of a packet on an Internet link implies a very high probability of the

arrival of another packet with the same flow identifier.

Various packet classification algorithms have been proposed in the last few years,

and Gupta et. al presented a survey for various classification algorithms.

Studies for packet classifications based on flow identifier show similar

improvement as route lookup by using a cache.

Our studies differ from the above and we focus on the following:

1.Cache performance for IPv6 protocol

2.Hash functions for representation of IPv6 flow ID

 3

CHAPTER 3

RANDOM BIT-SELECTION

3.1 Overview

Random bit-selection is a simple hash function to generate variable-length bit

string. Random bit-selection can be implemented simply with hardware lines, and its

time complexity is constant.

3.2 Sample of traffic data

There is still too few IPv6 traffic available, so we use the traffic data provided by

MAWI Working Group. MAWI (Measurement and Analysis on the WIDE Internet)

Working Group Traffic Archive (http://tracer.csl.sony.co.jp/mawi/) is a working group

that has carried out network traffic measurement, analysis, evaluation, and verification

from the beginning of the WIDE Project. The WIDE Project carries out research

activities through the use of the actual network, but simply operating the network

alone does not qualify as research.

The traffic samples were captured by tcpdump in binary format of tcpdump. We

use the sample of the date 2004/03/13 from WIDE-Bone6 as sample 1. There are 2

million packets, 3507 distinct addresses, 18811 distinct flows in the sample 1.

We also use the sample of the 2004/05/18 from 6Bone as sample 2. There are 2

million packets, 2518 distinct addresses, 17016 distinct flows in the sample 2. The

default buffer size setting in tcpdump was too small to recognize all IPv6 extension

headers. So some packets with IPv6 extension headers were recognized as “Other”

protocol.

 4

Analysis data of the 2 samples is listed in Table 3.1, Figure 3.1 and 3.2.

Sample 1 Sample 2

of packets # of flows # of packets # of flows

ICMPv6 302142 1671 198053 1166

TCP 1589912 6785 1213193 6000

UDP 105447 10344 65345 9841

Other 2499 11 523409 9

Table 3.1 Analysis of sample 1 and sample 2

Analysis of traffic samples

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

ICMPv6 TCP UDP Other

Protocol

P
ac

ke
ts

Sample 1

Sample 2

Figure 3.1 Analysis of traffic samples (in packets)

 5

Analysis of traffic samples

0

2000

4000

6000

8000

10000

12000

ICMPv6 TCP UDP Other

Protocol

F
lo

w
s

Sample 1

Sample 2

Figure 3.2 Analysis of traffic samples (in flows)

3.3 Range of selection

In order to improve the efficiency of random bit-selection, we have to determine

the range of selection that is representative. Because the IPv6 addresses can be

separated into two parts as prefix and MAC, we can use only one part in our random

bit-selection to simplify the process of selection and shorten the execution time of

simulation.

We designed 5 types of range for random bit-selection. The types of range are

listed below:

Type 1: Prefixes of SA/DA, SP, DP, protocol (168 bits)

Type 2: Full SA/DA, SP, DP, protocol (296 bits)

Type 3: Full SA/DA, SP, DP, but no protocol (288 bits)

Type 4: Prefixes of SA/DA, SP, DP, but no protocol (160 bits)

Type 5: MAC parts of SA/DA, SP, DP, shortened protocol number (162 bits)

 6

3.3.1 shortened protocol number

There are only 3 major layer-4 protocols in IPv6: ICMPv6, TCP, and UDP. We

represent the protocols as 0,1, and 2 instead of original protocol number. In order to

reduce meaningless bits in our selection, shortened protocol number is useful.

3.4 Preparation for experiment

To simplify the experiment, we convert the original binary traffic samples to

human readable tcpdump text format. And, to collect the flow ID from the samples,

we convert the tcpdump text format to another text file with a simple program written

in Perl. The two steps simplify the traffic data and save disk space. Evaluation

programs also can be simplified because of the simplified traffic data.

 7

CHAPTER 4

CACHE ARCHITECTURE FOR IPV6 HEADER

CACHING

4.1 Overview

IPv6 is the next-generation layer-3 protocol in the Internet. One of the main

features of IPv6 is the 128-bit long IP address with extension headers. The address

fields in IPv6 are 4 times as long as IPv4. The longer fields make the whole

processing time longer. So, packet classification will be one of the performance

bottlenecks in IPv6 environment because of the longer IP address.

The fastest method of packet classification is by using a Ternary CAM (TCAM)

that uses a linear amount of parallelism to match flows in constant time. But TCAMs

are expensive, and updates to the CAM are slow. To place 128-bit addresses in

TCAMs is also very tricky.

So, we have an idea of caching the recently matched flows. Cost of cache

memory is reasonable. Cache memory is also widely used in current computer

architecture.

4.2 The structure of cache memory

4.2.1 Parameters of cache memory

There are three major parameters of cache memory: number of entries,

associativity, and replacement policy. Total size of the cache memory is proportional

to number of entries. Associativity decides the number of candidates when

 8

replacement occurs. Replacement policy decides the method to choose a victim to be

replaced. All the three major parameters affect the performance of cache memory and

hardware complexity.

4.2.2 Fields in cache memory

Index Tag TS/Counter Result

Figure 4.1 Structure of a Cache entry

Index: Position of the entry in the memory. Length of index is variable with the

number of entries and associativity. Index is generated by a variable-length hash

function such as random bit-selection.

Length of index = log2(Number of entries/Associativity)

This is between 1 and 4, for associativity.

Tag: A checksum-like field to check whether the two flows are identical. Tag is

generated by a hash function and must be independent of index to avoid

misclassification. When the index and tag fields of two flows are the same, they are

judged to be identical. Length of tag is 32-bit.

TS/Counter: Recent access record of this entry. The meaning of this field is

decided by the replacement policy. For LRU, this field is used to store recent access

time represented as a timestamp (TS); for LFU, it is used to count recent access times.

Length of TS or counter is determined by the range of timestamp (LRU) or the

maximum value of counter (LFU). If the associativity is direct-mapping or full

associativity, or replacement policy is random, this field can be ignored.

Result: The rule number or action for this flow. Length of result is determined by

the range of rule number, or number of possible actions.

 9

By the way, valid bit is not necessary. If all fields of an entry are zero, the entry

is accepted as invalid. So we reset the cache memory in initialization.

4.3 Replacement policies

4.3.1 LRU

LRU=Least Recently Used, the entry with oldest last accessed time will be

replaced. Each cache entry includes a field called timestamp (TS) to record the last

access time of this entry. To simplify the TS field, we use a 32-bit packet serial

number instead of original floating-point number timestamp. Entry with oldest serial

number will be replaced.

4.3.2 LFU

LFU=Least Frequently Used, the entry with least accessed count will be

replaced. Each cache entry includes a small counter. Cache hits on an entry increment

the entry’s counter up to a certain limit. Cache miss decrements the counter down to

zero. The victim is chosen with the value in counter field. Entry with least counter

value will be replaced.

4.3.3 Random

The victim to be replaced is randomly chosen. We use a random number

generator to generate an integer number between 0 and associativity N-1, and the

victim is decided by the generated random number. There is no extra field such as

timestamp or counter needed for random replacement.

 10

4.4 Associativity

The number of candidates to be replaced depends on the associativity.

Associativity is an important parameter for cache memory because it affects the

practical performance and hardware complexity.

4.4.1 Full associativity

In full associativity, all the entries in the cache memory are candidates. The

performance of full associativity is already known as best, but the hardware cost is

very high because a large amount of logic gates are needed to compare in parallel. In

full associativity, index field is ignored when matching a flow or replacing an entry.

4.4.2 N-way associativity

In N-way associativity, the number of candidates to be replaced is equal to N.

When N equals to 1, it is called directed-mapping. Because there is only one

candidate to be replaced in direct-mapping, the replacement policy does not affect the

result.

 11

4.5 Hash functions

We designed three hash functions to generate the field “Tag” in cache memory.

We also tested the three hash functions with the two traffic samples.

4.5.1 Hash function I

The figure of hash function I is shown as Figure 4.2. The protocol field is

ignored in ours hash functions. If the layer-4 protocol is neither TCP nor UDP, we set

the source port and destination port number to zero. The hash function can be

implemented directly with XOR gates, combine function, split function, and reverse

function. Reverse, split and combine function can be simply implemented with only

hardware lines. So the total delay of hash function I is three times XOR gate delay.

 12

Node Identification part
of Source Address

Node Identification part
of Destination Address

1 64 1 64

Reverse

64

6464

64

Reverse

32

Split

Source port Dest. port

16 16

Combine32

32

32

32

32

Output of hash function

Figure 4.2 Hash function I

4.5.2 Hash function II

The hash function II is very similar to I, but the port number will be set to 65535

if layer-4 protocol is neither TCP nor UDP. So the figure of hash function II is

omitted.

 13

4.5.3 Hash function III

The figure of hash function III is shown in Figure 4.3. The hash function III is

similar to I and II, but the XOR gates in II are replaced with XNOR gates. Same as II,

port number will be set to 65535 if layer-4 protocol is neither TCP nor UDP. So the

total delay of hash function III is three times XNOR gate delay.

Node Identification part
of Source Address

Node Identification part
of Destination Address

1 64 1 64

Reverse

64

6464

64

Reverse

32

Split

Source port Dest. port

16 16

Combine32

32

32

32

32

Output of hash function

Figure 4.3 Hash function III

 14

4.5.4 Collision analysis

We evaluated the three hash functions with the 2 traffic samples. The collision

rates should be as low as possible to avoid misclassification. Evaluation results are

listed in Table 4.1.

From Table 4.1, collision rates of hash function II and III are much higher than I

for sample 1. But collision rates of the three functions for sample 2 are quite similar.

So we suggest using hash function I to get low collision rate for both samples.

Sample 1 Sample 2 Sample

Hash function flows rate flows rate

Hash function I 2425 12.8% 1884 10.5%

Hash function II 4690 24.9% 1549 9.1%

Hash function III 4797 25.5% 1844 10.8%

Table 4.1 Collision analysis of the three hash functions

4.6 Dealing with rule updates

Issues of rule update are rarely discussed in packet classification speedup skills.

We recommend storing rule number instead of rule action in result field. For updates

to the prefix or port number of a rule numbered X, cache entries with rule number X

should be cleared to avoid inconsistency. For updates to the action of a rule numbered

X, entries with rule number X should not be changed.

 15

CHAPTER 5

MEASUREMENTS

5.1 Simulation of random bit-selection

5.1.1 Experimental procedure

Our experimental procedures are described as follows:

1. Translate the original binary traffic sample to text format with tcpdump.

2. Extract the essential fields from the text format sample to another file.

3. Compute the collision times, number of address, and number of flows from the

extracted file.

5.1.2 Types of range

In order to optimize the performance of random bit-selection, the ranges of

selection should be chosen carefully. The types of range are listed below:

Type 1: Prefixes of SA/DA, SP, DP, protocol

Type 2: Full SA/DA, SP, DP, protocol

Type 3: Full SA/DA, SP, DP, but no protocol

Type 4: Prefixes of SA/DA, SP, DP, but no protocol

Type 5: MAC parts of SA/DA, SP, DP, shortened protocol number

5.1.3 Experimental result

 16

 For sample 1, the collision rates are between 55% and 29%. If the length is

24 or 32-bits long, type 2 is the best choice. If the length is 8 or 16-bits long, type 5 is

the best choice. There is only a little difference when the length of random bit

selection is 32.

For sample 2, the collision rates are between 17% and 6%. If the length is 24 or

32-bits long, type 2 is the best choice. If the length is 8 or 16-bits long, type 5 is the

best choice.

From the result, the differences between the types are relatively small. We can

just use any one of the types if the difference is neglectable. Smaller ranges, such as

type 1, 3, 4, and 5, can simplify the hardware design and shorten the simulation time.

 17

Bits

Type
8 16 24 32

Type 1 861229 796265 599876 641826

Type 2 1053413 754555 607373 574939

Type 3 1009840 719014 676718 654636

Type 4 921610 805127 579650 633717

Type 5 893214 708539 661310 609560

Table 5.1 Random bit-selection evaluation on sample 1
(number of collisions)

Bits

Type
8 16 24 32

Type 1 43.1% 39.8% 30.0% 32.1%

Type 2 52.7% 37.7% 30.4% 28.7%

Type 3 50.5% 36.0% 33.8% 32.7%

Type 4 46.1% 49.3% 29.0% 31.7%

Type 5 44.7% 35.4% 33.1% 30.5%

Table 5.2 Random bit-selection evaluation on sample 1
(in collision ratios)

 18

Number of collisions of random bit-selection

0

200000

400000

600000

800000

1000000

1200000

8 16 24 32

Bits

T
im

e
s

Type 1

Type 2

Type 3

Type 4

Type 5

Figure 5.1 Random bit-selection evaluations on sample 1

Bits

Type
8 16 24 32

Type 1 334730 219170 191099 176425

Type 2 290827 217678 147322 114019

Type 3 287927 203274 137487 141186

Type 4 274241 229052 183860 187722

Type 5 282438 213169 184425 143940

Table 5.3 Random bit-selection evaluation on sample 2
(number of collisions)

 19

Bits

Type
8 16 24 32

Type 1 16.7% 11.0% 9.6% 8.8%

Type 2 14.5% 10.9% 7.4% 5.7%

Type 3 14.4% 10.2% 6.9% 7.1%

Type 4 13.7% 11.5% 9.2% 9.4%

Type 5 14.1% 10.7% 9.2% 7.2%

Table 5.4 Random bit-selection evaluation on sample 2
(in collision ratios)

Number of collistions of random bit-selection

0

50000

100000

150000

200000

250000

300000

350000

400000

8 16 24 32

Bits

T
im

e
s

Type 1

Type 2

Type 3

Type 4

Type 5

Figure 5.2 Random bit-selection evaluations on sample 2

 20

5.2 Simulation of IPv6 header caching

We use the sample 2 for our experiment of IPv6 header caching. In order to

simplify the experiment, packets belonging to “Other” category were omitted in the

experiment. So the number of total packets is 1,476,591, instead of 2,000,000. We use

random bit-selection with type 1 range, and hash function I in our simulations. The

reason we use type 1 range is to complement the fields that hash function I ignores

(prefixes of SA/DA, protocol).

5.2.1 Miss ratios

We evaluate the miss rates with different replacement policies, associativities,

and cache sizes. Simulations of IPv6 header caching take much longer time than

random bit-selection. Simulations of full associative cache memory take the longest

time because the indices generated by random bit-selection are ignored, and almost

lookups are performed with linear search.

Experimental results are listed in Table 5.5 and 5.6.

From the results, the miss rate is low even if the number of cache entries is 256

and associativity is one (direct-mapping). Increment of associativity or cache size

decreases miss rate. Replacement policy does not affect the miss rate in

direct-mapping, so the miss rates of different replacement policies are the same.

Evaluation results of full associative with different replacement policies in Table

5.5 are omitted, because the number of total flows is below 18000, much less than

65536. Miss rate differences among the replacement policies are very small, so LRU

is set to be the default replacement policy in latter evaluations.

Evaluation results of full associativity in Table 5.6 are below 10%, most results

 21

are below 5%. Miss rates with associativity 4 and number of entries more than 1024

are also below 10%. So we can speedup the process of packet classification with a

small cache memory.

LRU LFU (limit=4) Rand Policy

Assoc. Times Rate Times Rate Times Rate

1 218643 14.8% 218643 14.8% 218643 14.8%

2 131025 8.8% 158898 10.8% 164723 11.2%

4 126149 8.5% 116147 7.9% 130646 8.8%

Table 5.5 Miss rates with different replacement policies and associativities
(# of entries=65536)

Number of Miss times

0

50000

100000

150000

200000

250000

1 2 4

Associativity

T
im

es

LRU

LFU (limit=4)

Random

Figure 5.3 Miss times with different replacement policies and

associativities
(# of entries=65536)

 22

256 1024 4096 16384 Entries

Assoc. Times Rate Times Rate Times Rate Times Rate

Full 109798 7.4% 33500 2.3% 18957 1.3% 15155 1.0%

1 296053 20.0% 232061 15.7% 233390 15.8% 204623 13.9%

2 260528 17.6% 220875 15.0% 186072 12.6% 165337 11.2%

4 201731 13.7% 138976 9.4% 129156 8.7% 156062 10.6%

Table 5.6 Miss Rates with different associativities and cache sizes
(Replacement policy: LRU)

Number of Miss times

0

50000

100000

150000

200000

250000

300000

350000

256 1024 4096 16384

Number of entries

T
im

e
s

Full assoc.

Direct mapping

N=2

N=4

Figure 5.4 Miss Ratios with different associativities and cache sizes

(Replacement policy: LRU)

 23

Miss times

0

50000

100000

150000

200000

250000

300000

350000

0 1 2 4

Associativity

T
im

es

256

1024

4096

16384

Figure 5.5 Miss ratios with different replacement policies and cache sizes

(Replacement policy: LRU)

5.2.2 Misclassification ratios

Misclassification means distinct flows are judged as the same one. So the

misclassification rates should be as low as possible.

We know that hash function I is independent of random bit-selection, but

misclassification can be avoided completely because we compress the flow ID to 32

bit or less.

To evaluate misclassification ratios, we place an extra field “flowID” in each

cache entry to record original uncompressed flow ID. We check whether any two

flows with same index and tag values are identical by the flowID field.

Evaluation results show that increment of associativity increases

misclassification rate because the length of index decreases with increase of

associativity. So associativity should be chosen carefully when cache size is fixed.

There has to be a trade-off between misclassification ratios and miss ratios.

We found that the misclassified flows are very similar. Difference between the

 24

flows is only several bits. To avoid such misclassification, a complex hash functions

for tag is needed. But hardware of complex hash functions is also complex, and not

executed within only one step.

Fortunately, misclassification ratios are almost below 5%. In direct-mapping,

misclassification ratio is only 1.7%. So the probability of misclassification in practical

packet processing is very little.

LRU LFU Rand Policy

Assoc. Times Rate Times Rate Times Rate

1 25082 1.7% 25082 1.7% 25082 1.7%

2 58813 4.0% 65179 4.4% 54426 3.7%

4 71486 4.8% 74138 5.0% 71673 4.9%

 Table 5.7 Misclassification ratios with different replacement policies and
associativities (# of entries=65536)

Miss classification times

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4

Associativity (bits)

T
im

es

LRU

LFU (limit=4)

Random

Figure 5.6 Misclassification ratios with different replacement policies and

associativities (# of entries=65536)

 25

5.2.3 Hardware complexity

Each cache entry contains a 32-bit Tag, an N-bit TS/Counter, an M-bit Result.

There are (32+N+M)*X bits in a cache memory with X entries. Hardware cost

increases with N and M.

 26

CHAPTER 6

CONCLUSIONS

In this thesis, we proposed a cache architecture and hash functions to improve

performance of packet classification for IPv6. Cache miss ratios in our evaluations are

low even if cache size is small. Misclassification ratios are also low enough.

High-speed packet processing is possible in future IPv6 environment and can be

achieved with a cache memory at reasonable cost.

 27

CHAPTER 7

FUTURE WORK

7.1 IPv6 protocol chain problem

In IPv6, options of IP are stored in extension headers instead of IP option fields

in IPv4. The extensions are Hop-by-hop option (HBH), Source routing,

Fragmentation, Authentication, Encrypted security payload (ESP), and Destination

option. The IPv6 extension headers are inserted between IP header and

ICMPv6/TCP/UDP header. They are linked with “Next header” fields in IP and

extension headers. There are some packets with IPv6 option headers in our samples,

but tcpdump cannot parse all the extensions with default buffer setting.

To find the header of the layer-4 protocol for packet classification, routers must

spend more time to trace the protocol chain. If the process of packet classification

uses some speed-up skills such as pipeline, the extension headers will stall the

pipeline and affect the throughput. Routers also must process the extension headers. It

will be a big performance problem in practical IPv6 packet processing.

It also will be a serious security problem to deal with packets with anomalous

extension headers.

7.2 Special layer-4 protocol processing

There are some special layer-4 protocols other than ICMPv6, TCP, UDP in our

samples. They are IP-in-IP (tunneling), and PIM. There may be some other special

layer-4 protocols in real traffic. For IP-in-IP, there is another IP header encapsulated in

 28

the packet, and the header of layer-4 protocol is behind the encapsulated IP header.

We must decide to process the encapsulated IP header or not. By the way, we must set

the default action for all protocols not mentioned before.

7.3 Use of flow label

Flow label is a 24-bit field in IPv6 header to identify a flow effectively. Source

host generates flow label randomly and must not reuse a flow label for a new flow

while the existing flow is still alive. Unfortunately, there are only few packets set the

flow label in our samples. Maybe we can use the flow label directly to speed up the

process of packet classification if flow label is widely used in the future.

 29

REFERENCES

[1] Pi-Chung Wang, Chia-Tai Chan, Shuo-Cheng Hu, “Performance
Improvement of Packet Classification by Using Lookahead
Caching,” IEICE Transactions on Communications,
pp.377-379, 2004.

[2] Pankaj Gupta and Nick McKeown, “Algorithms for Packet
Classification,” IEEE Network vol.15, no.2, pp.24-32,
Mar./Apr. 2001.

[3] Sundar Iyer, Ramana Rao Kompella, and Ajit Shelat, “ClassiPI:
An Architecture for Fast and Flexible Packet Classification,”
IEEE Network vol.15, no.2, pp.33-41, Mar./Apr. 2001.

[4] Masanori Uga, Kohei Shiomoto, “A novel ultra high-speed
multi-layer table lookup method using TCAM for
differentiated services in the Internet,” IEEE Workshop on High
Performance Switching and Routing, 29-31 May 2001

[5] Kang Li, Chang, F., Berger, D., Wu-chang Feng, “Architectures
for packet classification caching,” The 11th IEEE International
Conference on Networks, Sept. 28-Oct. 1, 2003

[6] Gupta, P., McKeown, N., ”Classifying packets with hierarchical
intelligent cuttings,” IEEE Micro, Volume: 20, Issue: 1,
pp.34–41, Jan.-Feb. 2000.

 30

