國立交通大學

機械工程學系

研究生:顏佳慶

指導教授:周長彬 教授

中華民國一百零一年五月

添加活性助銲劑對 6061 鋁合金 MIG 銲件影響 Effect of Flux on MIG Welding Process for 6061 Aluminum Alloy

研究生:顏佳慶

Student: Jia-Cing Yan

指導教授:周長彬

Advisor: Chang-Ping Chou

國立交通大學

機械工程學系

碩士論文

Submitted to Department of Mechanical Engineering College of Engineering National Chiao Tung University In partial Fulfillment of the Requirements For the Degree of

Master

In

Mechanical Engineering

May 2012

Hsinchu, Taiwan, Republic of China

中華民國一百零一年五月

添加活性助銲劑對 6061 鋁合金 MIG 銲件影響

研究生:顏佳慶

指導教授:周長彬

國立交通大學 機械工程所

摘要

本研究之目的主要在探討活性助銲劑對6061 鋁合金 MIG 銲件之影響, 實驗材料選用 6061-T651 鋁合金,活性助銲劑之選用分別為 ZnO、CaF2、 $MoS_2 \cdot Fe_2O_3 \cdot MgO \cdot SiO_2 \cdot MnO_2 \cdot MoO_3 \cdot TiO_2 \cdot Na_2CO_3 \cdot NiO \cdot MgCO_3 \cdot$ Cr₂O₃ 等 13 種。銲接方法採用惰性氣體金屬極電弧銲接(Metal inert gas, MIG) 來進行 Flux bounded-MIG 實驗。以金相實驗來觀察微觀組織,利用微硬度 測定機來瞭解銲道機械性質,以實驗顯微鏡來量測銲道熔深及寬度。之後 根據所量測之銲道熔深,取最佳之前四種活性助銲劑,以各 50%的比例來 調配成6種混合型活性助銲劑,分別為ZnO+MgO、ZnO+MoS2、ZnO+MoS2、 ZnO+Na₂CO₃、MgO+ MoS₂、MgO+Na₂CO₃及 MoS2+Na₂CO₃,並探討不同 的混合助銲劑對銲道熔深與深寬比之影響。實驗中發現在相同銲接參數下 MoS2、Na2CO3、ZnO、MgO及MoO3之單一型活性助銲劑,與未塗敷助銲 劑試片之平均熔深 1.2mm 相比,能有效提升 6061 鋁合金之銲道熔深達 36%~56%。在相同銲接參數下 ZnO+MgO、MgO+MoS2及 MgO+Na2CO3之 混合型活性助銲劑,能有效提升 6061 鋁合金之銲道熔深達 58%~60%。並 且於熱裂敏感性實驗中發現添加 ZnO、MoS2、Fe2O3、SiO2、MnO2、MoO3、 TiO2、NiO及Cr2O3之單一型活性助銲劑可降低6061 鋁合金之熱裂敏感性。 最後應用田口方法與灰關聯分析來進行6061 鋁合金 Flux bounded-MIG 對接 最佳化參數實驗,以銲接電壓、銲槍走速、氫氣流量之三種銲接製程參數, 配合不同混合比例之活性助銲劑來最佳化銲接製程參數,最佳化之參數可 使 6061 鋁合金於 Flux bounded-MIG 對接時銲道平均熔深達 6.18(mm), 與 未最佳化且未塗敷助銲劑之對照組銲道平均熔深 4.15(mm)相比提升了 49% •

關鍵字:6061 鋁合金、活性助銲劑、惰性氣體金屬極電弧銲接

Effect of Flux on MIG Welding Process for 6061 Aluminum Alloy

Student: Jia-Cing Yan

Advisor: Chang-Ping Chou

Department of Mechanical Engineering

National Chiao Tung University

Abstract

The purpose of this study was to investigate the effect of activating fluxes to the welding penetration of 6061 Aluminum. The activating fluxes used in the experiment were ZnO, CaF₂, MoS₂, Fe₂O₃, MgO, SiO₂, MnO₂, MoO₃, TiO₂, Na₂CO₃, NiO, MgCO₃ and Cr₂O₃. Flux bounded-MIG(Metal Inert Gas) welding process was made on 6061 Aluminum with filling metals. The microstructure and morphology of the weldments were examined by the optical microscope. Furthermore, the Vickers hardness test was used to determine the mechanical properties of the weldments. According to the measurement results of the width and penetration of the weld bead. Based on the highest depth, four fluxes were selected to mix with each other using 50% weight percent each. The mixed fluxes were ZnO+MgO, ZnO+MoS₂, ZnO+MoS₂, ZnO+Na₂CO₃, MgO+MoS₂, MgO+Na₂CO₃ and MoS2+Na₂CO₃, and the fluxes were used for investigating the effect to the welding penetration and the depth to width ratio (D/W ratio).

Under the same welding conditions, the results indicated that the fluxes MoS_2 , Na_2CO_3 , ZnO, MgO and MoO₃ did enhance the welding penetration of 6061 Aluminum by 36%~56%. Moreover, the mixed fluxes ZnO+MgO, MgO+MoS₂ and MgO+Na₂CO₃ did enhance the welding penetration of 6061 Aluminum by 58%~60%. Finally, by employing the Taguchi Methods and Grey Relational Analysis to achieve optimized welding penetration , D/W ratio and Melting area, four major welding parameters were determined, which were welding voltage, torch moving speed, argon flow rate and the weight ratio of MgO and ZnO. The confirm experiment analysis demonstrated that the welding penetration was enhanced 49%.

致謝

本論文得以順利,要先特別感謝指導教授周長彬的殷切指導,使我學 習到更多的專業知識,謹在此致上誠摯的敬意與謝意。

研究所期間,感謝陸軍專科學校林玄良副教授,在研究方向、論文撰 寫的指導與建議;研究所同學們的互相砥礪,讓我得以精進;高中同學們 的陪伴讓我在研究所的壓力之下得以放鬆;大學同學們的打氣給予我勇氣; 音樂、餅乾、飲料、糖果、巧克力給了我好心情;在此特別感謝你們。

最後感謝我的父母,感謝你們多年來無私的奉獻和關懷,無論我做何 決定總是給予我支持;弟弟及妹妹,謝謝你們總是在我背後給我支持、打 氣。

摘要i
Abstractii
致謝iii
目錄iv
表目錄vii
圖目錄ix
第一章 緒論1
1-1 研究動機及背景1
1-2 研究方法及目的
第二章 文獻探討
2-1 鋁合金
2-1-1 鋁合金的簡介
2-1-2 鋁合金的分類
2-1-3 鋁合金的銲接特性9
2-1-4 鋁合金銲接常見之缺陷10
2-2 惰性氣體金屬極電弧銲接16
2-2-1 惰性氣體金屬極電弧銲接簡介16
2-2-2 惰性氣體金屬極電弧銲接之主要銲接參數17
2-2-3 惰性氣體金屬極電弧銲接之優缺點
2-3 活性助銲劑24

2-3-	8-1	活性助銲劑介紹	
2-3-	8-2	活性助銲劑增加銲道熔深之機制	
2-3-	8-3	活性助銲劑之種類	27
2-4	銲	道熔透深度變異之原因	
2-5	田	口方法	
2-5-	5-1	田口方法基本原理與目的	
2-5-	5-2 S	SN 比之基本定義	
2-5-	5-3	田口方法之實驗步驟	
2-5-	5-4	確認實驗	
2-6	田	口方法整合灰關聯分析	
2-6-	5-1	灰關聯分析基本原理	
2-6-	5-2	田口方法與灰關聯分析整合之應用	
第三章	實	驗方法與程序	40
3-1	實	驗流程	
3-2	銲	接試片準備	41
3-3	助	銲劑之選擇與配製方法	41
3-4	銲	接參數之配置	
3-5	銲	接熱裂敏感性實驗	44
3-6	銲	道外觀拍攝	
3-7	金	相實驗	
3-8	銲	道深寬比量測	47

3-9	微码	更度試驗	47
3-10	拉作	申實驗	48
3-11	田口	口方法之直交表與實驗參數配置	48
第四章	結界	民與討論	50
4-1	助鉛	旱劑對銲道外觀之影響	50
4-2	助鉛	早劑對銲道形態之影響	53
4-2-	1	單一型助銲劑對銲道熔深、寬度與深寬比之影響	53
4-2-	2	混合型助銲劑對銲道熔深、寬度與深寬比之影響	57
4-3	助鉛	早劑對銲道微硬度之影響	50
4-4	助郐	旱劑對銲接熱裂敏感性之影響	57
4-5	助郐	早劑對銲道顯微組織之影響	59
4-6	應用	月田口方法最佳化銲接參數	74
4-6-	1	田口實驗參數對銲道型態之影響	74
4-6-	2	田口實驗 SN 比之計算與結果分析	78
4-6-	3	確認實驗	81
4-6-	4	變異數分析與實驗再現性	83
4-6-	5	確認實驗結果分析	85
第五章	結論) 一	97
第六章	參考	5文獻	99

表目錄

表 2-1 美國鋁業協會之鍛造鋁合金規格	5
表 2-2 鋁合金加工與熱處理條件記號表	8
表 2-3 銲接氣體的比重	19
表 2-4 銲接氣體的游離能	21
表 3-1 6061 鋁合金之合金元素成份表	41
表 3-2 6061 鋁合金的機械性質	41
表 3-3 助銲劑種類	42
表 3-4 Er4043 銲線之合金元素成份表	44
表 3-5 銲接參數	44
表 3-6 田口實驗之銲接參數的控制因子及水準值	49
表 3-7 L ₉ (34)直交表與銲接參數配置	49
表 4-2 單一型助銲劑對銲道形態之影響896	54
表 4-3 混合型助銲劑對銲道形態之影響	57
表 4-4 田口實驗試片不同取樣位置之銲道深寬比、熔深及寬度與熔融面	積
· · · · · · · · · · · · · · · · · · ·	77
表 4-5 田口實驗銲道深寬比之 S/N 比	78
表 4-6 銲道深寛比之各因子水準的平均 SN 比	79
表 4-7 田口實驗銲道熔深之 S/N 比	79
表 4-8 銲道熔深之各因子水準的平均 SN 比	80
表 4-9 田口實驗銲道熔融面積之 S/N 比	80

表	4-10	容融面積之各因子水準的平均 SN 比81	1
表	4-11	實驗數據正規化處理	2
表	4-12	多重品質特性之各因子水準的平均 SN 比82	2
表	4-13	確認實驗參數配置	3
表	4-14	變異數分析表	1
表	4-15	最佳參數 SN 比的 95% 信賴區間範圍預測85	5
表	4-15	確認實驗試片之銲道深宽比、熔深及宽度與熔融面積	7
表	4-16	確認實驗之塗敷助銲劑與未塗敷助銲劑之銲道形態比較	3
表	4-17	試片斷裂位置、最大抗拉強度及延伸率	2

圖目錄

圖	1-1 鋁合金車體結構	2
圖	2-1 鋁在不同溫度下對氫氣的固溶量	10
圖	2-2 氣孔對抗拉強度的影響	. 11
圖	2-3 氣孔對降伏強度的影響	.12
圖	2-4 銲道氣孔對疲勞強度的影響	.12
圖	2-5 合金元素與熱裂敏感性的關係	.14
圖	2-6 析出物析出理論示意圖	.15
圖	2-7 MIG 銲接設備示意圖	16
圖	2-8 直流正極性電弧示意圖	.17
圖	2-9 同一電流值下電弧電壓與銲道表面形狀和熔深之關係	.17
圖	2-10 電極伸出量示意圖	.18
圖	2-11 銲接氣體的熱傳導性	20
圖	2-12 保護氣體對銲道截面之影響	20
圖	2-13 MIG 電弧開槽對銲接示意圖	.23
圖	2-14 在熔池中的 Marangoni 對流	26
圖	2-15 助銲劑吸附電子造成電弧收縮示意	26
圖	2-16 驅動熔池流動的四種力量	.32
圖	3-1 實驗流程圖	40
圖	3-2 助銲劑配製、塗敷之工具	.42
圖	3-3 銲接母材尺寸及助銲劑塗敷位置	.43

圖	3-4 銲接機、自動送線機及工作台。	. 43
圖	3-5 銲接熱裂敏感性實驗試片尺寸	. 44
圖	3-6多功能可調應變試驗設備	.45
圖	3-7 熱鑲埋機	.46
圖	3-8 研磨機	.46
圖	3-9 抛光機	.46
圖	3-10 腐蝕完成之試片	.46
圖	3-1 光學顯微鏡	.46
圖	3-12 實驗顯微鏡	.46
圖	3-13 銲道形態量測示意圖	. 47
圖	3-14 微硬度機	. 47
圖	3-15 場發射掃描式電子顯微鏡、萬能試驗機與拉伸試片尺寸示意圖.	.48
圖	4-1 單一型助銲劑之銲道外觀	. 51
圖	4-2 混合型助銲劑(50%+50%)之銲道外觀	. 52
圖	4-3 塗敷單一型助銲劑之銲道剖面圖	. 55
圖	4-4 單一型助銲劑對銲道形狀之影響	. 56
圖	4-5 單一型助銲劑之銲道深寬比	. 56
圖	4-6 塗敷混合型助銲劑之銲道剖面圖	. 58
圖	4-7 混合型助銲劑對銲道形狀之影響	. 58
圖	4-8 混合型助銲劑之銲道深寬比	. 59
圖	4-9 微硬度分佈曲線 - 未銲接之母材	. 60
圖	4-10 微硬度分佈曲線 - 未塗敷助銲劑	. 61

圖	4-11	微硬度分佈曲線 - ZnO6	51
圖	4-12	微硬度分佈曲線 - MgO6	51
圖	4-13	微硬度分佈曲線 - CaF26	52
圖	4-14	微硬度分佈曲線 - MoS ₂ 6	52
圖	4-15	微硬度分佈曲線 - Fe ₂ O ₃ 6	52
圖	4-16	微硬度分佈曲線 - SiO ₂ 6	53
圖	4-17	微硬度分佈曲線 - MnO26	53
圖	4-18	微硬度分佈曲線 – MoO36	53
圖	4-19	微硬度分佈曲線 - TiO26	54
圖	4-20	微硬度分佈曲線 - Na2CO3	54
圖	4-21	微硬度分佈曲線 - NiO	54
圖	4-22	微硬度分佈曲線 - MgCO3	55
圖	4-23	微硬度分佈曲線 - Cr2O31896 6	55
圖	4-24	單一型助銲劑微硬度分佈曲線	6
圖	4-25	單一型助銲劑之微硬度平均值6	6
圖	4-26	活性助銲劑添加對熱裂敏感性之影響	57
圖	4-27	未銲接之母材試片金相觀察6	<u>5</u> 9
圖	4-28	塗敷單一型助銲劑之試片金相觀察7	0'
圖	4-29	銲接試片取樣位置示意圖7	'4
圖	4-30	田口實驗試片之銲道剖面圖7	'5
圖	4-31	銲道深寛比之因子效果圖7	'9

圖	4-32	銲道熔	\$深之因	子效果	圖		•••••	•••••	 80
圖	4-33	銲道熔	\$融面積	之因子	这果圖.				 81
圖	4-34	多重品	自質特性	之因子	这果圖.				 83
圖	4-35	控制因]子貢獻	度	•••••		•••••	•••••	 84
圖	4-36	確認實	、驗試片	之銲道	剖面圖.		•••••	••••••	 86
圖	4-37	確認實	、驗試片	之微硬)	度平均(直	•••••	••••••	 89
圖	4-38	金相拍	插位置	示意圖	•••••				 89
圖	4-39	確認實	医驗試片	金相	•••••				 90
圖	4-40	拉伸實	「驗試片	斷裂圖			•		 93
圖	4-41	初始條	条件拉伸	試片破日	釿面(W	ithout flux	x)		 94
圖	4-42	初始條	条件拉伸	試片破日	釿面(50	%+50%).			 94
圖	4-43	$A_1B_1C_1$	D ₃ 參數	拉伸試,	片破斷	甸(Withou	t flux)		 95
圖	4-44	$A_1B_1C_1$	D ₃ 參數	拉伸試,	片破斷	面(With fl	ux)		 95
圖	4-45	$A_2B_1C_1$	D ₃ 參數	拉伸試	片破斷市	甸(Withou	t flux)		 96
圖	4-46	$A_2B_1C_1$	D ₃ 參數	拉伸試,	片破斷	面(With fl	ux)		 96

第一章 緒論

1-1 研究動機及背景

汽車輕量化是汽車產業的發展方向之一,也是一個汽車廠商和國家技 術先進程度的重要標誌。汽車的輕量化,就是在保證汽車的強度和安全性 能的前提下,盡可能地降低汽車的整備品質,從而提高汽車的動力性,減 少燃料消耗,降低排氣污染。經由實驗證明,若汽車整車重量降低10%, 燃油效率可提高6%至8%;汽車整備品質每減少100公斤,每一百公里油 耗可降低0.3至0.6公升。目前,由於環保和節能的需要,汽車的輕量化已 經成為世界汽車發展的潮流[1]。以較輕的鋁合金材料取代傳統的鋼鐵材料, 已經是當前汽車工業致力於汽車輕量化的主要手段之一。1990年歐、美、 日之小汽車平均用鋁量,為61 kg/輛,到2006年已達127 kg/輛,相較於之 前成長一倍。其中歐洲鋁協(EAA)預測2015年前,歐洲小汽車用鋁量將增 至300 kg/輛,可見鋁合金之運用在現今與未來的使用趨勢是持續地成長。 如圖1-1為鋁合金在汽車車體發展使用之質例[2]。

惰性氣體金屬極電弧銲接(Metal inert gas, MIG),在銲接製程中加入適 當保護氣體,可運用於單一材料及異種材料銲接。在材料厚度方面,最薄 約 1mm,最厚則不受限制,在銲接位置方面,可操作於平銲、橫銲、立銲 及仰銲,銲接效率比手工電弧銲佳,在銲接品質方面,銲道為連續性,可 減少起銲、收尾所造成之銲道缺陷,且具有銲速快、變形少、熱影響區窄 與銲道含氫量低等優越之銲接特性,故為一可用在汽車輕量化中的技術 [3]。

只是 MIG 在銲接較厚的工件時,需要使用開槽、填料、多道銲接等方 式來克服熔深不足,也造成了工時和成本增加的問題。且在重覆銲接及銲 銲補後尚需做銲後處理,造成銲接品質難以控制。因此為提高效率,可事 先在銲件母材上塗敷一層活性助銲劑,增加銲道熔深,此銲接製程稱為 MIG-Flux。

1

在1990年代,由於人們對提高銲接效率和降低銲接成本的追求,引起 學者的注意而進一步研究及發表活性助銲劑於銲接上的應用。因而發展出 MIG-Flux 銲接製程技術,其中主要的關鍵技術在於活性助銲劑成份的調配, 目前助銲劑的成份可分為氧化物及鹵素化合物兩大類型。早期由 Paton Electric Welding Institute(PEWI)所研發並使用鈦合金材料銲接的活性助銲劑 是以氧化物與氯化物為主;後期由 Edison Welding Institute (EWI)所發展並 應用於碳鋼、不銹鋼及鎳基合金等材料銲接的活性助銲劑則以氧化物為主 [4]。此技術目前可用於銲接碳鋼、不銹鋼、鈦合金、鋁合金、鎂合金與鎳 基合金等材料上。

(a) 整體式鋁合金車體結構 (b) 前端鋁化之鋼/鋁混合車體

(c) 鋼/鋁混合之火車車體圖 1-1 鋁合金車體結構[2]

1-2 研究方法及目的

本研究主要目的,在探討惰性氣體金屬極電弧銲接(MIG)塗敷活性助銲 劑對 6061 鋁合金銲道熔深能力之影響,其探討的範圍包含下列幾項:

(1) 活性助銲劑對 6061 鋁合金銲道形態的影響。

- (2) 活性助銲劑對 6061 鋁合金微硬度的影響。
- (3) 活性助銲劑對 6061 鋁合金銲接熱裂敏感性的影響。
- (4) 活性助銲劑對 6061 鋁合金顯微組織的影響。

為研究活性助銲劑對 6061 鋁合金之熔深能力之影響,實驗材料選用尺 寸為 100 mm×60 mm×6.35 mm 的 6061 鋁合金;活性助銲劑之選用以常見 的氧化物 ZnO、CaF2、MoS2、Fe2O3、MgO、SiO2、MnO2、MoO3、TiO2、 Na2CO3、NiO、MgCO3、CuCl2等 13 種助銲劑,先進行銲接參數評估試驗, 確定參數後,進行添加單一型助銲劑實驗。其中銲接的方法採用 Er4043 銲 線當填料以及使用氫氣為保護氣體的惰性氣體金屬極電弧銲接(MIG)來進 行 Flux bounded-MIG 銲接實驗。以實體顯微鏡來量測銲道形態,並記錄銲 道熔深及寬度以計算深寬比;利用微硬度測定機來瞭解銲道機械性質,以 金相實驗來觀察銲道微觀組織。之後再依據所量測之銲道深寬比與熔深, 取最佳的前 4 種活性助銲劑,以各 50%的比例來調配成 6 種混合型活性助 銲劑,以進行第二階段的混合型助銲劑銲接實驗。並探討混合型活性助銲 劑對銲道外觀、熔深、深寬比及熔融面積之影響。

另外為研究活性助銲劑對 6061 鋁合金之銲接熱裂敏感性之影響,實驗 材料選用尺寸為 240 mm ×50 mm × 3 mm 的 6061 鋁合金;使用 SOB (Spot-on-bead)的方式進行評估,使用實體顯微鏡來拍攝試片之熱裂情況, 並量測試片之裂縫總長度。

最後應用田口方法結合灰關聯分析來最佳化銲接參數,調整不同比例 的混合型助銲劑、電壓值、氫氣流量、銲接速度,以期能達到最佳之銲道 深宽比、熔深及熔融面積。並根據結果分析來探討影響深宽比、熔深及熔 融面積最大之實驗因子。

3

第二章 文獻探討

2-1 鋁合金

2-1-1 鋁合金的簡介

鋁之比重2.7g/cm³、熔點在660℃,其晶格為面心立方結構(FCC)。鋁重 量輕,質軟加工容易,延展性及抗蝕性佳且無毒性,同時具有高的重量強 度比,故在工業上應用極為廣泛。而在鋁中添加銅、鎂、錳、矽及鋅等元 素成為鋁合金。其具備重量輕、比強度(強度/比重)高、良好阻絕性、高熱 傳導性、高導電性及異的抗腐蝕能力,富延展性,加工成型性良好,且是 可回收重熔使用之再生(Recycle)材料,重熔時僅須治煉初生鋁 1/10 的能 源,故成為航空工業、車輛工業及建築業上不可缺少之重要材料。

2-1-2 鋁合金的分類

鋁合金一般分為兩大類:鍛造型(Wrought)及鑄造型(Casting)鋁合金; 鍛造用鋁合金一般而言都是用於加工成品應用,如板、管、箔、線等。而 鑄造用鋁合金則是用各種鑄造法製成鑄件加以應用,如砂模法、壓鑄法、 永久模法及精密鑄造法等。不論是鑄造鋁合金或鍛造鋁合金,依其材料性 質又可分為兩大類:熱處理型(Heat treatable)與非熱處理型(Non-heat treatable)兩大類。熱處理型鋁合金係指其可作析出硬化處理者,非熱處理型 合金則不能做析出硬化處理,其強化方法僅能靠固溶強化(Solution strengthening), 散佈強化(Dispersion hardening)以及加工硬化(Strain hardening)。

目前鍛造用鋁合金之代號係依據美國鋁業協會(American aluminum association, A.A.)所規定,依鋁合金所含之合金元素區分為九大類,並以四位數字來編號,其中第一位數字為代表合金系列,第二位數字用來區別原合金(Original alloys)與改良合金(Modification of the original alloys)或不純物之上限。最後兩位數字用於區別不同鋁合金之成分或純鋁之純度,如表 2-1 所示。而 1XXX、3XXX、4XXX 及 5XXX 系列鋁合金,係屬於非熱處理型

4

合金:2XXX、6XXX 及 7XXX 系列則是屬於熱處理型合金。以下將各類鋁 合金作一簡介。

编號	主要合金成份	熱處理情況				
1xxx	鋁含量 99%以上	無法時效				
2xxx	銅(Cu)	可時效硬化				
3xxx	錳(Mn)	無法時效				
4xxx	矽(Si)	無法時效				
5xxx	鎂(Mg)	無法時效				
6xxx	鎂(Mg)和矽(Si)	可時效硬化				
7xxx	鋅(Zn)及鎂(Mg)	可時效硬化				
8xxx	其他元素					
9xxx	尚未應用之系列					
XXX 系列 - 純鋁	及高純度鋁					

表 2-1 美國鋁業協會之鍛造鋁合金規格[5][6]

此系列之鋁合金其含鋁量均超過 99%,其主要之合金成分為鐵與砂, 因其屬於非熱處理型合金,所以只能以加工應硬化方式來提高其強度。此 系列鋁合金之用途頗為廣泛,主要是運用它們極佳之耐蝕性、高導性及加 工性,常應用於化學工業設備、電子工業的電容器、熱交換器、電器配件、 裝飾品等用途。本系列中之1100 鋁合金為純鋁中強度最高者,退火狀態之 抗拉強度度為 5000Psi, 適用於一般加工品, 但通常是以應變硬化(H)之型態 應用。

2XXX 系列 - 鋁-銅及鋁-銅-鎂合金

此系列合金之主要合金元素為銅,屬於熱處理型合金。經析出硬化後,

其降伏強度可達 40Ksi。本系列中常用之鋁合金有 2011,2024,2025 等。 本系列之鋁合金其抗蝕性較其他系列之鋁合金為差,所以常會發生沿晶式 腐蝕破壞(Intergranular corrosion)。為改善此一現象,可以應用夾層之方式, 在其外面披覆一層 1xxx 系列之高純度鋁或 6XXX 系列之鋁—鎂—矽合金, 以增加其耐蝕性。本系列合金適用於需要高強度重量比之結構,如卡車和 飛機的輪子,飛機的機身和機翼外皮、越野機車等,同時由於其高溫強度 大,因此也常用於需要高溫強度之元件。

3XXX 系列 - 鋁-錳及鋁-錳-鎂合金

此系列合金其主要成份為 1.0~1.5%之錳, 0.8~1.3%之鎂, 0.7%以下之 鐵, 0.2~0.5%之銅, 0.25%以下之鋅, 係以冷作加工及加工後加熱溫度決定 材料強度的非熱處理型合金, 比純鋁之強度為高, 其他性質都非常接近, 所以用途廣泛。其應用包括烹飪用具、加工成型品、容器等日常用品。本 系中之 3004 擠製型鋁合金經 H12 為經 20% 常溫加工硬化 (1/4 硬質) 其降 伏強度可達 27kg/mm² 以上, 抗拉強度可達 18kg/mm² 以上, 其主要是靠散 佈強化(MnAl₆顆粒), 其他性質如耐蝕性等皆與純鋁差不多, 常用於一般之 加工成型品、容器等日常用品。

4XXX 系列 - 鋁-矽合金

此系列合金之主要成份為矽, 鋁合金中添加矽元素會有(1)改善其流動 性,(2)提高鑄造性,(3)減少顯微冷縮,(4)降低熱膨脹係數及(5)增加耐磨耗 性及耐腐蝕性等優點。本系列合金之熔點較其他鋁合金為低,通常被用來 作為銲線與填料來銲接,屬非熱處理型合金,但若用於銲接熱處理型合金 時,可以由母材處獲得一些合金元素,而使其具有些許熱處理型合金之特 質。

5XXX 系列 - 鋁-鎂合金

此系列合金之主要成份為鎂,對鋁合金而言,鎂是最廣用也最有效之 合金元素。鋁合金中添加鎂或錳,可以得到中強度的非熱處理型鋁合金。 而鎂的強化效果比錳還好,約0.8%的鎂可以等於1.25%錳的強化效果,而 且鎂的添加量可以增加到很高。此系鋁合金隨著其鎂含量的增加,固溶強 化之效果也更大,其降伏強度和抗拉強度較純鋁皆有明顯之增加。鋁鎂合 金具有極佳之耐蝕性及機械性質,所以用途十分廣泛。包括化學船艦等結 構材料、啤酒、果汁等飲料罐以及裝潢材料等。

6XXX 系列 - 鋁-鎂-矽合金

此系列合金,也是本研究中所選用之實驗材料6061。此系列合金之主 要成分為矽和鎂,它們的添加量以可以形成Mg2Si矽化物的比例為準。因為 鎂一矽金主要是靠其Mg2Si之過渡相來達到析出強化的效果,當Si含量比形 成Mg2Si所需還多時,過量的矽也能有效提高強度。此系列合金之強度在鋁 合金中屬於中強度等級,雖然比不上2XXX及7XXX系列合金,但因其具備 頗佳之成型性、銲接性、加工性及耐蝕性,所以廣泛地應用於銲接結構材 料、建築材料、運輸工具及裝飾材料。如鋁門窗、管路、踏板、傢具等, 為目前鋁合金銲接所使用的重要材料之一。本系列中之6061擠製型鋁合金 經T6(人工時效)處理後其降伏強度可達25 kg/mm²以上,抗拉強度可達 30kg/mm²以上,屬於中強度等級,由於陽極處理光澤度好,耐蝕性佳,銲 接性也甚佳,尤其具極優良的抗應力腐蝕裂縫(Stress corrosion cracking, SCC) 能力。常用於一般之結構材料如運輸工具、家具、管路銜接之轉接頭等, 其主要成份為0.4~0.8%之矽,0.7%以下之鐵,0.15~0.4%之銅,0.15%以下 之錳,0.8~1.2%之鎂,0.04~0.35%之鉻,0.25%以下之鋅及0.15%以下之鈦。

6061 鋁合金的固溶熱處理(Solution heat treatment)溫度為 530°C (985°F); 人工時效溫度(Artificial aging temperature): 滾軋或抽製品為 160°C (320°F), 保持 18 小時; 擠製或鍛造為 175°C (347°F), 保持 18 小時。

7XXX 系列 - 鋁-鋅-鎂和鋁-鋅-鎂-銅合金

此系列主要之合金元素為鋅和鎂,有些則添加銅。此系列合金是鋁合金中強度最高的合金。但含有銅的鋁-鋅-鎂-銅系列合金,如 7050、7075等耐蝕性差,使用於腐蝕環境時,必須做充分防蝕處理。另外由於延性較低,可添加銅及Zr元素來提高其延性,阻止再結晶或再結晶微細化,讓有

害延性的析出化合物減少。含銅的本系合金銲接性差,接合時宜採鉚釘、 螺栓等機械方式。不添加銅的鋁-鋅-鎂擠壓合金如 7003、7N01、7N11 等銲接性較優,而且熱影響區的常溫時效回復也較佳,所以適合作為高強 度銲接構造用材,常應用於鐵路車輛、陸運車輛、硬質轉接頭、螺栓以及 陸上構造物、航太等。

另外由於鋁合金熱處裡使用數種不同的方式,國際命名系統(Internation alloy designation system, IADS),在合金四位數字之後再加上一個英文字母來代表其所受的熱處理狀況,其代表意義如表 2-2 所示。

F	表示未行熱處理或冷加
0	表示退火狀態(僅限於鍛造)
H-xn(xn 為數字)	表示加工硬化 x: 1896 1表示只有加工應化 2表示加工硬化後部份退火 3表示加工硬化後穩定處理 n: 2為1/4硬質 4為1/2硬質 6為3/4硬質 8為全硬 9為特別硬

表 2-2 鋁合金加工與熱處理條件記號表

T-x(x 為數字)	表示穩定熱處理
	x :
	1表示部份固溶後自然時效
	2表示退火(僅限於用鑄造品)
	3表示固溶後加工硬化
	4 表示固溶後自然時效
	5表示僅作人工時效
	6表示固溶後人工時效
	7表示固溶後穩定處理
	8表示固溶後加工硬化再人工時效
	9表示固溶後人工時效再加工硬化

表 2-2 鋁合金加工與熱處理條件記號表(續)

2-1-3 鋁合金的銲接特性

- (1) 鋁合金在常溫常壓下容易與氧反應,在其表面形成一層緻密的氧化膜 (Al₂O₃),厚度約 20~25Å。融點高達 2050℃左右,遠比純鋁融點 660℃ 高出甚多,會阻礙填料的融入與母材的融合,同時使銲接時電弧的穩定 性變差,因此在銲前需先將其去除。銲接進行中,若氧化鋁的粒子滲入 銲道將影響銲道品質,造成延性降低、熔透不佳或銲接龜裂等現象[7]
- (2) 鋁合金之比重小,氧化物容易熔入銲道中。
- (3) 鋁合金由固態熔化至液態無色澤變化,不易判斷。
- (4) 鋁合金之熱傳導係數非常高,導致熱量無法集中在銲道上,熱量會擴散 開來,銲道熱影響區也會變大。
- (5) 鋁合金之熱膨脹係數為23.5x10⁻⁶/℃,凝固時體積收縮率為6.5%,所以在 凝固過程中容易因收縮應力而造成熱裂,使銲道產生裂紋。因此在銲接 加工時,必須有正確的銲接程序及預留裕度,否則將造成較大的變形或 因拘束而產生龜裂[8][9]。

- (6) 鋁從固態至液態對氫的溶解度遽增,一旦氫溶入後,凝固時不易排出, 容易生成氣孔。於下一節有更詳細之介紹。
- (7)對鋁合金而言,無論是熱處理型或非熱處理型鋁合金,在受到銲接高溫 影響後,銲道熱影響區(HAZ)均會產生組織上的變化且會有明顯硬度降 低之現象。熱處理型鋁合金可經由銲後熱處理來使其硬度上升。

2-1-4 鋁合金銲接常見之缺陷

(1) 氣孔:

在鋁合金銲件上,造成氣孔的主要原因為氫氣的存在。氫氣最初來源 是由於母材或填料金屬表面的氫氧化合物以及碳氫化合物的薄膜,或是遮 蔽氣體所提供,並且由於鋁合金對氫氣的固溶量在液態及在固態的差異將 近20倍,如圖2-1所示[10],所以在銲道凝固過程時未能完全排出而殘留在 銲道內形氣孔。而Mg含量高的合金以及低銲接速度(高輸入熱量)會造成氣 孔數目的增加[11]。在高銲接速度時氫原子的擴散(Diffusion)和小氣泡合併 的時間是被限制的故不易生成氣孔;低銲接速度時小氣泡和外部氣體逸散 (Escape)的時間是足夠的,所以容易生成氣孔。

圖 2-1 鋁在不同溫度下對氫氣的固溶量[10]

銲件中氣孔的存在對機械性質的影響甚大,以下分為4點來討論:

● 靜強度(Static strength):

在Rudy[12]、Shore[13]的研究結果顯示,當氣孔的數目增加時,抗拉強度和伸長率明顯下降,降伏強度則無此現象,如圖2-2、2-3所示。

● 疲勞強度:

當氣孔數目增加會降低疲勞強度,如圖2-4所示。

● 裂縫(crack):

氣孔形成之時,氣孔本身有極大的內壓力(Internal gas pressure),此內壓力會助長裂縫的形成。

● 腐蝕性:

微小氣孔有毛細作用,因而吸附水氣並形成濃度電池(Concentration cell)。

圖 2-2 氣孔對抗拉強度的影響[13]

圖 2-4 銲道氣孔對疲勞強度的影響[13]

由於氣孔對於銲件品質有不良的影響,根據文獻、學者研究,可得以下之 幾種解決方法:

◆ 銲接前母材表面及銲線先行清潔。

◆ 適當的接頭設計。

- ◆ 避免在潮濕的環境下施銲。
- ◆ 避免過快的冷卻率,使得熔池內的氣體來得及逸除而不致形成氣孔;在 寒冷的地方施銲,則需適當的預熱。
- ◆ 銲接時採用電磁振盪法(Eletronmagnetic stirring)[14], 幫助氫氣從銲道熔 池中脫離。

(2) 熱裂縫

裂縫為銲接常遇到之問題,且是所有銲接缺陷中最嚴重的缺陷。鋁件的裂縫主要可分為兩大類:(一)銲道金屬熱裂縫、(二)母材熱影響區(HAZ)熱裂縫。

(一)銲道金屬熱裂縫:

銲接金屬熱裂縫的主要原因是由於熔點較低的共晶物出現及溶池凝固 收縮時晶粒被瞬間撕裂。凝固之過程約可分為四個階段,階段一其數枝狀 結構生成,並自由分佈在熔融金屬液中;階段二其數枝結構互相連結,此 時液態金屬還能移動,若裂縫產生,液態金屬仍能補充,使其痊癒;階段 三其晶界開始發展,液態金屬的活動被限制住,裂縫產生後便無法痊癒; 階段四其殘留的液態金屬完全凝固。Chihoski[15]建議使用較低的銲接速度 以增加溶池的拖曳抗拉強度。

除了凝固過程外,外力也是影響熱裂縫的一主要原因,外力的主要來 源有下列三點:

- 機械因素(mechanical factor):接頭設計、材料厚度、銲珠大小及形狀、
 夾持等。
- 熱效應(thermal effect): 輸熱入量與冷卻速率。
- 治金因素(metallurgical factor): 晶粒大小、偏析、成份。

因此想要減少銲道熱裂縫有下列幾個方法:

- ◆ 減少熱輸入量。
- ◆ 先適當的預熱,特別是較厚的材料。
- ◆ 適當的接頭設計以及減少夾持力,以減少其熱變形。
- ◆ 選用適當的填料,可使初期的裂縫藉由豐富的共晶溶液回填和復原,降低熱裂敏感性。如加入Ti、Zn等元素之填料,可使晶粒細化而降低熱裂敏感性。而由幾項研究結果顯示出[16]~[18],二元合金熱裂敏感性的增加到達巔峰值的原因是由於溶質的成份在1~3 wt%,如圖2-5所示[19]。因此如欲降低熱裂敏感性,需加入適當的填料使其合金元素含量上升超過3%。

圖 2-5 合金元素與熱裂敏感性的關係[19]

(二)母材熱影響區(HAZ)熱裂縫:

母材熱影響區的熱裂縫產生,其原因可由液化理論及析出物理論來解釋[20]。

液化理論可解釋銲道旁邊部份溶解區的熱裂縫;是因母材受到超過共 晶溫度的熱影響導致晶粒邊界液化[21]而導致熱裂,其來源有

● 晶界的液化

- 低熔點的偏析物(如含Si、P、S之偏析物)
- 夾渣(Inclusion)的液化

析出物析出理論可以解釋母材熱影響區的熱裂縫;在此以圖2-6說明之。 在某一溫度條件下, 晶粒周圍處的析出物往晶界聚集, 在晶粒周圍處形成 一窄且強度低的析出物缺乏區(Precitate depleted zone)。由於強度低無法承 受因溫度下降所產生的收縮應力而產生裂縫。

圖 2-6 析出物析出理論示意圖[20]

降低母材熱影響區熱裂之方法有下列幾種:

- ◆ 以較低的熱輸入量施銲,以減少母材熱影響區的部份固溶區大小,並且 減少母材停留在高溫的時間,避免析出物過度析出。
- ◆ 降低夾持約束力,減少外力的影響。
- ◆ 鋁合金本身添加少量的Cr,增加晶粒穩定或加入Ti、Co、V、Zn等晶粒 細化元素,減緩析出物過量析出。

2-2 惰性氣體金屬極電弧銲接(MIG)

2-2-1 惰性氣體金屬極電弧銲接(MIG)簡介

惰性氣體金屬極電弧銲接,使用銲線當電極,與工件間產生電弧,電 弧之熱量將母材之銲槽表面及銲線頂端熔化,端部熔化後之金屬滴點,將 穿越電弧落入銲池中,熔融之銲接金屬能將銲接區加熱,並以惰性氣體保 護銲道免於氧化,此銲接法所產生之熱能更集中。如圖 2-7 所示。並採用定 電壓方式銲接,以防止因電壓改變而影響電弧長度以導致銲出不均勻銲道 之缺點。

圖 2-7 MIG 銲接設備示意圖[22]

電弧是由電流經過離子化之氣體層所發生。氣體之分子或原子被電力擊散,發生遊離;即失去電子,留下正電荷。帶正電荷氣體之離子,由正極流向負極,而電子則由負極流向正極。總熱量 95%係由電子傳送,其餘部份由正離子傳送,如圖 2-8 所示。

圖 2-8 直流正極性電弧示意圖[23]

2-2-2 惰性氣體金屬極電弧銲接(MIG)之主要銲接參數

(1) 銲接電壓:

電弧電壓是影響銲道外觀形狀的最大原因,電壓低則銲道表面成凸形 且窄,熔入深;電壓太高銲道寬且扁平,熔入淺,而且電壓太高,噴渣(Spatter) 情形嚴重,容易造成銲道有氣孔缺陷產生。如圖 2-9 所示。

圖 2-9 同一電流值下電弧電壓與銲道表面形狀和熔深之關係[24]

(2) 銲接速度:

由 Q(熱輸入量)=V × I × S (單位: 焦耳/公分),其中 S 為銲接走速,因 此可得知銲接速度會影響熱輸入量的大小、母材熱影響區的寬度和氣孔的 形成。速度過慢,會使熔池金屬在銲池中堆集愈高,銲道角隅過度堆疊, 產生大型熱影響區(HAZ)以及氣孔生成。速度過快,會使傳導至母材的熱量 減少,熔透率下降,銲珠之寬度與高度亦減少。

而在 William L. Burch 研究[25]中指出較快的銲接走速能減少母材停留 在 570~700°F區的時間,能提高銲件的抗拉強度;但是過快的銲接速度易造 成銲接過程中電弧的不穩定性。

(3) 送線速度:

送線速度會影響銲道填料的多寡,影響電弧起弧的穩定度。其中在定 電壓式的 MIG 銲接中,送線速度和電流成正比關係,電流增加相對的會增 加電極熔融效率,而電流值必須達到填料的臨界電流,才會產生噴灑式 (Spraying)銲滴傳遞,否則仍屬於球滴傳遞。

(4)銲接電極長度:

銲線伸出長度,是指銲線從銲槍內導電火嘴起至銲線之最前端之間的 距離,如圖 2-10 所示。其會影響電弧的安定性、熔融量。銲線太短,噴渣 (Spatter)容易附著噴嘴口。銲線太長,保護氣體壓力降低容易使空氣混入, 使電弧發生不穩定現象。因此需視情況調整銲線伸出長度,以因應根隙過 大或過小。遇根隙太大時,可增加銲線伸出長度,以減少滲透,增加金屬 熔填量。反之,根隙太小時,則需減少銲線伸出長度,以增加滲透。

圖 2-10 電極伸出量示意圖

(5) 銲線尺寸:

 ・銲線直徑較大者:可供電流較大時使用,此情況下可以產生較高的熔填

 率與較深之滲透率。如電流保持不變,則電流密集度因直徑較大而減少,

 銲線熔化速度也因此下降。

- 銲線直徑較小者:如電流保持不變,銲線熔化速度較快,有較大之熔填
 率與較深之滲透率。

(6) 保護氣體流量:

保護氣體的作用是在銲接時隔絕銲道與大氣的接觸以及擔負起銲接時 熱能的傳遞。在 MIG 銲接時,保護氣體流量大小與電弧穩定度以及熔融滲 透有很大的關係,流量大時電極容易受擾流干擾變的不穩定,若流量太低 時,則熔融滲透率會降低。

因此如何選用適當的保護氣體為一重要課題,以下將就保護氣體的特 性及如何選用適當的保護氣體作一簡單描述:

1896

保護氣體的特性:

(a) 比重(Specific gravity)

一般而言,比重大的銲接氣體較適用於平銲。相對地,比重小的銲接 氣體則較適用於立銲或仰銲。一般銲接氣體的比重如表 2-3 所示。

表 2-3 銲接氣體的比重

Gas	Ar	He	CO ₂	O ₂	N_2	H ₂
Specific gravity	1.380	0.137	1.530	1.105	0.967	0.069

(b) 熱傳導性(Thermal conductivity)

銲接氣體的熱傳導性可視為氣體將電弧熱量傳遞到銲件的能力。圖 2-11 為保護氣體的熱傳導性之比較。Ar 的熱傳導係數較低,其電弧結構 可分成內外兩區,一為較窄且熱的電弧內核及相較之下較冷的電弧外核。 故熱能較為集中且電弧密度較高,因此會形成窄而深的漏斗銲道截面; He 為熱傳導性較高的保護氣體,其電弧的核心較寬,且熱量較高,可傳遞較 多的電弧熱量到銲件上,因此會形成寬而淺的碗碟狀銲道截面,如圖 2-12 所示。

圖 2-12 保護氣體對銲道截面之影響

(c) 游離能(Ionization potential)

游離能的單位為電子伏特(Electron volts),其定義為從氣體原子移去一個原子所需的能量而使氣體分子成為離子或帶電的氣體原子。銲接氣體的

游離能可視為氣體形成穩定電弧的難易度,也就是解離電壓值較低的氣體, 將較容易形成穩定的電弧。銲接氣體的游離能如表 2-4 所示。

Gas	Ar	Не	CO ₂	O ₂	N_2	H_2
Ionization potential	15.7	24.5	14.4	12.5	45.6	45.5

表 2-4 銲接氣體的游離能(單位:eV)

保護氣體之選擇:

一般常用的銲接氣體有氫氣(Ar)、氦氣(N₂)、二氧化碳(CO₂)、氧氣(O₂)、 氫氣(H₂)及氦氣(He)等六種氣體,其中氫氣、氦氣、二氧化碳及氮氣可單 獨使用或與其他氣體互相混合使用,至於氧氣與氫氣則需與氫氣互相混合 使用。在此僅將氫氣、氦氣、二氧化碳及氮氣做一簡單介紹:

1896

A. 氩氣(Argon)

•屬於惰性氣體。

•起弧較氦氣容易(因為氫氣的解離電壓值較氦氣低)。

•適用於平銲(因為氫氣比空氣重)。

•適合薄鈑材料的銲接(因為氫氣的熱傳導性較氦氣低)。

•銲池的流動性較差(與氦氣相比較)。

會形成較窄而深的銲道截面形狀(與氦氣相比較)。

在氫氣中加入約5%氫氣可提高銲接熱量並增加熔深。

B. 氦氣(Helium)

•屬於惰性氣體。

•起弧較氫氣困難(因為氦氣的解離電壓值較氫氣高)。

- •適用於立銲或仰銲(因為氦氣此空氣輕)。
- •適合厚鈑材料的銲接(因為氦氣的熱傳導性較氫氣高)。
- •銲池的流動性較佳(與氦氣相比較)。
- **C.**二氧化碳(Carbon dioxide)
- •屬於活性(氧化性)氣體。
- •電漿電弧的能量分佈較為集中。
- •一般用於低碳鋼材料的銲接。
- •容易產生煙霧與飛濺物。
- •氣體價格較低廉。
- **D.**氮氣(Nitrogen)
- •屬於活性(高溫反應性)氣體
- •電漿電弧的能量分佈亦較集中。
- •一般用於銅及銅合金材料的銲接
- •容易形成氣孔。
- •容易造成鎢電極的損耗與污染。
- 2-2-3 惰性氣體金屬極電弧銲接(MIG)之優缺點

優點:

(1) 銲接時間隙預度範圍大:MIG 銲接採用可消耗性的電極,絕大部分的 熱量集中在電極上,在銲接過程中將熔融的電極滴落在銲道上完成銲接 的工作,因此在對銲兩銲件時,可使兩銲件預留空隙,讓熔滴滴落填補 空隙,好處就是可提深銲接熔融深度,提高深寬比,間隙大小依線徑大 小適時調整。如圖2-13所示

1896

圖 2-13 MIG 電弧開槽對銲接示意圖

- (2)應用範圍廣泛:由於MIG 銲接機體積小不佔空間,銲接操作簡便,參 數設定簡潔,成本低廉,且品質均勻,銲接效率高,不但可銲接碳鋼、 高合金鋼,還可以銲接許多活性高的金屬及其合金,因此應用非常廣 泛。
- (3) 噴渣(Spatter)較少:由於電弧穩定,其電弧對溶滴的排斥作用較小,因 此噴渣(Spatter)情況較輕。
- 缺點:
- (1) 銲接熔融滲透率低:由於大部分的銲接熱量集中在電極上(熱量分佈70% 集中在電極,30%熱量集中在銲件),因此使得銲接熔融滲透率降低,若 是要對銲接必須要在銲件上方開槽,也必須要預留間隙,才能使銲件對 銲。
- (2) 銲接時銲件變形量大:若是要提升銲道入熱量,必然可使得銲接滲透率 提深,但是會使得熱影響區變大,導致銲件變形。例如,銲接像是鋁合 金這種的低熔點導熱性大的銲件時,由於導熱性大因此能量較不易集中 在銲道上,若是強行提升入熱量時,由於低熔點的特性,會使得銲道熱 影響區變大,因此增加銲件變形量,嚴重會使銲道完全熔融。
- (3) 銲接速度慢:銲接速度的快慢取決於銲件板厚、銲接電極的直徑、銲接 電流與送線速度這幾種因素,一般銲接速度最大約為1000 mm/min,銲 接速度太快會導致電弧放電不穩定,添料不完全。

2-3 活性助銲劑

2-3-1 活性助銲劑介紹

一般銲接為了克服銲道熔深淺,會行開槽、填料等多道手續來解決。 而另一種可以克服銲道熔深不足的方法為在銲件母材上塗上一層活性助銲 劑,其將促進電弧收縮,使電流密度及功率密度較高,造成銲道的熔深增 加。

在惰性氣體鎬極電弧銲(TIG)、惰性氣體金屬極電弧銲(MIG)上使用活 性助銲劑最早發展於1960年代,是由烏克蘭 PEWI 研究群所研發並應用於 鈦合金的銲接上,該助銲劑可將鈦合金之熔深提升至5 mm以上,但因此助 銲劑成份中含有氯化物,施銲時所產生的氣體會對人體健康造成危害,而 未受各界重視。直到1990年代,由於人們對提高銲接效率和降低銲接成本 的追求,才引起學者的注意而進一步研究及發表,包括有EWI及United Kingdom Welding Institute (UKWI)及日本大阪熔接研究所等大型研發中心。 而助銲劑除了增加熔深外還有以下作用:

(1) 溶解被銲母材表面的氧化膜; 1896

在大氣中,母材表面總是被氧化膜覆蓋著,其厚度大約為 2×10⁻⁹~ 2×10⁻⁸m。在銲接時,氧化膜必然會阻止銲料對母材的潤濕,銲接就不能正 常進行,因此可在母材表面塗敷助銲劑,使母材表面的氧化物還原,從而 達到消除氧化膜的目的。

(2) 防止被銲母材的再氧化;

母材在銲接過程中需要加熱,高溫時金屬表面會加速氧化,因此助銲 劑覆蓋在母材和銲料的表面可防止它們氧化。

(3) 降低熔融銲料的表面張力;

熔融銲料表面具有一定的張力,由於液體的表面張力會立即聚結成圓 珠狀的水滴。熔融銲料的表面張力會阻止其向母材表面流動,影響潤濕的 正常進行。當助銲劑覆蓋在熔融銲料的表面時,可降低液態銲料的表面張

力,使潤濕性能明顯得到提高。

(4) 保護銲接母材表面的作用;

被銲材料在銲接過程中已破壞了原本的表面保護層。好的助銲劑在銲 完之後,可迅速恢復到保護銲材的作用。

(5) 合適的助銲劑還能使銲點美觀;

2-3-2 活性助銲劑增加銲道熔深之機制

目前發表的文獻上有數種解釋來說明添加活性助銲劑製程中,能增加 銲道熔深的物理機制,說明如下[26]:

第一個解釋是由Heiple et al.[27]於1982年所提出的Marangoni效應。由 於活性助銲劑能改變熔池的表面張力,融化在熔池中的表面活性劑有可能 使對溫度梯度相依的表面張力係數∂γ/∂T由負轉正,將熔池的Marangoni對流 逆轉,對流從放射狀往上往外,轉由往內往下。在鋼中的表面活性劑有S、 O、 Se及Te等元素。在圖2-14(a)-(c)表面活性劑較低的鋼中,靠近熔池中央 表面張力較低且溫度較高的液態金屬,被靠近熔池邊緣張力較高且溫度較 低的液態金屬往外拉;在圖2-14(d)-(f)表面活性劑較高的鋼中,靠近熔池邊 緣表面張力及溫度皆較低的液態金屬,被靠近熔池中央表面張力及溫度皆 較高的液態金屬往內拉,因此造成銲道熔深增加。

第二個被提出來的機制是為Simonik et al.在1976及Howse et al.在2000 所提出的電弧收縮理論[29][30]。他們認為氣化的活性助銲劑能使電弧收縮, 是藉由捕捉電弧外圍的電子,使外圍負責傳遞電流的電子數量減少所造成。 收縮的電弧之所以增加陽極的溫度,是由於電流密度的增加與較高的電弧 電壓造成,如圖2-15所示。

圖 2-15 助銲劑吸附電子造成電弧收縮示意[26]

由於氣化的助銲劑中可能含有氧,有時也可能包含了氟。已知此類的 蒸氣會吸附電子,被吸附的電子在電弧邊緣產生較電子移動慢之氧或氟的 負離子,因此,在給定的電流下,電弧中心的電流密度就會增加,因此就 有可能會造成熔深的增加。被吸附的電子與氣化分子及解離原子形成負電 荷粒子,會對電子的吸收作用造成影響。電子吸附僅能發生在較低溫的外 圍區域,因電子能量較低且電場較弱;接近電弧中央的區域,其電場較強 且溫度較高,所以電子有非常高的能量,故電離作用為主要的支配力量。 因此,收縮的電弧流場使得在電漿中及陽極上,靠近電弧中央區域的電流 密度增加,所以造成緊縮的電弧及較深的銲池。活性助銲劑的組成分子或 原子若有較大的電子吸附截面積,則會促進電弧收縮的現象。如當鹵素化 合物解離時,因其有較大的電子吸附截面積,故對電子有較佳之親和力。 其它的化合物,如金屬化合物,雖然有較小的電子吸附截面積,但是因其 有較高的解離溫度,故能等效地收縮電弧,就如同他們能在電弧外圍促供 較大量的氣化分子與原子一般。

另一解釋電弧收縮理論是由 Lowke et al.[26]在2005所提出,一種有可 能的機制來解釋活性助銲劑所扮演的角色。其解釋電弧收縮理論是由於活 性助銲劑為絕緣體所造成。一般而言,活性助銲劑是金屬的氧化物,故為 電的絕緣體,雖然氧化物的阻抗隨著溫度的增加而降低,但仍顯著大於液 態的熔池,如 TiO₂在 2123K時的阻抗為10⁷ ohm-cm,因此助銲劑的效用為 在熔池的外圍區域增加一層高電子阻抗區。所以,在熔池中央因為有較高 的電流密度及表面熱能,所以助銲劑很有可能揮發,造成較深之銲道。

1896

2-3-3 活性助銲劑之種類

助銲劑中的化學性質決定了助銲劑的冶金性能,助銲劑鹼度及活性是 常用來表示助銲劑化學性質的指標。根據國際銲接學會(International Institute of Welding, IIW)將助銲劑鹼度以 鹼性指數(Basicity Index B.I.) 作為說明, B.I.計算公式為: [31][32]

上式中所列為銲劑中的重量百分比。根據計算結果作如下的分類:

(1) 酸性銲劑(B.I.<1.0):

通常酸性銲劑具有良好的銲接性、銲道成形美觀,但是銲道金屬含氧量 高,耐衝擊韌性較低。

- (2) 中性銲劑(B.I.=1.0~1.5): 熔融金屬的化學成份與銲絲的化學性質相近,銲道金屬含氧量有所降低。
- (3) 鹼性銲劑(B.I.>1.5):

通常鹼性銲劑之熔接金屬的含氧量較低,可以獲得較高的衝擊強度,但 是銲接性較差。

銲劑中的B.I.值愈大,則熔接金屬之Mn分佈較均勻,同時P及S的含量 減少。氧含量隨著B.I.值的增加而減少。B.I.值愈小,銲渣愈偏酸性渣系。 此時銲劑的耐火性愈高。熔融速度可提高,銲道比較寬及平整。

此外,相對化學活性係數(Af)可以把各種成份的助銲劑分為高活性助 銲劑(Af≧0.6),活性助銲劑(Af=0.3~0.6),低活性助銲劑(Af=0.1~0.3) 和惰性助銲劑(Af≦0.1)。助銲劑在銲接過程中,是以液態熔渣形式覆蓋 在銲接金屬表面以保護銲接熔池(Weld pool)不受大氣的污染,並可改善銲 接金屬的化學成份、機械性質及微觀組織等,因此茲將助銲劑中成份之 功用分述如下:[31]~[38]

(1) 銲劑中屬於鹼性銲劑的成份有:CaO、MgO、FeO及MnO。而屬於酸性的則有SiO₂,P₂O₅,TiO₂,及Al₂O₃。鹼性銲劑具有去硫及磷的能力,因此衝擊韌性及延性較佳。酸性銲渣則是在銲接過程中容易控制及去除銲渣容易。但銲接金屬中含有較多的介在物(Inclusion),因此韌性較

低。

- (2) Al₂O₃ 及Cr₂O₃ 會降低電弧穩定性。
- (3) CaO 可改善電弧穩定性,並使銲渣(Slag)之粘度下降。
- (4) 銲劑中的 SiO₂ 增加,可調整粘度並增加電流能量(耐高電流)。SiO₂, 並可使銲渣中的MnO₂ 及FeO 含量增加,銲接金屬中的Si 及O 含量也 會增加。
- (5) 增加 MnO 可增加電弧熔透性能(Penetration)以及減少對銹的敏感。 MnO 增加同時可增加銲接金屬中的Mn 及O 含量。
- (6) 銲藥中加入 CaF₂ 的作用,是希望形成HF 的氣體以降低熔填金屬中的 擴散氫含量。此外,銲接時CaF₂ 大量的蒸發,產生的氣體有助於降低 氫的分壓,促使氫在液態金屬中的溶解度降低而達到脫氧的作用。CaF₂ 還有二個重要的作用,其一,為提高熔渣的透氣性,有助於熔池中氫的 逸出;其二,為銲劑中的CaF₂ 可促進CaO 的熔化,降低鹼性渣的粘度。
- (7) Al₂O₃ 在鹼性渣中可降低粘度,在酸性渣中則可增加粘度,但是無法提升銲道的熔透深度。
- (8) 銲劑中的 CaCO₃、MgCO₃ 與BaCO₃ 經銲接後分解作用形成CO₂,分解 的CO2 氣體可與氫原子直接作用生成OH,達到脫氧的作用。
- (9) TiO₂、Fe₂O₃、AlF₃與SiO₂ 可增加銲道的熔透深度。

2-4 銲道熔透深度變異之原因

對電弧銲接而言,驅動熔池中熔融金屬流動之因素有因銲池內流體密 度差異所形成之浮力、流過銲池表面的電流形成之電磁力、熱毛細作用所 引起的表面張力及銲池表面的電弧電漿等4種因素[28]。

(1) 浮力(Buoyancy force)

當溫度增加時,液體的密度降低。由圖 2-16(a)及(b)所示,由於熱源在 熔池的中央,所以在 a 點的溫度會較 b 點高。而由於物體熱漲冷縮之特性, 故在 b 點密度較高的液態金屬下沉,並沿著熔池邊緣下沉,並在熔池中心 軸上升,迫使中央的液態金屬向二側移動而形成寬而淺之銲道。

(2) 電磁力(Lorentz force)

由於電流會在靠近熔池中央傳遞並收斂。收斂的電場與所引發的磁場 會使電磁力往下往內推,造成液態金屬由熔池的中央往下流,並延著熔池 的邊界上升,可增加電弧銲接之熔深,進而形成窄且深之銲道。如圖2-16(c) 及(d)所示。陽極斑點(Anode spot)愈小則電流流場會愈緊縮,因此較大的電 磁力將液態金屬由熔池中心往下推。陽極斑點為電流在熔池表面通過的區 域。

(3) 表面張力

根據 Heiple 等人[39][40]的研究結果顯示,銲道熔透深度與熔融液態 金屬之流動狀態有著極密切的關係。其中熔融液態金屬的流動方向主要是 受到銲池表面張力梯度之影響。至於銲池表面張力梯度效應主要則取決於 銲池表面張力之溫度係數(dy/dT)。

如圖2-16 (e)所示,在純金屬或銲池中不存在活化元素時,銲池表面張 力一般隨溫度的升高而減小(亦即銲池表面張力之溫度係數為負值),在熔池 中央a點的溫度較高故表面張力低,所以被熔池邊緣b點溫度較低而表面張 力高的力量往外拉。換句話說,向外拉的剪力是由熔池表面張力的梯度所 造成。故液態金屬會從熔池中央向熔池外緣流動,並返回熔池的底端,造

成寬而淺的銲道。此種由表面張力梯度造成的對流稱熱毛細對流 (Thermocapillary convection)或Marangoni對流。

但對於添加了活化元素,如硫(S)、氧(O)之金屬而言,銲池表面張力則 會隨溫度的升高而增加(亦即銲池表面張力之溫度係數為正值),如圖2-16 (d)、(e)及(f)所示。對添加了S及O等表面活性元素之銲池而言,由於表面張 力溫度係數是正的,所以在銲池中央之最熱點有較高的表面張力,而在銲 池二側有較低的表面張力,因此熔融液態金屬將會形成由銲池外緣向銲池 中央流動的表面張力流(Inward flow),形成窄而深之銲道。

(4) 電弧電漿

在電弧銲接的過程中,因為微量元素的影響,常常可以發現電漿電弧 柱會產生收縮現象,伴隨此一現象的發生可以發現銲道的熔透深度增加。 由於電漿電弧中心區域的溫度要遠高於分子解離溫度,因此微量元素在電 漿電弧的高溫作用下,微量元素中的原子將會被電離成電子與正離子。而 在相對溫度較低的電漿電弧柱外圍區域,微量元素中被蒸發的物質仍會以 分子或解離原子的形態存在,且解離原子將會大量地吸附電漿電弧柱周邊 區域中的電子而形成負離子,使得電漿電弧柱周邊區域中作為主要導電物 質的電子數急劇減少,亦即會降低電漿電弧柱之導電能力或縮小電漿電弧 柱之導電面積,進而迫使電漿電弧柱產生收縮現象。至於此現象將可有效 集中電弧熱量,進而使熔深增加。如圖2-16 (g)及(h)所示。

(a), (b)浮力; (c), (d)電磁力; (e), (f)表面張力

(g), (h)電弧電漿

圖 2-16 驅動熔池流動的四種力量[28]

2-5 田口方法(Taguchi methods)[41]

2-5-1 田口方法基本原理與目的

田口方法又稱田口式品質工程,是以工程的角度去了解品質問題,利 用社會損失成本作為衡量產品品質的依據,其目的為在產品的製程設計時 即考慮品質問題,並改善之。主要的工具為「直交表」和「SN 比」。

田口實驗分析法之基本原理,是經由降低變異原因的影響,來改善產 品的品質,而不是去除變異原因。參數設計之原理,是將控制因子配置於 直交表內來進行實驗,再依其品質特性之種類,由損失函數導引出 SN 比 (Signal to noise ratio,訊號雜音比),將實驗求得之品質特性轉成 SN 比進行 分析,經由統計上之推定,可評估在不同參數水準組合下的 SN 比。依照望 目、望大或望小之品質特性,預估出最佳 SN 比,即為最佳參數組合。在此 參數下製造之產品,其變異最小。最後再用最佳參數水準組合進行確認實 驗,由確認實驗所得之 SN 比與預估之 SN 比相互比較,評定此實驗是否成 功。

1896

2-5-2 SN 比之基本定義

田口認為所謂好的品質必須符合:

(1) 品質特性的平均值與目標值一致。

(2) 品質特性之變異性愈小愈好。

品質特性中可預測的部份,通常稱為信號(Signal);不可預測的部份, 通常稱為雜音(Noise)。田口所提出之 SN 比主要目的在同時考量品質特性的 平均值與變異數。並且最大化可預測部份以及最小化不可預測部份。

田口將通信工程中的 SN 比觀念應用到統計學上,並建議利用下列的方 式評估品質: SN=10·log₁₀(信號/雜音),當信號因子為固定時,變為靜態問 題,因此 SN 比可定義為: $SN=10 \cdot \log_{10} (MSD) \dots (2-2)$

其中 MSD 為偏離目標值的均方差; SN 比的單位為(dB)

(1) 望大品質特性 SN 比 (Larger-the-better)

望大特性問題的主要特微為:

A. 品質特性是連續且非負值,範圍為 $(0, \infty)$ 。

B. 目標值為∞(或最大的可能值)。

C. 不需要調整因子。 D. 望大特性問題是望小特性問題的倒數。 望大品質特性之 SN 比計算公式: $SN_{LTB} = -10 \cdot \log_{10} (MSD)$ $= -10 \cdot \log_{10} (\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2}) \dots (2-3)$

(2) 望小品質特性 (Smaller-the-better)

望小特性問題的主要特微為:

A. 品質特性是連續且非負值。

B. 目標值為零。

C. 不需要調整因子, 望小特性的目標是同時要最小化平均值與變異。 望小品質特性之 SN 比計算公式:

$$SN_{STB} = -10 \cdot \log_{10} (MSD)$$

= -10 \cdot \log_{10} (\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}) \cdot (2-4)

(3) 望目品質特性 (Nominal-the-Best)

望目特性問題的主要特微為:

A.品質特性是連續且非負值。

B.目標值為一有限值且不為零。

C.當平均值為零時,其變異數亦為零。

D. 需調整因子。

望目品質特性之 SN 比計算公式:

2-5-3 田口方法之實驗步驟

田口方法的參數設計的步驟可分為九大步驟:

- (1) 定義系統目標/範圍
- (2) 選擇回應值
- (3) 發展信號因子和雜音策略
- (4) 辨認控制因子及其水準

(5) 設計實驗

- (6) 準備及執行實驗,收集數據
- (7) 資料分析(計算平均值、SN 比,因子效果圖、預估最佳 SN 比)

(8) 執行確認實驗

(9) 執行結果

2-5-4 確認實驗

在決定了最佳控制因子水準及其預估之 SN 比後, 田口博士建議需在最 適參數設定下進行實驗, 然後把觀察到的 SN 比與所預測的值做比較。如果 兩者非常接近, 那麼我們可結論說"加法模式成立", 並隱含著再現性將會良 好。反之, 如果所觀察的值和所預測的相差很多, 那我們可以說加法模式 是不恰當的, 因子間可能存有強烈的交互作用。為了有效估計各觀察值, 必須計算信賴區間(Confidence interval), 依不同之目的, 我們常需計算下列 二種形態的信賴區間:1.最佳條件下之預測平均值。2.確認實驗之期望平均 值。若確認實驗的結果其 SN 比之平均值落在上述的信賴區間範圍內, 表示 我們所選取的顯著因子及其對應的水準是很恰當的。如果落在信賴區間之 外, 表示加法模式不成立(實驗失敗), 可能所選的控制因子或水準有問題, 必須重新再檢討。確認實驗之期望平均值計算公式如(2-6)所示。

1896

$$CI = \sqrt{F_{\alpha;1,\nu_2} \times V_e \times \left(\frac{1}{n_{eff}} + \frac{1}{r}\right)}$$
.....(2-6)
其中

$$F_{\alpha;1,\nu_2} = 具顯著水準 \alpha 的 F 值
 $\alpha = 顯著水準 = 0.05, 信賴水準 = 1 - \alpha$
 $\nu_2 = 合併誤差變異數之自由度$
 $V_e = 合併誤差變異數(pooled error variance)$
 $n_{eff} = 有效觀測數$$$

總實驗次數

1+用來估計平均值之因子的自由度總和

r=確認實驗之樣本數

2-6 田口方法整合灰關聯分析

2-6-1 灰關聯分析基本原理[42]

灰色系統理論是由著名學者鄧聚龍教授於1982年首創的一種系統科學 理論(Grey Theory),是研究系統於模型不確定、資訊不完全及數據運作不明 確之狀況下,透過灰關聯生成、權重灰關聯分析,求得灰關聯度方法,以 有效處理不確定性模型、多變量性資訊和離散數據。

其中的灰色關聯分析主要是用來分析離散序列間相關程度的一種預測 方法。其概念為使用一定的方法找出系統中各因素間的主要關係,並找出 影響最大的因素。是根據各因素變化曲線幾何形狀的相似程度,來判斷因 素之間關聯程度的方法。此方法通過對動態過程發展態勢的量化分析,完 成對系統內時間序列有關統計數據幾何關係的比較,求出參考數列與各比 較數列之間的灰色關聯度。與參考數列關聯度越大的比較數列,其發展方 向和速率與參考數列越接近,與參考數列的關係越緊密。灰色關聯分析方 法要求樣本容量可以少到4個,對數據無規律同樣適用,不會出現量化結 果與定性分析結果不符的情況。其基本思想是將評價指標原始觀測數進行 無量綱化處理,計算關聯繫數、關聯度以及根據關聯度的大小對待評指標 進行排序。

一般的灰關聯分析使用步驟如下:

(1) 原始資料轉換

(2) 計算關聯數

(3) 求出關聯度

(4) 排列關聯序

(5) 列出關聯矩陣

在應用中是否進行所有步驟,可視具體情況而定。

2-6-2 田口方法與灰關聯分析整合之應用

雖然田口方法目前已廣範應用在各領域,但在應用時一次只能改善單 一品質特性是其一大缺點,且品質特性有望大、望小、望目之分別,無法 直接去整合在一起,因此近年來已有許多學者引用灰關聯分析來整合田口 方法,使其在研究分析時,可以同時考量多重品質特性,目前最常應用在 設計和製程上。

洪維宗[43]有鑒於食品工業製造上需要低成本、高效率、數量化,因此 必須考慮多重品質特性,但多重品質特性卻常常靠工程人員憑經驗判定, 且食品工業之生產線人員通常未必有數學與統計背景,便應用了灰色系統 理論中的灰色關聯分析且在保有田口方法的原始精神之下整合出多重品質 特性績效衡量指標,並建立成一套簡便又不失學理的演算模式,提供食品 業界面對多重品質特性要求時尋找製程最佳參數組合的實用品質工程技 術。

黄得誌[44]考慮到車削加工在金屬加工上為重要的一環,且隨著加工技 巧之進步,對於多重品特性的要求便日漸趨多,如表面粗糙度、刀具摩耗、 切削力、切削噪音等等都是品質特性的重要指標。因此在數位控制車床切 削上,根據田口直交表規劃實驗,並導入灰色系統理論中的灰關聯分析技 巧,同時衡量最佳方案與理想解及負理想解的特色,經過總灰關聯度的分 析,求出最佳參數值。且推論出權重對於灰關聯田口法是非常重要之因子。

陳俊智[45]考慮到手機外型設計上的多重品質要求,先透過焦點小組與 模糊層級分析法,求得美感準則項目和權重後,應用灰關聯分析結合田口 方法推論出美感多重品質之最佳化造形參數組合,並驗證結果證明了此方 法可達到整體美感積效的最大化與品質最小變異的目標。

陳宏佳[46]發現在壓鑄品離型生成階段常發生缺陷,造成需要以人工補 銲方式修補,甚至需要報廢,且在傳統上大多以工程師自行判斷最佳因子 水準組合,容易產生認定標準不一之問題。因此應用主成份、灰關聯分析 以及田口方法建構出一套可以解決連續性參數且多品質特性的演算流程來

進行多重品質特性最佳化設計,先以田口損失函數來評估產品的品質特性, 接著利用主成份分析程序,使得這些品質特性之損失函數轉換成無相關的 主成份;透過灰關聯分析解決兩個以上的主成份,求得最佳參數組合。其 驗證結果也令人滿意且可達節省實驗成本與縮短新產品由實驗階段導入生 產階段之時程。

根據上述文獻可整理出一般在使用田口方法結合灰關聯分析時,需要 實行的步驟:

- (1) 使用田口直交表配置實驗
- (2) 執行田口實驗
- (3) 將實驗數據轉換為各品質特性之 S/N 比
- (4) 將各品質特性之 SN 比正規化處理
- (5) 依權重計算出灰關聯度
- (6) 使用變異數分析,求出求各因子貢獻度,及最佳參數預測
- (7) 執行確認實驗
- (8) 分析結果

第三章 實驗方法與程序

3-2 銲接試片準備

本研究所使用的實驗材料為鋁合金 6061,其合金元素成份如表 3-1, 其機械性質如表 3-2 所示,試片尺寸為 100×60×6.35mm。在進行銲接實驗 前,先以鋼刷消除表面氧化層,用甲醇擦拭乾淨試片表面,再行銲接。

成份	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
重量百分比 (wt%)	0.8	0.7	0.4	1.5	1.2	0.35	0.25	0.15

表 3-1 6061 鋁合金之合金元素成份表

表 3-2 6061 鋁合金的機械性質

性質	Tensile	Yield	Elongation	Hardnass	Shear	Fatigue
	strength	strength		6 HV	strength	strength
材料	MPa (Ksi)	MPa (Ksi)	70		MPa (Ksi)	MPa (Ksi)
6061-T6	290(42)	241(35)	12	110	152(22)	69(10)

3-3 助銲劑之選擇與配製方法

本實驗參考先前文獻及研究室資源,選擇 13 種單一型助銲劑作為 6061 型鋁合金的 MIG-Flux 製程來進行研究。助銲劑採用日本試藥工業株式會社 所生產,粉末粒度為#400 號。一系列實驗分別進行初期評估試驗(銲接電流 測試)、添加單一型助銲劑實驗、添加混和型助銲劑實驗,完成後將實驗結 果分析與討論。助銲劑種類如表 3-3 所示,其中混合型助銲劑是由單一型助 銲劑中熔深較好的 4 種助銲劑來做(50%+50%)混合。 實驗之助銲劑配製方式為以微量電子秤量取 2 克之單一成份助銲劑粉 末,置於砵內研磨均勻後(如圖 3-2 所示),加入 5 ml 的甲醇溶劑混合成糊 狀,接著再利用#10 號扁平水彩筆將此糊狀之助銲劑均勻塗敷於欲進行銲接 測試之處,塗敷範圍如圖 3-3 所示;塗敷厚度以能遮蓋待銲工件表面金屬 光澤為宜,中間留 2mm 區域不塗,其原因是考量到活性助銲劑是電的絕緣 體,會造成電弧異常偏移,使熔深不一致,故在活性助銲劑塗敷範圍中央 露出金屬以提供導電區,此作法稱為 Flux bounded-MIG,簡稱 FB-MIG[30]。 此方法也可降低銲道熔深對助銲劑塗敷量的敏感度[47],即使塗敷量增加也 不會造成熔深明顯下降,可防止因塗敷厚度不夠精準而導致實驗誤差發生, 待溶劑揮發後,助銲劑即附著於銲道上,然後再進行銲接實驗。

單一型 助銲劑	ZnO	CaF ₂	MoS ₂	Fe ₂ O ₃	MgO	SiO ₂	MnO ₂
	MoO ₃	TiO ₂	Na ₂ CO ₃	8 NiO	MgCO ₃	Cr ₂ O ₃	
混合型	ZnO	ZnO	ZnO	ZnO	MgO	MoS_2	
助銲劑	MgO	MoS_2	Na2CO ₃	Na ₂ CO ₃	Na ₂ CO3	Na ₂ CO ₃	

MILLIN,

表 3-3 助銲劑種類

圖 3-2 助銲劑配製、塗敷之工具

圖 3-3 銲接母材尺寸及助銲劑塗敷位置

3-4 銲接參數之配置

本研究之實驗設備採用惰性氣體金屬極電弧銲接機(HOBART MEGA-PULSE MPI-350)搭配 HOBART 2450 型自動送線機,使用 Er4043 銲 線,其成份如表 3-4 所示,並配合可控制走速的銲接檯車。銲接方法採取 FB-MIG 的方式,保護氣體為純氫氣(99.99%),如圖 3-4 所示。本實驗的銲 接參數則如表 3-5 所示。 1896

HOBART 2450 型自動送線機與工作台

HOBART MEGA-PULSE MPI-350 型銲接機

圖 3-4 銲接機、自動送線機及工作台。

成份	Si	Fe	Cu	Mn	Mg	Zn	Ti
重量百分比 (wt%)	5	0.8	0.3	0.05	0.05	0.1	0.2

表 3-4 Er4043 銲線之合金元素成份表(wt%)

表 3-5 銲接參數

銲接 電壓	銲槍 走速	送線 速度	銲線伸出導電 火嘴之距離	導電火嘴與工 件表面之距離	氩 氣 流量
20	219	70	5	25	20
(V)	(mm/min)	(mm/sec)	(mm)	(mm)	(L/min)

3-5 銲接熱裂敏感性實驗

為研究 6061 鋁合金塗敷不同成份之助銲劑粉末之後,其銲件的熱裂敏 感性。使用 SOB (Spot-on-bead)的方式進行評估,使用的試片尺寸為 240×50×3 mm,銲接前以鋼刷消除表面氧化層,再用甲醇擦拭乾淨試片表 面。之後將活性助銲劑均勻塗敷於試片中央區域,塗敷範圍約 20×20mm, 如圖 3-5 所示,最後再採用不添加填料金屬的氫氯保護鎢極電弧銲來進行 點銲;在銲接過程中均採無束縛固定方式,當銲接完成時,施加一應變量, 以觀察裂縫產生的情形。所使用之設備如圖 3-6 所示。

圖 3-5 銲接熱裂敏感性實驗試片尺寸

圖 3-6 多功能可調應變試驗設備

3-6 銲道外觀拍攝

為了解各種助銲劑對試片銲後表面品質狀況之影響,本實驗利用數位 相機來拍攝銲道表面之情況,並且分析其銲道外觀平整性與飛濺物之形 態。

3-7 金相實驗

為研究 FB-MIG 銲接製程對 6061 鋁合金銲道微觀組織的影響,在銲後 取垂直銲道方向的橫截面來作金相實驗,取樣位置為塗敷助銲劑區域中間 之適當部位,取其兩個點作為樣本試片,以增加之後實驗之準確性。由於 6061 鋁合金硬度不高,利用臥室鋸床切割欲取樣之試片部位。取樣後之試 片,經圖 3-7 之熱鑲機(Struers LaboPress-3)鑲埋後,使用圖 3-8 之研磨機 (MATASERV 2000)與 3M 碳化矽砂紙研磨,依序由號數#120、#240、#400、 #600、#800、#1200、研磨至#2000 號。再用圖 3-9 之拋光機(Jean Wiriz PHOENLX)與氧化鋁粉拋光,由顆粒 1 µm 拋光至 0.3 µm,經拋光完成後的 試片,必須以清水與酒精清洗乾淨並用吹風機吹乾。然後將金相試片採用 Keller's 腐蝕液(2ml HF+3ml HCL+5ml HNO₃+190 ml water),腐蝕完之試 片如圖 3-10 所示。最後利用圖 3-11 之光學顯微鏡(ZEISS Axioskop 40) 拍照, 觀察並擷取其銲道幾何形狀照片。

圖 3-7 熱鑲埋機

圖 3-8 研磨機

圖 3-11 光學顯微鏡

圖 3-12 實驗顯微鏡

3-8 銲道深寬比量測

將塗佈助銲劑區域取一位置做分析,其取樣位置不得距頭尾兩端過近, 避免影響實驗分析。這些試片經熱鑲埋、研磨、拋光、腐蝕後,利用圖 3-12 之實體顯微鏡量測銲道之熔深(Depth)及寬度(Width)後,以熔深與寬 度之比值,簡稱深寬比(D/W ratio)作為銲道熔深特性之評估指標。

圖 3-13 銲道形態量測示意圖

3-9 微硬度試驗

本實驗採用微硬度測定機(FUTURE-TECH FM-700) 測量銲道硬度,如 圖 3-14 所示。依據 ASTM E384 之規範,試驗荷重採 300 公克,荷重加壓 時間為 10 秒鐘,而量測位置則為距銲件表面下1 mm處,且每點間隔 0.5 mm 測量硬度,最後再將量測之值記錄,並繪製成硬度分佈曲線。

圖 3-14 微硬度機

3-10 拉伸實驗

將銲接完成之試片切割取樣,作成拉伸試片。試片規格如圖 3-15 所示。 使用的實驗儀器為萬能試驗機(UC-30T),如圖 3-15 所示。可經由此實驗得 到材料銲接之後的抗拉強度、降伏強度、伸長率以及應力-應變曲線圖。再 將拉伸試片藉由場發射掃描式電子顯微鏡(Scanning electron microscopy, SEM) 來觀察其破斷面形貌,如圖 3-15 所示。

圖 3-15 場發射掃描式電子顯微鏡、萬能試驗機與拉伸試片尺寸示意圖

3-11 田口方法之直交表與實驗參數配置

本實驗選用銲接電壓、銲槍走速、氫氣流量以及在混合型助銲劑實驗 中,具最佳熔深之助銲劑的混合比例當作控制因子來做FB-MIG對接實驗。 並利用田口方法之L9直交表來做控制因子及水準值之配置。如表 3-6 及表 3-7 所示。每個實驗組數做兩組試片,一共有 9x2=18 組試片。

控制因子	А	В	С	D					
	銲接電壓	銲槍走速	氫氣流量	助銲劑比例					
	(V)	(mm/min)	(L/min)	MgO:ZnO					
水準值				(wt%)					
水準1	21	420	10	20%+75%					
水準 2	22	575	15	50%+50%					
水準 3	23	710	20	75%+25%					
固定因子為:銲線伸出導電火嘴之距離 5mm;導電火嘴與工件表面之距離 18.5mm;									
送線速度 125mm/sec; 對接間距 2mm;									
雜音因子為:軍	雜音因子為:取樣位置								

表 3-6 田口實驗之銲接參數的控制因子及水準值

	A	BSN	C	D
實驗組數	電壓	走速	8 流量	混合比例
	(V)	(mm/min) 1896	(L/min)	(MgO + ZnO)
1	21	420	10	25%+75%
2	21	575	15	50%+50%
3	21	710	20	75%+25%
4	22	420	15	75%+25%
5	22	575	20	25%+75%
6	22	710	10	50%+50%
7	23	420	20	50%+50%
8	23	575	10	75%+25%
9	23	710	15	25%+75%

表 3-7 L₉(3⁴)直交表與銲接參數配置

第四章 結果與討論

4-1 助銲劑對銲道外觀之影響

將 6061 鋁合金試片塗敷各種助銲劑後,再根據表 3-5 之銲接參數來進 行 FB-MIG 銲接實驗。塗敷單一型助銲劑的 FB-MIG 銲接製程對銲道外觀 影響的實驗結果如圖 4-1 所示,塗敷混合型助銲劑(50%+50%)的 FB-MIG 銲 接製程對銲道外觀影響的實驗結果則如圖 4-2 所示。銲接方向皆為由右到 左,右邊的前 30mm 為沒有塗敷助銲劑區域,左邊 70mm 為塗敷助銲劑區 域,如圖 3-3 所示,以方便做比較。

由圖 4-1 可得知除了塗敷 MgCO₃的銲道和未塗敷助銲劑的外觀並無差 異外,其餘助銲劑皆會使銲道有些許固體夾渣(Solid inclusions)和氣孔出現, 並且在銲道附近都有些許飛賤物,其中又以塗敷 SiO₂、MoO₃的固體夾渣情 形最為嚴重;塗敷 Na₂CO₃的銲道有緊縮之現象;塗敷 Fe₂O₃、SiO₂、MoO₃ 的銲道有寬度不均勻之情形。

由圖4-2可看到塗敷了混合助銲劑後銲道上固體夾渣和氣孔變的較少; 塗敷 MgO+Na₂CO₃的銲道有寬度不均勻之情形;塗敷 MgO+MoS₂可使銲道 變寬;而在有添加 ZnO、Na₂CO₃兩種成份的混合型助銲劑的銲道周圍,其 表面會有由銲線融化的液態金屬流動造成樹枝狀的分佈情形,此情形於混 合助銲劑中塗敷 ZnO+MoS₂、ZnO+Na₂CO₃、MgO+Na₂CO₃、MoS₂+Na₂CO₃ 之銲道周圍可看到,其中又以 ZnO+Na₂CO₃最為明顯。

圖 4-1 單一型助銲劑之銲道外觀

4-2 助銲劑對銲道形態之影響

4-2-1 單一型助銲劑對銲道熔深、寬度與深寬比之影響

塗敷單一型助銲劑之試片經由 FB-MIG 銲接後,其銲道型態如表 4-1 及圖 4-3、圖 4-4、圖 4-5 所示。由圖 4-4 可知所使用的單一型助銲劑裡除了 TiO₂、CaF₂及 Cr₂O₃以外皆可改善銲道之熔深;由圖 4-5 可知所使用的單一 型助銲劑裡除了 Fe₂O₃及 TiO₂以外皆可改善銲道之深寬比。根據章節 2-3-2 之探討,活性助銲劑一般為金屬的氧化物,是電的絕緣體,即使氧化物的 阻抗會隨著溫度的增加而降低,但仍顯著大於液態的熔池,因此助銲劑的 效用為在熔池的外圍區域增加一層高電子阻抗區,在熔池中央會有較高的 電流密度及表面熱能,使靠近銲道中央之助銲劑因高熱揮發,露出母材金 屬,使熔池緊縮,造成銲道熔深增加。

由表 4-2 可得知,當添加單一型活性助銲劑時,在銲道熔深方面,以 MoS₂與 Na₂CO₃可以改善銲道的熔深高達 56%為最有效果的兩種助銲劑; 其次為 ZnO (42%); MgO、MoO₃ (36%)。銲道深寬比方面,則以 Na₂CO₃ 可以改善銲道的深寬比高達 150%為最有效果的助銲劑;其次為 ZnO (67%); MoS₂ (56%); MgO (50%)。

而由圖 4-3 可看出塗敷了 Fe₂O₃、MoO₃及 Cr₂O₃三種單一型助銲劑之試 片的 HAZ 有明顯變大之現象。

	Without Flux	ZnO	MgO	CaF ₂	MoS ₂	Fe ₂ O ₃	SiO ₂
銲道熔深 (mm)	1.20	1.70	1.63	1.20	1.87	1.46	1.38
銲道寛度 (mm)	6.6	5.6	5.9	4.7	6.6	8.1	5.3
熔深提升比例	-	42%	36%	0%	56%	22%	15%
銲道深寛比	0.18	0.30	0.27	0.25	0.28	0.18	0.26
深寬比 提升比例	-	67%	50%	39%	56%	0%	44%
	MnO ₂	MoO ₃	TiO ₂	Na ₂ CO ₃	NiO	MgCO ₃	Cr ₂ O ₃
銲道熔深 (mm)	1.46	1.63	E S 1.14	1.87	1.38	1.38	1.22
銲道寛度 (mm)	5.7	6.8	6.589	6 4.1	6.5	6.6	6.0
熔深提升比例	22%	36%	-5%	56%	15%	15%	1%
銲道深寛比	0.26	0.24	0.17	0.45	0.21	0.20	0.20
深寬比 提升比例	44%	33%	-6%	150%	17%	11%	11%

表 4-1 單一型助銲劑對銲道形態之影響

圖 4-3 塗敷單一型助銲劑之銲道剖面圖

圖 4-5 單一型助銲劑之銲道深寬比

4-2-2 混合型助銲劑對銲道熔深、寬度與深寬比之影響

根據表 4-1 的 13 種單一型助銲劑實驗所量測之熔深及深寬比,取其最 大值的前四種助銲劑,以(50%+50%)的比例來調配成六種混合型助銲劑,如 表 3-3 所示。塗敷混合型助銲劑之試片經由 Bead-on-plate 的 MIG 銲接後, 其銲道型態如表 4-2 及圖 4-6、圖 4-7、圖 4-8 所示,由圖 4-7、圖 4-8 可知 所使用的混合型助銲劑皆可改善銲道之熔深和深寬比。

由表4-2可得知改善銲道的熔深方面以ZnO+MgO的混合型助銲劑效果 最佳,熔深提升達60%;其次為MgO+MoS₂及MgO+Na₂CO₃的58%。改善 銲道的深寛方面以MoS₂+Na₂CO₃的混合型助銲劑效果最佳,深寬比提升達 110%;其次為MgO+Na₂CO₃(105%);ZnO+Na₂CO₃(83%)。

由圖 4-6 可得知當塗敷 MgO+Na₂CO₃ 混合型助銲劑時,雖然可增加銲 道熔深和深寬比,銲道卻會造成明顯的氣孔出現。研判其原因為章節 2-1-4 中所提到的氣孔會因為較大的熱輸入量和 Mg 含量增加而增加。

	Without flux	ZnO MgO	ZnO MoS ₂	ZnO Na ₂ CO ₃	MgO MoS ₂	MgO Na ₂ CO ₃	MoS ₂ Na ₂ CO ₃
銲道熔深 (mm)	1.2	1.92	1.64	1.4	1.9	1.9	1.56
銲道寛度 (mm)	6.58	7.1	5.9	4.2	7.7	5.1	4.11
熔深提升比 例	-	60%	37%	17%	58%	58%	30%
銲道深寛比	0.18	0.27	0.28	0.33	0.25	0.37	0.38
深寬比 提升比例	-	50%	56%	83%	39%	105%	110%

表 4-2 混合型助銲劑對銲道形態之影響

圖 4-6 塗敷混合型助銲劑之銲道剖面圖

Mixed component flux

圖 4-7 混合型助銲劑對銲道形狀之影響

4-3 助銲劑對銲道微硬度之影響

依照章節 3-9 之規範,來進行試片微硬度量測。由圖 4-9 的母材微硬度 分佈可知,母材的硬度分佈在 100~120 HV(Hardness Vickers)之間,平均硬 度約 110HV。圖 4-10 到圖 4-23 為未塗敷助銲劑與塗敷單一型助銲劑之試片 的微硬度分佈曲線圖。由圖 4-24、圖 4-25 可看出塗敷單一型助銲劑對 6061 試片之微硬度並無太大的影響,只對銲道和 HAZ 之寬度有所影響。

以圖 4-10 未塗敷助銲劑之微硬度分佈曲線為例子,由於銲道中熔填的 金屬為 Er4043 銲線,其原始的微硬度值最高約為 75HV,在銲接後硬度會 下降,銲道的微硬度會遠比銲道外的微硬度低。在熔融線旁(約 2.5mm 處) 因最接近銲道,所受的熱最高,其晶粒會因受高熱作用而凝聚成粗大的顆 粒,使機械性質變差;另外在熔融線外有一地區(約 5.5mm 處)硬度呈現下 降之現象,是因此處的析出物往晶粒中心聚集合併,使材料變為過時效狀 態,機械性質最差。

由圖 4-24 可得知銲後試片所測得之微硬度和母材硬度值比較,是明顯 下降的,針對此部份,由於 6061 鋁合金與 Er4043 填料皆為可熱處理之合 金,因此可運用銲後全程熱處理(固溶處理+人工時效)的方式改善[48]。

1896

圖 4-9 微硬度分佈曲線 - 未銲接之母材

4-4 助銲劑對銲接熱裂敏感性之影響

根據章節 3-5 的規範採用 SOB Test 來做銲接熱裂敏感性實驗,其中銲 接時間為 4 秒鐘, 銲接電流為 100 A, 外加應變量固定為 3 %, 一共塗敷 13 種單一型助銲劑,其實驗結果如圖 4-26 所示。

由圖 4-26 可得知,塗敷 ZnO、MoS₂、Fe₂O₃、SiO₂、MnO₂、MoO₃、TiO₂、 NiO、Cr₂O₃的助銲劑皆可使得裂縫總長度減少。CaF₂、Na₂CO₃則會造成實 驗失敗,研判其原因為此兩種助銲劑於此實驗中會使銲槍與銲件無法順利 導電而導致電弧不穩定。

其中值得注意的是,當塗敷了含有 Mg 元素的單一型助銲劑時,反而會 造成液化熱裂,使得裂縫總長度上升,其原因為在銲接時,產生高溫使得 晶界上低熔點之 Mg7Al12 共晶相熔解液化,形成液態薄膜,之後在凝固時 便極易產生裂縫,並沿著晶界發生破裂。在章節 2-1-4 中提到 Mg 元素含量 愈接近 3%時其熱裂敏感性愈高,因此解決此情況的方法為降低其含量或是 提高含量使其超過 3%。

圖 4-26 活性助銲劑添加對熱裂敏感性之影響

圖 4-26 活性助銲劑添加對熱裂敏感性之影響(續)

4-5 助銲劑對銲道顯微組織之影響

圖 4-27 為未銲接母材之金相觀察,由 500X 倍率金相圖可看到未銲接 前呈現塊狀組織且有些許黑色析出物,此黑色析出物為 Mg₂Si[49],一般來 說當 Mg₂Si 在合金中含量大於 0.6wt%之後便會有析出硬化之效果, 鋁合金 6061 為析出強化型合金,即是藉由適當的熱處理析出 Mg₂Si 來達到強化的 效果,但是愈多的 Mg₂Si 會造成耐腐蝕性下降,因此在強度與耐腐蝕性之 間的選取需要依照使用需求來衡量。另外由 1000X 倍率金相圖可看出 Mg₂Si 是沿著晶界析出。

圖 4-28 為未塗敷助銲劑與塗敷單一型助銲劑之試片顯微組織觀察。銲 道為 Er4043 填料合金,銲接後呈現樹枝狀組織其強度較低;熱影響區因受 熱呈現被拉長的柱狀組織且夾帶著些許的 Mg₂Si;經由圖 4-28 各組試片之 顯微組織比較後,可看出未塗敷助銲劑與塗敷單一型助銲劑之金相結構皆 大致相同,可證實塗敷助銲劑並不會改變其顯微組織。

圖 4-27 未銲接之母材試片金相觀察

圖 4-28 塗敷單一型助銲劑之試片金相觀察

圖 4-28 塗敷單一型助銲劑之試片金相觀察(續)

圖 4-28 塗敷單一型助銲劑之試片金相觀察(續)

圖 4-28 塗敷單一型助銲劑之試片金相觀察(續)

4-6 應用田口方法最佳化銲接參數

4-6-1 田口實驗參數對銲道型態之影響

根據章節 3-11 之田口直交表和參數配置來進行田方最佳化實驗,採用 FB-MIG 對接, 銲後試片取樣位置如圖 4-29 所示,圖 4-30 則為田口實驗各 組試片之銲道形態,可看出有塗敷助銲劑之試片銲道熔深較未塗敷助銲劑 之試片深。表 4-3 則為田口實驗試片不同取樣位置之銲道深寬比、熔深、寬 度及熔融面積。

圖 4-29 銲接試片取樣位置示意圖

組別	Without flux	A 黑h	B 點
1-1			
1-2			
2-1		F	
2-2	P		
3-1		E	
3-2			
4-1			
4-2			
5-1		H	R
5-2			
6-1			

圖 4-30 田口實驗試片之銲道剖面圖

圖 4-30 田口實驗試片之銲道剖面圖(續)

		Witho	ut flux			A	晤			В	旧	
	D/W	D	W	A	D/W	D	W	A	D/W	D	W	A
		mm	mm	mm ²		mm	mm	mm ²		mm	mm	mm ²
1-1	0.65	4.76	7.30	14.37	0.69	5.24	7.62	16.84	0.74	5.58	7.58	16.68
1-2	0.70	5.01	7.15	15.82	0.71	5.44	7.64	16.75	0.76	5.50	7.28	17.52
2-1	0.54	3.33	6.22	8.69	0.56	3.71	6.39	10.85	0.61	3.57	5.86	10.21
2-2	0.49	3.20	6.49	10.04	0.61	3.76	6.14	10.30	0.61	3.78	6.22	10.40
3-1	0.67	3.93	5.90	10.59	0.67	4.10	6.16	10.95	0.57	3.90	6.90	11.70
3-2	0.57	3.05	5.39	9.10	0.63	3.89	6.22	11.21	0.85	4.65	5.50	12.85
4-1	0.62	4.38	7.03	13.83	0.69	5.12	7.39	15.16	0.63	4.93	7.86	15.73
4-2	0.76	4.78	6.30	13.83	0.76	5.43	7.11	16.94	0.73	5.16	7.09	17.29
5-1	0.65	3.46	5.35	10.43	0.67	3.99 8	5.99	11.08	0.55	3.52	6.37	11.62
5-2	0.61	2.87	4.69	8.79	0.53	3.47	6.56	12.00	0.63	3.74	5.94	11.79
6-1	0.45	2.78	6.12	7.02	0.69	3.95	5.73	10.38	0.75	4.53	6.07	11.72
6-2	0.56	3.23	5.79	9.55	0.75	4.42	5.88	11.99	0.81	4.12	5.10	11.07
7-1	0.43	3.84	8.60	14.58	0.49	4.10	8.37	15.16	0.48	4.42	9.15	16.38
7-2	0.51	3.54	6.90	10.67	0.62	3.97	6.46	11.77	0.63	3.95	6.24	11.59
8-1	0.78	4.87	6.24	12.10	0.80	5.18	6.50	12.95	0.84	5.37	6.37	13.62
8-2	0.66	4.20	6.37	11.67	0.68	4.78	7.03	13.50	0.71	4.78	6.73	12.84
9-1	0.58	2.99	5.12	8.19	0.61	3.34	5.48	9.26	0.61	3.33	5.44	9.61
9-2	0.82	3.82	4.69	9.09	0.71	3.93	5.56	10.80	0.76	4.10	5.42	9.90

表 4-3 田口實驗試片不同取樣位置之銲道深寬比、熔深及寬度與熔融面積

4-6-2 田口實驗 SN 比之計算與結果分析

將表 4-3 之各項數據之深寬比、熔深、熔融面積分別代入方程式(2-3) 之望大品質特性 SN 比計算公式,分別得到各組之 SN 比,如表 4-4、表 4-6、 表 4-8 所示。並將這三個表格的 SN 比與 L₉(4³)直交表比較後,可得出各因 子水準之平均 SN 比,如表 4-5、表 4-7、表 4-9 所示,由表中之 Delta 值可 得知,對深寬比影響最大之因子為氫氣流量,對熔深影響最大之因子為氫 氣流量,對熔融面積影響最大之因子為銲接走速。

將各因子水準之平均 SN 比繪製成因子效果圖,如圖 4-31、圖 4-32、 圖 4-33 所示,由於是以望大品質特性為基準,可由此得知銲接製程在針對 各項品質特性之最佳參數為何。最佳深寬比之預測參數為 A₂B₃C₁D₃;最佳 熔深之預測參數為 A₁B₁C₁D₃;最佳熔融面積之預測參數為 A₂B₁C₁D₃;

實驗		試片一			試片二		Average	S/N
組別	Without	A E	BE	Without	AE	B 區		
	flux	D/W	D/W	flux	D/W	D/W		
	D/W			D/W				
1	0.653	0.687	0.736	0.701	0.713	0.756	0.708	-2.834
2	0.535	0.580	0.610	0.493	0.612	0.608	0.573	-4.406
3	0.667	0.666	0.565	0.565	0.626	0.846	0.656	-3.681
4	0.623	0.693	0.627	0.759	0.763	0.728	0.699	-3.131
5	0.647	0.666	0.552	0.613	0.529	0.630	0.606	-4.634
6	0.454	0.690	0.748	0.559	0.752	0.808	0.668	-2.547
7	0.446	0.490	0.483	0.512	0.615	0.633	0.530	-5.310
8	0.781	0.797	0.843	0.659	0.680	0.711	0.745	-2.508
9	0.583	0.610	0.611	0.815	0.707	0.756	0.680	-3.574

表 4-4 田口實驗銲道深寬比之 S/N 比

	A	В	C	D
	電壓	銲槍走速	氫氣流量	助銲劑混合比例
Level 1	-3.641	-3.758	-2.630	-3.681
Level 2	-3.437	-3.849	-3.704	-4.088
Level 3	-3.797	-3.267	-4.542	-3.107
Delta (Max-Min)	0.36	0.58	1.91	0.98

表 4-5 銲道深寛比之各因子水準的平均 SN 比

單位:db

表 4-6 田口實驗銲道熔深之 S/N 比

實驗		試片一			試片二			S/N
組別	Without	AE	BE	Without	A E	B 區		
	flux	D	D	flux	D	D		
	D			D				
11	4.764	5.236	5.577	5.009	5.444	5.501	5.255	14.704
2	3.327	3.705	3.573	3.195	3.762	3.781	3.557	11.370
3	3.932	4.102	3.899	3.044	3.894	4.650	3.920	12.266
4	4.384	5.123	4.934	4.783	5.425	5.161	4.968	14.239
5	3.460	3.989	3.516	2.873	3.473	3.740	3.509	11.276
6	2.779	3.951	4.537	3.233	4.423	4.122	3.841	12.545
7	3.837	4.102	4.423	3.535	3.970	3.951	3.970	12.254
8	4.869	5.180	5.369	4.197	4.783	4.783	4.864	13.996
9	2.987	3.346	3.327	3.819	3.932	4.102	3.586	11.195

	A 電壓	B 銲槍走速	C 氫氣流量	D 助銲劑混合比例
Level 1	12.780	13.732	13.748	12.392
Level 2	12.687	12.214	12.268	12.056
Level 3	12.482	12.002	11.932	13.500
Delta (Max-Min)	0.30	1.73	1.82	1.44

表 4-7 銲道熔深之各因子水準的平均 SN 比

單位:db

表 4-8 田口實驗銲道熔融面積之 S/N 比

實驗		試片一			試片二		Average	S/N
組別	Without	A E	B 區	Without	A E	B 區		
	flux	area	area	flux	area	area		
	area			area				
1	14.365	16.844	16.681	15.818	16.747	17.519	16.948	24.577
2	8.694	10.852	10.208	10.039	10.301	10.398	10.440	20.367
3	10.594	10.947	11.700	9.101	11.212	12.850	11.677	21.299
4	13.831	15.156	15.732	13.831	16.942	17.292	16.281	24.196
5	10.426	11.075	11.617	8.790	12.003	11.788	11.621	21.293
6	7.024	10.383	11.718	9.546	11.986	11.067	11.289	21.012
7	14.573	15.160	16.383	10.667	11.769	11.587	13.725	22.452
8	12.099	12.953	13.624	11.674	13.499	12.842	13.230	22.422
9	8.186	9.261	9.614	9.093	10.801	9.901	9.894	19.866

	Α	В	С	D
	電壓	銲槍走速	氫氣流量	助銲劑混合比例
Level 1	22.081	23.742	22.671	21.912
Level 2	22.167	21.361	21.476	21.277
Level 3	21.580	20.726	21.681	22.639
Delta (Max-Min)	0.59	3.02	1.19	1.36

表 4-9 熔融面積之各因子水準的平均 SN 比

單位:db

4-6-3 確認實驗

確認實驗為田口實驗的最後一個步驟,其目的是確認我們所選擇之最 佳參數是否具有再現性,並驗證先前田口實驗的資料所分析出的最佳參數 是否正確。

一般銲接上,想藉由銲道形態來確認銲接品質時,通常會觀察其熔深、 深寬比及熔融面積是否良好,而考量到田口實驗一次只能考慮到一種品質 特性,因此應用了章節 2-6 提到的灰關聯分析來整合章節 4-6-2 所計算出的 三種 SN 比的品質特性,藉此得到同時考量三種品質特性後的最佳參數。其 整合的結果如表 4-10、表 4-11、圖 4-34 所示。 由表 4-11 所得到的結果可知在電壓因子中 A₁和 A₂皆為預測的最佳參 數,因此最後的確認實驗將同時使用 A₁B₁C₁D₃、A₂B₁C₁D₃兩組參數,再經 由確認實驗結果分析來評斷何組參數為最佳參數。確認實驗參數配置如表 4-12 所示,皆銲 4 片試片,取其平均值,以減少實驗誤差。

深寛比		• D/W	熔深	, D	熔融面	積,A	
	SNR 值	係數 (DWR)	SNR 值	係數 (Depth)	SNR 值	係數 (Area)	灰關聯度
1	0.883	0.8109	1.000	1.0000	1.000	1.0000	0.937
2	0.323	0.4247	0.050	0.3448	0.106	0.3587	0.376
3	0.581	0.5442	0.305	0.4184	0.304	0.4181	0.460
4	0.778	0.6921	0.868	0.7907	0.919	0.8606	0.781
5	0.241	0.3972	0.023	0.3386	0.303	0.4177	0.384
6	0.986	0.9726	0.385	0.4483	0.243	0.3979	0.606
7	0.000	0.3333	0.302	80.4173	0.549	0.5257	0.425
8	1.000	1.0000	0.798	0.7125	0.543	0.5222	0.745
9	0.619	0.5678	0.000	0.3333	0.000	0.3333	0.411

表 4-10 實驗數據正規化處理

表 4-11 多重品質特性之各因子水準的平均灰關聯度

	Α	В	С	D
	電壓	銲槍走速	氫氣流量	助銲劑混合比例
Level 1	0.591	0.715	0.763	0.578
Level 2	0.591	0.502	0.523	0.469
Level 3	0.527	0.493	0.423	0.662
Delta (Max-Min)	0.06	0.22	0.34	0.19

表 4-12 確認實驗參數配置

	A 電壓 (V)	B 銲槍走速 (mm/min)	C 氩氣流量 (L/min)	D 助銲劑 混合比例 MgO:ZnO (wt%)	銲接試片 組數				
$A_1B_1C_1D_3$	21	420	10	75%+25%	4				
$A_2B_1C_1D_3$	22	420	10	75%+25%	4				

4-6-4 變異數分析(ANOVA)與實驗再現性

表 4-13 為實驗之變異數分析表。使用變異數分析,可以令不同因子間 之相對效果有更客觀的判斷[41]。為了避免過度的估計因子效果,田口博士 建議只用影響效果較強的因子作為計算,將較小的平方和合併,以估計誤 差變異數,因此將平方和較小之 A 因子(電壓)合併到誤差項。

貢獻度可以用來指出一因子降低變異之相對能力。由圖 4-35 之貢獻百 分比可知 C 因子(氫氣流量)影響最大,其次為 B 因子(銲接速度),再其次 為 D 因子(助銲劑之混合比例)。

因子	平方和	自由度	均方	F值	淨平方和	貢獻度%
Factor	SS	DOF	MS	F	Pure sum	Percent
					of squares	contribution
Α	0.008	2	-	-	-	-
В	0.095	2	0.047	11.693	0.086	25.33%
С	0.183	2	0.091	22.583	0.174	51.13%
D	0.056	2	0.028	6.936	0.048	14.06%
誤差	0	0	-	-	-	-
Error						
合併誤差	0.008	2	0.004		0.032	9.48%
Pool						
Error						
總和				44.		100.00%

表 4-13 變異數分析表(ANOVA table)

藉由計算確認實驗之 SN 比是否落在最佳參數之 SN 預測值(SN_{pre.})的 95%信賴區間範圍內,可用來表示所做之確認實驗結果是否成功。而 SN 預 測值(SN_{pre.})之計算方式如下:

$$SN_{pre} = \tilde{\eta} + a_i + b_j + c_k + d_d + e$$

95% 信賴區間 CI 值之計算則如式 2-6 所示

$$CI = \sqrt{F_{\alpha;1,\nu_2} \times V_e \times \left(\frac{1}{n_{eff}} + \frac{1}{r}\right)}$$

其計算出來之 SN 預測值(SNpre.)的 95% 信賴區間範圍如表 4-14 所示。

	SN 預測值(SN _{Pre.)}	95%信賴區間(CI)		
熔深	15.68	<u>+</u> 1.152		
熔寛	17.827	±1.088		
深寬比	-2.328	±1.363		
熔融面積	25.166	<u>±2.394</u>		

1896

表 4-14 最佳參數 SN 比的 95% 信賴區間範圍預測

4-6-5 確認實驗結果分析

確認實驗銲道形態分析

圖 4-36 為確認實驗試片之銲道形態,表 4-15 為確認實驗試片各取樣位 置之銲道深宽比、熔深、宽度及熔融面積,由銲道形態可看出有塗敷助銲 劑之試片銲道熔深較未塗敷助銲劑之試片深。而由表 4-16 之確認實驗的 SN 比皆落在 SN 比預測值的 95%信賴區間之範圍內,可證實確認實驗所選取的 最佳銲接參數是很恰當的,且再現性良好。並且由表 4-16 可比較出其最佳 銲接參數應為 A₂B₁C₁D₃(銲接電壓: 21V、銲槍走速: 420mm/min、氫氣流 量: 10L/min、混合助銲劑(75%MgO+25%ZnO)。

塗敷了混合型助銲劑之後可使深寬比增加 8.44%、熔深增加 15.59%以 及熔融面積增加 18.74%。與未塗敷助劑且未田口最佳化試片之銲道平均熔 深 4.15(mm)相比,熔深提升了 49%。

A ₁ B ₁ C ₁ D ₃ 確認實驗							
試片編號	Without flux	А	В				
	Y						
四							
$A_2B_1C_1D_3$ 確認	8實驗	SAE					
	Without flux	A	В				
	No.						
=							
рц							

圖 4-36 確認實驗試片之銲道剖面圖

$A_1B_1C_1D_3$ 確認實驗												
試	without flux			Α			В					
片編號	熔深	熔宽	深宽比	熔融面積	熔深	熔宽	深宽 比	熔融面積	熔深	熔宽	深宽 比	熔融面積
-	4.58	6.70	0.68	16.92	5.46	7.33	0.75	18.85	5.51	7.58	0.73	17.38
-1	5.01	7.43	0.68	17.88	5.34	8.49	0.63	19.97	5.55	8.20	0.68	20.26
티	4.75	7.09	0.67	16.61	5.84	7.71	0.76	19.01	5.41	7.60	0.71	17.14
四	5.00	8.37	0.60	19.41	5.81	8.51	0.68	20.20	6.33	8.53	0.74	21.75
A ₂ B ₁ C ₁ D ₃ 確認實驗												
A_2B_1	C_1D_3	確認實	驗	I		ES	A					
A ₂ B ₁ 試	$C_1 D_3 \lambda$	確認實 withou	È驗 It flux	×		ES	A	8]	B	
A ₂ B ₁ 試 片	$\mathbf{C}_{1}\mathbf{D}_{3}$	確認實 withou	[*] 驗 nt flux 深宽	~ 一 本		ES 18	A 深宽	客記録]	B 深宽	熔融
A ₂ B ₁ 試 片 編 號	C1D3 A	確認實 withou 熔宽	È驗 It flux 深宽 比	熔融積	熔深	ES 18 熔宽	A 深宽 比	熔面積	熔深	熔宽	B 深宽 比	熔融面積
A ₂ B ₁ 試 片 編 號	C1D3A 熔深 5.71	確認實 withou 熔宽	▲ 験 It flux 深宽 比	熔融 面積 17.76	熔深 6.48	ES 18 熔宽 8.12	A 深宽 比 0.80	熔融 面積 22.63	熔深 6.60	」 熔宽 7.79	B 深宽 比	熔融 面積 23.70
A ₂ B ₁ 試 片 編 號 一	C ₁ D ₃ A 熔深 5.71 4.80	確認實 withou 熔宽 7.11 7.83	★ 驗 it flux 深宽 比 0.80 0.61	× 降融 面積 17.76 18.35	熔深 6.48 5.93	ES 18 熔宽 8.12 7.79	A 深宽 比 0.80 0.76	熔融 面積 22.63 20.53	熔深 6.60 5.66	熔宽 7.79 8.54	B 深宽 比 0.85 0.66	熔融 面積 23.70 20.18
A ₂ B ₁ 試片編號一二三	C ₁ D ₃ A 熔深 5.71 4.80 5.75	確認實 withou 熔宽 7.11 7.83 8.22	★ 驗 It flux 深宽 比 0.80 0.61 0.70	塔融 面積 17.76 18.35 20.32	熔深 6.48 5.93 6.49	ES 18 熔宽 8.12 7.79 8.39	A 深宽 比 0.80 0.76 0.77	熔融 面積 22.63 20.53 25.04	熔深 6.60 5.66 6.5	」 熔宽 7.79 8.54 8.70	B 深宽 比 0.85 0.66 0.75	熔融 面積 23.70 20.18 22.24

表 4-15 確認實驗試片之銲道深宽比、熔深及宽度與熔融面積

$A_1B_1C_1D_3$ 確認實驗								
	Without flux				With flux			
熔深	熔宽	深宽比	熔融面積	熔深	熔宽	深宽比	熔融面積	
4.84	7.40	0.66	17.71	5.66	7.99	0.71	19.32	
與 wi	與 without flux 比較提升之百分比				8.03%	7.83%	9.12%	
	:	S/N		15.02	18.01	-3.03	25.65	
$A_2B_1C_1I$	〕 3確認實	驗						
	With	out flux		With flux				
熔深	熔宽	深宽比	熔融面積	熔深	熔宽	深宽比	熔融面積	
5.35	7.73	0.69	19.07	6.18	8.21	0.75	22.65	
與 wi	thout flux	比較提升之	百分比	15.59% 896	6.23%	8.44%	18.74%	
	S	5/N		15.76	18.27	-2.52	27.03	

表 4-16 確認實驗之塗敷助銲劑與未塗敷助銲劑之銲道形態比較

確認實驗機械性質分析

由圖 4-37 確認實驗試片之平均硬度值可觀察出四種參數的試片其平均 硬度非常接近,可證實塗敷助銲劑和應用田口方法並不會降低其微硬度。 銲後試片微硬度與未銲接母材試片平均硬度 110HV 相比,整體強度約降低 30%,可經由銲後全程熱處理(固溶處理+人工時效)的方式改善[48]。

圖 4-38 為確認實驗試片之顯微組織拍攝位置示意圖,圖 4-39 為金相拍 攝結果,可由此觀察到試片之銲道皆呈現樹枝狀組織其機械性質較差;銲 道邊緣受熱高使晶粒粗大,因此機械性質最差;熱影響區受熱較少呈現拉 長的柱狀組織夾帶一些黑色析出物(Mg₂Si),此析出物可使硬度增加;母材 為較細小的柱狀組織且黑色析出物更多,因此機械性質較好;而由於 6061 鋁合金為析出強化型合金,因此可藉由熱處理,令更多的 Mg₂Si 析出,使 其強度改善。

圖 4-38 金相拍攝位置示意圖

圖 4-39 確認實驗試片金相(500X)

圖 4-39 確認實驗試片金相(500X)

由表 4-17 可得知田口最佳化之試片的抗拉強度較未田口最佳化之試片高,由此證實田口最佳化之試片銲接品質較佳。另外經由塗敷助銲劑與未 塗敷助銲劑之最大抗拉強度無太大差異,可證實塗敷助銲劑並不會降低其 機械性質。由圖 4-40 可發現拉伸試片斷裂位置皆在銲道上,這是因為 Er4043 強度較鋁合金 6061 低之緣故。針對銲接後抗拉強度大幅下降之情況,可經 由銲後全程熱處理(固溶處理+人工時效)的方式改善,使其強度回復到原始 母材強度的 80%[48]。

試片狀態	斷裂位置	最大抗拉強度	延伸率(%)
		(MPa)	
初始條件	但话。是法	72.20	5 1 2
Without flux	轩垣透隊	12.39	3.12
初始條件	但治息终	CD79 44	1.6
MgO	計理逐隊	18.44	4.0
初始條件	但话。爆烧	91.06	2.45
ZnO	计坦逐称	18950	5.45
初始條件	但沽源绘	78.00	1 37
50%+50%	計坦 透隊	78.00	4.57
$A_1B_1C_1D_3$	纪治山山	102.81	2.8
Without flux	計進十六	105.81	5.8
$A_1B_1C_1D_3$	纪治山山	110.72	2 5 2
With flux	ゴ 近 1 六	110.72	5.52
$A_2B_1C_1D_3$	程首山山	102 13	2 5 2
Without flux	11日17	102.13	5.55
$A_2B_1C_1D_3$	程道中山	110.63	3.6
With flux	叶坦 丁六	110.03	5.0

表 4-17 試片斷裂位置、最大抗拉強度及延伸率

圖 4-41 至圖 4-46 為在 100 與 500 倍率的 SEM 下觀察各拉伸試片破斷 面,由圖 4-41(b)至圖 4-46(b)可看出所有試片破斷面型態主要呈現脆性破壞, 少部份地方有延性破裂的韌窩狀組織(dimples)。由圖 4-41(a)、圖 4-42(a)可 看出初始條件之試片有明顯的氣孔分佈,圖 4-43(a)、圖 4-44(a)、圖 4-45(a)、 圖 4-46(a)田口最佳化之試片則較少氣孔分佈,由章節 2-1-4 氣孔對機械性質 之影響可得知此為造成初始條件之試片抗拉強度較低之原因。

圖 4-41 初始條件拉伸試片破斷面(Without flux)

圖 4-42 初始條件拉伸試片破斷面(50%+50%)

圖 4-44 $A_1B_1C_1D_3$ 參數拉伸試片破斷面(With flux)

圖 4-46 $A_2B_1C_1D_3$ 參數拉伸試片破斷面(With flux)

第五章 結論

本研究的目的主要在探討活性助銲劑對 6061 鋁合金銲道熔深能力之影響,以單一與混合型活性助銲劑,進行一系列之實驗來探討活性助銲劑對 銲道形態、銲道微觀組織及銲道機械性質之影響;並利用灰關聯分析與田 口方法最佳化製程參數,改善銲接品質。根據第四章的初步實驗結果與討 論,可獲得以下之結論:

- (1) 當添加單一型活性助銲劑 MoS₂、Na₂CO₃、ZnO、MgO 時,可有效改善 善銲道熔深,其中以 MoS₂、Na₂CO₃兩種活性助銲劑能提升銲道熔深達 56%最為顯著,其次為 ZnO (42%); MgO、MoO₃ (36%)。並且在銲道 深寬比也有效提升 50%~150%,其中以活性助銲劑 Na₂CO₃能提升銲道 深寬比 150%最為顯著,其次為 ZnO (67%); MoS₂(56%); MgO (50%)。
- (2) 當添加混合型活性助銲劑 ZnO+MgO、MgO+Na₂CO₃時,可有效改善銲 道熔深,其中以活性助銲劑 ZnO+MgO 能提升銲道熔深達 60%最為顯 著,其次為 MgO+Na₂CO₃ (58%)。並且在銲道深寬比也有效提升 50%~105%,其中以活性助銲劑 MgO+Na₂CO₃ 能提升銲道深寬比(105%) 最為顯著,其次為 ZnO+MgO (50%)。
- (3) 由微硬度實驗可得知當添加活性助銲劑後,只對熱影響區的大小有所 改變,對於 6061 鋁合金的微硬度並無顯著的改變。
- (4) 由熱裂敏感性實驗可得知當添加單一型活性助銲劑ZnO、MoS₂、Fe₂O₃、
 SiO₂、MnO₂、MoO₃、TiO₂、NiO、Cr₂O₃的助銲劑可有效降低 6061 鋁合金的熱裂敏感性。
- (5) 由金相實驗可得知當添加活性助銲劑後,對於 6061 鋁合金的顯微組織 並無顯著的改變。
- (6) 由田口最佳化實驗結果可得知在6061 鋁合金使用 Flux bounded-MIG對 接時,對深宽比影響最大之因子為氫氣流量,對熔深影響最大之因子

為氫氣流量,對熔融面積影響最大之因子為銲接走速。

- (7) 由田口方法結合灰關聯分析之確認實驗結果可得知塗敷助銲劑可以使 得深寬比增加 8.44%、熔深增加 15.59%以及熔融面積增加 18.74%。
- (8)應用田口方法結合灰關聯分析最佳化銲接製程參數,可大幅提升銲道 熔深,相較於未田口最佳化且未塗敷助銲劑之對照組,其銲道熔深提 升49%。
- (9) 由拉伸實驗結果可得知,田口最佳化之試片抗拉強度較初始條件之試 片抗拉強度高約 30MPa,是由於田口最佳化可使得銲道熔深、熔融面 積增加,且氣孔減少,改善銲接品質。

根據研究過程之發現與研究結果,未來後續研究可往以下方向進行:

- (1)應用田口結合灰關聯分析配合 Flux bounded-MIG 對接時,在適當的電 弧長度和送線速度下,可再改善銲道熔深與熔融面積,故可將電弧長 度和送線速度列入最佳化的控制因子中,以期達到最佳銲道形態。
- (2)由於本研究是為了應用在車體銲接上,其機械性質也是需要考慮的一 大重點,因此可在銲接後進行熱處理研究,以期能在最佳銲道形態下, 也能令機械性質有所改善。
- (3)由於本研究是為了改善車體銲接之難度,在車體銲接時極可能有需要 與異種金屬對接,因此可以研究6061 鋁合金與異種金屬對接之可能性, 以因應需要,例如:鋁合金鍛件與鑄件、鋁合金與鎂合金。

第六章 參考文獻

[1]中國節能產品網 http://www.ok909.com.

[2]劉文海,"鋁合金車體及底盤之發展動向",機械工程月刊,2006.08

[3]朱健松、劉育廷,"銲接參數對氣體金屬電弧銲接特性之研究",農業機 械學刊,14卷3期,2005,pp.11-29.

[4] H.Y. Huang and C.P. Chou, "A Study on the TIG-Flux Processing technology of Stainless Steel", National Chiao Tung University, Ph.D., 2005.

[5] J.E. Hatch, "Aluminum Properties and Physical Metallurgy", ASM MetalsPark, Ohio, 1984.

[6] Kaiser, "Welding Kaiser Aluminum " 1st Ed., Kaiser Aluminum & Chemical Scales, Inc., 1984.

[7] Cary,H.B, Modern welding technology.3 rd Ed. Englewood Cliff,New Jersey,Prentice-Hall Inc, 1994.

[8] 劉信男, "TIG 銲接實務與電阻點銲技術", 全華, 台北, 1991

[9]J.A.Pender.Welding.3rd Ed., New York:McGraw-Hill Ryerson Ltd.,pp.180-191, 1986.

[10] R.P. Meister, D.C. Martin, "Welding of Aluminum and Aluminum Alloys", Deffense Metals Information Center, pp1-27, 1967, April.

[11] J.H. Deletian, W.E.Wood, "Welding". Research. Council Bulletin. ,1983,290, pp1-18.

[12] J.F.Rudy, E.J.Rupert, "Effects of Porosity on Mechanical Properties of Aluminum Welds", Welding Journal, pp322-336, 1970, July.

[13] R.J.Shore, R.B.Mccauley, "Effects of Porosity on High Strength Aluminum 7039", Welding Journal, pp311-321, 1970, July.

[14] Sindo Kou, "Welding Metallurgy", pp72-74.

[15] R.A.Chihoski, "Variation in Aluminum Spot Welds", Welding Journal, 1970

December, pp567-578.

[16] A.R.E.Singer, P.H.Jennings, INSTITUTE Metals Journal, pp197-212, 1947.

[17] W.I.Pumphrey, J.V.Lyons, Institute Metals journal, pp439-455, 1948.

[18] J.D.Dowd, "Weld Cracking of Aluminum Alloys", Welding Journal, pp448-456, 1989.

[19] A.K.Vasudevan, R.D.Doherty, "Aluminum Aloys-Contemporary Research and Applications", Acadmic press, Inc, pp4-104, pp171-187, 1989.

[20] J.Koziarski, "Some consideration on Weldability of Aluminum Alloys" Welding Journal, pp970-986, 1953, October.

[21]N.F.Gittos, M.H.Scott, "Heat-Affected Zone Cracking of Al-Mg-Si Alloys", Welding Journal, pp95-103, 1981, June.

[22] 周長彬、蔡丕樁、郭央諶,"銲接學",初版,全華科技圖書,臺北,2001

[23] 孟繼洛,"機械材料",曉園出版社,pp.201,pp.205-7,pp.211,pp.214, 1990。 1896

[24] C.D. Lundin, W.T. Delong, and D.F. Spond, "Ferrite Fissuring Relationship in Austenitic Stainless Steel Weld Metals", Weld. J., 241S-246S, 54(1975)(8)

[25] William L. Burch "The Effect of the Welding speed on Strength of 6061-T4 Aluminum Joint", pp361s-367s, 1958, August.

[26] J.J. Lowke, M. Tanaka, and M. Ushio, "Mechanisms giving increased weld depth due to a flux", Journal of Physics D: Applied Physics, 38(18), pp. 3438-3445, 2005.

[27] C.R. Heiple and J.R. Roper, "Mechanism for Minor Element Effect on GTA Fusion Zone Geometry", Welding Journal (Miami, Fla), 61(4), pp. 97-s - 102-s, 1982.

[28] S.Kou,"Welding Metallurgy",2nd ed,John Wiley & Sons,2003.

[29] A.G. Simonik, "Effect of Contraction of the Arc Discharge Upon the Introduction of Electro-Negative Elements", Welding Production (English translation of Svarochnoe Proizvodstvo), 23(3), pp. 68-71, 1976.

[30] S. Sire, G. Ruckert, and S. Marya,"Flux Optimisation for Enhanced Weld Penetration in ALUMINIUM Contribution to FBTIG Process", pp.207-217,Copenhagen, Denmark, Institut International de la Soudure,2002.

[31]C.D. Lundin, W.T. Delong, and D.F. Spond, "Ferrite Fissuring Relationship in Austenitic Stainless Stell Weld Metals", Weld. J., 241s-246s, 54(1975)(8).

[32]N. Suutala, T. Takalo, and T. Moisio, Metall. Trans., 11A(5), 717-725, 1980.

[33] N. Suutala, Metall. Trans., 14A(2), 191-197, 1983.

[34] J.A. Brooks, J.C. Williams, and A.W. Thompson, Metall. Trans., 14A(1), 23-31, 1983.

[35] J.A. Brooks, J.C. Williams, and A.W. Thompson, Metall. Trans.,

14A(7), 1271-1281, 1983.

[36] 張復萌,"熱處理對鋁合金銲接熱影響區之研究",國立台灣師範 大學工業教育研究所碩士論文,1992。

[37] I.J. Polmear, "Metallurgy of the Light Metals", Edward Arnold, 1981.

[38] J.F. Lancaster, "Metallurgy of Welding", 6th ed, George Allen & Unwin, May 1999.

[39] P.J. Modensi, "TIG welding with single-component fluxes", Journal of Materials Processing Technology,9(9),260-265, 2000.

[40] B.J. Keene, K.C. Mills, R.F. Brooks, Mater. Sci. Tech., 1(1085), 568.

[41]蘇朝墩,"品質工程",第六版,中華民國品質學會,台北,2009[42] 張偉哲," 灰關聯模型方法與應用",高立圖書,台北,2000

[43]洪維宗,"灰色關聯分析於整合田口方法多重品質特性最佳化-在食品工 業製程實證",東海大學食品科學研究所碩士論文,2002。

[44]黃得誌,"結合灰關聯分析法與田口法於多目標數控車削參數最佳化研究",大同大學機械工程研究所碩士論文,2007。

[45]陳俊智,"以行動電話為例探討灰色田口方法於產品美感品質最佳化設計之研究",設計學報,2005。

[46]陳宏佳,"應用主成份田口法與灰關聯分析進行多重品質特性之最佳參 數設計—以壓鑄品製程為例",國立高雄大學亞太工商管理學系碩士班, 2009。

[47] G. Rückert, B. Huneau, and S. Marya, "Optimizing the Design of Silica Coating for Productivity Gains During the TIG Welding of 304L Stainless Steel", Materials & Design, 28(9), pp. 2387-2393, 2007.

[48]陳添源, "鋁合金鑄件對鍛件的銲接性研究", 國立交通大學機械研究所 碩士論文, 1995。

[49]John E. Hatch, "Aluminum Properties and Physical Metallurgy", ASM, pp137-199, pp242-319, 1988.