

國 立 交 通 大 學

資訊工程學系

碩 士 論 文

應用在ARM/Thumb雙指令集處理器的
嵌入式混合模式爪哇虛擬機器之設計與實作

Design and Implementation of Embedded Mixed-Mode JVM for

ARM/Thumb Dual Instruction Set Processor

研 究 生：黃健豪

指導教授：單智君 博士

中 華 民 國 九 十 三 年 六 月

應用在 ARM/Thumb雙指令集處理器的
嵌入式混合模式爪哇虛擬機器之設計與實作

Design and Implementation of Embedded Mixed-Mode JVM for

ARM/Thumb Dual Instruction Set Processor

研 究 生：黃健豪 Student：Jiann-Haur Huang

指導教授：單智君 博士 Advisor：Dr. Jean Jyh-Jiun Shann

國 立 交 通 大 學
資 訊 工 程 學 系
碩 士 論 文

A Thesis

Submitted to Department of

Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

i

應用在ARM/Thumb雙指令集處理器的
嵌入式混合模式爪哇虛擬機器之

設計與實作

學生: 黃健豪 指導教授: 單智君 博士

國立交通大學資訊工程學系碩士班

摘要

用在桌上型電腦環境的爪哇虛擬機器，由於需要快速的執行效能，通常會採用
即時編譯器作為執行的引擎。而隨著手機和個人數位助理(PDA)等智慧型行動裝置
愈來愈普及，其應用的需求也逐漸朝向高效能來發展。有鑑於此一趨勢，研究如何
在這種嵌入式環境中提昇爪哇虛擬機器的效能，便成了一個有趣的議題。在本研究
中，有別於一般採用全功能即時編譯器的方式，我們設計並且實作了一個輕量級的
即時編譯器，其架構在以直譯器為基礎的嵌入式爪哇虛擬機器上，而整個虛擬機器
是以混合執行的方式在運作。透過此種設計方式，可以將即時編譯器所必須額外付
出的程式空間減到最小。

除了在即時編譯過程中運用多項加速技巧以外，我們的嵌入式爪哇虛擬機器也
利用到了一項硬體架構所提供的特色─雙指令集。大多數的嵌入式處理器都有提供
此功能，主要是為了在執行效能與程式空間之間達到一個平衡點。藉由設定不同的
組態並作實驗評估，我們發現採用 ARM 直譯器並搭配標的為 Thumb 的即時編譯器，
在同時考量效能和程式空間之下，可以達到比較好的效果。整體而言，我們的虛擬
機器和單純 ARM 直譯器的虛擬機器作比較，效能是它的 2.08 倍，且只需額外付出
10.18%的程式空間；而和單純Thumb直譯器的虛擬機器相比，效能是它的3.21倍，
且只需額外付出27.41%的程式空間。

ii

Design and Implementation of
Embedded Mixed-Mode JVM for

ARM/Thumb Dual Instruction Set Processor

Student: Jiann-Haur Huang Advisor: Dr. Jean, J.J. Shann

Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Demands for faster execution speed promote the employment of the JIT compiler as
the execution engine of the desktop JVM. With the popularization of intelligent mobile
devices such as cellular phones and PDAs, application demands also drive for faster
execution speed. Therefore, an interesting research topic is to improve the embedded JVM
performance. Instead of incorporating a full-fledged JIT compiler in embedded JVM, we
design and implement a lightweight JIT compiler which is built upon and mixed-mode
executed with an interpreter-based embedded JVM in this research. Code size expansion
for incorporating a JIT compiler is minimized in this way.

In addition to employing several optimization techniques during JIT compilation, our
embedded JVM also facilitate the "dual instruction set", an architectural feature that most
embedded processors provide, in order to strike a balance between speed performance and
code size. By setting up different configurations for evaluation, our experiments show that
the ARM interpreter and Thumb JIT compiler is the most cost-effective configuration
among the all. As a whole, our system demonstrates 2.08 speedup with only 10.18% code
size increment over a pure ARM interpreter and 3.21 speedup with only 27.41% code size
increment over a pure Thumb interpreter.

iii

誌謝

首先必須向我的指導老師 單智君教授，獻上我最誠摯的謝意。在老師諄諄教

誨、辛勤的指導之下，我得以完成此論文，並且順利通過畢業口試。同時感謝實驗

室的另一位大家長 鍾崇斌教授，多次提出批評與指正，使論文得以更為嚴謹。再

者，感謝校外口試委員 李政崑教授，在口試時提供許多寶貴的意見，使得這篇論文

更加完整，而我本人也受益良多。

此外，我也很感謝宋宜叡同學，在與他合作 Mini-JIT 計劃的期間，透過相互

的討論與腦力激盪，彼此在研究上都受益匪淺。接者，感謝Java組的喬偉豪學長，

以及黃欽毓、黃俊諭、陳裕生、劉彥志等四位學弟，對於我的研究提出問題並給予

建議。還有，感謝實驗室的全體學長姐、同學、以及學弟們，你們的陪伴使我的研

究生活更加充實與豐富。

最後，感謝我的家人默默地給予我支持和鼓勵，讓我可以堅持追求自己的理想，

在兩年的碩士生涯裡投入於課業以及論文研究之中！

謹向所有支持我、勉勵我的師長與親友，奉上最誠摯的祝福。謝謝你們！

黃健豪

2004.7.12

iv

Contents

摘要 . i

Abstract. ii

誌謝 . iii

Contents . iv

List of Figures. vi

List of Tables . vii

Chapter 1 Introduction. 1

1.1 Embedded Java Environment .1
1.2 Embedded Mixed-Mode Execution JVM .3
1.3 Dual Instruction Set For Code Size Reduction .4
1.4 Research Motivation and Objectives. .5
1.5 Organization of This Thesis .5

Chapter 2 Background . 6

2.1 Java Technology .6
2.1.1 JVM Benefits .6
2.1.2 JVM Internals. .8
2.1.3 JVM Implementation Alternatives. .10

2.2 JIT Compiler Optimizations .11
2.2.1 Common Optimization Techniques .11
2.2.2 Optimization Range .14

2.3 Related Researches .15
2.3.1 Dual Instruction Set .15
2.3.2 Embedded JVM .16

Chapter 3 System Design . 18

3.1 System Overview. .18
3.2 Speed Performance Analysis. .21

3.2.1 Interpreter-Based JVM. .22
3.2.2 Mixed-Mode Execution JVM .23
3.2.3 Speedup of Mixed-mode Execution Over Interpreter-Execution 24

v

3.3 KJITC Architecture .26
3.3.1 IR Generator. .28
3.3.2 Native Code Generator. .32

3.4 KJITC Optimizations. .33
3.4.1 Instruction Folding For Stack Operations .33
3.4.2 Rule-based Null Pointer Check Elimination .36

3.5 ARM/Thumb Instruction Set Selection .40

Chapter 4 Experiments. 42

4.1 Experiment Environment. .42
4.2 Benchmarks .42
4.3 Experiment Results .43

4.3.1 Effects of KJITC Optimizations .43
4.3.2 Effects of Dual Instruction Set Selection. .45

Chapter 5 Conclusion and Future Work . 49

References . 51

Appendix Bytecode Instruction Table . 54

vi

List of Figures

Figure 1-1. Java 2 Platform ..2
Figure 2-1. JVM Runtime Environment...8
Figure 2-2. Three Alternatives to Executing Java Programs................................10
Figure 2-3. A Constant Folding Example...11
Figure 2-4. A Copy Propogation Example

(a) Before Copy Propogation (b) After Copy Propogation...............12
Figure 2-5. An Example of CSE...12
Figure 2-6. An Example of Scalar Replacement and

Common Effective Address..13
Figure 3-1. System Components and Their Interactions18
Figure 3-2. System Flowchart...19
Figure 3-3. An Illustration of KJITC..21
Figure 3-4. The Interpreter Dispatch Loop...22
Figure 3-5. Timing Diagram of the Interpreter-based JVM23
Figure 3-6. Timing Diagram of the Mixed-mode Execution JVM.......................23
Figure 3-7. The Trend of Speedup..26
Figure 3-8. Two-pass Compiler Architecture...26
Figure 3-9. One IR Generator With Many Native Code Generators....................27
Figure 3-10. The Frame Structure in Memory..29
Figure 3-11. Input and Output of the IR Generator ..31
Figure 3-12. Stack Operations (a) Without Folding (b) With Folding34
Figure 3-13. IR Generation

(a) Without Optimization (b) With Instruction Folding34
Figure 3-14. Instruction Folding for Stack Operations During Code Generation 35
Figure 3-15. Flowchart of Null Pointer Check Elimination38
Figure 4-1. Effects of Optimizations ..44
Figure 4-2. Speed Performance of All Configurations...46
Figure 4-3. Compilation Cost of KJITC...46
Figure 4-4. Static Memory Usage of All Configurations47
Figure 4-5. Dynamic Memory Usage of the Two JIT Compilers.........................47
Figure 4-6. Speed Increment and Code Size Increment of Four Mixed-mode

Configurations ..48

vii

List of Tables

Table 1-1. J2ME Configurations ..2
Table 2-1. Comparison Among Some JIT Compilers ..17
Table 3-1. An Example of Rule-based Null Pointer Check Elimination..............39
Table 3-2. Immediate Fields of Major Instruction Types.....................................41
Table 4-1. Selected Tests of Embedded CaffeineMark 3.043
Table 4-2. Execution Cycles of Different Setups ...44
Table 4-3. Execution Cycles of Six Configurations ...45
Table 5-1. Comparison of KJITC with Other JIT Compilers...............................50

1

Chapter 1 Introduction

In this chapter, some introduction materials are presented to help readers understand the

essential concepts behind and the terms in the title of our research. First, we give an over-

view of the current status of the Java technology in embedded environment. Second, we

explain the meaning of mixed-mode, which actually combines interpretation and just-in-

time (JIT) compilation, and the reason it suits for embedded JVM. Third, we discuss dual

instruction set, an issue that is specifically relevant to embedded processors. After the intro-

duction comes our research motivation and objectives. Finally, organization of this thesis

is provided.

1.1 Embedded Java Environment

Developed by Sun in 1991, Java technology has evolved rapidly and becomes popular

in all application fields, such as desktop PCs, powerful large-scale server, or even in small

portable consumer devices. Recognizing the fact that different application fields possess

different characteristics and demands, Sun in 1999 has grouped Java technologies into the

Java 2 platform [1], which consists of three editions as in Figure 1-1, and each of which

aims at a specific area:

• Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and database-

centered enterprise applications with an emphasis on server-side development.

• Java 2 Standard Edition (J2SE) - targeted at conventional desktop applications.

• Java 2 Micro Edition (J2ME) - targeted at embedded and consumer devices, such as

wireless handhelds, PDAs, TV set-top boxes, and other devices that lack the resources

to support full J2SE implementation.

2

Figure 1-1. Java 2 Platform (extracted from Sun)

To address the diversity of large embedded world, which covers a wide range of

devices, J2ME specifies two configurations: Connected Limited Device Configuration

(CLDC) and Connected Device Configuration (CDC). Each configuration targets at differ-

ent types of devices and therefore provides different class libraries and APIs. Table 1-1

gives an overview of the differences of the two configurations.

Table 1-1. J2ME Configurations

Configurations Name
Connected Device
Configuration (CDC)

Connected Limited Device
Configuration (CLDC)

Target Devices high-end PDAs, set-top
boxes, screen phones, and etc.

cell phones, two-way pagers,
low-end PDAs, and etc.

Typical Memory
Requirement

2MB~16MB 128KB ~ 512KB

Target Processor Type 32-bit 16-bit, 32-bit

Reference Virtual Machine CVM KVM

Other Features high bandwidth network
connection, most often based
on TCP/IP

limited, low bandwidth
network connection

3

1.2 Embedded Mixed-Mode Execution JVM

Although the JVM can be easily realized by an interpreter, its slow performance is

always a concern in performance-aware system. In order to overcome this problem, some

compilation technologies must be applied. Ahead-of-time (AOT) compilers [2] allows off-

line compilation, so no run-time compilation overhead is needed. Conventional JIT com-

pilers translate bytecode into machine code on the fly, and incorporate more optimization

techniques for better performance with the expense of VM code size increase and run-time

compilation overhead. However, memory-constrained JVM can tolerate neither the static

compiled code size expansion imposed by AOT compilers nor the code size/compilation

overhead imposed by conventional JIT compilers.

The approach of mixed-mode execution in [3][4] relies an interpreter to execute inter-

preted code for some parts of the program, and also executes compiled code dynamically

produced by a JIT compiler for the remaining parts. The line between a conventional JIT

compiler and a JIT compiler that supports mixed-mode execution is, in actuality, indistinct.

Nevertheless, the principles of mixed-mode execution can be clarified as follows.

• Performance-critical parts of the program are compiled by a JIT compiler, and then

natively executed.

• Non-performance-critical parts of the program are interpreted by a interpreter.

• Close interactions between the JIT compiler and the interpreter is necessary.

As discussed in Section 1.1, embedded JVM (including its class libraries) has very lim-

ited memory budget, usually in the range of hundreds of kilobytes. For this reason, embed-

ded JVM usually employs merely an interpreter as its execution engine. But with the

increasing demands for speed performance, embedded JVM also seeks ways to improve its

slow execution speed. The most effective way is to incorporate a JIT compiler, as most

desktop/server JVMs do. Still, taken limited memory resources into consideration, a full-

fledged JIT compiler does not suit for an embedded JVM. Therefore, a lightweight JIT

compiler, which is highly-customized for an embedded JVM, is needed. To this end, a

mixed-mode JVM seems to be promising in embedded environment. By tightly coupling

4

with an interpreter, a JIT compiler can reuse the interpreter-based JVM as its infrastructure,

in order to keep itself compact. And overall the combination (an interpreter-based JVM and

a JIT compiler) builds up an embedded mixed-mode JVM.

1.3 Dual Instruction Set For Code Size Reduction

Due to the requirements of low manufacturing cost, low power consumption, and small

volume size, embedded systems usually have limited hardware resources, especially in

memory size. 8-bit, 16-bit MCU processors have dominated the embedded system for a

long time. However, with the increasing demands on more data applications in high-per-

formance embedded system, 32-bit embedded processors have become mainstream these

days.

Most 32-bit embedded processors are RISC-based, which suffer from the problem of

poor code density and thus require more memory space. This is a severe limitation for cost-

sensitive embedded systems. An innovative solution in architectural level is to employ

“dual instruction set” [5]. One, the full instruction set, contains original 32-bit instruction

set; the other, the compressed instruction set or the reduced bit-width instruction set,

encodes most commonly used instructions in fewer bits (usually 16 bits).

According to previous researches, a program compiled in compressed instruction set

will be much smaller than that in full instruction set. For example, the code size reduction

of Thumb/ARM is 30% [6], while the case of MIPS16/MIPS32 is 30%~40% [7]. However,

due to a limited set of instructions and access to a limited set of registers, a program will be

compiled into more instructions in the compressed instruction set, which may result in

overall performance degradation. Therefore, how to effectively facilitate dual instruction

set to keep a balance between code size and performance, is both a practical industrial prob-

lem and a hot research topic.

5

1.4 Research Motivation and Objectives

Our observations are that while an embedded JVM manages to improve its execution

speed, it still faces the problem of limited memory resources. Motivated by this fact, our

objective is to design and implement an embedded JVM, which is small footprint compared

to other existing embedded JVMs. We employ mixed-mode execution in our embedded

JVM and further facilitate the “dual instruction set” feature that hardware architectural pro-

vides, aiming at striking a balance between speed performance and memory usage.

In addition, some practical decisions of our research are listed as follows.

• Our focus is on the design and implementation of a baseline JIT compiler for an embed-

ded mixed-mode JVM, based on Sun’s CLDC KVM 1.0.4 (interpreter-based). For ease

of reference, the JIT compiler is hereafter termed KJITC, an abbreviation for “Kilobyte

Just-In time Compiler”.

• KJITC targets the ARM/Thumb dual instruction set processor.

1.5 Organization of This Thesis

The remaining parts of this thesis is organized as follows. Chapter 2 provides more

detailed background knowledge on JVM internals and common JIT compiler

optimizations. In Chapter 3, the design of KJITC is presented along with speed

performance analysis and the design of ARM/Thumb instruction setction. In Chapter 4,

experiemnt results are exhibited. In the end we make a brief summary in Chapter 5.

6

Chapter 2 Background

This chapter provides more background details on JVM internals and JIT compiler

optimizations. Readers who are already farmiliar with the two topics can skim over them.

Also some related researches on dual instruction set and embedded JVM are discussed in

the last section.

2.1 Java Technology

Although generally used to refer to a computer language, Java is a rather a complete

architecture in reality. It consists of four distinct but interrelated components [8].

• Java programming language

• Java class file format

• Java Application Programming Interface (Java API)

• Java Virtual Machine (JVM)

A Java program is written in Java programming language, and then compiled into Java

class files by Java source compiler. Java class files can be executed on any environment

that equips a JVM. Also, the Java program can access predefined libraries or system

resources (such as I/O, for example) by calling methods in the classes that implement the

Java API. During program execution, JVM loads and executes user-written class files as

well as these system classes that Java API defines.

2.1.1 JVM Benefits

Java Virtual Machine is definitely the key component among the all. It is responsible

for the well-known advantages that Java possesses over traditional native execution sys-

tem. Those advantages include:

7

• Cross-Platform Portabilty

Each type of processor has its unique instruction set. For example, the instruction set of

x86 is not compatible with that of MIPS. Moreover, each operating system (OS) has its own

application interface or system calls to upper application programs. As a result, programs

compiled to run on one platform (combination of processor and OS) cannot be executed on

others without recompilation. Java overcomes this limitation by inserting JVM between the

application programs and the real environment. If JVM has been ported to the environment,

Java programs can be first compiled to Java bytecode in the form of class files and then be

executed over the JVM without any porting efforts. This encourages software reuse and

alleviates great pains from programmers.

• Security of the Execution Environment

One of Java’s original intention is its integration into the network environment. In this

environment, class files can be automatically downloaded from network and be locally exe-

cuted. They might be malicious and might do dangerous operations to the local execution

system. To deal with this important issue, Java build up its own security model - the sand-

box [9][10]. As a brief explanation, Java verifies every class file from untrusted resources.

The verification process mainly involves two steps in JVM. First, class file verification

checks the layout and the contents of the class file. Second, bytecode verification checks if

the bytecode within a method adheres to predefined rules. For example, one basic rule is

that all goto and branch instructions refer to valid bytecode addresses.

• Small Size of the Compiled Code

Due to the rich semantics and the stack-based operations, Java bytecode, the instruction

set of JVM, is more compact space-wise than a statically compiled program. In other

words, Java has high code density. According to [11], the dynamic average instruction size

is 1.8 bytes. Compared with typical RISC instruction requiring 4 bytes, this result is satis-

factory. For a speed-limited network environment or a memory constrained embedded

8

environment, small code size is undoubtedly favorable.

2.1.2 JVM Internals

Figure 2-1. JVM Runtime Environment

To realize the JVM, an implementation must provide the functionality of a real proces-

sor and also adhere to the JVM specification [12]. The specification defines a homogeneous

run-time environment, as Figure 2-1 illustrates, by providing a detailed description of the

following items:

• Instruction Set (Java Bytecode)

• Register Set

• Java Stack

• Execution Environment

• Constant Pool

• Method Area

• Java Heap

• Object Management and Garbage Collection

Java Heap

Constant
Pool

Method Area

Register Set

Java Stack

Frame

per
class

per
thread

global

9

Since the JVM is a stack-based architecture, the registers of its register set are not used

for storing operands or passing arguments as in most register-based machine. They only

hold the state of the JVM and are updated after every bytecode instruction is executed.

The operands of a bytecode instruction must be pushed onto the Java stack before the

instruction is executed. An executing instruction consumes its operands from the stack and

then places results on the stack when it completes.

The execution environment is maintained within the Java stack as a data set and is used

to deal with dynamic linkage, method invocation/return and exception handling. It handles

dynamic linkage by maintaining symbolic references to methods and variables for the cur-

rent method and current class. A symbol table is used to translate these references to actual

calls.

The JVM maintains a special table for each class, known as a constant pool. The con-

stant pool contains string literals, class names, field names and other constant data objects

that are referred to by the class structure or by the executing program. These constants do

not change, and are created at compile-time. Items in the constant pool encode all names

used by any method in a particular class. The information included in a class is the number

of constants and the offset that specifies where a particular list of constants begin in the

class description.

The method area is equivalent to the compiled code areas in the run-time environment

used by other programming language. It contains bytecode instructions that are associated

with the methods in the compiled code and the symbol table needed for dynamic linkage.

The Java heap is the dynamic memory of JVM, and it usually contains a collection of

objects. When an object is created with the “new” bytecode instruction, an reference to that

object is returned. This reference can be used subsequently, or stored in the current frame.

An object persists in Java heap until there are no references to it in any frame of the frame

stack or in the constant pool of any visible object. When there are no such references, an

object becomes garbage, and a special garbage collector will reclaim its resources.

10

2.1.3 JVM Implementation Alternatives

The JVM is not restricted to software interpreter implementation. In fact, there are three

common approaches, as depicted in Figure 2-2, to implement the JVM.

Figure 2-2. Three Alternatives to Executing Java Programs (extracted and modified from [13])

Interpreting the bytecode, the standard way to implement the JVM, has the advantage

of fast JVM porting but makes the execution of Java programs relatively slow. One solution

to improve speed performance is to replace an interpreter with a bytecode compiler. The

bytecode compiler is responsible for translating bytecode into native machine code. While

ahead-of-time (AOT) compilers performs offline compilation statically as conventional

compilers, just-in-time (JIT) compilers performs on-the-fly compilation dynamically. Both

of them have pros and cons, but JIT compilers seem to be more appealing to most research-

ers. Another solution is to implement the JVM directly on silicon. For example, picoJava

is a Java processor that supports bytecode execution completely.

As discussed in Section 1.2, an interpreter can still coexist and cooperate with a JIT

compiler in the JVM. Recently, a mixed software/hardware approach also comes to exist.

ARM has introduced its own Java instruction extension - Jazelle [14]. A subset of bytecode

Java Program

1.
In

te
rp

re
te

d 2. C
om

piled

3.
D

irectly Executed

Java Compiler

Bytecode

Operating System

Java

Operating

System

Compiler

Java CPU

InterpreterMachine
Binary

General CPU

An Executable Form

11

instructions can be directly executed when the ARM processor is operated in Java mode,

and the remaining bytecode instructions are still handled in software (interpreted or com-

piled).

2.2 JIT Compiler Optimizations

Since JIT compilers perform compilation at run time, the restriction of compilation time

is more severe than that in traditional static compilers. As a result, only cost-effective opti-

mization techniques can be suitably applied during JIT compilation. Due to the character-

istics of Java, optimization techniques might cause different impact when applied in Java

JIT compilers than in traditional static C compilers. In this section, we are to discuss some

common optimization techniques used in Java JIT compilers [15][16][17], and then to dis-

cuss different ranges of optimization.

2.2.1 Common Optimization Techniques

Constant Folding

The concept behind constant folding is to evaluate constant expression, whose operands

are known to be constant, at compile time. After this simple transformation, the constant

expression is replaced by its value. Therefore it saves the run-time computation of the

expression. A simple example is demonstrated in Figure 2-3.

Figure 2-3. A Constant Folding Example

Copy Propagation

Copy propagation is a transformation that replace variable occurrences with its copy

value which is defined in earlier copy assignments. For example, the copy assignment is

represented in the form x = y, for some variables x and y. Then later uses of x, as long as

intervening instructions have not changed the value of either x or y, can be replaced with y.

// before constant folding
x = 10 + 2;

// after constant folding
x = 12;

12

Figure 2-4 is an example in the flowgraph form. The copy assignment is b = a, and suc-

ceeding occurrences of b of the underlined expressions are replaced with a.

Figure 2-4. A Copy Propogation Example
(a) Before Copy Propogation (b) After Copy Propogation

Common Sub-expression Elimination (CSE)

Figure 2-5. An Example of CSE

The purpose of CSE is to reduce repetitive computations by substituting available

results for the expressions that do the same computation. Figure 2-5 gives a simple exam-

ple. Also two common derivatives of CSE are:

• Scalar Replacement

Array element accesses in a loop are replaced by temporary variables, when the array

objects and the array indexes remain unchanged. See the example in Figure 2-6.

entry

b = a;
c = b * 2;
if c > 10

e = b + 2;

d = a + b;

exit

N

Y

entry

b = a;
c = a * 2;
if c > 10

e = a + 2;

d = a + a;

exit

N

Y

(a) (b)

// before CSE
x = a + b;
...
y = a + b;

// after CSE
x = a + b;
...
y = x;

13

• Common Effective Address Generation

Successive array element accesses in a loop can be optimized by introducing a tempo-

rary pointing to the first element. Therefore other elements can be accessed by using the

temporary as the base address and corresponding array indexes as offsets. See the example

in Figure 2-6.

Figure 2-6. An Example of Scalar Replacement and Common Effective Address

Exception Check Elimination

Java bytecode instructions contain semantics that may induce exceptions. In an inter-

preter, such bytecode instructions are checked during interpretation to see if exceptions

arise. If they are, appropriate exception handlers are invoked. For a JIT compiler, to com-

pile these bytecode instructions also produce compiled code that performs exception check.

However, some of these checks are redundant and can be eliminated via careful analysis.

In short, exception check elimination helps to save unnecessary operations and also reduce

code size. Null pointer check elimination and array bound check elimination are the most

common techniques used in Java JIT compilers.

Method Inlining

The idea of method inlining is to inline method calls by expanding method bodies. This

optimization can reduce method invocation overhead in sacrifice of code size expansion

and also can provide more optimization opportunities. In object-oriented languages like

Java, tiny methods such as class constructors and methods that accesses private variables

are frequently executed. These methods spend more time on method invocation than

For (i =0; i <=5; i++)
 if (a[i] < a[i+1]) {
 b = a[i];
 a[i] = a[i+1];
 a[i+1] = b;
 }

 Original Code

For (i =0; i <=5; i++)
 t1 = a[i];
 t2 = a[i+1];
 if (t1 < t2) {
 b = t1;
 a[i] = t2;
 a[i+1] = b;
 }

 Scalar Replacement

For (i =0; i <=5; i++)
 p = &a[i];
 t1 = *p;
 t2 = *(p+1);
 if (t1 < t2) {
 b = t1;
 *p = t2;
 *(p+1) = b;
 }
 Common Effective Address

14

method body execution. Hence method inlining is useful under these circumstances. More-

over, concerning the heavy overhead of devirtualization, virtual method calls may be

inlined as well. Certainly, it involves further analysis.

Strength Reduction and Machine Idioms

Strength reduction is to replace an operation with a semantically equivalent one, though

weaker but faster. A common case is using the shift operator to multiply and divide integers

by a power of 2. For example, x >> 2 can be used in place of x / 4, and x << 1 replaces x

* 2. In a similar way, machine idioms refer to instructions or instruction sequences for a

specific ISA that executes more efficiently than a similar sequence of instructions targeted

for a more general architecture. A good example is that some architectures provide

multiply-and-add instructions for faster execution.

2.2.2 Optimization Range

Conventionally, an optimization applied to a program is generally called "local" if it is

performed by looking only at the statements in a basic block; otherwise, it is called "global"

[18]. To be more specific, "local" means optimization is applied within a basic block while

"global" within a function. Some optimization techniques can be applied at both local and

global levels. Global optimization invests more compilation time in advanced analysis, and

therefore leads to better compiled code quality.

Local optimization might expand its optimization range from a basic block to an

extended basic block [19]. As a contrast to single-entry-single-exit basic blocks, extended

basic blocks are also single-entry but possibly multiple-exit, and therefore have more

opportunities for optimization. Researches on high performance architectures focus on loop

optimization in a program. In fact, high-level loop structures may be recovered by identi-

fying strongly connected components (SCCs) or regions in a low-level control flow graph.

Furthermore, interprocedural optimization is more aggresive for its range expands across

functions, and thus is considered to be pretty costly. In short, as the optimization range is

enlarged from local to loop and global, or even interprocedural, the cost of analysis defi-

nitely increases. For more detailed information, please also refer to [19].

15

2.3 Related Researches

This section briefly introduces the essentials about dual instruction set and its current

research status. Next, advancements in optimization for embedded JVM is discussed as

well, including one recent research work on embedded JIT compilation.

2.3.1 Dual Instruction Set

A number of 32-bit RISC processors for embedded systems may incorporate a reduced

bit-width instruction set as an architectural extension, and therefore support dual instruc-

tion set. ARM provides its 16-bit instruction set extension called Thumb since its ARM7

processors in 1995. With a decompression engine, Thumb instructions are converted to its

ARM equivalents during decode pipeline stage. Switching between the two instruction sets

is achieved through the use of explicit mode change (ARM mode and Thumb mode) insruc-

tions. Thumb instructions are only able to access 8 general purpose registers (out of 16)

without any restrictions, and can only encode small immediate values. Also addressing

modes and instruction types are restricted in Thumb instruction set. Experiment results

exhibit with 32-bit memory Thumb trades off 30% - 40% speed performance for 30% code

size reduction.

MIPS follows ARM by offering its MIPS16 instruction set in 1997. As a contrast to

Thumb, MIPS16 contains an extend opcode which extends the values of immediate oper-

ands that are not representable due to bit width constraints. Rather than switch with explicit

mode change instructions, code alignment dictates the mode of execution. To be more spe-

cific, a function that is not word-aligned is assumed to be composed of MIPS16 instruc-

tions. Experiment results show the code size reduction is up to 40% using MIPS16. Other

processors that support dual instruction set include the ST100 Core [20] from ST Micro-

electronics and the Tangent-A5 [21] from ARC.

Two recent research papers [22][23] about dual instruction set are on evaluation of

mixed instruction set code in different granularities such as function levels and basic block

levels. Their proposed heuristics for instruction set selection are static, profile guided and

may be based on cost models. However, no apparent results can be inferred from the

16

researches about how to perform instruction set selection for specialized environments such

as a mixed-mode JVM. This also serves as a reason that motivates us to conduct this

research work.

2.3.2 Embedded JVM

Due to tight memory constraints, embedded JVM usually seeks its way for performance

improvement by adopting low-cost optimizations in terms of code size. These low-cost

optimizations manage to improve overall performance by reducing overheads in exception

handling, garbage collection, object access and bytecode dispatch. Among of them, optimi-

zation for bytecode dispatch is most effective since dispatch time occupies a great portion

of total execution time. Researches in [24][25] discuss different threading mechanisms to

improve dispatch efficiency for JVM. Moreover a bytecode instruction sequence can be

grouped together or formed into a new bytecode, and therefore only one dispatch is neces-

sary as described in [26]. Since the sequence is executed as a whole, there are opportunities

that it can be executed more efficiently by optimizing native code. Related works of this

type include [27][28].

Although aforementioned optimizations can be employed in embedded JVM without

much code size expansion, their performance improvement is potentially and relatively low

compared with JIT compilation. As a result, for embedded JVM that demands high perfor-

mance, JIT compilation is indispensable. A recent work [29] demonstrates a JIT compiler

designed for employment in embedded JVM. Table 2-1, which is extracted and modified

from the same work, lists some important features of this embedded JIT compiler compared

with other JIT compilers. Apparently the embedded JIT compiler consumes much code size

such that highly-memory-limited embedded systems can not afford. Therefore, there is still

research space for more lightweight JIT compilation that can be applicable to a wider range

of embedded systems with JVM.

17

Table 2-1. Comparison Among Some JIT Compilers

JIT Sun - Server Sun - Client SNU Latte Stanford MicroJIT
Source C++ C++ C C

IR Format SSA dataflow Simple Dataflow Dataflow
Major Compiler
Passes Interative 4 7 4
Register
Allocation Graph coloring 1-pass dynamic 2-pass dynamic 1-pass dynamic

Major
Optimizations

1. loop invariant code motion
2. global value numbering
3. constant propagation
4. inlining & specialization
5. instruction scheduling

1. block merging/elimination
2. simple constant propagation
3. inlining & specialization

1. EBB value numbering
2. EBB constant propagation
3. loop invariant code motion
4. inlining & specialization

1. CSE
2. copy propagation
3. constant propagaron
4. loop invariant code motion
5. inlining & specialization
6. instruction scheduling

Compiler Size
1.5MB (Sparc) 700KB (Sparc) 325KB (Sparc) 200KB (Sparc)

Compilation Cost
(Per Bytecode) ~100,000 Cycles ~8,300 Cycles ~20,000 Cycles ~5,000 Cycles

18

Chapter 3 System Design

In this chapter, we present the overall system design of our embedded mixed-mode

JVM. Section 3.1 provides an overview of our system, which consists of four components,

and then discusses their relative interactions. Section 3.2, a quantitative analysis on speed

performance of our system, compared with that of a pure interpreter-based JVM, is

proposed. The analysis helps us make our further design decisions in KJITC. Next, we

detail the internal design of KJITC and its optimizations. Finally, we demonstrate design

issues on ARM/Thumb instruction set selection.

3.1 System Overview

Figure 3-1. System Components and Their Interactions

In our mixed-mode embedded JVM, there are four main components. Their interactions

can be simply illustrated in Figure 3-1. A more precise flowchart which describes the work-

ing flow during method interpretation is also provided in Figure 3-2 for completeness.

Interpreter:
interpret Java
bytecode

Time

Hot Spot Detector:
detect a hotspot

KJITC:
perform hotspot
compilation

Interpreter:
interpret Java
bytecode

invoke hot spot
detector

invoke KJITC

resume interpretation

Compiled Code

Interpreter:
interpret Java
bytecode

switch between interpreter
and compiled code

19

Figure 3-2. System Flowchart

Method Entry

Interpreter:
fetch and decode a

bytecode Instruction

If there is a
corresponding

compiled code entry

Interpreter:
interpreted-execute the

bytecode instruction

Interpreter:
switch to

the compiled code

Compiled Code:
natively execute

Interpreter:
switch back from
the compiled code

After a method
call or branch

Interpreter:
invoke hot spot detector

Hot spot detector:
record method call and

branch information

If there is a hot spot
detected

Hot spot detector:
invoke KJITC

YES

NO

YES

NO

KJITC:
perform compilation for

the hot spot

If the method ends

Method Exit

YESNO

YES

NO

A Method CallMethod Call

Method Return

YES

NO

20

Now we respectively discuss each component as follows.

• Interpreter-based JVM (KVM)

The interpreter-based JVM provides a JVM infrastructure that performs exception

handling, garbage collection, synchronization and etc. It comes with a simple interpreter as

its execution engine. For mixed-mode execution, the interpreter must be responsible for

invoking the hot spot detector and switching to/form compiled code in addition to

interpretation of those bytecode that have not been compiled or will not be compiled.

• Hot Spot Detector

Due to the tight memory constraints, only valuable parts of the input program are

selected for JIT compilation. By the 80/20 rule, over eighty percent of execution time is

spent in less than twenty percent of source code in a program. Apparently, the responsibility

of the hot spot detector is to discover these performance-critical twenty percent of source

code and then invoke JIT compiler for hot spot compilation.

As mentioned in Section 2.1.2, the method area is viewed as the run-time compiled

code area. Hence we also select the method as the basic unit of hot spot detection. A method

is considered to be a hot spot, when it meets either one of the following two requirements.

First, it is called by other methods frequently. Second, it contains at least one loop that has

many iterations. In our implementation, threshold values must be set statically as the crite-

ria for the two requirements. Currently the values are both chosen to be 40, which are based

on our evaluation results.

• JIT Compiler (KJITC)

The JIT compiler is further divided into the IR (Intermediate Representation) generator

and the native code generator. The IR generator is mainly responsible for translating Java

bytecode into semantically equivalent three-address IR. And then the code generator

translates IR into targeted native code for later execution. A simple illustration is given in

Figure 3-3.

21

Figure 3-3. An Illustration of KJITC

• Compiled Code Buffer

The compiled code buffer holds all compiled native code. During native execution, the

machine program counter (PC) points to native code that resides in the buffer. In our current

implementation, the compiled code buffer is allocated statically, and its size is also pre-

determined.

In addition to the four components, the switching mechanism between the interpreter

and the compiled native code also deserves discussions. Similar to a function call, the

switch from the interpreter to the compiled native code involves spilling registers into

memory and then transfering execution by a branch. The case of the switch from the

compiled native code to the interpreter involves more operations. It has to restore registers

from memory, to transfer execution by a branch, and to update Java PC (program counter)

and Java SP (stack pointer).

3.2 Speed Performance Analysis

Before proceeding to the focus of our research - the KJITC, we present basic

quantitaive analysis of system performance in this section. First we begin with an

interpreter-based system, and then compare it with our system, which exhibits mixed-mode

execution.

IR Generator

Native Code Generator

Three-address IR
Java Bytecode

Targeted Native Code
(ex. ARM)

22

3.2.1 Interpreter-Based JVM

Figure 3-4. The Interpreter Dispatch Loop

Figure 3-4 shows a simplified dispatch loop - the main structure of an interpreter - in C

language source form. An interprter may be viewed as a software processor that sequentally

performs three tasks - fetching, decoding, and execution. For ease of reference and

explanation, we delibrately break the total execution time of an interpreter-based JVM into

the following three parts. Figure 3-5 is a timing diagram of an interpreter-based JVM which

performs bytecode interpretation in a repetitive manner.

• Dispatch (fetching + decoding) time ... Tdisp

=> Dispatch time of a single bytecode instruction ... tdisp

• Interpreter execution time ... Tint_exec

=> Average interpreter execution time of a single bytecode instruction ... tint_exec

• Miscellaneous time ... Tmisc

(garbage collection, synchronization, and etc.)

NEXT:
switch (*bytecode_pc) {
 case ByteCode_1:
⋯
goto NEXT;

 case ByteCode_2:
⋯
goto NEXT;

 case ByteCode_3:
⋯
goto NEXT;

 case ⋯
 ...
}

23

Figure 3-5. Timing Diagram of the Interpreter-based JVM

3.2.2 Mixed-Mode Execution JVM

Similarly, the breakdown of the total execution time in our mixed-mode execution JVM

can be listed as the following six parts. Figure 3-6 is a typical timing diagram which com-

prises the leading five parts while omitting miscellaneous time for clarity.

• Dispatch (fetching + decoding) time ... T'disp

• Interpreter execution time ... T'int_exec

• JIT compilation time ... Tcomp

• Interpreter-native code switch time ... Tswitch (Tswitch_from + Tswitch_to)

=> One switch time ... tswitch (tswitch_from + tswitch_to)

• Native code execution time ... Tnative_exec

=> Average native code execution time of a single bytecode instruction ... tnative_exec

• Miscellaneous time ... T'misc

Figure 3-6. Timing Diagram of the Mixed-mode Execution JVM

Tdisp Tint_execTdisp Tint_exec
time

Interpreter

T'disp

Tnative_exec

Tswitch_from
time

Interpreter...

Tcomp

Tswitch_to...T'disp

Compiled
Code

T'int_exec...

JIT
Compiler

24

3.2.3 Speedup of Mixed-mode Execution Over Interpreter-Execution

To compare relative performance of the mixed-mode execution JVM and the

interpreter-based JVM, following speedup definition is provided.

Then the speedup of the mixed-mode execution JVM over the interpreter-based JVM

can be expressed as follows.

For a compiled sequence of n bytecode instructions, speedup can be approximated by

the following equation.

For further analysis, some values in the above equation can be obtained in our

implementation. Then the equation becomes:

The meaning of the equation is that:

• It takes 21 cycles for every bytecode interpretation and some varied cycles for

interpreted execution.

• It takes 21 cycles for identifying a sequence of compiled code, and the overall

switching time is 53 cycles, plus some varied cycles for native execution.

With the equation, we make some discussions as follows.

A of TimeExecution
B of TimeExecution

Bover A of Speedup =

miscccnative_exeswitchint_execdispcomp

miscint_execdisp
 (overall)

T'TTTT'T'
TTT

 Speedup
+++++

++
=

cnative_exeswitchdisp

init_execdisp

ccnative_exeswitchdisp

int_execdisp
 (block)

ttt
tt

TTT'
TT

 Speedup
×++

×+×
=

++
+

=
n

nn

cnative_exe

int_exec
 (block)

T)53()21(
T)21(

 Speedup
++

+
=

n

25

• Since most bytecode instructions only involve simple operations, such as IADD,

ILOAD, and ISTORE, the average interpreter execution time of a bytecode instruction

is fewer than 21 cycles. As a reference, it is statically and roughly estimated to be 9.7

cycles in our implementation. According to Amdahl's law, the performance bottleneck

is the dispatch time, Tdisp. Therefore, the first priority is to reduce the dispatch

overhead by enlarging the value of n.

• The time of interpreted execution is definitely larger than that of native execution, for

the JIT compiler can perform optimizations while the interpreter cannot. The value of

Tint_exec over Tnative_exec may be roughly referred as the code quality of the compiled

code. In theory, when n = 1, the code quality shall be equal to 1, since there is no room

for optimization. Conversely, when n grows larger, the code quality may grow larger as

well. Therefore, the second priority is to improve the code quality, either by enlarging

the value of n or by employing more optimizations.

As a motivating example, we consider the bytecode sequence of "ILOAD_1, ILOAD_2,

IADD, ISTORE_1". The values of Tint_exec and Tnative_exec can be simply computed in our

implementation, assuming that instruction folding for stack operation in Section 3.4.1 is

applied during compilation. Now the equation can be evaluated.

From the above equation, we can compute the average values - tint_exec and tnative_exec,

and then re-build up the speedup equation.

When the value of n equals to 20, the speedup is about 4.54. When the value of n equals

to 50, the speedup is about 7.24. Figure 3-7 is a plot that exhibits the trend of speedup when

n increases.

24.1
)9()53()21(

33)()421(
 Speedup (block) =

++
+×

=

)25.2()74(
)27(

)25.2()53()21(
)6()21(

 Speedup (block)
n

n
n

nn
+

=
++

+
=

26

Figure 3-7. The Trend of Speedup

As the plot shown, the speedup will coverge as the value of n increases. Although this

ideal speedup trend may differ from that in real cases, it still provides some useful guide-

lines when designing our baseline KJITC.

3.3 KJITC Architecture

Figure 3-8. Two-pass Compiler Architecture

In this section, we detail the design of the IR generator and the native code generator in

the KJITC. In addition, in order to reduce compilation cost and to keep the KJITC small-

0
2
4
6
8
10
12
14

1 2 4 8 1
6

3
2

6
4

1
2
8
2
5
6
5
1
2

1
0
2
4

the value of n

S
p
e
e
d
u
p

IR Generator
(1st Pass)

Native Code Generator
(2nd Pass)

3-address
IR

Java
Bytecode

Targeted Native Code
(eg. ARM)

Function:
translation of Java bytecode
into semantically equivalent
3-address IR

Function:
1. register allocation/assigment
2. instruction selection/
 generation

Optimizations:
1. rule-based null pointer check
 elimination
2. strength reduction

Optimizations:
1. instruction folding for stack
 operations
2. constant propagation
3. constant folding

27

footprint, several design decisions are made based on the analysis in Section 3.2. These

decisions are:

• Two-pass Compiler Architecture

We confine our compiler to two passes. The first pass is for IR generation, and the

second pass is for native code generation. Figure 3-8 gives a more detailed overview of

functions and optimizations of the two passes. This decision is based on the fact that fewer

passes take less compilation time and that two passes seem to be reasonable for portability.

The IR generator is responsible for translating Java bytecode into machine-independent

three-address IR, and therefore is portable across platforms. Clearly the KJITC needs only

one IR generator while possessing more than one native code generator for different tar-

geted architectures as depicted in Figure 3-9.

Figure 3-9. One IR Generator With Many Native Code Generators

• Only Local Optimization Within an Extended Basic Block

No global optimization is performed due to the potential high compilation cost of con-

trol and data flow analysis. However, we extend the maximum optimization range to an

extended basic block rather than a basic block.

• Support for More Bytecode

If the KJITC can compile more types of bytecode, compilation may be possibly applied

to a longer sequence of input bytecode, which in turn results in better performance as we

have discussed in Section 3.2.3.

• No Support for Complex Bytecode

IR Generator

ARM Code
Generator

Thumb Code
Generator

MIPS Code
Generator

28

Complex bytecode refers to those bytecode instructions that involve complicated oper-

ations that suit for interpreter handling. These complicated operations include devirtualiza-

tion, synchronization, object construction/destruction, and etc. As a result, these complex

bytecode instructions are considered to be non-compile-able in the KJITC.

3.3.1 IR Generator

IR Format

The IR format is designed with the following two properties.

• Three Address Quadruple: (Opcode, Arg1, Arg2, Arg3)

Opcode refers to the instruction operation. Arg1 generally refers to the destination of

the operation. Arg2 generally refers to the first source of the operation. Arg3 generally

refers to the second source of the operation.

• Local-Variable-Based Memory Addressing

Arg1, Arg2, and Arg3 are used for storing constants or memory addresses. The memory

addresses are local-variable-based. That is, the actual values stored are the offsets relative

to the base address of the local variable array. In the KVM, the operand stack and the local

variable array of a frame both reside in a linearly addressable range of memory, and thier

relative addresses are also fixed (see Figure 3-10). During the execution of a program,

frames are dynamically created and discarded, hence their memory addresses can only be

determined at run-time. As a result, elements of the local variable array and the operand

stack are addressed by using the starting address of local variable array as the implicit base

address plus corresponding word-offsets encoded in instructions.

29

Figure 3-10. The Frame Structure in Memory

Bytecode to IR Translation

After the design of IR format is decided, bytecode can be easily translated into

semantically-equivalent IR. Much of the work involves translation from implicit stack

addresses into explicit local-variable-based addresses. Following are some examples for

demonstration.

1. DUP

• Bytecode Number: 89

• Function: To duplicate the top element of the operand stack

• Translated IR: (MOV, &TOS[0]-&LV[0], ---, &TOS[-1]-&LV[0])

• Brief Description: The IR operation is MOV. The destination of the operation is the

empty element of the operand stack. Since the top-of-stack pointer always points to the

empty element of the operand stack, the destination can be addressed by &TOS[0]-

&LV[0]. The first source of the operation is unused, and the second is the top element of

the operand stack which is addressed by &TOS[-1]-&LV[0].

2. ILOAD_1

Entry #n

Entry #(n+1)

...

...
top of stack

base of stack

operand stack

frame struct
attributes

Entry #0base of local
variable array

...

... local variable
array

frame

stack
growth

30

• Bytecode Number: 27

• Function To push the second local variable onto the operand stack

• Translated IR: (MOV, &TOS[0]-&LV[0], ---, &LV[1]-&LV[0])

• Brief Description: The IR operation is MOV. The destination of the operation is the

empty element which is addressed by &TOS[0]-&LV[0]. The first source of the

operation is unused. The second source of the operation is the second local variable

which is addressed by &LV[1]-&LV[0].

3. IADD

• Bytecode Number: 96

• Function: to pop and add the top two elements from the operand stack, and then push

the result back

• Translated IR: (ADD, &TOS[-2]-&LV[0], &TOS[-2]-&LV[0], &TOS[-1]-&LV[0])

• Brief Description: The IR operation is ADD. The destination and first source of the

operation is the second top element of the operand stack which is addressed by &TOS[-

2]-&LV[0]. The second source of the operation is the first top element of the operand

stack which is addressed by &TOS[-1]-&LV[0].

It is worth noting that a semantically-rich bytecode instruction may be decomposed into

several simple IR instructions. For example, bytecode instructions for array access involve

implicit exception checks, and therefore their decomposed IR instructions contain explicit

exception checks.

31

IR Generation Workflow

Figure 3-11. Input and Output of the IR Generator

As discussed in Section 3.1, the basic unit of hot spot detection is a method and then it

is passed to the IR generator to generate corresponding IR. Figure 3-11 is an illustration that

shows the input and the ouput of the IR generator. The detailed workflow is listed as the

following steps.

1. The IR generator takes a hotspot method as input.

2. The IR generator linearly parses each bytecode instruction of the method and generates

corresponding IR for compile-able bytecode. During the linear pass, the IR generator

also updates the PC (program counter) and SP (stack pointer) information for each

bytecode instruction. The information is then used by the switching mechanism

described in the last paragraph of Section 3.1. For detailed PC and SP offset adjust-

ments of each bytecode instruction, please refer to Appendix A.

3. Consecutively generated IR instructions are collected in a IR block.

4. After IR generation completes, all IR blocks are managed by a IR group. The IR group

is then passed to native code generator for code generation.

Since a progam has branch-type instructions, its control flow is not always sequential.

In order to overcome this problem, it is necessary to to discover the control structure of the

A Hot Spot Method

An IR BlockAn IR BlockAn IR Block

An IR Group
(which consists of IR blocks)

A compilable bytecode

An IR block which consists
of consecutive IRs

A non-compilable bytecode

32

program by control-flow analysis. However, we reduce the extra cost of control-flow

analysis by utilizing the StackMap attribute which is specified in the CLDC specification

[30]. The StackMap attribute records (PC offset, SP offset) tuples for all branch targets in

a method. Therefore the IR generator can use the information to identify extended basic

blocks. This also implies the maximum range of an IR block is its corresponding extended

basic block, provided that there are no intervening non-compile-able bytecode.

3.3.2 Native Code Generator

The main responsibility of the native code generator is to perform register allocation/

assignment and instruction selection/generation. Also some optimizations are applied in

this stage.

Since the native code generator is designed for one pass, it implies that register

allocation/assignment is done within one pass and instruction selection/generation must be

performed at the same time. To be more specific, the native code generator assigns registers

as machine instructions are generated. The design of the register allocation/assignment

scheme is simple, but highly customized for the JVM environemnt. Its detailed discussion

is deferred until Section 3.4.1.

After the IR generation phase, the native code generator receives an IR group as input

for code generation. However, the basic unit for code generation is confined to an IR block.

In fact, local optimizations in KJITC are all restricted to the range of an IR block. During

the code generation for an IR block, the code generator parses each IR instruction and

generates corresponding machine instructions, and it is also responsible for generating nec-

essary register load/spill instructions. Besides, the native code generator also incoporates

optimizations like constant folding and constant propagation which can help to generate

better code.

Upon the end of an IR block, the native code generator must spill registers for live

variables. As an optimization technique, the native code generator only spills registers for

variables whose memory addresses are below the current stack pointer, since variables

above the current stack pointer will not be used again in the stack-based JVM.

33

Similar to the IR generator, the native code generator collects consecutively generated

native code for an IR block in a compiled code block. And all compiled code blocks are

managed by a compiled code group. What is worthy of noting is that a compiled code block

resided in the compiled code buffer is in reality the basic unit for native execution.

3.4 KJITC Optimizations

We devote this section to the design of major optimization techniques in KJITC. These

two optimizations - stack operation folding and rule-based null-pointer check elimination -

are designed with the characteristics of the JVM in mind and thus are highly-customized

and efficient.

3.4.1 Instruction Folding For Stack Operations

One characteristic of the stack-based JVM is all operations must be done within the

Java stack. When mapping the stack-based architecture to the common register-based

architecture, this imposes great restrictions and also leads to much inefficiency.

Considering the bytecode sequence "ILOAD_0, ILOAD_1, IADD, ISTORE_0", its high-

level operations are illustrated in Figure 3-12 (a). If these operations can be simplified as

shown in Figure 3-12 (b), the execution flow will become more efficient. This technique is

called "stack operation folding" in researches on Java processors [31][32].

34

Figure 3-12. Stack Operations (a) Without Folding (b) With Folding

As a contrast, the bytecode sequence can be one-to-one translated into IR instructions

as in Figure 3-13 (a). It is observed that the three copy assignments (IR_1, IR_2, and IR_4)

can be folded into the third IR instruction by replacing corresponding source and

destination fields. After the folding, only one IR instruction is needed instead of four, as in

Figure 3-13 (b). This optimization is different from copy propagation in that copy propa-

gation only allows IR_1 and IR_2 to be forward folded into IR_3 while it also allows IR_4

to be backward folded into IR_3.

Figure 3-13. IR Generation (a) Without Optimization (b) With Instruction Folding

stack
growth

1

2

local variables

operand stack

5

34

ALU

6co
ns
um
er

pr
od
uc
er

1

2

local variables

operand stack

3

ALU

(a) (b)

1. ILOAD_0
2. ILOAD_1
3. IADD
4. ISTORE_0

1. (MOV, &TOS[0]-&LV[0], ---, &LV[0]-&LV[0])
2. (MOV, &TOS[1]-&LV[0], ---, &LV[1]-&LV[0])
3. (ADD, &TOS[0]-&LV[0], &TOS[0]-&LV[0], &TOS[1]-&LV[0])
4. (MOV, &LV[0]-&LV[0], ---, &TOS[0]-&LV[0])

Bytecode IR: (OP, DST, SRC1, SRC2)

1. (ADD, &LV[0]-&LV[0], &LV[0]-&LV[0], &LV[1]-&LV[0])

IR: (OP, DST, SRC1, SRC2)

(a)

(b)

35

It is straightforward that the instruction folding technique can be employed in the

KJITC by inserting one extra pass between the IR generation and the native code

generation. However, devoting one extra pass for only one optimization technique is not

cost-effective and also slows down compilation speed. Instead, we integrate this

optimization in our native code generator.

The register tracking scheme in our native code generator associates each register

record with two two fields - one source and one destination. While encountering a MOV-

type IR instruction, say the first IR instruction in Figure 3-13 (a), the code generator

allocates/assigns a register, and records corresponding source and destination. Later, when

the code generator sees the third IR instruction, it will use the allocated/assigned register as

the first source. This way, unnecessary stack operations can be effectively removed.

Compared with the register allocator in [33], ours is more lightweight and cost-effective.

Figure 3-14 is a corresponding work flow of the aforementioned bytecode sequence.

Figure 3-14. Instruction Folding for Stack Operations During Code Generation

1. ILOAD_0
2. ILOAD_1
3. IADD
4. ISTORE_0

1. (MOV, &TOS[0]-&LV[0], ---, &LV[0]-&LV[0])
r1.dst r1.src

2. (MOV, &TOS[1]-&LV[0], ---, &LV[1]-&LV[0])
r2.dst r2.src

3. (ADD, &TOS[0]-&LV[0], &TOS[0]-&LV[0], &TOS[1]-&LV[0])
r1.src = r1.dst r1.dst r2.dst

4. (MOV, &LV[0]-&LV[0], ---, &TOS[0]-&LV[0])
r1.dst r1.src

Bytecode IR: (OP, DST, SRC1, SRC2)
IR
translation

After passing IR_1:

Code Generation

After passing IR_2:

After passing IR_3:

After passing IR_4:
 STORE r1. LV[0]

LOAD r1, LV[0]
LOAD r2, LV[1]
ADD r1, r1, r2

36

3.4.2 Rule-based Null Pointer Check Elimination

Due to its architectural design, the JVM consists of many bytecode instructions that

introduce null pointer checks. For example, in KVM "GETFIELD_FAST",

"PUTFIELD_FAST" are for object field access and "IALOAD", "IASTORE" for array ele-

ment access, which overall impose much runtime overhead. To reduce such overhead, we

propose a rule-based method which is employed in our IR generator. It can eliminate a great

portion of IR instructions for null pointer checks in a cost-effective manner, in contrast to

other methods employing data-flow analysis.

Now the basic design of the method is described as follows.

• Definition

1. Full Set: (F-Set)

All compile-able bytecode instructions in the KJITC constitute this set.

2. Un-eliminated Set: (U-Set)

All bytecode instructions in F-Set, which introduce null pointer checks by

examining associated object references, constitute this set.

3. Target Set: (T-Set)

A predetermined subset of U-Set.

4. Dominance Set: (D-Set)

All bytecode instructions in F-Set, which produce object references that are later

used by bytecode instructions in T-Set, constitute this set.

5. Influential Set: (I-Set)

All bytecode instructions in F-Set, which may alter object references that are later

used by bytecode instructions in T-Set, constitute this set.

• Data Structure

37

1. A n-height stack (L-Stack)

This is a tiny stack used to simulate stack operations. n poses a limit to the

maximum stack height that can be tracked. This stack is implemented as a n-element

array.

2. A m-bit-mask array (B-Array)

This array, say array[0:m-1], is used to track whether the local variable 0 through

local variable m-1 is null pointer checked or not.

• Algorithm

1. Select some bytecode instructions from U-Set as T-Set

2. Find the corresponding D-Set, I-Set

3. Upon an IR block entrance, initialize all n elements of L-Stack as "Not_Tracked".

When some bytecode instruction in D-Set is encountered, mark the corresponding

element in L-Stack with the corresponding local variable number.

4. Upon an IR block entrance, initialize all m bits of B-Array as "Un-Checked".

When some bytecode instruction in I-Set is encountered, mark the corresponding bit in

B-Array with "Un-Checked".

5. When some bytecode instruction in T-Set is encountered, if the bit mask of the

local variable associated with the object reference is "Checked", the null pointer check

for this bytecode instruction is eliminated; otherwise the null pointer check remains and

also the bit mask is then marked as "Checked".

6. The flowchart of the algorithm is depicted in Figure 3-15.

38

Figure 3-15. Flowchart of Null Pointer Check Elimination

Begin

An IR block
Entrance

Initialize L-Stack
and B-Array

Fetch a Bytecode

Bytecode
In F-Set

NO

YES

YES

NO

Mark
Corresponding
Entry in L-Stack

with LV#

YES

NO

Mark
Corresponding
Entry in B-Array

with <Unchecked>

YES

NO

Corresponding
Bit in L-Stack is

<Checked>

YES

Eliminate Null
Pointer Check

YES
Replace the

Corresponding Bit
in L-Stack with

<Checked>

NO

NO

A Successful
FetchEnd

YES

NO

Bytecode
In D-Set

Bytecode
In I-Set

Bytecode
In T-Set

39

• A Simple Example

1. Configuration:

T-SET = {"GETFIELDP_FAST", "PUTFIELD_FAST" }

D-SET = {"ALOAD", "ALOAD_0", "ALOAD_1", "DUP"}

I-SET = {"ASTORE", "STORE", "ISTORE_0", "ISTORE_1"}

Pick L-Stack as a 5-height stack

Pick B-Array as a 4-bit-mask array

2. Given Code Sequence Within an IR-block (see Table 3-1):

NT: Not Tracked

NC: Not Checked (or Un-Checked)

C: Checked

Table 3-1. An Example of Rule-based Null Pointer Check Elimination

In the above example, we observe that the last bytecode, IASTORE, also receives a

reference as its first input parameter. However, to support bytecode instructions of this

type, such as IALOAD and IASTORE, our basic design needs to be extended somewhat.

Byte-code Stack Height
(after execution)

L-Stack
(after execution)

B-Array
(after execution)

Perform
Null Pointer
Check

<Initialize> 0 {NT,NT,NT,NT, NT} {NC, NC, NC, NC}
ILOAD xxx 1 {NT,NT,NT,NT, NT} {NC, NC, NC, NC}
ALOAD_1 2 {NT, 1, NT, NT, NT} {NC, NC, NC, NC}
GETFIELDP_FAST
xxx

2 {NT, 1, NT, NT, NT} {NC, C, NC, NC} YES

IF_ICMPLT xxx 0 {NT, 1, NT, NT, NT} {NC, C, NC, NC}
ALOAD_1 1 {1, 1, NT, NT, NT} {NC, C, NC, NC}
ILOAD_2 2 {1, 1, NT, NT, NT} {NC, C, NC, NC}
PUTFIELD_FAST
xxx

0 {1, 1, NT, NT, NT} {NC, C, NC, NC} NO

ICONST_2 1 {1, 1, NT, NT, NT} {NC, C, NC, NC}
ISTORE_1 0 {1, 1, NT, NT, NT} {NC, NC, NC, NC}
ALOAD_0 1 {0, 1, NT, NT, NT} {NC, NC, NC, NC}
GETFIELDP_FAST
0x04

1 {0, 1, NT, NT, NT} {C, NC, NC,NC} YES

ICONST_0 2 {0, 1, NT, NT, NT} {C, NC, NC,NC}
ICONST_1 3 {0, 1, NT, NT, NT} {C, NC, NC,NC}
IASTORE 0 {0, 1, NT, NT, NT} {C, NC, NC,NC} YES

40

Conceptually, an additional stack and an additional bit-mask array must be added to track

the field index and the field status respectively, just as L-Stack and B-Array track the local

variable number and the local variable status. Detailed description on the algorithm of our

extended design is lengthy and therefore is skipped over.

3.5 ARM/Thumb Instruction Set Selection

In order to evaluate the effectiveness of dual instruction set, we choose ARM/Thumb

as our target for native code generation. General discussion on ARM and Thumb

instruction sets can be found in [6][34]. In this section, we only discuss their differences

that relate to our native code generator design.

Register Pressure

In ARM mode, there are 16 registers (R0 ~ R15) available. Excluding R15 (PC:

program counter), R14 (LR: link register), and R13 (SP: stack pointer), there are still 13

registers that can be freely used for register allocation/assignment. But since our design

involves relative addressing that is local-variable-based (see Section 3.3.1), we devote R0

to storing the starting address of the local variable array. Overall, we have 12 registers left.

In Thumb mode, only 8 registers (R0 ~ R7) can be used without restrictions. Excluding

R0, there only remains 7 registers. Therefore, as far as register pressure is concerned, a

program compiled in Thumb instruction set will have more load/store instructions for

register restoration/spilling than that in ARM.

Instruction Selection

Static compilers in general environment invest much time in instruction selection.

Indeed, selecting faster instructions will improve compiled code quality in terms of

execution speed. However, due to the demands for fast compilation, our native code

generator will only select essential types of instructions for code generation. Here the most

important issue is on the width of immedaite field.

41

In common register-set design, the source fields of instructions may be specified as

immediate fields. That is, immediate values or constants within range can be directly

encoded in these fields. For those immediate values that exceed the maximum range of the

fields, load instructions are needed to retrieve immediate values from memory to registers

before these values are used.

Because Thumb instruction set is 16-bit, there is no much space for immediate values

when compared with 32-bit ARM instruction set. It seems that insufficient immediate field

width may have a great influence on the code quality of the compiled code.

In Table 3-2, we list major types of selected instructions used in our native code

generator, thier immediate field widths, their addressing modes (if needed), and thier

addressing ranges (if needed). According to the table, differences in ARM/Thumb come

from three types of instructions. For detailed explanation, the branch type instruction is

used for branching within a method. The PC-relative load/store instruction is used for

retrieving constants. The base-addressing load/store instruction is used for accessing the

local variables and the operand stack.

Table 3-2. Immediate Fields of Major Instruction Types

Instructions Type
Immediate Field
In Thumb

Immediate Field
in ARM

MOV imm8 imm8

MUL N/A N/A

ADD
SUB

imm8 imm8

LSR
LSL

imm5 imm5

CMP imm8 imm8

B s_imm11
(+-2048 bytes)

imm24
(+-32 Mbytes)

LD (PC-relative)
ST (PC-relative)

imm8
(+1024 bytes)

imm12
(+-4096 bytes)

LD (base addressing)
ST (base addressing)

imm5
(+128 bytes)

imm12
(+-4096 bytes)

42

Chapter 4 Experiments

This chapter is devoted to experiments. We first describe our set-up environment for

experiments. Next, appropriate benchmarks are chosen for performance evaluation.

Finally, experiment results including speed performance and memory usage are exhibited.

4.1 Experiment Environment

Our KJITC is designed and implemented based on version 1.0.4 of Sun's KVM, the

reference implementation of J2ME CLDC. For our research usage, the KVM is ported to

ARM's ADS1.2, an development environment which includes compiler, assembler,

debugger, and instruction set simulator. For compiling Java benchmark programs and

KVM's class libraries, the version of the Java compiler adopted is Sun's J2SDK1.4.2_03.

For compiling KVM and our KJITC, maximum optimization is specified with -O2 option,

and other options remain default. Last but not least, our target architecture is ARM7TDMI,

an uncached Harvard architecture which supports both ARM/Thumb instruction sets.

4.2 Benchmarks

Due to the limited APIs that J2ME CLDC specifies, common Java benchmarks can not

be applied in our experiment environment. By referring to related academic researches, we

choose Embedded CaffeineMark 3.0 [35] for our experiments.

The Embedded CaffeineMark 3.0 uses 6 tests to measure embedded JVM performance

in various aspects. Excluding the floating point test which is not supported in CLDC 1.0,

the remaining 5 tests are adopted (see Table 4-1).

43

The original design of Embedded CaffeineMark 3.0 is each test executes for a fixed

amount of time, and the reported score is propotional to the number of times the test is

executed. There is a problem that the instruction set simulator on which benchmarks run

may report inaccurate system timing information to executed benchmarks. It may cause the

reported scores float. In order to solve this problem, we modify the 5 tests to make each of

time execute for some fixed workload. And therefore we measure the cycle counts of each

test for performance evaluation.

4.3 Experiment Results

4.3.1 Effects of KJITC Optimizations

This section is to test the effectiveness of major optimizations employed in our KJITC.

The optimizations include instruction folding for stack operations and rule-based null

pointer check elimination. Since optimizations are interrelated, it is not possible to pre-

cisely break down effects of all optimizations into the sum of each individual optimization.

Therefore we measure the speed performance of all optimizations enabled and the speed

performance of all but the intended one optimization. Here the embedded JVM is compiled

in ARM and the KJITC also targets ARM.

Table 4-1. Selected Tests of Embedded CaffeineMark 3.0

Name Brief Description

Sieve The classic sieve of Eratosthenes finds prime
numbers.

Loop The loop test uses sorting and sequence generation as
to measuree compiler optimization of loops.

Logic Tests the speed with which the virtual machine
executes decision-making instructions.

Method The Method test executes recursive functional calls to
see how well the VM handles method calls.

String String comparison and concatenation.

44

Table 4-2 lists total execution cycles of different optimization setups and of a pure inter-

preter.

Table 4-2. Execution Cycles of Different Setups

Figure 4-1 shows the speedup of the optimization setups over the pure interpreter, for

ease of understanding. The key observation is that instruction folding has more impact than

null pointer check elimination. Also to be noted is that due to their program characteristics,

logic and method tests exhibit little speed performance improvement.

Figure 4-1. Effects of Optimizations

Interpreter
All But

Instruction Folding

All But
Null Pointer Check

Elimination
All

Sieve 944,892,616307,787,761264,466,266250,364,494

Loop 995,035,635237,416,508195,197,888166,003,256

Logic 984,611,450829,966,475812,832,280812,837,920

String 996,478,059324,003,198247,158,210246,347,558

Method 1,019,476,798917,606,695887,267,272884,642,630

Average 988,098,912523,356,127481,384,383472,039,172

4.03

5.99

3.07

4.19

3.08

1.19 1.11

1.89

3.57

5.10

2.05

1.151.21

2.09

1.15

4.05

1.21

3.77

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

SieveLoop LogicStringMethodAverage

S
p
e
e
d
u
p

All But Instruction FoldingAll But Null Pointer Check EliminationAll

45

4.3.2 Effects of Dual Instruction Set Selection

To evaluate the impact of dual instruction set selection, we measure the total execution

cycles of the following six configurations in Table 4-3. The first two configurations refer

to JVMs only with pure interpreters while the last four configurations refer to mixed-mode

JVMs that combine interpreters and JIT compilers.

1. Pure Thumb Interpreter (T)

2. Pure ARM Interpreter (A)

3. Thumb JVM + Thumb Compiled Code (T + T)

4. Thumb JVM + ARM Compiled Code (T + A)

5. ARM JVM + Thumb Compiled Code (A + T)

6. ARM JVM + ARM Compiled Code (A + A)

Table 4-3. Execution Cycles of Six Configurations

Figure 4-2 shows the overall total cycle counts of each configuration versus each test

in bar graph. The rightmost test is the average of the five tests. Some of our observations

are:

• Pure ARM interpreter is faster than pure Thumb interpreter by about 50%.

• Based on either interpreter (ARM or Thumb), mixed-mode configurations with ARM

Compiled Code and Thumb Compiled Code achieve near performance.

• For the Logic test and Method test, the speed improvement of configurations with

mixed-mode JVMs over pure interpreters is much less than that for the other three tests.

Benchmarks
Total Cycle
Counts (T)

Total Cycle
Counts (A)

Total Cycle
Counts (T + A)

Total Cycle
Counts (T + T)

Total Cycle
Counts (A + A)

Total Cycle
Counts (A + T)

Sieve 1,463,577,888944,892,616276,376,632279,233,790250,356,226253,212,290

Loop 1,567,619,254995,035,635171,504,497174,753,164165,995,052169,242,089

Logic 1,553,416,759984,611,4501,190,226,7341,190,223,173812,846,706812,842,222

String 1,522,786,128996,478,059257,126,996260,129,554246,306,962249,308,107

Method 1,501,301,7831,019,476,7981,038,239,4601,038,237,506884,634,144884,631,615

Average 1,521,740,362988,098,912586,694,864588,515,437472,027,818473,847,265

46

Figure 4-2. Speed Performance of All Configurations

Among the total execution time, JIT compilation time deserves our attention since the

cost for compilation is expected to be low enough. For this reason, we normalize compila-

tion cost for a single bytecode as Figure 4-3 depicts. A point to be noted is the compilation

cost of the JIT compiler is the sum of the IR generator cost and the corresponding code gen-

erator cost.

Figure 4-3. Compilation Cost of KJITC

Speed Performance

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Sieve Loop Logic String Method Average

T
o

ta
l E

xe
cu

ti
o

n
 T

im
e

(M
ill

io
n

 C
yc

le
s)

Pure Thumb Interpreter (T) Pure ARM Interpreter (A)
Thumb JVM + Thumb Compiled Code (T + T) Thumb JVM + ARM Compiled Code (T + A)
ARM JVM + Thumb Compiled Code (A + T) ARM JVM + ARM Compiled Code (A + A)

Compilation Cost

0

100

200

300

400

500

Sieve Loop Logic StringMethodAverage

C
y
c
l
e
s

P
e
r

B
y
t
e
c
o
d
e

IR GeneratorThumb Code GeneratorARM Code Generator

Thumb JIT CompilerARM JIT Compiler

47

Now we are to consider the static memory usage of each configuration. As shown in

Figure 4-4, our ARM JIT compiler take about 23 Kbytes, while Thumb JIT compiler takes

about 15 Kbytes. (To be more precise, the four mixed-mode configurations should also

consider extra 1~2 Kbytes expansion owing to hot spot detector, switch code, and etc.)

Figure 4-4. Static Memory Usage of All Configurations

Also the dynamic memory usage, by which we mean the compiled code size, of the two

JIT compilers is further taken into account. Figure 4-5 demonstrates that the dynamic

memory usage of Thumb over ARM is ranged from 60% to 75%, with the average being

about 68%.

Figure 4-5. Dynamic Memory Usage of the Two JIT Compilers

Static Memroy Usage

222.31
192.24

22.7914.73

0

50

100

150

200

250

300

T A T + TT + AA + TA + A

C
o
d
e

S
i
z
e

(
K
B
y
t
e
s
)

InterpreterJIT Compiler

Dynamic Memory Usage

0

1000

2000

3000

4000

5000

SieveLoopLogicStringMethodAverage

C
o
d
e

S
i
z
e

(
B
y
t
e
s
)

Thumb Compiled CodeARM Compiled Code

48

Finally, in order to evaluate the relative cost-performance of the four mixed-mode

configurations, we draw plots of speed increment and total code size increment respectively

based on ARM interpreter and on Thumb interpreter (see Figure 4-6). Judged by the two

criteria - higher speed increment and lower code size increment, the configuration of ARM

interpreter with Thumb JIT compiler seems most cost-effective.

Figure 4-6. Speed Increment and Code Size Increment of Four Mixed-mode Configurations

158.57%159.38%

221.15% 222.38%

109.33%108.53%

68.42%67.90%

11.77% 17.90% 27.41% 33.54%

10.18% 15.48%1.96%-3.34%
-50.00%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

T+T T+A A+T A+A

P
e
r
c
e
n
t
a
g
e

o
f

I
n
c
r
e
m
e
n
t

Speed Increment (over Thumb Interpreter)
Speed Increment (over ARM Interpreter)
Code Size Increment (over Thumb Interpreter)
Code Size Increment (over ARM Interpreter)

49

Chapter 5
Conclusion and Future Work

In this research, our experiment results show that dual instruction set selection has great

influence on the performance of an interpreter. The speedup ratio of a pure interpreter-

based JVM of ARM over Thumb is about 50%. As far as speed performance is concerned,

the ARM interpreter is superior to the Thumb interpreter. However, the case is not hold for

the JIT compiler. In fact, the compiled code in ARM and Thumb both exhibit close perfor-

mance, with ARM compiled code only slightly faster (within 1%) than Thumb compiled

code. This result may be quite surprising.

Based on our observation, the Thumb code generator of our JIT compiler only generates

less efficient native code than the ARM code generator under either one of the following

two conditions. First, there is high register pressure in the Thumb JIT compiler. Second, IR

instructions involve immediate values that can not be directly encoded in immediate fields

of Thumb instructions. However, since experiment results imply that there is no significant

register pressure and the immediate field width is already enough for most cases, we can

conclude that static selection of the mixed-mode configuration, the ARM interpreter and

the Thumb JIT compiler, is most cost-effective for an embedded JVM. Therefore dual

instruction set is statically selected and no dynamic selection is necessary.

This selected configuration on average achieves 2.08 speedup with 10.18% code size

increment compared with an ARM interpreter-based JVM, and 3.21 speedup with 27.41%

code size increment compared with a Thumb interpreter-based JVM. We also expand one

more column from Table 2-1 to compare our KJITC with then others and then remake a

new table as Table 5-1.

50

Table 5-1. Comparison of KJITC with Other JIT Compilers

For future research directions, more optimizations may be incorporated into our KJITC.

One optimization that deserves most attention is method inlining. According to our exper-

iment results shown in Figure 4-2, performance improvement on the method test is not sig-

nificant since there is not much optimization space for tiny method calls in our KJITC.

Employing method inlining can be effective under such circumstance.

Study on energy consumption in an embedded mixed-mode JVM is also an interesting

research topic. One recent research [36] only discusses energy consumption breakdown of

an embedded interpreter-based JVM. As a first thought, our embedded mixed-mode JVM

may consume less energy than an interpreter-based JVM for speed performance improve-

ment also leads to energy consumption reduction. However, a more precise method is

required to estimate energy consumption of our different configurations that concern both

ARM and Thumb.

JIT Sun - Server Sun - Client SNU Latte Stanford MicroJIT KJITC
Source C++ C++ C C C

IR Format SSA dataflow Simple Dataflow Dataflow Simple
Major Compiler
Passes Interative 4 7 4 2
Register
Allocation Graph coloring 1-pass dynamic 2-pass dynamic 1-pass dynamic 1-pass dynamic

Major
Optimizations

1. loop invariant code motion
2. global value numbering
3. constant propagation
4. inlining & specialization
5. instruction scheduling

1. block merging/elimination
2. simple constant propagation
3. inlining & specialization

1. EBB value numbering
2. EBB constant propagation
3. loop invariant code motion
4. inlining & specialization

1. CSE
2. copy propagation
3. constant propagaron
4. loop invariant code motion
5. inlining & specialization
6. instruction scheduling

1. simple constant propagation
2. simple constant folding
3. strength reduction
4. null pointer check elimination
5. instruction folding for stack
operations

Compiler Size
1.5MB (Sparc) 700KB (Sparc) 325KB (Sparc) 200KB (Sparc)

15KB (Thumb)
23KB (ARM)

Compilation Cost
(Per Bytecode) ~100,000 Cycles ~8,300 Cycles ~20,000 Cycles ~5,000 Cycles

330 Cycles (Thumb)
343 Cycles (ARM)

51

References

[1] "J2ME Building Blocks for Mobile Devices," Sun Microsystems, May 2000

[2] G. Muller, B. Moura, F. Bellard, and C. Consel, "Harissa: A Flexible and Efficient
Java Environment Mixing Bytecode and Compiled Code," Proc. of USENIX
COOTS'97, 1997

[3] O. Agesen and D. Detlefs, "Mixed-mode Bytecode Execution," TR-2000-87, Sun
Microsystems, June 2000

[4] V. Colin de Verdiere, Sebastien Cros, C. Fabre, R. Guider, S. Yovine, "Speedup
Prediction for Selective Compilation of Embedded Java Programs," Proc. of
EMSOFT'02, October 2002

[5] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, A. Nicolau, "A Design Space
Exploration Framework for Reduced Bit-width Instruction Set Architecture (rISA)
Design," Proc. of ISSS’02, October 2002

[6] S. Furber, ARM System-On-Chip Architecture, 2nd Edition, Addison Wesley, 2000

[7] D. Sweetman, See MIPS Run, Morgan Kaufmann, 1999

[8] B. Venners, Inside the Java Virtual Machine, 2nd Edition, McGraw-Hill, 2000

[9] X. Leroy, "Java Bytecode Verification: Algorithm and Formalizations," Journal of
Automated Reasoning 30(3-4):235-269, 2003

[10] J. Meyer, T.Downing, Java Virtual Machine, O’Reilly, 1997

[11] M. Tremblay, M. O’Connor, "PicoJava: A Hardware Implementation of the Java
Virtual Machine," Sun Microsystems, 1996

52

[12] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 2nd Edition, Addi-
son Wesley, 1999

[13] W. H. Chiao, ILP Exploration of Java Stack Operations, Master Thesis, CSIE,
NCTU, 2001

[14] ARM Jazelle Technology, http://www.arm.com/products/solutions/Jazelle.html

[15] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H.
Komatsu, T. Nakatani, "Overview of the IBM Java Just-In-Time Compiler," IBM
Systems Journal, Java Performance Issue, Vol 39, No 1, Februrary 2000

[16] Ali-Reza Adl-Tabatabai, M. Cierniak, G. Y. Lueh, V. M. Parikh, J. M. Stichnoth,
"Fast, Effective Code Generation in a Just-In-Time Java Compiler," Proc. of ACM
SIGPLAN’98 Conference on PLDI, June 1998

[17] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T.
Onodera, H. Komatsu, T. Nakatani, "Design, Implementation, and Evaluation of
Optimizations in a Just-In-Time Compiler," Proc. of ACM Java Grande Confer-
ence, June 1999

[18] Alfred V. Aho, Ravi Sethi, Jeffrey d. Ullman, Compilers: Principles, Techniques,
and Tools, Addison Wesley, 1985

[19] Steven. S. Muchnick, Advanced Compiler Design and Implementation, Morgan
Kaufmann, 1997

[20] STMicroelectronics, ST100 Technical Manual, http://www.st.com

[21] ARC Cores, ARCtangent-A5 Microprocessor Technical Manual,
http://www.arccores.com

[22] A. Krishnaswamy, R. Gupta, "Profile Guided Selection of ARM and Thumb
Instructions," Proc. of LCTES’02/SCOPES’02, June 2002

[23] S. Lee, J. Lee, S. L. Min, J. Hiser, J. W. Davidson, "Code Generation for a Dual
Instruction Set Processor Based on Selective Code Transformation," Proc. of
SCOPES’03, September 2003

53

[24] D. Gregg, M. A. Ertl, A. Krall, "Implementing an Efficient Java Interpreter," Proc.
of HPCN’01, June 2001

[25] A. Beatty, K. Casey, D. Gregg, A. Nisbet, "An Optimized Java Interpreter for Con-
nected Devices and Embedded Systems," Proc. of ACM SAC’03, March 2003

[26] E. Gagnon, L. Hendren, "Effective Inline-Threaded Interpretation of Java Bytecode
Using Preparation Sequences," Proc. of CC’03/ETAPS’03, January 2003

[27] B. Stephenson, W. Holst, "Multicode: Optimizing Virtual Machines Using Byte-
code Sequences," Proc. of ACM OOPSLA’03, October 2003

[28] Venugopal K S, G. Manjunath, V. Krishan, "sEc: A Portable Interpreter Optimizing
Technique for Embedded Java Virtual Machine," Proc. of USENIX JVM’02, August
2002

[29] M. Chen, K. Olukotun, "Targeting Dynamic Compilation for Embedded Environ-
ments," Proc. of USENIX JVM’02, August 2002

[30] "Connected Limited Device Configuration Specification," Verison 1.1, Sun
Microsystems, March 2002

[31] L. R. Ton, L. C. Chang, M. F. Kao, H. M. Tseng, S. S. Shang, R. L. Ma, D. C.
Wang, C. P. Chung, "Instruction Folding in Java Processor," Proc. of ICPADS'97,
December 1997

[32] L. C. Chang, L. R. Ton, M. F. Kao, C. P. Chung, "Stack Operations Folding in Java
Processors," Proc. of IEE Computers and Digital Techniques, September 1998

[33] C. N. Fischer, R. J. LeBlanc, Jr., Crafting a Compiler with C, The Benjamin/
Cummings Publishing, 1991

[34] D. Seal, ARM Architecture Reference Manual, 2nd Edition, Addison Wesley,
December 2000

[35] Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark, http://
www.webfayre.com, 1997

[36] S. Lafond, J. Lilius, "An Opcode Level Energy Consumption Model for a Java Vir-
tual Machine," Proc. of USENIX VM’04, May 2004

54

Appendix
Bytecode Instruction Table

Following is a table that lists all bytecode instructions of our embedded mixed-mode

JVM and their short descriptions. It shows whether a bytecode instruction is compiled or

not in our current implementation, and corresponding PC and SP offset adjustments. SP

offset adjustments can be further expressed in three parts. "Plus" is the number of stack ele-

ments the bytecode instruction produces; "Minus" is the number of stack elements the byte-

code instruction consumes. "Overall" equals to the value of "Plus" subtracted from

"Minus", meaning whether the stack pointer should grow upward or downward. Besides,

some offset adjustments can not be determined at static time, and therefore are labeled as

"runtime".

It is worth noting that 32 bytecode instructions, from opcode 224 to opcode 255, are

originally unused in KVM, but are used in our embedded mixed-mode JVM as marks to

identify existing compiled code blocks for native execution. Some fields can not applicable

to unused and unneeded bytecode instructions, and are intentionally left black for clarity

therefore.

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

0 nop do nothing stack manipulation Ο 1 0 0 0

1 aconst_null push null pushing constants onto
the stack

Ο 1 1 0 1

2 iconst_m1 push int const -1 pushing constants onto
the stack

Ο 1 1 0 1

3 iconst_0 push int const 0 pushing constants onto
the stack

Ο 1 1 0 1

4 iconst_1 push int const 1 pushing constants onto
the stack

Ο 1 1 0 1

55

5 iconst_2 push int const 2 pushing constants onto
the stack

Ο 1 1 0 1

6 iconst_3 push int const 3 pushing constants onto
the stack

Ο 1 1 0 1

7 iconst_4 push int const 4 pushing constants onto
the stack

Ο 1 1 0 1

8 iconst_5 push int const 5 pushing constants onto
the stack

Ο 1 1 0 1

9 lconst_0 push long const 0 pushing constants onto
the stack

Ⅹ 1 2 0 2

10 lconst_1 push long const 1 pushing constants onto
the stack

Ⅹ 1 2 0 2

11 fconst_0 push float 0.0 pushing constants onto
the stack

Ⅹ 1 1 0 1

12 fconst_1 push float 1.0 pushing constants onto
the stack

Ⅹ 1 1 0 1

13 fconst_2 push float 2.0 pushing constants onto
the stack

Ⅹ 1 1 0 1

14 dconst_0 push double 0.0 pushing constants onto
the stack

Ⅹ 1 2 0 2

15 dconst_1 push double 1.0 pushing constants onto
the stack

Ⅹ 1 2 0 2

16 bipush push byte pushing constants onto
the stack

Ο 2 1 0 1

17 sipush push short pushing constants onto
the stack

Ο 3 1 0 1

18 ldc push item from runtime
constant pool

pushing constants onto
the stack

Ο 2 1 0 1

19 ldc_w push item from runtime
constant pool (wide index)

pushing constants onto
the stack

Ⅹ 3 1 0 1

20 ldc2_w push long or double from
runtime constant pool
(wide index)

pushing constants onto
the stack

Ⅹ 3 2 0 2

21 iload load int from local vari-
able

pushing local variables
onto the stack

Ο 2 1 0 1

22 lload load long from local vari-
able

pushing local variables
onto the stack

Ⅹ 2 2 0 2

23 fload load float from local vari-
able

pushing local variables
onto the stack

Ⅹ 2 1 0 1

24 dload load double from local
variable

pushing local variables
onto the stack

Ⅹ 2 2 0 2

25 aload load reference from local
variable

pushing local variables
onto the stack

Ο 2 1 0 1

26 iload_0 load int from local vari-
able 0

pushing local variables
onto the stack

Ο 1 1 0 1

27 iload_1 load int from local vari-
able 1

pushing local variables
onto the stack

Ο 1 1 0 1

28 iload_2 load int from local vari-
able 2

pushing local variables
onto the stack

Ο 1 1 0 1

29 iload_3 load int from local vari-
able 3

pushing local variables
onto the stack

Ο 1 1 0 1

30 lload_0 load long from local vari-
able 0

pushing local variables
onto the stack

Ⅹ 1 2 0 2

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

56

31 lload_1 load long from local vari-
able 1

pushing local variables
onto the stack

Ⅹ 1 2 0 2

32 lload_2 load long from local vari-
able 2

pushing local variables
onto the stack

Ⅹ 1 2 0 2

33 lload_3 load long from local vari-
able 3

pushing local variables
onto the stack

Ⅹ 1 2 0 2

34 fload_0 load float from local vari-
able 0

pushing local variables
onto the stack

Ⅹ 1 1 0 1

35 fload_1 load float from local vari-
able 1

pushing local variables
onto the stack

Ⅹ 1 1 0 1

36 fload_2 load float from local vari-
able 2

pushing local variables
onto the stack

Ⅹ 1 1 0 1

37 fload_3 load float from local vari-
able 3

pushing local variables
onto the stack

Ⅹ 1 1 0 1

38 dload_0 load double from local
variable 0

pushing local variables
onto the stack

Ⅹ 1 2 0 2

39 dload_1 load double from local
variable 1

pushing local variables
onto the stack

Ⅹ 1 2 0 2

40 dload_2 load double from local
variable 2

pushing local variables
onto the stack

Ⅹ 1 2 0 2

41 dload_3 load double from local
variable 3

pushing local variables
onto the stack

Ⅹ 1 2 0 2

42 aload_0 load reference from local
variable 0

pushing local variables
onto the stack

Ο 1 1 0 1

43 aload_1 load reference from local
variable 1

pushing local variables
onto the stack

Ο 1 1 0 1

44 aload_2 load reference from local
variable 2

pushing local variables
onto the stack

Ο 1 1 0 1

45 aload_3 load reference from local
variable 3

pushing local variables
onto the stack

Ο 1 1 0 1

46 iaload load int from array retrieving values from
arrays

Ο 1 1 2 -1

47 laload load long from array retrieving values from
arrays

Ⅹ 1 2 2 0

48 faload load float from array retrieving values from
arrays

Ⅹ 1 1 2 -1

49 daload load double from array retrieving values from
arrays

Ⅹ 1 2 2 0

50 aaload load reference from array retrieving values from
arrays

Ο 1 1 2 -1

51 baload load byte or boolean from
array

retrieving values from
arrays

Ο 1 1 2 -1

52 caload load char from array retrieving values from
arrays

Ο 1 1 2 -1

53 saload load short from array retrieving values from
arrays

Ο 1 1 2 -1

54 istore store int into local variable popping stack values into
local variables

Ο 2 0 1 -1

55 lstore store long into local vari-
able

popping stack values into
local variables

Ⅹ 2 0 2 -2

56 fstore store float into local vari-
able

popping stack values into
local variables

Ⅹ 2 0 1 -1

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

57

57 dstore store double into local
variable

popping stack values into
local variables

Ⅹ 2 0 2 -2

58 astore store reference into local
variable

popping stack values into
local variables

Ο 2 0 1 -1

59 istore_0 store int into local variable
0

popping stack values into
local variables

Ο 1 0 1 -1

60 istore_1 store int into local variable
1

popping stack values into
local variables

Ο 1 0 1 -1

61 istore_2 store int into local variable
2

popping stack values into
local variables

Ο 1 0 1 -1

62 istore_3 store int into local variable
3

popping stack values into
local variables

Ο 1 0 1 -1

63 lstore_0 store long into local vari-
able 0

popping stack values into
local variables

Ⅹ 1 0 2 -2

64 lstore_1 store long into local vari-
able 1

popping stack values into
local variables

Ⅹ 1 0 2 -2

65 lstore_2 store long into local vari-
able 2

popping stack values into
local variables

Ⅹ 1 0 2 -2

66 lstore_3 store long into local vari-
able 3

popping stack values into
local variables

Ⅹ 1 0 2 -2

67 fstore_0 store float into local vari-
able 0

popping stack values into
local variables

Ⅹ 1 0 1 -1

68 fstore_1 store float into local vari-
able 1

popping stack values into
local variables

Ⅹ 1 0 1 -1

69 fstore_2 store float into local vari-
able 2

popping stack values into
local variables

Ⅹ 1 0 1 -1

70 fstore_3 store float into local vari-
able 3

popping stack values into
local variables

Ⅹ 1 0 1 -1

71 dstore_0 store double into local
variable 0

popping stack values into
local variables

Ⅹ 1 0 2 -2

72 dstore_1 store double into local
variable 1

popping stack values into
local variables

Ⅹ 1 0 2 -2

73 dstore_2 store double into local
variable 2

popping stack values into
local variables

Ⅹ 1 0 2 -2

74 dstore_3 store double into local
variable 3

popping stack values into
local variables

Ⅹ 1 0 2 -2

75 astore_0 store reference into local
variable 0

popping stack values into
local variables

Ο 1 0 1 -1

76 astore_1 store reference into local
variable 1

popping stack values into
local variables

Ο 1 0 1 -1

77 astore_2 store reference into local
variable 2

popping stack values into
local variables

Ο 1 0 1 -1

78 astore_3 store reference into local
variable 3

popping stack values into
local variables

Ο 1 0 1 -1

79 iastore store into int array storing values in arrays Ο 1 0 3 -3

80 lastore store into long array storing values in arrays Ⅹ 1 0 4 -4

81 fastore store into float array storing values in arrays Ⅹ 1 0 3 -3

82 dastore store into double array storing values in arrays Ⅹ 1 0 4 -4

83 aastore store into reference array storing values in arrays Ⅹ 1 0 3 -3

84 bastore store into byte or boolean
array

storing values in arrays Ⅹ 1 0 3 -3

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

58

85 castore store into char array storing values in arrays Ⅹ 1 0 3 -3

86 sastore store into short array storing values in arrays Ⅹ 1 0 3 -3

87 pop pop the top operand stack
value

stack manipulation Ο 1 0 1 -1

88 pop2 pop the top one or two
operand stack values

stack manipulation Ο 1 0 2 -2

89 dup duplicate the top operand
stack value

stack manipulation Ο 1 2 1 1

90 dup_x1 duplicate the top operand
stack value and insert two
values down

stack manipulation Ο 1 3 2 1

91 dup_x2 duplicate the top operand
stack value and insert two
or three values down

stack manipulation Ο 1 4 3 1

92 dup2 duplicate the top one or
two operand stack values

stack manipulation Ο 1 4 2 2

93 dup2_x1 duplicate the top one or
two operand stack values
and insert two or three
values down

stack manipulation Ο 1 5 3 2

94 dup2_x2 duplicate the top one or
two operand stack values
and insert two, three, or
four values down

stack manipulation Ο 1 6 4 2

95 swap swap the top two operand
stack values

stack manipulation Ο 1 1 1 0

96 iadd add int arithmetic Ο 1 1 2 -1

97 ladd add long arithmetic Ⅹ 1 2 4 -2

98 fadd add float arithmetic Ⅹ 1 1 2 -1

99 dadd add double arithmetic Ⅹ 1 2 4 -2

100 isub subtract int arithmetic Ο 1 1 2 -1

101 lsub subtract long arithmetic Ⅹ 1 2 4 -2

102 fsub subtract float arithmetic Ⅹ 1 1 2 -1

103 dsub subtract double arithmetic Ⅹ 1 2 4 -2

104 imul multiply int arithmetic Ο 1 1 2 -1

105 lmul multiply long arithmetic Ⅹ 1 2 4 -2

106 fmul multiply float arithmetic Ⅹ 1 1 2 -1

107 dmul multiply double arithmetic Ⅹ 1 2 4 -2

108 idiv divide integer arithmetic Ⅹ 1 1 2 -1

109 ldiv divide long arithmetic Ⅹ 1 2 4 -2

110 fdiv divide float arithmetic Ⅹ 1 1 2 -1

111 ddiv divide double arithmetic Ⅹ 1 2 4 -2

112 irem remainder int arithmetic Ⅹ 1 1 2 -1

113 lrem remainder long arithmetic Ⅹ 1 2 4 -2

114 frem remainder float arithmetic Ⅹ 1 1 2 -1

115 drem remainder double arithmetic Ⅹ 1 2 4 -2

116 ineg negate int arithmetic Ⅹ 1 1 1 0

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

59

117 lneg negate long arithmetic Ⅹ 1 2 2 0

118 fneg negate float arithmetic Ⅹ 1 1 1 0

119 dneg negate double arithmetic Ⅹ 1 2 2 0

120 ishl shift left int logical Ο 1 1 2 -1

121 lshl shift left long logical Ⅹ 1 2 3 -1

122 ishr arithmetic shift right int logical Ο 1 1 2 -1

123 lshr arithmetic shift right long logical Ⅹ 1 2 3 -1

124 iushr logical shift right int logical Ο 1 1 2 -1

125 lushr logical shift right long logical Ⅹ 1 2 3 -1

126 iand boolean and int logical Ο 1 1 2 -1

127 land boolean and long logical Ⅹ 1 2 4 -2

128 ior boolean or int logical Ο 1 1 2 -1

129 lor boolean or long logical Ⅹ 1 2 4 -2

130 ixor boolean xor int logical Ο 1 1 2 -1

131 lxor boolean xor long logical Ⅹ 1 2 4 -2

132 iinc increment local variable
by constant

miscellaneous local varib-
ale instructions

Ο 3 0 0 0

133 i2l convert int to long conversions Ⅹ 1 2 1 1

134 i2f convert int to float conversions Ⅹ 1 1 1 0

135 i2d convert int to double conversions Ⅹ 1 2 1 1

136 l2i convert long to int conversions Ⅹ 1 1 2 -1

137 l2f convert long to float conversions Ⅹ 1 1 2 -1

138 l2d convert long to double conversions Ⅹ 1 2 2 0

139 f2i convert float to int conversions Ⅹ 1 1 1 0

140 f2l convert float to long conversions Ⅹ 1 2 1 1

141 f2d convert float to double conversions Ⅹ 1 2 1 1

142 d2i convert double to int conversions Ⅹ 1 1 2 -1

143 d2l convert double to long conversions Ⅹ 1 2 2 0

144 d2f convert double to float conversions Ⅹ 1 1 2 -1

145 i2b convert int to byte conversions Ⅹ 1 1 1 0

146 i2c convert int to char conversions Ⅹ 1 1 1 0

147 i2s convert int to short conversions Ⅹ 1 1 1 0

148 lcmp compare long comparisons Ⅹ 1 1 4 -3

149 fcmpl compare float comparisons Ⅹ 1 1 2 -1

150 fcmpg compare float comparisons Ⅹ 1 1 2 -1

151 dcmpl compare double comparisons Ⅹ 1 1 4 -3

152 dcmpg compare double comparisons Ⅹ 1 1 4 -3

153 ifeq branch if int comparison
with zero succeeds (eq)

conditional branches Ο 3 0 1 -1

154 ifne branch if int comparison
with zero succeeds (ne)

conditional branches Ο 3 0 1 -1

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

60

155 iflt branch if int comparison
with zero succeeds (lt)

conditional branches Ο 3 0 1 -1

156 ifge branch if int comparison
with zero succeeds (ge)

conditional branches Ο 3 0 1 -1

157 ifgt branch if int comparison
with zero succeeds (gt)

conditional branches Ο 3 0 1 -1

158 ifle branch if int comparison
with zero succeeds (le)

conditional branches Ο 3 0 1 -1

159 if_icmpeq branch if int comparison
succeeds (eq)

conditional branches Ο 3 0 2 -2

160 if_icmpne branch if int comparison
succeeds (ne)

conditional branches Ο 3 0 2 -2

161 if_icmplt branch if int comparison
succeeds (lt)

conditional branches Ο 3 0 2 -2

162 if_icmpge branch if int comparison
succeeds (ge)

conditional branches Ο 3 0 2 -2

163 if_icmpgt branch if int comparison
succeeds (gt)

conditional branches Ο 3 0 2 -2

164 if_icmple branch if int comparison
succeeds (le)

conditional branches Ο 3 0 2 -2

165 if_acmpeq branch if reference com-
parision succeeds (eq)

conditional branches Ο 3 0 2 -2

166 if_acmpne branch if reference com-
parision succeeds (neq)

conditional branches Ο 3 0 2 -2

167 goto branch always unconditional branches
and subroutines

Ο 3 0 0 0

168 jsr jump subroutine; not
needed by KVM

unconditional branches
and subroutines

Ⅹ

169 ret return from subroutine;
not needed by KVM

unconditional branches
and subroutines

Ⅹ

170 tableswitch access jump table by
index and jump

table jumping Ⅹ runtime 0 1 -1

171 lookupswitch access jump table by key
match and jump

table jumping Ⅹ runtime 0 1 -1

172 ireturn return int from method method return Ⅹ 1 0 1 -1

173 lreturn return long from method method return Ⅹ 1 0 2 -2

174 freturn return float from method method return Ⅹ 1 0 1 -1

175 dreturn return double from
method

method return Ⅹ 1 0 2 -2

176 areturn return reference from
method

method return Ⅹ 1 0 1 -1

177 return return void from method method return Ⅹ 1 0 0 0

178 getstatic get static field from class manipulating object fields Ⅹ 3 runtime 0 runtime

179 putstatic set static field in class manipulating object fields Ⅹ 3 0 runtime runtime

180 getfield fetch field from object manipulating object fields Ⅹ 3 runtime 0 runtime

181 putfield set field in object manipulating object fields Ⅹ 3 0 runtime runtime

182 invokevirtual invoke instance method;
dispatch based on class

method invocation Ⅹ 3 runtime runtime runtime

183 invokespecial invoke instance method method invocation Ⅹ 3 runtime runtime runtime

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

61

184 invokestatic invoke a class (static)
method

method invocation Ⅹ 3 runtime runtime runtime

185 invokeinterface invoke interface method method invocation Ⅹ 5 runtime runtime runtime

186 unused

187 new create new object creating objects Ⅹ 3 1 0 1

188 newarray create new array creating arrays Ⅹ 2 1 1 0

189 anewarray create new array of refer-
ence

creating arrays Ⅹ 3 1 1 0

190 arraylength get length of array miscellaneous array
instructions

Ⅹ 1 1 1 0

191 athrow throw exception or error exceptions Ⅹ 1 1 1 0

192 checkcast check whether object is of
given type

miscellaneous object
operations

Ⅹ 3 1 1 0

193 instanceof determine if object is of
given type

miscellaneous object
operations

Ⅹ 3 1 1 0

194 monitorenter enter monitor for object monitors Ⅹ 1 0 1 -1

195 monitorexit exit monitor for object monitors Ⅹ 1 0 1 -1

196 wide extend local variable
index by additional bytes

miscellaneous local varib-
ale instructions

Ⅹ runtime runtime runtime runtime

197 multianewarray create new multidimen-
tional array

creating arrays Ⅹ 4 1 runtime runtime

198 ifnull branch if reference null conditional branches Ο 3 0 1 -1

199 ifnonnull branch if reference not
null

conditional branches Ο 3 0 1 -1

200 goto_w branch always (wide
index)

unconditional branches
and subroutines

Ο 5 0 0 0

201 jsr_w jump subroutine (wide
index) ; not needed by
KVM

unconditional branches
and subroutines

Ⅹ

202 breakpoint
(reserved)

reserverd opcode for
debugging purpose

debugging Ⅹ 1 n/a n/a n/a

203 getfield_fast fast version of getfield manipulating object fields Ο 3 1 1 0

204 getfieldp_fast fast version of getfield manipulating object fields Ο 3 1 1 0

205 getfield2_fast fast version of getfield manipulating object fields Ⅹ 3 2 1 1

206 putfield_fast fast version of putfield manipulating object fields Ο 3 0 2 -2

207 putfield2_fast fast version of putfield manipulating object fields Ⅹ 3 0 3 -3

208 getstatic_fast fast version of getstatic manipulating object fields Ⅹ 3 1 0 1

209 getstaticp_fast fast version of getstatic manipulating object fields Ⅹ 3 1 0 1

210 getstatic2_fast fast version of getstatic manipulating object fields Ⅹ 3 2 0 2

211 putstatic_fast fast version of putstaic manipulating object fields Ⅹ 3 0 1 -1

212 putstatic2_fast fast version of putstaic manipulating object fields Ⅹ 3 0 2 -2

213 unused

214 invokevirtual_f
ast

fast version of invokevir-
tual

method invocation Ⅹ 3 runtime runtime runtime

215 invokespecial_f
ast

fast version of invokespe-
cial

method invocation Ⅹ 3 runtime runtime runtime

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

62

216 invokestatic_fas
t

fast version of invoke-
static

method invocation Ⅹ 3 runtime runtime runtime

217 invokeinterface
_fast

fast version of
invokeinterface

method invocation Ⅹ 5 runtime runtime runtime

218 new_fast fast version of new creating objects Ⅹ 3 1 0 1

219 anewarray_fast fast version of anewarray creating arrays Ⅹ 3 1 1 0

220 multianewarray
_fast

fast version of multi-
anewarray

creating arrays Ⅹ 4 1 runtime runtime

221 checkcast_fast fast version of checkcast miscellaneous object
operations

Ⅹ 3 1 1 0

222 instanceof_fast fast version of instanceof miscellaneous object
operations

Ⅹ 3 1 1 0

(if.) 223 customcode for special usage special usage Ⅹ 1 n/a n/a n/a

224 unused JIT_SWITCH0

225 unused JIT_SWITCH1

226 unused JIT_SWITCH2

227 unused JIT_SWITCH3

228 unused JIT_SWITCH4

229 unused JIT_SWITCH5

230 unused JIT_SWITCH6

231 unused JIT_SWITCH7

232 unused JIT_SWITCH8

233 unused JIT_SWITCH9

234 unused JIT_SWITCH10

235 unused JIT_SWITCH11

236 unused JIT_SWITCH12

237 unused JIT_SWITCH13

238 unused JIT_SWITCH14

239 unused JIT_SWITCH15

240 unused JIT_SWITCH16

241 unused JIT_SWITCH17

242 unused JIT_SWITCH18

243 unused JIT_SWITCH19

244 unused JIT_SWITCH20

245 unused JIT_SWITCH21

246 unused JIT_SWITCH22

247 unused JIT_SWITCH23

248 unused JIT_SWITCH24

249 unused JIT_SWITCH25

250 unused JIT_SWITCH26

251 unused JIT_SWITCH27

252 unused JIT_SWITCH28

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

63

253 unused JIT_SWITCH29

254 unused JIT_SWITCH30

255 unused JIT_SWITCH31

Opcode Mnemonic Description Function Group Compiled ? PC offset
(8-bit)

SP offset (32-bit)

Plus Minus Overall

