ARM/ Thumb

Design and Implementation of Embedded Mixed-Mode JVM for
ARM/Thumb Dual. | nstruction Set Processor

ARM/ Bhum

Design and Implementation of Embedded Mixed-Mode JVM for
ARM/Thumb Dual Instruction Set Processor

Student Jann-Haur Huang

Advisor Dr. Jean Jyh-Jiun Shann

A Thesis
Submitted to Department of
Computer Science and Information Engineering
College of Electrica Engineering and Computer Science
National Chiao Tung University
in Partia Fulfillment of the Requirements
for the Degree of
Master

In

Computer Science and Information Engineering
June 2004

Hsinchu, Taiwan, Republic of China

10.

ARM/ Thumb

ARM

18%

27.

41 %

ARM

Thumb

(PDA)
Thumb
2.08

.21

Design and | mplementation of
Embedded Mixed-Mode JVM for
ARM/Thumb Dua Instruction Set Processor

Student: Jiann-Haur Huang Advisor: Dr. Jean, J.J. Shann

Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Demands for faster execution speed promote-the employment of the JI'T compiler as
the execution engine of the desktop-JV M. .With the popularization of intelligent mobile
devices such as cellular phones and PDAS, application demands also drive for faster
execution speed. Therefore, an interesting research topic is to improve the embedded VM
performance. Instead of incorporating a full-fledged J'T compiler in embedded VM, we
design and implement a lightweight JT compiler which is built upon and mixed-mode
executed with an interpreter-based embedded JVM in this research. Code size expansion
for incorporating aJI'T compiler is minimized in this way.

In addition to employing several optimization techniques during JIT compilation, our
embedded JVM also facilitate the "dual instruction set”, an architectural feature that most
embedded processors provide, in order to strike a balance between speed performance and
code size. By setting up different configurations for evaluation, our experiments show that
the ARM interpreter and Thumb JT compiler is the most cost-effective configuration
among the al. Asawhole, our system demonstrates 2.08 speedup with only 10.18% code
size increment over apure ARM interpreter and 3.21 speedup with only 27.41% code size
increment over a pure Thumb interpreter.

Mini-JIT

Java

2004. 7. 12

Contents

... [
AbStract. e i
.. i
CONtENES . ..o e 1\
Listof FigUres.o e e Vi
Listof Tables e e Vil
Chapter 1 Introduction. 1
1.1 Embedded JavaEnvironment 1
1.2 Embedded Mixed-Mode Execution VM 3
1.3 Dual Instruction Set For Code SizeReduction. 4
1.4 Research Motivation and ObjeCtiVeS. .o v o oo 5
15 Organizationof ThISTRESIS vit o i r e e e 5
Chapter 2 Background s .. @il . i e e 6
21 JavaTechnology o i e 6
211 VM BENEfitS. . ..o 6
212 INMINENalS. . ..o e 8
2.1.3 JVM Implementation Alternatives. 10
2.2 JT Compiler Optimizationsovuit e 11
2.2.1 Common Optimization Techniques., 11
222 Optimizalion RaNge.ot e 14
23 RelatedResearches 15
231 Dua Instruction Set. 15
232 Embedded VMo 16
Chapter 3 SystemDesignt e 18
31 SYSIEM OVEIVIEW. . . ot e 18
3.2 Speed Performance ANalysSiS.ot 21
321 Intepreter-Based VM. 22
3.2.2 Mixed-Mode Execution VM i 23
3.2.3 Speedup of Mixed-mode Execution Over Interpreter-Execution 24

iv

3.3 KIATC AIChItECUre. . . o ottt e e e e e e e e e e i 26

331 IR GENEIEION. . . oot 28
3.3.2 NativeCode Generator.o vttt e et 32
34 KITCOPUMIZALIONS. . . .ottt et ettt 33
3.4.1 Instruction Folding For Stack Operations 33
3.4.2 Rule-based Null Pointer Check Elimination 36
3.5 ARM/Thumb Instruction Set Selection. iiiin... 40
Chapter 4 Experiments.t 42
4.1 Experiment EnVironment. 42
4.2 Benchmarks. e 42
4.3 EXperiment ResUItSo 43
4.3.1 Effectsof KITC OptiMIzationsouiuiineiinanennn 43
4.3.2 Effectsof Dua Instruction Set Selection. 45
Chapter 5 Conclusion and FutureWork 49
ReEfEreNCeS. o e e 51
Appendix Bytecode InstructionTable 54

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Figure 2-5.
Figure 2-6.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.

Figure 3-14.
Figure 3-15.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.

List of Figures

JaVa 2 PlatfOorm ... 2
JVM Runtime ENVIFONMENT..........ccoveieeeenieie e seee e 8
Three Alternatives to Executing Java Programs...........cccccceeveevnenne. 10
A Constant Folding EXample.........ccccoooveieiiiieiiececsee e 11
A Copy Propogation Example
(a) Before Copy Propogation (b) After Copy Propogation............... 12
AnExample of CSE.........ccooiii e 12
An Example of Scalar Replacement and
Common Effective AdAresSS.........ceevveceieene e s ee e 13
System Components and Their Interactions...........ccccecveveevieevieenee. 18
System FIOWChEI.........cooveeeceee s 19
An Hlustration of KIITC.....cccooiieeeeeeeeseere e 21
The Interpreter DiSpatch LOOP.......c.oovieiiiiiiececsee e 22
Timing Diagram of the Interpreter-based VMcccccvecveveevnenne, 23
Timing Diagram ofitheé Mixed-mode Execution IVM..........cceceeuenees 23
The Trend Of SPEEAUP, wws st vt e verreerierie et 26
Two-pass Compiter ATChITECIUTE............cccoevrieieiere s 26
One IR Generator With-Many Native Code Generators.................... 27
The Frame Structure TN MEemMOry............oovererieeeierese e 29
Input and Output of the TR GEeREratorcoceeeeerereeieresieseeenen, 31
Stack Operations (a)-Without Folding (b) With Folding................. 34
IR Generation
(a) Without Optimization (b) With Instruction Folding 34
Instruction Folding for Stack Operations During Code Generation 35
Flowchart of Null Pointer Check Elimination...........ccccooeevviiennnen. 38
Effects of OptimiZations..........ccoevereriieiire e 44
Speed Performance of All Configurations.............cccvevevenenenennnn 46
Compilation Cost Of KITC......ooovieiieiiieceeee e 46
Static Memory Usage of All Configurations...........ccoceeeeverenenennnn 47
Dynamic Memory Usage of the Two J'T Compilers........c.cocvveenene. 47
Speed Increment and Code Size Increment of Four Mixed-mode
CONFIQUIBLIONS ...t 48

Vi

Table 1-1.
Table 2-1.
Table 3-1.
Table 3-2.
Table 4-1.
Table 4-2.
Table 4-3.
Table 5-1.

List of Tables

J2ME CONfiQUIalioNScccveeiuieeiee e ciee st esree st s nneas 2
Comparison Among Some JIT Compilers.........cccoevenerenenenienieenns 17
An Example of Rule-based Null Pointer Check Elimination.............. 39
Immediate Fields of Mg or Instruction TYPeS........cccccveveeiiieeiieesnene 41
Selected Tests of Embedded CaffeineMark 3.0.........coccoveviveninenene 43
Execution Cycles of Different SEtups.........ccoevveeveeviieciee e 44
Execution Cycles of Six Configurations...........cccceeevceeviesieeeseesneenn 45
Comparison of KJTC with Other JIT Compilers.......c.ccoovvererenennene 50

Vii

Chapter 1 Introduction

In this chapter, someintroduction materials are presented to hel p readers understand the
essential concepts behind and the termsin the title of our research. First, we give an over-
view of the current status of the Java technology in embedded environment. Second, we
explain the meaning of mixed-mode, which actually combines interpretation and just-in-
time (JIT) compilation, and the reason it suits for embedded JVM. Third, we discuss dual
instruction set, anissuethat is specifically relevant to embedded processors. After theintro-
duction comes our research motivation and objectives. Finally, organization of this thesis

is provided.

1.1 Embedded Java Environment

Developed by Sun in 1991, Javatechnology:-has evolved rapidly and becomes popular
in all application fields, such as desktop PCs, powerful large-scale server, or even in small
portable consumer devices. Recognizing the fact that different application fields possess
different characteristics and demands, Sun in 1999 has grouped Java technologies into the
Java 2 platform [1], which consists of three editions as in Figure 1-1, and each of which

aims at a specific area

» Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and database-
centered enterprise applications with an emphasis on server-side devel opment.

» Java 2 Standard Edition (J2SE) - targeted at conventional desktop applications.

» Java 2 Micro Edition (J2ME) - targeted at embedded and consumer devices, such as
wireless handhelds, PDAS, TV set-top boxes, and other devices that lack the resources

to support full J2SE implementation.

Java” 2 Platform, Micro Edition

;o

ent types of devices and therefore provi

gives an overview of the differences of the two configurations.

Table 1-1. 2ME Configurations

Configurations Name

Connected Device
Configuration (CDC)

Connected Limited Device
Configuration (CLDC)

Target Devices

high-end PDAS, set-top

cell phones, two-way pagers,

connection, most often based
on TCP/IP

boxes, screen phones, and etc. | low-end PDAS, and etc.
Typical Memory 2MB~16MB 128KB ~ 512KB
Requirement
Target Processor Type 32-bit 16-hit, 32-bit
Reference Virtual Machine | CVM KVM
Other Features high bandwidth network limited, low bandwidth

network connection

1.2 Embedded Mixed-M ode Execution JVM

Although the JVM can be easily realized by an interpreter, its slow performance is
always a concern in performance-aware system. In order to overcome this problem, some
compilation technol ogies must be applied. Ahead-of-time (AOT) compilers[2] allows off-
line compilation, so no run-time compilation overhead is needed. Conventional J'T com-
pilers translate bytecode into machine code on the fly, and incorporate more optimization
techniques for better performance with the expense of VM code size increase and run-time
compilation overhead. However, memory-constrained VM can tolerate neither the static
compiled code size expansion imposed by AOT compilers nor the code size/compilation

overhead imposed by conventional JIT compilers.

The approach of mixed-mode execution in [3][4] relies an interpreter to execute inter-
preted code for some parts of the program, and also executes compiled code dynamically
produced by a J'T compiler for the remaining parts. The line between a conventional JT
compiler and aJI'T compiler that supports mixed-mode execution is, in actuality, indistinct.

Nevertheless, the principles of mixed-maode execution can be clarified as follows.

» Performance-critical parts of:.the program are compiled by a J'T compiler, and then

natively executed.
* Non-performance-critical parts of the program are interpreted by ainterpreter.
» Closeinteractions between the JIT compiler and the interpreter is necessary.

Asdiscussed in Section 1.1, embedded JVM (including its classlibraries) hasvery lim-
ited memory budget, usually in the range of hundreds of kilobytes. For this reason, embed-
ded JVM usualy employs merely an interpreter as its execution engine. But with the
increasing demands for speed performance, embedded JVM also seekswaysto improve its
slow execution speed. The most effective way is to incorporate a JT compiler, as most
desktop/server VMs do. Still, taken limited memory resources into consideration, a full-
fledged JT compiler does not suit for an embedded JVM. Therefore, a lightweight JI T
compiler, which is highly-customized for an embedded JVM, is needed. To this end, a

mixed-mode JVM seems to be promising in embedded environment. By tightly coupling

with an interpreter, aJI'T compiler can reuse theinterpreter-based JVM asitsinfrastructure,
in order to keep itself compact. And overall the combination (an interpreter-based VM and
aJIT compiler) builds up an embedded mixed-mode JVM.

1.3 Dual Instruction Set For Code Size Reduction

Due to the requirements of low manufacturing cost, low power consumption, and small
volume size, embedded systems usually have limited hardware resources, especialy in
memory size. 8-bit, 16-bit MCU processors have dominated the embedded system for a
long time. However, with the increasing demands on more data applications in high-per-

formance embedded system, 32-bit embedded processors have become mainstream these

days.

Most 32-bit embedded processorsiare Rl SC-based, which suffer from the problem of
poor code density and thus require moremmemory space. Thisisaseverelimitation for cost-
sensitive embedded systems.zAn-innovative solution in architectural level is to employ
“dual instruction set” [5]. One, the.full“instruction set, contains origina 32-bit instruction
set; the other, the compressed”instruction set or the reduced bit-width instruction set,

encodes most commonly used instructions in fewer bits (usualy 16 bits).

According to previous researches, a program compiled in compressed instruction set
will be much smaller than that in full instruction set. For example, the code size reduction
of Thumb/ARM is30% [6], while the case of MIPS16/MIPS32 is 30%~40% [7]. However,
dueto alimited set of instructions and accessto alimited set of registers, aprogram will be
compiled into more instructions in the compressed instruction set, which may result in
overall performance degradation. Therefore, how to effectively facilitate dual instruction
set to keep abalance between code size and performance, isboth apractical industrial prob-

lem and a hot research topic.

1.4 Resear ch Motivation and Objectives

Our observations are that while an embedded JVM manages to improve its execution
speed, it still faces the problem of limited memory resources. Motivated by this fact, our
objectiveisto design and implement an embedded JVM, whichissmall footprint compared
to other existing embedded JVMs. We employ mixed-mode execution in our embedded
JVM and further facilitate the* dual instruction set” feature that hardware architectural pro-

vides, aiming at striking a balance between speed performance and memory usage.
In addition, some practical decisions of our research are listed as follows.

* Our focusison the design and implementation of abaseline J' T compiler for an embed-
ded mixed-mode JVM, based on Sun’s CLDC KVM 1.0.4 (interpreter-based). For ease
of reference, the JI'T compiler is hereafter termed KJITC, an abbreviation for “ Kilobyte

Just-In time Compiler”.

» KJITC targets the ARM/Thumb dual-instruction set processor.

1.5 Organization of “This Thesis

The remaining parts of this thesis is organized as follows. Chapter 2 provides more
detailed background knowledge on JVM internas and common JIT compiler
optimizations. In Chapter 3, the design of KJTC is presented along with speed
performance analysis and the design of ARM/Thumb instruction setction. In Chapter 4,

experiemnt results are exhibited. In the end we make a brief summary in Chapter 5.

Chapter 2 Background

This chapter provides more background details on JVM internals and JT compiler
optimizations. Readers who are aready farmiliar with the two topics can skim over them.
Also some related researches on dual instruction set and embedded JVM are discussed in

the last section.

2.1 Java Technology

Although generally used to refer to.a.computer language, Java is a rather a complete

architecture in reality. It consistsof four-distinct but interrelated components [8].

» Javaprogramming language

» Javaclassfile format

» JavaApplication Programming Interface (Java API)
» JavaVirtua Machine (VM)

A Javaprogram iswritten in Java programming language, and then compiled into Java
class files by Java source compiler. Java class files can be executed on any environment
that equips a VM. Also, the Java program can access predefined libraries or system
resources (such as 1/0O, for example) by calling methods in the classes that implement the
Java API. During program execution, JVM loads and executes user-written class files as

well as these system classes that Java API defines.

2.1.1 JVM Ben€fits
Java Virtual Machine is definitely the key component among the all. It is responsible
for the well-known advantages that Java possesses over traditional native execution sys-

tem. Those advantages include:

» Cross-Platform Portabilty

Each type of processor hasits unique instruction set. For example, the instruction set of
x86 isnot compatiblewith that of MIPS. Moreover, each operating system (OS) hasitsown
application interface or system calls to upper application programs. As aresult, programs
compiled to run on one platform (combination of processor and OS) cannot be executed on
otherswithout recompilation. Java overcomesthislimitation by inserting VM between the
application programs and the real environment. If JVM has been ported to the environment,
Java programs can be first compiled to Java bytecode in the form of classfiles and then be
executed over the JVM without any porting efforts. This encourages software reuse and

aleviates great pains from programmers.

» Security of the Execution Environment

One of Java s original intention.isitsintegration into the network environment. In this
environment, classfiles can be automatically downloaded from network and belocally exe-
cuted. They might be malicious and might-do dangerous operations to the local execution
system. To deal with thisimportant.issue,.Java build up its own security model - the sand-
box [9][10]. As a brief explanation; Java verifiesevery class file from untrusted resources.
The verification process mainly involves two steps in VM. First, class file verification
checksthe layout and the contents of the classfile. Second, bytecode verification checks if
the bytecode within a method adheres to predefined rules. For example, one basic rule is

that al goto and branch instructions refer to valid bytecode addresses.

» Small Size of the Compiled Code

Dueto the rich semantics and the stack-based operations, Java bytecode, theinstruction
set of JVM, is more compact space-wise than a statically compiled program. In other
words, Java has high code density. According to [11], the dynamic average instruction size
is 1.8 bytes. Compared with typical RISC instruction requiring 4 bytes, this result is satis-

factory. For a speed-limited network environment or a memory constrained embedded

environment, small code size is undoubtedly favorable.

2.1.2 IJVM Internals

gl o
per
cl as

a l

~~

Java

Const
Pool

Met hod

Heap

ant

Ar ea

Registfer

Java |[St adgd

Figure 2-1.:.3¥ M Runtime Environment

Set

kthread

Toredlize the VM, an implementation must provide the functionality of areal proces-

sor and also adhereto the VM specification|12]. The specification defines ahomogeneous

run-time environment, as Figure 2-1 illustrates, by providing a detailed description of the

following items:

* Instruction Set (Java Bytecode)

* Register Set

* Java Stack

* Execution Environment

e Constant

Pool

* Method Area

« JavaHeap

* Object Management and Garbage Collection

Sincethe VM is a stack-based architecture, the registers of its register set are not used
for storing operands or passing arguments as in most register-based machine. They only

hold the state of the VM and are updated after every bytecode instruction is executed.

The operands of a bytecode instruction must be pushed onto the Java stack before the
instruction is executed. An executing instruction consumes its operands from the stack and

then places results on the stack when it compl etes.

The execution environment is maintained within the Java stack as adata set and is used
to deal with dynamic linkage, method invocation/return and exception handling. It handles
dynamic linkage by maintaining symbolic references to methods and variables for the cur-
rent method and current class. A symbol table is used to translate these references to actual
cals.

The VM maintains a specia table for each class, known as a constant pool. The con-
stant pool contains string literals;‘class names, field names and other constant data objects
that are referred to by the class strueture or by the executing program. These constants do
not change, and are created at compile-time. Items-in the constant pool encode al names
used by any method in a particular elass-Fheinfarmation included in aclassis the number
of constants and the offset that specifies-where a particular list of constants begin in the

class description.

The method areais equivalent to the compiled code areas in the run-time environment
used by other programming language. It contains bytecode instructions that are associated

with the methods in the compiled code and the symbol table needed for dynamic linkage.

The Java heap is the dynamic memory of VM, and it usually contains a collection of
objects. When an object is created with the “ new” bytecodeinstruction, an reference to that
object isreturned. This reference can be used subsequently, or stored in the current frame.
An object persists in Java heap until there are no referencesto it in any frame of the frame
stack or in the constant pool of any visible object. When there are no such references, an

object becomes garbage, and a specia garbage collector will reclaim its resources.

2.1.3JVM Implementation Alter natives
The VM isnot restricted to software interpreter implementation. In fact, there arethree

common approaches, as depicted in Figure 2-2, to implement the VM.

Java Program

/ Java Compiler \

Bytecode

4 :
A~
5
& I nt e\ Machine
=~ Binary
~
/ Operating System
General CPU Java CPU

An Executable Form

Figure 2-2. Three Alternatives to Executing Java Programs (extracted and modified from [13])

Interpreting the bytecode, the standard way to implement the JVM, has the advantage
of fast VM porting but makes the execution of Java programsrelatively slow. One solution
to improve speed performance is to replace an interpreter with a bytecode compiler. The
bytecode compiler is responsible for trans ating bytecode into native machine code. While
ahead-of-time (AOT) compilers performs offline compilation statically as conventional
compilers, just-in-time (JIT) compilers performs on-the-fly compilation dynamically. Both
of them have pros and cons, but J' T compilers seem to be more appealing to most research-
ers. Another solution is to implement the JVM directly on silicon. For example, picoJava

isa Java processor that supports bytecode execution completely.

As discussed in Section 1.2, an interpreter can still coexist and cooperate with a JI'T
compiler in the VM. Recently, a mixed software/hardware approach also comes to exist.

ARM hasintroduced its own Javainstruction extension - Jazelle[14]. A subset of bytecode

10

instructions can be directly executed when the ARM processor is operated in Java mode,
and the remaining bytecode instructions are still handled in software (interpreted or com-
piled).

2.2 JIT Compiler Optimizations

Since JI'T compilersperform compilation at run time, the restriction of compilationtime
ismore severe than that in traditional static compilers. Asaresult, only cost-effective opti-
mization techniques can be suitably applied during JT compilation. Due to the character-
istics of Java, optimization techniques might cause different impact when applied in Java
JIT compilersthan in traditional static C compilers. In this section, we are to discuss some
common optimization techniques used in JavaJIT compilers[15][16][17], and then to dis-
cuss different ranges of optimization.

2.2.1 Common Optimization Techniques

Constant Folding

The concept behind constant folding isto-evaluate constant expression, whose operands
are known to be constant, at compile time; After this simple transformation, the constant
expression is replaced by its value. Therefore it saves the run-time computation of the

expression. A simple example is demonstrated in Figure 2-3.

!/ before colnstant|// after con|stant fol di nc
D —— ~
x = 10 + 2; Xx = 12;

Figure 2-3. A Constant Folding Example

Copy Propagation

Copy propagation is a transformation that replace variable occurrences with its copy
value which is defined in earlier copy assignments. For example, the copy assignment is
represented in the form x =y, for some variables x and y. Then later uses of X, aslong as

intervening instructions have not changed the value of either x or y, can be replaced withy.

11

Figure 2-4 is an example in the flowgraph form. The copy assignment is b = a, and suc-

ceeding occurrences of b of the underlined expressions are replaced with a.

(b)

Figure2-4. A Copy Propogation Example
(a) Before Copy Propogation (b) After Copy Propogation

Common Sub-expression Elimination (CSE)

[/ before CSE [/ after CSH
X = a + b; X = a + b;
—_—

y = a + b; y = X;

Figure 2-5. An Example of CSE

The purpose of CSE is to reduce repetitive computations by substituting available
results for the expressions that do the same computation. Figure 2-5 gives a simple exam-
ple. Also two common derivatives of CSE are:

» Scalar Replacement

Array element accesses in aloop are replaced by temporary variables, when the array

objects and the array indexes remain unchanged. See the example in Figure 2-6.

12

* Common Effective Address Generation

Successive array element accesses in aloop can be optimized by introducing a tempo-

rary pointing to the first element. Therefore other elements can be accessed by using the

temporary as the base address and corresponding array indexes as offsets. See the example

in Figure 2-6.
For (i =0] i For (i =0 ; i For (i =0; i < =
i foCafli] < t1 = aff]; p = &al[i];
b =]afi t2 = afi+1 t1 = *p;
ali] = if (t1]< t t2 = *(p+1);
ali +1] b =]t1;: if (tl1 < t(2)
} o al[i] =" b = t1;
al[i t1] *p o= t 2}
} } *(p+tl) |=
Origilnal Scal ar Repla Common Effec|ti

Figure 2-6. An Exampleof Scalar Replacement and Common Effective Address

Exception Check Elimination

Java bytecode instructions‘contain semantics that may induce exceptions. In an inter-
preter, such bytecode instructions are checked during interpretation to see if exceptions
arise. If they are, appropriate exception handlers are invoked. For aJIT compiler, to com-
pile these bytecode instructions al so produce compiled code that performs exception check.
However, some of these checks are redundant and can be eliminated via careful analysis.
In short, exception check elimination hel ps to save unnecessary operations and aso reduce
code size. Null pointer check elimination and array bound check elimination are the most

common techniques used in Java JIT compilers.

Method Inlining

Theideaof method inlining isto inline method calls by expanding method bodies. This
optimization can reduce method invocation overhead in sacrifice of code size expansion
and also can provide more optimization opportunities. In object-oriented languages like
Java, tiny methods such as class constructors and methods that accesses private variables

are frequently executed. These methods spend more time on method invocation than

13

method body execution. Hence method inlining is useful under these circumstances. More-
over, concerning the heavy overhead of devirtualization, virtual method calls may be

inlined aswell. Certainly, it involves further analysis.

Strength Reduction and Machine ldioms

Strength reduction isto replace an operation with asemantically equivalent one, though
weaker but faster. A common caseis using the shift operator to multiply and divide integers
by a power of 2. For example, x >> 2 can be used in place of x/ 4, and x << 1 replaces X
* 2. Inasimilar way, machine idioms refer to instructions or instruction sequences for a
specific ISA that executes more efficiently than asimilar sequence of instructions targeted
for a more general architecture. A good example is that some architectures provide

multiply-and-add instructions for faster execution.

2.2.2 Optimization Range

Conventionally, an optimization applied to aprogram is generally called "local” if it is
performed by looking only at the statements in.abasic block; otherwise, itiscalled "global"
[18]. To be more specific, "local " meansoptimization is applied within abasic block while
"global" within a function. Some optimization techniques can be applied at both local and
global levels. Global optimizationinvests more compilation timein advanced analysis, and

therefore leads to better compiled code quality.

Local optimization might expand its optimization range from a basic block to an
extended basic block [19]. Asacontrast to single-entry-single-exit basic blocks, extended
basic blocks are aso single-entry but possibly multiple-exit, and therefore have more
opportunitiesfor optimization. Researches on high performance architecturesfocus on loop
optimization in a program. In fact, high-level loop structures may be recovered by identi-
fying strongly connected components (SCCs) or regionsin alow-level control flow graph.
Furthermore, interprocedural optimization is more aggresive for its range expands across
functions, and thus is considered to be pretty costly. In short, as the optimization range is
enlarged from local to loop and global, or even interprocedural, the cost of analysis defi-

nitely increases. For more detailed information, please also refer to [19].

14

2.3 Related Resear ches

This section briefly introduces the essentials about dual instruction set and its current
research status. Next, advancements in optimization for embedded JVM is discussed as

well, including one recent research work on embedded JI' T compilation.

2.3.1 Dual Instruction Set

A number of 32-bit RISC processors for embedded systems may incorporate a reduced
bit-width instruction set as an architectural extension, and therefore support dual instruc-
tion set. ARM provides its 16-hit instruction set extension called Thumb since its ARM7
processorsin 1995. With a decompression engine, Thumb instructions are converted to its
ARM equivalents during decode pipeline stage. Switching between the two instruction sets
isachieved through the use of explicit mode change (ARM mode and Thumb mode) insruc-
tions. Thumb instructions are only able to,access 8 general purpose registers (out of 16)
without any restrictions, and can only.encode small immediate values. Also addressing
modes and instruction types are restricted in' Thumb instruction set. Experiment results
exhibit with 32-bit memory Thumb trades off 30% -"40% speed performance for 30% code

size reduction.

MIPS follows ARM by offering its MIPS16 instruction set in 1997. As a contrast to
Thumb, MIPS16 contains an extend opcode which extends the values of immediate oper-
andsthat are not representabl e due to bit width constraints. Rather than switch with explicit
mode change instructions, code alignment dictates the mode of execution. To be more spe-
cific, afunction that is not word-aligned is assumed to be composed of MIPS16 instruc-
tions. Experiment results show the code size reduction is up to 40% using M1PS16. Other
processors that support dual instruction set include the ST100 Core [20] from ST Micro-
electronics and the Tangent-A5 [21] from ARC.

Two recent research papers [22][23] about dual instruction set are on evaluation of
mixed instruction set code in different granularities such as function levels and basic block
levels. Their proposed heuristics for instruction set selection are static, profile guided and

may be based on cost models. However, no apparent results can be inferred from the

15

researches about how to perform instruction set selection for specialized environments such
as a mixed-mode JVM. This also serves as a reason that motivates us to conduct this

research work.

2.3.2 Embedded JVM

Dueto tight memory constraints, embedded JVM usually seeksitsway for performance
improvement by adopting low-cost optimizations in terms of code size. These |ow-cost
optimizations manage to improve overall performance by reducing overheadsin exception
handling, garbage collection, object access and bytecode dispatch. Among of them, optimi-
zation for bytecode dispatch is most effective since dispatch time occupies a great portion
of total execution time. Researches in [24][25] discuss different threading mechanisms to
improve dispatch efficiency for VM. Moreover a bytecode instruction sequence can be
grouped together or formed into a new bytecode, and therefore only one dispatch is neces-
sary asdescribed in [26]. Since the seguenceis executed as awhole, there are opportunities
that it can be executed more efficiently-by. optimizing native code. Related works of this
type include [27][28].

Although af orementioned ‘opti mizations can be employed in embedded JVM without
much code size expansion, their perfermanceimprovement is potentially and relatively low
compared with J'T compilation. Asaresult, for embedded JVM that demands high perfor-
mance, JIT compilation isindispensable. A recent work [29] demonstrates a JIT compiler
designed for employment in embedded JVM. Table 2-1, which is extracted and modified
from the same work, lists someimportant features of thisembedded JI' T compiler compared
with other JIT compilers. Apparently the embedded JI T compiler consumes much code size
such that highly-memory-limited embedded systems can not afford. Therefore, thereis till
research space for more lightweight J T compilation that can be applicable to awider range
of embedded systems with VM.

16

Table 2-1. Comparison Among Some JIT Compilers

JIT Un - Save un - Client NU Latte Sanford MicradIT
Source C+ C+H C C
IR Format SSA dateflow Smple Dataflow Daaflow
Mgor Compiler
Pesxs Interative 4 7 4
Regiger
Allocation Graph coloring 1-passdynamic 2-passdynaric 1-passdynanic
o . 1CSE
1. loop invariant code mation) .
Maior 2 gobd vauenumbaing |1 block merging/eliminetion ; gg"dwmm'”g . g'oop”pmpaga’m
51. — 3. congtant propagation 2. Smple condant propagation |’ o Um.m ’ . prop@aron .
Optimzations |, injining & spedidizztion |3.inlining & specdlization | | °OP MVafiant codemation 14, loop invariant code miotion
5 insnuction scheckding 4.inlining & speddization 5. !nllnlng& specldlz_alon
6. ingruction scheduling
Compiler Sze
1.5MB (Sparc) 700K B (Sparc) 325K B (Sparc) 200K B (Sparc)
Compilation Cost
(Per Bytecode) ~100,000 Cydes ~8300 Cydes ~20,000 Cydes ~5,000 Cydes

17

Chapter 3 System Design

In this chapter, we present the overall system design of our embedded mixed-mode

JVM. Section 3.1 provides an overview of our system, which consists of four components,

and then discusses their relative interactions. Section 3.2, a quantitative analysis on speed

performance of our system, compared with that of a pure interpreter-based VM, is

proposed. The analysis helps us make our further design decisions in KJITC. Next, we

detail the internal design of KJITC and its optimizations. Finaly, we demonstrate design

issues on ARM/Thumb instruction set selection.

3.1 System Overview

Ti me

I nterp
interpr
byteco

eter:
et nyakka hot

detector

Hot Spot

detect Ppi mModlspoKIIl TC

spot

Detector:

I nterp
interpr
byteco

I nterpif
interpr
byteco

resume i nt

KJI TC
per f.or m

etatilon

b rpr
%omplle

switch between

and

compil ed

Figure 3-1. System Components and Their Interactions

irCode

In our mixed-mode embedded JV M, there are four main components. Their interactions

can besimply illustrated in Figure 3-1. A more precise flowchart which describes the work-

ing flow during method interpretation is also provided in Figure 3-2 for completeness.

18

Method Entry

A
Interpreter:

» fetch and decode a

YES
Method Call

Method Return

NO

bytecode Instruction

If thereis a
corresponding
ompiled code e

A Method Call

YES

Interpreter:
interpreted-execute the
bytecode instruction

Interpreter:
switch to

the compiled code

A J

Compiled Code:
natively execute

y

Interpreter:
switch back from
the compiled code

After a method
call or branch

NO

YES

Interpreter:
invoke hot spot detector

Hot spot detector:
record method call and
branch information

i

there is a hot spoi
detected

Hot spot detector:
invoke KJITC

Y

If the method ends

YES

Method Exit

Figure 3-2. System Flowchart

19

KJITC:
perform compilation for
the hot spot

Now we respectively discuss each component as follows.

* Interpreter-based WM (KVM)

The interpreter-based JVM provides a VM infrastructure that performs exception
handling, garbage collection, synchronization and etc. It comes with asimple interpreter as
its execution engine. For mixed-mode execution, the interpreter must be responsible for
invoking the hot spot detector and switching to/form compiled code in addition to

interpretation of those bytecode that have not been compiled or will not be compiled.

* Hot Spot Detector

Due to the tight memory constraints, only valuable parts of the input program are
selected for J'T compilation. By the 80/20 rule, over eighty percent of execution time is
spent in lessthan twenty percent of source codein aprogram. Apparently, theresponsibility
of the hot spot detector is to discover these performance-critical twenty percent of source

code and then invoke JI'T compiler for hot spot compilation.

As mentioned in Section-2.1.2, the method area is viewed as the run-time compiled
code area. Hence we al so sel ect the method asthe basic unit of hot spot detection. A method
is considered to be a hot spot, when it meets either one of the following two requirements.
Firgt, itis called by other methods frequently. Second, it contains at least one loop that has
many iterations. In our implementation, threshold values must be set statically as the crite-
riafor the two requirements. Currently the values are both chosen to be 40, which are based

on our evaluation results.

e JIT Compiler (KJTC)

The JIT compiler isfurther divided into the IR (Intermediate Representation) generator
and the native code generator. The IR generator is mainly responsible for trandating Java
bytecode into semantically equivalent three-address IR. And then the code generator
trandates IR into targeted native code for later execution. A simpleillustration isgivenin

Figure 3-3.

20

~+ _|
P =
£ =

Java Byteewmde | R Gener a

Targeted Nativ&agpgg
(ex. ARM)

)]

Cod

X
()
@

erator

Figure 3-3. An lllustration of KJTC

» Compiled Code Buffer

The compiled code buffer holds all compiled native code. During native execution, the
machine program counter (PC) pointsto native code that residesin the buffer. In our current
implementation, the compiled code buffer is allocated statically, and its size is also pre-
determined.

In addition to the four components, the switching mechanism between the interpreter
and the compiled native code also-deserves discussions. Similar to a function call, the
switch from the interpreter to-the compiled native code involves spilling registers into
memory and then transfering execution-by a branch. The case of the switch from the
compiled native code to the interpreterinvolves more operations. It has to restore registers
from memory, to transfer execution by a branch, and to update Java PC (program counter)
and Java SP (stack pointer).

3.2 Speed Performance Analysis

Before proceeding to the focus of our research - the KJTC, we present basic
guantitaive analysis of system performance in this section. First we begin with an
interpreter-based system, and then compareit with our system, which exhibits mixed-mode

execution.

21

ee-addr ess

R

3.2.1 Interpreter-Based JVM

NEXT:
switch
case

goto
case

goto
case

goto
case

(*bytec
Byt eCo

NEXT,;
Byt eCo

NEXT,;
Byt eCo

NEXT,;

Figur e 3-4: The Interpreter Dispatch Loop

performs bytecode interpretation in a repetitive manner.

» Dispatch (fetching + decoding) time ... T gig,

=> Dispatch time of asingle bytecode instruction ... tgig

* Interpreter executiontime ... Tint exec

{

Figure 3-4 shows a simplified dispatch loop.- the main structure of an interpreter - inC
language source form. An interprter may. beviewed as a software processor that sequentally
performs three tasks - fetching, decoding,:-and execution. For ease of reference and
explanation, we delibrately break thetotal execution time of an interpreter-based VM into
thefollowing three parts. Figure 3-5isatiming diagram of an interpreter-based JVM which

=> Average interpreter execution time of asingle bytecode instruction ... tint exec

» Miscellaneoustime... T i

(garbage collection, synchronization, and etc.)

22

I nterpreter .

di sp int

di sp

e

>

Figure 3-5. Timing Diagram of the Interpreter-based VM

3.2.2 Mixed-M ode Execution JVM
Similarly, the breakdown of the total execution timein our mixed-mode execution VM

ti me

can be listed as the following six parts. Figure 3-6 isatypical timing diagram which com-

prises the leading five parts while omitting miscellaneous time for clarity.

Dispatch (fetching + decoding) time ... T g

* Interpreter executiontime ... T'jnt exec

* JIT compilationtime ... Teomp

* Interpreter-native code switch time'.: Tawiten (Fswitch from + T switch_to)

=>One switch time ... tgyitch (tswitch_from - tSNitch_to)

 Native code execution time'.. Thative exec

=> Average native code executiontime of asingle bytecode instruction ... thative exec

» Miscellaneoustime ... T' isc

Compill ed
Code

JI'T T
Compilfl lerom

nativ

Interpreter- - |T

di s

switcH_from

_exec

switch

t*

T

dis

'
int

l exec *

» t i me

Figure 3-6. Timing Diagram of the Mixed-mode Execution VM

23

3.2.3 Speedup of Mixed-mode Execution Over Inter preter-Execution
To compare relative performance of the mixed-mode execution VM and the
interpreter-based JVM, following speedup definition is provided.

Execution Time of B
Execution Time of A

Speedup of A over B =

Then the speedup of the mixed-mode execution VM over the interpreter-based JVM

can be expressed as follows.

Tdiq:) + Tint_exec + Tmisc

Speedup (overa =— . .
T comp + T disp + Tint_@(ec + Tswitch + Tnative_execc + T misc

For a compiled sequence of n bytecode instructions, speedup can be approximated by
the following equation.

Speedup ock) = — Tdisp + Tint_exec _ n’ taisp + n’ Tinit_exec

T disp + Tswitch + TnaIive_execc tdisp + tswiteh + N . tnative_exec

For further analysis, some vaues in the above equation can be obtained in our

implementation. Then the equation becomes:

(21n) + Tint_exec

eedu ock) =
=P P o (22) + (53) + T native_exec

The meaning of the equation is that:

» It takes 21 cycles for every bytecode interpretation and some varied cycles for

interpreted execution.

» It takes 21 cycles for identifying a sequence of compiled code, and the overall

switching timeis 53 cycles, plus some varied cycles for native execution.

With the equation, we make some discussions as follows.

24

» Since most bytecode instructions only involve simple operations, such as IADD,
ILOAD, and ISTORE, the average interpreter execution time of a bytecode instruction
is fewer than 21 cycles. As areference, it is statically and roughly estimated to be 9.7
cycles in our implementation. According to Amdahl's law, the performance bottleneck
is the dispatch time, Tyig,. Therefore, the first priority is to reduce the dispatch
overhead by enlarging the value of n.

* Thetime of interpreted execution is definitely larger than that of native execution, for
the JT compiler can perform optimizations while the interpreter cannot. The value of
Tint_exec OVE Thative exec May be roughly referred as the code quality of the compiled
code. In theory, when n = 1, the code quality shall be equal to 1, since thereis no room
for optimization. Conversely, when n grows larger, the code quality may grow larger as
well. Therefore, the second priority is to improve the code quality, either by enlarging

the value of n or by employing more optimizations.

Asamoativating example, weconsider the bytecode sequence of "ILOAD_1, ILOAD_2,
|ADD, ISTORE_1". Thevaluesof T exac@d T native exec €N be simply computed in our
implementation, assuming that instruction folding for stack operation in Section 3.4.1 is

applied during compilation. Now:the equation canbe eval uated.

_ (217 4+ (33) 104
(2D +(53)+(9)

Speedup (vlock)

From the above equation, we can compute the average values - tin; exec @A thative exec:

and then re-build up the speedup equation.

(21n) + (6n) _ (27n)
(22) + (53) + (2.25n) - (74) + (2.25n)

Speedup ok =
When the value of n equalsto 20, the speedup is about 4.54. When the value of n equals

to 50, the speedup is about 7.24. Figure 3-7 isaplot that exhibits the trend of speedup when

N increases.

25

o
314
5 12
o 10
v 8
e 6
Dy
2
0

Figure 3-7. The Trend of Speedup

As the plot shown, the speedup will coverge as the value of n increases. Although this

ideal speedup trend may differ fromrthatinrea cases, it still provides some useful guide-

lines when designing our baseline KJITC.

3.3 KJITC Architecture

S

I R Generjator Native Codle Generator

(1st Pasps) (2nd Pass)
Function: Function:

Javi |transl ation |8f aldlgl. register |dlalrogceatte @ n Nad divg
Bytelinto semantijcalRy2. instruction‘seeg_ecARwll)/

3-address | R > generatijon

S . Optimization|s:
Optimizations: 1. instructijon folding for
1. rule-base¢gd nul . pheck

. . . operati gns
el imnation 2 constant |propagation

2. strength reduc3. constant (folding

Figure 3-8. Two-pass Compiler Architecture

In this section, we detail the design of the IR generator and the native code generator in

the KJTC. In addition, in order to reduce compilation cost and to keep the KJITC small-

26

footprint, several design decisions are made based on the analysis in Section 3.2. These

decisions are:

» Two-pass Compiler Architecture

We confine our compiler to two passes. The first pass is for IR generation, and the
second pass is for native code generation. Figure 3-8 gives a more detailed overview of
functions and optimizations of the two passes. This decision is based on the fact that fewer
passes take |ess compilation time and that two passes seem to be reasonable for portability.
The IR generator is responsible for translating Java bytecode into machine-independent
three-address IR, and therefore is portable across platforms. Clearly the KJITC needs only
one IR generator while possessing more than one native code generator for different tar-

geted architectures as depicted in Figure 3-9.

I R Generator

g

ARM Code Thumb CCod| MI PS Cptehe
Gener alto Gener alto Gener alt r

Figure 3-9. One IR Generator With Many Native Code Generators

» Only Local Optimization Within an Extended Basic Block

No global optimization is performed due to the potential high compilation cost of con-
trol and data flow analysis. However, we extend the maximum optimization range to an
extended basic block rather than a basic block.

» Support for More Bytecode

If the KJITC can compile moretypes of bytecode, compilation may be possibly applied
to alonger sequence of input bytecode, which in turn results in better performance as we
have discussed in Section 3.2.3.

» No Support for Complex Bytecode

27

Complex bytecode refers to those bytecode instructions that invol ve complicated oper-
ations that suit for interpreter handling. These complicated operationsinclude devirtualiza-
tion, synchronization, object construction/destruction, and etc. As a result, these complex

bytecode instructions are considered to be non-compile-able in the KJTC.

3.3.1 IR Generator

IR Format
The IR format is designed with the following two properties.

» Three Address Quadruple: (Opcode, Argl, Arg2, Arg3)

Opcode refers to the instruction operation. Argl generally refers to the destination of
the operation. Arg2 generally refers to the first source of the operation. Arg3 generaly

refersto the second source of the operation.

» Local-Variable-Based Memory Addressing

Argl, Arg2, and Arg3 are used for storing constants or memory addresses. The memory
addresses are local-variable-based. That is, the actual values stored are the offsets relative
to the base address of the local variable array: 1nthe KVM, the operand stack and the local
variable array of aframe both resideinalinearly addressable range of memory, and thier
relative addresses are also fixed (see Figure 3-10). During the execution of a program,
frames are dynamically created and discarded, hence their memory addresses can only be
determined at run-time. As a result, elements of the local variable array and the operand
stack are addressed by using the starting address of |ocal variable array asthe implicit base

address plus corresponding word-offsets encoded in instructions.

28

stack
growt h

top of—stefehk — — — —

operand |[stack

Entry #HA(nj+1)

Entry [|#n
base of—sbloei

frame
frame struct
attribultes

| ocal variabl e
—————— array
base of | ofjcalEntry |#0

vari abte—afray — — — \

Figure 3-10, TheiFrame Structure in Memory

Bytecodeto IR Translation

After the design of IR format Is decided, bytecode can be easily trandated into
semantically-equivalent IR. Much of thetwork involves tranglation from implicit stack
addresses into explicit |ocal-variable-based addresses. Following are some examples for

demonstration.

1. DUP
* Bytecode Number: 89
* Function: To duplicate the top element of the operand stack
« Translated IR: (MOV, &TOS 0]-&.V[0], ---, &TOF -1]-&.V[0])

* Brief Description: The IR operation is MOV. The destination of the operation is the
empty element of the operand stack. Since the top-of-stack pointer always points to the
empty element of the operand stack, the destination can be addressed by &TOJO0]-
& V[0]. Thefirst source of the operation is unused, and the second is the top element of
the operand stack which is addressed by &TOY -1]-&.V[O].

2. ILOAD 1

29

* Bytecode Number: 27
* Function To push the second local variable onto the operand stack
» Trandated IR: (MOV, &TOF 0]-&V[(], ---, & V[1]-&.V[(Q])

* Brief Description: The IR operation is MOV. The destination of the operation is the
empty element which is addressed by &TOS0]-&.V[0]. The first source of the
operation is unused. The second source of the operation is the second local variable
which is addressed by & V[1]-&.V[Q].

3. IADD
* Bytecode Number: 96

* Function: to pop and add the top two elements from the operand stack, and then push

the result back
* Trandated IR: (ADD, &TOY -2]*&-V[0] ;& O] -2]-& V[0], &TOT -1]-& V[0])

* Brief Description: The IR operation 1S/ADD, The destination and first source of the
operation is the second top-€lement of-the operand stack which is addressed by &TOY -
2]-&.V[0]. The second source of the operation'is the first top element of the operand
stack which is addressed by &TOS-1]-&-V[0].

It isworth noting that asemantically-rich bytecode instruction may be decomposed into
severa simple IR instructions. For example, bytecode instructions for array accessinvolve
implicit exception checks, and therefore their decomposed IR instructions contain explicit

exception checks.

30

IR Generation Wor kflow

A Hot Spot Method

I I IA non-compil able bytecode

VY Yy Y |:| A compilable bytecode
An I R block which consists
of consecutive | Rs
An | R BlIAmck R BIAmck R Bl ock
An I R Group
(which consists of IR blocks)

Figure 3-11. Input and Output of the IR Generator

Asdiscussed in Section 3.1, the basic unit of hot spot detection is a method and then it
ispassed to the | R generator to generatecarresponding IR. Figure 3-11 isanillustration that
shows the input and the ouput of .the IR generator.-The detailed workflow is listed as the
following steps.

1. The IR generator takes a hotspot method as inpuit.

2. The IR generator linearly parses each bytecode instruction of the method and generates
corresponding IR for compile-able bytecode. During the linear pass, the IR generator
also updates the PC (program counter) and SP (stack pointer) information for each
bytecode instruction. The information is then used by the switching mechanism
described in the last paragraph of Section 3.1. For detailed PC and SP offset adjust-

ments of each bytecode instruction, please refer to Appendix A.
3. Consecutively generated IR instructions are collected in a IR block.

4. After IR generation completes, al IR blocks are managed by a IR group. The IR group

is then passed to native code generator for code generation.

Since a progam has branch-type instructions, its control flow is not always sequential.

In order to overcome this problem, it is necessary to to discover the control structure of the

31

program by control-flow analysis. However, we reduce the extra cost of control-flow
analysis by utilizing the SackMap attribute which is specified in the CLDC specification
[30]. The SackMap attribute records (PC offset, SP offset) tuples for all branch targetsin
a method. Therefore the IR generator can use the information to identify extended basic
blocks. This aso implies the maximum range of an IR block isits corresponding extended

basic block, provided that there are no intervening non-compile-able bytecode.

3.3.2 Native Code Gener ator
The main responsibility of the native code generator is to perform register alocation/
assignment and instruction selection/generation. Also some optimizations are applied in

this stage.

Since the native code generator is designed for one pass, it implies that register
allocation/assignment is done within one pass and instruction selection/generation must be
performed at the sametime. To bemare specific,.the native code generator assignsregisters
as machine instructions are generated.-The design of the register allocation/assignment
scheme is simple, but highly customized for the VM environemnt. Its detailed discussion
is deferred until Section 3.4.1.

After the IR generation phase, the native code generator receives an IR group as input
for code generation. However, the basic unit for code generation is confined to an IR block.
In fact, local optimizationsin KJTC are all restricted to the range of an IR block. During
the code generation for an IR block, the code generator parses each IR instruction and
generates corresponding machineinstructions, and it is a so responsible for generating nec-
essary register load/spill instructions. Besides, the native code generator also incoporates
optimizations like constant folding and constant propagation which can help to generate
better code.

Upon the end of an IR block, the native code generator must spill registers for live
variables. As an optimization technique, the native code generator only spills registers for
variables whose memory addresses are below the current stack pointer, since variables
above the current stack pointer will not be used again in the stack-based JVM.

32

Similar to the IR generator, the native code generator collects consecutively generated
native code for an IR block in a compiled code block. And all compiled code blocks are
managed by acompiled code group. What isworthy of noting isthat acompiled code block

resided in the compiled code buffer isin reality the basic unit for native execution.

3.4 KJITC Optimizations

We devote this section to the design of major optimization techniquesin KJITC. These
two optimizations - stack operation folding and rule-based null-pointer check elimination -
are designed with the characteristics of the VM in mind and thus are highly-customized

and efficient.

3.4.1 Instruction Folding For Stack Operations

One characteristic of the stacksbased VM, is al operations must be done within the
Java stack. When mapping the stack-based architecture to the common register-based
architecture, this imposes great restrictions and aso leads to much inefficiency.
Considering the bytecode sequence "IOABL0, ILOAD 1, IADD, ISTORE_0Q", its high-
level operations are illustrated in-Figure 3-12(@). If these operations can be simplified as
shown in Figure 3-12 (b), the execution flow will become more efficient. Thistechniqueis

called "stack operation folding" in researches on Java processors [31][32].

33

stac
—»
gr 0\N1Eh (ig]j:) (‘IIII’_______
|5
A A
3|4
B > \ 3
=
8 operand| st ag|lk operand| stack
2| & 2
1 L 1
3
| T~— §6 TN
|l ocal wvariables | ocal vari abl es

(a) (b)
Figure 3-12. Stack Operations (a) Without Folding (b) With Folding

As a contrast, the bytecode sequence can be one-to-one trandated into IR instructions
asin Figure 3-13 (a). It is observed that the threecopy assignments (IR_1, IR_2,and IR_4)
can be folded into the third IRxinstruction by-replacing corresponding source and
destination fields. After the folding, only one IR instruction is needed instead of four, asin
Figure 3-13 (b). This optimization is different from copy propagation in that copy propa-
gationonly allowsIR_1 and IR_2 to beforward folded into IR_3 whileit also allowsIR 4
to be backward folded into IR_3.

Bytecode IR: (OP, DST, SRC1, SRC2)
1. ILOAD O 1. (Mov, &TOS[0]-&LV[O], -——, &LV[0]-&LV[OD)
2. 1LOAD 1 2. (MoV, &TOS[1]-&LV[O], -——, &LV[1]-&LV[OD)
3. I1ADD —> . (ADD, &TOS[0]-&LV[0], &TOS[0]-&LV[0], &TOS[1]-&LV[OI)
4. ISTORE_O 4. (Mov, &LV[0]-&LV[O], -—-, &TOS[0]-&LVI[OD)

(a) l
IR: (OP, DST, SRC1, SRC2)

1. (ADD, &LV[0]-&LV[O0], &LV[0]-&LV[O0], &LV[1]-&LV[O])

(b)

Figure 3-13. IR Generation (a) Without Optimization (b) With Instruction Folding

34

It is straightforward that the instruction folding technique can be employed in the
KJTC by inserting one extra pass between the IR generation and the native code
generation. However, devoting one extra pass for only one optimization technigque is not
cost-effective and also slows down compilation speed. Instead, we integrate this

optimization in our native code generator.

The register tracking scheme in our native code generator associates each register
record with two two fields - one source and one destination. While encountering a MOV-
type IR instruction, say the first IR instruction in Figure 3-13 (a), the code generator
allocates/assigns aregister, and records corresponding source and destination. Later, when
the code generator seesthethird IR instruction, it will use the allocated/assigned register as
the first source. This way, unnecessary stack operations can be effectively removed.
Compared with the register allocator in [33], ours is more lightweight and cost-effective.

Figure 3-14 is a corresponding work flow of the af orementioned bytecode sequence.

Bytecode | R IR: (0P, DST, SRC1, SRC2)
1. ILOAD_O t r ans|it-a®foy, FIPS[O1-&LV[O], -—-, &LV[0]-4LV[O])
2. 1LOAD_1 | > rl.dst ri.src
3. 1ADD 2. (Mov, &TOS[1]-&LV[O0], ---, &LV[1]-&LV[O])
4. ISTORE_O r2.dst r2.src
3. (ADD, &TOS[0]-&LV[0], &TOS[0]-&LV[0], &TOS[1]-&LV[O])
rl.src = rl.dst rl.dst r2.dst
4. (MOv, &LV[0]-&LV[O], ---, &TOS[0]-&LV[0])
rl.dst rl.src

l Code Generation

After passing IR_1:

After passing IR_2:

After passing IR_3: LOAD r1, LV[O]

LOAD r2, LV[1]
ADD rl, rl, r2

After passing IR _4:

STORE ri. LV[O]

Figure 3-14. Instruction Folding for Stack Operations During Code Generation

35

3.4.2 Rule-based Null Pointer Check Elimination

Due to its architectural design, the VM consists of many bytecode instructions that
introduce null pointer checks. For example, in KVM "GETFIELD_FAST",
"PUTFIELD_FAST" arefor object field access and "|ALOAD", "IASTORE" for array ele-
ment access, which overall impose much runtime overhead. To reduce such overhead, we
propose arule-based method which isemployed in our IR generator. It can eliminate agreat
portion of IR instructions for null pointer checks in a cost-effective manner, in contrast to

other methods employing data-flow analysis.
Now the basic design of the method is described as follows.
» Definition
1. Full Set: (F-Set)
All compile-able bytecode instructions in the KJI TC constitute this set.

2. Un-eliminated Set: (U-Set)
All bytecode instructions' in F-Set, ‘which introduce null pointer checks by

examining associated object references, constitute this set.

3. Target Set: (T-Set)
A predetermined subset of U-Set.

4. Dominance Set: (D-Set)
All bytecode instructions in F-Set, which produce object references that are later
used by bytecode instructions in T-Set, constitute this set.

5. Influential Set: (1-Set)
All bytecode instructions in F-Set, which may alter object references that are later
used by bytecode instructions in T-Set, constitute this set.

e Data Structure

36

1. A n-height stack (L-Stack)
This is a tiny stack used to simulate stack operations. n poses a limit to the

maximum stack height that can be tracked. This stack is implemented as a n-element
array.
2. A m-bit-mask array (B-Array)

This array, say array[0:m-1], is used to track whether the local variable O through

local variable m-1 isnull pointer checked or not.

Algorithm
1. Select some bytecode instructions from U-Set as T-Set
2. Find the corresponding D-Set, 1-Set

3. Upon an IR block entrance,.initializeall n elements of L-Stack as"Not_Tracked".
When some bytecode instruction iniD=Set "is. encountered, mark the corresponding

element in L-Stack with the corresponding local variable number.

4. Upon an IR block entrance;-initialize all ‘m bits of B-Array as "Un-Checked".
When some bytecode instruction:in |-Set is encountered, mark the corresponding bit in
B-Array with "Un-Checked".

5. When some bytecode instruction in T-Set is encountered, if the bit mask of the
local variable associated with the object reference is "Checked", the null pointer check
for this bytecode instruction is eliminated; otherwise the null pointer check remains and
also the bit mask is then marked as " Checked".

6. Theflowchart of the algorithm is depicted in Figure 3-15.

37

Fetch a Bytecode

End

Bytecode

In F-Set

Initialize L-Stack
and B-Array

An IR block
Entrance

Bytecode
In D-Set

Mark
Corresponding
Entry in L-Stack
with LV#

Bytecode
In |I-Set

Mark
Corresponding
Entry in B-Array

with <Unchecked>

NO

Replace the
Corresponding Bit
in L-Stack with
<Checked>

orresponding
Bitin L-Stack is
<Checked>

YES

Eliminate Null
Pointer Check

Figure 3-15. Flowchart of Null Pointer Check Elimination

38

* A Simple Example

1. Configuration:
T-SET ={"GETFIELDP_FAST", "PUTFIELD_FAST" }
D-SET ={"ALOAD","ALOAD_0","ALOAD_1", "DUP"}
[-SET = {"ASTORE", "STORE", "ISTORE_0", "ISTORE_1"}
Pick L-Stack as a 5-height stack
Pick B-Array as a4-bit-mask array

2. Given Code Sequence Within an IR-block (see Table 3-1):
NT: Not Tracked
NC: Not Checked (or Un-Checked)
C: Checked

Table 3-1. An Example of Rule-based Null Pointer Check Elimination

Byte-code Stack Height L-Stack B-Array Perform
(after execution) |(after execution) (after execution) Null Pointer
Check

<Initidize> 0 {NTNTNTNT,NT} [{NC,NC, NC, NC}
ILOAD xxx 1 {NTNTNTNT,NT} [{NC,NC, NC, NC}
ALOAD 1 2 {NT, 1, NT,NT,NT} [{NC, NC, NC, NC}
GETFIELDP FAST |2 WM NC,NC} |YES
XXX
IF ICMPLT xxx & {NT, 1, NT,NT,NT} [{NC, C,NC, NC}
ALOAD 1 1 {1, 1, NT,NT,NT} [{NC, C,NC, NC}
ILOAD 2 2 {¥, 1, NT,NT,NT} [{NC, C,NC, NC}
PUTFIELD_FAST |0 Wl}/{—m’c NC,NC} [NO
XXX
ICONST 2 4T {1, 1, NT,NT, NT} {NC, C,NC, NC}
ISTORE 1 0 {1, 1, NT,NT,NT} [{NC, NC,NC, NC}
ALOAD 0 1 {0, 1, NT,NT,NT} [{NC, NC,NC, NC}
GETFIELDP_FAST j/{b,l/,m.WT C,NC,NCNC} |YES
Ox

<|CON,$T_0 3 {0, 1, NT,NT,NT} __{C, NC, NC,NC}

NST 1 3 {0, 1, NT,NT,NT} [{C,NC, NCNC}

IASTORE 0 {0, 1, NT,NT,NT} [{C,NC,NCNC} |YES

In the above example, we observe that the last bytecode, IASTORE, aso receives a
reference as its first input parameter. However, to support bytecode instructions of this
type, such as IALOAD and IASTORE, our basic design needs to be extended somewhat.

39

Conceptually, an additional stack and an additional bit-mask array must be added to track
the field index and the field status respectively, just as L-Stack and B-Array track the local
variable number and the local variable status. Detailed description on the algorithm of our

extended design is lengthy and therefore is skipped over.

3.5 ARM/Thumb Instruction Set Selection

In order to evaluate the effectiveness of dual instruction set, we choose ARM/Thumb
as our target for native code generation. General discussion on ARM and Thumb
instruction sets can be found in [6][34]. In this section, we only discuss their differences

that relate to our native code generator design.

Register Pressure

In ARM mode, there are 16_registers (RO ~ R15) available. Excluding R15 (PC:
program counter), R14 (LR: link register), and R13 (SP: stack pointer), there are still 13
registers that can be freely used for register allocation/assignment. But since our design
involves relative addressing that isilocal-variable-based (see Section 3.3.1), we devote RO
to storing the starting address of the local variable array. Overal, we have 12 registers | eft.

In Thumb mode, only 8 registers (RO ~ R7) can be used without restrictions. Excluding
RO, there only remains 7 registers. Therefore, as far as register pressure is concerned, a
program compiled in Thumb instruction set will have more load/store instructions for

register restoration/spilling than that in ARM.

I nstruction Selection

Static compilers in general environment invest much time in instruction selection.
Indeed, selecting faster instructions will improve compiled code quality in terms of
execution speed. However, due to the demands for fast compilation, our native code
generator will only select essential types of instructions for code generation. Here the most

important issue is on the width of immedaite field.

40

In common register-set design, the source fields of instructions may be specified as
immediate fields. That is, immediate values or constants within range can be directly
encoded in these fields. For those immediate values that exceed the maximum range of the
fields, load instructions are needed to retrieve immediate values from memory to registers

before these values are used.

Because Thumb instruction set is 16-bit, there is no much space for immediate values
when compared with 32-bit ARM instruction set. It seemsthat insufficient immediate field

width may have a great influence on the code quality of the compiled code.

In Table 3-2, we list mgjor types of selected instructions used in our native code
generator, thier immediate field widths, their addressing modes (if needed), and thier
addressing ranges (if needed). According to the table, differences in ARM/Thumb come
from three types of instructions. For detailed explanation, the branch type instruction is
used for branching within a metheod. The PC-relative load/store instruction is used for
retrieving constants. The base-addressing load/store instruction is used for accessing the

local variables and the operand stack.

Table 3-2. Immediate Fields'of:-Major Instruction Types

Immediate Field Immediate Field
Instructions Type In Thumb in ARM
MOV imm8 imm8
MUL N/A N/A
ADD imm8 imm8
SuUB
LSR imm5 imm5
LSL
CMP imm8 imm8
B s immll imm24
(+-2048 bytes) (+-32 Mbytes)
LD (PC-relative) imm8 imm12
ST (PC-relative) (+1024 bytes) (+-4096 bytes)
LD (base addressing) imm5 imm12
ST (base addressing) (+128 bytes) (+-4096 bytes)

41

Chapter 4 Experiments

This chapter is devoted to experiments. We first describe our set-up environment for
experiments. Next, appropriate benchmarks are chosen for performance evaluation.

Finally, experiment results including speed performance and memory usage are exhibited.

4.1 Experiment Environment

Our KJTC is designed and implemented based on version 1.0.4 of Sun's KVM, the
reference implementation of 2ME CL:DC: For our research usage, the KVM is ported to
ARM's ADSL.2, an development environment: which includes compiler, assembler,
debugger, and instruction set simulator. Far compiling Java benchmark programs and
KVM's class libraries, the version of the'Java compiler adopted is Sun's J2SDK 1.4.2_03.
For compiling KVM and our KJITC,"maximum-optimization is specified with -O2 option,
and other options remain default. Last but not least, our target architectureisARM7TDMI,

an uncached Harvard architecture which supports both ARM/Thumb instruction sets.

4.2 Benchmarks

Dueto the limited APIsthat 2ME CLDC specifies, common Java benchmarks can not
be applied in our experiment environment. By referring to related academic researches, we
choose Embedded CaffeineMark 3.0 [35] for our experiments.

The Embedded CaffeineMark 3.0 uses 6 tests to measure embedded JVM performance
in various aspects. Excluding the floating point test which is not supported in CLDC 1.0,
the remaining 5 tests are adopted (see Table 4-1).

42

Table 4-1. Selected Tests of Embedded CaffeineMark 3.0

Name Brief Description

Sieve The classic sieve of Eratosthenes finds prime
numbers.

Loop The loop test uses sorting and sequence generation as
to measuree compiler optimization of loops.

Logic Tests the speed with which the virtual machine
executes decision-making instructions.

Method The Method test executesrecursive functional callsto
see how well the VM handles method calls.

String String comparison and concatenation.

The original design of Embedded CaffeineMark 3.0 is each test executes for a fixed
amount of time, and the reported score is propotional to the number of times the test is
executed. There is a problem thatsthe Tnstruetien set simulator on which benchmarks run
may report inaccurate system titming information to-executed benchmarks. It may cause the
reported scores float. In order-to solve thisproblem, we modify the 5 tests to make each of
time execute for some fixed workload;/And therefore we measure the cycle counts of each

test for performance evaluation.

4.3 Experiment Results

4.3.1 Effects of KJITC Optimizations

This section isto test the effectiveness of major optimizations employed in our KJTC.
The optimizations include instruction folding for stack operations and rule-based null
pointer check elimination. Since optimizations are interrelated, it is not possible to pre-
cisely break down effects of all optimizationsinto the sum of each individual optimization.
Therefore we measure the speed performance of all optimizations enabled and the speed
performance of all but the intended one optimization. Here the embedded JVM is compiled
in ARM and the KJITC also targets ARM.

43

Table4-2 liststotal execution cyclesof different optimization setupsand of apureinter-

preter.

Table 4-2. Execution Cycles of Different Setups

All But Al But
Interpreter Instruction Folding NuIIP.0|r.1ter_Check All

Elimination
Sieve 944,892|,632067, 787} 7864, 466, 26560, 364
Loop 995, 035|,6387,416} 5085, 197(, 8188 , 00 3
Logic 984,611|, 489, 966} 48382, 832, 288102, 8 37
String 996, 478,,0824, 003} 1987, 158|, 21406, 3417
Method 1,019, 4[76,9719798 606} 688B7, 267]|, 287824, 6 4 2
Average 988, 098], 9923, 356} 1281, 384, 48732, 039

Figure 4-1 shows the speedup of the optimization setups over the pure interpreter, for
ease of understanding. The key observation isthat instruction folding has more impact than

null pointer check elimination.;Also to be noted.isthat due to their program characteristics,

logic and method tests exhibit little speed performance improvement.

7. 0r6
5.99
o
6 . 0r0
; 5.1
5.0 4.05
o 4.03
© 4.0
o
w 3.0 2. (
L s 00 5
2.0 51 1.1
1. 49 L 4 ts
| ol |
0.0 | | | |
SieveLoop LogicStrinMet hoAver g
oAl | But I nstBAckti Bat FNUMDI nBoi nOAlr

Figure 4-1. Effects of Optimizations

44

, 494
, 256
, 920
, 558
, 630
L 172

ge

Chec

4.3.2 Effects of Dual Instruction Set Selection

To evaluate the impact of dual instruction set selection, we measure the total execution

cycles of the following six configurationsin Table 4-3. The first two configurations refer

to JVMs only with pure interpreters while the last four configurations refer to mixed-mode

JVMsthat combine interpreters and J T compilers.

1. Pure Thumb Interpreter (T)

6.

Pure ARM Interpreter (A)

Thumb JVM + Thumb Compiled Code (T + T)
Thumb JVM + ARM Compiled Code (T + A)
ARM VM + Thumb Compiled Code (A + T)

ARM JVM + ARM Compiled Code (A + A)

Table 4-3. Execution Cycles of Six Configuratiens

Total Cycle Total Cycle Total Cycle Total Cycle Total Cycle Total Cycle
Benchmarks| Counts(T) Counts(A) |Counts (T +A)|Counts (T +T)|[Counts(A +A)| Counts(A +T)
Sieve 1, 463, 4 774,48 8802 ,267166 3 7 ¢ ,267392, 23 B ,2DQ 35p ,252836 21p
L oop 1,567, 6 199,52 0435 ,1673L5 50 4 ,147947, 7 5B ,116664 99 p ,10692 24 p
Logic 1,553, 41968,47,%9 114500, 2/216,,179304, 4 281 2,784 p ,871(G 8 4 p
String 1,522, 186,61 2488 ,2065/9 12 ¢ ,296906, 1 2P ,254%4 30p ,29@02 30B
M ethod 1,501, 30107183476 ,0B8388 2|319,,043680, 4 3& 8§ 6,063 {1 ,818444 6 3 [L
Average 1,521, 14908,83 60098 ,58162 69 4 ,588684, 51F , 447 02 f ,48/138 8 4 [

Figure 4-2 shows the overall total cycle counts of each configuration versus each test

in bar graph. The rightmost test is the average of the five tests. Some of our observations

are:

* Pure ARM interpreter isfaster than pure Thumb interpreter by about 50%.

» Based on either interpreter (ARM or Thumb), mixed-mode configurations with ARM

Compiled Code and Thumb Compiled Code achieve near performance.

» For the Logic test and Method test, the speed improvement of configurations with

mixed-mode JVMs over pure interpretersis much less than that for the other three tests.

45

, 290
, 089
, 222
, 107
, 615
, 265

Speed Performance

1,800
1,600 r
1,400 -
1,200 - —
1,000 r
800 r
600 r
400 r
200 r

Total Execution Time (Million Cycles)

Sieve Loop Logic String Method Average
@ Pure Thumb Interpreter m B Pure ARM Interpreter A)
OThumb JVM + Thumb Compiled Code (T +T) OThumb JVM + ARM Compiled Code (T +A)
OARMJVM + Thumb Compiled Code (A +T) B ARMJVM + ARM Compiled Code (A +A)

Figure 4-2. Speed Performance of All Configurations

Among the total execution time, J'T_compilation time deserves our attention since the
cost for compilation is expected to be low-enough:. For this reason, we normalize compilar
ti onmcost for asingle bytecodeas Figure4-3 depicts.'A point to be noted is the compilation
cos?;of the JIT compiler isthe sum of the TR generator cost and the corresponding code gen-

erater cost.
o

Byt

Compil ation Cost

50
40 =8 — _ —
30
20
10

Per

Cycl es

Sieve Loop Logic Strindglet hodAverage

Ol R Gener at oBThumb Code [[MTAeRnVe rCaotdoer G¢ nler at or
OThumb JI T dDAMRM |JelrT Compil er

Figure 4-3. Compilation Cost of KJITC

46

Now we are to consider the static memory usage of each configuration. As shown in
Figure 4-4, our ARM JIT compiler take about 23 Kbytes, while Thumb J'T compiler takes

about 15 @ytes. (To be more precise, the four mixed-mode configurations should also

[¢}]
consider extra 1~2 Kbytes expansion owing to hot spot detector, switch code, and etc.)

Size (KBy

Code

Static Memroy Usage

306

14.7322.7

250 o, pp2.31 - —
200
150
100
5 0f
0

T A T + TT + A + TA +

Ol

nt er @JdtTerComp i |

e

r

Figur e 4-4; Static Memory. Usage of All Configurations

Also the dynamic memory-usage, by:which we mean the compiled code size, of thetwo

JT compilers is further taken-into-account. Figure 4-5 demonstrates that the dynamic

memory usage of Thumb over ARM-isranged from 60% to 75%, with the average being

about 68%. ¢

(Byt

Si ze

Code

Dynamic Me mor vy Us age

500

(@)

400
300
200

© o o

adallad

SievéeoopLogi Stri Mgt hAder

OThumb

Co mp iBAeRdM QCoodrep i

e

A

[e

(o

Figure 4-5. Dynamic Memory Usage of the Two JI'T Compilers

47

1 g e

Code

)

c

gFinally, in order to evaluate the relative cost-performance of the four mixed-mode
cdHfigurations, we draw plots of speed increment and total code sizeincrement respectively
baged on ARM interpreter and on Thumb interpreter (see Figure 4-6). Judged by the two
criteria- higher speed increment and lower code size increment, the configuration of ARM

intérpreter with Thumb J'T compiler seems most cost-effective.

(V-
o
250 el a W VA
o S 221.4506% 222.38%
o>200. 00%
< 158.57%1§i;yyﬁ/
150. 0% ¢
= 108.53% 109. 33%
S100.00% —* *
© 67.90%68. 42%
o N0/ E—A0©
°0. 00 ., 17.90% 27,419 33-54%
Yo d— —h— x ‘
o 0.00% 3 34 % 1. 96 % 10.18% 15.48%
a = .
-50.00%
T+T T+A A+T A+A
——Speed I ncrement (over |[Thumb I nterpret|e
—~4—-Speed Increment (over |ARM Interpreter|)
—4-Code Size Increment (olver Thumb I nter|p
—4Code Size Increment (olver ARM Interpr|e

Figure 4-6. Speed Increment and Code Size Increment of Four Mixed-mode Configurations

48

PR

~

@ @

- —~+

— o

Chapter 5
Conclusion and Future Work

In thisresearch, our experiment results show that dual instruction set selection has great
influence on the performance of an interpreter. The speedup ratio of a pure interpreter-
based VM of ARM over Thumb is about 50%. Asfar as speed performance is concerned,
the ARM interpreter is superior to the Thumb interpreter. However, the caseis not hold for
the JI'T compiler. In fact, the compiled codein ARM and Thumb both exhibit close perfor-
mance, with ARM compiled code only slightly faster (within 1%) than Thumb compiled

code. This result may be quite surprising:

Based on our observation, the Thumb code generator of our J T compiler only generates
less efficient native code tharrthe ARM code generator under either one of the following
two conditions. First, thereis high register-pressurein the Thumb JI'T compiler. Second, IR
instructions involve immediate values that can'not be directly encoded inimmediate fields
of Thumb instructions. However, since experiment resultsimply that there is no significant
register pressure and the immediate field width is already enough for most cases, we can
conclude that static selection of the mixed-mode configuration, the ARM interpreter and
the Thumb JT compiler, is most cost-effective for an embedded VM. Therefore dual

instruction set is statically selected and no dynamic selection is necessary.

This selected configuration on average achieves 2.08 speedup with 10.18% code size
increment compared with an ARM interpreter-based VM, and 3.21 speedup with 27.41%
code size increment compared with a Thumb interpreter-based VM. We also expand one
more column from Table 2-1 to compare our KJITC with then others and then remake a
new table as Table 5-1.

49

Table 5-1. Comparison of KJTC with Other JIT Compilers

JIT Sun - Server Sun - Client SNU Latte Sanford MicrodI T KJITC
Source CH++ C++ C C C
IR Format SSA dataflow Smple Dataflow Dataflow Smple
Magor Compiler
Passes Interative 4 7 4 2
Regiser
Allocation Graph coloring 1-pass dynamic 2-pass dynamic 1-pass dynamic 1-pass dynamic
_— . 1.CsE 1. smple constant propagation
) ; lmwgﬁmqmm 1. block merging/diminztion 1. EBB vaue numbering 2. copy propagation 2. smple congtant folding
Major -9 >ering - 9 } 2. EBB congtant propagation |3. congtant propagaron 3. gtrength reduction
A 3. constant propagation 2. smple congtant propagation o) L . . A
Optimizations 4.inlining & specidlizaion |3, inlining & specialization 3. loop invariant codemotion |4. loop invariant code motion |4. null pointer check dimination
5‘ instruction schecluli . 4.inlining & specidization 5. inlining & specidization 5. ingruction folding for stack
- Instruction uing 6. ingtruction scheduling operations
Compiler Size 15KB (Thumb)
1.5MB (Sparc) 700K B (Sparc) 325K B (Sparc) 200K B (Sparc) 23KB (ARM)
Compilation Cost 330 Cydes (Thumb)
(Per Bytecode) ~100,000 Cycdles ~8,300 Cycles ~20,000 Cycles ~5,000 Cycles 343 Cydes(ARM)

For future research directions, more optimizations may beincorporated into our KJITC.

One optimization that deserves mast attention‘is method inlining. According to our exper-

iment results shown in Figure 4-2, performance improvement on the method test isnot sig-

nificant since there is not much optimization space for tiny method calls in our KJTC.

Employing method inlining can be'effective-under such circumstance.

Study on energy consumption in anembedded mixed-mode JVM is also an interesting

research topic. One recent research [36] only discusses energy consumption breakdown of
an embedded interpreter-based VM. As afirst thought, our embedded mixed-mode VM

may consume less energy than an interpreter-based JVM for speed performance improve-

ment also leads to energy consumption reduction. However, a more precise method is

required to estimate energy consumption of our different configurations that concern both
ARM and Thumb.

50

References

[1] "J2ME Building Blocks for Mobile Devices," Sun Microsystems, May 2000

[2] G. Muller, B. Moura, F. Bellard, and C. Consel, "Harissa: A Flexible and Efficient
Java Environment Mixing Bytecode and Compiled Code,” Proc. of USENIX
COOTS97, 1997

[3] O. Agesen and D. Detlefs, "Mixed-mode Bytecode Execution,” TR-2000-87, Sun
Microsystems, June 2000

[4] V. Colin de Verdiere, Sebastien Cros, C. Fabre, R. Guider, S. Yovine, "Speedup
Prediction for Selective Compilation’sof Embedded Java Programs,” Proc. of
EMSOFT'02, October 2002

[5] A. Halambi, A. Shrivastava, P. Biswas, N.:Dutt, A. Nicolau, "A Design Space
Exploration Framework for Reduced-Bit-width Instruction Set Architecture (r1SA)
Design," Proc. of ISSS 02, October 2002

[6] S. Furber, ARM System-On-Chip Architecture, 2nd Edition, Addison Wesley, 2000
[7] D. Sweetman, See MIPS Run, Morgan Kaufmann, 1999
[8] B. Venners, Inside the Java Virtual Machine, 2nd Edition, McGraw-Hill, 2000

[9] X. Leroy, "Java Bytecode Verification: Algorithm and Formalizations," Journal of
Automated Reasoning 30(3-4):235-269, 2003

[10] J. Meyer, T.Downing, Java Virtual Machine, O’ Reilly, 1997

[11] M. Tremblay, M. O Connor, "PicoJavac A Hardware Implementation of the Java
Virtual Machine,"” Sun Microsystems, 1996

51

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T. Lindholm, F. Yéllin, The Java Virtual Machine Specification, 2nd Edition, Addi-
son Wesley, 1999

W. H. Chiao, ILP Exploration of Java Stack Operations, Master Thesis, CSIE,
NCTU, 2001

ARM Jazelle Technology, http://www.arm.com/products/solutions/Jazelle.html

T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H.
Komatsu, T. Nakatani, "Overview of the IBM Java Just-In-Time Compiler,” IBM
Systems Journal, Java Performance Issue, Vol 39, No 1, Februrary 2000

Ali-Reza Adl-Tabatabai, M. Cierniak, G. Y. Lueh, V. M. Parikh, J. M. Stichnoth,
"Fast, Effective Code Generation in a Just-In-Time Java Compiler," Proc. of ACM
S GPLAN'98 Conference on PLDI, June 1998

K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T.
Onodera, H. Komatsu, T. Nakatani, "Design, Implementation, and Evaluation of
Optimizations in a Just-l=Time.Compiler;" Proc. of ACM Java Grande Confer-
ence, June 1999

Alfred V. Aho, Ravi Sethi, Jeffrey-d.-Ullman, Compilers. Principles, Techniques,
and Tools, Addison Wedley, 1985

Steven. S. Muchnick, Advanced Compiler Design and Implementation, Morgan
Kaufmann, 1997

STMicroelectronics, ST100 Technical Manual, http://www.st.com

ARC Cores, ARCtangent-A5 Microprocessor Technical Manual,
http://www.arccores.com

A. Krishnaswamy, R. Gupta, "Profile Guided Selection of ARM and Thumb
Instructions,” Proc. of LCTES 02/SCOPES 02, June 2002

S. Lee, J. Lee, S. L. Min, J. Hiser, J. W. Davidson, "Code Generation for a Dual
Instruction Set Processor Based on Selective Code Transformation,” Proc. of
SCOPES 03, September 2003

52

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

D. Gregg, M. A. Ertl, A. Krall, "Implementing an Efficient Java Interpreter,” Proc.
of HPCN' 01, June 2001

A. Besdtty, K. Casey, D. Gregg, A. Nisbet, "An Optimized Java Interpreter for Con-
nected Devices and Embedded Systems," Proc. of ACM SAC’ 03, March 2003

E. Gagnon, L. Hendren, "Effective Inline-Threaded Interpretation of Java Bytecode
Using Preparation Sequences,” Proc. of CC’' 03/ETAPS 03, January 2003

B. Stephenson, W. Holst, "Multicode: Optimizing Virtual Machines Using Byte-
code Sequences,” Proc. of ACM OOPSLA’ 03, October 2003

Venugopa K S, G. Manjunath, V. Krishan, "sEc: A Portable Interpreter Optimizing
Technique for Embedded Java Virtual Machine," Proc. of USENIX JVM’ 02, August
2002

M. Chen, K. Olukotun, "Targeting Dynamic Compilation for Embedded Environ-
ments," Proc. of USENIX JVM’02; August 2002

"Connected Limited Device Configuration Specification,” Verison 1.1, Sun
Microsystems, March 2002

L. R. Ton, L. C. Chang, M..F. Kao, H. M. Tseng, S. S. Shang, R. L. Ma, D. C.
Wang, C. P. Chung, "Instructien Falding in Java Processor," Proc. of ICPADS97,
December 1997

L. C. Chang, L. R. Ton, M. F. Kao, C. P. Chung, "Stack Operations Folding in Java
Processors," Proc. of IEE Computers and Digital Techniques, September 1998

C. N. Fischer, R. J. LeBlanc, J., Crafting a Compiler with C, The Benjamin/
Cummings Publishing, 1991

D. Sed, ARM Architecture Reference Manual, 2nd Edition, Addison Wesley,
December 2000

Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark, http://
www.webfayre.com, 1997

S. Lafond, J. Lilius, "An Opcode Level Energy Consumption Model for a Java Vir-
tual Machine," Proc. of USENIX VM’ 04, May 2004

53

Appendix
Bytecode I nstruction Table

Following is atable that lists all bytecode instructions of our embedded mixed-mode
JVM and their short descriptions. It shows whether a bytecode instruction is compiled or
not in our current implementation, and corresponding PC and SP offset adjustments. SP
offset adjustments can be further expressed in three parts. "Plus’ isthe number of stack ele-
ments the bytecode instruction produces; "Minus" isthe number of stack el ementsthe byte-
code instruction consumes. "Overall” equals to the value of "Plus" subtracted from
"Minus', meaning whether the stack pointer should grow upward or downward. Besides,
some offset adjustments can not'be determined et static time, and therefore are labeled as

"runtime”.

It is worth noting that 32 bytecode-nstructions, from opcode 224 to opcode 255, are
originaly unused in KVM, but are used in our.embedded mixed-mode JVM as marks to
identify existing compiled code blocksfor native execution. Some fields can not applicable
to unused and unneeded bytecode instructions, and are intentionally left black for clarity

therefore.
Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-hit)
Plus | Minus | Overal

0 nop do nothing stack manipulation 0 1 0 0 0

1 aconst_null push null pushing constants onto [e) 1 1 0 1
the stack

2 iconst_ml push int const -1 pushing constants onto 0 1 1 0 1
the stack

3 iconst_0 push int const 0 pushing constants onto 0 1 1 0 1
the stack

4 iconst_1 push int const 1 pushing constants onto [e) 1 1 0 1
the stack

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall
5 iconst_2 push int const 2 pushing constants onto 0 1 1 0 1
the stack
6 iconst_3 push int const 3 pushing constants onto 0 1 1 0 1
the stack
7 iconst_4 push int const 4 pushing constants onto 0 1 1 0 1
the stack
8 iconst_5 push int const 5 pushing constants onto [e) 1 1 0 1
the stack
9 Iconst_0 push long const 0 pushing constants onto 1 2 0 2
the stack
10 Iconst_1 push long const 1 pushing constants onto 1 2 0 2
the stack
11 fconst_0 push float 0.0 pushing constants onto 1 1 0 1
the stack
12 fconst_1 push float 1.0 pushing constants onto 1 1 0 1
the stack
13 fconst_2 push float 2.0 pushing constants onto 1 1 0 1
the stack
14 dconst_0 push double 0.0 pushing constants onto 1 2 0 2
the stack
15 dconst_1 push double 1.0 pushing constants onto 1 2 0 2
the stack
16 bipush push byte pushing constants onto o) 2 1 0 1
the stack
17 sipush push short pushing:constants onto o 3 1 0 1
the stack
18 Idc push item from ruritime pushing constants onto (0] 2 1 0 1
constant pool the stack
19 Idc_w push item from runtime pushing-constants'onto 3 1 0 1
constant pool (wideindex) | the'stack
20 ldc2_w push long or double from | pushing constants onto 3 2 0 2
runtime constant pool the stack
(wide index)
21 iload load int from local vari- pushing local variables 0 2 1 0 1
able onto the stack
22 lload load long from local vari- | pushing local variables 2 2 0 2
able onto the stack
23 fload load float from local vari- | pushing local variables 2 1 0 1
able onto the stack
24 dload load double from local pushing local variables 2 2 0 2
variable onto the stack
25 aload load reference from local pushing local variables o) 2 1 0 1
variable onto the stack
26 iload_0 load int from local vari- pushing local variables 0 1 1 0 1
able0 onto the stack
27 iload_1 load int from local vari- pushing local variables 0 1 1 0 1
ablel onto the stack
28 iload_2 load int from local vari- pushing local variables 0 1 1 0 1
able2 onto the stack
29 iload_3 load int from local vari- pushing local variables o) 1 1 0 1
able3 onto the stack
30 lload_0 load long from local vari- | pushing local variables 1 2 0 2
able0 onto the stack

55

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall
31 lload_1 load long from local vari- | pushing local variables 1 2 0 2
ablel onto the stack
32 lload_2 load long from local vari- | pushing local variables 1 2 0 2
able2 onto the stack
33 lload_3 load long from local vari- | pushing local variables 1 2 0 2
able3 onto the stack
34 fload_0 load float from local vari- | pushing local variables 1 1 0 1
able0 onto the stack
35 fload_1 load float from local vari- | pushing local variables 1 1 0 1
ablel onto the stack
36 fload_2 load float from local vari- | pushing local variables 1 1 0 1
able2 onto the stack
37 fload_3 load float from local vari- | pushing local variables 1 1 0 1
able3 onto the stack
38 dload_0 load double from local pushing local variables 1 2 0 2
variable 0 onto the stack
39 dload_1 load double from local pushing local variables 1 2 0 2
variable 1 onto the stack
40 dload_2 load double from local pushing local variables 1 2 0 2
variable 2 onto the stack
41 dload_3 load double from local pushing local variables 1 2 0 2
variable 3 onto the stack
42 aload_0 load reference fromiloca | |-pushing local variables fe) 1 1 0 1
variable 0 onto the stack
43 aload_1 load reference from local | pushinglocal variables o 1 1 0 1
variable 1 onto the stack
44 aload 2 load reference frontlocal pushing local'variables 0 1 1 0 1
variable 2 onto the stack
45 aload 3 load reference from local pushing local variables 0 1 1 0 1
variable 3 onto the stack
46 iaload load int from array retrieving values from [e) 1 1 2 -1
arrays
47 laload load long from array retrieving values from 1 2 2 0
arrays
48 faload load float from array retrieving values from 1 1 2 -1
arrays
49 daload load double from array retrieving values from 1 2 2 0
arrays
50 aaload load reference from array | retrieving values from 0 1 1 2 -1
arrays
51 baload load byte or boolean from | retrieving values from o 1 1 2 -1
array arrays
52 caload load char from array retrieving values from 0 1 1 2 -1
arrays
53 saload load short from array retrieving values from (0] 1 1 2 -1
arrays
54 istore storeint into local variable | popping stack valuesinto [e) 2 0 1 -1
local variables
55 Istore storelong into local vari- | popping stack valuesinto 2 0 2 -2
able local variables
56 fstore storefloat into local vari- | popping stack valuesinto 2 0 1 -1
able local variables

56

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall

57 dstore store double into local popping stack valuesinto 2 0 2 -2
variable local variables

58 astore store reference into local popping stack valuesinto 0 2 0 1 -1
variable local variables

59 istore_O storeintintolocal variable | popping stack valuesinto 0 1 0 1 -1
0 local variables

60 istore_1 storeintintolocal variable | popping stack valuesinto [e) 1 0 1 -1
1 local variables

61 istore_2 storeintintolocal variable | popping stack valuesinto o) 1 0 1 -1
2 local variables

62 istore_3 storeintintolocal variable | popping stack valuesinto o) 1 0 1 -1
3 local variables

63 Istore_O storelong into local vari- | popping stack valuesinto 1 0 2 -2
able0 local variables

64 Istore_1 storelong into local vari- | popping stack valuesinto 1 0 2 -2
ablel local variables

65 Istore_2 storelong into local vari- | popping stack valuesinto 1 0 2 -2
able2 local variables

66 Istore_3 storelong into local vari- | popping stack valuesinto 1 0 2 -2
able3 local variables

67 fstore 0 store float into local vari-. 4. popping stack values into 1 0 1 -1
able0 focal variables

68 fstore_1 store float into local.vari- | |-popping stack valuesinto 1 0 1 -1
ablel local variables

69 fstore 2 store float into loeal vari-- | poppingstack values into 1 0 1 -1
able2 local variables

70 fstore 3 store float into local vari- f popping stack values.into 1 0 1 -1
able3 local variables

71 dstore O store doubleinto local popping-stack values into 1 0 2 -2
variable 0 local variables

72 dstore_1 store doubleinto local popping stack valuesinto 1 0 2 -2
variable 1 local variables

73 dstore_2 store double into local popping stack valuesinto 1 0 2 -2
variable 2 local variables

74 dstore_3 store double into local popping stack valuesinto 1 0 2 -2
variable 3 local variables

75 astore 0 store reference into local popping stack valuesinto o) 1 0 1 -1
variable 0 local variables

76 astore 1 store reference into local popping stack valuesinto 0 1 0 1 -1
variable 1 local variables

7 astore 2 store reference into local popping stack valuesinto 0 1 0 1 -1
variable 2 local variables

78 astore 3 store reference into local popping stack valuesinto 0 1 0 1 -1
variable 3 local variables

79 iastore storeinto int array storing valuesin arrays o) 1 0 3 -3

80 lastore storeinto long array storing valuesin arrays 1 0 4 -4

81 fastore storeinto float array storing valuesin arrays 1 0 3 -3

82 dastore storeinto double array storing valuesin arrays 1 0 4 -4

83 aastore storeinto reference array | storing valuesin arrays 1 0 3 -3

84 bastore storeinto byte or boolean | storing valuesin arrays 1 0 3 -3

array

57

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall
85 castore store into char array storing valuesin arrays 1 0 3 -3
86 sastore storeinto short array storing valuesin arrays 1 0 3 -3
87 pop pop the top operand stack | stack manipulation [e) 1 0 1 -1
value
88 pop2 pop the top one or two stack manipulation 0 1 0 2 -2
operand stack values
89 dup duplicate the top operand | stack manipulation [e) 1 2 1 1
stack value
920 dup_x1 duplicate the top operand | stack manipulation [e) 1 3 2 1
stack value and insert two
values down
91 dup_x2 duplicate the top operand | stack manipulation 0 1 4 3 1
stack value and insert two
or three values down
92 dup2 duplicate the top one or stack manipulation 0 1 4 2 2
two operand stack values
93 dup2_x1 duplicate the top one or stack manipulation 0 1 5 3 2
two operand stack values
and insert two or three
values down
94 dup2_x2 duplicate the top one or stack i/mani pulation o) 1 6 4 2
two operand stack values
and insert two, three, or
four values down
95 swap swap the top two operand || stack' manipulation 0 1 1 1 0
stack values
96 iadd add int arithmetic o) 1 1 2 -1
97 ladd add long arithmetic 1 2 4 -2
98 fadd add float arithmetic 1 1 2 -1
99 dadd add double arithmetic 1 2 4 -2
100 isub subtract int arithmetic o) 1 1 2 -1
101 Isub subtract long arithmetic 1 2 4 -2
102 fsub subtract float arithmetic 1 1 2 -1
103 dsub subtract double arithmetic 1 2 4 -2
104 imul multiply int arithmetic 0 1 1 2 -1
105 Imul multiply long arithmetic 1 2 4 -2
106 fmul multiply float arithmetic 1 1 2 -1
107 dmul multiply double arithmetic 1 2 4 -2
108 idiv divide integer arithmetic 1 1 2 -1
109 Idiv divide long arithmetic 1 2 4 -2
110 fdiv divide float arithmetic 1 1 2 -1
111 ddiv divide double arithmetic 1 2 4 -2
112 irem remainder int arithmetic 1 1 2 -1
113 Irem remainder long arithmetic 1 2 4 -2
114 frem remainder float arithmetic 1 1 2 -1
115 drem remainder double arithmetic 1 2 4 -2
116 ineg negate int arithmetic 1 1 1 0

58

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall

117 Ineg negate long arithmetic 1 2 2 0
118 fneg negate float arithmetic 1 1 1 0
119 dneg negate double arithmetic 1 2 2 0
120 ishl shift left int logical o 1 1 2 -1
121 Ishl shift left long logical 1 2 3 -1
122 ishr arithmetic shift right int logical [e) 1 1 2 -1
123 Ishr arithmetic shift right long | logical 1 2 3 -1
124 iushr logical shift right int logical [e) 1 1 2 -1
125 lushr logical shift right long logical 1 2 3 -1
126 iand boolean and int logical o) 1 1 2 -1
127 land boolean and long logical 1 2 4 -2
128 ior boolean or int logical o) 1 1 2 -1
129 lor boolean or long logical 1 2 4 -2
130 ixor boolean xor int logical o) 1 1 2 -1
131 Ixor boolean xor long logical 1 2 4 -2
132 iinc increment local variable miscellaneous local varib- o] 3 0 0 0

by constant aeinstructions
133 i2l convert int to long conversions 1 2 1 1
134 i2f convert int to float, conversions 1 1 1 0
135 i2d convert int to double conversions 1 2 1 1
136 12i convert long to int conversions 1 1 2 -1
137 |12f convert long to float conversions 1 1 2 -1
138 12d convert long to double conversions 1 2 2 0
139 f2i convert float to int conversions 1 1 1 0
140 f2l convert float to long conversions 1 2 1 1
141 f2d convert float to double conversions 1 2 1 1
142 d2i convert double to int conversions 1 1 2 -1
143 d2l convert double to long conversions 1 2 2 0
144 d2f convert double to float conversions 1 1 2 -1
145 i2b convert int to byte conversions 1 1 1 0
146 i2c convert int to char conversions 1 1 1 0
147 i2s convert int to short conversions 1 1 1 0
148 lecmp compare long comparisons 1 1 4 -3
149 fempl compare float comparisons 1 1 2 -1
150 fcmpg compare float comparisons 1 1 2 -1
151 dempl compare double comparisons 1 1 4 -3
152 dempg compare double comparisons 1 1 4 -3
153 ifeq branch if int comparison conditional branches o) 3 0 1 -1

with zero succeeds (eq)
154 ifne branch if int comparison conditional branches o) 3 0 1 -1

with zero succeeds (ne)

59

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall
155 iflt branch if int comparison conditional branches 0 3 0 1 -1
with zero succeeds (It)
156 ifge branch if int comparison conditional branches 0 3 0 1 -1
with zero succeeds (ge)
157 ifgt branch if int comparison conditional branches 0 3 0 1 -1
with zero succeeds (gt)
158 ifle branch if int comparison conditional branches o) 3 0 1 -1
with zero succeeds (le)
159 if_icmpeq branch if int comparison conditional branches [e) 3 0 2 -2
succeeds (eq)
160 if_icmpne branch if int comparison conditional branches o) 3 0 2 -2
succeeds (ne)
161 if_icmplt branch if int comparison conditional branches 0 3 0 2 -2
succeeds (It)
162 if_icmpge branch if int comparison conditional branches 0 3 0 2 -2
succeeds (ge)
163 if_icmpgt branch if int comparison conditional branches 0 3 0 2 -2
succeeds (gt)
164 if_icmple branch if int comparison conditional branches [e) 3 0 2 -2
succeeds (le)
165 if_acmpeq branch if reference com- conditional branches o) 3 0 2 -2
parision succeeds (eq)
166 if_acmpne branch if reference.com- conditional branches o) 3 0 2 -2
parision succeeds (neq)
167 goto branch always unconditional branches 0 3 0 0 0
and subroutines
168 jsr jump subroutine; nét unconditional. branches
needed by KVM and subroutines
169 ret return from subroutine; unconditional branches
not needed by KVM and subroutines
170 tableswitch access jump table by table jumping runtime 0 1 -1
index and jump
171 lookupswitch access jump table by key | table jumping runtime 0 1 -1
match and jump
172 ireturn return int from method method return 1 0 1 -1
173 Ireturn return long from method method return 1 0 2 -2
174 freturn return float from method method return 1 0 1 -1
175 dreturn return double from method return 1 0 2 -2
method
176 areturn return reference from method return 1 0 1 -1
method
177 return return void from method method return 1 0 0 0
178 getstatic get static field from class | manipulating object fields 3 runtime 0 runtime
179 putstatic set static field in class manipulating object fields 3 0 runtime | runtime
180 getfield fetch field from object manipulating object fields 3 runtime 0 runtime
181 putfield set field in object manipulating object fields 3 0 runtime | runtime
182 invokevirtual invoke instance method; method invocation 3 runtime | runtime | runtime
dispatch based on class
183 invokespecial invoke instance method method invocation 3 runtime | runtime | runtime

60

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-bit)
Plus | Minus | Overall
184 invokestatic invoke aclass (static) method invocation 3 runtime | runtime | runtime
method
185 invokeinterface | invoke interface method method invocation 5 runtime | runtime | runtime
186 unused
187 new create new object creating objects 3 1 0 1
188 newarray create new array creating arrays 2 1 1 0
189 anewarray create new array of refer- | creating arrays 3 1 1 0
ence
190 arraylength get length of array miscellaneous array 1 1 1 0
instructions
191 athrow throw exception or error exceptions 1 1 1 0
192 checkcast check whether object isof | miscellaneous object 3 1 1 0
given type operations
193 instanceof determineif object is of miscellaneous object 3 1 1 0
given type operations
194 monitorenter enter monitor for object monitors 1 0 1 -1
195 monitorexit exit monitor for object monitors 1 0 1 -1
196 wide extend local variable miscellaneous local varib- runtime | runtime | runtime | runtime
index by additional bytes_ 4 "aeinstructions
197 multianewarray | create new multidimen- creating arrays 4 1 runtime | runtime
tional array
198 ifnull branch if referencesnull conditional branches 3 0 1 -1
199 ifnonnull branch if referencenot conditional branches 3 0 1 -1
null
200 goto_w branch always (wide unconditional branches 0 5 0 0 0
index) and subroutines
201 jsr_w jump subroutine (wide unconditional ‘branches
index) ; not needed by and subroutines
KVM
202 breakpoint reserverd opcode for debugging 1 n/a n/a n/a
(reserved) debugging purpose
203 getfield_fast fast version of getfield manipulating object fields 3 1 1 0
204 getfieldp_fast fast version of getfield manipulating object fields 3 1 1 0
205 getfield2_fast fast version of getfield manipulating object fields 3 2 1 1
206 putfield_fast fast version of putfield manipulating object fields o) 3 0 2 -2
207 putfield2_fast fast version of putfield manipulating object fields 3 0 3 -3
208 getstatic_fast fast version of getstatic manipulating object fields 3 1 0 1
209 getstaticp_fast fast version of getstatic manipulating object fields 3 1 0 1
210 getstatic2_fast fast version of getstatic manipulating object fields 3 2 0 2
211 putstatic_fast fast version of putstaic manipulating object fields 3 0 1 -1
212 putstatic2_fast fast version of putstaic manipulating object fields 3 0 2 -2
213 unused
214 invokevirtual_f | fast version of invokevir- | method invocation 3 runtime | runtime | runtime
ast tual
215 invokespecial_f | fast version of invokespe- | method invocation 3 runtime | runtime | runtime
ast cia

61

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-hit)
Plus | Minus | Overall

216 invokestatic_fas fast.versi on of invoke- method invocation 3 runtime | runtime | runtime
t static

217 invokeinterface | fast version of method invocation 5 runtime | runtime | runtime
_fast invokeinterface

218 new_fast fast version of new creating objects 3 1 0 1

219 anewarray_fast | fast version of anewarray | creating arrays 3 1 1 0

220 multianewarray | fast version of multi- creating arrays 4 1 runtime | runtime
_fast anewarray

221 checkcast_fast fast version of checkcast mi scel_laneous object 3 1 1 0

operations
222 instanceof_fast | fast version of instanceof miscel_laneous object 3 1 1 0
operations

(if.) 223 | customcode for special usage special usage 1 n/a n/a n/a

224 unused JT_SWITCHO

225 unused JT_SWITCH1

226 unused JT_SWITCH2

227 unused JT_SWITCH3

228 unused JT_SWITCH4

229 unused JT_SWITCH5

230 unused JT_SWITCH6

231 unused JT_SWITCH7

232 unused JT_SWITCHS8

233 unused JT_SWITCH9

234 unused JT_SWITCH10

235 unused JT_SWITCH11

236 unused JT_SWITCH12

237 unused JT_SWITCH13

238 unused JT_SWITCH14

239 unused JT_SWITCH15

240 unused JT_SWITCH16

241 unused JT_SWITCH17

242 unused JT_SWITCH18

243 unused JT_SWITCH19

244 unused JT_SWITCH20

245 unused JT_SWITCH21

246 unused JT_SWITCH22

247 unused JT_SWITCH23

248 unused JT_SWITCH24

249 unused JT_SWITCH25

250 unused JT_SWITCH26

251 unused JT_SWITCH27

252 unused JT_SWITCH28

62

Opcode | Mnemonic Description Function Group Compiled ? | PCoffset SP offset (32-bit)
(8-hit)
Plus | Minus | Overall
253 unused JT_SWITCH29
254 unused JT_SWITCH30
255 unused JT_SWITCH31

63

