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矩形板自由振動之傅立葉級數求解 
 

  研究生：郭芳琳       指導教授：黃炯憲 博士 

 

國立交通大學土木工程學系碩士班 

中文摘要 

摘 要 

 

  本研究利用傅立葉餘弦級數求解矩形板之振動，以多項式作為擴充函數修正傅

立葉級數逐項微分所造成的問題。本研究所提之級數解，利用兩種方式滿足矩形板

各邊界條件及控制方程，求解自由振動頻率：○1 積分轉換為傅立葉級數域、○2 配點

法。透過收斂性分析，與文獻結果比較，驗證分析方法及電腦程式之正確性；並比

較兩方法優劣，依據結果顯示，轉換於傅立葉級數域之方法收斂性較快，進一步探

討不同邊界條件、長寬比對板振動之影響。 
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Fourier Series Solutions for  

 Free Vibrations of Rectangular Plates 
 

Student：Fang-Lin Guo    Advisor：Dr. Chiung-Shiann Huang 

 

Department of Civil Engineering 

National Chiao-Tung University 

英文摘要 

Abstract 
 

This study establishes analytical solutions of vibrations of rectangular plates using 

Fourier cosine series supplemented with polynomial functions. The transverse 

displacement of a thin plate is expressed by a double Fourier cosine series and two 

single Fourier cosine series multiplied with four polynomial functions, respectively, so 

that the derivatives of the transverse displacement can be obtained from term-by-term 

differentiations of these series. The unknown coefficients in the series solution are 

determined by approximately satisfying the boundary conditions and governing equation 

in the sense of Fourier series expansion or point matching. It is found that the former 

approach gives faster convergence of natural frequencies than the latter approach after 

the validity of these two approaches and correctness of developed computer programs 

are confirmed through convergence studies and comparisons with published results. The 

approaches are further applied to investigate the vibrations of rectangular plates with 

different boundary conditions and aspect ratios.   
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第一章 緒論 

1.1 前言 

  薄板構件廣泛應用於土木、機械、航太工程等領域，在土木工程中，常見有樓

地板、橋面板以及各種應用。當板承受不斷變化、不同形式的載重作用，整個系統

會反應出各種振動行為，其中振動頻率更是工程應用中所關心的重要因素之一。例

如地震發生時，地震力造成構件產生裂縫等影響外，也可能因構件的自然振動頻率

與地震頻率相近，而產生共振破壞、崩塌，因此土木工程之頻率分析更需仔細考量。 

 

1.2 文獻回顧 

  古典薄板理論常見於板之分析，因其方程式較簡單，由 Kirchhoff (1959)提出，

故又稱為 Kirchhoff 理論，專門討論分析薄板，其寬厚比(b/h)大於 20，本研究即是

按此理論進行。該理論主要假設：一、當板彎曲時，垂直板中間面的線段仍保持直

線，並且垂直板之中間面。二、在橫向荷重下，板發生小撓度時，板的中間面並不

會受拉伸。三、忽略轉動慣量(rotary inertia)。 

  求解矩形板之振動問題，分為兩途徑：一、求出既滿足四階微分控制方程又滿

足邊界條件之解析解方法。二、採用近似法求解之數值方法，例如 Ritz 法、有限

元素法、加權殘餘法等，隨著計算機技術發展，數值方法亦廣泛迅速應用，在此不

多做敘述。 
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  雖然研究矩形薄板之自由振動問題已有許多年，但由於邊界條件與荷載複雜，

造成數學計算上的困難，其解析解並不常見於文獻。其中最有名者為考慮四邊簡支

端之解，由 Navier 提出，Navier 假設解為雙重正弦三角級數(double sine trigonometric 

series)之形式1，求解出矩形板在均佈載重與集中荷重於板中任一點的撓度之正確解，

可謂是正確解的創始。 

  另外，兩對邊簡支而另外兩邊任意邊界之矩形板正確解，亦可容易求得，通常

稱之為閉合正確解(closed-formed exact solutions)，由 Lévy 提出，Lévy 假設其解為

單正弦三角級數(single sine trigonometric series)之形式2，相較 Navier 法，其收斂性

較佳且適用邊界更廣泛，然而其他非對邊簡支之邊界，依然沒有閉合正確解滿足。 

  常見於工程應用之四邊固定板振動問題，直到 Timoshenko (1938)應用疊加法

於 Lévy 法求解而得，亦求解出不少邊界條件之問題。疊加法之應用使得 Lévy 法適

用邊界更廣泛，但表達式複雜許多、數值計算瑣碎。 

  Wang 與 Lin (1996) 以傅立葉級數求解兩端固定及一端固定一端簡支梁之自然

振動問題，指出傅立葉級數在不連續邊界下，其微分函數可能造成非一致收斂

(non-uniform convergence)而無法逐項微分(term-by-term differentiations)。 

  Li (2000)提出傅立葉級數求解一維梁自由振動問題，將撓度看成傅立葉級數與

任意多項式方程之線性組合，此多項式並非用來滿足特別邊界，而是作為擴充函數

來修正邊界不連續問題，並改善其收斂速度；Li (2002)提出當正確解假設為傅立葉

                                                       
1  Navier 的『雙重三角級數(double trigonometric series)之形式』資料來源由參考文獻 Szilard (1974) 
2  Lévy 的『單三角級數(single trigonometric series)之形式』資料來源由參考文獻 Szilard (1974) 
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餘弦級數展開時，其收斂速度會較傅立葉正弦級數快。在探討薄板自然振動，Du

等人 (2007)採用傅立葉級數求解，以多項式作為擴充函數，探討板內振動情形。

Li 等人 (2009)採用傅立葉餘弦級數，以三角函數作為擴充函數，求解五種邊界條

件問題。Jin 等人 (2010)採用傅立葉餘弦級數，以五階多項式作為擴充函數求解矩

形板振動問題，探討平移彈簧與旋轉彈簧對板振動之影響，並提出改變平移彈簧勁

度對求解振動頻率之影響會比旋轉勁度要大許多之結論。 

 

1.3 研究目的與方法 

  總觀前人之研究，矩形板自由振動問題之閉合解析解研究甚少，故本研究參照

Li (2000)中的方法與概念，假設梁及板之撓度為傅立葉餘弦級數與多項式之線性組

合，用以求解其振動問題。利用兩種方法滿足矩形板各邊界條件及控制方程：○1 積

分轉換為傅立葉級數域、○2 配點法，求解待定係數，將其結果代入滿足控制方程以

求解自由振動頻率，探討梁及矩形板於各邊界之振動問題，考慮參數有長寬比，並

將兩方法於兩種邊界問題(四端固定、四端簡支端之矩形板)做收斂性分析比較。 
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1.4 內容摘要 

  本論文共分為五章，其內容如下： 

第一章：緒論 

        說明本研究目的與方法，以及回顧相關矩形薄板振動解析解發展之文獻。 

第二章：梁之振動問題 

        簡述傅立葉級數逐項微分時的問題與解決方法，參照 Li (2000)並依其假   

        設與方法，使用傅立葉形式級數求解梁之振動問題。 

第三章：矩形板之振動問題 

    利用傅立葉形式級數決定待定係數，探討矩形板在三種邊界條件下的振動 

    問題，並依其法求解出七種邊界條件之振動頻率。 

第四章：利用配點法求解 

    利用配點法決定待定係數，求解矩形板於兩種邊界條件之振動問題，並與 

    傅立葉形式級數之法進行收斂性分析比較。 

第五章：結論與建議 

    結論本研究所得結果，並針對所遇到之問題提出建議。 
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第二章 梁之振動問題 

  此章先以梁作驗證，介紹 Euler-Bernoulli 梁理論的控制方程，參照 Li (2000)

所提方法，使用傅立葉級數求解梁振動頻率，以便進一步分析板問題。 

2.1 梁振動控制方程 

  根據 Euler-Bernoulli 梁理論，等截面梁自由振動頻率下的控制方程為 

4 2

4 2

( , ) ( , )
0D

w x t w x t

x t
 

 
 

，
 

(2.1) 

其中 ( , )w x t 為撓度，
A

EI
b

D

  ，而 E、I、 b 、A 分別為梁之彈性模數、慣性矩、

質量密度、斷面面積。 

  在考慮自由振動 (free vibration) 之問題，可令 

( , ) ( ) i tw x t w x e  ， (2.2) 

ω為自由振動頻率(rad/sec)，將式(2.2)代入式(2.1)可得 

4
2

4

( )
 ( ) 0

x
i t

D

w x
w

d
x e

d
 

 
  

 
， (2.3a) 

其中
i te
非零，可提出而得 

4
2

4

( )
 ( ) 0

x D

w x
x

d
w

d
   。 (2.3b) 
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2.2 傅立葉級數解之基本理論 

  傅立葉級數之每單一函數 cosmx、sinmx 均可微分，但當一函數用傅立葉級數

展開時，該函數之微分並不一定等於該傅立葉級數之逐項微分。  

  Tolstov (1965)列出兩條傅立葉級數微分之數學定理： 

定理一：f (x)定義在[0, L]且為連續函數，以傅立葉正弦展開為 

1

( ) sinm m
m

f x b x




 ，0 < x < L ， (2.4) 

其中 m m L  ，則 

 
1

( ) (0) 2
(x) [ 1 ( ) (0)] cos

m

m m m
m

f L f
f f L f b x

L L
 





        
 

 。 (2.5) 

定理二：f (x)定義在[0, L]且為連續函數，以傅立葉餘弦展開為 

0
1

( ) cosm m
m

f x a a x




  ，0 < x < L， (2.6) 

則 

1

( ) sinm m m
m

f x a x 




   。 (2.7) 

  由兩定理(2.4~2.7)知，傅立葉餘弦展開式可逐項微分；但傅立葉正弦展開式，

惟有在 f(0) = f(L) = 0 時，才可得該級數之逐項微分。方程式(2.3b)的解析解可定義

在[0, L]之傅立葉級數展開表示，但注意定理一之要求，即須滿足其解逐項微分後

為連續函數，且在邊界之值為零。 

  假設撓度為 
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0

( ) cos
M

m m
m

w x A x


 ，0 < x < L，   (2.8)  

其中 m m L  ，依定理一、二， ( )w x 之微分可表示成 

0

( ) ins
M

m m m
m

w x A x 


   ， (2.9)
 

 2

0

( ) (0)
( ) cos

M

m m m m
m

w L w
w x a A x

L
 



     ，
 

(2.10) 

 3

0

( ) sin
M

m m m m m
m

w x a A x  


    ，
 

(2.11)
 

 (4) 2 4

0

( ) (0)
( ) cos

M

m m m m m m
m

w L w
w x b a A x

L
  



 
    ，

 
(2.12) 

其中  2
 ( 1) ( ) (0)

m

ma w L w
L

    、  2
 ( 1) ( ) (0)

m

m w L w
L

b     ，但通常 (0)w 、 ( )w L 、

(0)w 、 ( )w L 未知，故依上述做法無法求解。 

  解決之道，可以擴充函式 P(x)去修正上述逐項微分所造成之問題，因控制 

方程含四階導函數(最高階者)，依 Li (2000)之建議，假設 P(x)為四階多項式 

1( )P x 、 2( )P x 、 3( )P x 及 4( )P x 之線性組合，即  

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )P x C P x C P x C P x C P x    ， (2.13) 

其中 1C 、 2C 、 3C 、 4C 為待求係數，且滿足 1 2 3(0) 1 (0) 1 ( ) 1P P P L    、 、 、

4 ( ) 1P L  ，而其他於 0x  或 x L 之一階、三階導數均為零；此外 

0
( ) 0

L

iP x dx  ， (2.14) 

其中 i = 1~ 4，滿足以上假設可得 

2

1(
3

)
2

x L
P x x

L
     (2.15a) 

4 3 2 3

2 (
6 5

)
24 6 4

x x Lx L
P

L
x       (2.15b) 
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2

3 2
(  )

6

x L
P x

L
   (2.15c) 

4 2 3

4

7

24 12 3
( )

60

x Lx
x

L
P

L
     (2.15d) 

 

 

圖 2.1  擴充函式 ( )iP x  

圖 2.1 之 2 ( )P x 、 4 ( )P x 數值結果接近。 

表 2.1  擴充函式 ( )iP x 於梁之邊界值 

 

 

原多項式 一階多項式 二階多項式 三階多項式 

0x   x L  0x    x L  0x   x L  0x   x L  

1P  / 3L  / 6L  1 0 1 / L 1 / L  0 0 

2P  3 / 45L  37 / 360L  0 0 / 3L / 6L  1 0 

3P  / 6L  / 3L  0 1 1 / L  1 / L  0 0 

4P  37 / 360L  3 / 45L  0 0 / 6L / 3L  0 1 

  

‐0.4

‐0.35

‐0.3

‐0.25

‐0.2

‐0.15

‐0.1

‐0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

P1(x)

P2(x)

P3(x)

P4(x)
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  因此，令梁之撓度方程式為 

1 2 2 3
0

1 3 4 4( ( ) () ) ( )( ) ( ) c (os )
M

m m
m

w C P x C P x Cx w x P Px x PA x C x


      ，
 

(2.16) 

其中 ( )w x 滿足 (0) ( ) (0) ( ) 0w w L w w L       。將式(2.15a~2.15d)及(2.16)代回

(2.3b)可得傅立葉級數之控制方程式為 

 4 2
2 4

0 0

cos cos ( ) 0
M M

m m m D m m
m m

A x C C A x P x   
 

 
      

 
  。  (2.17) 

利用傅立葉級數之正交性，將(2.17)乘上2cos /m x L 並積分 x 從 0 至 L，可得 

4 2 ( ) 0k k D k kA A P      (2.18) 

及 

  2
2 4 0 0DC C A     ，                      (2.19) 

其中 k = 1, 2,..., M， k k L  ，而 

0

2
( )cos

L

k kP xP xdx
L

   

  
 1 1 2 2 3 3 4 4

0

2
co( ) ( ) ( ) ( s)

L

kC P x C P x C P x C P x xdx
L

     

2

1

1 24 43 42

2 1 1 ( 1) ( 1)k

k k k k

k

C C C C
L    

                            
 (2.20) 
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2.3 不同邊界條件之解 

  此節探討 Euler-Bernoulli 梁於四種邊界條件之振動問題，分別為： 

○1 固定端-固定端、○2 固定端-簡支端、○3 固定端-自由端、○4 自由端-自由端。為簡

化分析，令梁長 L = 1 單位長。 

2.3.1 固定端-固定端(C-C)之解 

  固定端須滿足撓度與旋轉角為零，即 

(0) 0w  ， (0) 0w  ， (1) 0w  ， (1) 0w  。 (2.21)    

將式(2.16)代入式(2.21)可得 

1 2 3 4
0

1 1 1 7
(0) 0

3 45 6 360

M

m
m

w A C C C C


      ， (2.22a) 

1(0) 0w C   ，  (2.22b) 

1 2 3 4
0

1 7 1 1
(1) ( 1) 0

6 360 3 45

M
m

m
m

w A C C C C


       ，  (2.22c) 

3(1) 0w C   。  (2.22d) 

  整理式(2.22a~2.22d)可得 iC ( i =1, 2, 3, 4 )與 mA ( m = 0, 1, 2, …, M )關係，以矩

陣形式表示為  

BC DA  (2.23) 

其中 
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 7
(0) (0) (0) (0)

3 45 6 360
(0) (0) (0) (0) 1 0 0 0

(1) (1) (1) (1) 1 7 1 1

6 360 3 45(1) (1) (1) (1)
0 0 1 0

P P P P

P P P P

P P P P

P P P P

  
   
                 
          

B ， (2.24a) 

 T

1 2 3 4C C C CC ， (2.24b) 

1 1

1 1 1

0 0 0

1 1 ( 1) ( 1)

0 0 0

m M 

   
 
 
   
 
 

D

  
  
 
  

， (2.24c) 

 T

0 1 ... MA A AA 。 (2.24d) 

求解式(2.23)可得待求係數 iC 與 mA 之關係為 

1 0C  ， (2.25a) 


0

2 168( 1) 192
M

m
m

m

C A


    ， (2.25b) 

3 0C  ， (2.25c) 

 4
0

192( 1) 168
M

m
m

m

C A


   。 (2.25d) 

  將式(2.25a~2.25d)結果代入式(2.18~2.20)整理可得 

M
4 2

1 01
4

1

2
( 168( 1) 192)

M
m

m

M M

k k D k
mkk kk

A AA  
  

 
   




  


    

       
1

1
4

0

192( 1) 168
2( 1)

0
kM

k

M
m

m
mk

A
 





  
  


    
  ， (2.26) 

 2
0

0

360 ( 1) 1 0
M

m
D

m

A 


    。  (2.27) 

整理式(2.26)、(2.27)可得矩陣形式為 

 2 0D  Κ Μ A   (2.28) 
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其中 

 
4

1
4
2

4

4

720 0 720 0 360 ( 1) 1

0 0 0 0

0 0

0 0

m

k km

M




 



  
 
 
 
 
 
 
 
  

Κ






  
   

  

， (2.29a) 

10 11 1 1

0 1

0 1

1 0 0 0

1

1

m M

k k km km kM

M M Mm MM

S S S S

S S S S

S S S S



 
  
 

   
 
 

  

Μ

 
 

   

   
 

， (2.29b)

 

  4 4

12( 1)2
168( 1) 192 192( 1) 168m m

k

k

km
k

S
 

   
     


     


， (2.29c) 

式(2.29a)、(2.29b)之 km 為 Kronecker delta，定義
1

0km


 


k m

k m




，

，
，其中 

k = 1, 2,…, M， m = 0, 1,…, M。 

   須滿足 2 0D  Κ Μ ，使用求解特徵根之方式，可得該邊界條件(C-C)之

自由振動頻率。 
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2.3.2 固定端-簡支端(C-S)之解 

  固定端須滿足撓度與旋轉角為零，簡支承端則須滿足撓度以及彎矩為零，即 

(0) 0w  ， (0) 0w  ， (1) 0w  ， (1) 0w  。 (2.30) 

將式(2.16)代入式(2.30)可得 

1 2 3 4
0

1 1 1 7
(0) 0

3 45 6 360

M

m
m

w A C C C C


      ， (2.31a) 

1(0) 0w C   ，  (2.31b) 

1 2 3 4
0

1 7 1 1
(1) ( 1) 0

6 360 3 45

M
m

m
m

w A C C C C


       ，  (2.31c) 

2 1
1 2 3 4

0

1 1
(1) ( 1) 0

6 3

M
m

m m
m

w A C C C C 



        。  (2.31d) 

  整理式(2.31a~2.31d)可得式(2.23)形式， 

BC DA  (2.23) 

其中 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 7

3 45 6 360(0) (0) (0) (0)
1 0 0 0

(0) (0) (0) (0)
1 7 1 1

(1) (1) (1) (1)
6 360 3 45

(1) (1) (1) (1) 1 1
1 1

6 3

P P P P

P P P P

P P P P

P P P P

  
                             
  

B ，

 

(2.32a) 

1 1

2 2 2 2
0 1

1 1 1

0 0 0

1 1 ( 1) ( 1)

( 1) ( 1)

m M

m M
m M   

 

   
 
 
   
    

D

  
  
 
 

。 (2.32b) 

求解式(2.23)可得待求係數 iC 與 mA 之關係為 

1 0C  ， (2.33a) 
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2
2

0

8
128 72( 1) ( 1)

3

M
m m

m m
m

AC 


      
 

 ， (2.33b) 

2
3

0

8 1
4( 1) ( 1)

3 9

M
m m

m m
m

C A


      
 

 ， (2.33c) 

 2
4

0

72 48( 1) 4( 1)
M

m m
m m

m

C A


     。 (2.33d) 

  將式(2.33a~2.33d)結果代入式(2.18~2.20)整理可得

2
4

M

1 0

4 2

1 1

2 8
128 72( 1) ( 1)

3

M
m

M M

k k D k
k kk

m
m m

mk

A A A   
  

     
 

       
 

                         2
1 0

28 1
4(

2( 1
1) ( 1)

3 9

) m m
m

kM M

k m
m

k

A



 

  
       




   

                         
1

2
4

01

72 48( 1)
2( 1)

04( 1)
M

m m
m m

mk

kM

k

A
 



   
  

   
 ， (2.34) 

2 2
0

0

20
200 120( 1) ( 1) 0

3

M
m m

m m D
m

A A  


       
 

 。 (2.35) 

整理式(2.34)、(2.35)可得矩陣形式為 

 2 0D  Κ Μ A   (2.28) 

其中 

2
1 2 2

4
1

4
2

4

4

200 120( 1) 200 120( 1)
20

320 200 120 20 203 ( 1) ( 1)
3 3

0 0 0 0

0 0

0 0

m M

m M
m M

k km

M


 




 



         
                     

 
   
 
 
 
 
  

Κ

 




  
   

  

，

 (2.36a)
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10 11 1 1

0 1

0 1

1 0 0 0

1

1

m M

k k km km kM

M M Mm MM

S S S S

S S S S

S S S S



 
  
 

   
 
 

  

Μ

 
 

   

   
 

，  (2.36b) 

2 2
4 2

2 8 8 1
128 72( 1) ( 1) 4( 1) ( 1)

3 3

2 )

9

( 1m m m m
m mm

k

k

k
kS  

 
   

   
             

 
 

 

           
1

2
4

7
2(

2 4
1)

8( 1) 4( 1)m m
m

k

k








   





。 (2.36c) 

   須滿足 2 0D  Κ Μ ，使用求解特徵根之方式，可得該邊界條件(C-S)之

自由振動頻率。 

 

2.3.3 固定端-自由端(C-F)之解 

  固定端須滿足撓度與旋轉角為零，自由端則須滿足彎矩與剪力為零，即 

(0) 0w  ， (0) 0w  ， (1) 0w  ， (1) 0w  。 (2.37)  

將式(2.16)代入式(2.37)可得 

1 2 3 4
0

1 1 1 7
(0) 0

3 45 6 360

M

m
m

w A C C C C


      ， (2.38a) 

1(0) 0w C   ，  (2.38b) 

2 1
1 2 3 4

0

1 1
(1) ( 1) 0

6 3

M
m

m m
m

w A C C C C 



        ，  (2.38c) 

4(1) 0w C   。  (2.38d) 

  整理式(2.38a~2.38d)可得式(2.23)形式， 

BC DA  (2.23) 
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其中 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 7
(0) (0) (0) (0)

3 45 6 360
(0) (0) (0) (0) 1 0 0 0

1 1(1) (1) (1) (1) 1 1
6 3

(1) (1) (1) (1)
0 0 0 1

P P P P

P P P P

P P P P

P P P P

  
   
                   
           

B ， (2.39a)
 
 

2 2 2 2
0 1

1 1 1

0 0 0

( 1) ( 1)

0 0 0

m M
m M   

   
 
 
   
 
 

D

  
  
 
  

。

 

(2.39b) 

求解式(2.23)可得待求係數 iC 與 mA 之關係為 

1 0C  ， (2.40a) 

0
2

210
20 ( 1)

3

M
m

m m
m

AC 


    
 

 ， (2.40b) 

2
3

0

10 4
( 1)

3 9

M
m

m m
m

C A


   
 

 ， (2.40c) 

4 0C  。 (2.40d) 

  將式(2.40a~2.40d)結果代入式(2.18~2.20)整理可得 

2
4

0

M
4 2

1 11

2 10
20 ( 1)

3

M M

k k D k
k k

M
m

m m
mkk

A AA 


  
 

 
   

 

      
    

      
1 0

2
2

10 4
( 1)

3 9

2( 1)
0

kM M

k m
m

k

m
mA

 

   


 
 




 
  ，  (2.41) 

2 2
0

0

10
20 ( 1) 0

3

M
m

m m D
m

A A  


     
 

 。  (2.42) 

整理式(2.41)、(2.42)可得矩陣形式為 
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 2 0D  Κ Μ A   (2.28) 

其中 

2 2 2
1

4
1

4
2

4

4

10 10 10
20 20 20 ( 1) 20 ( 1)

3 3 3

0 0 0 0

0 0

0 0

m M
m M

k km

M

  




 



                      
 
   
 
 
 
  

Κ

 




  
   

  

， 

 (2.43a)
 

10 11 1 1

0 1

0 1

1 0 0 0

1

1

m M

k k km km kM

M M Mm MM

S S S S

S S S S

S S S S



 
  
 

   
 
 

  

Μ

 
 

   

   
 

， (2.43b)

 

 

2 2
4 2

22 10 10 4
20 ( 1) ( 1)

3 3 9

( 1)m m
m m

k

k

m
k

kS  
 

           
   

   
。 (2.43c)

 

   須滿足 2 0D  Κ Μ ，使用求解特徵根之方式，可得該邊界條件(C-F)之

自由振動頻率。 
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2.3.4 自由端-自由端(F-F)之解 

  自由端須滿足彎矩與剪力為零，即 

(0) 0w  ， (0) 0w  ， (1) 0w  ， (1) 0w  。 (2.44)  

將式(2.16)代入式(2.44)可得 

2
1 2 3 4

0

1 1
(0) 0

3 6

M

m m
m

w A C C C C


        ， (2.45a) 

2(0) 0w C   ，  (2.45b) 

2 1
1 2 3 4

0

1 1
(1) ( 1) 0

6 3

M
m

m m
m

w A C C C C 



        ，  (2.45c)   

4(1) 0w C   。    (2.45d) 

  整理式(2.45a~2.45d) 可得式(2.23)形式， 

BC DA  (2.23) 

其中 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1
1 1(0) (0) (0) (0)

3 6
(0) (0) (0) (0) 0 1 0 0

1 1(1) (1) (1) (1) 1 1
6 3

(1) (1) (1) (1) 0 0 0 1

P P P P

P P P P

P P P P

P P P P

                                      

B ， (2.46a)
 
 

2 2 2
0 1

2 2 2 2
0 1

0 0 0

( 1) ( 1)

0 0 0

M

m M
m M

  

   

 
 
 
   
 
  

D

  
  
 
  

。

 

(2.46b)
 

  由式(2.46a)發現B 為奇異矩陣，無法求解式(2.23)。原因來自於 1( )P x 、 3( )P x 均

為二階多項式，在微分兩次後為常數，代入邊界 0、1 或其他值均不為影響。 
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  為解決此問題，吾人修正 1( )P x 、 3( )P x 之限制條件： 1( )P x 須滿足 1 (0) 1P  、

1 (0) 0P  、 1 ( ) 0P L  、 1 ( ) 0P L  、 10
( ) 0

L
P x dx  ，另外加入 1 (0) 0P  ；而 3( )P x 須

滿足 3 (0) 0P   、 3 (0) 0P  、 3 ( ) 1P L  、 3 ( ) 0P L  、 30
( ) 0

L
P x dx  ，以及 3 ( ) 0P L  。

如此可得 1( )P x 、 3( )P x 為五階多項式，而 2( )P x 、 4( )P x 保留為原來之四階多項式。故

修正可得新假設之撓度方程為 

( ) ( ) ( )w x w x P x   1 1 2 2 3 3 4 4
0

cos
M

m m
m

C P C P P Px C CA 


    

    

4 3 2

0

5

1 24

34

3

13

5 2
cos

24 53 6 6 40

M

m m
m

x x Lx L
A

x x L
C x C

L L
x

L




 
   


      


   

  

        
4 25 4

3 4

32

4 3

4 7

24 125 2 1 3605

x x x L
C C

L

x Lx L

LL L

 
     


  

 
， (2.47) 

  

表 2.2  修正後 ( )iP x 導函數於梁之邊界值 

 

 

一階多項式 二階多項式 三階多項式 

0x   x L  0x   x L  0x   x L  

1P  1 0 0 2 / L  0 0 

2P  0 0 / 3L  / 6L  1 0 

3P  0 1 2 / L  0 0 0 

4P  0 0 / 6L  / 3L  0 1 

 

將式(2.47)代入自由端邊界條件(2.44)，方法如前，以矩陣形式(2.23)表示之， 

其中 
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1
0 2(0) (0) (0) (0)

3 6
(0) (0) (0) (0) 0 1 0 0

1 1(1) (1) (1) (1) 2 0
6 3

(1) (1) (1) (1) 0 0 0 1

P P P P

P P P P

P P P P

P P P P

                                      

B ， (2.48a) 
 

2 2 2
0 1

2 2 2 2
0 1

0 0 0

( 1) ( 1)

0 0 0

M

m M
m M

  

   

 
 
 
   
 
  

D

  
  
 
  

。

 

(2.48b)
   

求解式(2.23)可得待求係數 iC 與 mA 之關係為 

1 2
1

0

1
( 1)

2

M
m

m m
m

C A



  ，
 

(2.49a)
 

2 0C  ， (2.49b) 

2
3

0

1

2

M

m m
m

C A


  ，
 

(2.49c)
 

4 0C  。 (2.49d) 

  因 1( )P x 、 3( )P x 已有所改變，故式(2.20)中之 kP 亦需更改為 

0

2
( )cosk k

L
P P x xdx

L
   

 
4 256 1

430(24 ) 720(

1

21)

5

k
k

k k

C C
L L


 

      
       

  

     

4

6

1

45 43

30(24 )( 1) 720 2 ( 1)

15

k k
k

k k

C C
L


 

      
     

， (2.50) 

將式(2.49a~2.49d)結果代入式(2.18~2.19)與(2.50)整理可得 

4
1

M
4 2

5
2

1
6

01 1

30(24 ) 720( 1) 1

15
( 1)

2

kM M

k k D k
k kk

M
mk

m m
mk

A A A
L

  



 





    
   



    
     

                       
4

2
5

0
6

1

30(24 )( 1) 720
0

1

1

5 2
k

m m
k mk

kM M

L
A

 
 

   
   

 


 
   (2.51) 
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2
0

0

0 0
M

m D
m

A A 


     (2.52) 

整理式(2.51)、(2.52)可得矩陣形式為 

 2 0D  Κ Μ A   (2.28) 

其中 

4
1

4
2

4

4

0 0 0 0

0 0 0 0

0 0

0 0

k km

M




 



 
 
 
 

  
 
 
 
  

Κ

 



  
   
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， (2.53a)
 

10 11 1 1

0 1

0 1

1 0 0 0

1

1

m M

k k km km kM

M M Mm MM

S S S S

S S S S

S S S S



 
  
 

   
 
 

  

Μ

 
 

   

   
 

， (2.53b)
 

4 4
1 2 2

6 5 6 5

30(24 ) 720( 1) 30(241 1
( 1

)( 1) 720

15 2 215
)

k k

km
mk k

m m
k k

S
L L

  
 

          
    

      


  
。

 (2.53c)
 

   須滿足 2 0D  Κ Μ ，使用求解特徵根之方式，可得該邊界條件(F-F)之

自由振動頻率。很顯然式(2.53a)之Κ亦為奇異矩陣，因為 F-F 邊界之梁為自由剛體

運動，其對應之勁度矩陣必為奇異矩陣。 
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2.4 梁自由振動閉合解 

  均勻梁（uniform beams）皆有閉合解析解，參考 Leissa (2011)在此節補充之。 

假設   sxw x Ge 代入控制方程式(2.3b)可得 

 4 2 0s
D

xGs e   ，
 

(2.54a)
 

令 24
D   代入式(2.54a)  

 44 0sxGes  
 

(2.54b)
 

得 s  、 i ，以及式(2.3b)之解為 

1 2 3 4( ) x x i x i xw x G e G e G e G e        ， (2.55a) 

即 

1 2 3 4
ˆ ˆ ˆ ˆ( ) sin cos sinh coshw x G x G x G x G x       。 (2.55b) 

  以兩端固定端之梁 C-C 為例，將式(2.55b)代入該邊界條件 

(0) (0) ( ) ( ) 0w w w L w L       (2.56a~2.56d) 

由式(2.56a、2.56b)可得 

2 4
ˆ ˆ(0) 0w G G   ，  (2.57a) 

1 3
ˆ ˆ(0) 0w G G    ，  (2.57b) 

即 2 4
ˆ ˆG G  、 1 3

ˆ ˆG G ，再由式(2.56c、2.56d)可得 

   3 4
ˆ ˆ( ) sinh sin cosh cos 0w L G L L G L L        ，  (2.57c) 

   3 4
ˆ ˆ( ) cosh cos sinh sin 0w L G L L G L L         。  (2.57d) 

  若上式對 3Ĝ 、 4Ĝ 有非零解，其係数行列式必須為零，即  
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sinh sin cosh cos
0

cosh cos sinh sin

L L L L

L L L L

   
   

 


 
  (2.58) 

將式(2.58)展開化簡後可得特徵方程為 

cos cosh 1L L     (2.59) 

  以下列出均勻梁於邊界 C-C、C-S、C-F、F-F 之特徵方程：  

○1  C-C：cos cosh 1L L    (2.59) 

○2  C-S： tan tanhL L   (2.60) 

○3  C-F：cos cosh 1L L     (2.61) 

○4  F-F：cos cosh 1L L    (2.62) 

以上求解可得頻率  ，列於 2.5 節之表(2.3~2.6)下方以作討論。 
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2.5 收斂性分析 

  依 2.3 節所述，吾人將此些公式編譯成程式透過電腦求解。以下進行各邊界條

件求解頻率與收斂性分析，其中考慮無因次化自然振動頻率
1 2

2

A

EI

 



   

。 

 

表 2.3  兩端固定端梁之自由振動頻率 

M 
 = 2 1/2( / / )A EI    

1st  2nd  3rd  4th  5th 

1 1.649 2.884    

2 1.506 2.884 4.170   

8 1.506 2.500 3.500 4.501 5.502 

10 1.506 2.500 3.500 4.500 5.500 

20 1.506 2.500 3.500 4.500 5.500 

30 1.506 2.500 3.500 4.500 5.500 
*正確解(Leissa, 2011) 1.506 2.500 3.500 4.500 5.500 

 

  表 2.3 為 C-C 梁（兩端固定）解之收斂性分析，由式(2.17)可知，傅立葉級數

中取最大項數值 M，則 mA 從 0A 至 MA ，可近似得 M+1 個自然振動頻率  。由表

2.3 顯示：隨著 M 增加，前五模態之自然振動頻率  逐漸收斂。理論上，此級數

解並無法保證隨著 M 增加，自然振動頻率逐漸從上限收斂至正確解；但表 2.3 所示

剛好有從上限收斂至正確解之現象。  

  第一模態頻率在 2M 收斂至四位有效數字 1.506，第二、三模態頻率在 8M   

分別收斂至四位有效數字(2.500 及 3.500)，第四、五模態頻率則在 M＝10 亦分別收

斂至四位有效數字(4.500 及 5.500)，其收斂速度很快。 
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表 2.4  固定端-簡支端梁之自由振動頻率 

M 
 = 2 1/2( / / )A EI    

1st  2nd  3rd  4th  5th 

1 1.331 2.548    

2 1.254 2.469 3.795   

5 1.250 2.253 3.264 4.277 5.942 

10 1.250 2.250 3.251 4.253 5.255 

20 1.250 2.250 3.250 4.250 5.251 

30 

40 

1.250 

1.250 

2.250 

2.250 

3.250 

3.250 

4.250 

4.250 

5.250 

5.250 
*正確解(Leissa, 2011) 1.250 2.250 3.250 4.250 5.250 

 

  表 2.4 為 C-S 梁（一端固定，另一端簡支）解之收斂性分析，由表 2.4 所示：

隨著 M 增加，從上限逐漸收斂至正確解。第一模態頻率在 5M  收斂至四位有效數

字 1.250，第二模態頻率在 10M  收斂至四位有效數字 2.250，第三、四模態頻率

則在 20M  分別收斂至四位有效數字(3.250 及 4.250)，第五模態頻率在 30M  收

斂至四位有效數字 5.250。 

 

表 2.5  固定端-自由端梁之自由振動頻率 

M 
 = 2 1/2( / / )A EI    

1st  2nd  3rd  4th  5th 

1 0.599 1.883    

2 0.597 1.505 3.251   

10 0.597 1.494 2.501 3.502 4.506 

20 0.597 1.494 2.500 3.500 4.500 

30 0.597 1.494 2.500 3.500 4.500 
*正確解(Leissa, 2011) 0.597 1.494 2.500 3.500 4.500 
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  表 2.5 為 C-F 梁（一端固定，另一端自由）解之收斂性分析。由表 2.5 顯示：

亦隨著 M 增加而從上限逐漸收斂至正確解。第一模態頻率在 2M 收斂至四位有

效數字 0.597，第二模態頻率在 10M  收斂至四位有效數字 1.494，第三、四、五

模態頻率則分別在 20M  收斂至四位有效數字(2.500、3.500 及 4.500)，其收斂速

度很快。 

  

表 2.6  兩端自由端梁之自由振動頻率 

M 
 = 2 1/2( / / )A EI    

3rd  4th  5th  6th  7th 

5 1.509 2.509 3.546 4.558  

10 1.506 2.502 3.504 4.512 5.517 

20 1.506 2.500 3.500 4.501 5.502 

30 1.506 2.500 3.500 4.500 5.500 

40 1.506 2.500 3.500 4.500 5.500 
*正確解(Leissa, 2011) 1.506 2.500 3.500 4.500 5.500 

 

  表 2.6 為 F-F 梁（兩端自由）解之收斂性分析，第一、二模態頻率為 0，故從

第三模態頻率開始討論，由表 2.6 顯示：  亦隨著 M 增加而從上限逐漸收斂至正

確解。第三模態頻率在 10M  收斂至四位有效數字 1.506，第四、五模態頻率在

20M  分別收斂至四位有效數字(2.500 及 3.500)，而第六、七頻率則在 30M  分

別收斂至四位有效數字(4.500 及 5.500)。 

  以上討論的這四種案例（C-C、C-S、C-F、F-F），其頻率皆隨 M 值增加，而從

上限逐漸收斂至正確解。 
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第三章 矩形板之振動問題 

3.1 基本公式 

  薄板自由振動之控制方程為 

4 4 4 2

4 4 22 2
D 2 0

x x

w w w w
h

y ty


  
        

  


， (3.1)�

其中 ( , , )w w x y t 為撓度，板之撓曲剛度 3 2D E /12 )(1h v  ，ρ、h、E、v 分別為板

之質量密度、板厚、彈性模數、包松比。在考慮自由振動之問題，可令 

( , , ) ( , ) i tw x y t w x y e  ， (3.2) 

其中 ω為自由振動頻率。將式(3.2)代入式(3.1)可得 

2 2

4 4 4
2

4 4

( , ) ( , ) ( , )
D 2 ( , ) 0

x x
i t i tw x y w x y w x y

e h w x y e
yy

  
 

     








， (3.3a) 

其中
i te
非零，可提出而得 

4 4 4
2

4 2 42

( , ) ( , ) ( , )
D 2 ( , ) 0

x x

w x y w x y w x y
h w x y

yy
    

       
。 (3.3b) 

  板之彎矩、扭矩、剪力以撓度表示為 

2 2

2 2
Dx

w w
M v

x y

  
     �

(3.4)�

2 2

2 2
Dy

w w
M v

y x

  
     �

(3.5) 

 
2

D 1xy

w
M v

x y


  

 
 (3.6) 

3 3
2

3 2
D ( ) D (2 )xy

x

M w w
V w v

x y x x y

    
             

 (3.7)
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3 3
2

3 2
D ( ) D (2 )xy

y

M w w
V w v

y x y x y

    
             

 (3.8) 

  依第二章之經驗，可令矩形板之撓度為 

4

0 00 0 1

( , ) cos ( ) cos ( )ccos os
M N N M

i i i i
mn n n x n m y m

n mm n i
mw x y A y C P x y B P yx x  

   


    

 
    (3.9) 

其中 mnA 、 i
mB 、 i

nC 為待定係數， m m a  、 n n b  ，其中 a、b 為板長與板

寬，擴充函式 ( )i
xP x 、 ( )i

yP y 為多項式： 

2
1( )

2 3x

x a
P x x

a
   

�
(3.10a) 

4 3 2 3
2 ( )

24 6 6 45x

x x ax a
P x

a
    

�
(3.10b) 

2
3( )

2 6x

x a
P x

a
 

�
(3.10c)�

4 2 3
4 7
( )

24 12 360x

x ax a
P x

a
  

�
(3.10d)�

2
1( )

2 3y

y b
P y y

b
   

�
(3.10e)�

4 3 2 3
2 ( )

24 6 6 45y

y y by b
P y

b
    

�
(3.10f)�

2
3( )

2 6y

y b
P y

b
 

�
(3.10g)�

4 2 3
4 7
( )

24 12 360y

y by b
P y

b
  

�
(3.10h)�

  式(3.10a~3.10h)為擴充函式，用以修正在逐項微分造成非一致收斂問題， ( )i
xP x

滿足 1 (0 1)xP   、 2 (0) 1xP   、 3 ( ) 1xP a  、 4 ) 1(x aP   ，其他於 0x  或 x a 之一階、

三階導數均為零， ( )i
xP x 及其微分在 0x  及 a 處之值如表 3.1 所示。同樣地， ( )i

yP y

滿足 1 (0 1)yP   、 2 (0) 1yP   、 3 ( ) 1yP b  、 4 ) 1(y bP   ，其他於 0y 或 y b 之一階、三

階導數均為零。 
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表 3.1  擴充函式 ( )i
xP x 於板之邊界值 

 

 

原多項式 一階多項式 二階多項式 三階多項式 

0x   x a  0x   x a 0x   x a  0x   x a

1
xP  / 3a  / 6a  1 0 1 / a  1 / a  0 0 

2
xP  3 / 45a  37 /360a  0 0 / 3a  / 6a  1 0 

3
xP  / 6a  / 3a  0 1 1 / a  1 / a  0 0 

4
xP  37 /360a  3 / 45a  0 0 / 6a / 3a  0 1 

   

  將式(3.9)、(3.10a~3.10h)帶回(3.3b)得

 

 

 

4

0 0

4
4

1 0

4
4

1

2 4

0

2 2 4

2 (4)

2 (4)

0 1 0

0

2

( ) 2 ( ) ( )

( ) 2 ( )

c

( )

os cos

cos

cos

cos cos
D

M N

m mn m n
m n

M
i

m n n

i i i
y m y y

N
i i i

x n

m m m
i m

i
n n n

i

M N N

mn m n n
m n i n

x x
n

P y P y P y

P x P x

A x y

B x

C y

h
A x y C

P x

   

 

 







 

  



 

 



   

  







 

 
   

 

  

 









 




0

( ) cos ( ) cos 0
M

i i i i
x n m y m

m

P x y B P y x 



   




  

 (3.11) 

為提出共同項 cos cosm nx y  ，將 ( )i
xP x 與 ( )i

yP y 及其微分函數分別以 cos mx 及

cos n y 級數展開。令 

0

( ) cos
N

i i
y n n

n

P y b y


  ， 2
0

( ) cos
N

i i
y n n

n

P y b y


   ， (4)
4

0

( ) cos
N

i i
y n n

n

P y b y


  ，

0

( ) cos
M

i i
x m m

m

P x a x


  ， 2
0

( ) cos
M

i i
x m m

m

P x a x


   ， (4)
4

0

( ) cos
M

i i
x m m

m

P x a x


  。 (3.12) 

其中 i
nb 、 2

i
nb 、 4

i
nb 、 i

ma 、 2
i
ma 、 4

i
ma 列於附錄 A，將之代入式(3.11)可得

 



 

‐ 30 ‐ 
 

 

 

 

4

4
4

1

2 2 4

0 0

2
2 4

0

2

0

4
4

2 4
01

2 4

00 0 1

0

0

2 cos cos

2 cos cos

2 cos cos

cos cos
D

M N

m n n mn m n
m n

N
i i i
n m n n m n

n

M N
i i i
m n m m m n

m n

m

M
i

m m
i m

i
n n

i

M N NM

mn
mm n i n

m n

A

B

C

h

x y

b b b x y

a a a x y

x yA

     

   

   

  

 



 

 



   

   

   

 











  









  







00

cos cos 0
M N

i i
m n m n

i i
n m

nm

C a B b x y 



 

  
  



  (3.13a) 

式(3.13a)可進一步簡化成 

 

   
 

4 2 2 4

0 0

2 4 2
2 4 2 4

4
4

1

2 4

1

c

2

2 2

co 0s s
D

o

i i
m m n

i

M N

m m n n mn
m n

i i i i i i
n m n n n m n m m

i i
m n m

i i
mn n

i
nm

B C

h
A

A

b b b a a a

b x yC a B

   

   

  



 



 

    

 
  

 
 




 







  (3.13b) 

因此 

 
   

 

4 2 2 4

2 4 2
4

4

1

2 4

1

2 4 2 4

2

2 2

D
0

m m n n mn

i i i i i i
n m n n n m n m m

i i
m n

i i
m m n

i

i i
mn n m

i

A

b b b a a a

b

B C

h
A C a B

   

   

 




 

    

 
  

 



 






  (3.13c) 

其中 m = 0, 1, 2,…, M，n = 0, 1, 2,..., N。式(3.13c)代表   1 1M N  條方程式。 
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3.2 不同邊界條件之解 

  此節探討 Kirchhoff 板於三種邊界條件之振動問題，分別為：○1 四邊固定端，○2

一邊固定端、三邊自由端，○3 四邊簡支端。 

3.2.1 求解 C-C-C-C 矩形板 

  四邊固定(C-C-C-C)矩形板之邊界條件為 

( ,0) 0w x  ，  , ( , 0) 0yw x  ，  (3.14a, 3.14b) 

(0, ) 0w y  ，  , (0, ) 0xw y  ，  (3.14c, 3.14d) 

( , ) 0w x b  ，  , ( , ) 0yw x b  ， (3.14e, 3.14f) 

( , ) 0w a y  ，  , ( , ) 0xw a y  。  (3.14g, 3.14h) 

將撓度方程式(3.9)代入邊界條件(3.14a~3.14h)，可得 

4

0 0 1 0 0

( ,0) cos ( ) (0) cos 0
M N N M

i i i i
mn m x n y m m

m n i n m

w x A x P x C P B x 
    

 
    

 
    ， (3.15a) 

1
,

0

cos( , 0) 0
M

m m
m

yw x B x


  ， (3.15b) 

4

0 0 1 0 0

(0, ) cos (0) cos ( ) 0
M N N M

i i i i
mn n x n n y m

m n i n m

w y A y P C y P y B 
    

 
    

 
    ， (3.15c) 

1
,

0

(0, ) cos 0
N

x n n
n

w y C y


  ， (3.15d) 

4

0 0 1 0 0

( , ) ( 1) cos ( 1) ( ) ( ) cos 0
M N N M

n n i i i i
mn m x n y m m

m n i n m

w x b A x P x C P b B x 
    

 
      

 
    ，

 (3.15e) 

3
,

0

( , ) cos 0
M

y m m
m

w x b B x


  ， (3.15f) 

4

0 0 1 0 0

( , ) ( 1) cos ( ) cos ( 1) ( ) 0
M N N M

m i i m i i
mn n x n n y m

m n i n m

w a y A y P a C y P y B 
    

 
      

 
    ，

 (3.15g) 
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3
,

0

( , ) cos 0
N

x n n
n

w a y C y


  。 (3.15h) 

其中 m = 0, 1, 2,…, M，n = 0, 1, 2,…, N。 

  為提出共同項 cos mx 或 cos n y ，令
0

( ) cos
M

i i
x m m

m

P x a x


  與
0

( ) cos
N

i i
y n n

n

P y b y


  。

滿足邊界條件，每邊可得2( 1)M  或2( 1)N  條線性代數方程式，故總共得

4( 2)M N  方程式。由式(3.15b)、(3.15d)、(3.15f)、(3.15h)可得 1 0mB  、 1 0nC  、

3 0mB  、 3 0nC  ，其中 m = 0, 1, 2,…, M，n = 0, 1, 2,…, N。由式(3.15a)、(3.15c)、

(3.15e)、(3.15g)可得2( 2)M N  方程式，可以矩陣形式表示為 

BC DA  (3.16) 

其中 

 
 
 
 
 
 

1 2 1 2
1 1 1 1
1 2 1 2
2 2 2 2
1 2 1 2
3 3 3 3
1 2 1 2
4 4 4 4

e e f f

e e f f
B

e e f f

e e f f

，

 

(3.17a)

 T
1 1 1 2 2 2 1 1 1 2 2 2
0 1 0 1 0 1 0 1M M N NB B B B B B C C C C C CC     ， 

 (3.17b) 

 
 
 
 
 
 

1

2

3

4

Q

Q
D

Q

Q

， (3.17c) 

 T

00 01 0 10 11 1 0 1N N M M MNA A A A A A A A AA     。(3.17d)   

  C行向量為精簡表示，令 1 2
m mB B 、 2 4

m mB B 、 1 2
n nC C 、 2 4

n nC C 。矩陣B 中
i
ke

及 i
kf 分別對照 i

mB 、 i
nC  (i = 1, 2，k = 1, 2, 3, 4)，下標 k 代表式(3.15a)、(3.15c)、(3.15e)、
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(3.15g)。矩陣
i
ke 、 i

kf 之每一列對應滿足式(3.15a)、(3.15c)、(3.15e)、(3.15g)，其矩

陣大小為 ( 1) 2( 2)M M N    或 ( 1) 2( 2)N M N    ，各元素之值列於附錄 B。

此處B 矩陣大小為2( 2) 2( 2)M N M N     。 

  iQ 為大小  ( 1) ( 1)( 1)M M N    或  ( 1) ( 1)( 1)N M N    之矩陣，故 D 之

矩陣大小為  2( 2) ( 1)( 1)M N M N     ，其中之矩陣 iQ 下標之編號 1~4 各代表

式(3.15a)、(3.15c)、(3.15e)、(3.15g)，其值列於附錄 B。 A 為  ( 1)( 1) 1M N   之

行向量。 

  由式(3.17a ~3.17d)求解可得 i
mB 、 i

nC 與 mnA 之關係為 

1C B DA， (3.18) 

將式(3.18)代入(3.13c)，整理可得  

2

0
D

h  
   

K M A         (3.19) 

其中
1( )  1 2K K B D K ，

1( )  1 2M M B D M 。 

   
1 2 1 2

1 1a 1a 1b 1bK K K K K ， (3.20) 

   
1 2 1 2

1 1a 1a 1b 1bM M M M M ， (3.21) 

 4 2 2 4( , ) 2m m n n pkp k       2K ， (3.22) 

( , ) pkp k 2M 。
 
 (3.23)  

  1K 、 2K 、 1M 、 2M 矩陣之第 p列，按式(3.13b)中 cos cosm nx y  排列，

( 1) 1p m N n    。 1K 、 1M 之 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM ( j = 1, 2 )矩陣大小為

 ( 1)( 1) ( 1)M N M    、  ( 1)( 1) ( 1)M N N    、  ( 1)( 1) ( 1)M N M    、
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 ( 1)( 1) ( 1)M N N    ，各元素之值列於附錄 C。故 1K 、 1M 之矩陣大小為

 ( 1)( 1) 2( 2)M N M N     。 

  2K 、 2M 為    ( 1)( 1) ( 1)( 1)M N M N     之對角矩陣，行按 A 行向量之 mnA

排列，以 k 表示。令 ( )mnA A k ， ( , ) ( 1) ( 1)k k m n m N n     ，對角線元素如式

(3.22、3.23)所示，而 2K 、 2M 對角線外的值皆為零。 

 

3.2.2 求解 C-F-F-F 矩形板  

  一邊固定、三邊自由(C-F-F-F)矩形板之邊界條件為 

(0, ) 0w y  ，  , (0, ) 0xw y  ，  (3.24a, 3.24b) 

( , ) 0xM a y  ，  ( , ) 0xV a y  ，  (3.24c, 3.24d) 

( , 0) 0yM x  ，  ( , 0) 0yV x  ， (3.24e, 3.24f) 

( , ) 0yM x b  ，  ( , ) 0yV x b  。 (3.24g, 3.24h) 

將撓度方程式(3.9)代入此邊界條件(3.24a~3.24h)，可得 

4

0 0 1 0 0

(0, ) cos (0) cos ( ) 0
M N N M

i i i i
mn n x n n y m

m n i n m

w y A y P C y P y B 
    

 
    

 
    ，

 
(3.25a) 

1
,

0

(0, ) cos 0
N

x n n
n

w y C y


  ，
 

(3.25b) 

   4
1 2 2 2

0 0 1 0

( , ) ( 1) cos ( ) ( ) cos
M N N

m i i i
x m n mn n x n x n n

m n i n

M a y v A y P a v P a C y    

   

     


    

     1 2

0

( 1) ( ) ( 1) ( ) 0
M

m i m i i
m y y m

m

P y v P y B



    


 ，
 

(3.25c)

 2 3 4

0

( , ) (2 ) cos 0
N

x n n n n
n

V a y v C C y 


     ，
 

(3.25d) 
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    4
2 2 2

0 0 1 0

( ,0) cos ( ) ( )
M N N

i i i
y n m mn m n x x n

m n i n

M x v A x P x vP x C   
   

      


    

     2

0

(0) (0) cos 0
M

i i i
y m y m m

m

P v P B x 


  


 ，
 

(3.25e) 

 2 1 2

0

( ,0) (2 ) cos 0
M

y m m m m
m

V x v B B x 


     ，
 

(3.25f) 

   4
1 2 2 1 2

0 0 1 0

( , ) ( 1) cos ( 1) ( ) ( 1) ( )
M N N

n n i n i i
y n m mn m n x x n

m n i n

M x b v A x P x v P x C    

   

       


  

     2

0

( ) ( ) cos 0
M

i i i
y m y m m

m

P b v P b B x 


  


 ，
 

(3.25g) 

 2 3 4

0

( , ) (2 ) cos 0
M

y m m m m
m

V x b v B B x 


     。
 

(3.25h) 

  為提出共同項 cos mx 或 cos n y ，令
0

( ) cos
M

i i
x m m

m

P x a x


  、 2
0

( ) cos
M

i i
x m m

m

P x a x


   、

0

( ) cos
N

i i
y n n

n

P y b y


  與 2
0

( ) cos
N

i i
y n n

n

P y b y


   。滿足邊界條件，每邊可得2( 1)M  或

2( 1)N  條線性代數方程式，故總共得4( 2)M N  方程式。整理式(3.25a~3.25h)

可得矩陣形式為 

BC DA  (3.16) 

其中 











1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4
2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4
3 3 3 3 3 3 3 3
1 2 3 4 1 2 3 4
4 4 4 4 4 4 4 4

1 2 3 4 1 2 3 4
5 5 5 5 5 5 5 5
1 2 3 4 1 2 3 4
6 6 6 6 6 6 6 6

1 2 3 4 1 2 3 4
7 7 7 7 7 7 7 7
1 2 3 4 1 2 3 4
8 8 8 8 8 8 8 8

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f
B

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f







 
 
 
 
 
 
 

， (3.26a) 
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 T1 1 1 2 2 2 4 4 4 1 1 1 2 2 2 4 4 4
0 1 0 1 0 1 0 1 0 1 0 1M M M N N NB B B B B B B B B C C C C C C C C CC         ， 

  (3.26b)  

 
 
 
 
 
   
 
 
 
 
  

1

2

3

4

5

6

7

8

Q

Q

Q

Q
D

Q

Q

Q

Q

， (3.26c) 

 T

00 01 0 10 11 1 0 1N N M M MNA A A A A A A A AA     。 (3.26d)    

矩陣B 中
i
ke 及 i

kf 分別對照 i
mB 、 i

nC  ( i = 1~4，k = 1~8 )，下標 k 代表式

(3.25a~3.25h)。矩陣
i
ke 、 i

kf 之每一列對應滿足式(3.25a~3.25h)，其矩陣大小為

( 1) 4( 2)M M N    或 ( 1) 4( 2)N M N    ，各元素之值列於附錄 B。此處B 之

矩陣大小為4( 2) 4( 2)M N M N     。 

iQ 為大小  ( 1) ( 1)( 1)M M N    或  ( 1) ( 1)( 1)N M N    之矩陣，故 D 之

矩陣大小為  4( 2) ( 1)( 1)M N M N     ，其中之矩陣 iQ 下標之編號 1~8 分別代

表式(3.25a~3.25h)，其值列於附錄 B。 A 為  ( 1)( 1) 1M N   之行向量。 

由式(3.26a ~3.26d)代入式(3.16)求解可得 i
mB 、 i

nC 與 mnA 之關係為 

-1C=B DA， (3.27) 

將式(3.27)代入(3.13c)，整理可得 

2

0
D

h  
   

K M A         (3.19) 
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其中
1( )  1 2K K B D K ，

1( )  1 2M M B D M 。 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bK K K K K K K K K ， (3.28) 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bM M M M M M M M M ， (3.29) 

 4 2 2 4( , ) 2m m n n pkp k       2K ，  (3.30) 

( , ) pkp k 2M 。
           

 (3.31)  

  1K 、 2K 、 1M 、 2M 矩陣之第 p列，按式(3.13b)中 cos cosm nx y  排列，

( 1) 1p m N n    。 1K 、 1M 之 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM ( j = 1~4 )矩陣大小為

 ( 1)( 1) ( 1)M N M    、  ( 1)( 1) ( 1)M N N    、  ( 1)( 1) ( 1)M N M    、

 ( 1)( 1) ( 1)M N N    ，各元素之值列於附錄 C。故 1K 、 1M 之矩陣大小為

 ( 1)( 1) 4( 2)M N M N     。 

  2K 、 2M 為    ( 1)( 1) ( 1)( 1)M N M N     之對角矩陣，行按 A 行向量之 mnA

排列，以 k 表示。令 ( )mnA A k ， ( , ) ( 1) ( 1)k k m n m N n     ，對角線元素如式

(3.30、3.31)所示，而 2K 、 2M 對角線外的值皆為零。 
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3.2.3 求解 S-S-S-S 矩形板 

  四邊皆簡支端(S-S-S-S)矩形板之邊界條件為 

(0, ) 0w y  ，  (0, ) 0xM y  ，  (3.32a, 3.32b) 

( , ) 0w a y  ，  ( , ) 0xM a y  ，  (3.32c, 3.32d) 

( ,0) 0w x  ，  ( , 0) 0yM x  ，  (3.32e, 3.32f) 

( , ) 0w x b  ，  ( , ) 0yM x b  。  (3.32g, 3.32h) 

將撓度方程式(3.9)代入邊界條件(3.32a~3.32h)，可得 

4

0 0 1 0 0

(0, ) cos (0) cos ( ) 0
M N N M

i i i i
mn n x n n y m

m n i n m

w y A y P C y P y B 
    

 
    

 
    ，

 
(3.33a) 

   4
2 2 2

0 0 1 0

(0, ) cos (0) (0) cos
M N N

i i i
x m n mn n x n x n n

m n i n

M y v A y P v P C y    
   

     


    

 2

0

( ) ( ) 0
M

i i i
m y y m

m

P y vP y B


   


 ，  (3.33b) 

4

0 0 1 0 0

( , ) ( 1) cos ( ) cos ( 1) ( ) 0
M N N M

m i i m i i
mn n x n n y m

m n i n m

w a y A y P a C y P y B 
    

 
      

 
    ，

 

 

(3.33c) 

   4
1 2 2 2

0 0 1 0

( , ) ( 1) cos ( ) ( ) cos
M N N

m i i i
x m n mn n x n x n n

m n i n

M a y v A y P a v P a C y    

   

     


  
 

 1 2

0

( 1) ( ) ( 1) ( ) 0
M

m i m i i
m y y m

m

P y v P y B



    


 ，  (3.33d) 

4

0 0 1 0 0

( ,0) cos ( ) (0) cos 0
M N N M

i i i i
mn m x n y m m

m n i n m

w x A x P x C P B x 
    

 
    

 
    ，  (3.33e) 

    4
2 2 2

0 0 1 0

( ,0) cos ( ) ( )
M N N

i i i
y n m mn m n x x n

m n i n

M x v A x P x vP x C   
   

      


    

 2

0

(0) (0) cos 0
M

i i i
y m y m m

m

P v P B x 


  


 ，  (3.33f) 
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4

0 0 1 0 0

( , ) ( 1) cos ( 1) ( ) ( ) cos 0
M N N M

n n i i i i
mn m x n y m m

m n i n m

w x b A x P x C P b B x 
    

 
      

 
    ，

 

 (3.33g) 

    4
1 2 2 1 2

0 0 1 0

( , ) ( 1) cos ( 1) ( ) ( 1) ( )
M N N

n n i n i i
y n m mn m n x x n

m n i n

M x b v A x P x v P x C    

   

       


  
             

 2

0

( ) ( ) cos 0
M

i i i
y m y m m

m

P b v P b B x 


  


 。  (3.33h) 

  為提出共同項 cos mx 或 cos n y ，令
0

( ) cos
M

i i
x m m

m

P x a x


  、 2
0

( ) cos
M

i i
x m m

m

P x a x


   、

0

( ) cos
N

i i
y n n

n

P y b y


  與 2
0

( ) cos
N

i i
y n n

n

P y b y


   。滿足邊界條件，每邊可得2( 1)M  或

2( 1)N  條線性代數方程式，故總共得4( 2)M N  方程式。整理式(3.33a~3.33h)

可得矩陣形式為 

BC DA  (3.16) 

其中 











1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4
2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4
3 3 3 3 3 3 3 3
1 2 3 4 1 2 3 4
4 4 4 4 4 4 4 4

1 2 3 4 1 2 3 4
5 5 5 5 5 5 5 5
1 2 3 4 1 2 3 4
6 6 6 6 6 6 6 6

1 2 3 4 1 2 3 4
7 7 7 7 7 7 7 7
1 2 3 4 1 2 3 4
8 8 8 8 8 8 8 8

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f
B

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f







 
 
 
 
 
 
 

， (3.34a) 

 T1 1 1 2 2 2 4 4 4 1 1 1 2 2 2 4 4 4
0 1 0 1 0 1 0 1 0 1 0 1M M M N N NB B B B B B B B B C C C C C C C C CC         ，

  (3.34b) 
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 
 
 
 
 
   
 
 
 
 
  

1

2

3

4

5

6

7

8

Q

Q

Q

Q
D

Q

Q

Q

Q

 (3.34c) 

 T

00 01 0 10 11 1 0 1N N M M MNA A A A A A A A AA      (3.34d)    

  矩陣B 中
i
ke 及 i

kf 分別對照 i
mB 、 i

nC  ( i = 1~4，k = 1~8 )，下標 k 代表式

(3.33a~3.33h)。矩陣
i
ke 、 i

kf 之每一列對應滿足式(3.33a~3.33h)，其矩陣大小為

( 1) 4( 2)M M N    或 ( 1) 4( 2)N M N    ，各元素之值列於附錄 B。此處B 之

矩陣大小為4( 2) 4( 2)M N M N     。 

  iQ 為大小  ( 1) ( 1)( 1)M M N    或  ( 1) ( 1)( 1)N M N    之矩陣，故 D 之

矩陣大小為  4( 2) ( 1)( 1)M N M N     ，其中之矩陣 iQ 下標之編號 1~8 分別代

表式(3.33a~3.33h)，其值列於附錄 B。 A 為  ( 1)( 1) 1M N   之行向量。 

  由式(3.34a ~3.34d)代入式(3.16)求解可得 i
mB 、 i

nC 與 mnA 之關係為 

-1C=B DA， (3.35) 

將(3.35)結果代入(3.13c)整理可得矩陣形式為 

2

0
D

h  
   

K M A         (3.19) 

其中
1( )  1 2K K B D K ，

1( )  1 2M M B D M 。 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bK K K K K K K K K ，  (3.36) 
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   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bM M M M M M M M M ，  (3.37) 

 4 2 2 4( , ) 2m m n n pkp k       2K ， (3.38) 

( , ) pkp k 2M 。 (3.39)  

  1K 、 2K 、 1M 、 2M 矩陣之第 p列，按式(3.13b)中 cos cosm nx y  排列，

( 1) 1p m N n    。 1K 、 1M 之 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM ( j = 1~4 )矩陣大小為

 ( 1)( 1) ( 1)M N M    、  ( 1)( 1) ( 1)M N N    、  ( 1)( 1) ( 1)M N M    、

 ( 1)( 1) ( 1)M N N    ，各元素之值列於附錄 C。故 1K 、 1M 之矩陣大小為

 ( 1)( 1) 4( 2)M N M N     。 

  2K 、 2M 為    ( 1)( 1) ( 1)( 1)M N M N     之對角矩陣，行按 A 行向量之 mnA

排列，以 k 表示。令 ( )mnA A k ， ( , ) ( 1) ( 1)k k m n m N n     ，對角線元素如式

(3.38、3.39)所示，而 2K 、 2M 對角線外的值皆為零。 

  綜合 3.1 及 3.2 節，本章所述之解的流程為 

1、假設撓度為(3.9)式，將之代入該邊界條件。 

2、將擴充函式 ( )i
xP x 、 ( )i

yP y 積分轉換成 cos m x 、 cos n y 形式，使其邊界條件可   

   以提出該 cos m x 、 cos n y 變數。 

3、由(3.18)可得 mnA 與 i
mB 、 i

nC 關係，此處若無法反矩陣，需重新更改假設提高      

   擴充函式階數。 

4、將以上所得 i
mB 、 i

nC 結果帶入(3.13c)，並由(3.19)求解而得該頻率值。 

5、將上述方程編譯成程式透過電腦求解，改變項數 m、n 大小以得精確值。 



 

‐ 42 ‐ 
 

3.3 收斂性分析 

  本章節探討兩邊界條件 C-C-C-C 與 S-S-S-S 之收斂性分析，依 3.2.1、3.2.3 節

所述，吾人將此些公式編譯成程式透過電腦求解，可得到邊界條件 C-C-C-C、S-S-S-S

的頻率，考慮無因次自然振動頻率為
2 /a h D  。 

 
            表 3.2  C-C-C-C 之收斂性分析 ( r = a/b = 1) 

 
Mmax  2 /a h D    

� 1st 2nd 3rd 4th 5th 

1 37.947 86.335 86.335  116.89  

5 35.956 73.306 73.306 107.96 131.52 

10 

15 

35.984 

35.985 

73.389 

73.393 

73.389 

73.393 

108.19 

108.21 

131.57 

131.58 

20 35.985 73.394 73.394 108.22 131.58 

25 35.985 73.394 73.394 108.22 131.58 

50 35.985 73.394 73.394 108.22 131.58 
*Li (2009) 35.985 73.393 73.393  108.21 131.58 

 

  表 3.2 為 C-C-C-C 矩形板（四端固定端）解之收斂性分析。傅立葉級數中 M、

N 最大項數值Mmax， mnA 從 00A 至 MNA ，故Mmax =1 時有四個模態頻率( 00A 、 01A 、 10A 、

11A )，即最大值為Mmax，會有
2(M 1)max  個模態頻率。 

由上表顯示：數值隨著 M 增加，其值一開始遞減而後為漸增收斂，原因可能

來自於Mmax = 1 時，其準確度不夠。討論有效位數為五位，邊界 C-C-C-C 之前五個

模態頻率在Mmax = 20 皆已收斂至五位有效數字(35.985、73.394、73.394、108.22

與 131.58)，其收斂速度很快，與文獻 Li (2009)比照，前五個模態頻率之收斂值皆

相差很小。 
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            表 3.3  S-S-S-S 之收斂性分析 ( r = a/b =1) 
 

Mmax   
2 /a h D    

� 1st 2nd 3rd 4th 5th 

1 17.238 50.970 50.970  78.619     

5 19.659 49.307 49.307  78.783 99.410 

10 

15 

19.723 

19.730 

49.334 

49.338 

49.334 

49.338 

  78.888 

  78.928 

  98.707 

  98.691 

20 19.735 49.342 49.342   78.938   98.689 

30 

40 

19.737 

19.738 

49.345 

49.346 

49.345 

49.346 

  78.948 

  78.952 

  98.691 

  98.693 

50 19.738 49.347 49.347  78.954   98.694   
*Leissa (1973) 19.739 49.348 49.348  78.957 98.696 

 

  表 3.3 為 S-S-S-S 矩形板（四端簡支端）解之收斂性分析。由上表顯示：

數值隨著 M 增加，第一模態頻率由下限遞增收斂，在Mmax =20 時收斂至四位有效

數字 19.74；第二、三模態相同，為重根關係，隨著 M 增加，模態頻率先減後增，

為振盪收斂，在Mmax =30 時收斂至四位有效數字 49.35；隨著 M 增加，第四模態頻

率由下限遞增收斂，在Mmax =30 時收斂至四位有效數字 78.95；第五模態頻率則是

先減後增，為振盪收斂，在Mmax =15 時收斂至四位有效數字 98.69。與文獻 Leissa 

(1973)比照，發現前五個模態頻率收斂值相近。 
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3.4 數值結果 

  以下列出各邊界條件於 0.3  、Mmax =20、不同長寬比(a/b)之振動頻率值。 

 
     表 3.4  C-C-C-C 之自由振動頻率 

 
r=a/b 

2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 35.985 

35.985a 

35.992b 

73.394 

 73.393a 

 73.413b 

73.394 

 73.393a 

 73.413b 

  108.22 

  108.21a

  108.27b

  131.58  

  131.58a 

131.64b 

1.5 60.761 93.833  148.78 149.67   179.56 

2.0 98.311 127.30  179.08 253.32   255.93 

2.5 147.77 173.79  221.35 291.69   384.33 

3.0 208.77 232.73  276.67 342.83   431.67 
aLi (2009) 
bLeissa (1973) 

其中 Li (2009)所假設的解為傅立葉餘弦級數，加入擴充函式為三角函數；而 Leissa 

(1973)將兩對邊為簡支端之矩形板以雙傅立葉級數解求得自由振動頻率，其他非兩

對邊為簡支端之案例，則以 Ritz 法求之。 

 
     表 3.5  C-F-F-F 之自由振動頻率 

 
r=a/b 

2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 3.4704 

3.470a 

3.4917b 

8.5040 

8.504a 

8.5246b 

21.280 

 21.279a 

 21.429b 

  27.200 

  27.201a

  27.331b

30.947 

30.948a 

31.111b 

1.5 3.4528 11.654 21.462   39.318 53.546 

2.0 3.4385 14.799 21.429   48.169 60.143 

2.5 3.4271 17.959 21.391   57.208 60.115 

3.0 3.4180 21.133 21.357   60.009 66.364 
aLi (2009) 
bLeissa (1973)  
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     表 3.6  S-S-S-S 之自由振動頻率 
 

r=a/b 
2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 19.735 

19.739* 

49.342 

49.348* 

49.342 

 49.348* 

78.938 

 78.957* 

98.689 

98.696* 

1.5 32.071 61.674 98.693 111.03 128.28 

2.0 49.343 78.946 128.29 167.79 197.38 

2.5 71.552 101.16 150.50  219.62 256.62 

3.0 98.696 128.31 177.65 246.77 335.63 
*Leissa (1973) 

 

 

  同§ 3.2.1~§3.2.3 節做法，改變其邊界方程可得○1 兩對邊簡支、兩對邊自由端

(S-F-S-F)、○2 三邊簡支、一邊自由端(S-S-S-F)、○3 兩對邊簡支、一邊固定、一邊簡

支(S-C-S-S)、○4 兩對邊簡支、兩對邊固定(S-C-S-C)之自由振動頻率，其中考慮普松

比 0.3  與Mmax =20。 

 

 

     表 3.7  S-F-S-F 之自由振動頻率 
 

r=a/b 
2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 9.6308 

9.6314* 

16.126 

16.135* 

36.705 

 36.726* 

38.944 

 38.945* 

46.725 

46.738* 

2.0 9.5124 27.513 38.527 64.525 87.294 
*Leissa (1973) 
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     表 3.8  S-S-S-F 之自由振動頻率 
 

r=a/b 
2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 11.682 

11.685* 

27.744 

27.756* 

41.193 

 41.197* 

59.047   

 59.066* 

61.846 

61.861* 

2.0 16.131 46.734 75.275 96.043 111.00 
*Leissa (1973) 

 

 

     表 3.9  S-C-S-S 之自由振動頻率 
 

r=a/b 
2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 

 

23.643 

23.646* 

51.671 

 51.674* 

58.644 

 58.646* 

86.125 

 86.135* 

100.28 

100.27* 

2.0 51.671 86.128 140.84 168.96 201.72 
*Leissa (1973) 

 

 

     表 3.10  S-C-S-C 之自由振動頻率 

 

r=a/b 
2 /a h D    

� 1st 2nd 3rd 4th 5th 

1.0 28.951 

28.951* 

54.745 

54.743* 

69.327 

 69.327* 

94.586 

 94.585* 

102.23 

102.22* 

2.0 95.263 115.80 156.36 219.00 254.14 
*Leissa (1973) 
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第四章 利用配點法求解 

  如上章所述，矩形板之撓度可以傅立葉級數表示 

4

0 00 0 1

( , ) cos ( ) cos ( )ccos os
M N N M

i i i i
mn n n x n m y m

n mm n i
mw x y A y C P x y B P yx x  

   


    

 
    (3.9) 

邊界條件以及控制方程均在傅立葉級數域滿足，即在運算上均須將 ( )i
xP x 、 ( )i

yP y 及

其導函數分別用 cos m x 、 cos n y 展開，計算上較繁雜。本章採用配點法方式讓邊

界條件與控制方程於所選點位上滿足(而非於傅立葉級數域滿足)，以決定式(3.9)中

係數 i
mB 、 i

nC 與 mnA 之關係，並進一步求解自然振動頻率。 

  本章僅考慮兩種邊界條件○1 四邊固定端、○2 四邊簡支端之解，並與第三章傅立

葉級數方法做收斂性分析。本章之配點法如圖 4.1 所示，○1 、○2 、○3 、○4 分別代表

邊界 0y  、 x a 、 y b 、 0x  ，○1 、○3 編點由左至右排列，以 11b ~ 1tb 、 

31b ~ 3tb 表示；○2 、○4 編點由下至上排列，以 21b ~ 2 tb 、 41b ~ 4 tb 表示，而在板內之點

則由左下至右上排列，以 11d ~ pqd 表示。 

 

圖 4.1     配點法之編點命名 
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4.1 配點法 

4.1.1 求解 C-C-C-C 自由振動頻率 

  將各邊界之點代入四邊固定端之邊界條件可得 

邊界○1   

     
0

1 1
0

cos( , ) cos
M N

n m
n

s s nm
m

x bw x y y b A 
 

   

                         
4

0 0
1 1 1 1

1

cos cos 0
M N

i i i i
m y m n x n

mi
s s

n
s sB P y x C bP xb b yb 

 


  

 
  ， 

s = 1, 2,…, N1  (4.1a) 

      1, 1
0 0

( , ) cos sin
M N

my n n mns
m n

sx b bw x y y A 
 

    

                           
4

1 1
01

1 1
0

cos sin 0
M N

i i i i
m y s m s n x s s

m
n

n
n

i

B P y b x b C P x b by  
 

 
  

 
     ，

 

s = 1, 2,…, N1 (4.1b) 

邊界○2  

     
0

2 2
0

cos( , ) cos
M N

n m
n

s s nm
m

x bw x y y b A 
 

   

                         
4

0 0
2 2 2 2

1

cos cos 0
M N

i i i i
m y m n x n

mi
s s

n
s sB P y x C bP xb b yb 

 

 
  





  ，

 

s = 1, 2,…, N2

 

(4.1c) 

      2, 2
0 0

( , ) cos sin
M N

nx m m mns
m n

sy b bw x y x A 
 

                  

           2

4

2
01

2 2
0

cn os 0si
M N

i i i i
m y s s n x sm s

m n
m

i
nB P y b b C P x b y bx  

 

    
 
  ，

 

                                                                                 
s = 1, 2,…, N2 (4.1d) 
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邊界○3   

     
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0

cos( , ) cos
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s s nm
m

x bw x y y b A 
 
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4

01

cos cos 0
M

i i i i
m y m n x n

m

N

s s
ni

s sB P y x Cb b bP y bx 


 
 


 


  ，   

s = 1, 2,…, N3

 

 (4.1e) 

      3, 3
0 0

( , ) cos sin
M N

my n n mns
m n

sx b bw x y y A 
 

    

                           
4

3 3
01

3 3
0

cos sin 0
M N

i i i i
m y s m s n x s s

m
n

n
n

i

B P y b x b C P x b by  
 

 
  

 
     ，  

s = 1, 2,…, N3

 

 (4.1f) 

邊界○4  

     
0

4 4
0

cos( , ) cos
M N

n m
n

s s nm
m

x bw x y y b A 
 

   

                         4 4 4 4
0

4

01

cos cos 0
M

i i i i
m y m n x n

m

N

s s
ni

s sB P y x Cb b bP y bx 


 
 


 


  ， 

  s = 1, 2,…, N4       (4.1g) 

      4, 4
0 0

( , ) cos sin
M N

nx m m mns
m n

sy b bw x y x A 
 

    

                         4

4

4
01

4 4
0

cn os 0si
M N

i i i i
m y s s n x sm s

m n
m

i
nB P y b b C P x b y bx  

 

    
 
  ， 

s = 1, 2,…, N4  (4.1h) 

其中  isx b 及  isy b (i= 1, 2, 3, 4)代表 isb 點之x及y座標值，又 m m a  、 n n b  ，

m = 0, 1, 2,…, M、n = 0, 1, 2,…, N。為簡化分析，取 N1= N2= N3=N4 =Nb，在此直接

代入符合各邊界上的點 isb ，  1 2 3 4 4 2N N N N M N    求解出待定係數 i
mB 、

i
nC 與 mnA 之關係，以矩陣形式表示為 

BC = DA  (3.16) 
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其中 











1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4
2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4
3 3 3 3 3 3 3 3
1 2 3 4 1 2 3 4
4 4 4 4 4 4 4 4

1 2 3 4 1 2 3 4
5 5 5 5 5 5 5 5
1 2 3 4 1 2 3 4
6 6 6 6 6 6 6 6

1 2 3 4 1 2 3 4
7 7 7 7 7 7 7 7
1 2 3 4 1 2 3 4
8 8 8 8 8 8 8 8

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f
B

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f







 
 
 
 
 
 
 



，  (4.2a) 

 T1 1 1 2 2 2 4 4 4 1 1 1 2 2 2 4 4 4
0 1 0 1 0 1 0 1 0 1 0 1M M M N N NB B B B B B B B B C C C C C C C C CC         ，

 (4.2b) 

 
 
 
 
 
 
 
 
 
 
 
 

1

2

3

4

5

6

7

8

Q

Q

Q

Q
D

Q

Q

Q

Q

， (4.2c) 

 T

00 01 0 10 11 1 0 1N N M M MNA A A A A A A A AA     。 (4.2d) 

  矩陣B 中
i
ke 及 i

kf ，上標 i=1~4 分別對應 i
mB 及 i

nC ，下標 k = 1~8 分別對應滿

足方程式(4.1a~4.1h)，矩陣
i
ke 及 i

kf 之每一列為各邊界上的點 isb 依序代入而得。如

圖 4.1 所示，若每邊取 Nb 個點，即有 Nb 條方程式，
i
ke 、 i

kf 之矩陣大小為

b 4( 2)N M N   ，各元素之值列於附錄 B。B 為大小 b8 4( 2)N M N   之矩陣，

此處B 矩陣不一定為方陣。C行向量大小為4( 2) 1M N   。 
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  D 矩陣中 iQ 之列按方程(4.1a~4.1h)代入點 isb 排列，以下標 i=1~8 表示方程

(4.1a~4.1h) ， iQ 矩 陣 大 小 為  b ( 1)( 1)N M N   ， 故 D 矩 陣 大 小 為

 b8 ( 1)( 1)N M N   ，其中 iQ 矩陣之值列於附錄 B。 A 為  ( 1)( 1) 1M N   之行

向量，由式(3.16)與(4.2a~4.2d)，利用廣義反矩陣求解，得 i
mB 、 i

nC 與 mnA 之關係： 

 -1T TC = B B B DA  (4.3) 

將式(4.3)結果代入(3.11)整理可得矩陣形式為 

2

0
D

h  
   

K M A         (3.19) 

其中     
-1T T

1 2K K KB B B D ，     
-1T T

1 2M M MB B B D 。 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bK K K K K K K K K   (4.4) 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bM M M M M M M M M   (4.5) 

   4 2 2 4( , ) ( 2 ) cos cosm m n n m gh n gho k x d y d         2K   (4.6) 

   ( , ) cos cosm gh n gho k x d y d  2M
               

 (4.7)  

  1K 、 1M 矩陣之列按板內之點 ghd 代入排列， 1K 、 1M 各元素為變數m、n、

點 ( , )ghd x y 之函數。如圖 4.1 所示，若板內取 p q 個點，即有 p q 條方程式， 1K 、

1M 之 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM ( j=1~4 )矩陣大小為   ( 1)p q M   、  ( 1)p q N   、

  ( 1)p q M   、   ( 1)p q N   ，故 1K 、 1M 為   4( 2)p q M N    之矩陣，各

元素之值列於附錄 C。 
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  2K 、 2M 為矩陣大小    ( 1)( 1)p q M N    之對角化矩陣， 2K 、 2M 各元素

為其變數 m 、n與點 ( , )ghd x y 之函數。 2K 、 2M 矩陣之列按o排列，令 ( )ghd d o ，

( , ) ( 1)o o g h h g q    ，而矩陣之行以 k 表示，代表 2K 、 2M 矩陣之行按 A 行向

量中變數m、n排列，令 A 行向量中各元素 ( )mnA A k ， ( 1) ( 1)k m N n    ，對

角線元素如式(4.6、4.7)表示， 2K 、 2M 對角線外的值皆為零。為使K、M矩陣以

求解特徵值，該矩陣須為方陣，故取點數  ( 1)( 1)p q M N    。 

 

4.1.2 求解 S-S-S-S 自由振動頻率 

  編點方式同圖 4.1 所示。將各邊界之點代入四邊簡支端之邊界條件可得 

邊界○1   
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  s = 1, 2,…, N1     (4.8a) 
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  s = 1, 2,…, N1     (4.8b)               
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邊界○2  
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                                                s = 1, 2,…, N2  (4.8c) 
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  s = 1, 2,…, N2     (4.8d) 

邊界○3   

     
0

3 3
0

cos( , ) cos
M N

n m
n

s s nm
m

x bw x y y b A 
 

   

                         3 3 3 3
0

4

01

cos cos 0
M

i i i i
m y m n x n

m

N

s s
ni

s sB P y x Cb b bP y bx 


 
 


 


  ，   

                                                s = 1, 2,…, N3  (4.8e) 

       3 3
2 2

0 0

( , ) cos cos
M N

y n m n mn
m

m s
n

sM x y v y Ax b b  
 

     

                         
4

2
3 3 3

01

cos
M

i i i
y s m y s m m s

mi

P y b v P y b B x b 


  


     

                                3 3 3
0

2 co 0s
N

i i i
x s x s n s

n
n nP x b v yP x b C b 



   


 ，   

                                                s = 1, 2,…, N3  (4.8f) 

邊界○4  

     
0

4 4
0

cos( , ) cos
M N

n m
n

s s nm
m

x bw x y y b A 
 

   

                         4 4 4 4
0

4

01

cos cos 0
M

i i i i
m y m n x n

m

N

s s
ni

s sB P y x Cb b bP y bx 


 
 


 


  ， 
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                                                                                                s = 1, 2,…, N4     (4.8g) 

       4 4
2 2

0 0

( , ) cos cos
M N

x m n n mn
m

m s
n

sM x y v y Ax b b  
 

     

                         
4

2
4 4 4

01

cos
M

i i i
m y s y s m m s

mi

P y b vP y b B x b 


  

    

                                
0

2
4 4 4cos 0

N
i i i

x s x s n
n

n n sP x b v P x b C by 


  


 ， 

                                                                                                s = 1, 2,…, N4   (4.8h) 

求解式(4.8a~4.8h)可得待定係數 i
mB 、 i

nC 與 mnA 之關係，以矩陣形式表示為 

BC DA  (3.16) 

其中 











1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4
2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4
3 3 3 3 3 3 3 3
1 2 3 4 1 2 3 4
4 4 4 4 4 4 4 4

1 2 3 4 1 2 3 4
5 5 5 5 5 5 5 5
1 2 3 4 1 2 3 4
6 6 6 6 6 6 6 6

1 2 3 4 1 2 3 4
7 7 7 7 7 7 7 7
1 2 3 4 1 2 3 4
8 8 8 8 8 8 8 8

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f
B

e e e e f f f f

e e e e f f f f

e e e e f f f f

e e e e f f f f







 
 
 
 
 
 
 



， (4.9a) 

 
 
 
 
 
 
 
 
 
 
 
 

1

2

3

4

5

6

7

8

Q

Q

Q

Q
D

Q

Q

Q

Q

。 (4.9b) 

  矩陣B 中
i
ke 及 i

kf ，上標 i = 1~4 分別對應 i
mB 及 i

nC ，下標 k = 1~8 分別對應滿

足方程式(4.8a~4.8h)，矩陣
i
ke 及 i

kf 之每一列為各邊界上的點 isb 依序代入而得。 
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  如圖 4.1 所示，若每邊取 Nb 個點，即有 Nb 條方程式，
i
ke 、 i

kf 之矩陣大小為

b 4( 2)N M N   ，各元素之值列於附錄 B。B 為大小 b8 4( 2)N M N   之矩陣，

此處B 矩陣不一定為方陣。C行向量大小為4( 2) 1M N   。
 

  D 矩陣中 iQ 之列按方程(4.8a~4.8h)代入點 isb 排列，以下標 i = 1~8 表示方程

(4.8a~4.8h) ， iQ 矩 陣 大 小 為  b ( 1)( 1)N M N   ， 故 D 矩 陣 大 小 為

 b8 ( 1)( 1)N M N   ，其中 iQ 矩陣之值列於附錄 B。 

  A為  ( 1)( 1) 1M N   之行向量，由式(3.16)與(4.9a~4.9b)，利用廣義反矩陣求

解，可得 i
mB 、 i

nC 與 mnA 之關係： 

T -1 TC = (B B) B DA  (4.3) 

將(4.3)結果代入(3.11)整理可得矩陣形式為 

2

0
D

h  
   

K M A         (3.19) 

其中    T
1

T
2

-1K K K(B B) B D ，    T
1

T
2

-1M M M(B B) B D 。 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bK K K K K K K K K   (4.10) 

   
1 2 3 4 1 2 3 4

1 1a 1a 1a 1a 1b 1b 1b 1bM M M M M M M M M   (4.11) 

   4 2 2 4( , ) ( 2 ) cos cosm m n n m gh n gho k x d y d         2K   (4.12) 

   ( , ) cos cosm gh n gho k x d y d  2M
               

 (4.13)  

  1K 、 1M 矩陣之列按板內之點 ghd 代入排列， 1K 、 1M 各元素為變數m、n、

點 ( , )ghd x y 之函數。如圖 4.1 所示，若板內取 p q 個點，即有 p q 條方程式， 1K 、

1M 之 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM ( j=1~4 )矩陣大小為   ( 1)p q M   、  ( 1)p q N   、
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  ( 1)p q M   、   ( 1)p q N   ，故 1K 、 1M 為   4( 2)p q M N    之矩陣，各

元素之值列於附錄 C。 

  2K 、 2M 為矩陣大小    ( 1)( 1)p q M N    之對角化矩陣， 2K 、 2M 各元素

為其變數 m 、n與點 ( , )ghd x y 之函數。 2K 、 2M 矩陣之列按o排列，令 ( )ghd d o ，

( , ) ( 1)o o g h h g q    ，而矩陣之行以 k 表示，代表 2K 、 2M 矩陣之行按 A 行向

量中變數m、n排列，令 A 行向量中各元素 ( )mnA A k ， ( 1) ( 1)k m N n    ，對

角線元素如式(4.12、4.13)表示， 2K 、 2M 對角線外的值皆為零。為使K、M矩陣

以求解特徵值，該矩陣須為方陣，故取點數  ( 1)( 1)p q M N    。 

  綜合以上所述，求解之流程為 

1、假設撓度同式(3.9)，將之代入該邊界條件。 

2、直接代入各邊界上的點 isb ，得到方程(3.16)。 

3、利用廣義反矩陣式(4.3)，求解可得 mnA 與 i
mB 、 i

nC 之關係。 

4、將以上所得 i
mB 、 i

nC 結果代入(3.13b)，亦帶入板內點 g hd ，並由式(3.19) 

   求解而得該頻率值。 

5、將上述方程編譯成程式透過電腦求解，改變項數 m、n、點數 Nb 以及間距 l，  

   以得精確值。 
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4.2 收斂性分析 

  在本文，配點法採均勻佈點，依固定間距取點。為滿足控制方程以求解頻率 ，

所取之點不應過於靠近邊界，令於矩形板內所取之點均至少與邊界距離 l，如圖 4.1

所示，點 1hd 、 gqd 、 phd 、 1gd 均與最近之邊界距離 l，且為了求解特徵值，該K、M

矩陣須為方陣，項數 m、n 最大值取為M ， mnA 將會有  2
1M  個，為配合 mnA ，

取點數  2
1pq M  ，即佈點間距長為

2a l

M


，構成之 K、 M矩陣大小為

   2 2
1 1M M   ，為方陣。 

  以下列出此章探討的兩種邊界條件(C-C-C-C、S-S-S-S)之結果，分別討論 

○A 變數為項數 maxM ，其他參數如板之長寬比 r ( =a/b )、邊界取點數 Nb，以及板內點

離最近邊界之距離 l 皆為定值。○B 變數為 Nb，其他 r、 maxM 、l 為定值。○C 參數為 l，

其他 r、 maxM 、Nb 為定值。 

○A 參數： maxM  

    表 4.1  C-C-C-C 之收斂性分析 ( r = 1 , Nb = 50 , l = 0.01 ) 
 

maxM  
�

2 /a h D   

� 1st 2nd 3rd 4th 5th 

5 

10 

20 

30 

36.088 

35.997 

35.986 

35.985 

72.815 

73.424 

73.396 

73.394 

72.815 

73.424 

73.396 

73.394 

107.97 

108.34 

108.23 

108.22 

127.59 

131.62 

131.59 

131.58 

50 35.985 73.394  73.394   108.22   131.58 
*Li (2009) 35.985  73.393  73.393  108.21 131.58 
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表 4.1 可視為四端固定(C-C-C-C)矩形板之收斂性分析，討論有效位數五位。由

上表所示：隨 maxM 增加，第一模態頻率由上限遞減收斂，在 maxM =30 收斂至五位

有效數字 35.985；第二、三模態相同，為重根關係，隨著 maxM 增加，模態頻率先增

後減，為振盪收斂，在 maxM =30 收斂至五位有效數字 73.394；隨著 maxM 增加，第

四及第五模態頻率先增後減，為振盪收斂，在 maxM =30 分別收斂至五位有效數字

(108.22 及 131.58)。 

 

    表 4.2  S-S-S-S 之收斂性分析 ( r = 1 , Nb = 150 , l = 0.01 ) 
 

maxM   
2 /a h D   

� 1st 2nd 3rd 4th 5th 

5 

10 

20 

30 

40 

19.717 

19.682 

19.724 

19.732 

19.734 

49.679 

 49.198 

 49.326 

 49.337 

 49.341 

49.679 

49.198 

49.326 

49.337 

49.341 

 79.853 

 79.112 

 78.889 

 78.926 

 78.938 

100.48 

98.649 

98.666 

98.677 

98.682 
*Leissa (1973)  19.739  49.348 49.348  78.957   98.696 

 

表 4.2 可視為四端簡支(S-S-S-S)矩形板之收斂性分析。由上表顯示：隨著 maxM

增加，第一模態頻率先減後增，為振盪收斂，在 maxM =30 收斂至四位有效數字 19.73；

第二、三模態相同，為重根關係，模態頻率先減後增，為振盪收斂，在 maxM =30 收

斂至四位有效數字 49.34；第四及第五模態頻率亦先減後增，為振盪收斂，在 maxM =30 

分別收斂至三位有效數字以及四位有效數字(78.9 及 98.68)。 

  



 

‐ 59 ‐ 
 

○B 參數：Nb 

    表 4.3  C-C-C-C 之自由振動頻率 ( r = 1 , maxM  = 20 , l = 0.01 ) 
 

Nb 
2 /a h D   

� 1 2 3 4 5 

    10 

20 

36.474 

36.032 

 73.778 

73.391 

73.778 

73.391 

107.31 

108.23 

129.061

31.59 

30 35.986 73.396 73.396 108.23 131.59 

50 35.986 73.396 73.396 108.23 131.59 

100  35.986 73.396  73.396 108.23    131.59 

 

   表 4.4  S-S-S-S 之自由振動頻率 ( r = 1 , maxM  = 20 , l = 0.01 ) 
 

Nb 
2 /a h D   

� 1 2 3 4 5 

10 

20 

  27.089 

  16.834 

91.517 

49.227 

 94.381 

 49.227 

  94.381 

  78.777 

  101.85 

  96.647 

30 19.698 49.265  49.265   78.995   98.569 

50 

80 

19.717 

19.721 

49.315 

49.321 

 49.315 

 49.321 

  78.853 

  78.876 

  98.641 

  98.656 

100 

150 

19.723 

19.724 

49.323 

49.326 

 49.323 

 49.326 

  78.882 

  78.889 

  98.661 

  98.666 

 

  滿足邊界條件求解 mnA 與 i
mB 、 i

nC 關係時，會受各邊界上取點數 Nb 多寡影響。

當取點數越多， i
mB 、 i

nC 與 mnA 關係將越精確，由表 4.3 所示，當 30bN  ，Nb 所

造成之影響不大；表 4.4 所示，當 30bN  ，頻率各數值仍在變動，若討論有效位

數四位，則 50bN  其影響不大。 
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○C 參數：l 

    表 4.5  C-C-C-C 之自由振動頻率 ( r = 1 , maxM = 20 , Nb = 50 ) 
 
l 2 /a h D   

� 1 2 3 4 5 

2 

1 

36.384 

35.994 

73.052 

73.425 

75.588 

73.425 

 108.61

 108.35

   131.70 

   131.64 

0.1 

0.01 

35.985 

35.986 

73.393 

73.396 

73.393 

73.396 

 108.21

 108.23

   131.58 

   131.59 

0.001 35.986 73.397 73.397  108.23    131.59 

0.0001 35.986 73.397 73.397  108.23    131.59 

 

    表 4.6  S-S-S-S 之自由振動頻率 ( r = 1 , maxM  = 20 , Nb = 50 ) 
 

l 2 /a h D   

� 1 2 3 4 5 

     2 

     1 

 18.578 

 19.647 

49.110 

49.101 

49.110 

49.101 

  78.753

 79.068

 94.413 

   98.098 

0.1 

0.01 

 19.691 

 19.717 

49.256 

49.315 

49.256 

49.315 

78.493

78.853

   98.550 

   98.641 

0.001 

0.0001 

 19.720 

 19.720 

49.319 

49.320 

49.319 

49.320 

78.871

78.872

   98.649 

   98.650 

 

  滿足控制方程以求解頻率值，會受板內取點數影響，當 l 越小即代表取點數越

多。由表 4.5 知，當 0.01l  ，參數 l 所造成之影響不大；而由表 4.6 所示，當 0.01l  ，

頻率各數值仍在變動，但當 0.001l  ，討論有效位數四位，l 所造成之影響不大。 

 

  



 

‐ 61 ‐ 
 

4.3 比較兩法之收斂性 

○A  四邊固定(C-C-C-C)矩形板 

      表 3.1  C-C-C-C 之自由振動頻率( r = 1 ) 
 

maxM   
2 /a h D   

� 1st 2nd 3rd 4th 5th 

1 37.947 86.335 86.335  116.89  

5 35.956 73.306 73.306 107.96 131.52 

10 

15 

 35.984 

 35.985 

73.389 

73.393 

73.389 

73.393 

108.19 

108.21 

131.57 

131.58 

20 35.985 73.394 73.394 108.22 131.58 

25 35.985 73.394 73.394 108.22 131.58 

50 35.985 73.394 73.394 108.22 131.58 

 

    表 4.1   C-C-C-C 之自由振動頻率( r = 1 , Nb = 50 , l = 0.01 ) 
 

maxM     
2 /a h D   

� 1 2 3 4 5 

5 

10 

20 

30 

36.088 

35.997 

35.986 

35.985 

72.815 

73.424 

73.396 

73.394 

72.815 

73.424 

73.396 

73.394 

107.97 

108.34 

108.23 

108.22 

127.59 

131.62 

131.59 

131.58 

50 35.985 73.394  73.394   108.22   131.58 

 

由表 3.1（傅立葉形式級數）與表 4.1（配點法）可見其收斂值結果相同，只是

收斂速度不同，傅立葉形式級數收斂會較快，討論有效位數為五位，  在 maxM =20

時已收斂，配點法則在 maxM =30 時收斂。 
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○B 四邊簡支(S-S-S-S)矩形板 

      表 3.2  S-S-S-S 之自由振動頻率( r = 1 ) 
 

maxM   
2 /a h D   

� 1st 2nd 3rd 4th 5th 

1 17.238 50.970 50.970  78.619     

5 19.659 49.307 49.307  78.783 99.410 

10 

15 

19.723 

19.730 

49.334 

49.338 

49.334 

49.338 

  78.888 

  78.928 

  98.707 

  98.691 

20 19.735 49.342 49.342   78.938   98.689 

30 

40 

19.737 

19.738 

49.345 

49.346 

49.345 

49.346 

  78.948 

  78.952 

  98.691 

  98.693 

50 19.738  49.347  49.347  78.954   98.694   

 

    表 4.2  S-S-S-S 之自由振動頻率( r = 1 , Nb = 150 , l = 0.01 ) 
 

maxM   
2 /a h D   

� 1st 2nd 3rd 4th 5th 

5 

10 

20 

30 

40 

19.717 

19.682 

19.724 

19.732 

19.734 

49.679 

49.198 

49.326 

49.337 

49.341 

 49.679 

 49.198 

 49.326 

 49.337 

 49.341 

 79.853 

  79.112 

  78.889 

  78.926 

  78.938 

100.48 

98.649 

98.666 

98.677 

98.682 

 

  由表 3.2（傅立葉形式級數）與表 4.2（配點法）可見該結果不同，以傅立葉形

式級數求解頻率，其前五個模態頻率值在 maxM 30 收斂至有效位數四位(19.74、

49.35、49.35、78.95 與 98.69)；採配點法之第一、二、三、五模態頻率則在 maxM 30

收斂至有效位數四位(19.73、49.34、49.34、98.68)，而第四模態頻率則在 maxM 30

收斂至有效位數三位 78.9。   
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 第五章 結論與建議 

5.1 結論 

  本研究利用傅立葉餘弦級數求解矩形板之振動，以多項式作為擴充函數修正傅

立葉級數逐項微分所造成的問題。在第三章討論板之振動問題，將此傅立葉餘弦級

數代入邊界與控制方程，求解七種邊界條件(C-C-C-C、S-S-S-S、C-F-F-F、S-F-S-F、

S-S-S-F、S-C-S-S、S-C-S-C)之自然振動頻率，並對邊界於 C-C-C-C、S-S-S-S 之案

例做收斂性分析，與文獻 Li (2009)、Leissa (1973)之數值比照，以驗證方法之可行

性。求解時，將 ( )i
xP x 與 ( )i

yP y 及其微分函數分別以 cos mx 及 cos n y 級數展開，以提

出共同項 cos cosm nx y  、 cos mx 或 cos n y ，使其於傅立葉級數域，但計算繁複。 

  第四章討論另一個方法－配點法，該法不進行積分轉換，而是直接代入滿足邊

界條件之點 isb 或滿足控制方程位於板內之點 ghd ，同樣地，亦可求解出頻率值。亦

對邊界於 C-C-C-C、S-S-S-S 之案例做收斂性分析，與文獻 Li (2009)、Leissa (1973)

之數值比照，以驗證方法之可行性。 

  邊界於 C-C-C-C 之案例，由表 3.1 與表 4.1 可見其收斂值結果相同，只是收斂

速度不同，轉換至傅立葉級數域方法之收斂速度會較快。而在邊界於 S-S-S-S 之案

例，由表 3.2 與表 4.2 可見該結果值不同，以傅立葉形式級數求解頻率，前五個模

態頻率值皆可收斂至有效位數四位；採配點法之第一、二、三、五模態頻率收斂至

有效位數四位，而第四模態頻率僅收斂至有效位數三位。 

  綜合本文結果，發現轉換至傅立葉級數域方法之收斂速度較快，收斂值也較精
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確，但需積分轉換，步驟程序與數值整理上較繁複。而配點法由於直接代邊界點滿

足邊界或代板內點滿足控制方程，不須再積分轉換，步驟程序與數值處理較直觀、

簡易，但收斂速度較慢，也因考慮變數多，收斂值較不精確。 

 

5.2 建議 

  在 2.2.4 節發現由於自由端之高階微分，擴充函式之部分項變為常數，而造成B

矩陣奇異性，無法求解出 mA 與 1C 、 2C 、 3C 、 4C 之關係，於是提高多項式階數

以避免之。此問題亦會衍伸至探討矩形板之頻率求解，在求解矩形板 C-F-C-F、

C-C-F-F、F-F-F-F 之 mnA 與 i
mB 、 i

nC 關係（
-1C= B DA），B矩陣奇異無法反矩陣，

該假設之擴充函式亦須像2.2.4節提高擴充函式階數。由此可知在擴充函式假設時，

該多項式的選擇須注意階數，是否在高階微分後消失，造成矩陣奇異無法求解。預

期 2.2.4 節中修正後之多項式函數代入 F-F-F-F 邊界條件後，將可獲解。 

  相較配點法，利用傅立葉形式級數求解時，將其轉換至傅立葉級數域，其收斂

較快速也較精確，將來亦可以此方法探討厚板或其他邊界問題。  
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附錄Ａ 

 式(3.12)中 i
nb 、 2

i
nb 、 4

i
nb 、 i

ma 、 2
i
ma 、 4

i
ma 之表示式 

 0 0

1
( )

bi i
yb P y dy

b
 

 

(A.1.1) 

 
0

2
( ) cos

bi i
n y nb P y y dy

b
   (A.1.2) 

 02 0

1
( )

bi i
yb P y dy

b
 

 

(A.1.3) 

 2 0

2
( ) cos

bi i
n y nb P y y dy

b
   (A.1.4)

 

 (4)
04 0

1
( )

bi i
yb P y dy

b
 

 

(A.1.5) 

 (4)
4 0

2
( ) cos

bi i
n y nb P y y dy

b
   (A.1.6)

 

 0 0

1
( )

ai i
xa P x dx

a
 

 

(A.1.7) 

 
0

2
( ) cos

ai i
m x ma P x x dx

a
 

 

(A.1.8) 

 02 0

1
( )

ai i
xa P x dx

a
 

 

(A.1.9) 

 2 0

2
( ) cos

ai i
m x ma P x x dx

a
   (A.1.10)

 

 (4)
04 0

1
( )

ai i
xa P x dx

a
 

 

(A.1.11) 

 (4)
4 0

2
( ) cos

ai i
m x ma P x x dx

a
   (A.1.12) 

其中 

1

2 2

0, 0

2
, 0n

n
b b

n
n 


 



，  (A.2.1) 

2 3

4 4

0, 0

2
, 0

n

n

b b
n

n 


 



，  (A.2.2) 
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3

2 2

0, 0

2 cos
, 0n

n
b b n

n
n





 



，  (A.2.3) 

4 3

4 4

0, 0

2 cos
, 0

n

n

b b n
n

n





  



， (A.2.4) 

1
2

1
, 0

0, 0
n

n
b b

n

  
 

， (A.2.5) 

2
2

2 2

0, 0

2
, 0n

n
b b

n
n 


 



， (A.2.6) 

3
2

1
, 0

0, 0
n

n
b b

n

  
 

， (A.2.7) 

4
2

2 2

0, 0

2 cos
, 0n

n
b b n

n
n





 



， (A.2.8) 

1
4 0nb  ，  (A.2.9) 

2
4

1
, 0

0, 0
n

n
b b

n

  
 

， (A.2.10) 

3
4 0nb  ， (A.2.11) 

4
4

1
, 0

0, 0
n

n
b b

n

  
 

，

 

 (A.2.12) 

1

2 2

0, 0

2
, 0m

m
a a

m
m 


 



， (A.2.13) 

2 3

4 4

0, 0

2
, 0

m

m

a a
m

m 


 



，

 

(A.2.14) 

3

2 2

0, 0

2 cos
, 0m

m
a a m

m
m





 



，  (A.2.15) 



 

‐ 69 ‐ 
 

4 3

4 4

0, 0

2 cos
, 0

m

m

a a m
m

m





  



， (A.2.16) 

1
2

1
, 0

0, 0
m

m
a a

m

  
 

，  (A.2.17) 

2
2

2 2

0, 0

2
, 0m

m
a a

m
m 


 



， (A.2.18) 

3
2

1
, 0

0, 0
m

m
a a

m

  
 

， (A.2.19) 

4
2

2 2

0, 0

2 cos
, 0m

m
a a m

m
m





 



，

 

(A.2.20) 

1
4 0ma  ，     (A.2.21) 

2
4

1
, 0

0, 0
m

m
a a

m

  
 

，    (A.2.22) 

3
4 0ma  ， (A.2.23) 

4
4

1
, 0

0, 0
m

m
a a

m

  
 

。

 

(A.2.24) 
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附錄 B 

 3.2.1 式(3.17a) 矩陣B 之 i
ke 及 i

kf  

2 (0)y mnP  1
1m,ne       (B.1.1) 

4 (0)y mnP  2
1m,ne           (B.1.2) 

2
1ma 1

1m,nf   (B.1.3) 

4
1ma 2

1m,nf  (B.1.4) 

2
1nb 1

2n,me  (B.1.5) 

4
1nb 2

2n,me  (B.1.6) 

2(0)x nmP  1
2n,mf  (B.1.7) 

4(0)x nmP  2
2n,mf  (B.1.8) 

2( )y mnP b  1
3m,ne  (B.1.9) 

4( )y mnP b  2
3m,ne           (B.1.10) 

 2
1 cos 1ma n   1

3m,nf         (B.1.11) 

 4
1 cos 1ma n   2

3m,nf  (B.1.12) 

 2
1 cos 1nb m   1

4n,me  (B.1.13) 

 4
1 cos 1nb m   2

4n,me  (B.1.14) 

2( )x nmP a  1
4n,mf  (B.1.15) 

4( )x nmP a  2
4n,mf        (B.1.16) 

i
ma 、 i

nb 可於附錄 A 查得，其中 m = 1, 2,…, M，n = 1, 2,…, N。  
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 3.2.1 式(3.17c) 矩陣D 之矩陣 iQ  

mm1i,jQ        (B.2.1) 

nn2i,jQ        (B.2.2) 

1( 1)n
mm  3i,jQ        (B.2.3) 

1( 1)m
nn  4i,jQ        (B.2.4) 

其中 i = m+1 = n+1，j = ( 1) ( 1)m N n   ，m = 0, 1,…, M，n = 0, 1,…, N。注意m 及 n

對應於 mnA 之下標。 

 

 3.2.2 式(3.26a) 矩陣B 之 i
ke 及 i

kf  

1
i
nb i

1n,me  (B.3.1) 

(0)i
x nmP  i

1n,mf  (B.3.2) 

0i
2n,me   (B.3.3) 

nm1
2n,mf  (B.3.4) 

0  2 3 4
2n,m 2n,m 2n,mf f f  (B.3.5) 

 
2 1

1 1 1 2( 1) ( 1)m i m i
m n nb v b 
       i

3n,me  (B.3.6) 

 2
1( ) ( )i i

x n x nmP a v P a 
   i

3n,mf  (B.3.7) 

0i
4n,me  (B.3.8) 

0 1 2
4n,m 4n,mf f  (B.3.9) 

2
1(2 )n nmv  3

4n,mf  (B.3.10) 
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nm4
4n,mf  (B.3.11) 

 2
1(0) (0)i i

y m y mnP v P 
   i

5m,ne  (B.3.12) 

 
2

1 1 1 2
i i

n m ma v a       i
5m,nf  (B.3.13) 

2
1(2 )m mnv   1

6m,ne  (B.3.14) 

mn2
6m,ne  (B.3.15) 

0 3 4
6m,n 6m,ne e  (B.3.16) 

0i
6m,nf  (B.3.17)  

 2
1( ) ( )i i

y m y mnP b v P b 
  i

7m,ne  (B.3.18) 

 
2 1

1 1 1 2( 1) ( 1)n i n i
n m ma v a 
         i

7m,nf  (B.3.19) 

0 1 2
8m,n 8m,ne e  (B.3.20) 

2
1(2 )m mnv  3

8m,ne  (B.3.21) 

mn4
8m,ne  (B.3.22) 

0i
8m,nf  (B.3.23) 

i
ma 、 2

i
ma 、 i

nb 、 2
i
nb 可於附錄 A 查得，其中 m = 1, 2,…, M，n = 1, 2,…, N，i = 1~4。 

 

 3.2.2 式(3.26c) 矩陣D 之矩陣 iQ  

nn1i,jQ    (B.4.1) 

02i,jQ
 

(B.4.2) 

 2 2( 1)m
m n nnv     3i,jQ   (B.4.3) 
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04i,jQ  (B.4.4) 

 2 2
n m mmv   5i,jQ  (B.4.5) 

06i,jQ
 

(B.4.6) 

 2 2( 1)n
n m mmv     7i,jQ

 
(B.4.7) 

08i,jQ
 

(B.4.8) 

其中 i = m+1 = n+1，j = ( 1) ( 1)m N n   ，m = 0, 1,…, M，n = 0, 1,…, N。注意m 及 n

對應於 mnA 之下標。 

 

 3.2.3 式(3.34a) 矩陣B 之 i
ke 及 i

kf  

1
i
nb i

1n,me  (B.5.1) 

(0)i
x nmP i

1n,mf  (B.5.2) 

 
2

1 1 1 2
i i

m n nb vb     i
2n,me  (B.5.3) 

 2
1(0) (0)i i

x n x nmP v P 
   i

2n,mf  (B.5.4) 

1
1( 1)m i

nb
 i

3n,me  (B.5.5) 

( )i
x nmP a i

3n,mf  (B.5.6) 

 
2 1

1 1 1 2( 1) ( 1)m i m i
m n nb v b 
       i

4n,me  (B.5.7) 

 2
1( ) ( )i i

x n x nmP a v P a 
   i

4n,mf
 

(B.5.8) 

(0)i
y mnP i

5m,ne  (B.5.9)

 

1
i
ma i

5m,nf
 

(B.5.10) 
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 2
1(0) (0)i i

y m y mnP v P 
   i

6m,ne
 

(B.5.11) 

 
2

1 1 1 2
i i

n m ma v a       i
6m,nf

 
(B.5.12) 

( )i
y mnP b i

7m,ne
 

(B.5.13) 

1
1( 1)n i

ma
 i

7m,nf
 

(B.5.14) 

 2
1( ) ( )i i

y m y mnP b v P b 
   i

8m,ne
 

(B.5.15) 

 
2 1

1 1 1 2( 1) ( 1)n i n i
n m ma v a 
       i

8m,nf
 

(B.5.16) 

i
ma 、 2

i
ma 、 i

nb 、 2
i
nb 可於附錄 A 查得，其中 m = 1, 2,…, M，n = 1, 2,…, N，i = 1~4。 

 

 3.2.3 式(3.34c) 矩陣D 之矩陣 iQ  

nn1i,jQ  (B.6.1)
 

 2 2
m n nnv   2i,jQ  (B.6.2)

 

1( 1)m
nn 3i,jQ  (B.6.3)

 

 2 2( 1)m
m n nnv    4i,jQ  (B.6.4) 

mm 5i, jQ  
      (B.6.5) 

 2 2
n m mmv   6i,jQ

 
 (B.6.6) 

1( 1)n
mm 7i,jQ  (B.6.7) 

 

 2 2( 1)n
n m mmv    8i,jQ  (B.6.8)  

其中 i = m+1 = n+1，j = ( 1) ( 1)m N n   ，m = 0, 1,…, M，n = 0, 1,…, N。注意m 及 n

對應於 mnA 之下標。 
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 4.1.1 式(4.2a) 矩陣B 之 i
ke 及 i

kf  

  1(0) cosi
y m sP x b i

1s,he ，s = 1, 2,…, N1  (B.7.1)
 

  1x s
iP bxi

1s,kf ，s = 1, 2,…, N1 (B.7.2) 

  1cos m sbx1
2s,he ，s = 1, 2,…, N1 (B.7.3) 

0  2 3 4
2s,h 2s,h 2s,he e e ，s = 1, 2,…, N1 

(B.7.4) 

0i
2s,kf ，s = 1, 2,…, N1 (B.7.5) 

  2( 1) y s
m i bP y  i

3s,he ，s = 1, 2,…, N2 (B.7.6) 

  2( ) cos n s
i

xP a y b i
3s,kf ，s = 1, 2,…, N2 (B.7.7) 

0i
4s,he ，s = 1, 2,…, N2 (B.7.8)  

  2cos n sby3
4s,kf ，s = 1, 2,…, N2 (B.7.9) 

0  1 2 4
4s,k 4s,k 4s,kf f f ，s = 1, 2,…, N2 (B.7.10)  

  3( ) cos m s
i
yP b x b i

5s,he ，s = 1, 2,…, N3 (B.7.11) 

  3( 1) x s
n i bP x  i

5s,kf ，s = 1, 2,…, N3 (B.7.12) 

  3cos m sx b3
6s,he ，s = 1, 2,…, N3 (B.7.13) 

0  1 2 4
6s,h 6s,h 6s,he e e ，s = 1, 2,…, N3 

(B.7.14) 

0i
6s,kf ，s = 1, 2,…, N3 (B.7.15) 

  4y s
iP byi

7s,he ，s = 1, 2,…, N4 (B.7.16) 

  4(0) cosi
x n sP y b i

7s,kf ，s = 1, 2,…, N4 (B.7.17) 

0i
8s,he ，s = 1, 2,…, N4 (B.7.18) 
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  4cos n sby1
8s,kf ，s = 1, 2,…, N4 (B.7.19) 

0  2 3 4
8s,k 8s,k 8s,kf f f ，s = 1, 2,…, N4 (B.7.20) 

其中 1h m  、 1k n  。 i
ke 、 i

kf 矩陣之每一列以 s 表示各邊界上的點
isb 。 

 

 4.1.1 式(4.2c) 矩陣D 之矩陣 iQ  

  1cos m sx b 1s,kQ        (B.8.1) 

02s,kQ        (B.8.2) 

  1
2( 1) cosm

n sby  3s,kQ        (B.8.3) 

04s,kQ        (B.8.4) 

  1
3( 1) cosn

m sx b  5s,kQ        (B.8.5) 

06s,kQ        (B.8.6) 

  4cos n sby 7s,kQ        (B.8.7) 

08s,kQ        (B.8.8) 

其中 iQ 矩陣之每一列以 s 表示各邊界上的點 isb ，矩陣之行則對照 mnA 排列，以 k 表

示。令A矩陣中各元素 ( )mnA A k ， ( 1) ( 1)k m N n    。 
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 4.1.2 式(4.9a) 矩陣B 之 i
ke 及 i

kf  

  1(0) cosi
y m sP x b i

1s,he ，s = 1, 2,…, N1 
(B.9.1) 

  1x s
iP bxi

1s,kf ，s = 1, 2,…, N1 
(B.9.2) 

  2
1( (0) (0)) cosi i

y m y m sP v P x b    i
2s,he ，s = 1, 2,…, N1 

(B.9.3) 

     1
2

1s x s
i i

n xP x v P xb b     i
2s,kf ，s = 1, 2,…, N1 (B.9.4) 

  2( 1) y s
m i bP y  i

3s,he ，s = 1, 2,…, N2 (B.9.5) 

  2( ) cos n s
i

xP a y b i
3s,kf ，s = 1, 2,…, N2 (B.9.6) 

     1 2
2 2( 1) ( 1)m i m i

m y ys sP y Pb bv y        i
4s,he ，s = 1, 2,…, N2 

(B.9.7)
 

    2
2( ) ( ) cosi i

x n x snP a v P a y b    i
4s,kf ，s = 1, 2,…, N2 (B.9.8) 

  3( ) cos m s
i
yP b x b i

5s,he ，s = 1, 2,…, N3 (B.9.9) 

  3( 1) x s
n i bP x  i

5s,kf ，s = 1, 2,…, N3 (B.9.10) 

    2
3( ) ( ) cosi i

y m y smP b v P b x b    i
6s,he ，s = 1, 2,…, N3 (B.9.11) 

     1 2
3 3( 1) ( 1)n i n i

n x xs sx v Pb x bP        i
6s,kf ，s = 1, 2,…, N3 (B.9.12) 

  4y s
iP byi

7s,he ，s = 1, 2,…, N4 (B.9.13) 

  4(0) cosi
x n sP y b i

7s,kf ，s = 1, 2,…, N4 (B.9.14) 

     4
2

4s y s
i i

m yP y v P yb b     i
8s,he ，s = 1, 2,…, N4    (B.9.15) 

    2
4(0) (0) cosi i

x n x n sP v P y b    i
8s,kf ，s = 1, 2,…, N4 (B.9.16) 

其中 1h m  、 1k n  。 i
ke 、 i

kf 矩陣之每一列以 s 表示各邊界上的點 isb 。 
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 4.1.2 (4.9b) 矩陣D 之矩陣 iQ  

  1cos m sx b 1s,kQ        (B.10.1) 

    2 2
1cosn m m sv x b    2s,kQ        (B.10.2) 

  1
2( 1) cosm

n sby  3s,kQ        (B.10.3) 

    2 2
2( 1) cosm

m n n sbyv      4s,kQ        (B.10.4) 

  1
3( 1) cosn

m sx b  5s,kQ        (B.10.5) 

  2 2
3( 1) ( ) cosn

n m m sv x b      6s,kQ        (B.10.6) 

  4cos n sby 7s,kQ        (B.10.7) 

    2 2
4cosm n n syv b    8s,kQ        (B.10.8) 

其中 iQ 矩陣之每一列以 s 表示各邊界上的點 isb ，矩陣之行則對照 mnA 排列，以 k 表

示。令A矩陣中各元素 ( )mnA A k ， ( 1) ( 1)k m N n    。 
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附錄 C 

 3.2.1 式(3.20、3.21) 矩陣 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM  

 2
2

4
4( , ) 2m

i i i
n m n n mmp q b b b    j

1aK    (C.1)
 

 2
2

4
4( , ) 2i i i

n m n m m nnp q a a a    j
1bK  (C.2) 

其中 2,4i  ， 1, 2j  ， j
1aK 、 j

1bK 矩陣之列以 p 表示， ( , ) ( 1) 1p p m n m N n     ，

矩陣之行原按式(3.17b)各元素排列，為表示簡便，令 1 3
n nC B 、 2 4

n nC B ，使其對應

lB ， l  1~4，故C 行向量又以C 表示為 

 T
1 1 1 2 2 2 3 3 3 4 4 4
0 1 0 1 0 1 0 1M M N NB B B B B B B B B B B BC     ，

 
(C.3) 

如此， j
1aK 、 j

1bK 矩陣第 q行為 ( , ) ( 1)q q m n l M m n M      ，l  1~4。注意m 及

n 對應於
lB 之下標。又 

( , ) i
n mmp q b j

1aM ， (C.4) 

( , ) i
m nnp q a j

1bM ， (C.5) 

j
1aM 、 j

1bM 矩陣排列方式同 j
1aK 、 j

1bK ，如上所示。 

 

 3.2.2、3.2.3 式(3.28、3.29、3.36、3.37) 矩陣 j
1aK 、 j

1bK 、 j
1aM 、 j

1bM  

 2
2

4
4( , ) 2m

i i i
n m n n mmp q b b b    j

1aK  (C.6) 

 2
2

4
4( , ) 2i i i

n m n m m nnp q a a a    j
1bK  (C.7) 

其中 i  1~4， j  1~4， j
1aK 、 j

1bK 矩陣之列以 p 表示， ( , ) ( 1) 1p p m n m N n     ，
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矩陣之行原按式(3.26b)各元素排列，為表示簡便，令 1 5
n nC B 、 2 6

n nC B 、 3 7
n nC B 、

4 8
n nC B ，使其對應

lB ， l  1~8，故C 行向量又以C 表示為 

 T1 1 1 2 2 2 4 4 4 5 5 5 6 6 6 8 8 8
0 1 0 1 0 1 0 1 0 1 0 1M M M N N NB B B B B B B B B B B B B B B B B BC         ，

 (C.8) 

如此， j
1aK 、 j

1bK 矩陣之第 q行為 ( , ) ( 1)q q m n l M m n M      ，l  1~8。注意m

及 n 對應於
lB 之下標。又 

( , ) i
n mmp q b j

1aM ， (C.9) 

( , ) i
m nnp q a j

1bM ， (C.10) 

j
1aM 、 j

1bM 矩陣排列方式同 j
1aK 、 j

1bK ，如上所示。 

 

  4.1.1、4.1.2 式(4.4、4.5、4.10、4.11) 矩陣 i
1aK 、 i

1bK 、 i
1aM 、 i

1bM  

           4 2( , ) cos 2 cosi i
y gh m m gh y gh m m gho u P y d x d P y d x d         i

1aK        

                       (4) cosi
y gh m ghP y d x d   (C.11) 

           4 2( , ) cos 2 cosi i
x gh n n gh x gh n n gho u P x d y d P x d y d         i

1bK      

                       (4) cosi
x gh n ghP x d y d   (C.12) 

     ( , ) cosi
y gh m gho u P y d x d i

1aM  (C.13) 

     ( , ) cosi
x gh n gho u P x d y d i

1bM  (C.14) 
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i
1aK 、 i

1bK 矩陣之下標 a、b 分別對照 i
mB 、 i

nC ，其矩陣之每一列以 o 表示各邊

界上的點 ghd 。令 ( )ghd d o ， ( , ) ( 1)o o g h h g q    ，其中 g  1, 2,…, p、 

h 1, 2,…, q。而矩陣之行原本按式(4.2b)各元素排列，為表示簡便，令 1 5
n nC B 、

2 6
n nC B 、 3 7

n nC B 、 4 8
n nC B ，使其對應

lB ， l  1~8，故C 行向量又以C 表示： 

 T1 1 1 2 2 2 4 4 4 5 5 5 6 6 6 8 8 8
0 1 0 1 0 1 0 1 0 1 0 1M M M N N NB B B B B B B B B B B B B B B B B BC        

 (C.15) 

如此， i
1aK 、 i

1bK 矩陣之行按u 排列，其值對應
lB，令 ( 1)u l M m n M     ，l =1~8。

i
1aM 、 i

1bM 矩陣排列方式同 i
1aK 、 i

1bK ，如上所示。 

 


