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                          指導教授：林正中副教授 
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論     文     摘     要 

 

近年來，作業系統的可靠度逐漸受到重視，因為一些需要高可用性的服務都

必須依賴作業系統所提供的功能。然而，驅動程式設計上的缺陷卻容易破壞作業

系統的穩定性。研究指出，在作業系統的原始碼中，驅動程式的錯誤比例是其他

非驅動部分的 3倍至 7倍。因此，我們提出了一個架構，驅動程式設計團隊可以

提供多份不同實做方式的驅動程式，透過此架構來避免驅動程式的錯誤設計讓整

個系統無法運作。如果驅動程式因設計缺陷而發生錯誤後，我們的架構就會將發

生錯誤的驅動程式移除，再使用另外一份的驅動程式。除此之外，我們的架構必

須修補系統的狀態以及恢復遺失的系統要求。 

我們將這個架構實做在目前相當流行的 Linux 作業系統來驗證我們的方

法。根據實驗的結果，我們架構對效能所造成的額外負擔不超過百分之五，且整

個修復的時間非常短。証明我們的架構是個可以有效增加作業系統可用性的方

法。
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Abstract 

 The reliability of an operating system is important because all applications must 

depend on the functionality it provides. However, design defects of device drivers 

violate the reliability of an operating system. It is showed in [18] that the error rates of 

device drivers can be three to seven times higher than the rest of the kernel. In this 

paper, we propose a framework named nDriver via which a driver administrator can 

use multiple implementations to increase the driver robustness. In case there is a fault 

happening in a driver, nDriver can dynamically replace the faulty implementation 

rather than let it crash the system. In addition, nDriver must fix the system state and 

recover the lost system requests. 

 We implement nDriver in the Linux operating system. According to the 

evaluation, the overhead of nDriver is no more than 5% and the time it takes to 

recover is very small. This indicates nDriver is a feasible mechanism to increase the 

availability of operating systems. 
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1. Introduction 

With the high reliance of people on computer systems, the availability of a 

system is becoming more and more important. For a growing number of systems, high 

availability is no longer optional but mandatory. According to the previous research, 

[6] shows that 60-90% of current computer faults are software errors instead of 

hardware faults and [18] shows that hardware failure doesn’t take a large part of 

service failure. Moreover, hardware faults can generally be masked through 

component redundancy [5][10][11][19]. Therefore, software plays a critical role in 

system availability. 

Since most of the software relies on the underlying operating system, a reliability 

of a operating system is a key factor to a highly availability computer system. 

Unfortunately, due to the high complexity of an operating system, it’s nearly 

impossible to make it error-free. 

The most error-prone part of an operating system is device drivers. It is showed 

that the error rates of device drivers can be three to seven times higher than the rest of 

the kernel [4][13]. The reason is that most of the drivers are developed by the 

engineers of the hardware device vendors, who are not as familiar with kernel 

programming as the original kernel developers are. 

Since a device driver is a part of the kernel, a fault happening in a driver is a 

kernel fault, and it results in a kernel panic or a system hang in many operating 

systems including Linux. This causes the services running on it become unavailable.  

However, a faulty driver usually doesn’t pollute the other subsystems in the 

kernel. Therefore, it is possible to recover the system from the driver faults, and hence 

allow the services running on it remain available. In this paper, we propose a 

mechanism to survive from the software faults in the drivers. According to the 
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previous research [4], blocking and exception faults are responsible for the largest 

portions of faults happening in the kernel. Specifically, blocking faults account for 

28.5% of the faults observed in the Linux kernel (version 2.4.1), while exception 

faults account for 41%. The former lead to kernel hangs, while the latter cause kernel 

panics. Therefore, we concentrate on detecting and recovering from these faults. 

In this thesis, we propose a framework, named nDriver, for surviving from these 

software faults. Based on the design diversity concept [8][21], we use multiple driver 

implementations for a device. If the current driver fails, nDriver can detect it and 

replace the faulty driver with another one. 

Multiple driver implementations can be obtained in the following ways. First, 

there may exist patches for a driver implementation. By downloading the patches and 

applying them to the driver implementation, another implementation is produced. 

Second, there may be multiple driver versions for the same device. Because the newer 

release may be less stable, we can consider the older release as the backup 

implementation. Third, there may exist a generic but regressive driver for the device. 

For example, the ne2000 NIC device driver can be used to drive many NICs of 

different vendors. It is worth to note that, the framework can improve operating 

system availability even when there is only one driver implementation for each device. 

By swapping the driver, when a fault occurs in it, with a refresh instance of the same 

implementation, the problem of transient faults and driver aging [3] can be solved. 

To achieve the goal of seamless driver swapping, the following requirements 

must be satisfied. 

 Non-stop services: The services or applications running on top of the system should 

keep on running without interruption even when a driver fails. 

 Automatic fault detection: Blocking and exception faults should be detected 

automatically, without the help of the system administrators. 
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 Zero-loss system requests: Generally, the removing of a driver causes the loss of its 

internal data, including the requests issued to it. However, to achieve the goal of 

seamless driver swapping, all the uncompleted requests should be kept and then be 

re-issued to the new implementation. 

 Kernel state maintenance: A driver may have made changes to the global kernel 

state (e.g., it may have requests some kernel resources). Therefore, the kernel state 

should be recovered when the faulty driver is removed. Moreover, all the external 

references to the original driver should be redirected to the new one. Otherwise, the 

kernel will be likely to be crashed due to these dangling references. 

In this thesis, we describe the design and implementation of the nDriver 

framework. Specifically, we present how the nDriver framework satisfies the above 

requirements. The framework is implemented in the Linux kernel. Currently, it can 

survive from faults happening in NIC (Network Interface Card) and NBD (network 

block device) drivers. However, we consider the mechanisms can be adapted to other 

module-based device drivers with a little modification. According to the experimental 

results, nDriver can currently recover a NIC driver fault with only ??% performance 

loss under a popular web benchmark, Webstone. Therefore, it is feasible to be applied. 

The rest of this thesis is organized as follows. In Chapter 2 we describe our 

design issues and the flow of the device driver recovery, which is followed by the 

description of the implementation details in Chapter 3. Chapter 4 presents the 

experimental results. Chapter 5 shows the related work. And finally, we conclude in 

Chapter 6. 

 

2. Design 

In this section, we will elaborate on what we do to survive from driver faults. 
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When a fault occurring in the driver is detected, the recovery mechanism will be 

triggered. Figure 1 shows the overview of the recovery process. Briefly speaking, we 

remove the faulty driver, undo the changes caused by it, insert the new driver, 

reconfigure it, and retry the original function in the new driver. 

 

 
Figure 1. Overview of the Recovery Process 
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Figure 2. Architecture Overview 

 

Figure 2 illustrates the components of the nDriver. If a fault occurs, it will be 

detected by the fault detector. Since the faulty driver may have changed the system 

state, we should remove the faulty driver and undo the changes. This is performed by 

the undo manager which records all the kernel functions invoked by the driver and 

undoes them when the driver is removed. In addition, it is responsible for inserting the 

new driver and asking the configuration manager to reconfigure it. After the 

reconfiguration, all external references to the removed driver must be redirected to the 

new driver to avoid the problem of dangling references. 

In the following sections, we will describe the design of the nDriver framework. 

First, we will present the fault detection approaches, which is followed by the 

description of how to keep the system state correct and consistent after a fault occurs. 

Then, we present the approach for solving the problem of dangling references. Finally, 

we describe the details of the recovery process. 
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2.1 Fault Detection 

The fault detector is responsible for detecting exception and blocking faults. An 

exception fault occurs due to the reasons such as accessing the NULL page (i.e., the 

first page of the physical address space), dividing an operand by zero, or executing an 

invalid opcode. To detect such faults, we replace the kernel exception handlers (such 

as page-fault and the divide-by-zero handlers) with our own ones. Therefore, the 

raising of a CPU exception will trigger our exception handler, which will then invoke 

the undo manager to recover the fault. 

 Besides exception faults, a faulty driver may cause system hangs (i.e., blocking 

fault), which make the system become responseless. Blocking faults usually result 

from careless driver design such as entering an infinite loop or trying to get the 

spinlock which is grabbed by another blocked kernel thread. To recover from such 

faults, we use a timeout-based approach. Before executing a driver function, we setup 

a software timer in order to measure the time it takes to execute the driver function. If 

the driver function occupies the CPU for a long time, it will be regarded as a faulty 

function. And the time-out handler will be triggered to recover from the fault. The 

accounting of the execution time is through timer interrupts, which happen every 10 

ms. Although the time-out based approach is straightforward, two issues must be 

addressed to make it an effective technique for preventing driver hangs. 

The first issue is how to determine the time-out value of a driver function. 

Because the execution time of different driver functions varies, we can’t have a fixed 

time-out value for all the driver functions. Instead, the time-out value of a driver 

function should be set to its average execution time plus a guard time. Note that the 

time-out values are not required to be highly accurate. The 10-ms granularity is 

accurate enough for detecting blocking faults. 
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Another issue is how to prevent the software timer approach becoming useless if 

the driver function disables interrupts in their code. This is possible since many 

existing drivers disable interrupts for synchronization. To solve this problem, we 

replace the original interrupt-disabling/enabling functions, namely cli() and sti(), and 

the timer interrupt handler. Instead of disabling the interrupt pin of the CPU, the new 

cli() masks all the interrupts except for the timer interrupt. In this way, our software 

timer still works after calling cli(). Note that our timer interrupt handler will not 

invoke the original timer-interrupt handler when the interrupts are disabled. This 

preserves the interrupt-disabled semantic. 

 

2.2 State Maintenance 

We divide the system state that the driver may modify during its execution into 

driver state, kernel state, and driver requests. The driver state is the local state of the 

device driver. The kernel state represents the global kernel state that may be changed 

by the driver. And the driver requests stands for the requests that are currently 

processed by the driver and the corresponding device. Because a fault may happen 

anytime during the execution of the driver code, we must keep the state correct and 

consistent after recovery. During the recovery period, we undo the changes the driver 

made to the kernel state. For the driver state, we decide to discard it and rebuild it 

from scratch. And, for the driver requests, we record them so that they can be 

re-issued to the new driver implementation after the recovery. 

Generally, a driver changes the kernel state only through a few functions 

provided by the kernel. Such functions may request kernel-managed resources, 

register a new driver, or exchange information with the kernel. For example, the 

driver may request IRQs and I/O regions to the kernel. In order to undo the changes, 

we intercept the kernel functions called from the driver (i.e., callout functions), and 
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record them in an action list. Each callout function in the list has a corresponding 

undo routine, which will be invoked during the recovery process, for undoing the 

changes caused by the function. 

It is worth noting that a device driver may invoke only a small subset of 

kernel-provided functions. This is because the main purpose of a device driver is just 

to drive the device. For example, a driver usually doesn't perform IPC operations, 

which are difficult to rollback1. Thus, we focus on the set of functions which may be 

invoked by the driver, and implement their undo functions manually. 

As we mentioned above, we discard the driver state and rebuild it from scratch 

during the recovery period. The reasons are as follows. First, the driver state is 

polluted after a fault emerged in the driver code. Second, different driver 

implementations may use different data structures and thus the old driver state cannot 

directly be used by the new driver implementation. Therefore, the new driver should 

implement a state transfer function if it wants to reuse the old state. This implies that 

all the driver implementations are needed to be modified, which is impossible. 

Moreover, it’s impractical to implement a state transfer function for each pair of 

driver implementation. 

For the driver requests, we backup all the unfinished requests in case they will be 

lost when the driver fails. Each time the kernel sends a request to the driver, we make 

a copy of the request and insert the copy to a per-driver unfinished request list. When 

the request is finished, the request copy will be removed from the list. If a driver fails, 

all the requests in the list will be re-issued to the new driver again. 

 

                                                 
1 It is not enough to rollback an IPC operation by canceling it or undoing it. The 
receiver may be triggered by the sent message to take some corresponding actions, 
which are usually difficult to rollback. 
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2.3 External References 

After replacing the faulty driver with the new one, some external references 

(such as data or function pointers) still point to the data or functions of the original 

faulty driver. Therefore, we must update all the external references to point to the new 

implementation. Figure 3 illustrates an example. The structure net_device is used to 

represent an NIC device driver in Linux. During recovery process, for instance, the 

faulty driver Faulty is removed and the new driver New is inserted and initialized. All 

external references to Faulty become dangling pointers. 

Soules et al. [23] proposed two approaches (i.e., backward reference and 

indirection) as shown in Figure 3(a) and 3(b) to solve this problem. In brief, the 

backward reference approach keeps track of all external references to Faulty, and then 

updates all of them to point to New. The drawback of this approach is that the 

operating system must be modified to record all the external references. The 

indirection approach, as shown in Figure 3(b), lets all the external references point to 

a single indirection pointer. If the target is changed due to the driver swapping, only 

the indirection pointer needs to be updated. This approach also requires modification 

to the existing operating system code since the data type of all the external references 

must be modified (e.g., from net_device* to net_device**). Besides, it needs an extra 

deferencing to access the target. 

In nDriver, we take another approach to avoid modifying the existing operating 

system code. Figure 3(c) shows the approach. We add a placeholder for containing the 

target data. The placeholder is of the same type with the target data, and all the 

external references point to the placeholder. In the figure, the placeholder is initialized 

by copying the content of Faulty to it. During the recovery process, Faulty is removed 

and the placeholder is updated by copying the content of New to it. In this way, 

neither the maintaining of the backward references nor the modification to the data 
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type of the external references is needed. 

 
Figure 3. External Reference Redirection 

 

2.4 Detailed Process of Recovery 
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 Before executing a driver function, we initialize the fault detector as well as save 

the current system context. 

During the execution of the function, our recovery mechanism will be triggered 

if an exception fault or a blocking fault is detected. Figure 4 shows the detailed 

recovery process. First, we undo the changes the driver has made to the global kernel 

state. Specifically, we call the undo routine of each entry in the action list to undo the 

changes. Second, we remove the code and the local state of the faulty driver. Third, 

we insert the new driver into the kernel and reset the hardware. Fourth, the 

previously-issued configuration operations are issued again to the new driver in order 

to rebuild the driver state. This is achievable since all the configuration operations 

previously issued to the driver were intercepted and logged by the configuration 

manager. Fifth, we update the external references to point to the new driver by 

copying the content of the new driver state to the corresponding placeholder. Finally, 

we restore the system context and retry the originally-failed function in the new 

driver. 

It is worth to note that the new driver may correspond to the same 

implementation with the old one. In this case, the new driver is just a fresh instance of 

that implementation. This kind of driver swapping can solve the problem of transient 

errors and driver aging [3]. The latter problem can be solved because we discard and 

rebuild the driver state from scratch. If there are multiple driver implementations for 

the device, the system can choose another implementation if one fails. This allows the 

system to survive from not only the above two kinds of faults but also the faults 

caused by driver bugs. 
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Figure 4. Detailed Process of Recovery 

 

3. Implementation 

 The nDriver framework is implemented as a kernel module in Linux. Based on 

the framework, we can currently recover the Ethernet driver and network block device 

driver faults. In the following, we will describe the implementation details of the 

nDriver. 

 

3.1 Fault Detection 

3.1.1 Guard Wrapper 

Since we regard driver functions as unreliable, we put a guard wrapper on each 
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function exported by the driver to prevent a driver fault from crashing or halting the 

kernel. The wrapper takes the following actions. 

First, it sets up the fault detection routines. For exception faults, it substitutes our 

exception handlers with the original exception handlers, such as the divided-by-zero 

handler or the page-fault handler. For blocking faults, it initiates a software timer to 

measure time it takes to execute the wrapped function. 

Second, the wrapper saves the system context, which is followed by the 

invocation of the wrapped driver function. If an exception fault happens during the 

execution of the wrapped function, our exception handler will trigger the recovery 

process. The recovery process will restore the system context, remove the faulty 

driver, insert the new driver, and retry the function in the new implementation. 

Similarly, if the wrapped function doesn’t return before the timer expires, the timeout 

handler will also trigger the recovery process. If the function returns without faults, 

the wrapper restores the exception handlers with the original ones and stops the timer. 

 

3.1.2 Software Timer 

 As we mentioned in Section 2.1, we use an interrupt-based timer to measure the 

time it takes to execute a driver function. If the timer expires, the function is regarded 

as failure and the recovery process is triggered.  

Before we start to execute the driver function, we initialize a counter to its 

time-out value. Each time the timer interrupt raises, our software timer decreases the 

counter by 1. If the counter reaches 0, our software timer will trigger the time-out 

handler.  

 Since a driver function may be preempted by other interrupt handlers except for 

the timer interrupt handler, we should stop counting during the time the function is 

preempted. However, we don’t integrate this technique into nDriver. This is because, 
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according to the experimental result, the time used by ISRs and bottom halves are 

quite small compared to the 10-ms timer interrupt interval. Therefore, they don’t have 

a visible impact on the performance of fault detection on our machines. 

 

3.2 Undoing the Kernel State 

As we mentioned in Section 2.2, we intercept all the callout functions in order to 

record the changes to the global kernel state. The interception is done by linking the 

object code of the driver module with the interception wrappers before the driver is 

installed into the kernel. After the linking, all the references to the callout functions 

are redirected to the corresponding interception wrappers. 

We use an action list to record the invocations of the callout functions. Figure 5 

shows an example of the action list. When an interception wrapper is invoked, we 

allocate an entry to record the function identifier, the values of the arguments, and the 

return value. Then, we add this entry to the action list. Keeping the arguments and the 

return value is necessary to undo since they are needed by the undo routine. For 

example, the arguments of request_irq() (i.e., irq and dev_id) must be used as 

arguments of free_irq(), the undo routine of the request_irq(), to release the allocated 

IRQ resources. Once the driver invokes an undo routine by itself, the interception 

wrapper will delete the corresponding entry in the action list. For instance, if a driver 

calls free_irq(), the interception wrapper will remove the entry for request_irq(). 

During the recovery process, we remove the entries of the action list in the reverse 

order of their insertion time. Once an entry is removed, the corresponding undo 

routine is invoked to undo the kernel state change. 
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Figure 5. the Structure of the Action List 

 

3.2.1 Preventing Lost of Driver Requests 

 In this subsection, we describe how the nDriver keeps track of the unfinished 

driver requests in order to re-issue them to the new implementation during the 

recovery process. We take the driver for Accton EN1207F Series PCI Fast Ethernet 

Adapter as an example of illustration. 

Figure 6 illustrates how the driver sends and receives packets. For the sending 

side, the kernel dequeues a packet from the send queue (i.e., qdisc in Figure 6) of the 

driver and hands the packet to the driver. The job of the driver is to insert the packet 

into its Tx ring buffer and driving the NIC to transmit the packet. For the receiving 

side, the device receives a packet from the network, puts the packet in its Rx ring 

buffer, and raises an interrupt to notify the driver. The driver then inserts the packet 

into the backlog queue for layer-3 processing. Note that the Tx and Rx ring buffers are 

part of the local driver state. 

 

 If the driver crashes suddenly, packets in the ring buffers will be lost since we 

discard the local driver state. To avoid this problem, we maintain an unfinished 

request list when the kernel orders the driver to send a packet, we make a copy of the 

packet and add the copy to the list. When the NIC raises an interrupt to notify that the 

packet has been sent, we remove the packet from the list. Therefore, after the driver 

swapping, the packets in the list represent the lost packets and can be re-issued again 

 15



to the new driver.  

However, this approach cannot be used on the receiving side. The packets in the Rx 

ring buffer cannot be recovered after the driver swapping. This is because packets are 

inserted into the Rx ring buffer via the DMA hardware. Without specific hardware 

support, it is impossible to copy a packet before it enters into the Rx ring buffer. 

Fortunately, packet lost is not a rarely-happened problem. It can also result from 

network congestion or the RX ring buffer overrun. (And, it can be resolved by reliable 

network protocols such as TCP.) Therefore, we consider that losing a small number of 

Rx packets due to the NIC driver failure is acceptable. 
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Figure 6. The Data Flow of NIC Device Driver 

 

 The Rx data lost problem will not happen for block device drivers. This is 

because all the read/write operations of a block device are issued by the kernel, 

instead of the hardware. Therefore, all the requests sent to a block device driver can 

be intercepted for maintaining the unfinished request list. For character devices, the 

Rx data may be lost because we can’t locate the buffer without digging into the driver 

code. Although some Rx data may be lost, nDriver can guarantee non-stop services 

instead of letting the fault driver crash the system. 

3.3 Recovery Flow Implementation 
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In this subsection, we describe the details about the process of swapping a 

module-based NIC device driver in Linux. 

Before executing the wrapped driver function, the guard wrapper sets up the fault 

detection routines and saves the system context. 

As we mentioned before, if a fault is detected during the execution of the driver 

function, the undo manager will be invoked. The first step of the undo manager is to 

undo the kernel state changes caused by the driver and to remove the faulty driver 

module. It calls the sys_delete_module() function to remove the code and data of the 

faulty driver module. In addition, it invokes the undo routine for each entry in the 

action list to undo the kernel state changes and release the resources held by the faulty 

driver. Although each driver provides functions (i.e. cleanup() and close()) for 

releasing its resources, we consider that it is unsafe to execute these functions after a 

fault has happened in that driver.  

It’s worth to note that undoing the kernel changes may result in some events to 

be sent to other kernel subsystems in order to notify that the status of the driver has 

been changed. After the subsystems receive the events, they will take some 

corresponding actions. For examples, if we remove a network device driver, any 

routing table entries depending on it will be deleted. This situation should be 

prevented since we don’t want the rest of the kernel be aware of the driver swapping. 

Therefore, we have to block the events. 

The second step of the undo manager is to install the code and data of the new 

driver module into the kernel and call the init() function of that module. The init() 

function usually resets the hardware as well as causes some initialization events to be 

sent to other subsystems. Similar to what we have described above, we also have to 

block these events. 

After the new driver module is installed, the configuration manager is asked to 
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reconfigure the driver. Since it has logged the configuration operations performed on 

the faulty driver, the reconfiguration can simply be done by performing these 

operations again to the new driver. After the reconfiguration, the undo manager 

redirects the external references to the new driver module, and restores the system 

context. Finally, the undo manager retries the previously-failed function. 

We believe that all the mechanisms described above can be adapted to other 

types of device drivers (e.g., block device drivers) with little modification. The 

reasons are as follows. First, each driver type provides a standard interface to the 

kernel, on which we can place the fault detectors. Second, the mechanism for undoing 

the kernel state, rebuilding the driver state, and preventing the request lost are all 

independent to the types of the drivers. 

 

4. Performance Evaluation 

In this chapter, we test the functionality of nDriver and measure its performance 

overhead. The experiments aim to show that nDriver can make the system survive 

from driver faults with a little performance degradation. The testbed consists of one 

server and two clients. All the machines are connected to a 1 Gigabit Ethernet switch. 

Each machine is equipped with Pentium 4 2.0GHz CPU, 256MB DDRAM. The 

operating system is Linux (kernel version 2.4.20-8). 

 

4.1 Functionality 

In this experiment, we initialize a TCP connection from a client to get a file in 

the server. During the transfer, we use the tcpdump utility to intercept all packets in 

order to record their ACK sequence number. The ACK sequence numbers means the 

number of bytes which have been received by the client. We repeat the above 
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procedure but insert a fault in the NIC device driver. Figure 7 shows the results. The 

connection named No Fault means there is no fault happening during the connection. 

In the two other connections, there are an exception fault and a blocking fault 

individually. We can see that nDriver can effectively detect the inserted fault and 

recover from it without stopping the ongoing connection. After recovery, the slope of 

the survived connections remains almost the same. It means that the recovery process 

doesn’t incur much degradation to the transfer speed. 
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Figure 7. the Functionality of nDriver 

 

4.2 Performance Overhead 

We use two benchmarks, Netperf [12] and Webstone [1], to measure the 

overhead of nDriver. 

 

4.2.1 Micro Benchmark: Netperf 

We use the utility, Netperf, to measure the network throughput and CPU 

utilization of a machine with nDriver in order to compare it with a machine without 

nDriver. During each experiment, it will send as many fixed-size messages as possible. 
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Figure 8 shows the network throughput of each experiment. When the message size is 

equal to or more than 16 bytes, the network throughput is limited by the network 

maximum bandwidth (i.e. 100Mbps) and there is no visible network throughput 

degradation. But when the message size is under 16 bytes, the average network 

throughput degradation is 5%. Besides, Figure 9 shows the CPU utilization of each 

experiment. When the message size is under 16 bytes, the CPU utilization of both 

conditions is 100%. When the message size is under 16 bytes, the average overhead of 

nDriver is between 3% and 5%. The overhead mainly results from the maintenance of 

the action list and the software timer.  
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Figure 8. Throughput of a Machine with and without nDriver 
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Figure 9. CPU Utilization of a Machine with and without nDriver 

 

4.2.2 Macro Benchmark: Webstone 

 In this subsection, we want to measure the overhead of nDriver under realistic 

workload. We install the Apache (version 2.0.40) Http server in the server machine. 

The two client machines are used to simulate the web clients. The workload is gotten 

from the Webstone benchmark, and each round lasts for 10 minutes. We measure the 

throughput under the two conditions: the server without nDriver and the server with 

nDriver. Figure 10 shows the throughput results. The x-axis represents the number of 

web clients. The more web clients, the more Http requests the web server processes. 

The y-axis represents the server throughput. From the figure we can see that the 

performance degradation is between 2.0%~3.5%. In addition, Figure 11 shows the 

average response time under the same experiments. The y-axis represents the average 

response time to access a web page. The average response time for the nDriver is 

higher than that for the original server without the nDriver by 2% to 3%. 
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Figure 10. Throughput of the Http Server 
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Figure 11. Response Time to Access Web Pages 

 

4.3 Recovery time 

In this subsection, we measure the time required by different parts of the 

recovery process. We manually insert a fault triggering the recovery process into the 

driver. As shown in figure 12, the recovery time consists of the following components. 

Tu is the time that the undo manager spends in invoking the undo routine for each 
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entry in the action list. Ts is the time that the undo manager spends in swapping the 

drivers. Tc is the time that the configuration manager spends in configuring the new 

driver. Te is the time spent in updating the external references. Tr is the time spent in 

restoring system context. 

 
Figure 12. Different Parts of the Recovery Time 

 

 Table 1 shows the results, which are measured by using the Pentium Timestamp 

Counter [22]. From this table we can see that the total recovery time is very small. 

 

Tu (us) Ts (us) Tc (us) Te (us) Tr (us) Ttotal (us) 

31.95 145.47 290.33 0.95 0.0092 468.71 

Table 1. The Results of Different Parts of the Recovery Time 
 
4.4 Per-Request Overhead 
 In this subsection, we measure the extra time the nDriver takes to process a 
request. (i.e., sending or receiving a packet) It consists of three parts: guard wrapper, 
maintaining the action list, and maintaining the unfinished list. The job of guard 
wrapper is to setup/stop fault detection and to save system context. Table 2 shows the 
results, which are also measured by using the Pentium Timestamp Counter. From the 
figure we can see that the overhead of guard wrapper is large compared to the two 
others because of the system context checkpointing. Besides, the total per-request 
overhead is small. 
 

Guard 

Wrapper (us) 

Action 

List (us) 

Unfinished 

List (us) 

Total (us) 

1.97639 0.34242 0.41712 2.73593 

Table 2. The Results of Per-Request Overhead 
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5. Related Work 

 The related work falls into 3 categories: 1. improving driver quality, 2. dynamic 

replacement of kernel components, 3. fault tolerance in operating systems.  

 

5.1 Improving the Driver Quality 

 Some techniques were proposed to help the driver developers to improve the 

design and reduce the bugs when developing drivers. 

Microsoft and Intel [17] [9] provided guidelines for designing, implementing 

drivers for high availability systems. These guidelines cover the following aspects. 

First, they presented how to have good design and coding practices. Second, they 

mentioned that a device driver should provide statistics reporting, diagnosis tests, and 

event logging. Third, the way to perform lots of testing on a device driver was 

presented. 

In order to improve the robustness of a driver, Lowell [16] proposed a language 

named Devil to develop device driver code. The developer writes the driver 

specification in Devil, which is checked by the Devil compiler. After the checking, the 

compiler automatically generates low-level code, which is more error-prone, for 

driving the device hardware. 

Microsoft suggests that hardware vendors should use Driver Verifier [X] to test 

their device drivers before releasing them. Besides, it can be used to detect the driver 

faults. Driver Verifier contains the following testing: simulating low resource 

conditions, verification of I/O, DMA verification, deadlock detection, and the like. 

However, it doesn’t consider the problem how to recover from a driver fault. 

 

5.2 Dynamic Replacement of Kernel Components 
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In Linux, drivers are usually implemented as modules [7]. And, dynamic 

module-loading can be used as a basic mechanism for hot-swapping module-based 

device drivers. However, it is not enough for recovery from a faulty driver. The 

reasons are as follows. First, a module cannot be removed unless its usage count 

becomes zero. Linux keeps a usage count for each module to tell the current number 

of users using the module. When a fault happens in the driver, the driver module is 

still in use and cannot be removed directly. Second, the goal of seamless driver 

swapping cannot be achieved by the dynamic module-loading mechanism since it 

doesn’t consider undoing the kernel state changes, reconfiguring the new driver, and 

solving the problem of dangling references. 

These software bugs may be avoided by design diversity to some extent. Design 

diversity [8][21] uses multiple independent implementations of the same software to 

prevent software errors from crashing the whole system. The basic idea is that these 

functional-equivalent software implementations may not have the same software bugs. 

Therefore, the system may survive from software bugs while retrying different 

implementations. 

Specifically, recovery block [21] uses a set of alternative implementations for the 

same application to improve the availability. If an alternative fails, another one will be 

tried. The nDriver framework realizes the concept of recovery block at the device 

driver layer. However, it is much more challenging to achieve the goal of seamless 

alternative swapping in the kernel code. Specifically, we have to address the issues 

that were not mentioned by the authors such as the undoing of the global kernel state 

changes made by the driver, the keeping of the driver requests, and the updating of the 

external references. 

Soules [23] proposed a mechanism to replace an operating system component at 

run time. Before a component can be replaced, it has to be in the quiescent state (i.e., 
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all active use of the component has concluded). When the replacement happens, the 

old component transfers its state to the new one. Finally, the external references are 

redirected to the new component. Basically, the mechanism is not appropriate for 

dealing with faults. This is because the component may not always in the quiescent 

state when a fault happens. Moreover, the state transferring approach is not suitable 

for drivers. If the approach is taken, we have to implement a state transferring 

function for each pair of driver implementations, which requires a large effort. 

 

5.3 Fault Tolerance in Operating Systems 

Process pair is used to implement fault-tolerant processes. There are two 

processes - primary and backup processes - for the same application. Normally, only 

the primary process provides services. If the primary process fails, the backup process 

takes over its services. However, the complexity synchronization between the two 

processes complicates the implementation. Moreover, the synchronization increases 

the runtime overhead. 

The goal of High Availability Linux is to provide a high-availability clustering 

solution for Linux. It mainly provides two software packages, Hearbeat and Fake. 

Hearbeat is used to detect if hosts are available or not. A heartbeat is sent between 

hosts periodically. If a heartbeat isn't received for a time, the host that doesn't send the 

heartbeat fails. Fake is used to take over the IP address of the failed host. Hosts in a 

cluster can use Heartbeat to monitor the availability of hosts that provide services. 

When hosts that provide services fail, others can take over the services by using Fake. 

Swift [24] introduced an approach to enhance operating system reliability by 

isolating the kernel from extensions (including drivers) failures. It executes each 

extension in a lightweight kernel protection domain to prevent it from corrupting the 

kernel. In addition, it keeps track of the kernel resources used by the extension to 
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perform automatic clean-up during recovery. However, it doesn't try to recover the 

extension. As a result, the applications or services relying on the driver extension will 

become unavailable. In nDriver, we take a more aggressive approach. The extension 

can be recovered by either a refresh instance of the same implementation or another 

implementation. This improves the system availability further. 

 

5.4 Others 

Autonomic Computing (Kephart and Chess, 2003) is proposed by IBM, which 

enables systems to manage themselves according to the administrator’s goals. The 

self-managing means self-configuring, self-healing, self-protecting, and 

self-optimizing. Especially, the self-healing techniques automatically detect, diagnose, 

and repair software and hardware problems. Some efforts related to the self-healing 

are SRIRAM (Verma et al., 2003) which is a method that facilitates instantiating 

mirroring and replication of services in a network of servers, K42 (Appavoo et al., 

2003) which allows software codes including system monitoring and diagnosis 

functions to be inserted and removed dynamically without shutting down the running 

system, and Dynamic CPU Sparing (Jann et al., 2003) that predicts the defective of a 

CPU and replace it with a spare one. 

Recovery-Oriented Computing (Patterson et al., 2002) proposed by U. C. 

Berkeley and Stanford University is a related effort to autonomic computing. It 

proposes new techniques to deal with hardware faults, software bugs, and operator 

errors. These techniques include Pinpoint (Chen et al., 2002) which finds the root 

cause of a system failure in an efficient way, System Undo (Brown and Patterson, 

2003) which can perform system recovery from operator errors, and Recursive Restart 

(Candea et al., 2002) which reduces the service downtime. In addition, they also 

proposed on-line fault injection and system diagnosis to improve the robustness of the 

 28



system. 

Checkpointing [15][2][25][20][26] is a common technique for system recovery. 

It saves system state periodically or before entering critical regions. If a system fails, 

it can be recovered by restoring the last checkpointed state. The major problem of 

checkpointing is that it can not make the system survive from faults caused by driver 

bugs since it restores the aged state and re-executes the same code after recovery. 

Moreover, many checkpointing implementations incur overheads due to the vast 

amounts of state need to be saved. 

Lakamraju [14] introduced a low-overhead fault tolerance technique to recover 

from only network processor hangs in Myrinet. When the network processor hangs, it 

resets the NIC and rebuilds the hardware state from scratch to avoid duplicate and lost 

messages. The limitation of this work is that it only focuses on hardware failures 

instead of software errors. The former is easier to handle since it doesn’t consider the 

complex software state maintenance problem such as undoing the kernel state changes, 

reconfiguring the new driver, and solving the problem of dangling references. 

6. Conclusion 

 In this thesis, we propose the nDriver framework, which uses multiple 

implementations of a device driver to survive from driver faults. It can detect two 

major types of driver faults, the exception and blocking faults. With the help of 

nDriver, driver faults will not always result in kernel panics or system hangs. Instead, 

if it a fault is detected, nDriver substitutes another driver implementation with the 

faulty one to make the system continue working. In order to achieve the goal of 

seamless driver swapping, nDriver undoes the kernel state changes made by the faulty 

driver, keeps the unfinished driver requests, and redirects the external references. In 

addition, nDriver blocks the driver removing and installation events so that the other 
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kernel subsystems are not aware of the driver swapping. 

 The major contribution of our work is that nDriver realizes the concept of 

recovery blocks at the device driver layer. It achieves the goal of seamless driver 

swapping. However, it improves operating system availability without modifying the 

existing operating system or driver codes. 

We implement nDriver as a kernel module in Linux. Currently, it can recover 

from faults in network and block device drivers. According to the performance 

evaluation, the overhead of nDriver is no more than 5% and the recovery time is very 

small. This indicates that nDriver is an efficient mechanism to increase the availability 

of operating systems. 
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