
國 立 交 通 大 學

資訊工程學系

碩 士 論 文

動態置換驅動程式以增進作業系統之可用性

nDriver: Online Driver Swapping for Increasing

Operating System Availability

研 究 生：江英杰

指導教授：張瑞川 教授

 林正中 副教授

中 華 民 國 九 十 三 年 六 月

 i

動態置換驅動程式以增進作業系統之可用性

nDriver: Online Driver Swapping for Increasing

Operating System Availability

研究生：江英杰 Student：Ying-Jay Chiang

指導教授：張瑞川教授 Advisor：Prof. Ruei-Chuan Chang

指導教授：林正中副教授 Advisor: Prof. Cheng-Chung Lin

國 立 交 通 大 學

資 訊 工 程 系

碩 士 論 文

A Thesis

Submitted to Institute of
Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
In

Computer Science and Information Engineering
June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 ii

動態置換驅動程式以增進作業系統之可用性

研究生：江英杰 指導教授：張瑞川教授

 指導教授：林正中副教授

國立交通大學資訊工程所

論 文 摘 要

近年來，作業系統的可靠度逐漸受到重視，因為一些需要高可用性的服務都

必須依賴作業系統所提供的功能。然而，驅動程式設計上的缺陷卻容易破壞作業

系統的穩定性。研究指出，在作業系統的原始碼中，驅動程式的錯誤比例是其他

非驅動部分的 3倍至 7倍。因此，我們提出了一個架構，驅動程式設計團隊可以

提供多份不同實做方式的驅動程式，透過此架構來避免驅動程式的錯誤設計讓整

個系統無法運作。如果驅動程式因設計缺陷而發生錯誤後，我們的架構就會將發

生錯誤的驅動程式移除，再使用另外一份的驅動程式。除此之外，我們的架構必

須修補系統的狀態以及恢復遺失的系統要求。

我們將這個架構實做在目前相當流行的 Linux 作業系統來驗證我們的方

法。根據實驗的結果，我們架構對效能所造成的額外負擔不超過百分之五，且整

個修復的時間非常短。証明我們的架構是個可以有效增加作業系統可用性的方

法。

 i

nDriver: Online Driver Swapping for Increasing

Operating System Availability

Student: Ying-Jay Chiang Advisor: Prof. Ruei-Chuan Chang

 Advisor: Prof. Cheng-Chung Lin

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

 The reliability of an operating system is important because all applications must

depend on the functionality it provides. However, design defects of device drivers

violate the reliability of an operating system. It is showed in [18] that the error rates of

device drivers can be three to seven times higher than the rest of the kernel. In this

paper, we propose a framework named nDriver via which a driver administrator can

use multiple implementations to increase the driver robustness. In case there is a fault

happening in a driver, nDriver can dynamically replace the faulty implementation

rather than let it crash the system. In addition, nDriver must fix the system state and

recover the lost system requests.

 We implement nDriver in the Linux operating system. According to the

evaluation, the overhead of nDriver is no more than 5% and the time it takes to

recover is very small. This indicates nDriver is a feasible mechanism to increase the

availability of operating systems.

Keywords: Recovery, Device Driver, Design Diversity, Reconfiguration

 ii

Acknowledgement
I deeply appreciate my respected advisor, Prof. Ruei-Chang, for teaching me in

doing research. A special thank to Da-Wei Chang for giving me many advices on

revising this thesis. And I also want to thank all the members of the Computer System

Lab. for their kindness to help me solve my problems.

Besides, I am grateful to my family for their encouragement and endless love.

Finally, I want to thank all my friends for all the joyous things that inspire my life.

Ying-Jay Chiang

Department of Computer Science and Information Engineering

Nation Chiao-Tung University

2004/6

 iii

Index

論 文 摘 要 ... I

ABSTRACT...II

ACKNOWLEDGEMENT.. III

INDEX.. IV

LIST OF FIGURES .. VI

LIST OF TABLES..VII

1. INTRODUCTION..1

2. DESIGN ..3

2.1 FAULT DETECTION...6
2.2 STATE MAINTENANCE ...7
2.3 EXTERNAL REFERENCES ...9
2.4 DETAILED PROCESS OF RECOVERY ..10

3. IMPLEMENTATION..12

3.1 FAULT DETECTION...12
3.1.1 Guard Wrapper...12
3.1.2 Software Timer ...13

3.2 UNDOING THE KERNEL STATE...14
3.2.1 Preventing Lost of Driver Requests ...15

3.3 RECOVERY FLOW IMPLEMENTATION ...17

4. PERFORMANCE EVALUATION...19

4.1 FUNCTIONALITY ..19
4.2 PERFORMANCE OVERHEAD ..20

4.2.1 Micro Benchmark: Netperf ...20
4.2.2 Macro Benchmark: Webstone ...22

4.3 RECOVERY TIME ..23
4.4 PER-REQUEST OVERHEAD ..24

5. RELATED WORK ..25

5.1 IMPROVING THE DRIVER QUALITY ...25
5.2 DYNAMIC REPLACEMENT OF KERNEL COMPONENTS......................................25
5.3 FAULT TOLERANCE IN OPERATING SYSTEMS ...27
5.4 OTHERS ..28

 iv

6. CONCLUSION ..29

REFERENCES...31

 v

List of Figures
FIGURE 1. OVERVIEW OF THE RECOVERY PROCESS ...4
FIGURE 2. ARCHITECTURE OVERVIEW ..5
FIGURE 3. EXTERNAL REFERENCE REDIRECTION ..10
FIGURE 4. DETAILED PROCESS OF RECOVERY ...12
FIGURE 5. THE STRUCTURE OF THE ACTION LIST ..15
FIGURE 6. THE DATA FLOW OF NIC DEVICE DRIVER ..17
FIGURE 7. THE FUNCTIONALITY OF NDRIVER ..20
FIGURE 8. THROUGHPUT OF A MACHINE WITH AND WITHOUT NDRIVER21
FIGURE 9. CPU UTILIZATION OF A MACHINE WITH AND WITHOUT NDRIVER22
FIGURE 10. THROUGHPUT OF THE HTTP SERVER ...23
FIGURE 11. RESPONSE TIME TO ACCESS WEB PAGES ..23
FIGURE 12. DIFFERENT PARTS OF THE RECOVERY TIME ..24

 vi

List of Tables
TABLE 1. THE RESULTS OF DIFFERENT PARTS OF THE RECOVERY TIME.........................24
TABLE 2. THE RESULTS OF PER-REQUEST OVERHEAD ..24

 vii

1. Introduction

With the high reliance of people on computer systems, the availability of a

system is becoming more and more important. For a growing number of systems, high

availability is no longer optional but mandatory. According to the previous research,

[6] shows that 60-90% of current computer faults are software errors instead of

hardware faults and [18] shows that hardware failure doesn’t take a large part of

service failure. Moreover, hardware faults can generally be masked through

component redundancy [5][10][11][19]. Therefore, software plays a critical role in

system availability.

Since most of the software relies on the underlying operating system, a reliability

of a operating system is a key factor to a highly availability computer system.

Unfortunately, due to the high complexity of an operating system, it’s nearly

impossible to make it error-free.

The most error-prone part of an operating system is device drivers. It is showed

that the error rates of device drivers can be three to seven times higher than the rest of

the kernel [4][13]. The reason is that most of the drivers are developed by the

engineers of the hardware device vendors, who are not as familiar with kernel

programming as the original kernel developers are.

Since a device driver is a part of the kernel, a fault happening in a driver is a

kernel fault, and it results in a kernel panic or a system hang in many operating

systems including Linux. This causes the services running on it become unavailable.

However, a faulty driver usually doesn’t pollute the other subsystems in the

kernel. Therefore, it is possible to recover the system from the driver faults, and hence

allow the services running on it remain available. In this paper, we propose a

mechanism to survive from the software faults in the drivers. According to the

 1

previous research [4], blocking and exception faults are responsible for the largest

portions of faults happening in the kernel. Specifically, blocking faults account for

28.5% of the faults observed in the Linux kernel (version 2.4.1), while exception

faults account for 41%. The former lead to kernel hangs, while the latter cause kernel

panics. Therefore, we concentrate on detecting and recovering from these faults.

In this thesis, we propose a framework, named nDriver, for surviving from these

software faults. Based on the design diversity concept [8][21], we use multiple driver

implementations for a device. If the current driver fails, nDriver can detect it and

replace the faulty driver with another one.

Multiple driver implementations can be obtained in the following ways. First,

there may exist patches for a driver implementation. By downloading the patches and

applying them to the driver implementation, another implementation is produced.

Second, there may be multiple driver versions for the same device. Because the newer

release may be less stable, we can consider the older release as the backup

implementation. Third, there may exist a generic but regressive driver for the device.

For example, the ne2000 NIC device driver can be used to drive many NICs of

different vendors. It is worth to note that, the framework can improve operating

system availability even when there is only one driver implementation for each device.

By swapping the driver, when a fault occurs in it, with a refresh instance of the same

implementation, the problem of transient faults and driver aging [3] can be solved.

To achieve the goal of seamless driver swapping, the following requirements

must be satisfied.

 Non-stop services: The services or applications running on top of the system should

keep on running without interruption even when a driver fails.

 Automatic fault detection: Blocking and exception faults should be detected

automatically, without the help of the system administrators.

 2

 Zero-loss system requests: Generally, the removing of a driver causes the loss of its

internal data, including the requests issued to it. However, to achieve the goal of

seamless driver swapping, all the uncompleted requests should be kept and then be

re-issued to the new implementation.

 Kernel state maintenance: A driver may have made changes to the global kernel

state (e.g., it may have requests some kernel resources). Therefore, the kernel state

should be recovered when the faulty driver is removed. Moreover, all the external

references to the original driver should be redirected to the new one. Otherwise, the

kernel will be likely to be crashed due to these dangling references.

In this thesis, we describe the design and implementation of the nDriver

framework. Specifically, we present how the nDriver framework satisfies the above

requirements. The framework is implemented in the Linux kernel. Currently, it can

survive from faults happening in NIC (Network Interface Card) and NBD (network

block device) drivers. However, we consider the mechanisms can be adapted to other

module-based device drivers with a little modification. According to the experimental

results, nDriver can currently recover a NIC driver fault with only ??% performance

loss under a popular web benchmark, Webstone. Therefore, it is feasible to be applied.

The rest of this thesis is organized as follows. In Chapter 2 we describe our

design issues and the flow of the device driver recovery, which is followed by the

description of the implementation details in Chapter 3. Chapter 4 presents the

experimental results. Chapter 5 shows the related work. And finally, we conclude in

Chapter 6.

2. Design

In this section, we will elaborate on what we do to survive from driver faults.

 3

When a fault occurring in the driver is detected, the recovery mechanism will be

triggered. Figure 1 shows the overview of the recovery process. Briefly speaking, we

remove the faulty driver, undo the changes caused by it, insert the new driver,

reconfigure it, and retry the original function in the new driver.

Figure 1. Overview of the Recovery Process

 4

Figure 2. Architecture Overview

Figure 2 illustrates the components of the nDriver. If a fault occurs, it will be

detected by the fault detector. Since the faulty driver may have changed the system

state, we should remove the faulty driver and undo the changes. This is performed by

the undo manager which records all the kernel functions invoked by the driver and

undoes them when the driver is removed. In addition, it is responsible for inserting the

new driver and asking the configuration manager to reconfigure it. After the

reconfiguration, all external references to the removed driver must be redirected to the

new driver to avoid the problem of dangling references.

In the following sections, we will describe the design of the nDriver framework.

First, we will present the fault detection approaches, which is followed by the

description of how to keep the system state correct and consistent after a fault occurs.

Then, we present the approach for solving the problem of dangling references. Finally,

we describe the details of the recovery process.

 5

2.1 Fault Detection

The fault detector is responsible for detecting exception and blocking faults. An

exception fault occurs due to the reasons such as accessing the NULL page (i.e., the

first page of the physical address space), dividing an operand by zero, or executing an

invalid opcode. To detect such faults, we replace the kernel exception handlers (such

as page-fault and the divide-by-zero handlers) with our own ones. Therefore, the

raising of a CPU exception will trigger our exception handler, which will then invoke

the undo manager to recover the fault.

 Besides exception faults, a faulty driver may cause system hangs (i.e., blocking

fault), which make the system become responseless. Blocking faults usually result

from careless driver design such as entering an infinite loop or trying to get the

spinlock which is grabbed by another blocked kernel thread. To recover from such

faults, we use a timeout-based approach. Before executing a driver function, we setup

a software timer in order to measure the time it takes to execute the driver function. If

the driver function occupies the CPU for a long time, it will be regarded as a faulty

function. And the time-out handler will be triggered to recover from the fault. The

accounting of the execution time is through timer interrupts, which happen every 10

ms. Although the time-out based approach is straightforward, two issues must be

addressed to make it an effective technique for preventing driver hangs.

The first issue is how to determine the time-out value of a driver function.

Because the execution time of different driver functions varies, we can’t have a fixed

time-out value for all the driver functions. Instead, the time-out value of a driver

function should be set to its average execution time plus a guard time. Note that the

time-out values are not required to be highly accurate. The 10-ms granularity is

accurate enough for detecting blocking faults.

 6

Another issue is how to prevent the software timer approach becoming useless if

the driver function disables interrupts in their code. This is possible since many

existing drivers disable interrupts for synchronization. To solve this problem, we

replace the original interrupt-disabling/enabling functions, namely cli() and sti(), and

the timer interrupt handler. Instead of disabling the interrupt pin of the CPU, the new

cli() masks all the interrupts except for the timer interrupt. In this way, our software

timer still works after calling cli(). Note that our timer interrupt handler will not

invoke the original timer-interrupt handler when the interrupts are disabled. This

preserves the interrupt-disabled semantic.

2.2 State Maintenance

We divide the system state that the driver may modify during its execution into

driver state, kernel state, and driver requests. The driver state is the local state of the

device driver. The kernel state represents the global kernel state that may be changed

by the driver. And the driver requests stands for the requests that are currently

processed by the driver and the corresponding device. Because a fault may happen

anytime during the execution of the driver code, we must keep the state correct and

consistent after recovery. During the recovery period, we undo the changes the driver

made to the kernel state. For the driver state, we decide to discard it and rebuild it

from scratch. And, for the driver requests, we record them so that they can be

re-issued to the new driver implementation after the recovery.

Generally, a driver changes the kernel state only through a few functions

provided by the kernel. Such functions may request kernel-managed resources,

register a new driver, or exchange information with the kernel. For example, the

driver may request IRQs and I/O regions to the kernel. In order to undo the changes,

we intercept the kernel functions called from the driver (i.e., callout functions), and

 7

record them in an action list. Each callout function in the list has a corresponding

undo routine, which will be invoked during the recovery process, for undoing the

changes caused by the function.

It is worth noting that a device driver may invoke only a small subset of

kernel-provided functions. This is because the main purpose of a device driver is just

to drive the device. For example, a driver usually doesn't perform IPC operations,

which are difficult to rollback1. Thus, we focus on the set of functions which may be

invoked by the driver, and implement their undo functions manually.

As we mentioned above, we discard the driver state and rebuild it from scratch

during the recovery period. The reasons are as follows. First, the driver state is

polluted after a fault emerged in the driver code. Second, different driver

implementations may use different data structures and thus the old driver state cannot

directly be used by the new driver implementation. Therefore, the new driver should

implement a state transfer function if it wants to reuse the old state. This implies that

all the driver implementations are needed to be modified, which is impossible.

Moreover, it’s impractical to implement a state transfer function for each pair of

driver implementation.

For the driver requests, we backup all the unfinished requests in case they will be

lost when the driver fails. Each time the kernel sends a request to the driver, we make

a copy of the request and insert the copy to a per-driver unfinished request list. When

the request is finished, the request copy will be removed from the list. If a driver fails,

all the requests in the list will be re-issued to the new driver again.

1 It is not enough to rollback an IPC operation by canceling it or undoing it. The
receiver may be triggered by the sent message to take some corresponding actions,
which are usually difficult to rollback.

 8

2.3 External References

After replacing the faulty driver with the new one, some external references

(such as data or function pointers) still point to the data or functions of the original

faulty driver. Therefore, we must update all the external references to point to the new

implementation. Figure 3 illustrates an example. The structure net_device is used to

represent an NIC device driver in Linux. During recovery process, for instance, the

faulty driver Faulty is removed and the new driver New is inserted and initialized. All

external references to Faulty become dangling pointers.

Soules et al. [23] proposed two approaches (i.e., backward reference and

indirection) as shown in Figure 3(a) and 3(b) to solve this problem. In brief, the

backward reference approach keeps track of all external references to Faulty, and then

updates all of them to point to New. The drawback of this approach is that the

operating system must be modified to record all the external references. The

indirection approach, as shown in Figure 3(b), lets all the external references point to

a single indirection pointer. If the target is changed due to the driver swapping, only

the indirection pointer needs to be updated. This approach also requires modification

to the existing operating system code since the data type of all the external references

must be modified (e.g., from net_device* to net_device**). Besides, it needs an extra

deferencing to access the target.

In nDriver, we take another approach to avoid modifying the existing operating

system code. Figure 3(c) shows the approach. We add a placeholder for containing the

target data. The placeholder is of the same type with the target data, and all the

external references point to the placeholder. In the figure, the placeholder is initialized

by copying the content of Faulty to it. During the recovery process, Faulty is removed

and the placeholder is updated by copying the content of New to it. In this way,

neither the maintaining of the backward references nor the modification to the data

 9

type of the external references is needed.

Figure 3. External Reference Redirection

2.4 Detailed Process of Recovery

 10

 Before executing a driver function, we initialize the fault detector as well as save

the current system context.

During the execution of the function, our recovery mechanism will be triggered

if an exception fault or a blocking fault is detected. Figure 4 shows the detailed

recovery process. First, we undo the changes the driver has made to the global kernel

state. Specifically, we call the undo routine of each entry in the action list to undo the

changes. Second, we remove the code and the local state of the faulty driver. Third,

we insert the new driver into the kernel and reset the hardware. Fourth, the

previously-issued configuration operations are issued again to the new driver in order

to rebuild the driver state. This is achievable since all the configuration operations

previously issued to the driver were intercepted and logged by the configuration

manager. Fifth, we update the external references to point to the new driver by

copying the content of the new driver state to the corresponding placeholder. Finally,

we restore the system context and retry the originally-failed function in the new

driver.

It is worth to note that the new driver may correspond to the same

implementation with the old one. In this case, the new driver is just a fresh instance of

that implementation. This kind of driver swapping can solve the problem of transient

errors and driver aging [3]. The latter problem can be solved because we discard and

rebuild the driver state from scratch. If there are multiple driver implementations for

the device, the system can choose another implementation if one fails. This allows the

system to survive from not only the above two kinds of faults but also the faults

caused by driver bugs.

 11

Figure 4. Detailed Process of Recovery

3. Implementation

 The nDriver framework is implemented as a kernel module in Linux. Based on

the framework, we can currently recover the Ethernet driver and network block device

driver faults. In the following, we will describe the implementation details of the

nDriver.

3.1 Fault Detection

3.1.1 Guard Wrapper

Since we regard driver functions as unreliable, we put a guard wrapper on each

 12

function exported by the driver to prevent a driver fault from crashing or halting the

kernel. The wrapper takes the following actions.

First, it sets up the fault detection routines. For exception faults, it substitutes our

exception handlers with the original exception handlers, such as the divided-by-zero

handler or the page-fault handler. For blocking faults, it initiates a software timer to

measure time it takes to execute the wrapped function.

Second, the wrapper saves the system context, which is followed by the

invocation of the wrapped driver function. If an exception fault happens during the

execution of the wrapped function, our exception handler will trigger the recovery

process. The recovery process will restore the system context, remove the faulty

driver, insert the new driver, and retry the function in the new implementation.

Similarly, if the wrapped function doesn’t return before the timer expires, the timeout

handler will also trigger the recovery process. If the function returns without faults,

the wrapper restores the exception handlers with the original ones and stops the timer.

3.1.2 Software Timer

 As we mentioned in Section 2.1, we use an interrupt-based timer to measure the

time it takes to execute a driver function. If the timer expires, the function is regarded

as failure and the recovery process is triggered.

Before we start to execute the driver function, we initialize a counter to its

time-out value. Each time the timer interrupt raises, our software timer decreases the

counter by 1. If the counter reaches 0, our software timer will trigger the time-out

handler.

 Since a driver function may be preempted by other interrupt handlers except for

the timer interrupt handler, we should stop counting during the time the function is

preempted. However, we don’t integrate this technique into nDriver. This is because,

 13

according to the experimental result, the time used by ISRs and bottom halves are

quite small compared to the 10-ms timer interrupt interval. Therefore, they don’t have

a visible impact on the performance of fault detection on our machines.

3.2 Undoing the Kernel State

As we mentioned in Section 2.2, we intercept all the callout functions in order to

record the changes to the global kernel state. The interception is done by linking the

object code of the driver module with the interception wrappers before the driver is

installed into the kernel. After the linking, all the references to the callout functions

are redirected to the corresponding interception wrappers.

We use an action list to record the invocations of the callout functions. Figure 5

shows an example of the action list. When an interception wrapper is invoked, we

allocate an entry to record the function identifier, the values of the arguments, and the

return value. Then, we add this entry to the action list. Keeping the arguments and the

return value is necessary to undo since they are needed by the undo routine. For

example, the arguments of request_irq() (i.e., irq and dev_id) must be used as

arguments of free_irq(), the undo routine of the request_irq(), to release the allocated

IRQ resources. Once the driver invokes an undo routine by itself, the interception

wrapper will delete the corresponding entry in the action list. For instance, if a driver

calls free_irq(), the interception wrapper will remove the entry for request_irq().

During the recovery process, we remove the entries of the action list in the reverse

order of their insertion time. Once an entry is removed, the corresponding undo

routine is invoked to undo the kernel state change.

 14

Figure 5. the Structure of the Action List

3.2.1 Preventing Lost of Driver Requests

 In this subsection, we describe how the nDriver keeps track of the unfinished

driver requests in order to re-issue them to the new implementation during the

recovery process. We take the driver for Accton EN1207F Series PCI Fast Ethernet

Adapter as an example of illustration.

Figure 6 illustrates how the driver sends and receives packets. For the sending

side, the kernel dequeues a packet from the send queue (i.e., qdisc in Figure 6) of the

driver and hands the packet to the driver. The job of the driver is to insert the packet

into its Tx ring buffer and driving the NIC to transmit the packet. For the receiving

side, the device receives a packet from the network, puts the packet in its Rx ring

buffer, and raises an interrupt to notify the driver. The driver then inserts the packet

into the backlog queue for layer-3 processing. Note that the Tx and Rx ring buffers are

part of the local driver state.

 If the driver crashes suddenly, packets in the ring buffers will be lost since we

discard the local driver state. To avoid this problem, we maintain an unfinished

request list when the kernel orders the driver to send a packet, we make a copy of the

packet and add the copy to the list. When the NIC raises an interrupt to notify that the

packet has been sent, we remove the packet from the list. Therefore, after the driver

swapping, the packets in the list represent the lost packets and can be re-issued again

 15

to the new driver.

However, this approach cannot be used on the receiving side. The packets in the Rx

ring buffer cannot be recovered after the driver swapping. This is because packets are

inserted into the Rx ring buffer via the DMA hardware. Without specific hardware

support, it is impossible to copy a packet before it enters into the Rx ring buffer.

Fortunately, packet lost is not a rarely-happened problem. It can also result from

network congestion or the RX ring buffer overrun. (And, it can be resolved by reliable

network protocols such as TCP.) Therefore, we consider that losing a small number of

Rx packets due to the NIC driver failure is acceptable.

 16

Figure 6. The Data Flow of NIC Device Driver

 The Rx data lost problem will not happen for block device drivers. This is

because all the read/write operations of a block device are issued by the kernel,

instead of the hardware. Therefore, all the requests sent to a block device driver can

be intercepted for maintaining the unfinished request list. For character devices, the

Rx data may be lost because we can’t locate the buffer without digging into the driver

code. Although some Rx data may be lost, nDriver can guarantee non-stop services

instead of letting the fault driver crash the system.

3.3 Recovery Flow Implementation

 17

In this subsection, we describe the details about the process of swapping a

module-based NIC device driver in Linux.

Before executing the wrapped driver function, the guard wrapper sets up the fault

detection routines and saves the system context.

As we mentioned before, if a fault is detected during the execution of the driver

function, the undo manager will be invoked. The first step of the undo manager is to

undo the kernel state changes caused by the driver and to remove the faulty driver

module. It calls the sys_delete_module() function to remove the code and data of the

faulty driver module. In addition, it invokes the undo routine for each entry in the

action list to undo the kernel state changes and release the resources held by the faulty

driver. Although each driver provides functions (i.e. cleanup() and close()) for

releasing its resources, we consider that it is unsafe to execute these functions after a

fault has happened in that driver.

It’s worth to note that undoing the kernel changes may result in some events to

be sent to other kernel subsystems in order to notify that the status of the driver has

been changed. After the subsystems receive the events, they will take some

corresponding actions. For examples, if we remove a network device driver, any

routing table entries depending on it will be deleted. This situation should be

prevented since we don’t want the rest of the kernel be aware of the driver swapping.

Therefore, we have to block the events.

The second step of the undo manager is to install the code and data of the new

driver module into the kernel and call the init() function of that module. The init()

function usually resets the hardware as well as causes some initialization events to be

sent to other subsystems. Similar to what we have described above, we also have to

block these events.

After the new driver module is installed, the configuration manager is asked to

 18

reconfigure the driver. Since it has logged the configuration operations performed on

the faulty driver, the reconfiguration can simply be done by performing these

operations again to the new driver. After the reconfiguration, the undo manager

redirects the external references to the new driver module, and restores the system

context. Finally, the undo manager retries the previously-failed function.

We believe that all the mechanisms described above can be adapted to other

types of device drivers (e.g., block device drivers) with little modification. The

reasons are as follows. First, each driver type provides a standard interface to the

kernel, on which we can place the fault detectors. Second, the mechanism for undoing

the kernel state, rebuilding the driver state, and preventing the request lost are all

independent to the types of the drivers.

4. Performance Evaluation

In this chapter, we test the functionality of nDriver and measure its performance

overhead. The experiments aim to show that nDriver can make the system survive

from driver faults with a little performance degradation. The testbed consists of one

server and two clients. All the machines are connected to a 1 Gigabit Ethernet switch.

Each machine is equipped with Pentium 4 2.0GHz CPU, 256MB DDRAM. The

operating system is Linux (kernel version 2.4.20-8).

4.1 Functionality

In this experiment, we initialize a TCP connection from a client to get a file in

the server. During the transfer, we use the tcpdump utility to intercept all packets in

order to record their ACK sequence number. The ACK sequence numbers means the

number of bytes which have been received by the client. We repeat the above

 19

procedure but insert a fault in the NIC device driver. Figure 7 shows the results. The

connection named No Fault means there is no fault happening during the connection.

In the two other connections, there are an exception fault and a blocking fault

individually. We can see that nDriver can effectively detect the inserted fault and

recover from it without stopping the ongoing connection. After recovery, the slope of

the survived connections remains almost the same. It means that the recovery process

doesn’t incur much degradation to the transfer speed.

0

1000000

2000000

3000000

4000000

5000000

0 0.1 0.2 0.3 0.4 0.5

Relative Time (second)

R
el

at
iv

e
S

eq
ue

nc
e

N
um

be
r

No Fault Exception Blocking

Figure 7. the Functionality of nDriver

4.2 Performance Overhead

We use two benchmarks, Netperf [12] and Webstone [1], to measure the

overhead of nDriver.

4.2.1 Micro Benchmark: Netperf

We use the utility, Netperf, to measure the network throughput and CPU

utilization of a machine with nDriver in order to compare it with a machine without

nDriver. During each experiment, it will send as many fixed-size messages as possible.

 20

Figure 8 shows the network throughput of each experiment. When the message size is

equal to or more than 16 bytes, the network throughput is limited by the network

maximum bandwidth (i.e. 100Mbps) and there is no visible network throughput

degradation. But when the message size is under 16 bytes, the average network

throughput degradation is 5%. Besides, Figure 9 shows the CPU utilization of each

experiment. When the message size is under 16 bytes, the CPU utilization of both

conditions is 100%. When the message size is under 16 bytes, the average overhead of

nDriver is between 3% and 5%. The overhead mainly results from the maintenance of

the action list and the software timer.

0

20

40

60

80

100

2 4 8 16 32 64 128 256

Message Size (KB)

T
hr

ou
gh

pu
t (

M
b)

Original nDriver

Figure 8. Throughput of a Machine with and without nDriver

 21

0

20

40

60

80

100

2 4 8 16 32 64 128 256

Message Size (KB)

C
PU

 U
til

iz
at

io
n

(%
)

Original nDriver

Figure 9. CPU Utilization of a Machine with and without nDriver

4.2.2 Macro Benchmark: Webstone

 In this subsection, we want to measure the overhead of nDriver under realistic

workload. We install the Apache (version 2.0.40) Http server in the server machine.

The two client machines are used to simulate the web clients. The workload is gotten

from the Webstone benchmark, and each round lasts for 10 minutes. We measure the

throughput under the two conditions: the server without nDriver and the server with

nDriver. Figure 10 shows the throughput results. The x-axis represents the number of

web clients. The more web clients, the more Http requests the web server processes.

The y-axis represents the server throughput. From the figure we can see that the

performance degradation is between 2.0%~3.5%. In addition, Figure 11 shows the

average response time under the same experiments. The y-axis represents the average

response time to access a web page. The average response time for the nDriver is

higher than that for the original server without the nDriver by 2% to 3%.

 22

1600

1620

1640

1660

1680

1700

1720

1740

1760

1780

3 4 5 6 7 8 9 10

Number of Clients

Se
rv

er
 C

o
nn

ec
ti
on

 R
at

e
(c

on
ne

ct
io

ns
/s

ec
)

Original

nDriver

Figure 10. Throughput of the Http Server

0

0.001
0.002

0.003

0.004

0.005
0.006

0.007

3 4 5 6 7 8 9 10

Number of Clients

R
es

po
ns

e
T

im
e

(s
ec

)

Original

nDriver

Figure 11. Response Time to Access Web Pages

4.3 Recovery time

In this subsection, we measure the time required by different parts of the

recovery process. We manually insert a fault triggering the recovery process into the

driver. As shown in figure 12, the recovery time consists of the following components.

Tu is the time that the undo manager spends in invoking the undo routine for each

 23

entry in the action list. Ts is the time that the undo manager spends in swapping the

drivers. Tc is the time that the configuration manager spends in configuring the new

driver. Te is the time spent in updating the external references. Tr is the time spent in

restoring system context.

Figure 12. Different Parts of the Recovery Time

 Table 1 shows the results, which are measured by using the Pentium Timestamp

Counter [22]. From this table we can see that the total recovery time is very small.

Tu (us) Ts (us) Tc (us) Te (us) Tr (us) Ttotal (us)

31.95 145.47 290.33 0.95 0.0092 468.71

Table 1. The Results of Different Parts of the Recovery Time

4.4 Per-Request Overhead
 In this subsection, we measure the extra time the nDriver takes to process a
request. (i.e., sending or receiving a packet) It consists of three parts: guard wrapper,
maintaining the action list, and maintaining the unfinished list. The job of guard
wrapper is to setup/stop fault detection and to save system context. Table 2 shows the
results, which are also measured by using the Pentium Timestamp Counter. From the
figure we can see that the overhead of guard wrapper is large compared to the two
others because of the system context checkpointing. Besides, the total per-request
overhead is small.

Guard

Wrapper (us)

Action

List (us)

Unfinished

List (us)

Total (us)

1.97639 0.34242 0.41712 2.73593

Table 2. The Results of Per-Request Overhead

 24

5. Related Work

 The related work falls into 3 categories: 1. improving driver quality, 2. dynamic

replacement of kernel components, 3. fault tolerance in operating systems.

5.1 Improving the Driver Quality

 Some techniques were proposed to help the driver developers to improve the

design and reduce the bugs when developing drivers.

Microsoft and Intel [17] [9] provided guidelines for designing, implementing

drivers for high availability systems. These guidelines cover the following aspects.

First, they presented how to have good design and coding practices. Second, they

mentioned that a device driver should provide statistics reporting, diagnosis tests, and

event logging. Third, the way to perform lots of testing on a device driver was

presented.

In order to improve the robustness of a driver, Lowell [16] proposed a language

named Devil to develop device driver code. The developer writes the driver

specification in Devil, which is checked by the Devil compiler. After the checking, the

compiler automatically generates low-level code, which is more error-prone, for

driving the device hardware.

Microsoft suggests that hardware vendors should use Driver Verifier [X] to test

their device drivers before releasing them. Besides, it can be used to detect the driver

faults. Driver Verifier contains the following testing: simulating low resource

conditions, verification of I/O, DMA verification, deadlock detection, and the like.

However, it doesn’t consider the problem how to recover from a driver fault.

5.2 Dynamic Replacement of Kernel Components

 25

In Linux, drivers are usually implemented as modules [7]. And, dynamic

module-loading can be used as a basic mechanism for hot-swapping module-based

device drivers. However, it is not enough for recovery from a faulty driver. The

reasons are as follows. First, a module cannot be removed unless its usage count

becomes zero. Linux keeps a usage count for each module to tell the current number

of users using the module. When a fault happens in the driver, the driver module is

still in use and cannot be removed directly. Second, the goal of seamless driver

swapping cannot be achieved by the dynamic module-loading mechanism since it

doesn’t consider undoing the kernel state changes, reconfiguring the new driver, and

solving the problem of dangling references.

These software bugs may be avoided by design diversity to some extent. Design

diversity [8][21] uses multiple independent implementations of the same software to

prevent software errors from crashing the whole system. The basic idea is that these

functional-equivalent software implementations may not have the same software bugs.

Therefore, the system may survive from software bugs while retrying different

implementations.

Specifically, recovery block [21] uses a set of alternative implementations for the

same application to improve the availability. If an alternative fails, another one will be

tried. The nDriver framework realizes the concept of recovery block at the device

driver layer. However, it is much more challenging to achieve the goal of seamless

alternative swapping in the kernel code. Specifically, we have to address the issues

that were not mentioned by the authors such as the undoing of the global kernel state

changes made by the driver, the keeping of the driver requests, and the updating of the

external references.

Soules [23] proposed a mechanism to replace an operating system component at

run time. Before a component can be replaced, it has to be in the quiescent state (i.e.,

 26

all active use of the component has concluded). When the replacement happens, the

old component transfers its state to the new one. Finally, the external references are

redirected to the new component. Basically, the mechanism is not appropriate for

dealing with faults. This is because the component may not always in the quiescent

state when a fault happens. Moreover, the state transferring approach is not suitable

for drivers. If the approach is taken, we have to implement a state transferring

function for each pair of driver implementations, which requires a large effort.

5.3 Fault Tolerance in Operating Systems

Process pair is used to implement fault-tolerant processes. There are two

processes - primary and backup processes - for the same application. Normally, only

the primary process provides services. If the primary process fails, the backup process

takes over its services. However, the complexity synchronization between the two

processes complicates the implementation. Moreover, the synchronization increases

the runtime overhead.

The goal of High Availability Linux is to provide a high-availability clustering

solution for Linux. It mainly provides two software packages, Hearbeat and Fake.

Hearbeat is used to detect if hosts are available or not. A heartbeat is sent between

hosts periodically. If a heartbeat isn't received for a time, the host that doesn't send the

heartbeat fails. Fake is used to take over the IP address of the failed host. Hosts in a

cluster can use Heartbeat to monitor the availability of hosts that provide services.

When hosts that provide services fail, others can take over the services by using Fake.

Swift [24] introduced an approach to enhance operating system reliability by

isolating the kernel from extensions (including drivers) failures. It executes each

extension in a lightweight kernel protection domain to prevent it from corrupting the

kernel. In addition, it keeps track of the kernel resources used by the extension to

 27

perform automatic clean-up during recovery. However, it doesn't try to recover the

extension. As a result, the applications or services relying on the driver extension will

become unavailable. In nDriver, we take a more aggressive approach. The extension

can be recovered by either a refresh instance of the same implementation or another

implementation. This improves the system availability further.

5.4 Others

Autonomic Computing (Kephart and Chess, 2003) is proposed by IBM, which

enables systems to manage themselves according to the administrator’s goals. The

self-managing means self-configuring, self-healing, self-protecting, and

self-optimizing. Especially, the self-healing techniques automatically detect, diagnose,

and repair software and hardware problems. Some efforts related to the self-healing

are SRIRAM (Verma et al., 2003) which is a method that facilitates instantiating

mirroring and replication of services in a network of servers, K42 (Appavoo et al.,

2003) which allows software codes including system monitoring and diagnosis

functions to be inserted and removed dynamically without shutting down the running

system, and Dynamic CPU Sparing (Jann et al., 2003) that predicts the defective of a

CPU and replace it with a spare one.

Recovery-Oriented Computing (Patterson et al., 2002) proposed by U. C.

Berkeley and Stanford University is a related effort to autonomic computing. It

proposes new techniques to deal with hardware faults, software bugs, and operator

errors. These techniques include Pinpoint (Chen et al., 2002) which finds the root

cause of a system failure in an efficient way, System Undo (Brown and Patterson,

2003) which can perform system recovery from operator errors, and Recursive Restart

(Candea et al., 2002) which reduces the service downtime. In addition, they also

proposed on-line fault injection and system diagnosis to improve the robustness of the

 28

system.

Checkpointing [15][2][25][20][26] is a common technique for system recovery.

It saves system state periodically or before entering critical regions. If a system fails,

it can be recovered by restoring the last checkpointed state. The major problem of

checkpointing is that it can not make the system survive from faults caused by driver

bugs since it restores the aged state and re-executes the same code after recovery.

Moreover, many checkpointing implementations incur overheads due to the vast

amounts of state need to be saved.

Lakamraju [14] introduced a low-overhead fault tolerance technique to recover

from only network processor hangs in Myrinet. When the network processor hangs, it

resets the NIC and rebuilds the hardware state from scratch to avoid duplicate and lost

messages. The limitation of this work is that it only focuses on hardware failures

instead of software errors. The former is easier to handle since it doesn’t consider the

complex software state maintenance problem such as undoing the kernel state changes,

reconfiguring the new driver, and solving the problem of dangling references.

6. Conclusion

 In this thesis, we propose the nDriver framework, which uses multiple

implementations of a device driver to survive from driver faults. It can detect two

major types of driver faults, the exception and blocking faults. With the help of

nDriver, driver faults will not always result in kernel panics or system hangs. Instead,

if it a fault is detected, nDriver substitutes another driver implementation with the

faulty one to make the system continue working. In order to achieve the goal of

seamless driver swapping, nDriver undoes the kernel state changes made by the faulty

driver, keeps the unfinished driver requests, and redirects the external references. In

addition, nDriver blocks the driver removing and installation events so that the other

 29

kernel subsystems are not aware of the driver swapping.

 The major contribution of our work is that nDriver realizes the concept of

recovery blocks at the device driver layer. It achieves the goal of seamless driver

swapping. However, it improves operating system availability without modifying the

existing operating system or driver codes.

We implement nDriver as a kernel module in Linux. Currently, it can recover

from faults in network and block device drivers. According to the performance

evaluation, the overhead of nDriver is no more than 5% and the recovery time is very

small. This indicates that nDriver is an efficient mechanism to increase the availability

of operating systems.

 30

References

[1] [Surge] Barford, P., and Crovella, M. E.. “Generating Representative Web

Workloads for Network and Server Performance Evaluation”. In: Proceedings of

the ACM SIGMETRICS '98, pp. 151-160.

[2] [CP2] Subhachandra Chandra, Peter M. Chen. “Whither Generic Recovery From

Application Faults? A Fault Study using Open-Source Software”. In proceedings

of the 2000 International Conference on Dependable Systems and Networks /

Symposium on Fault-Tolerant Computing (DSN/FTCS), June 2000.

[3] [sw-aging] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,

K. Vaidyanathan, and W. P. Zeggert. “Proactive management of software aging”.

IBM JRD, Vol. 45, No. 2, March 2001.

[4] [error_distr_0] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,

Dawson Engler. “An Empirical Study of Operating System Errors”. In

proceedings of the 18th ACM symposium on Operating systems principles, pp.

73–88, Banff, Alberta, Canada, 2001.

[5] [bonding] Davis, T.. “Linux Channel Bonding”. Available at

http://www.sourceforge.net/projects/bonding/usr/src/linux/Documentation/netwo

rking/bonding.txt.

[6] [error_distr_4] Gray, J.; Siewiorek, D.P.; “High-availability computer systems”.

Computer, Volume: 24, Issue: 9, pp. 39-48, Sept. 1991.

[7] [LLKM_HOWTO] Bryan Henderson. “Linux Loadable Kernel Module

HOWTO”. Available at http://www.tldp.org/HOWTO/Module-HOWTO/.

[8] [design_diversity] Chris Inacio. “Software Fault Tolerance”. Available at

http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/index.html.

[9] [Harden] Intel Corporation, IBM Corporation. “Device Driver Hardening”.

 31

Available at http://hardeneddrivers.sourceforge.net/.

[10] [Intel] Intel Corporation, 2003. “Intel Networking Technology – Load

Balancing”. Available at

http://www.intel.com/network/connectivity/resources/technologies/load_

balancing.htm.

[11] [pSeries] Jann, J., Browning, L. M., and Burugula, R. S.. “Dynamic

Reconfiguration: Basic Building Blocks for Autonomic Computing on IBM

pSeries Servers”, IBM Systems Journal, 42(1): 29–37.

[12] [netperf] Rick Jones. “Netperf benchmark”. Available at

http://www.netperf.org/netperf/NetperfPage.html.

[13] [error_distr_2] “Kernel Summit 2003: High Availability”. Available at

http://lwn.net/Articles/40620/.

[14] [Myrinet] Vijay Lakamraju, Israel Koren, C.M. Krishna. “Low Overhead Fault

Tolerant Networking in Myrinet”. 2003 International Conference on Dependable

Systems and Networks (DSN'03), San Francisco, California. June 22-25, 2003.

[15] [CP1] David E. Lowell, Subhachandra Chandra, and Peter M. Chen. “Exploring

Failure Transparency and the Limits of Generic Recovery”. In Proceedings of the

Fourth Symposium on Operating Systems Design and Implementation (OSDI

2000), October 2000.

[16] [Devil] Fabrice Merillon, Laurent Reveillere, Charles Consel, Renaud Marlet,

Gilles Muller. “Devil: An IDL for Hardware Programming”. In Proceedings of

the 4th Symposium on Operating Systems Design and Implementation (OSDI

2000), San Diego, California, October 2000.

[17] [WinHEC] Microsoft Corporation. “Writing Drivers for Reliability, Robustness

and Fault Tolerant Systems”. Microsoft Windows Hardware Engineering

Conference (WinHEC), 2002.

 32

[18] [WHY] David Oppenheimer, Archana Ganapathi, and David A. Patterson. “Why

Do Internet Services Fail, and What Can be Done about It?” In Proceedings of

the 4th USENIX Symposium on Internet Technologies and Systems (USITS '03),

2003.

[19] [RAID] Patterson, D. A., Chen, P., Gibson, G., and Katz, R.H.. “Introduction to

Redundant Arrays of Inexpensive Disks (RAID)”. In: Digest of Papers for 34th

IEEE Computer Society International Conference (COMPCON Spring '89), pp.

112 -117.

[20] [CP4] James S. Plank, Micah Beck, Gerry Kingsley, Kai Li. “Libckpt:

Transparent Checkpointing under Unix”. Usenix Winter 1995 Technical

Conference, pp. 213 - 223, New Orleans, LA, January, 1995.

[21] [recovery_blocks] B. Randell and J. Xu. “The Evolution of the Recovery Block

Concept”. Software Fault Tolerance, John Wiley & Sons, pages 1-21, New York,

1995.

[22] [TimeStamp] Rubini, A.. “Making System Calls from Kernel Space”. Linux

Magazine, Nov. 2000. Available at

http://www.linux-mag.com/2000-11/gear_01.html.

[23] [Online] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W.

Wisniewski, Dilma Da Silva, Gregory R. Ganger, Orran Krieger, Michael Stumm,

Marc A. Auslander, Michal Ostrowski, Bryan S. Rosenburg, Jimi Xenidis.

“System Support for Online Reconfiguration”. In Proceedings of the USENIX

2003 Annual Technical Conference, pp. 141-154, San Antonio, June 9-14, 2003.

[24] [Nook_SOSP] Michael Swift, Brian N. Bershad, and Henry M. Levy.

“Improving the Reliability of Commodity Operating Systems”. In proceedings of

the 19th ACM Symposium on Operating Systems Principles, Bolton Landing,

NY, Oct. 2003.

 33

[25] [CP3] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung and Chandra

Kintala. “Checkpointing and Its Applications”. In proceedings of the

Twenty-Fifth International Symposium on Fault-Tolerant Computing, pp. 22,

1995.

[26] [CP5] Avi Ziv, Jehoshua Bruck. “An On-Line Algorithm for Checkpoint

Placement”. Computers, IEEE Transactions on , Volume: 46 , Issue: 9 , pp. 976 -

985 , Sept. 1997.

 34

