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ABSTRACT
This thesis presents an efficient psychoacoustic model providing better quality
than the psychoacoustic model Il. This thesis considers the design of the

psychoacoustic models from two aspects. First, we improve the psychoacoustic model
from the aspect of varying tonaliand noise masking offset with bands and energy
normalization to suppress the distortion, which:is called the fishy noise or the birdie
noise, caused by the overestimated masking in the harmonic-rich signals. Second, we
consider the design issue in implementingrthe-psychoacoustic model in the filterbank
used in MP3 and AAC instead of the independent FFT to reduce the computing
complexity and storage. The efficient psychoacoustic model provides 60 percentage
performance gain compared to the psychoacoustic model 1l in MPEG-2/4 AAC and
MP3. For the quality comparison based on Objective Difference Grade (ODG) and the
subjective test, the efficient psychoacoustic model provides quality gain of 0.26 at
128k bit rates and 0.3 at 112Kk bit rate for MPEG testing bitstream in NCTU-AAC.
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Chapter 1 Introduction

During the last decade, analog audio as FM-quality audio is gradually fading out and
high-fidelity digital audio like CD-quality audio is going to dominate audio. Moreover,
digital audio can be used in conjunction with network, wireless, and multimedia.
Nevertheless, digital audio relatively needs some demands which are reducing the
channel bandwidth, limiting the storage capacity, and low cost. For the purposes of
resolving the above demands, there are numerous researchers having devoted to the
development of algorithms for perceptually transparent coding of digital audio. And in
consequence, the considerable audio coding algorithms are presented for the transparent
CD-quality digital audio.

Audio -
Signals Ime- .
Mapper 9
— Psychoacoustic Bit Allocation
Models

Bit Pool

Figure 1. Encoding flow chart.

As illustrated in Figure 1, audio signals are segmented into overlapped blocks and
transformed into frequency domain through the time-frequency mapper. The L/R signals
are transformed to M/S signals if signals achieve a threshold. Those signals are then
quantized and coded with the parameters decided by the bit allocation. The
psychoacoustic model analyzes the signal contents and calculates the associated
perceptual information on the human auditory system. According to the perceptual
information and the available bits, the bit allocation decides the suitable quantization
manner to fit the bit rate. The packing module packs all the coded information by the
standard format.

Therefore, the psychoacoustic model is considerable critical to an encoder. First, the
psychoacoustic model according to the human auditory system calculates SMR for the bit
allocation such that it minimizes quantization error and costs fewer bits. Second,
psychoacoustic model decides the suitable block type in order to obtain better resolution



of frequency or time for any input signal. Last, the psychoacoustic model calculates PE
for M/S which can effectively reduce redundant information between channels.
Conventional psychoacoustic model uses the Fast Fourier Transform (FFT) and
prediction magnitude and phase as tonality index. Using the foregoing tonality forms the
Signal-to-Masking Ratio (SMR) consisting of noise masking and tone masking.
Therefore, there are three issues in conventional psychoacoustic model. First, a
non-consistent spectrum is between analysis and coding. Second, the noise masking
effect is stronger than tone masking effect but the energy is dominated by the tone that
will cause the overestimation of masking threshold. Third, the conventional
psychoacoustic can only detect attack in the time domain without the attack in the
frequency domain.

Therefore, the thesis is based on this concept which replaces FFT with MDCT [1][2]
in the filterbank. Moreover, only the noise masking effect is considered to calculate the
masking threshold. Detection of tonal attack band and tone-rich signal is proposed in the
thesis. The proposed psychoacoustic model can speed up 70% in AAC and 65% in MP3.
The quality has also improved 0.2 in AAC and 0.1 in MP3 than conventional
psychoacoustic model.

The thesis is organized as follows. Chapter 2 introduces the concept of the
psychoacoustic principle and detatled-psyehoacoustic model Il. Chapter 3 reviews the
filterbank and implementation in"* AAC and."MP3. In chapter 4, the efficient
psychoacoustic model and experiments are described. Finally, chapter 5 is the conclusion
and following reference.



Chapter 2 Psychoacoustic Model

2.1 Psychoacoustic Principle

The purpose of the psychoacoustic model is to characterize the human auditory
system. Although, nowadays the precise psychoacoustic model for the high quality audio
coding is not existence, audio coding algorithms can optimize the coding efficiency and
quality depending upon the psychoacoustic model. However from the viewpoint of audio
coding, the final receiver is human ears. Therefore, hearing quality is significantly
affected by the properties of human auditory system, especially for masking effect. Audio
coding coders usually employed the irrelevant signal information which is not detectable
by even a sensitive listener to reduce the compression rate. Thus, using the signal analysis
incorporating into the several psychoacoustic principles including absolute hearing
thresholds, critical band analysis, simultaneous masking, the spread of masking along the
basilar membrane, and temporal masking is to identify irrelevant information. Combining
these psychoacoustic principles with hasic!properties of signal quantization has also led
to the theory of perceptual entropy; a quantitative estimate of the fundamental limit of
transparent audio signal compression.-Last, :the psychoacoustic model has the several
subjects including absolute hearing threshold; critical band analysis, masking effect, and
perceptual entropy which will be introduced-in-the following sections.

2.1.1 Absolute Hearing Threshold

A minimum threshold of the pure tone which is can be detected by a listener in a
noiseless environment is the absolute hearing threshold (ATH) also called threshold in
quite. And it is always expressed in terms of dB SPL (sound press level, a standard metric
that quantifies the intensity of an acoustical stimulus). Fletcher [3] addressed that the
frequency dependence of this threshold. Furthermore, Terhardt [4] proposed a well
approximated nonlinear function:

f 70.6(L73.3)2 f
T (f)=3.64(-—-)"-65e 2  4+10°(-——)* (dBSPL), 1
q(f) (1000) (1000) ( ) (1)
The curve in the Figure 2 represents the threshold which is representative of a training
listener with acute hearing. However, T (f)could be deemed the maximum allowable
energy level for coding distortion while applying to the audio coding. Nevertheless, it has

two issues in implementation to shape the coding distortion. First, the quantization noise
in the audio coding is caused by the complicated spectrum containing not only pure tone



stimuli but also other stimuli such that the noise can not be masked by the ATH. Second,
the relation between the ATH function and energy is not definitely clear for audio coder.
Therefore, implementation the threshold in the audio coding is necessarily conservative
for estimation of the masking capability. Thus, most audio coders usually degrade the
threshold in applying to audio coders. For example in the standard psychoacoustic model
I1 makes the dB values of ATH are relative to the level that a sine wave of + or — 1/2 least
significant bit has in the FFT used for threshold calculation.

The absolute threshold of hearing
100

60
50
40

b

Sound Pressure Level, SPL (dB)

Frequency (Hz)
Figure 2: The curve of absolute hearing threshold (by Terhardt [4]).

2.1.2 Critical Band Analysis

The critical band is used to define that the unit of human auditory system.
Nevertheless, it has been not clear and definite understanding for audio coding algorithm
designers. Realizing the human ear structure as shown in Figure 3 is necessary for
researching the human auditory system. Thus, emulating the human auditory system first
is to know how to perform the spectral analysis in the cochlea. However, the cochlea is a
highly overlapping bandpass filter in which the frequency-to-place transformation can
take place along the basilar membrane. For example, when the oval window receives the
excited sound like mechanical vibration, the sound follows the cochlea structure traveling
along the length of the basilar membrane. The peak responses are produced at
frequency-specific membrane position by the excited sound. Therefore, different
frequency ranges are effectively fit for the different neural receptors according to their
basilar membrane position.
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Figure 3: The structure of the human ear (by Zwicker [5]).

Consequently, using the critical band analysis models the behavior of cochlea. As
illustrated in Figure 4, a unit of the critical band is one bark as defined by the formula [5]:

z(f)=13arctan(0.00076 f) + 3.5arctan[(ﬁ)z] (Bark) 2)

It is used to convert from frequency in Hertz to the, Bark scale. Moreover, the critical
bandwidth is narrower in low frequency and wider'in the high frequency because the
sensibility of human auditory relies upon the frequency. Another formula is represented
for the critical bandwidth [5], which. is designed as:

f 2 0.69
ch(f)=25+75[1+1.4(m] ] (Hz). ?)

Figure 5 illustrates the curve of the critical bandwidth and describes the relation between
frequency and critical band.
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Zwicker [5]). [5D).
Table 1: Critical Bandwidth (by Zwicker [5]).

10 1175

1 .

2 150 100-200 11 1370 1270-1480 20 5300-6400

3 250 200-300 12 1600 1480-1720 21 6400-7700

4 350 300-400 13 1850 1720-2000 22 7700-9500

5 450 400-510 14 2150 2000-2320 23 9500-12000
6 570 510-630 15 2500 2320-2700 24 12000-15500
7 700 630-770 16 2900 2700-3150 25 15500-

8 840 770-920 17 3400 3150-3700

9 1000 920-1080 18 4000 3700-4400

2.1.3 Masking Effect

Masking effect is that the rendered sound is inaudible because another sound is
raised at the same time. Masking is an important characteristic of the human auditory
system that can help audio coder designers optimize the bit allocation for an input signal
in the perceptual audio coding system. Because a sound is likely to be masked by another
sounds, the audio coder can allocate the prime bits to the most audible sound which may
be the strong masker and allocate rest:bits to theinsensitive one which is possibly almost
be masked. However, the sound is:generally considerable complicated since the masker is
possibly masked by other maskee-and masker is also masked by another masker.
Therefore, it actually has difficulties in exactly analyzing the relation between the masker
and the maskee. Moreover, the masking effect can-part into two categories from the
temporal perspective: simultaneous masking.which also called spectral masking and
nonsimultaneous masking also called temporal masking.

1. Simultaneous masking

From the viewpoint of the time-domain, simultaneous masking is a phenomenon that
simultaneous presences of the stimuli cause some of them to be not sensitive to human
hearing as shown in Figure 6. For instance, only little power just can be heard by a solo
piano in a quite environment, but when another instrument like bass drum presents at the
same time the piano sound may be no loner heard. As far as the human auditory system is
concerned, the strong masker makes a sufficient excitation on the basilar membrane at the
critical band location block effectively detection of a weaker signal. In other words, the
weak signal can save the bits for quantization due to this masking effect. However, it is
very difficult in how to find the masker in order to calculate the masking threshold for
quantization. Thus, for the proposes of simplifying the estimation of coding distortion it
is usually used only two types of simultaneous masking, namely,
tone-masking-noise(TMN) [6], noise-masking-tone(NMT) [7] to compose the signal
masking ratio (SMR) in Figure 7 for the quantization in the perceptual coding. For



example, in the MPEG-AACI8][9] , it defines that : NMT (b) = 6 dB for all b. NMT (b) is
the value for noise masking tone (in dB) for each partition band; TMN (b) = 18 dB for all
b. TMN (b) is the value for tone masking noise (in dB) for each partition band. And, in
the MPEG-1 Layer 111 [10] it is defined as : NMT is set to 6.0 dB for all partition bands,
and TMN is set to 29.0 dB. Therefore, the simultaneous masking is a strong signal either
tone or noise which can mask other weaker concurrence signal.
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Figure 6: Simultaneous masking effect in varying frequency and energy (by Hellman [6]).
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Figure 7: Illustration of masking effect (by Hellman [6]).

2. Nonsimultaneous masking

Nonsimultaneous masking is also called temporal masking shown in Figure 8, which
is significantly different to simultaneous masking in occurrence of the maskee. Temporal
masking happens prior to the masker or posterior to the masker. The first is named
pre-masking [11] which lasts only few milliseconds about 1-2 ms and decays rapidly. The
last, which is called post-masking, persists for more than 100 milliseconds after masker
removal, depending upon the masker strength and duration. The violent transients of the
audio signal will create the temporal masking either prior to the masker or after the
masker which can lead the listener not to perceive signal beneath the masking threshold
produced by the masker. State-of-the-art audio coding [12][13] algorithm have used the
temporal masking. Pre-masking particularly has been utilized in conjunction with



adaptive block switch between long and short block to compensate for pre-echo
distortions.

— 60 F Pre- Simultaneous Post-Masking
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Figure 8: Illustration of the temporal masking (by Moore [11]).

3. The masking spreading effect

The audio coding algorithms use the TMN and NMT to estimate the simultaneous
masking. As mentioned before, all TMN and NMT are not band-limited to within the
boundaries of a single critical band. However, inter-band masking also happens. A masker
centered within a critical band alsg:masks iother-critical bands. This phenomenon, known
as spread of the masking, is modeled in audio-coding applications by a spreading function
that is given by:

SF,5(X) =15.81+ 7.5(x + 0.474)=17.5,/1+ (X +0:474)dB. (4)

In fact, each frame in the audio coding scenario has not only tones but also noises such
that it has two types of the masker. Finally, the coding algorithms separate the two
different types from this frame and individually calculate the masking threshold.
Furthermore, the two individual masking thresholds are combined to a global masking
threshold for the quantization process in the perceptual audio coding.

2.1.4 Perceptual Entropy

Johnston, while at Bell Labs, first defined perceptual entropy. Perceptual entropy is a
notion of psychoacoustic masking combined with signal quantization principles, which is
a measure of perceptually relevant information contained in any audio coding. The PE
estimation process is stated as follows :

The frequency-domain transformation is done with a Hanning window followed by a
2048-point Fast Fourier Transform (FFT).

P(x) = Re( x)? + Im(x)?. (5)
Perform critical band analysis with spreading.



B, = % P(x)
x=bl, . (6)

Eb = z BBB * SFBBb
BB

Make a determination of the tonality of the signal.

SFM = £
7,
) : O
a, = min(SFNIdB 1)

—-60
Masking thresholds are obtained by applying the threshold rules for the signal and

absolute hearing threshold.
Ob

-2
T, =10 * *E, and

2 8
PE=)" Iog(%)

The x means the spectral lines which are the time-domain pass by the FFT.

bh,,bl, are upper and lower bound of the band,.
SFgg, IS the spreading function from band BB into b.
My 14, are the arithmetic and geometry means.

a, 1s the tonality of the band b.

T, isthe masking threshold for band b.

The signal is first windowed and transformed to the frequency domain. A masking
threshold is then obtained using perceptual rules. Finally, a determination is made of the
number of bits required to quantize the spectrum without injecting perceptible noise. PE
represents a theoretical limit on the compressibility of a particular signal, expressed in
bits per sample. PE measurements, reported in [14] and [15], suggest that a wide variety
of CD-quality audio source material can be transparently compressed at approximately
2.1 bits per sample.

2.2 Psychoacoustic Model 11

The psychoacoustic model Il is most popularly used in perceptual audio coding
defined in [16]. The model can be considered with the following steps:



Step 1 Input sample stream.

Two different window types are necessary for calculating the masking threshold in
psychoacoustic model. The long window needs 2048 samples which consist of the 1024
samples at current frame and another 1024 samples at last frame and so short window
does. In each frame, the coder needs shifting length 1024 for long window and length 128
for short window.

Step 2 Calculate the complex spectrum of the input signal.

First, input signal s(i) from above step is windowed by a Hanning window:

(pi*(i+0.5))
1024 ) ®)

Second, perform a forward Fast Fourier Transform (FFT) to sw(i) .

A FFT is an efficient algorithm to compute the discrete Fourier transform (DFT) and its

inverse. The DFT is defined by the formula :

sw(i)=s(i)(0.5-0.5cos(

2ir .

& Sl .
f(x)=>xe N for j=0..,N-1 k=0,.,N-1. (10)
k=0

The Fast Fourier Transform usually adopted is derived from Cooley-Turkey. This is a
divide and conquer algorithm that recursively breaks down a DFT of any composite size

n=nn, into many smaller DFTs:0f sizes—h—andn,.

Third, the result of the transform is obtained represented in polar form. r(w) and f(w)
individually represent the magnitude and phase components of the transformed sw(i).

Step 3 Estimate predicted values of the r(w) and f(w).
A predicted magnitude r_ pred(w) and phase f _pred(w) are calculated from r(w)
and f (w) of the preceding two frames and last frame.

r_pred(w)=20r(t-1)-r(t-2), and

f _pred(w)=2.0f(t-1)- f(t-2) (11)

where t represents the current block number, t-1 indexes the previous block’s data, and
t-2 means the previous two block’s data. This concept is using the median to predict the
next value either magnitude or phase as below:

next(w) + last(w)

current(w) = 5

= next(w) =2 x current(w) —last(w) . (12)

Step 4 Calculate the unpredictability measure c(w) .

10



tmp _ cos = (r(w) cos( f (w))—r _ pred(w)cos(f _ pred(w)))?
tmp _sin = (r(w)sin(f (w))—r _ pred(w)sin(f _ pred(w)))* .

c(w)

(13)

_ J/tmp_cos+tmp_sin
- r(w)+abs(r _ pred(w))

\/tmp_cose+tmp_sin means the difference between the real spectral line and

predicted spectral line and then divided by r(w)-+abs(r _ pred(w)) in order to let the
c(w) range between 0 and 1, also called normalization.

This formula is used for all the short blocks with short FFT, but for long blocks the
unpredictability measure is calculated from the long FFT for the first 6 lines, and for the
remaining lines the minimum of the unpredictability of all short FFT’s is used. If
considering saving the calculation power, the unpredictability of the upper part of the
spectrum can set to 0.4.

Step 5 Calculate the energy and unpredictability in the threshold calculation partition
band.
The energy in each partition e(b) =is:

upper  index,,

e(h)= D r(w). (14)

lower index,

And the weighted unpredictability c(b)-.is:

upper index,

eb)= D r(w)’c(w). (15)
lower index,

The upper index means the highest frequency line in the partition band, and respectively
the lower index means lowest line in the partition band.
The threshold calculation partitions provide a resolution of approximately either one FFT
lines or 1/3 critical band, whichever is wider. At low frequencies, a single line of the FFT
will be likely to constitute a calculation partition band. However, many lines will be
combined into one calculation partition band at high frequencies.

Step 6 Convolve the partitioned energy and unpredictability with the spreading function
as:

ecb(b) = Z e(bb)spreading(bval(bb),bval(b)) (16)

for each partition band

ct(b) = Z c(bb)spreading(bval(bb), bval (b)) . (A7)

for each partition band
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Spreading Function:
Spreading function is calculated by the following step:

Input = spreading(i, j)

it j>i
tmpx =3.0(j —1) (18)
else
tmpx =1.5(j —1)
tmpz = 8*min((tmpx — 0.5)? — 2(tmpx — 0.5),0) (19)
1
tmpy =15.811389 + 7.5(tmp + 0.474) —17.5(1.0 + (tmpx + 0.474)%)? (20)

if (tmpy < —100)
spreading(i, j) =0
else (21)

(tmpz-+tmpy)
spreading(i, j)=10 1°

where i is the Bark value of the signal being spread,and j is the Bark value of the band

being spread into.

bval(b) means the median bark of the partition band b.

Because ct(b) is weighted by thé:signal-energy; it must be renormalized tocb(b) as

ct(b)

ch(b) = ech(b)

(22)

Similarly, due to the non-normalized nature of the spreading function, ech, should be

renormalized and then normalized energy en, is obtained:

en(b) =ecb(b) x rnorm(b) .
The normalization coefficient rnorm(b) is:

tmp(b) = z spreading (bval (bb), bval (b))
for each partition band
1 : (23)
rnorm(b) = ———
tmp(b)

Step 7 Convert cb(b) to tb(b) the tonality index as:

th(b) = —0.299 — 0.43l0g, (cb(b)) .
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Each tb(b) is limited to the range 0<th(b) <1

Step 8 Calculate the required SNR in each partition band.

NMT (b) =6 dB forall b. NMT (b) is the value for noise masking tone (in dB) for the
partition band. TMN(b) =18 dB for all b. TMN(b) is the value for tone masking noise
(in dB) for the partition band.

The required signal to noise ratio SNR(b) is:
SNR(b) =tb(b) x TMN (b) + (1—tb(b)) x NMT (b) . (24)

Step 9 Calculate the power ratio.
The power ratio bc(b) is:

—SNR

bc(b) =10 1 . (25)

Step 10 Calculation of actual energy threshold nb(b)
nb(b) =en(b) xbc(b) . (26)

Step 11 Pre-echo control and threshold inquiet.
To avoid pre-echoes the pre-echorcontrol is<calculated for short and long FFT, the
threshold in quite is also considered here:
nb_1(b) is the threshold of partition:b.for the-last block, gsthr(b) is the threshold in
quite. The dB value must be converted into.the energy domain after considering the FFT
normalization actually used.

nb(b) = max(gsthr(b), min(nb(b), nb _1(b) x rpelev)). (27)
rpelev is set to 0 for short blocks and 2 for long blocks.

Step 12 The PE is calculated for each block type from the ratio e(b)/nb(b) , where
nb(b) is the threshold and e(b) is the energy for each threshold partition.

nb(b) .
PE = —log,,(———=) x Bandwidth(b) . 28
for each ;ﬁtion band ° e(b) +1 ( )

Bandwidth(b) represents the width of the partition band.

Step 13 The decision, whether long or short block type is used for encoding is made
according to this pseudo code.
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if PE for long block is greater than switch_pe then
coding_block_type =short_block_type
else
coding_block_type=long_block type
end if
if (coding_block_type==short_block_type) and (last_coding_block_type ==long_type) then
last_coding_block_type =start_type
else
last_coding_block_type =short_type
end if

The last four lines are necessary since there is no combined stop/start block type in AAC.
Switch_pe is an implementation depended constant.

Step 14 Calculate the signal-to-masking ratios SMR(n) .

The index swb of the coder partition called scalefactor band which is the quantization
unit. The offset of MDCT line for the scalefactor band is swb_offser_long/short_window
Define the following variable:

n=swb
w_low(n) =swb_offset_long/short_window(n)
w_high(n) =swb_offset_long/short- windew(n +1) -1
The FFT energy in the scalefactor band -epart(n): Is:
epart(n) = D r(w)? (29)

for each scalefactor band

the threshold for one line of the spectrum in the partition band is calculated according to:

. 3 nb(b)
thr(w _low(b),...,w_high(b)) = w(high(b) — low(0) +1) (30)
the noise level in the scalefactor band on FFT level npart(n) is calculated:
npart(n) = mingthr(w_low(n)),.....,
thr(w_high(n)))*(w_high(n) —w_low(n) +1) (31)
_ epart(n)
SMR(n) = —npart(n) . (32)

The output of the psychoacoustic model is a set of the Signal-to-Masking Ratios, delayed
time domain data used by filterbank, and an estimation of how many bits should be used
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for encoding in addition to the average available bits. Filterbank should use the delayed
data because if the switch decision algorithm detects an attack, short blocks have to be
used for the actual frame, the long block before short block has to be patched to start
block type. The psychoacoustic model Il flow chart is shown in Figure 9:

Input buffer

— }

FFT (long and short)
Long window size 2048 Delay compensation for filterbank
Short window size 256

Calculate unpredictability measure ¢w

Calculate threshold (part 1)

Calculate perceptual entropy

Perceptual entropy > switch pe Y use short block

N use long block l

Calculate threshold (part 2) Calculate threshold for short blocks

v h 4

Delay threshold (ratio), block type, perceptual entropy by one block
Last Window type decision

| I

v v

Output buffer: block type, threshold (ratio), perceptual entropy, time signal

Figure 9: The flow chart of the psychoacoustic model I1.
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Chapter 3 Filterbank

3.1 Filterbank Concept

The time-frequency analysis block is essential to the all audio coders. It extracts
from time-domain input signal some information which is responsible for the encoding
according to perceptual distortion metrics. The filterbank is the component most usually
used for this mapping. And it is a parallel bank of bandpass filters which covers the entire
spectrum. The signal spectrum is separated by the filterbank into frequency subbands.
And then the filterbank generates a time-indexed series of coefficients representing the
local frequency signal power in each band. When used in combination with a
psychoacoustic model, the filterbank is an important element to provide explicit
information about the distribution of signal in order to identify the perceptual
irrelevancies and masking threshold over the time-frequency plane. Simultaneously, the
filterbank generates the time-frequency parameters that provide a signal mapping.
However, the mapping is appropriately:manipulated to shape the coding distortion in
order to match the time-frequency. distribution. of ‘masking power. That is to say, the
filterbank eases psychoacoustic analysis-as well as perceptual noise shaping. And then the
filterbank also aids in the diminution of the redundancies by separating the signal into its
constituent frequency components. A" suitable-filterbank is crucial to the success of a
perceptual audio codecs. Efficient.cading performance relies greatly upon sufficiently
matching the properties of the analysis filterbank to the characteristics of the input signal
[17]. When selecting a filterbank structure [18], the audio coding algorithm designers
meet an important and complicated tradeoff between time and frequency resolution.
Failure to choose an appropriate filterbank can cause perceptible artifacts like pre-echoes.
And the failure also can result in impractically low coding gain and attendant high bit
rates. There is no single optimal resolution tradeoff for all signals. In the strong harmonic
signal like pitch pipe, the most appropriate filterbank must have fine frequency resolution
and coarse time resolution because of the localized frequency masking threshold. On the
contrary, the fast attacks signal like castanets creates highly time-localized masking
thresholds such that the filterbank must have sufficient time resolution.

Actually, there is highly non-stationary and contains significant tonal and atonal
energy in most audio source material, as well as both steady-state and transient intervals.
Signal models [19] are usually deposed to last constant for long periods and then change
abruptly. Therefore, in accordance with the time-frequency signal composition the ideal
coder should make adaptive decisions. Moreover, the ideal analysis filterbank would have
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content-varying resolutions in both the time and frequency domains. Many audio coding
algorithm designers have been impelled by this fact to experiment with switching
decisions occurring on the criterion of the changing signal properties, with switched
hybrid filterbank structures. Filterbanks competes with the analysis characteristics of the
human auditory system, and the most important one of these properties is non-uniform
“critical bandwidth” subbands. Nowadays, filterbanks have proven highly effective in the
coding of highly transient signals such as the castanets or glockenspiel. On the other hand,
the “critical band” filterbanks have been not proper because of their reduced coding gain
relative to filterbanks with a large number of subbands for dense harmonically structured
signals such as the harpsichord or pitch pipe. Thus, signals containing very little
irrelevancy such as the harpsichord particularly need good channel separation and
stopband attenuation. Furthermore, for purposes of maintaining high quality at low bit
rates for these signals, maximum redundancy removal is considerably necessary.
Time-varying filter banks that have blocking artifacts can result in audible distortion of
the reconstruction. Therefore, there are three filterbank types, Pseudo-QMF Filterbank,
Perfect Reconstruction (PR) Cosine Modulated Filterbank, and Pseudo QMF in
conjunction with PR Cosine Modulated Filterbank. The PQMF bank has played an
important role in the evolution ‘of modern audio‘codecs. The ISO 1S11172-3 and
1S13818-3 algorithms (MPEG-1 20} and MPEG-2 BC/LSF [21]) employ a 32-channel
PQMF bank for spectral decompasition in-layers.1-11. The PQMF in conjunction with PR
cosine modulated filterbank, which ‘s-also~called -hybrid filterbank, is used in the
MPEG-1 Layer Il (MP3). The MPEG-2 AAC-and MPEG-4 T/F filterbank use the PR
cosine modulated filterbank. Princen and Bradley [22] first proved the PR in time-domain
to develop the time-domain aliasing cancellation (TDAC) filter bank. Later, the
modulated lapped transform (MLT), which restricts attention to a particular prototype
filter and formulates the filter bank as a lapped orthogonal block transform, is developed
by Malvar[23]. Lately, the modified discrete cosine transform (MDCT) has derived from
the lapped block transform interpretation of this special-case filter bank in the audio
coding literature.

3.2 Filterbank in AAC

MPEG-2 AAC uses the MDCT filterbank as shown in Figure 10 to transform the
input signal from the time domain to frequency domain. The MDCT is a linear
orthogonal lapped transform, derived from the foregoing TDAC [22][24]. The concept is
using the overlap-add (OA) procedure that a single block after the IMDCT does not
correspond to the original block that the MDCT is performed. However, the subsequent
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blocks of inverse transformed data is added, the errors introduced by the transform would
cancel out. The direct MDCT and inverse MDCT are defined as:

2N -1
7= a cos{;r[k+(N +1)/2)(r +1/2)}

k=0 N , (33)
r=0,...,N-1

2N-1

5 -2 3 o, cosfr [k+ (N +1)/2](r +1/2),

N \ ! (34)
k=0,.,2N -1
and
a, =a xh,, (35)

where the a[n] is a input time domain signal of 2N samples and the h, is a window

function satisfying the constraints of perfect reconstruction as:

hn = hZN -1-n (36)

=1, (37)

Frame k Frame k+2
| M | M | M M |

| 2M | piMpcT | M|
L 2M f———{MpcT | M ]
[ M ivocr = M ]

Figure 10: Illlustration of the forward MDCT filterbank (by Princen [22]).

MDCT filterbank contain four window types for different demands. Long window is
designed for the high frequency resolution, and oppositely short window is for the high
time resolution. Start window and stop is designed for the transition between the long and
short windows in order to the PR property. Finally according to the result of the
psychoacoustic model, MDCT filterbank can obtain a window type to perform MDCT. In
the MPEG AAC, the sine function is most popularly used for the window function as :
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h, = sin(z k+1/2

)
fork =0,....2N -1

(38)

Another choice is the Kaiser-Bessel derived (KBD) window [16][21] which achieves
considerably better stopband attenuation than sine window. KBD window is defined as

> Iw(n,a)]

WKBD_LEFT,N (n) = |72

2 w(pa), (39)

p=0

for0£n<E
2

> w(n,o)]

WKBD_RIGHT,N (n)= N/2

Z [W(p, @)} (40)
forE <n<N
2
and
|o[m\/1.o—(”‘ N/4y:1
W (n) = N /4
l,[7] . (41)
for0<n< E
2
where
(]
= |2
WNEDY T (42)

o = kernel window alpha factor, «a =4 for N=2048 and « = 6 for N=256.
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Figure 11: Examples of SIN and KBD windows.

Figure 11 shows the different curves of SIN and KBD windows in a long block type.

3.3 Filterbank in MP3

In MP3 as illustrated in Figure 12, the encoder system uses the hybrid filterbank
composed of the polyphase filterbank and MDCT filterbank

Subband 0 MDCT » —>
o — ~ —» MDCT S I e
= Window " SN ) RN
P X =g
‘"M audi o Subband 1 MDCT > = = —>
a ?Iipr‘k:;dlo _GE" — ”|_ Window gl i e
— > ? i\ g E _g )
7 8 &
2 =z
= R
c | Subband 32 MDCT < S—»
< ——P . ) » MDCT > — >
Window q Py
window select — long or short
normal, start, short, or stop block control

Figure 12: Illustration of the hybrid filterbank.

The polyphase filterbank is used to perform the analysis subband filter which will
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transform the input signal to the 32 equally spaced subbands fs/32, where fs is the

sampling frequency. The polyphase filterbank can be illustrated though the flow chart
illustrated in Figure 13. Shift the 32 new input samples into the buffer x[i] with length

512.

The total process can be combined into the following formula:

and

BEGIN

¥

for i=511 downto 32 do
X[i]=X[i-32]

¥

for i=31 downto 0 do
X[i]=next_input_audio_sample

Y

Window by 512 Coefficients
Produce Vector Z
for i=0 to 511 do Zi=Ci*Xi

Y

Partial Calculation

.
fori=0do63doYi= Y Zi+ ey
70

Y

Calculate 32 Samples by
Matrixing

63
for i=0 do 31 do Si = ZMik « Yk
k=0

1]

Output 32 Subband
Samples

\

END

Figure 13: Analysis subband filter diagram.

s[i]= fi M[i1[k]x (C[k + 64i]x X[k + 64i])

21
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MTi][k] = cos[

(2i +1) x (K —16) x 77

1.

64

(44)

After the polyphase filterbank transforming the PCM data into 32 equally spaced
subbands, 18 consecutive output values of one granule and 18 output values of the
granule before are assembled to one block of 36 samples which will pass through the
MDCT filterbank in order to promote the frequency resolution. As MPEG-AAC, the
MDCT filterbank has same properties except supporting the KBD window. Due to
properties of the polyphase filterbank, the each neighbor subband has obvious overlap
area which will affect the two subbands. For purpose of the reducing this aliasing, the

spectral lines in the overlap area will need some modifications as below Figure 14:
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Figure 14: Aliasing butterfly.

The ca, and cs, are also defined in MP3 standard [10].
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Chapter 4 Efficient Psychoacoustic Model

4.1 Efficiency psychoacoustic model based on the

filterbank

Psychoacoustic model 11 uses the FFT to obtain the spectrum and estimate the
masking threshold. However, the MDCT transform in AAC is used to get another
spectrum for bit allocation and quantization. The two spectrum analysis for FFT and
MDCT in AAC cause computation redundancy and require energy calibration of masking
threshold used in bit allocation. Moreover, the inter-frame unpredictability to compute the
tonality of each band in psychoacoustic model Il requires high computing effort. The
efficient psychoacoustic model proposed in this thesis directly uses the coefficients of the
MDCT to get the spectrum and hence leads to the merits in complexity. Furthermore, the
complicated unpredictability method in conventional psychoacoustic model is replaced
by the flatness method to reduce both compléexity: and memory.

4.1.1 MDCT Psychoacoustic Model

In MPEG-4 AAC illustrated. in Figure-15;the pSychoacoustic model can obtain a
copy of time signal, and then perform FFT in order to get the spectral information to
calculate masking thresholds. Last, the masking ‘thresholds will pass to the other encoding
components like M/S coding, bit reservoir, and bit allocation.
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Figure 15: MPEG-4 AAC diagram.

However, this process will cost considerable computation. Thus, the psychoacoustic
model based on the filterbank is addressed in Figure 16.
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Figure 16: Efficient Psychoacoustic Model Diagram.

Figure 16 shows that the psychoacoustic model can use the spectrum from MDCT instead
of the FFT. Nevertheless, using the MDCT spectrum instead of the FFT spectrum must
confirm that the two output values have the same meaning as shown in Figure 17.
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Figure 17: Illustration of two transform result where:horizontal axis means the 1024
spectral lines and vertical axis ' means.the magnitude in dB domain.

In [25], a relationship between MDCT and DFET via shifted discrete Fourier transform
(SDFT) is established. The SDFT is a generalization of the DFT allowing a possible
arbitrary shift in position of the samples in the time and frequency domains with respect
to the signal and its spectrum coordinate system, which is defined as:

2N-1
SDFT,, =a = Y a, explizz DI #V)y (45)
‘ koo 2N
2N-1
v v o (k+u)(r+v)
ISDFT =a''=— exp[-i27z ~—F——17].
u,v r 2N kZ:(:) ak p[ T 2N ] (46)

where u, v represent arbitrary time- and frequency- domain shifts. And it provides a
possible fast implementation of MDCT employing a fast Fourier transform routine. And it
has proven that the MDCT is equivalent to the SDFT of a modified input signal as:

. a, —a k=0,..,N-1
4, :{ Kk~ ANk

a +a,,, k=N,.,N-1' (47)
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a areIMDCTeoefficietsof ., and a,_=h,a,, a, isoriginal timesignal. Thus, the SDFT

will be
C1RS [k+(N +1)/2](r+1/2)}
Therefore, the MDCT coefficients «, can be represented as:
a, = reaI‘{SDFT(N +1)/2,1/2(ak )} (49)
And then, the SDFT y,,,,,, C€an be expressed by means of the conventional DFT as:
2N-1
Z expli2r [k+(N+1)/2](r +1/2)}
koo 2N
Sy (N+DR N +1 (50)
_{z [a, exp(|27z—)]exp(|27z—)}>< exp[|27rT] exp(iﬂw)
k=0

Last, SDFT .1/, IS the convéntional DET of this signal shifted in the time domain

by (N+1)/2 of the sampling ‘interval and evaluated with the shift of one-half the
frequency-sampling interval. Although the-MBCT filterbank is considerably similar to
FFT, the output of MDCT filterbank still.has.a-problem that is the lost of the imaginary
information. In the foregoing psychoacoustic model II, the unpredictability measure
needs the two information including the magnitude and phase. Therefore, the spectral
flatness measure is appropriately applied to the MDCT psychoacoustic model due to the
lost imaginary information.

4.1.2 SFM Tonality Decision

The unpredictability in conventional psychoacoustic model Il needs great space to
store old information in order to estimate the tonality. Replacing by the spectral flatness
measure can save the space for storing and computational time of per spectral line
calculation in unpredictability because the psychoacoustic model uses the unit in terms of
the partition band rather than spectral line. The SFM is defined as:

N-1 N -

1
=[x~ . AM, =%in (51)

b i=0 i=0

LN

flatness, =
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and the constrain 0 < flatness, <1.
If the flatness, equal to 1, this means that all the equivalent x; representing noise as

shown in (a). Oppositely, if the flatness, approaches to 0, x; varies much more as

(b), which is so-called tone.

(L B T M B

Figure 18: (a) Illustration of the noise signal. (b) IHlustration of the harmonic signal.
Thus, using SFM instead of the-unpredictability can-speed up the efficiency and save
storing space.

In the original SFM in [26], the tonality-is that flatness is divided by a constant
either bigger or smaller. And, the tonality will be one if the flatness is bigger than the
constant. This thesis uses thresholds to separate the flatness into different intervals. And
then, different intervals will be divided by the different constants for purposes of
enhancement of the characteristic of the flatness. This is because if the flatness
approaches to zero more, it tends to represent noise. On the contrary, if the flatness
approaches to one more, it tends to represent tone.

4.1.3 Calculate SMR

The offset stated in Chapter 2 has divided into two parts : TMN, NMT which are
used to form the signal-to-masking ratio (SMR) in the current coders. However in the [8]
[9], the two offsets still keep constant for all bands. But the high frequency is insensitive
for human auditory system such that the masking effect is stronger than the low frequency.
Moreover, the bandwidth is narrower in the low frequency such that the wider tone will
be ignored. Therefore, a non-fixed masking offset is addressed, which depends upon the
bandwidth to modify the offset as shown in Figure 19.
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Figure 19: Adaptive offset control. Horizontal axis means band number and vertical axis
represents the modification offset in dB.

4.2 Detection of Tonal Signal

Time domain attacks can be detecte& in ﬂfae ‘conventional psychoacoustic model.
However, the frequency domain artacks are] a}‘lso essentlal for the audio coder. First, the
tonal signal can make window. swntch aVbl!_ error swnchlng due to poor frequency
resolution. Second, in the strong harrqomc 3|gnals the tonal signal also can make bit
allocation use less scale factor blts ln orde’ro‘t_&ﬂo_cate ‘more bits for Huffman coding.

4.2.1 Detection of Tonal Atta(:,i{' Band

In Subsec4.1.2, the tonality represents the degree of tone in this band. If detecting
the tonality over a threshold, the band is deemed as a tonal attack band.

Figure 20: lllustration of peak signal at 1k.
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Figure 21: lllustration of the result of the tonal attack detection. x-axis means the
quantization band and y-axis means the tonal attack band flag.

In the tonal attack band detection, a peak signal at 1k as shown in Figure 20 can be
detected as tonal band in the corresponding band as shown in Figure 21.

Figure 22: lllustration of the tone-rich signal.
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Figure 23: Example of tone-rich signal. x-axis means the quantization band and y-axis
means the tonal attack band flag.

Figure 22 shows the frame has strong harmonic signals which can result in many tonal
attack bands. Therefore as concerned as the whole spectrum, it has considerable tonal
attack bands representing tone-rich signal as shown in Figure 23.

4.3 Experiments

The experiments can be separated into-two-parts:according to the foregoing sections.
First, the efficiency is to test the computation time of psychoacoustic model and the
encoding time in different psychoacoustic models. Second, the quality test is always the
critical issue in audio research on the experiments to.prove the quality improvement. This
thesis conducts the experiments on‘three hundred critical tracks and checks the possible
risk through the Objective Difference ‘Grade (ODG) developed by Recommendation
ITU-R BS.1387 [27] in addition to the subjective measure. The result of ODG ranges
from O to -4, where the value 0 corresponds to an imperceptible degradation and -4 to a
degradation judged as very annoying. The result value is negative, because the quality of
the Signal Under Test (SUT) is assumed to be worse than Reference Signal (RS). Also,
the new efficient model has been extensively tested on the various coding combination
like M/S coding, TNS coding, and bit rates. In the following test results, we use P4
representing the proposed efficient psychoacoustic model, and P1 representing the
conventional psychoacoustic model Il in Chapter 2.

First, we use a general performance testing tool Intel vTune 7.0 to test the
psychoacoustic computational time.

Table 2: The psychoacoustic computational time in NCTU-AAC.

1 2 3 4 5|Average |Speedup (%)
P1 | 30.240] 29.660| 29.750| 29.960 27.750( 29.472 72.58
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P4 8.570| 8.940| 8.000f 7.310[ 7.590( 8.082
The Table 2 is running 5 times each different psychoacoustic model incorporating with
other encoding components. Obviously, the proposed model can speed up the coding
efficiency 72% more than P1. In conclusion, the proposed model can dramatically
improve the coding efficiency.

The encoding time is shown in Table 3 testing in NCTU-AAC.

Table 3: Encoding time for NCTU-AAC.

NCTU-AAC (Esr)md'ng UMe | eedup for P4

FileName Length |P1 P4 Percentage (%)

es01 02:51 26 19 26.92
es02 02:17 19 14 26.32
es03 04:03 36 27 25.00
sc01 02:55 22 18 18.18
sc02 03:23 28 23 17.86
sc03 03:04 27 23 14.81
si0l 04:47 S5 36 7.69
si02 03:05 30 26 13.33
si03 05:34 49 45 8.16
smO01 04:27 38 35 7.89
sm02 02:01 18 16 11.11
smO03 04:11 38 34 10.53
Average 30.83[ 26.33 14.59

This proposed model can speed up the total encoding time by 14.59% compared with that
based on P1 model. Moreover, Table 4 summarizes the encoding time using the different
model incorporating M/S coding, window switching, TNS coding, and Bit Reservoir.

Table 4: The encoding time of encoder incorporating M/S coding, window switching,
TNS coding, and bit reservoir.

Encoding time
(s)
FileName Length |P1 P4 Percentage (%)

NCTU-AAC Speedup for P4
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The proposed psychoacoustic model also provides a complexity gains by 14.56% for P1.
Figure 24 shows the NCTU-AAC in P4yprovides, a complexity gains by 20% for

esO1 02:51 23 17 26.09
es02 02:17 14 10 28.57
es03 04:03 27 19 29.63
sc01 02:55 23 19 17.39
sc02 03:23 29 24 17.24
sc03 03:04 28 25 10.71
si0l 04:47 42 38 9.52
si02 03:05 29 25 13.79
si03 05:34 54 50 7.41
smO01 04:27 42 37 11.90
sm02 02:01 18 16 11.11
sm03 04:11 42 37 11.90
Average 30.92( 26.42 14.56

QuickTime 6.3 [28] and 18.37% for Nero 6°[29].

Second, testing tracks are most generally used to test the audio coding quality is the

70.00
60.00
50.00

40.00

(s)

30.00
20.00
10.00

0.00

Encoding Time in different coders

L |@QT
B Nero
ONCTU-AAC in P4

Figure 24: Illustration of the encoding time in different coders.

MPEG44100 set bitstream is the 44100 Hz version of MPEG set bitstream.

Table 5: MPEG12 44100 Test songs.

Track

Time

Signal description

1

10

es01

vocal (Suzan Vega)

Speech signal
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2 8 |es02 German speech

3 7 |es03 English speech

4 10 |sc01| Trumpet solo and orchestra

5 12 |sc02 Orchestral piece

6 11 |sc03| Contemporary pop music | Complex sound mixtures
7 7 |si01 Harpsichord

8 7 |si02 Castanets

9 27 |si03 pitch pipe Single instruments
10 11 |smO1 Bagpipes

11 10 |sm02 Glockenspiel

12 13 |sm03 Plucked strings Simple sound mixtures

First, at 128kbps bit rate the quality test result is shown in Figure 25:

es0l  es02 es03 scOl  sc02 sc03 si01  si02 03 smOl sm02 smO3

Pl
P4

Figure 25: ODG at 128 kbps.

The P4 can get better quality than the conventional psychoacoustic models in the speech
signal and single instrument and simple sound mixtures. Nevertheless, in the complex
sound mixtures the ODG quality is equal to the P1 model. Second, at bit rate 112kbps
result is Figure 26.
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Figure 26: ODG at 112k.

The same result as that at 128kbps, P4 at 112kbps is much better than another model
especially in speech signals and single instrument environments. At low bit rate 96k is as
below Figure 27, the total quality degrades éeriously in the low bit rates 96k but P4
obtains better quality than others even in complex sound mixtures.

es0l  es02 es03 scOl sc02 sc03 si01  si02  si03 smOl sm02 smO3

0B
05 H

1 H

15 H

21 @pl
25 H P4
3 H

35

Figure 27: ODG at 96k.

The average, best, and worst of the above tests is shown in Figure 28. Consequently, P4
in different bit rate can also obtain the better grades. Moreover, P4 can enhance the
quality 0.30 than P1 in the 112k bit rate.
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Figure 28: Illustration of the results in different bit rate in different model.

Besides the above MPEG 12 songs, we also test the three hundred critical tracks as below
Table 6.

Table 6: Three hundred critical tracks.

Categories Remark
1 |ff123 103 |Killer:bitstreamrcollection from ff123
2 |gpsycho 24 |LAME quality test bitstream collection

3 |HA128KTestV2 |12 |64 Kbps test bitstream for multi-format in HA forum

4 |HAG4KTest 39 128 Kbps test bitstream for multi-format in HA forum

5 |horrible_song 16 |Collections of killer songs among all bitstream in PSPLab

Bitstream collection from the test of OGG Vorbis pre 1.0 listening

6 |ingetsl 5
test
7 |Mono 3 |Mono test bitstream
8 |MPEG 12 |MPEG test bitstream set for 48KHz

9 MPEG44100 12 |MPEG test bitstream set for 44100 Hz
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10 [Phong 8 |Test bistream collection from Phong

Collections of bitstream from early age of PSPLab. Some are good

11 |PSPLab 37 )
as killer.
12 |sjeng 3 |Small bitstream collection by sjeng
13 [SQAM 16 |Sound quality assessment material recordings for subjective tests

14 [TestingSongl4 |14 [Test bitstream collection from rshong

] Acrtificial bitstream that contain sin wave etc speciailly made
15 [TonalSignals 15 | . .
bitstream to probe quality of encoder

16 |VORBIS_TESTS|8

The different psychoacoustic models are tested for above tracks in NCTU-AAC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aPp1
B P4

-2.5

3.5

Figure 29: Different psychoacoustic models in three hundred critical tracks.

The proposed model in whole averages ODG can gain 0.04 than P1.
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Chapter 5 Psychoacoustic Model based on Energy

Floor

5.1 Masking Threshold Alignment

Conventional psychoacoustic model uses two masking offsets NMT and TMN to create
the signal-to-masking ratio. However, the TMN offset actually overestimate the tone
masking effect especially for tone-rich signals which will result in so-called fishy noise or
birdie noise as shown in Figure 30.

(higinal spectiun

AR T T o ol

Reconstiucted spectium using conventional psychoacoustic model

Figure 30: Illustration of fishy noise caused by the overestimation of masking threshold
in conventional psychoacoustic model.

Figure 30 shows that the noise between two tones is disappear after reconstruction due to
the overestimation of masking threshold. In fact, the noise is critical to human auditory
system. Therefore, the proposed concept derives from another perspective of tradition
energy calculation for the partition bands by the formula:

PM _ MaskingThreshold,
PM _ Energy,

Masking _ Quantization, = x Energy _ Quantization, (52)

However, the formula will result in the overestimation masking in the case of
harmonic-rich signals as shown in Figure 31.
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| ¥ i MIasking threshold

Figure 31: lllustration of the energy floor definition.

Because PM _ Energy, = AM, x Bandwidth, and the masking effect of the noise is

much stronger than tone, using AM, to calculate the masking threshold will cause the

overestimation of the energy which leads to an overestimation on the masking threshold
due to the alignment between the signal in filterbank domain and the psychoacoustic
model through the energy. The overestimation leads to noise generally referred to as the
fishy noise or birdie noise [30].

Therefore from the viewpoint of energy floor, the'masking threshold can be described as:

Masking _ Quantization, = MSR, x'Energy -Quantization,, (53)

Masking _ Quantization, = Energyfloor,x-Bandwidth, x NoiseMasking,, , (54)
=6

MSR, =101 Energyfloor, (55)

ArithmeticMean,

Nevertheless in the low frequency, the bandwidth is very narrow such that the energy
floor can result in error estimation as shown in Figure 32. So, the masking must have a
constraint on maximum noise masking -6dB.

L

————— Average
]
Energy Floor

Hiim)

Figure 32: Illustration of the energy floor problem.
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5.2 Energy floor

In Section 5.1, just employing the masking threshold of energy floor promises that
the noise can not be masked. Therefore, this section focuses on the estimation of energy
floor.

5.2.1 Smoothing

The thesis proposes an efficient energy floor estimation based on the smoothing and
average as below:

1 i+Smooth _ Length/2-1

% = D% (56)

X
i
SmOOth — Length k=i—Smooth _ Length/2

where Smooth_ Length means the length of the smoothing process and X, means the
I, spectral line. And then,

Energyfloor, = (57)

BandWldthb for each partition band

As a result of the smoothing, the:each spectral“line will be smooth with neighbor lines.
For example, a peak located in noise after the process of smoothing will be lower such
that attendant average is more meaningful to represent the energy floor.

5.2.2 Recursive filter

[31] proposes a simple first-order recursive filter which is able to estimate the
energy floor. A simple first-order recursive filter is designed as:

X =axX ,+1-—a)xx. (58)

And then,

A

DR (59)

Energyfloor, = —  x
BandWIdthb for each partition band

5.2.3 Geometry Mean filter

1 N-1
Energyfloor, = Ba”dWid“}b/HXi (%0)
i=0

IS a conservative estimation of energy floor which can validly degrade the strong peak
signal. For example, Figure 33 shows the different methods for estimation of the energy
floor.
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Energy floor

1200

1000

800 — Original Signal

— Smoothing

600 — Recursive filter alpha =0.7

Magnitude

~—— Recursive filter alpha = 0.9
— Geometry Mean filter

400

200

0
1 4 7 10 13 16 19 22 25 28 31 34

Spectral lines in a quantization band

Figure 33: Illustration of estimations in the energy floor.

5.3 Detection of Tonal signal

Based on the energy floor, the |
frequency domain as Sec4.2. ;

istic model also can detect attacks on the

5.3.1 Detection of Tonal :

SMR, = Signal,,

~ Masking, (61)

The SMR, represents the degree of tone in the band. Therefore if this value is greater

than a threshold, the band can be deemed as a tonal attack band as Subsec4.2.1.

Figure 34: The peak signal at 2k.
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Figure 34 shows the peak signal at 2k and detection result of tonal attack band is Figure
35.

Tonal Attack Bands

0.6 O Tonal Attack Bands

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Figure 35: The detection of tonal attack band. x-axis means the quantization band and
y-axis means the tonal attack band flag.

5.3.2 Detection of Tone-Rich:Signal

Detection of tone-rich signalsiis similar to Subsec4.2.2. If the number of tonal attack
bands in whole spectrum is over a threshold, the signalis deemed as a tone-rich signal.

5.4 Experiment

We use P1 representing conventional psychoacoustic model 11, P4 representing
proposed method in Chapter 4, and P5 representing psychoacoustic model based on
energy floor. Tests in NCTU-MP3 is shown in the following Table:

Table 7: The computation time for NCTU-MP3.

Speedup over
NCTU-MP3 1 2 3 4 S|Average P1 (%)
P1 19.22| 19.58 19.39| 19.21] 19.55| 19.39
P4 145 14.91] 12.53| 13.08| 13.32| 13.668 29.51%
P5 6.77| 6.97 6.25| 6.65 6.61 6.65 65.70%

Table 7 shows the result of this proposed psychoacoustic model applying to NCTU-MP3
compared with P1 and P4. From the table, the P5 can lead to complexity gain 65.7% over
P1 and 51.35% over P4. We also test the encoding time in the NCTU-MP3 as

Table 8: Encoding time for the NCTU-MP3.
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NCTU-MP3 Encoding time (s) P4 Speedup |P5 Speedup

. Length Percentage |Percentage
File Name P1 P4 P5

(%) (%)

EsO1 02:51 16 15 14 6.25 12.50
Es02 02:17 12 11 10 8.33 16.67
Es03 04:03 24 22 19 8.33 20.83
Sc01 02:55 17 16 13 5.88 23.53
Sc02 03:23 20 19 16 5.00 20.00
Sc03 03:04 19 18 15 5.26 21.05
si0l 04:47 32 28 24 12.50 25.00
si02 03:05 21 20 16 4.76 23.81
si03 05:34 39 36 30 7.69 23.08
Sm01 04:27 32 28 24 12.50 25.00
Sm02 02:01 14 13 11 7.14 21.43
SmO03 04:11 29 27 23 6.90 20.69
Average 22.92| 21.08] 17.92 7.55 21.13

The P4 can gain 7.55% over P1. Moreover, the P5.can‘gain 21.13% more than P1. In
conclusion, the proposed method-¢an dramatically speed up the psychoacoustic model
calculation in the different coders:

We also test the quality of the proposed psycheacoustic model in the NCTU-MP3 as:

es0l es02 es03 scOl sc02 sc03 si01  si02 03 smOl sm02 sm03
0.00

-0.50 F

-1.00 |

LS50 F mps

-2.00
ops

-2.50

-3.00

-3.50

NCTU-MP3 128k, cbr

Figure 36: ODG test for the three psychoacoustic models under the NCTU-MP3.

The proposed psychoacoustic model still can get better quality. In Figure 36, the encoder
based on P4 can have quality gain 0.08 over that based on P1, and furthermore the P5 can
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have a gain 0.1 over P1.

We also test the proposed psychoacoustic model in NCTU-AAC as illustrated in Figure
37. the encoder based on P5 can gain 0.05 over that based on P1 in three hundred tracks.

0

-0.5

-1

-1.5

2

2.5

-3

-3.5

5 6 7 8 9 10 11 12 13 14 15

16

Il

aPp1
W P4
aps

Figure 37: Three 'hu'hdred tracks tested in NCTU-AAC.

Number

Compared to P1 in three hundred critical tracks

P4 gain>0.2

P4 degrade > 0.2 P5 gain>0.2 PS5 degrade >0.2

Psychoacoustic Models

x-axis in Figure 38 means the number of the model is 0.2 better or worse than P1. y-axis

Figure 38: Compared to P1 in three hundred tracks.

means the different psychoacoustic models.

44




Chapter 6 Conclusion

This thesis has proposed an efficient psychoacoustic model which can reduce the
computation complexity by replacing FFT with filterbank and using SFM tonality
decision. However, the thesis also addressed the detection of tonal signal. Moreover from
aspect of the energy floor, this thesis only uses noise masking effect to calculate threshold
which can effectively reduce the fishy noise problems. Finally, we have implemented this
proposed psychoacoustic model in NCTU-AAC and NCTU-MP3 integrated with M/S
coding, TNS coding, window switching, and bit reservoir. And, the speedup of the
psychoacoustic model can achieve 70% in AAC and 65% in MP3. The quality has also
improved by 0.2 in AAC and 0.1 in MP3 compared to the conventional psychoacoustic
model.
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