

國立交通大學

資訊工程學系

碩 士 論 文

以物件為基礎監控視訊內容之追蹤與摘要

Object-Based Video Tracking and Abstraction on

Surveillance Videos

 研 究 生：郭慧冰

 指導教授：李素瑛 教授

中 華 民 國 九 十 三 年 六 月

以物件為基礎監控視訊內容之追蹤與摘要

Object-Based Video Tracking and Abstraction on

Surveillance Videos

研 究 生：郭慧冰 Student：Hui-Ping Kuo

指導教授：李素瑛 教授 Advisor：Prof. Suh-Yin Lee

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis Submitted to
Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 i

以物件為基礎監控視訊內容之追蹤與摘要

研究生：郭慧冰 指導教授：李素瑛

國立交通大學資訊工程學系

摘要

影像內容摘要是藉由擷取影像資料之中的重要涵義來精簡地表示影像資料之重要

的內容。而在監控視訊，我們可以用以物件為基礎之視訊摘要來表達物件所發生的事件

與其代表重要的意義。因此，在視訊監控系統如智慧型運輸系統，物件為基礎之視訊摘

要可以用來對物體所發生之重要事件發出警訊。此外，視訊內容摘要也可以幫助我們從

監控視訊影像的資料庫中取得與管理重要的內容。在這篇論文中，我們提出了一個以物

件為基礎之監控視訊之影像內容追蹤與摘要的系統。首先，我們使用以背景作為參考之

動態物件切割演算法把運動物體從背景中分割出來。接著，我們使用一個簡單但有效的

動態物件追蹤演算法得到運動物件的軌跡與特徵。最後，我們設計了一個藉由選取代表

著重要影像內容的動態物體來產生影像內容摘要的演算法。我們用此演算法來產生以物

件為基礎之影像內容摘要。

我們藉由展示出我們所選取到具有代表性意義與事件的物件來證明我們提出的系

統的成效。根據所提出的系統架構，我們實作了一個能夠線上發出警訊之即時影像監控

 ii

系統。在這個系統中，我們可以藉由所產生的內容摘要即時地對重要的事件發出警訊並

且同時對監控影像中的物體做即時的追蹤。我們測試了一些不同類型的監控視訊影像的

片段，而實驗結果證明，我們的系統在物件內容之追蹤與在重要物件內容之摘要都得到

滿意的結果。

 iii

Object-Based Video Tracking and Abstraction on Surveillance

Videos

 Student: Hui-Ping Kuo Advisor: Prof. Suh-Yin Lee

Institute of Computer Science and Information Engineering
National Chiao Tung University

Abstract

Video abstractions represent the video contents concisely by extracting the important

semantics in the video. Important events and semantic meanings of moving objects in the

surveillance videos can be represented using the object-based video abstractions. Therefore,

the object-based video abstractions can be used to alarm important events in the surveillance

and monitoring systems like the intelligent transportation system (ITS). Besides, the video

abstractions can also help retrieving and managing important contents from the surveillance

video database. In this thesis, we propose an object-based video tracking and abstraction

system. First, we use a background-registration segmentation algorithm to segment the

moving objects. Then, a simple but effective tracking algorithm is introduced to extract the

object trajectories and object features. Finally, an abstraction algorithm is applied to generate

object-based abstraction by selecting key objects which contain important semantic contents.

We will reveal the performance of the tracking and abstraction algorithms by showing the

results of extracting objects with representative features and events such as object

appearance/disappearance, objects occlusion/split and changes in motion. We will present a

real-time tracking system with on-line alarming to demonstrate the implemented system. In

 iv

this system, important object events will be alarmed using the generated object-based

abstraction on-line while the surveillance video is being tracked in real-time. We test our

system with several surveillance video sequences and the experimental results prove that we

can get satisfactory results in both the object-based tracking and abstraction.

 v

Acknowledgement

I sincerely appreciate the guidance and the encouragement of my advisor, Prof. Suh-Yin

Lee. She encouraged me in exploiting research topics freely and enthusiastically helped me.

Without her, I cannot complete this thesis.

Besides, I would like to extend my thanks to the lab mates in the Information System

Laboratory, especially Mr. Duan-Yu Chen and Mr. Ming-Ho Hsiao. They gave me a lot of

suggestions and shared their experience.

Finally, I want to express my appreciation to my parents for their support. They gave me

the opportunity to have good education. This thesis is dedicated to them.

 vi

Table of Contents

Abstract in Chinese i
Abstract in English iii
Acknowledgement v
Table of Contents vi
List of Figures viii
List of Equations x
List of Tables x
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Organization 2
Chapter 2 Background 3
 2.1 Video Object Segmentation 3
 2.2 Video Object Tracking 4
 2.3 Video Abstraction 5
Chapter 3 Object-Based Video Tracking and Abstraction on Surveillance Videos 7
 3.1 System Overview 7
 3.2 Video Object Segmentation Algorithm 7
 3.2.1 Inter-frame Differencing 10
 3.2.2 Dynamic Threshold Decision 10
 3.2.3 Background Buffer Update 12
 3.2.4 Background Buffer Differencing 12
 3.2.5 Morphological Operation 14
 3.2.6 Connected Component and Size Filtering 15
 3.3 Video Object Tracking Algorithm 16
 3.3.1 Matching Function 18
 3.3.2 Object States 21
 3.3.3 Objects Matching Algorithm 24
 3.3.3.1 Occluded Objects Matching 25
 3.3.3.2 Split Objects Matching 26
 3.3.3.3 Estimated Objects Matching 28
 3.3.4 Temporal Filtering 30
 3.4 Video Abstraction Algorithm 32
 3.4.1 Object State Analysis 33
 3.4.2 Object Trajectory Analysis 34
 3.4.3 Video Abstraction with Selected Key Objects 34
Chapter 4 System Architecture and Experiment Result 36

 vii

 4.1 System Architecture Overview 36
 4.2 Experimental Results of the Video Object Segmentation 37
 4.3 Experimental Results of the Video Object Tracking 44
 4.4 Experimental Results of the Video Abstraction 50
 4.5 Integrated System for Real-Time Video Object Tracking and

 On-Line Alarming 56
Chapter 5 Conclusion and Future Work 58
Reference 60

 viii

List of Figures

Fig.1 Segmentation process diagram 9
Fig.2 The histogram of a difference image 11
Fig.3 The cumulative histogram and the interpolated lines 11
Fig.4 The process diagram of the tracking algorithm 16
Fig.5 Illustration of the Motion Vector Distance 19
Fig.6 Pseudo code of the matching function 20
Fig.7 The state transition of the OBJ_STATE 21
Fig.8 The state transition of the OCC_STATE 22
Fig.9 The process of the whole matching algorithm 24
Fig.10 The relationship of occlusion objects 25
Fig.11 The occluded objects matching process 26
Fig.12 The relationship of split objects 27
Fig.13 The split object matching process 27
Fig.14 The condition that estimated object is appended 29
Fig.15 The estimated objects matching process 29
Fig.16 The path of the mass center of a walking person 31
Fig.17 The abstraction algorithm 33
Fig.18 The trajectory analysis and key object selection process 34
Fig.19 The key object exporting process 35
Fig.20 System architecture overview 36
Fig.21 Result comparison when combining chrominance channel 37
Fig.22 Result compassion of the morphological operation 38
Fig.23 Segmentation results of the clip speedway 38
Fig.24 Segmentation results of the clip hall monitor 38
Fig.25 Segmentation results of the clip ETRI_A 39
Fig.26 Segmentation results of the clip ETRI_B 40
Fig.27 Segmentation results of the clip ETRI_C 41
Fig.28 Tracking results of the speedway sequence 44
Fig.29 Tracking results of the ETRI_C sequence 45-46
Fig.30 Tracking results of the ETRI_B sequence 47
Fig.31 Selected key objects for the detected occlusion event 50
Fig.32 Selected key objects for the detected split event 50
Fig.33 Selected key objects for the ETRI_B sequence 51
Fig.34 Selected key objects for the ETRI_B sequence 51
Fig.35 Parts of the abstraction of the ETRI_C sequence 52
Fig.36 Parts of the abstraction of the hall monitor sequence 53

 ix

Fig.37 Parts of the abstraction of the speedway sequence 54
Fig.38 Interface of the integrated system 56

 x

Lists of Equations

Equation 1 Compute the Difference Image 10
Equation 2 Apply the Threshold on Difference Image 10
Equation 3 Update Background Buffer 12
Equation 4 Update Background Buffer 12
Equation 5 Compute the Weight of the Chrominance Channel 13
Equation 6 Compute the Weight of the Chrominance Channel 13
Equation 7 Compute Difference with a Weighted Sum 13
Equation 8 Compute the Background Difference Image 13
Equation 9 Apply the Threshold on Background Difference Image 13
Equation 10 Compute the Cosine of the Included Angle 19
Equation 11 Compute the Motion Vector Distance (MVD) Value 19
Equation 12 Definition of the Precision 42
Equation 13 Definition of the Recall 42

List of Tables

Table 1 Statistics of Segmentation Result 42
Table 2 Statistics of the Tracking and Detecting of Occlusion Events 48
Table 3 Statistics of the Tracked Trajectories 48
Table 4 Statistics of the Abstraction 55

 1

Chapter 1

Introduction

1.1 Motivation

In recent years, the video technology has advanced surprisingly. Because of the maturity

of the digital video processing techniques and the compression standards, applications of

digital video were widely adopted, for example, the video surveillance systems and stream

media applications. However, with the traditional video encoding standard such as MPEG1

and MPEG2, it is difficult to manage and retrieve the important content or content of interest

efficiently when the amount of video data repository is very huge. Thus, it is essential to

manage the video content to enhance the value and the usability the produced video data.

Fortunately, in the MPEG 4 encoding standard, a new feature Video Object Plane (VOP)

was introduced. The concept of VOP is that video sequences can be encoded into separate

bitstreams according to the contents of the video, such as moving object and background.

Thus, we can segment video frames into some semantically meaningful video objects and

encode these video objects separately. This feature allows us to manage and retrieve the

object-level information easily and thus provides higher level semantics and interactivity.

Especially in the surveillance videos, because the moving objects are the most important

contents, the benefits of extracting object-level information can be fully exploited.

To represent the important contents in the video concisely, the video abstraction is

usually used. The video abstraction helps us to retrieve the important contents in the video. In

the traditional methods, the abstraction is usually generated by extracting key frames with

representative features. Since the moving objects are important in the surveillance videos, we

can use object-based abstraction and the key frames can be extracted by extracting significant

 2

key objects. Because the abstraction is object-based, object-level semantics or events can be

represented.

The object-based video abstraction can be further applied to the surveillance systems

such as the Intelligent Transportation System (ITS). The abstraction can be used to alarm

object events and important contents.

In this thesis, we will present an object-based video tracking and abstraction system on

surveillance video. The general object events such as appearances, occlusions and the changes

in motion will be detected. With the domain knowledge, these general object events can be

further extended and deployed in many surveillance applications. For example, the occlusion

of objects can indicate the car accident and the changes in the object motion can be used to

detect whether there is illegal driving. A real-time tracking system with on-line general events

alarming will be implemented in this thesis.

1.2 Organization

The rest of the paper is organized as follows. Chapter 2 introduces the background and

the related work of the video object segmentation, tracking and abstraction. Chapter 3

presents our proposed algorithms for video tracking and abstraction. Chapter 4 shows the

architecture of the system and the experimental results. We will make a conclusion in Chapter

5.

 3

Chapter 2

Background

In some applications in Intelligent Transportation System (ITS) such as traffic

surveillance and monitoring, the goal is to monitor the moving objects in the surveillance

environment. Thus, video object segmentation is required to first extract the moving objects.

After that, video object tracking and abstraction processes are required to track the object

trajectory and extract the significant key objects which we may be interested in. In this

chapter, we will introduce the related works of the video object segmentation, video object

tracking and video abstraction. The details of the related works of video objects segmentation,

video object tracking and video abstraction will be introduced in Section 2.1, 2.2 and 2.3,

respectively.

2.1 Video Object Segmentation

Object segmentation is the first step toward the object-level abstraction and is the task to

find a mask indicating the shape and the position of the moving object. There are many

researches in the literature of object segmentation. Generally, segmentation algorithms can be

classified into two categories, the homogeneity based methods and the change detection based

methods. The homogeneity based algorithms [1-4] segment moving objects based on the

homogeneity of their color, texture or motion information. Pixels with some similar features

are first grouped into small regions, and these regions are then grouped into objects with some

other features. This kind [1-4] of algorithms can provide precise object masks; however, the

watershed algorithm for the boundary decision is a computational expensive process. Also,

the motion estimation process to compute the precise motion vectors for clustering small

regions also takes a lot of time. Thus, this kind of algorithm is not a good choice for systems

 4

that have real-time requirements.

The other category of segmentation algorithms is the change detection based algorithms.

This kind of algorithms [5-7] segment objects by taking difference between the current input

frame and a reference image, and then a threshold is chosen to decide a difference mask

indicating the shape and the position of the moving objects. Traditionally, the previous input

frame is chosen as the reference image and this is quite simple and efficient. However, there

are some well-known drawbacks [8]. First, when the speed of the moving object is not

consistent, it becomes impossible to indicate the position using the difference image and thus

miss or false alarm in segmentation is unavoidable. Second, the uncovered background is

another problem in traditional change-detection algorithms because the uncovered

background regions that are covered by objects in previous frame may be considered as

changed. Although, uncovered background can be detected and removed when the motion

information is taken into consideration the computation of motion estimation is expensive and

greatly lower the efficiency of the change-detection algorithms.

Recently, some change detection algorithms [8-11], [15], [27] use a reference

background image to segment moving objects. The reference background image is acquired

beforehand or by some means to update dynamically and contains the still background

without any objects. The change-detection algorithms with registered background effectively

solve the problems of uncovered background and inconsistent object speed effectively.

Besides, they are efficient and can meet the real-time requirement. In our proposed system,

we will adopt the change-detection based algorithm with registered background to segment

moving objects.

2.2 Video Object Tracking

Video object tracking is an important and frequently discussed research topic. Its

objective is to match the detected objects in the current frame to the corresponding objects

 5

detected previously. The tracked position and shape of objects can be used for the generation

of the VOPs in MPEG-4 for some objects or to form the object trajectories for later

object-based analysis and abstraction. Thus, video object tracking plays an important role in

systems to extract MPEG-4 VOPs or object-based description and abstraction in MPEG-7.

The object tracking algorithms first take the detected object masks from the

segmentation algorithms as input data, and try to match the objects detected earlier using

some features such as the position, shape and color. For example in [12], Oberti et al. used the

shape of the object corners to track video objects. Some tracking algorithms also take motion

information into consideration. For example, Kim et al. use the direction of the motion and

the variation of the speed to compute smoothness feature as the matching criteria [13]. Chen

used the motion as the constraint to find matching objects [14]. Some other algorithms [15-17]

adopted Kalman Filtering. It is a linear estimation process that estimates the current value and

updates the prediction recursively, to estimate and track the position of the objects.

The precision of the prediction involves two errors: the process error and the

measurement error. Because sometimes there are errors in the segmentation process due to the

cluttered scene, the object masks would not be very precise and hence the measurement errors

would be large. Besides, some abrupt movements of the objects such as waving of hands will

make the process error large. The prediction error may not converge quickly if both the

process error and measurement errors are large. Thus, it may be difficult to match correctly

due to the uncertainty of the prediction. In this thesis, instead of using Kalman Filtering, our

algorithm uses the motion information as feature, which is efficient and effective. The

occlusion and the split of objects can also be handled in our tracking algorithm. The

trajectories of the objects as well as the event of occlusion and split will be stored for the

object abstraction in the later stage.

2.3 Video Abstraction

 6

The video abstraction is to represent the large amount of video data in a compact form

and is generated by selecting the key frames which are representative of the features and the

contents of the video. Traditionally, the key frame extraction (KFE) algorithms [18-21] are

frame-based and the image features are used. For example, the video sequence is first

decomposed into scenes and the scenes are then decomposed into shots. The key frames are

then extracted from each shot to represent the features of that shot. The image features like

color and the motion intensity are usually used as the criteria to select key frames.

In the surveillance video, because the background is stationary and the moving objects

are the most important contents in the video, we can choose the moving objects with

important features or significant events to represent the video contents. However, the

traditional KFE algorithms are not applicable because they use only low-level images features

and the generated abstractions are lack of object-level semantics. In [22] and [23], Kim et al.

proposed a system that selects key objects for video abstraction using the shape information

of the moving objects. They tried to detect the changes in the shapes by computing moment

invariant moments [12] to capture the actions of the moving objects. However, it is difficult to

detect the changes in the object shapes for the rigid moving objects such as the vehicles. In

our proposed abstraction algorithm, we will try to select key objects based on the

characteristics of the object trajectories and the object events detected.

Other object-based KFE algorithms proposed are in [24] and [25]. In [24], the number of

the intra-coded macroblocks (I-MBs) to the total number of the encoded macroblocks in the

VOP used as the criteria of the key object selection; while [25] detected significant changes in

the shape of the VOP in the MPEG-4 compressed domain. Unlike the previous works, which

used pre-segmented VOPs, we propose a system is which aims to track video objects in

real-time and select key objects to generate video abstractions on-line.

 7

Chapter 3

Algorithm for Object-Based Video Tracking and Abstraction on

Surveillance Videos

In this chapter, we will present the proposed system for video object tracking and

abstraction. The whole system is composed of three main modules: video object segmentation,

video object tracking and video abstraction. In section 3.1, we will give an overview of the

whole system In section 3.2, we will present our video object segmentation algorithm. In

section 3.3, we will present the video object tracking algorithm to track the moving objects

detected. In section 3.4, the video abstraction algorithm will be presented.

3.1 System Overview

Our proposed system contains three modules, which are the video object segmentation

module, the object tracking module and the video abstraction module. The surveillance video

data are first captured and input to the video object segmentation module. The object

segmentation algorithm segments the moving objects from the background and generates the

object masks which indicating the position and the shape of the moving objects. The

segmented object masks are then input to the video object tracking module. The object

tracking algorithm matches the input object masks to those objects which have been input

previously. Also, the occlusion and the splitting of the objects are detected and are reasoned in

the object tracking stage. In the video abstraction module, video abstraction will be generated

by selecting those frames with semantically meaningful objects contained.

3.2 Video Object Segmentation

In our object-based tracking and abstraction system, the first step is to segment the

moving objects as precisely as possible. The object segmentation algorithm directly takes the

 8

raw video data as input to segment the moving objects in the surveillance video sequence and

extracts the object masks to indicate the presence of the moving objects. In the surveillance

video, since the position of the camera is always fixed and the background is stationary, so the

simplest way to segment moving objects is to use the change detection based method.

Because when comparing a frame to a background image, it is straightforward to consider the

regions that change significantly as moving objects. Thus, selecting background image for the

change detection based algorithm as reference can effectively achieve our goal.

However, besides the moving objects that we are interested in, there are other types of

changing regions that may be miss-classified in the segmentation process. One of which is the

camera noises. The camera noises are the white noise of the camera and are usually small. The

other type is often called ‘ghost’. The ghost is the changing region that appears and then

disappears quickly without steady motion and is usually bigger than the camera noise. The

ghost effect is usually resulted from the waving of tree leaves and regional lighting effect. In

order to obtain accurate object masks, these annoying changing regions should be filtered out.

In our segmentation algorithm, we adopt the change detection based algorithm with

background registration and the filtering process of noises and ghosts is also applied. The

whole process of our segmentation algorithm is shown in Fig. 1.

 9

Current
Frame

Previous
Frame

Take
Difference

Difference
Image

Difference
Mask

Update
Background

BG
Buffer

Take
Difference

BG
Difference

Mask

BG
Difference

Image

Morphological
Operation

Object
Mask

Connected
Component

Size Filtering

Current
Frame

Objects

Thresholding
by thd

Thresholding
by thb

BG : Background

Fig. 1. Segmentation process diagram

 10

3.2.1 Inter-frame Differencing

In the segmentation algorithm, the first step is to compute the inter-frame difference

image (DI) between the current input frame and the previous frame. The distance value in the

DI shows how strong a pixel changes in two consecutive frames and the possibility that a

pixel will be considered as changing. Because the human eyes are more sensitive to

luminance than to chrominance, we only take difference value on the luminance channel.

After taking threshold THd on the difference image, we can obtain a difference mask (DM)

that indicates the changed regions between two consecutive frames. The computations of DI

and DM are shown in Eq. (1) and Eq. (2), where the CY(i,j) and PY(i,j) denotes the pixel value

in current frame and previous frame in the luminance channel respectively. The DN will be

used to update the background image in the next step.

⎩
⎨
⎧

≤
>

=

−=

d

d

YY

THjiDIif
THjiDIif

jiDM

jiPjiCDI(i,j)

),(255
),(0

),(

),(),(

3.2.2 Dynamic Threshold Decision

In order to make our segmentation algorithm adapt to various kinds of environments and

video contents, the threshold THd for deciding the DM cannot be fixed and should be selected

adaptively. In many researches [8], [10], [26-27], the values in the difference image can be

modeled by a mixture of two distributions. And thus, finding the threshold corresponds to

finding the two distribution functions that approximate the histogram of the difference values.

Traditionally, the valley between two peaks is found and is chosen as the threshold dividing

two distributions. However, in the real case as shown in Fig. 2, the histogram fluctuates

heavily and it is difficult to find a threshold just by finding a valley. In [26], Wu et al.

suggested that the histogram can be converted to a monotonic increasing histogram by

accumulating the original histogram values, as shown in Fig. 3. In the cumulative histogram,

(1)

(2)

 11

the problem of finding a threshold can be simplified to finding an intermediate point such that

two straight lines which are interpolated by the start point, end point and the intermediate

point can best approximate the cumulative histogram. Instead of using the ratio histogram in

[26], we simply use the difference since the computational cost is much more expensive for

the ratio histogram.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 32 64 96 128 160 192 224

Absolute difference value

A
cc

u
m

u
la

ti
v

e
p

ix
el

 n
u

m
b

er

Fig. 3.The cumulative histogram and the interpolated lines

T

0

20

40

60

80

100

0 32 64 96 128 160 192 224

Absolute difference value

P
ix

el
 n

um
be

r

Fig.2. The histogram of a difference image

 12

3.2.3 Background Buffer Update

The next step in the segmentation algorithm is to update the background image (BI). In

the background registration method [8-11], [15], [27], because the performance of the

segmentation result relies on the correctness of the background dramatically, we need a robust

method to retrieve and maintain the background image. The simplest way to obtain the

background image is to capture the background beforehand. However, the background image

may change slightly and gradually because the luminance may vary with time. In our

algorithm, we dynamically update the background buffer using the difference mask. With the

difference mask, the regions that are marked as ‘changed’ will not be updated to avoid

distortion. Every time when a new difference mask is computed, the background image buffer

at current time t (BIt) at position (i,j) is updated using the equation in Eq. (3) and Eq. (4). In

the equations, the k(i,j) is the bias factor of the pixel (I,j) which accelerate the speed of

background update. The symbol α is the weighting factor used in the update function Eq. (4).

⎩
⎨
⎧

=+⋅−+⋅
=

=

⎩
⎨
⎧

≤
>

=

−

−

−

−

0),(),(),()1(),(
255),(),(

),(BI

,(),(1
),(),(i 　1

1

1

1

1

jiDMifjikjiBIjiC
jiDMifjiBI

ji

jiBIjiCif-
jiBIjiCf

k(i,j)

Y
t

Y

Y
tY

t

Y
t

Y

Y
t

Y

αα

When the system starts up, the background buffer is empty and a period of time for the

background buffer initialization is required. With our background update equation, the

initialization can be completed in a few frames. After the initialization process, we update the

background buffer every 30 frames since background color does not change frequently. The

gradual variation can quickly be updated to background buffer. Even if there is a sudden

lighting variation when the clouds are dispersed and the sun is revealed, the update equation

can also catch up the variation in a short period of time.

3.2.4 Background Differencing

After we obtain a background buffer, we can segment the moving objects from the

(3)

(4)

 13

background. Unlike the way adopted in computing the difference image, we use the

luminance and chrominance channels together instead of using luminance only. Because some

moving objects look quite different compared to the background in their color, but the

difference between the current frame and the background is almost zero when the

chrominance information is discarded. In order to extract accurate object masks and not to

miss any important moving objects, the chrominance information must be considered.

Because the importance of the chrominance channels depends on the intensity of the

luminance channel, we design a difference score function to evaluate the difference in YUV

color space. Denote the different score as DS, the equations Eq. (5) through Eq. (8) show how

to compute the different score. For a pixel (i,j), we first get the strongest luminance intensity

among the current frame and the background image. Then, we decide the weighting factor of

the chrominance based on the luminance intensity. Because the valid range of the luminance

channel after conversion is from 16 to 235, we can subtract the luminance value from 16 and

divide it into 11 levels, which are from 0.0 to 1.0. After that, we can use the weighting sum

equation Eq. (7) to compute the color distance in the YUV color space.

　
THjiBDIif
THjiBDIif

jiBDM

jiBIjiCDSBDI(i,j)

w

jiBIjiCwjiBIjiCwjiBIjiC
jiBIjiCDS

jiMfloorw

jiBIjiCjiM

b

b

VVUUYY

Y
t

Y

⎩
⎨
⎧

≤
>

=

=

⋅+

−⋅+−⋅+−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=

=

),(255
),(0

),(

)),(,),((

)2(1

),(),(),(),(),(),(
)),(),,((

10/
20

16),(

)),(),,(max(),(

Sometimes an object enters a frame and then keeps stays in the same position on the xy

plane. We call such kind of object as ‘stopped object’ since the motions in both the x and y

(5)

(6)

(7)

(8)

(9)

 14

direction are almost zero. Because the algorithm updates the inputted frame to the background

for the unchanged regions, the color of the stopped objects will be updated to background

buffer when they stop too long. In this case, object regions will be false alarmed because the

background has been wrongly updated. Although this problem can be solved by lengthening

the interval of background updates, the time needed to adapt to the luminance variations is

also be lengthened. And thus it is a tradeoff and both of the cases must be taken into

consideration.

After we finish computing the background difference image using the difference score

function, another dynamically selected threshold THd is applied to get the background

difference mask, as shown in Eq. (9). The background difference mask extracted here

indicates the moving object regions compared to the reference background image. However,

the background difference mask contains a lot of noises and the object boundaries are not

smooth. Thus, further filtering is required.

3.2.5 Morphological Operation

 To smooth the object boundaries and remove the noises, two kinds of morphological

operations are frequently used [8], [13], [23]. The closing operation is first used to fill the

black holes inside the object masks and the opening operation is then used to remove the

small noises that do not belong to the moving object. In our algorithm, the structure element

of size 7x7 and 5x5 are selected for closing and opening operations respectively. In most of

the cases, the smaller camera noises can be successfully filtered. However, larger regions

caused by ghost effect are hard to remove out. Although larger structuring element may help,

the computation cost will also be more expensive. And thus, instead of using larger

structuring element, we will filter out these ghost regions in the video object tracking

algorithm with temporal and spatial filtering.

After the morphological operations, the object mask is smoothened and indicates the

 15

shapes and the positions of all the moving objects in the current frame. The individual object

in the object mask is then extracted in the next process.

3.2.6 Connected Component Labeling Algorithm and Size

Filtering

The tracking algorithm gets the extracted object mask as the input. However, the object

mask simply indicates the positions and the shapes of all the moving regions without separate

information. Thus, each individual object in the object mask must be extracted and assigned

an identifying label. The connected component algorithm is a frequently used algorithm [8],

[29] to achieve this work. For every pixel, it first examines the neighboring pixels and assigns

that pixel a label. After that, pixels with the same label or equivalent labels are clustered

together to form an isolated object.

Because there are some large noise and ghost regions which are hard to be completely

removed out, the size filtering must be performed after the labeling process. The size filtering

process filters out those regions which are smaller than a predefined threshold. The objects

that are not filtered out are called the object-of-interests and these objects will be tracked in

the tracking algorithm.

 16

3.3 Video Object Tracking

The second module in our system is the video object tracking module. Although the

object-level information can be extracted via the segmentation of video objects, the higher

level object semantics can only be extracted from the object trajectories. Thus the object

tacking process is the key role toward the semantics analysis and video abstraction. Our

tracking algorithm gets the extracted object masks as the input and tracks all the objects to get

the object trajectories. The tracking algorithm can be divided into several sub-modules and

will be presented later. The diagram is shown in Fig. 4.

In the tracking algorithm, the object information, such as mass center and motion, is first

gathered for each detected object. We use a simple but effective matching function based on

the motion and will be presented in details later.

Based on the observation, the occlusion can happen inside the camera view or outside

C urren t
S egm en ted

O b jects

P rev io us
S eg m en ted

O bjects

O b ject
M atch ing
A lgo rith m

O b ject
T rajecto ries

O cclu sio n
O b jects

T em po ral
F iltering

S m oo thed
O b ject

T rajecto ries

Fig. 4. The process diagram of the tracking algorithm

 17

the camera view. For the first condition, we can observe the occlusion of the objects. For the

second condition, the objects are occluded when entering the camera view. According to Jung

[15], we define the first condition as EXPLICIT OCCLUSION and the second condition as

IMPLICIT OCCLUSION. The occlusion events are detected and the objects after splitting are

tracked and matched using the motion information.

After the matching of the objects, the object trajectories are smoothened in the temporal

filtering process. The smoothened trajectories are then input to the video abstraction algorithm

to generate abstractions.

 18

3.3.1 Matching Function

The object tracking algorithm tracks the object trajectories by matching the current

video objects to the previously tracked video objects. In the literature of object tracking, some

algorithms [15-17] adopt the Kalman Filtering to estimate and track the objects. It is

appealing because it recursively estimates the object states and updates the predictions. In the

ideal situation, when the moving paths are very smooth and the object masks are very

accurate, the prediction error converges quickly because both the measurement error and the

process error are small. However, the detected object boundaries may contain some errors due

to the clutter scenes in the real environments, and the measurement errors thus become large.

In addition, the path of a moving object is not as smooth as we expected. For example, if we

connect the mass centers of a walking person, the connected path looks like zigzag rather than

a straight line because all the actions such as waving of hands and striding affect the mass

centers significantly. Under this condition that both the measurement error and the process

error are high, the prediction error may not converge quickly. Thus, it is difficult to track and

handle some complicated conditions like object occlusions due to the uncertainty of the

estimation.

Due to these reasons, we utilize the motion information to match objects in our object

tracking algorithm. We use a simple but effective motion distance evaluating function to

compute the motion distance for objects matching. Let us denote the ith segmented video

object at time t as VOt
i. Suppose there are n current video objects and m previous objects,

which belong to m tracked trajectories. We can know that all the m previous objects VOt-1
i

have been tracked at time t-1 and thus the motion vectors are known at time t and denoted as

MVt-1
i. Besides, the mass center of the n current objects and m previous objects are also

known, which are denoted as XYt-1
i and XYt

i respectively. The computations of motion

distance function (MVD) are shown in the equations Eq. (10) and Eq. (11). In the equations,

 19

the mv(i, j) is the object motion vector between current object i and previous object j and the

Θ is the included angle between mv(i,j) and MVt-1
j.

()

())cos(),(mv2),(mv),(

),(mv

1
22

11

1

θ⋅⋅⋅−+=

−=

−−−

−

jiMVjiMVVOVOMVD

XYXYji

j
t

j
t

j
t

i
t

j
t

i
t

The motion vector distance function takes both the position and the moving direction

into evaluation. The motion vector distance function can be further explained in its geometric

meaning. As shown in Fig. 5, the geometric meaning of the MVD is the length of differencing

motion vector. And the equation shows that both the position and the moving direction are

evaluated in the equation.

To match the n current objects to the m previous objects, the matching function first

builds up an m by n table and computes the motion vector distance in each table entry. The

matching function then picks up the entry that the motion vector distance value is the

minimum. If the minimum value does not exceed a predefined threshold THmatch, the

(10)

(11)

VOt
j

mv(i,j)

VOt-1
j

MVt-1
j

θ

mv(i,j)

MVt-1
j-

| mv(i, j) – MVt-1
j |

=MVD(VOt
i – VOt-1

j)j

(a)

(b)

(c)

Fig. 5
(a) video object j in time t-1 and the-

tracked motion vector
(b) video object i in time t, the mv(i, j) is

computed using the Eq.9
(c) motion vector distance

VOt
j

mv(i,j)

VOt-1
j

MVt-1
j

θ

mv(i,j)

MVt-1
j-

| mv(i, j) – MVt-1
j |

=MVD(VOt
i – VOt-1

j)j

(a)

(b)

(c)

Fig. 5
(a) video object j in time t-1 and the-

tracked motion vector
(b) video object i in time t, the mv(i, j) is

computed using the Eq.9
(c) motion vector distance

Fig. 5. (a) video object j in the time t-1 and the tracked motion vector; (b) video
object in time t, the mv(i,j) is computed using Eq. (9); (c)motion vector distance

 20

corresponding current object and previous object in that selected entry are matched. Note that

the matching function is a 1-to-1 function, the matched current object and previous object

cannot be matched again. The matching function runs iteratively until the selected motion

vector distance exceeds the threshold or either the current objects or the previous objects are

all matched. Fig. 6 shows the pseudo code of the matching function.

Fig. 6. Pseudo code of the matching function

create a MVD n by m table T for the m previous objects and n current objects
COsize = n;
POsize = m;

for(i=0; i<n; i++)
{
 for(j=0; j<m; j++)

{
 T = MVD(VOt

i, VOt-1
j);

 }
}

while(COsize >0 && POLsize >0)
{
 min_Value = the minimum MVD value in T;
 min_Entry = the entry T[x,y] that has minimum MVD value;

if(min >= THmatch) break;

 match VOt

x to VOt-1
y;

 COsize --;
 POsize --;
 Delete the row T[x,*] in T;
 Delete the column T[*,y] in T;
}
end of matching algorithm;

 21

3.3.2 Object States

Before entering the object matching algorithm, we must introduce the object states

associated with the tracked objects. In the tracking process, because there are several object

events such as the appearance, the disappearance, the occlusion and the split, we need

additional flags to indicate the current state of an object. Therefore, we define two object state

flags, the OCC_STATE and the OBJ_STATE. The OBJ_STATE indicates the object condition

in its life cycle. The OBJ_STATE has three states: NORMAL, DYING and DEAD. Fig. 7

shows the state transition graph. The life cycle of an object starts when the object first appears

in the frame and then the state goes to the NORMAL state. Because sometimes when the

scene is clutter or the moving object is small, the object may be missed or be filtered out in

the segmentation process and the moving object may disappear temporally. In traditional

approaches, the original object may be considered disappeared and a new object entry will be

created under this condition. However, in our human’s perception, there should be only one

object. Therefore, instead of considering the temporally disappeared object dead directly, we

let the object go to the DYING state first. When the object in the DYING state cannot find a

match in the next p frames (say three), we will think the object is really disappeared and let

the object go to the DEAD state. On the contrary, the object goes back to the NORMAL state

when a good match is found before the time limit.

NORMALNew
object

appears Being in DYING
state more

than p frames

No matching
object in

current frame

Match an
object in

current frame

DYING DEADNORMALNew
object

appears Being in DYING
state more

than p frames

No matching
object in

current frame

Match an
object in

current frame

DYING DEAD

Fig. 7. The state transition diagram of the OBJ_STATE

 22

The other state flag is the OCC_STATE, which indicates the relationship to other objects.

The OCC_STATE has three states: NORMAL, COLLISION and OCCLUSION. The state

transition diagram is shown in Fig. 8. When a new object appears, the OCC_STATE goes to

the NORMAL state. During the tracking process, each time when a new object is matched,

our algorithm examines the possibility that whether this object will collide to other objects or

not in the next few frames by estimating the object position. If it is possible to collide, then

the object goes to the COLLISION state. When an object in previous frame is left unmatched

after the matching process, the COLLISION state can be used to judge if an occlusion occurs

or an object disappears since both of the cases will lead to failure in matching a previous

object to a current object. If it is in the case that the object occludes the other objects, then it

goes to the OCCLUSION state. On the other hand, if the object in the COLLISION state will

not collide with any other objects, it goes back to the NORMAL state. Similarly, for the

current object that fails to match any previous objects, the OCCLUSION state can be used to

judge if the objects with explicit occlusion split to two or if a new object appears. Once the

occluded object splits, the state goes back to the NORMAL state. However, in the case of

implicit occlusion, the objects occlude outside the camera view and the occlusion event

cannot be observed. Therefore, the implicitly occluded objects are not in the OCCLUSION

state and the OCC_STATE remains unchanged when the objects split.

With these indicating states, the tracking algorithm can handle complicated conditions

without ambiguity. In the next section, we will show how the object matching algorithm

NORMALNew
object

appears

Occlude
Possible to

collide

Impossible
to collide

COLLISION OCCLUSION

Split

Split

NORMALNew
object

appears

Occlude
Possible to

collide

Impossible
to collide

COLLISION OCCLUSION

Split

Split

Fig. 8. The state transition diagram of the OCC_STATE

 23

utilizes these states to match objects.

 24

3.3.3 Objects Matching Algorithm

The object matching algorithm in the sub-module in Fig. 4 tries to find matches for the

objects using the matching function. Because our algorithm tries to handle various conditions,

simply matching the objects detected in current frame to the objects detected in the previous

frame is not enough. In our matching algorithm, the process is divided into several stages. For

short, the objects detected in the current frame and the objects detected in the previous frame

are denoted as CurrObj and PrevObj respectively, and the diagram is shown in Fig. 9.

In the matching algorithm, the objects detected in current frame and the objects detected

in previous frame are taken into the matching function to find a best match. In our algorithm,

we use the object trajectory to stores the tracked objects in each frame for each object entry.

C u r r e n t
O b j e c t s

P r e v i o u s
O b j e c t s

M a t c h i n g
F u n c t i o n

U n m a t c h e d
C u r r e n t
O b j e c t s

O c c l u d e d
O b j e c t s

M a t c h i n g

S p l i t O b j e c t s
M a t c h i n g

E s t i m a t e d
O b j e c t s

M a t c h i n g

A p p e n d
E s t i m a t e d

O b j e c t s

O b j e c t
T r a j e c t o r y

C r e a t e
n e w o b j e c t s

e n t r y

R e f r e s h
T r a j e c t o r y

I f n u m b e r o f u n m a t c h e d
c u r r e n t o b j e c t s > 0 ?

I f n u m b e r o f u n m a t c h e d
c u r r e n t o b j e c t s > 0 ?

I f n u m b e r o f u n m a t c h e d
c u r r e n t o b j e c t s > 0 ?

I f n u m b e r o f u n m a t c h e d
p r e v i o u s o b j e c t s > 0 ?

I f n u m b e r o f u n m a t c h e d
p r e v i o u s o b j e c t s > 0 ?

U p d a t e

U p d a t e

U p d a t e

U p d a t e

U n m a t c h e d
P r e v i o u s
O b j e c t s

Fig. 9. The process of the whole matching algorithm

 25

So, the current objects that found matches here are appended to their object trajectories

respectively. Because the matching function terminates when no more good matches could be

found, there could be some current objects and previous objects left unmatched and they are

stored in the CurrObjRest and PrevObjRest respectively. The current objects that left

unmatched may be resulted from the appearance of new objects, the split of occluded objects

or temporally disappeared objects revealed. Similarly, the previous objects that left unmatched

may be resulted from the occlusion or the disappearance of the objects. Sub-modules designed

to handled the events and condition will be presented in detail. The whole process of the

matching algorithm will be presented after these sub-modules are presented.

3.3.3.1 Occluded Objects Matching

For those previous objects that left unmatched, our matching algorithm first tries to find

if there is any objects occlusion events. As mentioned earlier, since both the conditions of

occlusion and disappearance of objects will leave the previous objects unmatched, the

COLLISION state must be used to judge if there is an occlusion event. Fig. 10 illustrates the

relationship of occluded objects and Fig. 11 shows the diagram of occlusion objects matching

process. Assume that the video objects VOt-1
1 and VOt-1

2 in time t-1 may collide with each

other in the future, so both the objects are in the COLLISION state and we define that these

two objects are in the same ‘collision group’. In addition, we also assume that the two objects

occlude at time t and thus only one isolated object is detected. As described earlier, the current

VOt-1
1

COLLISION

VOt-1
2

COLLISION VOt
1

(a) (b)

VOt-1
1

COLLISION

VOt-1
2

COLLISION VOt
1

(a) (b)

Fig. 10. The relationship of occlusion objects;
(a) Before occlusion; (b) after occlusion

 26

objects and the previous objects are first taken into the matching function and thus one of the

objects in t-1, says VOt-1
2, is matched to the VOt

1 at time t. After the 1-to-1 matching function,

the video object VOt-1
1 is left unmatched. To handle the occlusion events, our algorithm first

checks the possibility of objects occlusion by examining the COLLISION state of the

unmatched previous object, for example the VOt-1
1 in Fig. 10, and the previous object in

COLLISION state is taken into the matching function. Then, the current object that has being

matched to the previous object which is also in the ‘collision group’ is also taken into the

matching function. If a match is successfully found, it implies that there is indeed an

occlusion since the current object can match to the previous objects in COLLISION state and

it satisfies the real situation of the objects occlusion.

Once the event of the objects occlusion is detected, both the occluded objects go to the

OCCLUSION state and they share the same object trajectory until they split into two. We

define that these occluded objects are in the same ‘occlusion group’. Note that because the

individual motion is required to track the each object when the occluded objects split, our

algorithm keeps estimating the individual trajectory when the objects are occluded. The

tracked objects are appended to respective object trajectories.

3.3.3.2 Split Objects Matching

Unmatched
Previous

Objects in
Collision state

Current Objects
that has matched
to the Previous

Objects in
Collision state

Matching
Function

Unmatched
Previous
Objects

Object
Trajectory

Occlusion
Group

Matched
Objects

Update

Update

Fig. 11. The occluded objects matching process

 27

The split objects matching process handles the event of object split and matches the split

objects. The relationship of the split objects and the diagram of the process are shown in Fig.

12 and Fig. 13. Assume the object VOt-1
1 in time t-1 is merged from two objects and they split

into two objects, VOt
1 and VOt

2, at time t. According to the matching function performed on

current and previous objects, the previous object VOt-1
1 is matched to one of the current

objects, for example VOt
2. Therefore, the previous object VOt

1 is left unmatched. Remember

that there are explicit occlusion and implicit occlusion. Therefore, the conditions of split event

become more complex. Because we cannot judge the possibility of split event simply with the

OCCLUSION state, we need to divide the split object matching process into two steps.

In the first step, we try to detect the split events from explicitly occluded objects. First,

VOt
1

VOt
2VOt-1

1

OCCLUSION

(b)(a)

VOt
1

VOt
2VOt-1

1

OCCLUSION

(b)(a)

Fig. 12. The relationship of split objects;
(a) Before splitting; (b) after splitting

Occlusion
Objects

Unmatched
Current
Objects

Matching
Function

Unmatched
Current
Objects

Previous
Objects

Matching
Function

Unmatched
Current
Objects

Occlusion
Group

Object
Trajectory

Matched
Objects

Matched
Objects

Update
Update

Fig. 13. The split object matching process

 28

we find all the objects which are in the OCCLUSION state from the object trajectory lists and

the objects that have not been matched to current objects are picked. Take Fig. 12 for example.

Although there is only one previous object, there is another object trajectory in OCCLUSION

state. Then, the unmatched current objects and the objects we picked are taken into the

matching function. Note that because the estimated motion for each individual object is used

here. If a good match is found, it implies some occluded objects now split because the

previously occluded objects now match to two objects individually. In this case, the split

objects go back to the NORMAL state and the occlusion group for the occluded objects is

deleted. Then the tracked current objects are appended to their respective object trajectories.

If the number of unmatched current objects is not zero, the second step is performed. In

the second step, we try to detect the split events from implicitly occluded objects. The process

is quite similar. However, instead of finding objects in OCCLUSION state from the object

trajectories, all the previous objects are used for matching here since we cannot find any

OCCLUSION flag in implicitly occluded objects. If a good match is found, the implication is

that one previous object matches to two current objects, which means the split event of

implicitly occluded object. In this case, our algorithm creates a new object trajectory for the

object that splits out and the tracked objects before splitting are duplicated.

3.3.3.3 Estimated Objects Matching

Because we do not think that the object is dead soon after it disappears, we append an

estimated object to its object trajectory for later matching process. We use the object

information in the past few frames to predict the position and the motion of the estimated

object. When the temporally disappeared object now reveals again in the current frame,

therefore, we must pick up the estimated objects for matching. Fig. 14 shows the situations

that an estimated object is used and Fig. 15 shows the diagram of the estimated object

matching process.

 29

This matching process first finds all the object trajectories in the DYING state and picks

up the estimated objects from these object trajectories. Then, these estimated objects and the

unmatched current objects are taken into the matching function. If an estimated object

successfully matches to an unmatched current object, the current object is appended to the

object trajectory of that estimated object and the OBJ_STATE goes back from the DYING

state to the NORMAL state.

After all the sub-matching modules are presented, we now illustrate the process of the

matching algorithm. The current objects and the previous objects are taken into the matching

function, and the matching function terminates when no more good match can be found. If

there are any events such as appearance, disappearance splitting and occlusion of objects,

some current objects and previous objects will be left unmatched. As shown in Fig. 9, for the

unmatched previous objects, first the matching algorithm performs the occluded objects

matching process to check whether there are any objects occlusion events and tries to find

?
VOt-2

1

(b)(a)
VOt

1

(c)

?
VOt-2

1

(b)(a)
VOt

1

(c)

Fig. 14. The condition that estimated object is appended (a) Time t-2; (b) Time t-1,
the object disappears, and an estimated object is appended ;(c) Time t, the object

reveals again and is going to be match to the estimated object

Matching
Function

Unmatched
Current
Objects

Object
Trajectory

Unmatched
Current
Objects

Estimated
Objects

Matched
Objects Update

Fig. 15. The estimated objects matching process

 30

matches. If there are still any previous objects that cannot find a match, we think that there are

objects disappeared. For the object trajectories of these unmatched previous objects, we make

the OBJ_STATE go to the DYING state and estimated objects are appended.

For the unmatched current objects, first it goes to the split objects matching process to

check whether there are any object split events and try to find matches. The current objects

that still cannot find matches will then go to the estimated objects matching process. After the

estimated objects matching process, we will consider the rest of current objects as new objects

and new entries for the object trajectories will be created.

Finally, the matching algorithm goes to the refresh trajectory function. In this function,

the objects in DYING state are first examined. If the object stays in the DYING state too long,

we will consider that the object is really disappeared for\ever and let it go to the DEAD state.

After that, the motion vector of each moving object is re-computed using the position of the

newly tracked object position. Finally, based on the tracked object positions and the computed

motion vectors, the function examines if any two objects may collide with each other in the

near future. Each time after the matching algorithm finishes matching and processing all the

objects, the tracking algorithm will pass the object to temporal filtering process.

3.3.4 Temporal Filtering

The temporal filtering process here is designed to filter out the ghost effect. Because

ghost usually appears and disappears very quickly, we can use the temporal filtering to filter

out the ghost objects. In our algorithm, we will not think a detected and tracked object valid

unless it survives more than a time period. In other words, an object that goes to DEAD too

soon after it appears will be filtered out and excluded from the key objects selection process

in the video abstraction algorithm.

 31

Another objective of the temporal filtering process is to smooth the object motion. In the

trajectory of a non-rigid object like a walking person, because the connected path of the mass

center fluctuates like zigzags, the precision of the analysis of moving direction is seriously

affected. Therefore, the paths of the moving objects need to be smoothed in the temporal

filtering process. Fig. 16 shows the zigzag-liked moving path and the smoothed moving path.

The solid lines represent the true motion vector by connecting the mass centers and the

direction of the dash line represents the moving direction after temporal filtering.

Fig. 16. The path of the mass center of a walking person

 32

3.4 Video Abstraction Algorithm

The last module in the system is the video object abstraction module. The video

abstraction is generated using the video abstraction algorithm by selecting the key frames with

meaningful semantics. Because the moving objects are the most important parts in

surveillance videos, the selection of important key frames is equivalent to the selection of

important key objects. Therefore, in our video abstraction algorithm, we will analyze the

tracked object trajectories and detect object events to extract representative key objects.

Although the best and the most representative key objects of an object trajectory can be

selected after the life cycle of that object is terminated, this kind of approach is not suitable

for a real-time tracking system like ours. In order to achieve on-line alarming on real-time

tracking system, the key objects must be selected near real-time, which means the delay must

be bounded and very small. Therefore, every time a new frame comes in, our algorithm

examines the current tracked object in each trajectory and selects it as a new key object if it is

representative enough for its trajectory.

One of the criteria for key object selection is based on the object events which are

representative for some object states or objects relationships at some time instant. Such events

may raise our human’s interests. There are some important object events in general domains,

such as appearance and disappearance. Besides, the motions and the positions of the object

may also be used as the selection criteria. For example, we may have interests and pay more

attention when a new object appears or the moving direction of the object changes because

they can represent significant events. Therefore, the analysis of the object trajectories to

extract this specific information is required.

The diagram of the abstraction algorithm is shown in Fig. 17. There are three modules in

this algorithm. The algorithm takes the object trajectories generated in the video object

tracking algorithm as input. The abstraction will be generated by selecting the frames with

 33

key objects and output to clients.

3.4.1 Object State Analysis

The object state analysis process detects the general object events such as appearance,

disappearance, occlusion and split of objects. Because we have handled and detected these

events for object matching in the tracking algorithm, we can directly capture these events by

examining the state transition of OBJ_STATE and the OCC_STATE of the objects. The only

exception is that we do not directly extract the event when an object appears because the

temporal filtering is applied to filter out the ghosts. Therefore, the events of object appearance

will only be captured when the object survives for a period of time after it appears.

Object
Trajectories

Object
State

Analysis

Object
Trajectory
Analysis

Selected
Major and
Minor Key

Objects

Fig. 17. The abstraction algorithm

 34

3.4.2 Object Trajectory Analysis

The object trajectory analysis process tries to analyze the trajectories to find the featured

objects as key objects. The featured objects are representative for the changes in the moving

speed and direction, the position in the frame view or the object size. Every time when new an

object is tracked, our algorithm compares the motion, position and size of that object to those

object features of the previously selected key object. To evaluate the motion difference of

current object and the previously selected key objects, the motion vector distance function

described in section 3.3.2 is used. However, to avoid the zigzag-like paths for non-rigid

objects to affect the analysis of motion direction, the motion vector after temporal filtering is

used. Fig. 18 shows the analysis process.

3.4.3 Video Abstraction with Selected Key Objects

After the object event detection process and the object trajectory analysis process, the

abstraction can be output using the selected key objects. In our algorithm, we define two types

of key objects: major key objects and minor key objects. The major key objects represent

important event and are always exported. On the contrary, the minor key objects are less

important and are exported only when there is no other key object exported recently. All the

MV of
Previous
selected

key object Motion
Vector

Distance

Select as
Major

Key object
 > THm ?

MV of
Current
tracked
object

Y Output
Key Obj

Position
distance > THp ?

Select as
Minor

Key object
Y

Fig. 18. The trajectory analysis and key object selection process

 35

key objects selected in object state analysis process are major key objects. Besides, the objects

which change in motion significantly are also selected as major key objects. The key objects

which are selected using the position as the criterion are minor key objects. Fig. 19 shows

how the algorithm selects the key objects to export.

Major
Key Obj

Minor
Key Obj

Export Key
Obj to client

Any Major
Key Obj ?

Any Minor
Key Obj ?

Key obj
Recently
exported?

Export Key
Obj to client

Y

N

Y Y

Fig. 19. The key objects exporting process

 36

Chapter 4

System Architecture and Experiment Result

In this chapter, we will present the system for object-based video tracking and

abstraction. In the section 4.1, we will first show an overview of the system architecture. In

the sections 4.2 to 4.4, the experiment results of each module will be represented. The

implemented system will be presented in the section 4.5.

4.1 System Architecture Overview

In this thesis, we implemented an object-based tracking and abstraction system on

surveillance videos. The raw video data captured lively are input to our system and the

process of object segmentation, object tracking and video abstraction are performed on-the-fly.

The abstraction is used for on-line alarming at the client while the surveillance video can be

monitored simultaneously. Except some predefined thresholds, all the initializations are done

automatically without manual interactions. Fig. 20 shows the overview of the system.

Video
Object

Segmentation

Video
Object

Tracking

Video
Abstraction

Monitoring
Video

Alarming
Abstraction

Client

Surveillance
Video

Video
Object

Segmentation

Video
Object

Tracking

Video
Abstraction

Monitoring
Video

Alarming
Abstraction

Client

Surveillance
Video

Fig. 20. System architecture overview

 37

4.2 Experimental Results of the Video Object Segmentation

In the segmentation algorithm, we use first 40 frames for background initialization

before we start segmentation. In the morphological operations, the size of structuring element

for closing operation is 7 by 7 and the size for opening operation is 5 by 5. The size threshold

used for size filtering is 450 pixels.

Fig. 21 presents the segmentation results of the ETRI_B clip at frame NO.95. Fig. 21(a)

shows the original image and Fig. 21(b) shows the performance of using the luminance and

chrominance together to segment video objects. For reference, Fig. 21(c) shows the

segmentation result that only luminance channel is used. The results show that combining the

luminance and the chrominance to segment object can improve the segmentation results a lot.

Fig. 22 shows the result of the clip “hall monitor” after applying the morphological

operation. The small noises are removed and the black holes inside the objects are filled. The

(a)

(b) (c)
Fig. 21. (a) original image; (b) segmentation result that luminance and chrominance

channel are used; (c) segmentation results that only luminance channel is used

 38

bigger noise regions left in Fig. 22 (b) will be filtered out in the size filtering process.

Figs.23 through Fig. 27 show some results of the segmentation algorithm and the tested

video sequences.

(a) (b)

Fig. 22. (a) the segment result before the morphological operation; (b) the result after
the morphological operation

(a) (b)

Fig. 23. Segmentation results of the clip speedway at frame (a) #585; (b) #673;

(a) (b)

Fig. 24. Segmentation results of the clip hall monitor at frame (a) #114; (b) #273;

 39

(a) (b)

(c) (d)

(e) (f)

Fig. 25. Segmentation results of the clip ETRI_A a at frame
(a) #95; (b) #120; (c) #360; (d) #470; (e) #567; (f) #617;

 40

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 26. Segmentation results of the clip ETRI_B at frame
(a) #168; (b) #378; (c) #1045; (d) #1267; (e) #1477; (f) #1969; (g) #2511; (h) #2753

 41

(a) (b)

(c) (d)

(e) (f)

Fig. 27. Segmentation results of the clip ETRI_C at frame
(a) #95; (b) #120; (c) #360; (d) #470; (e) #567; (f) #617;

 42

The results show that most of the noise regions are successfully filtered out. However,

the ghost regions in Fig. 24(b) and Fig. 26(b) are not removed out because the size of these

regions exceeds the filtering threshold.

In the video clip of Fig. 26, because the sun light varies dramatically, large-scale of

regions which are directly illuminated and the color of these regions thus change significantly.

Due to this reason, many objects detected in this video clip are false alarmed.

The other false alarmed region in Fig. 24(b) is resulted from the stopped object.

Although the person wearing white pants in Fig. 24(a) does not completely stop, the motions

in both the x and y direction are almost zero and thus the color of the object region is updated

to background. Because the color of the background is distorted and is different from the real

background color, the region is false alarmed.

The table 1 is the statistics of the segmentation result. Four video clips of different

environments and contents are tested. The first column is the total number of ground truth

objects in all the frames of the video clip. The moving regions that can be clearly

distinguished are selected as ground truth. The second column is the total number of the

object detected after morphological operation and size filtering. The precision and the recall

Table 1. Statistics of segmentation result

Sequence name
Ground
Truth

Detected
False
alarm

Miss Precision Recall

Hall Monitor 463 487 25 1 94.86% 99.78%
ETRI_A 1365 1401 39 3 97.21% 99.78%
ETRI_C 526 513 6 19 98.83% 96.38%
Speedway 410 354 0 56 100% 86.34%

(12)

(13) misshits
hitsrecall

alarmfalsehits
hitsprecision

+
=

+
=

_

 43

are defined in the Eq. (12) and Eq. (13) respectively.

The false alarms are mainly due to the stopped object and the lighting variation. The

recall rate drops in the speedway sequence because the vehicles are very small when they are

far away. Therefore, these vehicles are filtered out although they are detected after the

morphological operation. However, these filtered out small objects would not affect the result

of video abstraction since they are too small and contain little semantics.

 44

4.3 Experiment Results of the Video Object Tracking

In the tracking algorithm, the threshold THmatch used in the matching function is

heuristically set to 50. The window size used in the temporal filtering is set to 5.

Fig. 28 through Fig. 30 show the results of video object tracking algorithm. In order to

check the result easily, objects which belong to the same trajectory are marked with an

identifying label manually.

(a) (b)

(c) (d)

(e) (f)

Fig. 28. Tracking results of the speedway sequence
(a) #530; (b) #545; (c) #560; (d) #575; (e) #590; (f) #605;

1 1

1 1

1
2

2

22

2

 45

(a) (b)

(c) (d)

(e) (f)

(g) (h)

1 1

1
1&2

1&2 1&2

2

2 1
2

 46

(i) (j)

(k) (l)

(m) (n)

Fig. 29. Tracking results of the ETRI_C sequence
(a) #420; (b) #450; (c) #475; (d) #478; (e) #486; (f) #491; (g) #494;
(h) #505; (i) #540; (j) #570; (k) #576; (l) #586; (m) #589; (n) #605;

2
2

3

2&3 2&3

3
2 3

 47

The results show that the tracking algorithm successfully tracks the video objects and

detects the occlusion events. Our algorithm also matches the split objects to the objects before

occlusion correctly, as shown in Fig. 29. Besides, objects moving in different speed, for

example the person who walks slowly (obj 1) and the person who runs quickly (obj 3) in Fig.

30, are all successfully tracked. The table 2 shows the statistics of the detecting and tracking

of occlusion and split events. The results show that all the objects before and after the

3

(a) (b)

(c) (d)

(e) (f)

Fig. 30. Tracking results of the ETRI_B sequence
(a) #2190; (b) #2227; (c) #2500; (d) #2508; (e) #2518; (f) #2513;

1 1&2

3 3

3
3

 48

occlusions are matched perfectly. The only failure in detecting occlusion events happens in

the sequence ETRI_B, which is shown in Fig. 30(a) and Fig. 30(b). Because the object 2 is

occluded by the object 1 in the first frame when it enters the camera view, it is impossible to

detect the occlusion under such condition.

The statistics in table 3 show the result of the tracking algorithm. Because the sequence

“ETRI_C” is too long, we only took the first 3000 frames. Note that when a person is going to

walk behind the tree, we consider that the trajectory before he is covered and the trajectory

after he is uncovered are two different trajectories since that we can observe the object indeed

disappeared for a while. We can see that many several ghost regions can be filtered out with

the temporal filter. The false alarms are mainly due to the stopped object effect and the light

variation which keeps changing severely. The only missed object is the object which is

occluded at the first frame it appears and thus fails to detect the object.

Table 2. Statistics of the tracking and detecting of occlusion events

Sequence name
Number of

occlusion events
occurred

Number of
occlusion events

detected

Number of the
matching failures

after the split
ETRI_A 3 3 0
ETRI_B 4 3 0
ETRI_C 2 2 0

Table 3. Statistics of the tracked trajectories

Sequence name
Ground

truth
Tracked

Tracked
after

temporal
filtering

False
alarmed

trajectory
Missed

speedway 6 6 6 0 0
Hall monitor 2 7 3 1 0
ETRI_A 10 23 15 5 0
ETRI_B 16 38 22 7 1
ETRI_C 22 37 24 2 0

 49

The results can show that our algorithm can robustly track almost all the trajectories and

reason the occlusion and split events. Although some false alarms exist, the ghost regions

caused by the lighting effect and the stopped object effect can also be filtered effectively. The

robustness of our tracking results can be used to extract key objects for abstraction later.

 50

4.4 Experiment Results of the Video Abstraction

In the abstraction algorithm, the thresholds THm for the MVD function to decide

whether there is significant change in motion is set to 2 pixels. And the THp used to decide

whether the spatial distance is large enough is set to 80 pixels. The interval for selecting

minor key objects is 60 frames or a video sequence has 30fps.

Fig. 31 and Fig. 32 show the selected key objects for the detected occlusion and split

events. The objects in continuous frames are listed and the selected key objects for the

specific event are marked using a rectangle.

Fig. 33 shows the selected key objects for the 33rd object in the sequence “ETRI_B”.

The person first walks into the frame (a) and slightly changes the direction (b). After a period

of time, because the distance of the object positions in (b) and (c) are big enough, the object in

(c) is also selected as key object. After a while, he starts to rush and the key objects are

selected in (d) and (e). Finally, the object in (f) is disappearing and is selected as key object.

 Fig. 34 shows the 30th object in the sequence “ETRI_B”. Because the person keeps

jumping in the camera view and the movements are very heavy, thus it is selected as key

objects. Fig. 35 through Fig. 37 show parts of the generated abstraction of the video sequence

 (a) (b) (c) (d) (e) (f)

Fig. 31. Selected key objects for the detected occlusion event

 (a) (b) (c) (d) (e) (f)
Fig. 32. Selected key objects for the detected split event

 51

of “ETRI_C”, “hall monitor” and “speedway”.

Fig. 33. Selected key objects for the ETRI_B sequence

(a) object appears; (b) change in motion; (c) change in position;
(d) change in motion; (e) change in motion; (f) object is disappearing

Fig. 34. Selected key objects for the ETRI_B sequence

(a) object appears; (b) change in motion; (c) change in motion; (d) change in motion;
(e) change in motion; (f) change in motion; (g) object is disappearing;

(a) (b) (c)

(f)(e)(d)

(a) (b) (c)

(f)(e)(d)

(g)

 52

Fig. 35. Parts of the abstraction of the ETRI_C sequence

(a) object appears; (b)change in position; (c) object appears;
(d) change in position;(e)occlusion event; (f)change in motion;
(g) split event; (h)object is disappearing; (i)change in position;
(j) change in motion; (k)object appears; (l)change in position;

(m) change in motion; (n) change in motion; (o)occlusion event

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

(l)

(o)(n)

(k)(j)

(m)

 53

(b) (c)

(f) (e)(d)

(g) (h) (i)

(a)

Fig. 36. Parts of the abstraction of the hall monitor sequence
(a)object appears; (b)change in motion; (c)change in motion;

(d)change in motion; (e)object appears; (f)object is disappearing;
(g)change in motion; (g)change in motion; (g)object is disappearing;

(b) (c)

(f)(e)(d)

(g) (h) (i)

(a)

 54

Fig. 37. Parts of the abstraction of the speedway sequence
(a)object appears; (b)object appears; (c)change in motion;

(d)change in motion; (e)change in motion; (f)change in motion;
(g)change in motion; (g)change in motion; (g)change in motion;

(b) (c)

(f) (e)(d)

(g) (h) (i)

(a)

 55

Table 4 shows the statistics of the generate abstractions. The results show that the

generated abstractions are very compaction and the object-level semantics and events are also

represented in the abstractions. In the next section we will show how to integrate the

abstraction algorithm to provide on-line alarming.

Table 4. Statistics of the abstraction
Object abstraction Selected key VOPs. Total VOPs

Object 1 (ETRI_A) 9 240
Object 7 (ETRI_A) 7 295
Object 3 (ETRI_B 10 140
Object 30 (ETRI_B) 7 59
Object 33 (ETRI_B) 6 167
Object 5 (ETRI_C) 7 176
Object 6 (ETRI_C) 15 171
Object 3 (speedway) 6 128
Object 1 (hall monitor) 5 235

 56

4.5 Integrated System for Real-Time Video Object Tracking and

On-Line Alarming

In this section, we will show the system we integrated for real-time tracking and on-line

alarming using the algorithm we have implemented. Fig. 38 shows the system interface.

Monitor Window, used to
monitor the input live video

Alarmed objects viewer,
used to view the
alarmed objects

Occlusion Group
List, which lists all
the objects that
currently occluded
with each other

Object Trajectory
List, which lists all
the object
trajectories that
have been tracked

Abstraction, list all the
selected key objects in the
abstraction, can be viewed
randomly in the alarmed
objects viewer

Fig. 38. Interface of the integrated system

Frames before
and after the key
object

 57

The system tracks the video objects in the surveillance video in real-time and the

abstractions for on-line events alarming are generated. While the live video is still being

tracked, we can randomly click the key objects in the abstraction window to view what

happened. Besides, all the tracked object trajectories and the occlusion groups are also listed

to provide object information in detail.

We implement the system in Visual C++ with Microsoft Direct Show. Our testing

platform is a computer with Pentium 1.6GHz CPU and 256MB RAM. The video sequences

are the Speedway, ETRI_A, ETRI_B, ETRI_C and the hall monitor and all the sequences are

in the format of 320 by 240. The performance can reach 16 frames per second.

 58

Chapter 5

Conclusion and Future work

In this thesis, we presented a system for object-based video tracking and abstraction on

surveillance videos. We adopted a simple but effective matching function that uses the motion

vector difference as the matching criterion. We also designed a state-based object occlusion

reasoning model to track and detect occlusion and split events robustly. Besides, we designed

a novel video abstraction algorithm that generating abstractions by selecting key objects with

important semantics and events. Based on this system structure, we implemented a real-time

tracking system with on-line alarming using the generated abstractions. With the abstractions

and on-line alarms, important events can be captured more efficiently and thus it is valuable

to the monitoring applications and systems such as ITS because a lot of time and manpower

can be saved.

To improve the performance and the robustness of the system, some enhancements can

be done in the future:

 Removing the shadow regions to the object masks more precisely.

 Improving the segmentation algorithm so that it is more robust to lighting variation

and complex scenes.

 To handle more complicated occlusion and split events such as multiple objects

occlusions

 Extracting more semantics from the object in the video abstraction algorithm, for

example to capture the actions of the objects.

In addition, since the object-based abstractions are very valuable and useful, the system

can be further extended for the content retrieval and management. To achieve this, we can use

the MPEG-7 descriptors to describe the contents with the detected events and generated

 59

abstractions. And thus we can manage a database for surveillance and monitoring videos and

important contents we are interested in can be retrieved efficiently. We believe that the

extraction of content will be more and more important and one day such kind of systems will

be widely adopted in the future.

 60

Reference

[1] Yaakov Tsaig and Amir AverBuch, “Automatic Segmentation of Moving Objects in Video

Sequence: A Region Labeling Approach,” IEEE Transactions on Circuits and Systems for

Video Technology, Vol.12, NO. 7, pp.597 – 612, 2002

[2] J.C Choi, S.-W Lee, and S. –D. Kim, “Spatio-Temporal Video Segmentation Using a Joint

Similarity Measure,” IEEE Transactions on Circuits and Systems for Video Technology”,

Vol.7, NO. 2, pp. 279 – 286, 1997

[3] D. Wang, “Unsupervised Video Segmentation Based on Watersheds and Temporal

Tracking,” IEEE Transactions on Circuits and Systems for Video Technology,” Vol.8, NO. 5,

pp. 539 – 546, 1998

[4] Hieu T. Nguyen, Marcel Worring, and Anuj Dev, “Detection of Moving Objects in Video

Using a Robust Similarity Measure,” IEEE Transactions on Image Processing, Vol.9, NO. 1,

pp.137 – 141, 2000

[5] T. Aach, A. Kaup and R. Mester, “Statistical Model-Based Change Detection in Moving

Video,” Signal Processing, Vol.31, NO. 2, pp.203-217, 1993

[6] A. Neri, S. Colonnese, G. Russo, and P. Talone, “Automatic moving object and

background separation,” Signal Processing, Vol.66, pp.219-232, 1998

[7] D. D. Giusto, F. Massidda, and C. Perra, “A Fast Algorithm for Video Segmentation and

Object Tracking,” The 14th International Conference on Digital Signal Processing, Vol.2,

pp.697 – 700, Cagliari Univ., Italy, 2002

[8] Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, “Efficient Moving Object

Segmentation Algorithm Using Background Registration Technique,” IEEE Transactions on

Circuits and Systems for Video Technology”, Vol.12, NO. 7, pp. 577 – 586, 2002

[9] E.P. Ong, B.J. Tye, W.S. Lin, and M. Etoh, “An Efficient Video Object Segmentation

Scheme,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal

 61

Processing, Vol.4, pp.IV-3361 – IV-3364, Singapore, 2002

[10] Jinhui Pan, Chia-Wen Lin, Chuang Gu, and Ming-Ting Sun, “A Robust Video Object

Segmentation Scheme with Prestored Background Information,” IEEE International

Symposium on Circuits and Systems, Vol.3, pp.803 – 806, Seattle, WA, USA, 2002

[11] Rita Cucchiara, Costantino Grana, Massimo Piccardi and Andrea Prati, “Detecting

Moving Objects, Ghosts and Shadows in Video Streams,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol.25, NO. 10, pp.1337 – 1342, 2003

[12] Franco Oberti, Simona Calcagno, Michela Zara, and Carlo S. Regazzoni, “Robust

Tracking of Human and Vehicles in Cluttered Scenes With Occlusions,” Proceedings of

International Conference on Image Processing, Vol.3, pp.629 – 632, Genova, Italy, 2002

[13] Changick Kim and Jeng-Neng Hwang, “Fast and Automatic Segmentation and Tracking

for Content-Based Application,” IEEE Transactions on Circuits and Systems for Video

Technology, Vol.12, NO. 2, pp.122 – pp.129

[14] Yi-Wen Chen, Duan-Yu Chen and Suh-Yin Lee, “Moving Object Tracking for Video

Surveillance in Compressed Videos,” The 7th International Conference on Internet and

Multimedia Applications and Systems, pp.695 - 698, 2003

[15] Young-Kee Jung, Kyu-Won Lee, and Yo-Sung Ho, “Content-Based Event Retrieval

Using Semantic Scene Interpretation for Automated Traffic Surveillance,” IEEE Transactions

on Intelligent Transportation Systems, Vol.2, NO. 3, 2001

[16] Yu Huang, Thomas S. Huang, and Heinrich Niemann, “Segmentation-Based Object

Tracking Using Image Warping and Kalman Filtering,” Proceedings of International

Conference on Image Processing, Vol.3, pp.601 – 604, Urbana, IL, USA, 2002

[17] Guangzhi Cao, Jingping Jiang and Jiaqian Chen, “An improved object tracking algorithm

based on Image Correlation,” IEEE International Symposium on Industrial Electronics, Vol.1,

pp.598 – 601, Hanzhou, China, 2003

[18] Bilge Gunsel and A. Murat Tekalp, “Content-Based Video Abstraction,” International

 62

Conference on Image Processing, Vol.3, pp.128 – 132, NY, USA, 1998

[19] Jeho Nam and Ahmed H. Tewfik, “Video Abstract of Video,” IEEE 3rd Workshop on

Multimedia Signal Processing, pp.117 – 122, Minneapolis, MN, USA, 1999

[20] Wen-Gang Cheng and De Xu, “An Approach to generating two-level video abstraction,”

International Conference on Machine Learning and Cybernetics, Vol.5, pp.2896 – 2900,

Beijing, China, 2003

[21] SangKeun Lee and Monson H. Hayes, “A Fast Clustering Algorithm For Video

Abstraction,” Proceedings of International Conference on Image Processing, Vol.2, pp.563 –

566, 2003

[22] Changick Kim and Jeng-Neng Hwang, “Object-Based Video Abstraction Using

Clustering Analysis,” Proceedings of International Conference on Image Processing, Vol.2,

pp.657 – 660, Palo Alto, CA, USA, 2001

[23] Changick Kim and Jeng-Neng Hwang, “Object-Based Video Abstraction for Video

Surveillance Systems,” IEEE Transactions on Circuits and Systems for Video Technology,

Vol.12, NO. 12, pp.1128 – 1138, 2002

[24] A.M Ferman, Bilge Gunsel and A. Murat Tekalp, “Object-Based Indexing of MPEG-4

Compressed Video,” International Conference on Acoustics, Speech, and Signal Processing,

Vol.4, pp.2601 – 2604, NY, USA, 1997

[25] Bernal Erol and Faouzi Kossentini, “Automatic Key Video Object Plane Selection Using

the Shape Information in the MPEG-4 Compressed Domain,” IEEE Transactions on

Multimedia, Vol.2, NO.2, pp.129 – 138, 2000

[26] Quen-Zong Wu, Hsu-Yung Chang, and Kuo-Chin Fan, “Motion Detection Based on

Two-Piece Linear Approximation for Cumulative Histograms of Ratio Image in Intelligent

Transportation Systems,” Proceedings of IEEE International Conference on Networking,

Sensing & Control, Vol.1, pp.309 - 314

[27] Jong Bae Kim, Hye Sun Park, Min Ho Park and Hang Joon Kim, “Unsupervised Moving

 63

Object Segmentation and Recognition Using Clustering and A Neural Network,” International

Joint Conference on Neural Networks, Vol.2, pp. 1240 – 1245, Taegu , South Korea, 2002

[28] M. Hu, “Visual Pattern Recognition by Moment Invariants,” IRE Transactions on

Information Theory, Vol.IT-8, NO.2, pp.179 – 182, 1962

[29] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd edition ,

Addison-Wesley, January 15th 2002

