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以物件為基礎監控視訊內容之追蹤與摘要 

 

研究生：郭慧冰 指導教授：李素瑛 

 

國立交通大學資訊工程學系 

 

摘要 

影像內容摘要是藉由擷取影像資料之中的重要涵義來精簡地表示影像資料之重要

的內容。而在監控視訊，我們可以用以物件為基礎之視訊摘要來表達物件所發生的事件

與其代表重要的意義。因此，在視訊監控系統如智慧型運輸系統，物件為基礎之視訊摘

要可以用來對物體所發生之重要事件發出警訊。此外，視訊內容摘要也可以幫助我們從

監控視訊影像的資料庫中取得與管理重要的內容。在這篇論文中，我們提出了一個以物

件為基礎之監控視訊之影像內容追蹤與摘要的系統。首先，我們使用以背景作為參考之

動態物件切割演算法把運動物體從背景中分割出來。接著，我們使用一個簡單但有效的

動態物件追蹤演算法得到運動物件的軌跡與特徵。最後，我們設計了一個藉由選取代表

著重要影像內容的動態物體來產生影像內容摘要的演算法。我們用此演算法來產生以物

件為基礎之影像內容摘要。 

我們藉由展示出我們所選取到具有代表性意義與事件的物件來證明我們提出的系

統的成效。根據所提出的系統架構，我們實作了一個能夠線上發出警訊之即時影像監控
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系統。在這個系統中，我們可以藉由所產生的內容摘要即時地對重要的事件發出警訊並

且同時對監控影像中的物體做即時的追蹤。我們測試了一些不同類型的監控視訊影像的

片段，而實驗結果證明，我們的系統在物件內容之追蹤與在重要物件內容之摘要都得到

滿意的結果。 
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Object-Based Video Tracking and Abstraction on Surveillance 

Videos 

 
 Student: Hui-Ping Kuo Advisor: Prof. Suh-Yin Lee 
 

Institute of Computer Science and Information Engineering 
National Chiao Tung University 

 

Abstract 

Video abstractions represent the video contents concisely by extracting the important 

semantics in the video. Important events and semantic meanings of moving objects in the 

surveillance videos can be represented using the object-based video abstractions. Therefore, 

the object-based video abstractions can be used to alarm important events in the surveillance 

and monitoring systems like the intelligent transportation system (ITS). Besides, the video 

abstractions can also help retrieving and managing important contents from the surveillance 

video database. In this thesis, we propose an object-based video tracking and abstraction 

system. First, we use a background-registration segmentation algorithm to segment the 

moving objects. Then, a simple but effective tracking algorithm is introduced to extract the 

object trajectories and object features. Finally, an abstraction algorithm is applied to generate 

object-based abstraction by selecting key objects which contain important semantic contents.  

We will reveal the performance of the tracking and abstraction algorithms by showing the 

results of extracting objects with representative features and events such as object 

appearance/disappearance, objects occlusion/split and changes in motion. We will present a 

real-time tracking system with on-line alarming to demonstrate the implemented system. In 
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this system, important object events will be alarmed using the generated object-based 

abstraction on-line while the surveillance video is being tracked in real-time. We test our 

system with several surveillance video sequences and the experimental results prove that we 

can get satisfactory results in both the object-based tracking and abstraction. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

In recent years, the video technology has advanced surprisingly. Because of the maturity 

of the digital video processing techniques and the compression standards, applications of 

digital video were widely adopted, for example, the video surveillance systems and stream 

media applications. However, with the traditional video encoding standard such as MPEG1 

and MPEG2, it is difficult to manage and retrieve the important content or content of interest 

efficiently when the amount of video data repository is very huge. Thus, it is essential to 

manage the video content to enhance the value and the usability the produced video data. 

Fortunately, in the MPEG 4 encoding standard, a new feature Video Object Plane (VOP) 

was introduced. The concept of VOP is that video sequences can be encoded into separate 

bitstreams according to the contents of the video, such as moving object and background. 

Thus, we can segment video frames into some semantically meaningful video objects and 

encode these video objects separately. This feature allows us to manage and retrieve the 

object-level information easily and thus provides higher level semantics and interactivity. 

Especially in the surveillance videos, because the moving objects are the most important 

contents, the benefits of extracting object-level information can be fully exploited. 

To represent the important contents in the video concisely, the video abstraction is 

usually used. The video abstraction helps us to retrieve the important contents in the video. In 

the traditional methods, the abstraction is usually generated by extracting key frames with 

representative features. Since the moving objects are important in the surveillance videos, we 

can use object-based abstraction and the key frames can be extracted by extracting significant 
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key objects. Because the abstraction is object-based, object-level semantics or events can be 

represented. 

The object-based video abstraction can be further applied to the surveillance systems 

such as the Intelligent Transportation System (ITS). The abstraction can be used to alarm 

object events and important contents.  

In this thesis, we will present an object-based video tracking and abstraction system on 

surveillance video. The general object events such as appearances, occlusions and the changes 

in motion will be detected. With the domain knowledge, these general object events can be 

further extended and deployed in many surveillance applications. For example, the occlusion 

of objects can indicate the car accident and the changes in the object motion can be used to 

detect whether there is illegal driving. A real-time tracking system with on-line general events 

alarming will be implemented in this thesis. 

1.2 Organization 

The rest of the paper is organized as follows. Chapter 2 introduces the background and 

the related work of the video object segmentation, tracking and abstraction. Chapter 3 

presents our proposed algorithms for video tracking and abstraction. Chapter 4 shows the 

architecture of the system and the experimental results. We will make a conclusion in Chapter 

5. 
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Chapter 2 

Background 

 

In some applications in Intelligent Transportation System (ITS) such as traffic 

surveillance and monitoring, the goal is to monitor the moving objects in the surveillance 

environment. Thus, video object segmentation is required to first extract the moving objects. 

After that, video object tracking and abstraction processes are required to track the object 

trajectory and extract the significant key objects which we may be interested in. In this 

chapter, we will introduce the related works of the video object segmentation, video object 

tracking and video abstraction. The details of the related works of video objects segmentation, 

video object tracking and video abstraction will be introduced in Section 2.1, 2.2 and 2.3, 

respectively. 

2.1 Video Object Segmentation 

Object segmentation is the first step toward the object-level abstraction and is the task to 

find a mask indicating the shape and the position of the moving object. There are many 

researches in the literature of object segmentation. Generally, segmentation algorithms can be 

classified into two categories, the homogeneity based methods and the change detection based 

methods. The homogeneity based algorithms [1-4] segment moving objects based on the 

homogeneity of their color, texture or motion information. Pixels with some similar features 

are first grouped into small regions, and these regions are then grouped into objects with some 

other features. This kind [1-4] of algorithms can provide precise object masks; however, the 

watershed algorithm for the boundary decision is a computational expensive process. Also, 

the motion estimation process to compute the precise motion vectors for clustering small 

regions also takes a lot of time. Thus, this kind of algorithm is not a good choice for systems 
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that have real-time requirements. 

The other category of segmentation algorithms is the change detection based algorithms. 

This kind of algorithms [5-7] segment objects by taking difference between the current input 

frame and a reference image, and then a threshold is chosen to decide a difference mask 

indicating the shape and the position of the moving objects. Traditionally, the previous input 

frame is chosen as the reference image and this is quite simple and efficient. However, there 

are some well-known drawbacks [8]. First, when the speed of the moving object is not 

consistent, it becomes impossible to indicate the position using the difference image and thus 

miss or false alarm in segmentation is unavoidable. Second, the uncovered background is 

another problem in traditional change-detection algorithms because the uncovered 

background regions that are covered by objects in previous frame may be considered as 

changed. Although, uncovered background can be detected and removed when the motion 

information is taken into consideration the computation of motion estimation is expensive and 

greatly lower the efficiency of the change-detection algorithms. 

Recently, some change detection algorithms [8-11], [15], [27] use a reference 

background image to segment moving objects. The reference background image is acquired 

beforehand or by some means to update dynamically and contains the still background 

without any objects. The change-detection algorithms with registered background effectively 

solve the problems of uncovered background and inconsistent object speed effectively. 

Besides, they are efficient and can meet the real-time requirement. In our proposed system, 

we will adopt the change-detection based algorithm with registered background to segment 

moving objects. 

2.2 Video Object Tracking 

Video object tracking is an important and frequently discussed research topic. Its 

objective is to match the detected objects in the current frame to the corresponding objects 
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detected previously. The tracked position and shape of objects can be used for the generation 

of the VOPs in MPEG-4 for some objects or to form the object trajectories for later 

object-based analysis and abstraction. Thus, video object tracking plays an important role in 

systems to extract MPEG-4 VOPs or object-based description and abstraction in MPEG-7.  

The object tracking algorithms first take the detected object masks from the 

segmentation algorithms as input data, and try to match the objects detected earlier using 

some features such as the position, shape and color. For example in [12], Oberti et al. used the 

shape of the object corners to track video objects. Some tracking algorithms also take motion 

information into consideration. For example, Kim et al. use the direction of the motion and 

the variation of the speed to compute smoothness feature as the matching criteria [13]. Chen 

used the motion as the constraint to find matching objects [14]. Some other algorithms [15-17] 

adopted Kalman Filtering. It is a linear estimation process that estimates the current value and 

updates the prediction recursively, to estimate and track the position of the objects.  

The precision of the prediction involves two errors: the process error and the 

measurement error. Because sometimes there are errors in the segmentation process due to the 

cluttered scene, the object masks would not be very precise and hence the measurement errors 

would be large. Besides, some abrupt movements of the objects such as waving of hands will 

make the process error large. The prediction error may not converge quickly if both the 

process error and measurement errors are large. Thus, it may be difficult to match correctly 

due to the uncertainty of the prediction. In this thesis, instead of using Kalman Filtering, our 

algorithm uses the motion information as feature, which is efficient and effective. The 

occlusion and the split of objects can also be handled in our tracking algorithm. The 

trajectories of the objects as well as the event of occlusion and split will be stored for the 

object abstraction in the later stage. 

2.3 Video Abstraction 
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The video abstraction is to represent the large amount of video data in a compact form 

and is generated by selecting the key frames which are representative of the features and the 

contents of the video. Traditionally, the key frame extraction (KFE) algorithms [18-21] are 

frame-based and the image features are used. For example, the video sequence is first 

decomposed into scenes and the scenes are then decomposed into shots. The key frames are 

then extracted from each shot to represent the features of that shot. The image features like 

color and the motion intensity are usually used as the criteria to select key frames.  

In the surveillance video, because the background is stationary and the moving objects 

are the most important contents in the video, we can choose the moving objects with 

important features or significant events to represent the video contents. However, the 

traditional KFE algorithms are not applicable because they use only low-level images features 

and the generated abstractions are lack of object-level semantics. In [22] and [23], Kim et al. 

proposed a system that selects key objects for video abstraction using the shape information 

of the moving objects. They tried to detect the changes in the shapes by computing moment 

invariant moments [12] to capture the actions of the moving objects. However, it is difficult to 

detect the changes in the object shapes for the rigid moving objects such as the vehicles. In 

our proposed abstraction algorithm, we will try to select key objects based on the 

characteristics of the object trajectories and the object events detected. 

Other object-based KFE algorithms proposed are in [24] and [25]. In [24], the number of 

the intra-coded macroblocks (I-MBs) to the total number of the encoded macroblocks in the 

VOP used as the criteria of the key object selection; while [25] detected significant changes in 

the shape of the VOP in the MPEG-4 compressed domain. Unlike the previous works, which 

used pre-segmented VOPs, we propose a system is which aims to track video objects in 

real-time and select key objects to generate video abstractions on-line.  
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Chapter 3 

Algorithm for Object-Based Video Tracking and Abstraction on 

Surveillance Videos 

 

In this chapter, we will present the proposed system for video object tracking and 

abstraction. The whole system is composed of three main modules: video object segmentation, 

video object tracking and video abstraction. In section 3.1, we will give an overview of the 

whole system In section 3.2, we will present our video object segmentation algorithm. In 

section 3.3, we will present the video object tracking algorithm to track the moving objects 

detected. In section 3.4, the video abstraction algorithm will be presented. 

3.1 System Overview 

Our proposed system contains three modules, which are the video object segmentation 

module, the object tracking module and the video abstraction module. The surveillance video 

data are first captured and input to the video object segmentation module. The object 

segmentation algorithm segments the moving objects from the background and generates the 

object masks which indicating the position and the shape of the moving objects. The 

segmented object masks are then input to the video object tracking module. The object 

tracking algorithm matches the input object masks to those objects which have been input 

previously. Also, the occlusion and the splitting of the objects are detected and are reasoned in 

the object tracking stage. In the video abstraction module, video abstraction will be generated 

by selecting those frames with semantically meaningful objects contained. 

3.2 Video Object Segmentation 

In our object-based tracking and abstraction system, the first step is to segment the 

moving objects as precisely as possible. The object segmentation algorithm directly takes the 
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raw video data as input to segment the moving objects in the surveillance video sequence and 

extracts the object masks to indicate the presence of the moving objects. In the surveillance 

video, since the position of the camera is always fixed and the background is stationary, so the 

simplest way to segment moving objects is to use the change detection based method. 

Because when comparing a frame to a background image, it is straightforward to consider the 

regions that change significantly as moving objects. Thus, selecting background image for the 

change detection based algorithm as reference can effectively achieve our goal.  

However, besides the moving objects that we are interested in, there are other types of 

changing regions that may be miss-classified in the segmentation process. One of which is the 

camera noises. The camera noises are the white noise of the camera and are usually small. The 

other type is often called ‘ghost’. The ghost is the changing region that appears and then 

disappears quickly without steady motion and is usually bigger than the camera noise. The 

ghost effect is usually resulted from the waving of tree leaves and regional lighting effect. In 

order to obtain accurate object masks, these annoying changing regions should be filtered out. 

In our segmentation algorithm, we adopt the change detection based algorithm with 

background registration and the filtering process of noises and ghosts is also applied. The 

whole process of our segmentation algorithm is shown in Fig. 1. 
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Fig. 1. Segmentation process diagram 
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3.2.1 Inter-frame Differencing 

In the segmentation algorithm, the first step is to compute the inter-frame difference 

image (DI) between the current input frame and the previous frame. The distance value in the 

DI shows how strong a pixel changes in two consecutive frames and the possibility that a 

pixel will be considered as changing. Because the human eyes are more sensitive to 

luminance than to chrominance, we only take difference value on the luminance channel. 

After taking threshold THd on the difference image, we can obtain a difference mask (DM) 

that indicates the changed regions between two consecutive frames. The computations of DI 

and DM are shown in Eq. (1) and Eq. (2), where the CY(i,j) and PY(i,j) denotes the pixel value 

in current frame and previous frame in the luminance channel respectively. The DN will be 

used to update the background image in the next step. 
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3.2.2 Dynamic Threshold Decision 

In order to make our segmentation algorithm adapt to various kinds of environments and 

video contents, the threshold THd for deciding the DM cannot be fixed and should be selected 

adaptively. In many researches [8], [10], [26-27], the values in the difference image can be 

modeled by a mixture of two distributions. And thus, finding the threshold corresponds to 

finding the two distribution functions that approximate the histogram of the difference values. 

Traditionally, the valley between two peaks is found and is chosen as the threshold dividing 

two distributions. However, in the real case as shown in Fig. 2, the histogram fluctuates 

heavily and it is difficult to find a threshold just by finding a valley. In [26], Wu et al. 

suggested that the histogram can be converted to a monotonic increasing histogram by 

accumulating the original histogram values, as shown in Fig. 3. In the cumulative histogram, 

(1) 

(2) 
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the problem of finding a threshold can be simplified to finding an intermediate point such that 

two straight lines which are interpolated by the start point, end point and the intermediate 

point can best approximate the cumulative histogram. Instead of using the ratio histogram in 

[26], we simply use the difference since the computational cost is much more expensive for 

the ratio histogram. 
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3.2.3 Background Buffer Update 

The next step in the segmentation algorithm is to update the background image (BI). In 

the background registration method [8-11], [15], [27], because the performance of the 

segmentation result relies on the correctness of the background dramatically, we need a robust 

method to retrieve and maintain the background image. The simplest way to obtain the 

background image is to capture the background beforehand. However, the background image 

may change slightly and gradually because the luminance may vary with time. In our 

algorithm, we dynamically update the background buffer using the difference mask. With the 

difference mask, the regions that are marked as ‘changed’ will not be updated to avoid 

distortion. Every time when a new difference mask is computed, the background image buffer 

at current time t (BIt) at position (i,j) is updated using the equation in Eq. (3) and Eq. (4). In 

the equations, the k(i,j) is the bias factor of the pixel (I,j) which accelerate the speed of 

background update. The symbol α is the weighting factor used in the update function Eq. (4).  
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When the system starts up, the background buffer is empty and a period of time for the 

background buffer initialization is required. With our background update equation, the 

initialization can be completed in a few frames. After the initialization process, we update the 

background buffer every 30 frames since background color does not change frequently. The 

gradual variation can quickly be updated to background buffer. Even if there is a sudden 

lighting variation when the clouds are dispersed and the sun is revealed, the update equation 

can also catch up the variation in a short period of time. 

3.2.4 Background Differencing 

After we obtain a background buffer, we can segment the moving objects from the 

(3)

(4)
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background. Unlike the way adopted in computing the difference image, we use the 

luminance and chrominance channels together instead of using luminance only. Because some 

moving objects look quite different compared to the background in their color, but the 

difference between the current frame and the background is almost zero when the 

chrominance information is discarded. In order to extract accurate object masks and not to 

miss any important moving objects, the chrominance information must be considered. 

Because the importance of the chrominance channels depends on the intensity of the 

luminance channel, we design a difference score function to evaluate the difference in YUV 

color space. Denote the different score as DS, the equations Eq. (5) through Eq. (8) show how 

to compute the different score. For a pixel (i,j), we first get the strongest luminance intensity 

among the current frame and the background image. Then, we decide the weighting factor of 

the chrominance based on the luminance intensity. Because the valid range of the luminance 

channel after conversion is from 16 to 235, we can subtract the luminance value from 16 and 

divide it into 11 levels, which are from 0.0 to 1.0. After that, we can use the weighting sum 

equation Eq. (7) to compute the color distance in the YUV color space. 
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Sometimes an object enters a frame and then keeps stays in the same position on the xy 

plane. We call such kind of object as ‘stopped object’ since the motions in both the x and y 

(5)

(6)

(7)

(8)

(9)
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direction are almost zero. Because the algorithm updates the inputted frame to the background 

for the unchanged regions, the color of the stopped objects will be updated to background 

buffer when they stop too long. In this case, object regions will be false alarmed because the 

background has been wrongly updated. Although this problem can be solved by lengthening 

the interval of background updates, the time needed to adapt to the luminance variations is 

also be lengthened. And thus it is a tradeoff and both of the cases must be taken into 

consideration. 

After we finish computing the background difference image using the difference score 

function, another dynamically selected threshold THd is applied to get the background 

difference mask, as shown in Eq. (9). The background difference mask extracted here 

indicates the moving object regions compared to the reference background image. However, 

the background difference mask contains a lot of noises and the object boundaries are not 

smooth. Thus, further filtering is required. 

3.2.5 Morphological Operation 

 To smooth the object boundaries and remove the noises, two kinds of morphological 

operations are frequently used [8], [13], [23]. The closing operation is first used to fill the 

black holes inside the object masks and the opening operation is then used to remove the 

small noises that do not belong to the moving object. In our algorithm, the structure element 

of size 7x7 and 5x5 are selected for closing and opening operations respectively. In most of 

the cases, the smaller camera noises can be successfully filtered. However, larger regions 

caused by ghost effect are hard to remove out. Although larger structuring element may help, 

the computation cost will also be more expensive. And thus, instead of using larger 

structuring element, we will filter out these ghost regions in the video object tracking 

algorithm with temporal and spatial filtering. 

After the morphological operations, the object mask is smoothened and indicates the 
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shapes and the positions of all the moving objects in the current frame. The individual object 

in the object mask is then extracted in the next process. 

3.2.6 Connected Component Labeling Algorithm and Size 

Filtering  

The tracking algorithm gets the extracted object mask as the input. However, the object 

mask simply indicates the positions and the shapes of all the moving regions without separate 

information. Thus, each individual object in the object mask must be extracted and assigned 

an identifying label. The connected component algorithm is a frequently used algorithm [8], 

[29] to achieve this work. For every pixel, it first examines the neighboring pixels and assigns 

that pixel a label. After that, pixels with the same label or equivalent labels are clustered 

together to form an isolated object. 

Because there are some large noise and ghost regions which are hard to be completely 

removed out, the size filtering must be performed after the labeling process. The size filtering 

process filters out those regions which are smaller than a predefined threshold. The objects 

that are not filtered out are called the object-of-interests and these objects will be tracked in 

the tracking algorithm. 
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3.3 Video Object Tracking  

The second module in our system is the video object tracking module. Although the 

object-level information can be extracted via the segmentation of video objects, the higher 

level object semantics can only be extracted from the object trajectories. Thus the object 

tacking process is the key role toward the semantics analysis and video abstraction. Our 

tracking algorithm gets the extracted object masks as the input and tracks all the objects to get 

the object trajectories. The tracking algorithm can be divided into several sub-modules and 

will be presented later. The diagram is shown in Fig. 4. 

In the tracking algorithm, the object information, such as mass center and motion, is first 

gathered for each detected object. We use a simple but effective matching function based on 

the motion and will be presented in details later. 

Based on the observation, the occlusion can happen inside the camera view or outside 

C urren t
S egm en ted

O b jects

P rev io us
S eg m en ted

O bjects

O b ject
M atch ing
A lgo rith m

O b ject
T rajecto ries
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S m oo thed
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Fig. 4. The process diagram of the tracking algorithm 
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the camera view. For the first condition, we can observe the occlusion of the objects. For the 

second condition, the objects are occluded when entering the camera view. According to Jung 

[15], we define the first condition as EXPLICIT OCCLUSION and the second condition as 

IMPLICIT OCCLUSION. The occlusion events are detected and the objects after splitting are 

tracked and matched using the motion information. 

After the matching of the objects, the object trajectories are smoothened in the temporal 

filtering process. The smoothened trajectories are then input to the video abstraction algorithm 

to generate abstractions. 
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3.3.1 Matching Function 

The object tracking algorithm tracks the object trajectories by matching the current 

video objects to the previously tracked video objects. In the literature of object tracking, some 

algorithms [15-17] adopt the Kalman Filtering to estimate and track the objects. It is 

appealing because it recursively estimates the object states and updates the predictions. In the 

ideal situation, when the moving paths are very smooth and the object masks are very 

accurate, the prediction error converges quickly because both the measurement error and the 

process error are small. However, the detected object boundaries may contain some errors due 

to the clutter scenes in the real environments, and the measurement errors thus become large. 

In addition, the path of a moving object is not as smooth as we expected. For example, if we 

connect the mass centers of a walking person, the connected path looks like zigzag rather than 

a straight line because all the actions such as waving of hands and striding affect the mass 

centers significantly. Under this condition that both the measurement error and the process 

error are high, the prediction error may not converge quickly. Thus, it is difficult to track and 

handle some complicated conditions like object occlusions due to the uncertainty of the 

estimation. 

Due to these reasons, we utilize the motion information to match objects in our object 

tracking algorithm. We use a simple but effective motion distance evaluating function to 

compute the motion distance for objects matching. Let us denote the ith segmented video 

object at time t as VOt
i. Suppose there are n current video objects and m previous objects, 

which belong to m tracked trajectories. We can know that all the m previous objects VOt-1
i 

have been tracked at time t-1 and thus the motion vectors are known at time t and denoted as 

MVt-1
i. Besides, the mass center of the n current objects and m previous objects are also 

known, which are denoted as XYt-1
i and XYt

i respectively. The computations of motion 

distance function (MVD) are shown in the equations Eq. (10) and Eq. (11). In the equations, 
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the mv(i, j) is the object motion vector between current object i and previous object j and the 

Θ is the included angle between mv(i,j) and MVt-1
j.  
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The motion vector distance function takes both the position and the moving direction 

into evaluation. The motion vector distance function can be further explained in its geometric 

meaning. As shown in Fig. 5, the geometric meaning of the MVD is the length of differencing 

motion vector. And the equation shows that both the position and the moving direction are 

evaluated in the equation.   

To match the n current objects to the m previous objects, the matching function first 

builds up an m by n table and computes the motion vector distance in each table entry. The 

matching function then picks up the entry that the motion vector distance value is the 

minimum. If the minimum value does not exceed a predefined threshold THmatch, the 
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Fig. 5. (a) video object j in the time t-1 and the tracked motion vector; (b) video 
object in time t, the mv(i,j) is computed using Eq. (9); (c)motion vector distance
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corresponding current object and previous object in that selected entry are matched. Note that 

the matching function is a 1-to-1 function, the matched current object and previous object 

cannot be matched again. The matching function runs iteratively until the selected motion 

vector distance exceeds the threshold or either the current objects or the previous objects are 

all matched. Fig. 6 shows the pseudo code of the matching function. 

Fig. 6. Pseudo code of the matching function 

create a MVD n by m table T for the m previous objects and n current objects 
COsize = n; 
POsize = m; 
 
for(i=0; i<n; i++)  
{ 
 for(j=0; j<m; j++)  

{ 
  T = MVD( VOt

i, VOt-1
j ); 

 } 
} 
 
while(COsize >0 && POLsize >0) 
{ 
 min_Value = the minimum MVD value in T; 
 min_Entry = the entry T[x,y] that has minimum MVD value; 

if(min >= THmatch) break; 
 
 match VOt

x to VOt-1
y; 

 COsize --; 
 POsize --; 
 Delete the row T[x,*] in T; 
 Delete the column T[*,y] in T; 
} 
end of matching algorithm; 
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3.3.2 Object States 

Before entering the object matching algorithm, we must introduce the object states 

associated with the tracked objects. In the tracking process, because there are several object 

events such as the appearance, the disappearance, the occlusion and the split, we need 

additional flags to indicate the current state of an object. Therefore, we define two object state 

flags, the OCC_STATE and the OBJ_STATE. The OBJ_STATE indicates the object condition 

in its life cycle. The OBJ_STATE has three states: NORMAL, DYING and DEAD. Fig. 7 

shows the state transition graph. The life cycle of an object starts when the object first appears 

in the frame and then the state goes to the NORMAL state. Because sometimes when the 

scene is clutter or the moving object is small, the object may be missed or be filtered out in 

the segmentation process and the moving object may disappear temporally. In traditional 

approaches, the original object may be considered disappeared and a new object entry will be 

created under this condition. However, in our human’s perception, there should be only one 

object. Therefore, instead of considering the temporally disappeared object dead directly, we 

let the object go to the DYING state first. When the object in the DYING state cannot find a 

match in the next p frames (say three), we will think the object is really disappeared and let 

the object go to the DEAD state. On the contrary, the object goes back to the NORMAL state 

when a good match is found before the time limit. 

NORMALNew 
object

appears Being in DYING 
state more 

than p frames

No matching 
object in 

current frame

Match an 
object in

current frame

DYING DEADNORMALNew 
object

appears Being in DYING 
state more 

than p frames

No matching 
object in 

current frame

Match an 
object in

current frame

DYING DEAD

Fig. 7. The state transition diagram of the OBJ_STATE 
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The other state flag is the OCC_STATE, which indicates the relationship to other objects. 

The OCC_STATE has three states: NORMAL, COLLISION and OCCLUSION. The state 

transition diagram is shown in Fig. 8. When a new object appears, the OCC_STATE goes to 

the NORMAL state. During the tracking process, each time when a new object is matched, 

our algorithm examines the possibility that whether this object will collide to other objects or 

not in the next few frames by estimating the object position. If it is possible to collide, then 

the object goes to the COLLISION state. When an object in previous frame is left unmatched 

after the matching process, the COLLISION state can be used to judge if an occlusion occurs 

or an object disappears since both of the cases will lead to failure in matching a previous 

object to a current object. If it is in the case that the object occludes the other objects, then it 

goes to the OCCLUSION state. On the other hand, if the object in the COLLISION state will 

not collide with any other objects, it goes back to the NORMAL state. Similarly, for the 

current object that fails to match any previous objects, the OCCLUSION state can be used to 

judge if the objects with explicit occlusion split to two or if a new object appears. Once the 

occluded object splits, the state goes back to the NORMAL state. However, in the case of 

implicit occlusion, the objects occlude outside the camera view and the occlusion event 

cannot be observed. Therefore, the implicitly occluded objects are not in the OCCLUSION 

state and the OCC_STATE remains unchanged when the objects split.  

With these indicating states, the tracking algorithm can handle complicated conditions 

without ambiguity. In the next section, we will show how the object matching algorithm 
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Split
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Fig. 8. The state transition diagram of the OCC_STATE 
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utilizes these states to match objects. 
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3.3.3 Objects Matching Algorithm 

The object matching algorithm in the sub-module in Fig. 4 tries to find matches for the 

objects using the matching function. Because our algorithm tries to handle various conditions, 

simply matching the objects detected in current frame to the objects detected in the previous 

frame is not enough. In our matching algorithm, the process is divided into several stages. For 

short, the objects detected in the current frame and the objects detected in the previous frame 

are denoted as CurrObj and PrevObj respectively, and the diagram is shown in Fig. 9. 

In the matching algorithm, the objects detected in current frame and the objects detected 

in previous frame are taken into the matching function to find a best match. In our algorithm, 

we use the object trajectory to stores the tracked objects in each frame for each object entry. 
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Fig. 9. The process of the whole matching algorithm 
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So, the current objects that found matches here are appended to their object trajectories 

respectively. Because the matching function terminates when no more good matches could be 

found, there could be some current objects and previous objects left unmatched and they are 

stored in the CurrObjRest and PrevObjRest respectively. The current objects that left 

unmatched may be resulted from the appearance of new objects, the split of occluded objects 

or temporally disappeared objects revealed. Similarly, the previous objects that left unmatched 

may be resulted from the occlusion or the disappearance of the objects. Sub-modules designed 

to handled the events and condition will be presented in detail. The whole process of the 

matching algorithm will be presented after these sub-modules are presented. 

3.3.3.1 Occluded Objects Matching 

For those previous objects that left unmatched, our matching algorithm first tries to find 

if there is any objects occlusion events. As mentioned earlier, since both the conditions of 

occlusion and disappearance of objects will leave the previous objects unmatched, the 

COLLISION state must be used to judge if there is an occlusion event. Fig. 10 illustrates the 

relationship of occluded objects and Fig. 11 shows the diagram of occlusion objects matching 

process. Assume that the video objects VOt-1
1 and VOt-1

2 in time t-1 may collide with each 

other in the future, so both the objects are in the COLLISION state and we define that these 

two objects are in the same ‘collision group’. In addition, we also assume that the two objects 

occlude at time t and thus only one isolated object is detected. As described earlier, the current 

VOt-1
1

COLLISION

VOt-1
2

COLLISION VOt
1

(a) (b)

VOt-1
1

COLLISION

VOt-1
2

COLLISION VOt
1

(a) (b)
 

Fig. 10. The relationship of occlusion objects; 
(a) Before occlusion; (b) after occlusion 
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objects and the previous objects are first taken into the matching function and thus one of the 

objects in t-1, says VOt-1
2, is matched to the VOt

1 at time t. After the 1-to-1 matching function, 

the video object VOt-1
1 is left unmatched. To handle the occlusion events, our algorithm first 

checks the possibility of objects occlusion by examining the COLLISION state of the 

unmatched previous object, for example the VOt-1
1 in Fig. 10, and the previous object in 

COLLISION state is taken into the matching function. Then, the current object that has being 

matched to the previous object which is also in the ‘collision group’ is also taken into the 

matching function. If a match is successfully found, it implies that there is indeed an 

occlusion since the current object can match to the previous objects in COLLISION state and 

it satisfies the real situation of the objects occlusion. 

Once the event of the objects occlusion is detected, both the occluded objects go to the 

OCCLUSION state and they share the same object trajectory until they split into two. We 

define that these occluded objects are in the same ‘occlusion group’. Note that because the 

individual motion is required to track the each object when the occluded objects split, our 

algorithm keeps estimating the individual trajectory when the objects are occluded. The 

tracked objects are appended to respective object trajectories. 

3.3.3.2 Split Objects Matching 
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Fig. 11. The occluded objects matching process 
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The split objects matching process handles the event of object split and matches the split 

objects. The relationship of the split objects and the diagram of the process are shown in Fig. 

12 and Fig. 13. Assume the object VOt-1
1 in time t-1 is merged from two objects and they split 

into two objects, VOt
1 and VOt

2, at time t. According to the matching function performed on 

current and previous objects, the previous object VOt-1
1 is matched to one of the current 

objects, for example VOt
2. Therefore, the previous object VOt

1 is left unmatched. Remember 

that there are explicit occlusion and implicit occlusion. Therefore, the conditions of split event 

become more complex. Because we cannot judge the possibility of split event simply with the 

OCCLUSION state, we need to divide the split object matching process into two steps. 

In the first step, we try to detect the split events from explicitly occluded objects. First, 
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2VOt-1

1
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1
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Fig. 12. The relationship of split objects; 
(a) Before splitting; (b) after splitting 
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Fig. 13. The split object matching process 



 28

we find all the objects which are in the OCCLUSION state from the object trajectory lists and 

the objects that have not been matched to current objects are picked. Take Fig. 12 for example. 

Although there is only one previous object, there is another object trajectory in OCCLUSION 

state. Then, the unmatched current objects and the objects we picked are taken into the 

matching function. Note that because the estimated motion for each individual object is used 

here. If a good match is found, it implies some occluded objects now split because the 

previously occluded objects now match to two objects individually. In this case, the split 

objects go back to the NORMAL state and the occlusion group for the occluded objects is 

deleted. Then the tracked current objects are appended to their respective object trajectories. 

If the number of unmatched current objects is not zero, the second step is performed. In 

the second step, we try to detect the split events from implicitly occluded objects. The process 

is quite similar. However, instead of finding objects in OCCLUSION state from the object 

trajectories, all the previous objects are used for matching here since we cannot find any 

OCCLUSION flag in implicitly occluded objects. If a good match is found, the implication is 

that one previous object matches to two current objects, which means the split event of 

implicitly occluded object. In this case, our algorithm creates a new object trajectory for the 

object that splits out and the tracked objects before splitting are duplicated. 

3.3.3.3 Estimated Objects Matching 

Because we do not think that the object is dead soon after it disappears, we append an 

estimated object to its object trajectory for later matching process. We use the object 

information in the past few frames to predict the position and the motion of the estimated 

object. When the temporally disappeared object now reveals again in the current frame, 

therefore, we must pick up the estimated objects for matching. Fig. 14 shows the situations 

that an estimated object is used and Fig. 15 shows the diagram of the estimated object 

matching process. 
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This matching process first finds all the object trajectories in the DYING state and picks 

up the estimated objects from these object trajectories. Then, these estimated objects and the 

unmatched current objects are taken into the matching function. If an estimated object 

successfully matches to an unmatched current object, the current object is appended to the 

object trajectory of that estimated object and the OBJ_STATE goes back from the DYING 

state to the NORMAL state. 

After all the sub-matching modules are presented, we now illustrate the process of the 

matching algorithm. The current objects and the previous objects are taken into the matching 

function, and the matching function terminates when no more good match can be found. If 

there are any events such as appearance, disappearance splitting and occlusion of objects, 

some current objects and previous objects will be left unmatched. As shown in Fig. 9, for the 

unmatched previous objects, first the matching algorithm performs the occluded objects 

matching process to check whether there are any objects occlusion events and tries to find 
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Fig. 14. The condition that estimated object is appended (a) Time t-2; (b) Time t-1, 
the object disappears, and an estimated object is appended ;(c) Time t, the object 
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Fig. 15. The estimated objects matching process 
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matches. If there are still any previous objects that cannot find a match, we think that there are 

objects disappeared. For the object trajectories of these unmatched previous objects, we make 

the OBJ_STATE go to the DYING state and estimated objects are appended. 

For the unmatched current objects, first it goes to the split objects matching process to 

check whether there are any object split events and try to find matches. The current objects 

that still cannot find matches will then go to the estimated objects matching process. After the 

estimated objects matching process, we will consider the rest of current objects as new objects 

and new entries for the object trajectories will be created. 

Finally, the matching algorithm goes to the refresh trajectory function. In this function, 

the objects in DYING state are first examined. If the object stays in the DYING state too long, 

we will consider that the object is really disappeared for\ever and let it go to the DEAD state. 

After that, the motion vector of each moving object is re-computed using the position of the 

newly tracked object position. Finally, based on the tracked object positions and the computed 

motion vectors, the function examines if any two objects may collide with each other in the 

near future. Each time after the matching algorithm finishes matching and processing all the 

objects, the tracking algorithm will pass the object to temporal filtering process.  

3.3.4 Temporal Filtering 

The temporal filtering process here is designed to filter out the ghost effect. Because 

ghost usually appears and disappears very quickly, we can use the temporal filtering to filter 

out the ghost objects. In our algorithm, we will not think a detected and tracked object valid 

unless it survives more than a time period. In other words, an object that goes to DEAD too 

soon after it appears will be filtered out and excluded from the key objects selection process 

in the video abstraction algorithm. 
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Another objective of the temporal filtering process is to smooth the object motion. In the 

trajectory of a non-rigid object like a walking person, because the connected path of the mass 

center fluctuates like zigzags, the precision of the analysis of moving direction is seriously 

affected. Therefore, the paths of the moving objects need to be smoothed in the temporal 

filtering process. Fig. 16 shows the zigzag-liked moving path and the smoothed moving path. 

The solid lines represent the true motion vector by connecting the mass centers and the 

direction of the dash line represents the moving direction after temporal filtering. 

 

 
Fig. 16. The path of the mass center of a walking person 
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3.4 Video Abstraction Algorithm 

The last module in the system is the video object abstraction module. The video 

abstraction is generated using the video abstraction algorithm by selecting the key frames with 

meaningful semantics. Because the moving objects are the most important parts in 

surveillance videos, the selection of important key frames is equivalent to the selection of 

important key objects. Therefore, in our video abstraction algorithm, we will analyze the 

tracked object trajectories and detect object events to extract representative key objects. 

Although the best and the most representative key objects of an object trajectory can be 

selected after the life cycle of that object is terminated, this kind of approach is not suitable 

for a real-time tracking system like ours. In order to achieve on-line alarming on real-time 

tracking system, the key objects must be selected near real-time, which means the delay must 

be bounded and very small. Therefore, every time a new frame comes in, our algorithm 

examines the current tracked object in each trajectory and selects it as a new key object if it is 

representative enough for its trajectory. 

One of the criteria for key object selection is based on the object events which are 

representative for some object states or objects relationships at some time instant. Such events 

may raise our human’s interests. There are some important object events in general domains, 

such as appearance and disappearance. Besides, the motions and the positions of the object 

may also be used as the selection criteria. For example, we may have interests and pay more 

attention when a new object appears or the moving direction of the object changes because 

they can represent significant events. Therefore, the analysis of the object trajectories to 

extract this specific information is required. 

The diagram of the abstraction algorithm is shown in Fig. 17. There are three modules in 

this algorithm. The algorithm takes the object trajectories generated in the video object 

tracking algorithm as input. The abstraction will be generated by selecting the frames with 
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key objects and output to clients. 

3.4.1 Object State Analysis 

The object state analysis process detects the general object events such as appearance, 

disappearance, occlusion and split of objects. Because we have handled and detected these 

events for object matching in the tracking algorithm, we can directly capture these events by 

examining the state transition of OBJ_STATE and the OCC_STATE of the objects. The only 

exception is that we do not directly extract the event when an object appears because the 

temporal filtering is applied to filter out the ghosts. Therefore, the events of object appearance 

will only be captured when the object survives for a period of time after it appears. 

Object
Trajectories

Object
State

Analysis

Object
Trajectory
Analysis

Selected
Major and
Minor Key

Objects  

Fig. 17. The abstraction algorithm 
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3.4.2 Object Trajectory Analysis 

The object trajectory analysis process tries to analyze the trajectories to find the featured 

objects as key objects. The featured objects are representative for the changes in the moving 

speed and direction, the position in the frame view or the object size. Every time when new an 

object is tracked, our algorithm compares the motion, position and size of that object to those 

object features of the previously selected key object. To evaluate the motion difference of 

current object and the previously selected key objects, the motion vector distance function 

described in section 3.3.2 is used. However, to avoid the zigzag-like paths for non-rigid 

objects to affect the analysis of motion direction, the motion vector after temporal filtering is 

used. Fig.  18 shows the analysis process. 

3.4.3 Video Abstraction with Selected Key Objects 

After the object event detection process and the object trajectory analysis process, the 

abstraction can be output using the selected key objects. In our algorithm, we define two types 

of key objects: major key objects and minor key objects. The major key objects represent 

important event and are always exported. On the contrary, the minor key objects are less 

important and are exported only when there is no other key object exported recently. All the 

MV of
Previous
selected

key object Motion
Vector

Distance

Select as
Major

Key object
 > THm ?

MV of
Current
tracked
object

Y Output
Key Obj

Position
distance > THp ?

Select as
Minor

Key object
Y

 
Fig. 18. The trajectory analysis and key object selection process 
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key objects selected in object state analysis process are major key objects. Besides, the objects 

which change in motion significantly are also selected as major key objects. The key objects 

which are selected using the position as the criterion are minor key objects. Fig. 19 shows 

how the algorithm selects the key objects to export. 

Major
Key Obj

Minor
Key Obj

Export Key
Obj to client

Any Major
Key Obj ?

Any Minor
Key Obj ?

Key obj
Recently
exported?

Export Key
Obj to client

Y

N

Y Y

 
Fig. 19. The key objects exporting process 
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Chapter 4 

System Architecture and Experiment Result 

 

In this chapter, we will present the system for object-based video tracking and 

abstraction. In the section 4.1, we will first show an overview of the system architecture. In 

the sections 4.2 to 4.4, the experiment results of each module will be represented. The 

implemented system will be presented in the section 4.5. 

4.1 System Architecture Overview 

In this thesis, we implemented an object-based tracking and abstraction system on 

surveillance videos. The raw video data captured lively are input to our system and the 

process of object segmentation, object tracking and video abstraction are performed on-the-fly. 

The abstraction is used for on-line alarming at the client while the surveillance video can be 

monitored simultaneously. Except some predefined thresholds, all the initializations are done 

automatically without manual interactions. Fig. 20 shows the overview of the system.  

Video 
Object

Segmentation

Video 
Object

Tracking

Video
Abstraction

Monitoring
Video

Alarming
Abstraction

Client

Surveillance
Video

Video 
Object

Segmentation

Video 
Object

Tracking

Video
Abstraction

Monitoring
Video

Alarming
Abstraction

Client

Surveillance
Video  

Fig. 20. System architecture overview 
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4.2 Experimental Results of the Video Object Segmentation  

In the segmentation algorithm, we use first 40 frames for background initialization 

before we start segmentation. In the morphological operations, the size of structuring element 

for closing operation is 7 by 7 and the size for opening operation is 5 by 5. The size threshold 

used for size filtering is 450 pixels. 

Fig. 21 presents the segmentation results of the ETRI_B clip at frame NO.95. Fig. 21(a) 

shows the original image and Fig. 21(b) shows the performance of using the luminance and 

chrominance together to segment video objects. For reference, Fig. 21(c) shows the 

segmentation result that only luminance channel is used. The results show that combining the 

luminance and the chrominance to segment object can improve the segmentation results a lot. 

Fig. 22 shows the result of the clip “hall monitor” after applying the morphological 

operation. The small noises are removed and the black holes inside the objects are filled. The 

(a) 

(b) (c)
Fig. 21. (a) original image; (b) segmentation result that luminance and chrominance 

channel are used; (c) segmentation results that only luminance channel is used 
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bigger noise regions left in Fig. 22 (b) will be filtered out in the size filtering process. 

Figs.23 through Fig. 27 show some results of the segmentation algorithm and the tested 

video sequences.  

(a) (b)

Fig. 22. (a) the segment result before the morphological operation; (b) the result after 
the morphological operation 

(a) (b)

Fig. 23. Segmentation results of the clip speedway at frame (a) #585; (b) #673; 

(a) (b)

Fig. 24. Segmentation results of the clip hall monitor at frame (a) #114; (b) #273; 
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(a) (b)

(c) (d)

(e) (f)

Fig. 25. Segmentation results of the clip ETRI_A a at frame 
(a) #95; (b) #120; (c) #360; (d) #470; (e) #567; (f) #617; 
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(a) (b)

(c) (d)

(e) (f)

(g) (h) 

Fig. 26. Segmentation results of the clip ETRI_B at frame 
(a) #168; (b) #378; (c) #1045; (d) #1267; (e) #1477; (f) #1969; (g) #2511; (h) #2753
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(a) (b)

(c) (d)

(e) (f)

Fig. 27. Segmentation results of the clip ETRI_C at frame 
(a) #95; (b) #120; (c) #360; (d) #470; (e) #567; (f) #617; 
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The results show that most of the noise regions are successfully filtered out. However, 

the ghost regions in Fig. 24(b) and Fig. 26(b) are not removed out because the size of these 

regions exceeds the filtering threshold.  

In the video clip of Fig. 26, because the sun light varies dramatically, large-scale of 

regions which are directly illuminated and the color of these regions thus change significantly. 

Due to this reason, many objects detected in this video clip are false alarmed. 

The other false alarmed region in Fig. 24(b) is resulted from the stopped object. 

Although the person wearing white pants in Fig. 24(a) does not completely stop, the motions 

in both the x and y direction are almost zero and thus the color of the object region is updated 

to background. Because the color of the background is distorted and is different from the real 

background color, the region is false alarmed. 

The table 1 is the statistics of the segmentation result. Four video clips of different 

environments and contents are tested. The first column is the total number of ground truth 

objects in all the frames of the video clip. The moving regions that can be clearly 

distinguished are selected as ground truth. The second column is the total number of the 

object detected after morphological operation and size filtering. The precision and the recall 

Table 1. Statistics of segmentation result 

Sequence name 
Ground 
Truth 

Detected
False 
alarm 

Miss Precision Recall 

Hall Monitor 463 487 25 1 94.86% 99.78%
ETRI_A 1365 1401 39 3 97.21% 99.78%
ETRI_C 526 513 6 19 98.83% 96.38%
Speedway 410 354 0 56 100% 86.34%

(12) 

(13) misshits
hitsrecall

alarmfalsehits
hitsprecision

+
=

+
=

_
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are defined in the Eq. (12) and Eq. (13) respectively.  

The false alarms are mainly due to the stopped object and the lighting variation. The 

recall rate drops in the speedway sequence because the vehicles are very small when they are 

far away. Therefore, these vehicles are filtered out although they are detected after the 

morphological operation. However, these filtered out small objects would not affect the result 

of video abstraction since they are too small and contain little semantics.  
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4.3 Experiment Results of the Video Object Tracking 

In the tracking algorithm, the threshold THmatch used in the matching function is 

heuristically set to 50. The window size used in the temporal filtering is set to 5. 

Fig. 28 through Fig. 30 show the results of video object tracking algorithm. In order to 

check the result easily, objects which belong to the same trajectory are marked with an 

identifying label manually. 

(a) (b)

(c) (d)

(e) (f)

Fig. 28. Tracking results of the speedway sequence 
(a) #530; (b) #545; (c) #560; (d) #575; (e) #590; (f) #605; 

1 1

1 1

1 
2 

2

22 

2 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

1 1

1 
1&2 

1&2 1&2 

2

2 1
2 
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(i) (j)

(k) (l)

(m) (n)

Fig. 29. Tracking results of the ETRI_C sequence 
(a) #420; (b) #450; (c) #475; (d) #478; (e) #486; (f) #491; (g) #494;  
(h) #505; (i) #540; (j) #570; (k) #576; (l) #586; (m) #589; (n) #605; 

2 
2

3

2&3 2&3

3 
2 3
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The results show that the tracking algorithm successfully tracks the video objects and 

detects the occlusion events. Our algorithm also matches the split objects to the objects before 

occlusion correctly, as shown in Fig. 29. Besides, objects moving in different speed, for 

example the person who walks slowly (obj 1) and the person who runs quickly (obj 3) in Fig. 

30, are all successfully tracked. The table 2 shows the statistics of the detecting and tracking 

of occlusion and split events. The results show that all the objects before and after the 

3

(a) (b)

(c) (d)

(e) (f)

Fig. 30. Tracking results of the ETRI_B sequence 
(a) #2190; (b) #2227; (c) #2500; (d) #2508; (e) #2518; (f) #2513;  

1 1&2

3 3

3 
3
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occlusions are matched perfectly. The only failure in detecting occlusion events happens in 

the sequence ETRI_B, which is shown in Fig. 30(a) and Fig. 30(b). Because the object 2 is 

occluded by the object 1 in the first frame when it enters the camera view, it is impossible to 

detect the occlusion under such condition. 

The statistics in table 3 show the result of the tracking algorithm. Because the sequence 

“ETRI_C” is too long, we only took the first 3000 frames. Note that when a person is going to 

walk behind the tree, we consider that the trajectory before he is covered and the trajectory 

after he is uncovered are two different trajectories since that we can observe the object indeed 

disappeared for a while. We can see that many several ghost regions can be filtered out with 

the temporal filter. The false alarms are mainly due to the stopped object effect and the light 

variation which keeps changing severely. The only missed object is the object which is 

occluded at the first frame it appears and thus fails to detect the object.  

Table 2. Statistics of the tracking and detecting of occlusion events 

Sequence name 
Number of 

occlusion events 
occurred 

Number of 
occlusion events 

detected 

Number of the 
matching failures 

after the split 
ETRI_A 3 3 0 
ETRI_B 4 3 0 
ETRI_C 2 2 0 

Table 3. Statistics of the tracked trajectories 

Sequence name 
Ground 

truth 
Tracked 

Tracked 
after 

temporal 
filtering 

False 
alarmed 

trajectory 
Missed 

speedway 6 6 6 0 0 
Hall monitor 2 7 3 1 0 
ETRI_A 10 23 15 5 0 
ETRI_B 16 38 22 7 1 
ETRI_C 22 37 24 2 0 
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The results can show that our algorithm can robustly track almost all the trajectories and 

reason the occlusion and split events. Although some false alarms exist, the ghost regions 

caused by the lighting effect and the stopped object effect can also be filtered effectively. The 

robustness of our tracking results can be used to extract key objects for abstraction later.  
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4.4 Experiment Results of the Video Abstraction 

In the abstraction algorithm, the thresholds THm for the MVD function to decide 

whether there is significant change in motion is set to 2 pixels. And the THp used to decide 

whether the spatial distance is large enough is set to 80 pixels. The interval for selecting 

minor key objects is 60 frames or a video sequence has 30fps. 

Fig. 31 and Fig. 32 show the selected key objects for the detected occlusion and split 

events. The objects in continuous frames are listed and the selected key objects for the 

specific event are marked using a rectangle.  

Fig. 33 shows the selected key objects for the 33rd object in the sequence “ETRI_B”. 

The person first walks into the frame (a) and slightly changes the direction (b). After a period 

of time, because the distance of the object positions in (b) and (c) are big enough, the object in 

(c) is also selected as key object. After a while, he starts to rush and the key objects are 

selected in (d) and (e). Finally, the object in (f) is disappearing and is selected as key object. 

 Fig. 34 shows the 30th object in the sequence “ETRI_B”. Because the person keeps 

jumping in the camera view and the movements are very heavy, thus it is selected as key 

objects. Fig. 35 through Fig. 37 show parts of the generated abstraction of the video sequence 

 
 (a) (b) (c) (d) (e) (f) 

Fig. 31. Selected key objects for the detected occlusion event 

 (a) (b) (c) (d)  (e) (f) 
Fig. 32. Selected key objects for the detected split event 
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of “ETRI_C”, “hall monitor” and “speedway”. 

   

   
Fig. 33. Selected key objects for the ETRI_B sequence 

(a) object appears; (b) change in motion; (c) change in position; 
(d) change in motion; (e) change in motion; (f) object is disappearing 

   

   

 
Fig. 34. Selected key objects for the ETRI_B sequence 

(a) object appears; (b) change in motion; (c) change in motion; (d) change in motion; 
(e) change in motion; (f) change in motion; (g) object is disappearing; 

(a) (b) (c)

(f)(e)(d) 

(a) (b) (c)

(f)(e)(d) 

(g) 
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Fig. 35. Parts of the abstraction of the ETRI_C sequence 

(a) object appears; (b)change in position; (c) object appears; 
(d) change in position;(e)occlusion event; (f)change in motion; 
(g) split event; (h)object is disappearing; (i)change in position; 
(j) change in motion; (k)object appears; (l)change in position; 

(m) change in motion; (n) change in motion; (o)occlusion event 

(a) (b) (c)

(f)(e)(d) 

(g) (h) (i)

(l)

(o)(n)

(k)(j) 

(m) 
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(b) (c) 

(f) (e)(d) 

(g) (h) (i) 

(a) 
  

  

  
Fig. 36. Parts of the abstraction of the hall monitor sequence 
(a)object appears; (b)change in motion; (c)change in motion; 

(d)change in motion; (e)object appears; (f)object is disappearing; 
(g)change in motion; (g)change in motion; (g)object is disappearing; 

 

(b) (c)

(f)(e)(d) 

(g) (h) (i)

(a) 
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Fig. 37. Parts of the abstraction of the speedway sequence 
(a)object appears; (b)object appears; (c)change in motion; 

(d)change in motion; (e)change in motion; (f)change in motion; 
(g)change in motion; (g)change in motion; (g)change in motion; 

 

(b) (c) 

(f) (e)(d) 

(g) (h) (i) 

(a) 
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Table 4 shows the statistics of the generate abstractions. The results show that the 

generated abstractions are very compaction and the object-level semantics and events are also 

represented in the abstractions. In the next section we will show how to integrate the 

abstraction algorithm to provide on-line alarming. 

Table 4. Statistics of the abstraction 
Object abstraction Selected key VOPs. Total VOPs 

Object 1 (ETRI_A) 9 240 
Object 7 (ETRI_A) 7 295 
Object 3 (ETRI_B 10 140 
Object 30 (ETRI_B) 7 59 
Object 33 (ETRI_B) 6 167 
Object 5 (ETRI_C) 7 176 
Object 6 (ETRI_C) 15 171 
Object 3 (speedway) 6 128 
Object 1 (hall monitor) 5 235 
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4.5 Integrated System for Real-Time Video Object Tracking and 

On-Line Alarming 

In this section, we will show the system we integrated for real-time tracking and on-line 

alarming using the algorithm we have implemented. Fig. 38 shows the system interface. 

Monitor Window, used to 
monitor the input live video 

Alarmed objects viewer, 
used to view the 
alarmed objects  

Occlusion Group 
List, which lists all 
the objects that 
currently occluded 
with each other 

Object Trajectory 
List, which lists all 
the object 
trajectories that 
have been tracked 

Abstraction, list all the 
selected key objects in the 
abstraction, can be viewed 
randomly in the alarmed 
objects viewer 

Fig. 38. Interface of the integrated system 

Frames before 
and after the key 
object  
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The system tracks the video objects in the surveillance video in real-time and the 

abstractions for on-line events alarming are generated. While the live video is still being 

tracked, we can randomly click the key objects in the abstraction window to view what 

happened. Besides, all the tracked object trajectories and the occlusion groups are also listed 

to provide object information in detail. 

We implement the system in Visual C++ with Microsoft Direct Show. Our testing 

platform is a computer with Pentium 1.6GHz CPU and 256MB RAM. The video sequences 

are the Speedway, ETRI_A, ETRI_B, ETRI_C and the hall monitor and all the sequences are 

in the format of 320 by 240. The performance can reach 16 frames per second. 
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Chapter 5 

Conclusion and Future work 

 

In this thesis, we presented a system for object-based video tracking and abstraction on 

surveillance videos. We adopted a simple but effective matching function that uses the motion 

vector difference as the matching criterion. We also designed a state-based object occlusion 

reasoning model to track and detect occlusion and split events robustly. Besides, we designed 

a novel video abstraction algorithm that generating abstractions by selecting key objects with 

important semantics and events. Based on this system structure, we implemented a real-time 

tracking system with on-line alarming using the generated abstractions. With the abstractions 

and on-line alarms, important events can be captured more efficiently and thus it is valuable 

to the monitoring applications and systems such as ITS because a lot of time and manpower 

can be saved. 

To improve the performance and the robustness of the system, some enhancements can 

be done in the future:  

 Removing the shadow regions to the object masks more precisely. 

 Improving the segmentation algorithm so that it is more robust to lighting variation 

and complex scenes. 

 To handle more complicated occlusion and split events such as multiple objects 

occlusions 

 Extracting more semantics from the object in the video abstraction algorithm, for 

example to capture the actions of the objects. 

In addition, since the object-based abstractions are very valuable and useful, the system 

can be further extended for the content retrieval and management. To achieve this, we can use 

the MPEG-7 descriptors to describe the contents with the detected events and generated 
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abstractions. And thus we can manage a database for surveillance and monitoring videos and 

important contents we are interested in can be retrieved efficiently. We believe that the 

extraction of content will be more and more important and one day such kind of systems will 

be widely adopted in the future. 
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