國立交通大學

材料科學與工程研究所

碩士論文

棒狀及含氫鍵彎曲雙分子之藍相液晶混合物之

合成與應用

Synthesis and Study of Blue Phase Liquid Crystalline Mixtures

Consisting of Rod-Like and H-Bonded Bent-Core Dimers

39

111

研究生:楊李涵 指導教授:林宏洲 教授

中華民國一百零一年七月

棒狀及含氫鍵彎曲雙分子之藍相液晶混合物之合成與應用

Synthesis and Study of Blue Phase Liquid Crystalline Mixtures

Consisting of Rod-Like and H-Bonded Bent-Core Dimers

中華民國一百零一年七月

棒狀及含氫鍵彎曲雙分子之藍相液晶混合物之合成與

應用

學生:楊李涵

指導教授:林宏洲 教授

國立交通大學材料科學與工程研究所碩士班

摘要

本論文合成出一系列棒狀結合含氫鍵彎曲雙分子結構,探討聯 結雙分子結構的軟段上(即 CN 聯苯雙分子吡啶),導入對掌中心或沒 有對掌中心的差別和 CN 聯苯雙分子吡啶硬段長短造成的不同;並且 在氫鍵羧基分子部分側邊下的導入、軟段上對掌中心的導入或者同時 F 與對掌中心導入的差別且羧基分子不同的硬段長度造成的不同,對 於產生藍相的關係,作為探討。在我們的研究中,得要在 II:A2F*= 1:3時,有近3度的藍相;並且得到以 II:A2*=1:1,藍相溫寬可 達近7度。其它的分子結構,大部分可得到寬裕溫度範圍的膽固醇液 晶相。並且有些氫鍵的結構無法得到液晶相。這些棒狀結合含氫鍵彎 曲的雙分子,我們利用 DSC、POM、NMR、EA 來進行驗證分析其 物性及化性。

關鍵字:香蕉型液晶,藍相,雙分子,氫鍵,棒狀液晶

Synthesis and Study of Blue Phase Liquid Crystalline Mixtures

Consisting of Rod-Like and H-Bonded Bent-Core Dimers

Student : Li-Han Yang

Advisor : Dr. Hong-Cheu Lin

Department of Materials Science and Engineering

National Chiao Tung University

Abstract

This paper discusses the relationship between blue-phase and a series of rod-like dimers with H-bonded bent-core. We synthesized the dimers which are H-acceptors with different soft segments that have chiral centers or not, and the different lengths of hard segments. Also, we synthesized the hard segments of H-donors with or without fluorine functional groups, and the soft segments with or without a chiral center. Furthermore, both H-donors and H-acceptors with fluorine functional group and a chiral center are synthesized. In this study, as the system is II:A2F* = 1:3, it induced the temperature range of blue-phase about 3 degrees ; as the system is II: $A2^* = 1:1$, it induced the widest temperature range of blue phase near 7 degrees. Most of other liquid crystal molecules have wide temperature range of N* phase. And some of them have no liquid crystal phase. We use the FT-IR, DSC, POM, NMR, EA to analyze these rod-like dimers with H-bonded bent-core and verify their physical and chemical properties.

Keywords: bent-core liquid crystal, blue phase, dimer, H-bond, rod-like

Ш

僅將誌謝獻給在人生的路程上,給予過幫助並且鼓勵我前進的你們, 有你們,人生幸福萬分。

首先,感謝指導教授林宏洲老師,老師兩年來的指導與栽培讓我 在研究所期間,成長、茁壯,成為一個更獨立且能獨當一面的個體。 並且因老師不厭其煩耐心的教導下,才使得本論文完善,一切的一切 皆點滴在心,由衷感謝。

其次,感謝林建村教授、賴重光教授、楊勝雄教授於口試當日的 蒞臨且指教,提供寶貴意見,使得本論文盡善盡美,感謝十分。

感謝實驗室的同胞們,一路相輔相成,人生的路途上朋友是不可 或缺的,而你們就是那必需存在我生命中的人物,再次感謝你們兩年 真誠的相伴。

阿純、小丸、小花、南海姑娘們等,茶餘飯後的陪伴與喧鬧、閒 暇周末的大自然眷村之旅、緊湊午後文藝青年的表露、用誠摯的心對 人與對社會、言語交流中的共同默契與認同,皆使我內心悸動萬分, 這段路有你們真心相待,溫馨幸福倍至。

最後感謝爸媽,如人生的路途上有任何一絲成就與驕傲,皆因為 有你們,未來,只希望盡一切來榮耀你們。我愛你們。

楊李涵 謹誌於新竹交通大學

中華民國一百零一年七月

中文摘要I
英文摘要
誌謝III
目錄IV
圖目錄VII
表目錄XI
第一章 緒論1
1-1 前言2
1-2 液晶簡介2
1-2-1 液晶的發現2
1-2-2 液晶的分類4
1-2-3 液晶性質9
1-2-4 液晶觀察與識別12
1-2-5 液晶相的鑑定儀器與方法13
1-3 香蕉型液晶16
1-3-1 香蕉型液晶簡介16
1-3-2 香蕉型液晶分子設計17
1-4 超分子 (Supramolecular) 氫鍵型液晶18

1-4-1 氫鍵型液晶分子歷史	18
1-4-2 含醯胺鍵之氫鍵型液晶	20
1-5 藍相液晶	21
1-5-1 藍相液晶簡介	21
1-5-2 藍相液晶的特點	21
1-5-3 藍相液晶分子設計	23
1-5-4 彎曲型藍相液晶	24
1-5-5 超分子藍相液晶	27
1-5-6 雙分子藍相液晶	29
1-5-7 U-Shape 藍相液晶	30
1-5-8 高分子網狀結構穩定藍相	31
1-6 研究動機與方向1896	34
第二章 實驗部分	39
2-1 實驗藥品	40
2-2 實驗儀器	42
2-3 合成步驟總流程	45
2-4 合成步驟	51
第三章 結果與討論	77
3-1 紅外線光譜分析 (IR)	78

3-2Ⅱ吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較80
3-2-1 向列相探討82
3-2-2 H-donor 含旋光中心羧酸基側向導入F與否之影響83
3-2-3 含旋光中心羧酸基分子比例之影響84
3-3 III 吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較88
3-3-1含旋光中心羧酸基侧向導入F與否之影響
3-3-2 含旋光中心之羧酸基分子比例之影響
3-4 Ⅱ*吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較90
3-4-1含旋光中心羧酸基側向導入F與否之影響
3-4-2 羧酸基側向含 F 分子軟段旋光中心導入與否之影響94
3-4-3 含旋光中心的羧酸基分子比例之影響
3-5 III*吡啶基與不同羧基氫鍵作用力形成超分子型液晶比較96
3-5-1 含旋光中心羧酸基侧向導入 F 與否之影響
3-5-2羧酸基侧向含F分子軟段旋光中心導入對液晶影響102
3-6 含藍相分子結構之比較
3-6-1 不同吡啶基與導入F且含旋光中心羧酸基比例為1:3 之對
液晶影響103
3-7 結論104
3-8 未來展望105

參考文獻	
附錄	
附錄 A DSC 圖譜	
附錄 B FT-IR 圖譜	113
附錄 C POM 圖	114
附錄 D ¹ H-NMR 圖譜	117
附錄E EA	123
日間の	
Fig.1-2-1.1 安息香酸膽固醇酯	
Fig.1-2-1.2 液晶發現者 Reintizer 與 O. Lehmann	4
Fig.1-2-2.1 液向型液晶的種類	
Fig.1-2-2.2 液向型液晶(肥皂與水二組成溶液的典型相圖)	5
Fig.1-2-2.3 膽固醇型液晶	7
Fig.1-2-2.4 盤狀(Disklike)液晶	7
Fig.1-2-2.5 高分子型液晶	7
Fig.1-2-5.1 偏光顯微鏡設計圖及其原理	14
Fig.1-2-5.2 分子在層內傾斜之角度示意圖	15
Fig.1-3-1.1 圖解典型非旋光性彎曲型分子	16

Fig.1-3-2.1 彎曲分子的基本架構	17
Fig.1-4-2.1 氫鍵型液晶示意圖	20
Fig.1-4-2.2 超分子液晶結構示意圖	20
Fig. 1-5-1.1 藍相紋理圖	21
Fig.1-5-2.2 Fig.1-5-1.2 藍相的溫度區間,介於等方向液體與	膽固醇相
之間(左)。(a) BPI, (b) BPII 的晶格結構(右)	22
Fig. 1-5-4.1 Nakata 等人開發出藍相液晶結構	24
Fig. 1-5-4.2 Nakata 等人開發出藍相液晶相圖	24
Fig. 1-5-4.3 Nakata 等人開發出藍相液晶 POM 圖	
Fig. 1-5-4.4 Nakata 等人開發出藍相液晶 POM 圖	
Fig.1-5-4.5 Zhigang Zheng 等人開發出藍相液晶結構	26
Fig.1-5-4.6 Zhigang Zheng 等人開發出藍相液晶溫寬	26
Fig.1-5-4.7 Zhigang Zheng 等人開發出藍相液晶 POM 圖	26
Fig.1-5-4.8 Kikuchi 等人開發出藍相液晶(a)結構(b)相圖	27
Fig.1-5-4.9 Kikuchi 等人開發出藍相液晶 POM 圖	27
Fig.1-5-5.1 Huai Yang 團隊所開發出超分子藍相液晶(A)結構((B) POM
圖	28
Fig.1-5-5.2 Huai Yang 團隊所開發出超分子藍相液晶相圖	28
Fig.1-5-6.1 Coles 等人開發出 dimer 藍相液晶結構與相圖	29

Fig.1-5-6.2 Yelamaggad 開發不對稱雙分子藍相液晶結構與溫寬2	29
Fig.1-5-6.3 Yoshizawa 團隊開發出來的 T 型藍相液晶結構與溫寬	30
Fig.1-5-7.1 Yoshizawa 團隊開發U型藍相液晶分子結構及相圖	31
Fig.1-5-7.2 Yoshizawa 團隊開發U型藍相液晶分子結構及相圖	31
Fig.1-5-8.1 丙烯酸酯類液晶單體結構	32
Fig.1-5-8.2 FLC3B2C 分子結構	33
Fig.1-5-8.3 HDDA 分子結構	33
Fig.1-5-8.4 (a)藍相液晶的三維光子晶體結構 (b)藍相液晶結構中	
isclination line (c)高分子鏈穿過藍相液晶結構中的disclination line3	34
Fig.1-6-1.1 不對稱香蕉型分子示意圖	35
Fig.1-6-1.2 CN 聯苯 dimer 吡啶示意圖	35
Fig.1-6-1.3 羧基分子示意圖1.8966	36
Fig.3-1.1 FT-IR spectra.	79
Fig.3-2.1 吡啶基與不同含有旋光中心的羧基分子液晶溫寬圖8	32
Fig.3-2-1.1 吡啶基與含F不同硬段數量羧酸基分子液晶溫寬圖8	32
Fig.3-2-1.2 (A)II/A1F 98.0°C N 相, (B)II/A2F 175°C N 相 POM 圖	83
Fig.3-2.2 吡啶基與含旋光中心羧酸基側向導入F與否液晶溫寬圖	83
Fig.3-2-2.1 II/A2F* 134.5℃ N* (A)壓前(B)壓後	34
Fig.3-2-3.1 羧酸基對吡啶基的比例為3的示意圖	85

Fig.3-2-3.2 Blue Phase 紋理圖	6
Fig.3-2-3.3 N*紋理圖	б
Fig.3-2-3.4 DSC 圖	6
Fig.3-3.1 III 吡啶基與不同羧酸基的氫鍵作用力液晶溫寬	9
Fig.3-4-1.1 吡啶基與含旋光中心羧酸基導入F與否分子液晶溫寬圖9	3
Fig.3-4-1.2 (A)II*/A2F* 55°C N*相,(B)II*/A3F*114.6°C N*相94	4
Fig.3-4-2.1 II*吡啶基與含F羧酸基分子軟段旋光中心與否溫寬圖94	4
Fig.3-4-2.2 (A)II*/A3F 140°C N*相, (B) II*/A3F* 153°C N*相95	5
Fig.3-4-3.1 II*吡啶基和含F與否羧酸基分子比例液晶溫寬圖95	5
Fig.3-4-3.2(A) II*:A2F*=1:3 92.2°C N*相(B) II*:A2F*=1:3 130.6°C N*	*
相	б
Fig.3-5-1.1 III*吡啶基與含旋光中心羧酸基導入F與否液晶溫寬圖9	9
Fig.3-5-1.2 III*/A2* 結構表示圖100	0
Fig.3-5-1.3 (A)Blue Phase 纹理圖,(B)BP 與 N*混相10	0
Fig.3-5-1.4 (A)Blue Phase 紋理圖,(B) N*紋理圖10	0
Fig.3-5-1.5 DSC 圖101	1
Fig.3-5-1.6 III*/A2F*(A) 201.3°C N*相(B) 77°C N*相10	1
Fig.3-5-2.1 III*吡啶基與是否含旋光中心羧酸基液晶溫寬圖102	2
Fig.3-6-1.1 不同吡啶基與含旋光中心含F羧酸基1:3液晶溫寬圖10)3

表目錄

Table.1-2-2.1 液晶的分類
Table 1-5-8.1 在藍相溫度範圍內照光聚合擴大藍相液晶溫度範圍32
Table.1-6-1.1 規劃CN聯苯 dimer 吡啶結構
Table.1-6-1.2 規劃羧基分子結構
Table.1-6-1.3 Chiral dopant 分子結構
Table.2-1.1 實驗藥品
Table.2-1.2 實驗溶劑41
Table 3-2.1 II 吡啶基與不同羧酸基的氫鍵作用力超分子型液晶80
Table 3-2.2II 吡啶基與不同羧酸基的氫鍵作用力液晶溫寬81
Table 3-3.1 III 吡啶基與不同羧基的氫鍵作用力超分子型液晶88
Table 3-3.2III 吡啶基與不同羧酸基的氫鍵作用力液晶溫寬
Table 3-4.1 II*吡啶基與不同羧基的氫鍵作用力超分子型液晶90
Table 3-4.2II*吡啶基與不同羧酸基的氫鍵作用力液晶溫寬92
Table 3-5.1 III*吡啶基與不同羧基的氫鍵作用力超分子型液晶96
Table 3-5.2III*吡啶基與不同羧酸基的氫鍵作用力液晶溫寬98

1-1 前言

液晶顯示器最早的產品原型為美國 RCA 實驗室的 Heilmeier 團隊 在 1968 年所發表以液晶顯示面板為材料的電子錶。

過去顯示器僅頻繁的使用在電腦、電視上。但隨著無線通訊技術 和網際網路的快速發展,個人化可攜帶式的資訊產品均快速發展,如 數位相機、行動電話、筆記型電腦等相關產品。而因為液晶顯示器具 備輕薄、省電、高畫質、無輻射、壽命長且可與半導體製程技術相容 等優點,搭上這股資訊化市場的興起,在近期有飛躍式的成長。相對 於傳統 CRT 顯示器,液晶顯示器更具有增大畫面尺寸、增加視角、 提高應答速度、擴大開口率、高畫質,因此開發更新穎的液晶材料是 必然的趨勢。

2

1-2 液晶簡介

1-2-1 液晶的發現

在1854年即有人發現肥皂水和神經細胞含適量水時,會具有光學 異相性(即是現在的 lyotropic 液向型液晶)。而在1888年,奧地利 植物學家 Friedrich Reinitzer 在觀察我們已熟知的膽固醇甲酸酯時, 發現它具有兩個熔點的奇怪現象(即是現在的 thermotropic 熱向型 液晶)^[1]。

Fig.1-2-1.1 安息香酸膽固醇酯

而一般物質在三態(固態Solid State、液態Liquid State、氣態Gas State)間的變化都是單一過程的相變化,但液晶是一種在結晶性固體 相變至等向性液體過程中有一個或多個相變過程的物質。在奧地利的 植物學家 Friedrich Reinitzer 發現雙熔點現象的隔年,德國物理學家 O.Lehmann^[2]在偏光顯微鏡下發現,此黏稠之半流動性自濁液體化合 物具有異方向性結晶所特有的雙折射率(birefringence)之光學性質, 即光學異向性(optical anisotropic),故將這種似晶體的液體命名為液 晶(Liquid Crystal)。

而液晶態的分子排列有一定的運動規則度,可說是動態的晶體, 具不穩定的光學性質,易受到外界的影響,如電場、磁場、溫度、壓 力等的影響,進而產生明顯的光學效應。

Friedrich Reinitzer (1857-1927) Otto Lehmann (1855-1922)

Fig.1-2-1.2 液晶發現者Reintizer 與 O. Lehmann

1-2-2 液晶的分類

1.依據形成方法之之不同可分為液向型液晶(Lyotropic liquid crystals)
及熱向型液晶(Thermotropic liquid crystals)兩大類。
(1).液向型液晶(Lyotropic liquid crystals)

液向型液晶是由溶劑以及可溶於溶劑的分子所組成,當濃度低時, 分子無秩序性地分佈於溶劑中形成等方性(isotropic)液體,當濃 度逐漸提高時,溶質分子之間的作用力克服雜亂的分佈情形,以較 規則的方式聚集排列在一起,則出現多種具雙折射性的中間相,大 略可分成一開始出現的微胞(micelles),濃度在高一點時出現的 hexagonal 相,以及高濃度出現的 lamellar 相,其分子排列如 Fig.1-2-2.1 所示,日常生活中常見的肥皂水即是一例,如 Fig. 1-2-2.2 所示,此種因濃度改變而呈現液晶相者稱為液向型液晶。 液向型液晶在自然界非常常見,尤其是在生物體組織更為豐富,例 如大腦、神經液、血液等與生命現象有關的主要組織,因此液向型 液晶在生物化學(biochemistry)、生物物理(biophysics)以及生 物電子工程(bionics)等領域漸受重視。

Fig. 1-2-2.2 液向型液晶(肥皂與水二組成溶液的典型相圖)

(2).熱向型液晶 (Thermotropic liquid crystals)

藉由加熱液晶物質至某一溫度,形成液晶相,而此液晶相可存在於 某個溫度範圍內。 2.依據分子間排列之不同液晶相可分為向列型相 (Nematic phase)、 層列型液晶 (Smectic phase)、膽固醇型液晶 (Cholesteric liquid crystals or Chiral nematic liquid crystals) 和藍相液晶(Blue phase) (1). 向列相 (Nematic; N)

最接近等方向性液體之中間相,規律度最小,亂度最大,具一維的 取 按 一 , 規則 排列。 其 黏 度 較 小 , 較 易 流 動。

(2). 層列相 (Smectic; S)

在偏光顯微鏡下具有獨特的紋理,具有二維的層狀規則排列,分子 並列為層,層層互相堆疊呈層狀結構,各層間有一度的規則排列, 此類液晶因各層的分子排列程度不同,又可區分為 A~L 等十二 種以上不同的層列型液晶,以發現次序之先後命名。層與層間較易 滑動,但每一層內的分子作用力較強所以不易被打斷,相較於向列 型液晶,其排列不僅較為有序且黏性較大。 -

(3). 膽固醇相 (Cholesteric; N*)

因第一個發現此螺旋排列結構的液晶是膽固醇安息香酸酯的衍生 物,故稱此相為膽固醇相。由多層向列型液晶堆積而成,而含旋光 中心而使得各層分子的長軸方向漸次相差某一角度而呈螺旋狀。 (4). 藍相 (Blue; BP)

在由 isotropic phase 進入 cholesteric phase 時,藉由緩慢降溫 可

發現藍相液晶的存在,此項的光學紋理圖類似於彩色的血小板。 3.依據液晶基 (Mesogen) 之不同可分為桿狀 (Rodlike)、盤 (Disklike)、板狀 (Lathlike)、筒狀 (Tubularlike)、碗狀(Bowlic) 及超分子 (Supramolecular) 之液晶基。

Fig.1-2-2.5高分子型液晶

Table.1-2-2.1 液晶的分類

2.電磁場效應:

依據液晶分子結構之特性及液晶相時所具有基本現象,液晶具有以下數種性質。

1.介電異向性(Dielectric anisotropy):

液晶分子在外加電場影響下,使分子中極性較大之部分會受誘 導而產生一種感應偶極矩,此時分子主軸方向與感應偶極矩方向有 很大之關係。由下列公式表示 : $\Delta \epsilon = \epsilon_{ll} - \epsilon_{\perp}$ 正負值決定分子排列方 向, $\Delta \epsilon > 0$ 時,分子主軸與感應偶極矩平行,可用在平行配位;當 $\Delta \epsilon < 0$ 時,分子主軸是與感應偶極矩垂直的,只可做垂直配位才有 其光電效應。故藉著電場之開與關,可控制分子排列之方向決定光 的穿透與否,此乃液晶顯示器重要應用性質之一,而且對起始電壓 (threshold voltage; Vth)有決定性之影響。

液晶的排列除了受電場影響外,也會受到磁場影響。因為液晶 分子中通常具有芳香族和有極性的結構,易於與電磁場作用,在作 用下改變其排列方式,其 magnetic anisotropic 由下面公式表之, $\Delta \chi$ = $\chi_{//}$ - χ_{\perp} , $\Delta \chi > 0$,表存在較多的共軛結構, $\Delta \chi < 0$ 則是較少,而在 電場或磁場移除後,液晶分子會逐漸回復原來的排列方向,此段時 間稱為應答時間 (Response time)。並且此段時間的長短與液晶分 子結構及液晶之厚度有關。

3.黏滯性:

液晶分子在外加作用力下分子轉動的反應速度與黏滯性之大小 有關:黏性小者,則反應快;反之,反應較慢。黏滯性取決於分子 活化能、温度及分子間吸引力。一般而言,液晶分子結構大或分子 量大黏滯性相對變大。大小影響液晶分子之轉動速度和應答時間。 故此亦是判斷液晶利用價值之重要指標之一,由於盤狀液晶分子於 形狀上的限制,故黏滯性相當可觀。 4.曲彈性(Cuvature elastic property):

彈性係數對液晶顯像主要影響有二,起始電壓與反應時間。彈 性係數愈大,則起始電壓相對愈大,不過反應時間也會加快。而液 晶之彈性常數取決於分子結構、形狀及操作溫度,溫度增加,彈性 IIII 常數會迅速降低。

5.雙折射 (Birefringence):

當一束非極化光通過一單軸晶體時,會形成二束折射光,此種現 象稱為雙折射(Birefringence)。液晶就像是一種單光軸材料,具有 二種折射率,當光進入一液晶材料時,光的電場振動方向與液晶光 軸垂直時,稱為 Ordinary ray,其折射率為 n。;與液晶光軸平行都 稱為 Extraordinary ray,其折射率為 ne。其雙折射率之定義由以下

說明:

 $\Delta n = n_{//}$ - $n_{\perp} = n_e$ - n_o

 $\Delta n = 0 \rightarrow Liquid$

 $\Delta n \neq 0 \rightarrow Crystal \text{ or liquid crystal (Birefringence)}$

液晶之所以具有光學異向性,乃因分子有極化異向性 (Anisotropic polarizability)所造成,此現象與介電異向性之原因類似。液晶基於 下列的折射率異向性,而顯現出有用的光學性質:

(1).入射光的進行方向會向分子長軸(director n)方向偏向(入 射於液晶的光會偏向主軸方向進行,此乃因液晶中 n//>n⊥,且光速 與折射率成反比,故與主軸平行的速率 v// 比垂直方向速率 v⊥為 慢所致)。

(2).可改變入射光的偏光狀態(直線、橢圓、圓偏光)及偏光方向。
(3).可將入射偏光依左右的旋光性而反射或使透過液晶之雙折射性 質是使其液晶相具有鮮明色澤之原因,亦是辨別何種液晶相使用 識別技巧,後續會有詳細說明。

6.流變性質:

針對液晶高分子的特殊性質。在液晶相時分子具有規則性之排 列,可減少分子間之糾纏,故液晶高分子較一般高分子材料黏度低, 流變性質高有利於模型之製成。

1-2-4 液晶觀察與識別

一般科學上鑒定液晶的方法不外乎偏光顯微鏡 POM (polarized optical microscopy)觀察液晶紋理圖、DSC (differential scanning calorimeter)、XRD (X-ray diffraction),最為方便的就是利用偏光顯 微鏡觀察液晶所特有的雙折射性的光學紋理,首先,液晶亦被稱之為 異方性液體,具有單一光軸特性。液晶分子之光軸與分子軸方向一致, 其液晶的光學性質為正,如:層列型或向列型液晶;反之,如膽固醇 型液晶之光軸則與螺旋軸方向一致,故其光學性質為負。將液晶分子 置於二薄玻璃片間,並架設好加熱裝置,通常在相互垂直偏光板下觀 察。此手法可初略識別液晶種類及決定液晶相的轉移溫度。即使是同 名稱的光學紋理,若液晶相不同則所觀測的光學紋理也會呈微妙的不 同。而且,同一液晶其所生成的紋理也會因玻璃片的表面狀態、液晶 分子狀態及液晶相的生成過程等不同而有顯著的不同。

一般而言,由等方向性液體行冷卻過程做觀察。向列型液晶於冷 卻過程中,在等方向性液體的暗視域上先有多數的光輝小球狀紋理 (Droplet Texture)生成,其次這些小球會生長,集合而成纖維狀紋理 (Threaded Texture)及 Schlieren Texture。層列型液晶在等方向性液 體的暗視野中,先有短棒狀紋理(Batonet Texture)及星狀紋理 (Star Texture)出現,再交錯形成種種的扇狀紋理(Fan-shaped Texture)及 Mosaic Texture。尤其是,微細狀帶線扇狀組織為 Chiral Smectic C (強介電性)液晶所特有。此扇狀組織於膽固醇型液晶中亦可 被發現,。

1-2-5 液晶相的鑑定儀器與方法

向列型和掌性向列型液晶黏度較低且較易顯現其特性,在鑑定上 較容易觀察,而層列型液晶因層與層之間分子排列分布不同會有不同 的液晶相,且有些排列的差別只有些許的不同,因此較難鑑定。一般 鑑定液晶相的方法大致有以下四種^[3]。

1. 微差掃描熱分析 (Differential scanning calorimeter DSC):

熱向型液晶受温度的改變會產生相變化,因此測量熱焓的變化 即可得知相轉移發生的溫度。微差掃描熱分析是將試樣與參考物一 同放置於加熱平台上,供以相同的熱源,測量輸入到試樣和參考物 的功率差與溫度的關係。當樣品產生變化時,儀器可偵測其與參考 物有不同的熱焓值變化。這個方法可偵測出液晶的相變化溫度與溫 寬,但若判斷該液晶相的種類則須配合偏光顯微鏡(POM)的鑑定才 能得知。

2. 偏光顯微鏡 (Polarizing optical microscope; POM):

將液晶樣品置於兩玻璃片間,經由控溫裝置加熱或冷卻玻璃基板,放置於搭載偏光片的光學顯微鏡下,兩片偏光片(一稱為 Polarizer,一稱為 Analyzer)的偏光角度差通常調為90度,由 Fig. 1-2-5.1 可以大概得知偏光顯微鏡的設計及原理:

3. 互溶性測試 (Mutual miscibility tests):

當無法判定液晶相的種類時,可將此未知試樣與臆測含此種相 的參考物同時置於玻片上加熱進行互溶性測試,以 POM 觀察當達 到適當溫度時未知試樣與參考物的相是否相溶,即可得知是否為同 一種相。此法對於分辨小分子液晶的中間相是非常有效的方法,且 對低規則性液晶高分子,如:向列型、SmA 與 SmC 較為有效。

4.PXRD (Powder X-ray diffractormeter) :

可以對液晶相分子 3-D 排列的進一步資料,粉末 X-ray 繞射 儀是必備的工具,尤其對層列型液晶而言,如 SmA 相為所有層列 液晶相中最不規則者,因其層內分子結構並不具有規則性排列,故 其 X-ray 繞射圖只在小角度區域顯現層列結構的繞射峰,而大角度 的區域則為分散的繞射峰。除此之外,因SmC是SmA的傾斜液晶相, 因此可利用變溫 X-ray 繞射儀測量其液晶層厚度(d-spacing) 與溫 度是否有相依性,而決定是否為 SmC 相;若為 SmC 相,配合液 晶分子的理論長度,就可約略計算出該 SmC 相其傾斜角度^[4]。

L: 104 d: 62 Å 53º

Fig.1-2-5.2 分子在層內傾斜之角度示意圖

1-3 香蕉型液晶

1-3-1 香蕉型液晶簡介

香蕉型液晶分子是近年來新發現具有光電性(鐵電性、反鐵電性) 的液晶分子。這類分子由於具有獨特的彎曲形狀。表現出不同于棒狀 分子的液晶性能,儘管分子本身不含特別基團。但其極性排佈形成鐵 電性(反鐵電性),而且有很高的自發極化值。

1996年,Niori^[5]首先報導非旋光性彎曲型液晶分子,具有鐵電行為,震驚整個液晶研究界,推翻了形成鐵電液晶相,需具備傾斜層列 相與旋光性才會產生宏觀自發性極化 (Macroscopic spontaneous polarization)觀念。發展至今,香蕉型液晶分子在材料科學與超分子 化學領域都已佔有一席之地。彎曲型液晶分子,其彎曲結構能緊密堆 疊排列(如 Fig.1-3-1.1 所示),進而限制分子旋轉,分子生成另一新型 態液晶相。這些新型液晶相以 Bent-core 和 Banana-shaped 的開頭字母 B 命名,分別為 B₁、B₂、B₃.....B₇,各相之間主要區別乃依光學紋理 及 X-Ray 繞射為基礎,B₁相為管柱狀堆疊(Column stacking),B₄ 相層與層間為扭轉結構,故稱 TGB(Twisted grain boundary),其餘液 晶相為薄層狀(Lamellar)結構。

總體而言,分子如此緊密堆疊排列,在層與層之間引導出極化秩 序 (Polar order)。再者有些液晶相甚至展現超分子旋光性 (Supramolecular chirality),可藉由電場或含旋光性配向層調控左右旋 切換。

1-3-2 香蕉型液晶分子設計

香蕉型液晶分子偶極與旋光性,主要取決於分子化學結構與分子間互相作用力。然而構成彎曲型分子基本架構,如 Fig.1-3-2.1 所示。

Fig.1-3-2.1 彎曲分子的基本架構

 Central bent unit (BU):液晶硬段所在,典型 1,3 取代苯環、2,6 取 代吡啶、2,7 取代萘環及 1,3 取代雙苯環等。

2.Rod-like wings:液晶硬端總環數多寡,及硬端側邊取代基。

3.Linking group:為連接中心硬端(BU)與二邊 rod-like wings 連接基,則形成液晶分子彎曲角度(Bending angle)為120°,一般常見連接基有酯基、Schiff 驗基、雙鍵、單鍵、CH₂O、COS或N=N等。

4.Terminal chains:末端軟鏈段所在,其長度決定液晶相結構。

1-4 超分子 (Supramolecular) 氫鍵型液晶

1-4-1 氫鍵型液晶分子歷史

超分子液晶是藉由非共價鍵相互作用的新式液晶材料,利用氫鍵、 離子相互作用、電荷轉移相互作用、疏水親水相互作用及凡得瓦力等 分子間相互作用 (intramolecular interaction)可以構築多種超分子液 晶^[6]。氫鍵作為一個強度適中和有方向性的作用力,比電荷相互作用 和凡得瓦力更加有利於分子取向;對形成生物超分子和人工超分子架 構,具有巨大的作用。許多自然界生物組織的構成及其許多功能的運 作均來自氫鍵構建的超分子架構,如 DNA 的完美雙螺旋鏈超分子架 構,即是依靠嘌呤和嘧啶之間的鹼基氫鍵配對來維繫和發揮轉錄、轉 譯及複製等作用,從而完成生命的高級機能的。由於非共價鍵為較弱 相互作用力,具有動態可逆的特點,這類超分子液晶體系可望具有對 外部環境刺激的獨特響應特性,呈現動態功能材料特點,表現出特定 的光電性質、分子訊息存取、分子傳感器及催化活性等^[7]特點。

超分子液晶聚合物引入了高分子的機械力學性能和易加工性,為 這類材料走向應用和加工創造條件。利用氫鍵 (hydrogen bonding) 相互作用來實現組裝合成,構築超分子液晶體系。早在70年代中期 Blumstein^[8]等,即利用 Poly(acryloyloxybenzoic acid) and Poly(methacryloyloxybenzoic acid) 羧基官能基,形成氫鍵雙分子 (dimer) 而得到的有序 (ordered) 液晶體系,但當時未引起太大關 注。直到 1989 年 Frechet 和 Kato^[9],報導了吡啶基與羧基這類不同 官能基團分子間,透過氫鍵作用形成擴展液晶基 (extended mesogen) 得到了液晶温度範圍加寬的超分子液晶複合體系及側鏈超分子液晶 聚合物。 1990年 Lehn 等人^[10]報導了帶 Uracil 尿嘧啶基和 2,6 二胺 叱啶基兩種互補官能基團的分子透過三重氫鍵自組裝為主鏈超分子 液晶。此後利用氫鍵自組裝合成超分子液晶複合體系的研究非常活躍。 故超分子化學逐漸演變成使用在液晶分子的設計與應用上,同時也漸 漸地被廣泛應用到各類科學領域中。

1-4-2 含醯胺鍵之氫鍵型液晶

目前許多氫鍵型液晶分子都是沿著分子長軸方向形成氫鍵,透過 吡啶基作為氫鍵受者(H-bond acceptor),羧基作為氫鍵提供者 (H-bond donor)^[11],如 Fig.1-4-2.1 所示,如此方式可形成二聚體,頭 尾相接形成線型的結構,或是靠氫鍵與主鏈相接形成側鏈型的液晶高 分子^[12]如 Fig.1-4-2.2 所示

Fig.1-4-2.2 超分子液晶結構示意圖

(a)棒狀分子形成二聚體,具有向列相及層列相 (b)多個分子形成線性排列 (c)棒狀分子以氫鍵與高分子主鏈相接。

1-5 藍相液晶

1-5-1 藍相液晶的簡介

在 1888 年奧地利植物學家 Reinitzer 觀察膽固醇苯甲酸酯時就已 發現藍色的霧相^[1],後來經過證實就是藍相。但是由於其溫寬特別窄 並且沒有雙折射的現象,非常不容易被觀察到。而近期時代科技的進 步,社會上大尺寸、高解析度的顯示器的問世,提高了液晶材料在顯 不上的應用要求,特別著重在應答速度上。然而在眾多的液晶材料當 中藍相液晶被認為是最具發展性的。在 2008 年 SID 研討會中,韓國 大廠 Samsung 推出藍相液晶模式顯示器後,再次開啟了人們對藍相 液晶的認識與關注,而近年藍相液晶材料最熱門的液晶研究主題之 一。

Fig. 1-5-1.1 藍相紋理圖

1-5-2 藍相液晶的特點

藍相為一種熱力學穩定相,溫度區間大致上是介於等方向液體 (isotropic state)與膽固醇相(chiral nematic phase)之間,隨著溫度 的升高還可能出現三種不同藍相^[13-15],由低溫至高溫依序為 BPI、 BPII、BPIII。而藍相液晶的排列又可細分為三種,分別為 BPIII 非晶 態 (amorphous)、BPII 簡單立方 (simple cubic)和 BPI 體心立方 (body center cubic)結構 (Fig.1-5-2.2 所示)。

Fig.1-5-2.2 藍相的溫度區間,介於等方向液體與膽固醇相之間(左)。

(a) BPI, (b) BPII 的晶格結構(右)。

因為藍相的自組裝三維週期結構,且晶格週期大小約數百奈米, 所以具有可見光 Bragg 反射的特性。藍相的電場效應一直引起眾人 的興趣。在電場的影響下,會改變的包括晶格或分子的指向改變、晶 格的變形、相轉換等。除此之外,藉由電場引導出藍相雙折射性的效 應,也在最近被廣泛的討論。使用藍相模態的顯示器跟目前的液晶顯 示器相比,具有不需要配向膜以及超高速的反應時間等優點。

針對藍相模組的液晶顯示驅動方式而言,在無電場狀態下 (off state)液晶是以無配向之藍相作為基本排列,不論是任何藍相 (BPI、

BPII、BPIII 三種液晶相)均為 isotropic 狀態,所以在 cross-polarizers 下的液晶 cell 是為暗態;當施加電場 (on state) 時,由於藍相 isotropic 的排列狀態被電場破壞,變成膽固醇相的螺旋排列,此時是為類似 TN cell 內的螺旋向列相排列,所以在液晶 cell 內是為亮態。由此可 知,在 IPS 模組的電壓驅動下,藍相液晶顯示器是種常態 (off state) 為暗態的液晶顯示器,而這類型的液晶顯示器具有超高快速應答的特 點,最快可到達幾毫秒之等級。

在早期,藍相的溫度範圍狹窄(1-2℃)一直是藍相的重大缺點, 可是近幾年來的研究,可以調配不同比例的反應型單體,在藍相的溫 度範圍內透過照光聚合之方式,將藍相溫寬拉大到幾十度 (>60 ℃), 也因此暫時解決了溫寬過窄的問題,可是應用在顯示器上依然有需高 驅動電壓的缺點存在。因此,如何降低藍相液晶顯示器之驅動電壓則 變成是另一個急需被克服的重點。

1-5-3 藍相液晶分子設計

在文獻的搜尋中我們可發現,要具有藍相的液晶分子大致上都具 備幾個結構上的要素:1.有芳香環的硬端。2.旋光中心之軟端結構。 3.側向極性等要素。在分子組成上,有單分子結構、雙分子(兩硬段)
中間以軟段相連)結構、或添加掺雜體(chiral dopant)等多樣化的結構產生。

1-5-4 彎曲型藍相液晶

Nakata^[16]等人以 nematic liquid crystal (NLC) ZLI-2293 掺入具有 旋光性的 MLC6248 當 host,加入一定量的非旋光性彎曲型液晶 (P8PIMB),意外的發現能夠誘導出藍相,添加一定量的旋光分子 (MHPOBC)發現也能夠獲得藍相。但是添加非旋光性的棒狀型液晶 (TBBA) 卻無法誘導出藍相。(YR21 表示滲入 21.04% MLC6248)

Fig. 1-5-4.1 (a)TBBA (b)MHPOBC (c)P8PIMB 結構與單一結構的溫寬

Fig.1-5-4.2 P8PIMB/YR21(左) MHPOBC /YR21(右)相圖與反射波長

Fig.1-5-4.3 15% P8PIMB/YR21 POM 圖 (b)BPII(81 °C) (c)BPI(79 °C)

Fig.1-5-4.4 15% MHPOBC/YR21 POM 圖 (b)BPII(86°C) (c)BPI(84°C)

2010年中國大陸 Zhigang Zheng^[17] 等人發展出以 Oxadiazole 為頂點的彎曲型分子掺入以 67.2 wt% NLC(SLC-9023)和 32.8wt%具有旋 光性的 R811 為 host 的液晶材料,成功的獲得最高 29 ℃ 溫寬的藍 相。

Fig.1-5-4.7 Sample D3 POM 圖(a) Isotropic at 82 °C (b) BPIII at 79 °C (c) BPI at 76 °C (d) 67 °C (e) 56 °C (f) BPI to N*LC at 53 °C

同樣在 2010 年, Kikuchi^[18]發現在彎曲狀液晶分子中添加高扭 曲力的旋光分子,可以成功誘導出藍相,隨著旋光分子添加的比例不 同,藍相的溫度範圍也不斷的變化,其中最寬到達15℃。

Cooling rate 1°C/min

Fig.1-5-3.9 POM 圖 mixture with 8wt% of chiral dopant

(a) Isotropic (b) BPIII (c) BPIII to BPI

1-5-5 超分子藍相液晶

對超分子而言,由 Huai Yang^[19]團隊所開發出的含旋光中心及側 向極性氟的苯環酸分子,因其可以自身之氫鍵產生雙分子 (dimer)

結構當作旋光摻雜體 (chiral dopant),再與具有 pyridyl 官能基分子 以氫鍵方式組成不對稱的超分子結構,而當其旋光摻雜體與不對稱的 超分子結構比例約2:1時,可以達到最寬廣的藍相液晶相溫度範圍, 約為23℃(Fig.1-5-4.1-2)。即使添加 S811 旋光摻雜體於此不對稱的 超分子結構中,亦僅能擁有15℃ 藍相的液晶相溫度範圍。

Fig.1-5-5.1 (A)形成 BPII 結構; POM 圖 BPII (B) (SFBA)2-PPI

Fig.1-5-5.2 PPI vs.SFBA mol% 相圖

1-5-6 雙分子藍相液晶

2005年英國劍橋大學的 Coles^[20]等人在 Nature 發表了一篇文章充 分顯示對稱雙分子 (symmetric dimer) 結構在藍相液晶溫寬的潛力, 在添加 BDH1281 旋光摻雜體 (chiral dopant)後藍相溫寬可達約 40 $^{\circ}$ 的範圍,並且其溫度範圍首次涵蓋了室溫範圍 (16-60 $^{\circ}$)。

Fig.1-5-6.1 對稱雙分子(symmetric dimer)結構與添加 BDH1281 旋光 摻雜體後具有極寬廣(40 ℃)的藍相

Yelamaggad^[21]等人成功合成出不對稱雙分子(asymmetric dimer), 其單一分子就具有9℃左右的藍相溫度範圍。

Iso 99,2 BP 90 N*-TGB 74 (SmA 53,9 SmAb 51.2 SmA) 29.1 Cr

Fig.1-5-6.2 不對稱雙分子結構具有藍相液晶相。

近幾年來,由日本 Yoshizawa^[22-25]團隊的研究中,開發出多種 T

型(T-shaped)的藍相液晶分子(Fig.1-5-6.3),這系列的T型分子中 (單一成份中)最寬廣的藍相溫度範圍約13℃。

Fig.1-5-6.3 由 Yoshizawa 團隊開發出來的 T 型藍相液晶分子。

•

1-5-7 U-Shape 藍相液晶

2005 年 Yoshizawa^[26]等人在研究聯萘二酚類 U 型三分子液晶 發現當間隔碳數為奇數時,只可觀察到膽固醇相。而當碳數更改為偶 數時,可觀察到藍相,而最寬的藍相可有 10 ℃ 的溫寬。

而 Yoshizawa^[27]等人又在 2009 年發展了一個溫度範圍寬達到 30 ℃ 藍相的聯萘二酚類 U 型三分子液晶結構。但是由於該分子黏度較 大以及各向介電常數較小,導致應答速度較慢。

	n	SmA	N*	BP	Ι	mp*
$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	6 7 8 9 10 11 12	•63(0.7) •94(6.7) •105(5.2) •116(8.6) •108(3.5) •127* •135(9.4)	 113(1.4) 124(3.2) 122(2.5) 	103(2.0)120(2.2)127*	•	99 54 100 46 41 62 74

Fig.1-5-7.1 三分子中軟段碳數為偶數時,可觀察到藍相的結構

Fig.1-5-8.1 含旋光中心及不含旋光中心的丙烯酸酯類液晶單體結構

添加不同比例的反應型單體在藍相溫度範圍內照光聚合,一篇發 表在 Nature Materials 的論文^[29]中提到,藉由調配藍相液晶組成中適 當比例的反應型單體、光起始劑、及旋光摻雜體(chiral dopant),利 用照光聚合的方式可以將原本約 7 ℃ 的藍相溫度範圍擴充到大於 60 ℃以上的溫寬(如Table 1-5-8.1在藍相溫度範圍內照光聚合,可擴 大藍相液晶溫度範圍)。

	Monomer		Initiator	Liquid	crystal	Chiral dopant (mol%)	Transition temperature (K)		
	(mo	1%)	(mol%)	(mol%)					
Sample no.	EHA	RM257	DMPAP	JC-1041XX	5CB	ZLI-4572	N*-BP	BP-Iso	ΔT ^a
									(K)
1	0	0	0	48.19	47.37	4.44	330.7	331.8	1.1
2	2.37	1.51	0.19	45.08	45.79	5.06	319.5	326.3	6.8
3	3.99	2.60	0.33	44.74	43.44	4.89	<260	326.4	>60
4	5.76	3.66	0.47	42.73	42.54	4.85	<260	326.4	>60
5	6.81	4.33	0.58	39.73	43.69	4.87	<260	327.0	>60
6	4.11 ^b	2.00	0.38	44.40	43.89	5.22	<260	326.2	>60
7	4.00 ^C	2.03	0.34	44.12	44.32	5.17	318.0	326.2	8.2
8	3.60 ^d	0.19	0.19	46.64	44.37	5.01	329.0	330.8	1.8
9	2.76 ^d	1.14	0.20	46.18	44.67	5.01	327.7	329.8	2.1
10	1.16 ^d	2.67	0.21	45.58	45.35	5.04	328.2	329.9	1.7

Table 1-5-8.1 在藍相溫度範圍內照光聚合可擴大藍相液晶溫度範圍

高分子穩定化液晶 Polymer-Stabilized Liquid Crystal (PSLC),將 少量高分子分散於液晶中,高分子濃度通常在 5% 以下,因高分子 濃度很低所以與液晶間的折射率差異非常小。使用高分子網狀結構擴 大藍相溫度範圍,是由於高分子所形成的網狀結構可以穩固住藍相液 晶的三維光子晶體結構,有相關研究^[30]指出在 FLC3B2C (Fig.1-5-8.2) 中加入雙官能基高分子 HDDA (Fig.1-5-8.3) 控制溫度於藍相下進 行高分子聚合反應,則藍相溫度可有效的擴張為 13.5 ℃。

一般使用 PSLC 方法是藉著高分子結構控制液晶區域

(domain)凝聚結構及固定液晶排列方向,例如以高分子來固定藍相液晶;因為當高分子照光聚合後所形成的立體網狀結構 (crosslinked network)時,高分子鏈可以穿過藍相液晶晶體結構中的 disclination line 藉此穩固住藍相液晶的液晶型態^[29] (Fig.1-5-8.4)。

Fig.1-5-8.4 (a)藍相液晶的三維光子晶體結構 (b)藍相液晶結構中

disclination line (c)高分子鏈穿過藍相液晶結構中的disclination line

1-6研究動機與方向
本論文實驗之目的為:
(1).以氫鍵與 dimer 為主設計出具前瞻性的藍相液晶材料。
(2).不對稱香蕉型分子 (bent-core with rod)的藍相液晶材料。
(3).期望能開發出溫寬廣可涵蓋室溫的藍相液晶。
合成設計上我們規劃了三大方向,其中包含了:
(1).以 dimer 的為基礎與氫鍵為基礎,設計出不對稱香蕉型分子 (bent-core with rod)。

(2).在 dimer 軟段中掌性結構的加入。

(3).在酸分子側鏈中,加上 F 的官能基和軟段上掌性結構的加入。

Fig.1-6-1.1不對稱香蕉型分子 (bent-core with rod)

H-bond acceptor Fig.1-6-1.2 CN 聯苯 dimer 吡啶示意圖 結構 Name II Ö NC 0 III NC II* 0 Ì NC

本論文歸劃的目標分子整理如下:

Table.1-6-1.1 規劃 CN 聯苯 dimer 吡啶結構

Table.1-6-1.3 Chiral dopant 分子結構

掺雜流程

 利用高精度天平取液晶主體和混掺物,使各配方總重量約 20 mg 即可。將各混掺物以 THF 與 CH₂Cl₂ 溶解,並置於超音波洗淨器中 震動約 10 分鐘,使樣品完全溶於溶劑中,溶液呈澄清透明。

將各混合好之混掺物溶液置於加熱台上,以 75℃ 控溫,静置 1~3
 天等溶劑揮發完畢,即可作為性質量測之樣品。

2-1 實驗藥品

實驗所需化學試劑如下:

藥品名稱	容量	廠商
Potassium carbonate (K ₂ CO ₃)	500 g	SHOWA
Potassium hydroxide (KOH)	500 g	SHOWA
Potassium iodide (KI)	500 g	SHOWA
Hydrochloric acid (HCl)	2.5 L	Fisher Scientific
Magnesium sulfate anhydrous (MgSO ₄)	1 Kg	SHOWA
Palladium (10%)/activated carbon (10% Pd-C)	10 g	Alfa Aesar
Celite 545	500 g	SHOWA
<i>N,N'</i> -dicyclohexylcarbodiimide (DCC)	100 g	Fluka
4-(Dimethylamino)pyridine, 99% (DMAP)	100 g	Alfa Aesar
Sulfuric acid	2.5 L	Aldrich
BBr ₃	100 g	ACROS
Bromine	100 g	Alfa Aesar
Diisopropyl azodicarboxylate (DIAD)	100 g	ACROS
Triphenyl phosphine, 99%	1 Kg	ACROS
Benzyl 4-hydroxybenoate	100 g	Aldrich
Methyl-4-hydroxybenoate	500 g	TCI
(S)-(+)-2-Octanol	5 g	Alfa Aesar
2-Fluro-4-methoxyacetophenone	100 g	Alfa Aesar
(S)-(-)-β-Citronellol	100g	SAFC
Cabon tetrabromide, 98%	100g	Alfa Aesar
4-Cyano-4'-hydroxybiphenyl	25g	TCI

3-hydroxypyridine	50g	Alfa Aesar
Sodium borohydride	100g	Alfa Aesar

Table.2-1.1 實驗藥品

實驗所需溶劑種類如下:

溶劑	容量	廠商
Acetone	4 L	GRAND
Acetonenitrile	4 L	TEDIA
Dichloromethane	4 L	TEDIA
1,4-Dioxane	4 L	TEDIA
Ethyl acetate (EtOAc)	4 L	GRAND
Ethyl alcohol (EtOH)	4 L	TEDIA
Ether	4 L	J.T. Baker
<i>n</i> -Hexane	4 L	GRAND
Tetrahydrofuran	4 L	Mallinckrodt Chemicals
Toluene	4 L	GRAND
Triethylamine (Et ₃ N)	4 L	ACROS

Table.2-1.2 實驗溶劑

無水之 THF 以金屬鈉乾燥; 無水之 Dichloromethane 則以 CaH 乾燥, 使用前再煮沸蒸餾而得。

2-2 實驗儀器

1、真空系統 (Vacuum Line & Schlenk Line)

2、核磁共振光譜儀 (Nuclear Megnetic Resonance, NMR)

型號: Bruker AC-300 型

檢驗方法:將 sample 溶於 d-solvent 中,利用所測得 ¹H 與 ¹³C
光譜判斷化合物之結構與純度。化學位移單位為 ppm,耦合常數單
位為 Hz,並以 d-solvent 值為內標 (CDCl₃, ¹H: δ = 7.24 ppm, ¹³C: δ =
77 ppm)。s 代表 singlet, d 代表 doublet, t 代表 triplet, m 代表
multiplet。
3、元素分析儀 (Elemental Analyzer)
型號: Perkin-Elmer 240C 型
由交通大學貴重儀器中心代測樣品。
4、示差掃描熱量計 (Differential Scanning Calorimeter, DSC)
型號: TA Q10 型

DSC 是分析熱向性液晶之熱力學性質之有效利器。使用儀器前 先作儀器校正,接著將待測之樣品,秤重在 1.5~5.0 mg 之間,將其 裝在金屬鋁盤中加蓋密閉後便可進行量測,並從吸熱或放熱的熱分析 圖形,得其熱焓值大小,及相轉變時的溫度。Krigbaum 根據液晶聚 合物的焓值 (enthalpy) 而歸納出以下原則:一般向列型液晶焓值在 0.35~0.85 kcal/mol,而層列型液晶焓值在 1.5~5.0 kcal/mol 間,但這 些數值也只能用來作為參考,並非所有的化合物均遵守這個趨勢。 DSC 分析只可觀察相變化之存在,並無法鑑定出液晶相之種類(可 能有結晶相-結晶相轉換),因此液晶相之確定須輔以其他儀器,例如: 偏光顯微鏡(POM),X-ray 繞射等。

5、偏光顯微鏡 (Polarized Optical Microscope, POM)

型號:LEICA DMLP

偏光顯微鏡以二片偏光片配合 Mettler FP900 與 FP82HT 組合 之加熱裝置,觀察樣品在加熱或冷卻過程中光學紋理變化。可初步判 斷樣品是否具有液晶性質及其液晶相種類與溫度範圍。二片偏光片 (下稱為 Polarizer,上稱為 Analyzer) 偏光角度差通常調為 90 度。 偏光顯微鏡之主要分析原理:在交叉偏光的二片偏光片中的試樣,若 是等向性的,光無法透過,顯微鏡下呈黑暗;反之,試樣若具有雙折 射性,光則可通過,顯微鏡下可呈條紋。

6、傅立葉紅外線光譜儀 (Fourier Transform Infrared Spectrometer, FT-IR)

型號: Perkin-Elmer Spectrum One 型

紅外線光譜為鑑定官能基與分子結構之重要工具,紅外光光譜頻 率為 4000~400 cm⁻¹,由於有機分子內部各種振動存在,各種振動有 伸展、彎曲二種,伸展振動可分為對稱與不對稱伸展,而彎曲振動可 分為剪式、搖式、擺式、扭式,當分子振動頻率與照射之紅外光頻率 相同,當該頻率之紅外光被吸收,並於光譜上產生吸收峰。

Mar In

89

7、加熱控溫系統 (Therm-Control System)

型號: Models FP 800, FP900 (Mettler Instruments)

8、高精度天平

型號: METTLER TOLEDO AG245

- 9、超音波洗淨器
- 型號: BRANSON 521Q
- 10、加熱台 (Hot Plate)
- 型號: Corning PC-420D
- 11、真空烘箱
- 型號: DENG YNG DOV-60

2-3 合成步驟總流程

Scheme I

Reagent : (a)Br₂, NaOH, 1,4-Dioxane, 0 °C ; (b) BBr₃, DCM, r.t. ; (c)H₂SO₄, MeOH, Reflux ; (d) K₂CO₃, KI, Acetone, Reflux ; (e) KOH, MeOH, Reflux ; (f) DCC, DMAP, DCM, r.t. ; (g) H₂, Pd/C, THF, r.t. \circ

Reagent : (a) PPh₃, DIAD, THF ; (d) K₂CO₃, KI, Acetone, Reflux ; (e) KOH, MeOH, Reflux ; (f) DCC, DMAP, DCM, r.t. ; (g) H₂, Pd/C, THF, r.t.

Scheme II

Reagent : (a) CBr_4 , PPh_3 , DCM, r.t. ; (b) O_3 , $NaBH_4$, MeOH, -15 °C ; (c) K_2CO_3 , KI, Acetone, Reflux ; (d) DIAD, PPh_3 , THF, 0 °C ; (e) KOH, MeOH, Reflux ; (f) DCC, DMAP, DCM, r.t. ; (g) H_2 , Pd/C, THF, r.t. °

Reagent : (a) HBr, toluene, Reflux ; (c) K_2CO_3 , KI, Acetone, Reflux ; (d) DIAD, PPh₃, THF, 0°C ; (e) KOH, MeOH, Reflux ; (f) DCC, DMAP, DCM, r.t. ; (g) H₂, Pd/C, THF, r.t. °

2-fluoro-4-methoxybenzoic acid, 1-1

將化合物 2-fluoro-4-methoxyacetophenone (5 g, 29.8 mmol) 置於
500 mL 圓底燒瓶內,加入適量溶劑 1,4-Dioxane 混合攪拌溶解,再
將 NaOH (3.57 g, 89.3 mmol) 和適量 H₂O 溶解,然後慢慢滴入
Bromine (4.75 g, 29.8 mmol) 之後一起緩慢在冰浴下加入圓底燒瓶
內,在室溫下反應,運用 TLC 片,點片追蹤直到反應完全為止。利
用 H₂O 和 CH₂Cl₂ 萃取,取水層加入鹽酸水溶液直到 pH 值等於 3
為止,過濾後並且以去離子水清洗,得到純白色固體,產率 90%。
¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.9 (t, J = 8.7 Hz, 1H, Ar-<u>H</u>),
7.83-7.78 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 7.02 (d, J = 9.0 Hz, 1H, Ar-<u>H</u>), 3.97 (s, 3H, -OC<u>H₃</u>).

2-fluoro-4-hydroxybenzoic acid, <u>1-2</u>

將化合物 <u>1-1</u>(4.9 g, 28.8 mmol) 置於 250 mL 雙頸瓶內,在氮氣系 統下,打入 dry CH₂Cl₂(30 mL),於 -78 ℃ 下打入 BBr₃(14.4 g, 57.6 mmol),反應回到室溫約 12 小時,用 2N NaOH 溶液終止反應, 直至溶液澄清,隨後加入鹽酸溶液直至中性為止,並用 ethyl acetate 和 H₂O 萃取,取有機層用 MgSO4 除水,真空旋轉濃縮得到白色固 體,產率 95%。

¹H NMR (300 MHz, DMSO-d6) δ (ppm): 7.9 (t, J = 8.7 Hz, 1H, Ar-<u>H</u>), 7.62-7.58 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 7.01 (d, J = 9.0 Hz, 1H, Ar-<u>H</u>).

7.74 (d, *J* = 8.7 Hz, 1H, Ar-<u>H</u>), 7.06 (d, *J* = 9.0 Hz, 1H, Ar-<u>H</u>), 3.91 (s, 3H, -OC<u>H₃</u>).

methyl 2-fluoro-4-(heptyloxy)benzoate, 1-4

將化合物 methyl 2-fluoro-4-hydroxy benzoate (11.05 g, 65 mmol) 置 於 500 mL 圓底燒瓶內,加入 250 mL 的 acetone 混合攪拌溶解,再 加入 K₂CO₃ (27.2 g, 197 mmol) 和 KI (5.5 g, 33 mmol),攪拌打散, 然後慢慢滴入1-bromodecane (17.3 g, 78 mmol) 加熱至 60 ℃迴流 , 運用 TLC 片,點片追蹤直到反應完全為止。冷卻至室溫,真空旋轉 濃縮移除溶劑,再利用 H₂O 和 EtOAc 萃取,取有機層加入 MgSO₄ 除水,濃縮乾燥;最後藉由 silica gel 管柱層析純化,用 *n*-hexane/ EtOAc 當沖提液,得到純白色固體,產率 95%。反應得白色固體, 產率 80%。

¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.86 (t, J = 8.7 Hz, 1H, Ar-H), 6.69 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 6.61 (d, J = 9.0 Hz, 1H, Ar-<u>H</u>), 3.97 (t, J = 4.5 Hz, 2H, -OC<u>H₂</u>-), 3.87 (s, 3H, -OC<u>H₃</u>), 1.77 (m, 2H, -C<u>H₂</u>-), 1.45-1.20 (m, 8H, -C<u>H₂</u>-), 0.87 (t, J = 6.3 Hz, 3H, -C<u>H₃</u>).

2-fluoro-4-(heptyloxy)benzoic acid, <u>1-5</u>

取化合物 <u>1-4</u>(10.7 g, 36 mmol)、KOH(6.04 g, 107 mmol)以及適量 溶劑 MeOH 置於 500 mL 圓底燒瓶,加熱迴流 90 ℃ 運用 TLC 片, 點片追蹤確定反應完全。先將溶劑旋轉濃縮抽乾;加入鹽酸水溶液酸 化達 pH 值等於 3 為止,產物為白色固體,產率 89%。

¹H NMR (300 MHz, d-DMSO) δ (ppm) : 7.80 (t, J = 8.7 Hz, 1H, Ar-<u>H</u>), 6.85 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 6.80 (d, J = 9.0 Hz, 1H, Ar-<u>H</u>), 4.00 (t, J = 4.5 Hz, 2H, -OC<u>H</u>₂-), 1.70 (m, 2H, -C<u>H</u>₂-), 1.50-1.20 (m, 8H, -C<u>H</u>₂-), 0.87 (t, J = 6.3 Hz, 3H, -C<u>H</u>₃). Anal. Calcd for C₁₄H₁₉FO₃: C, 66.12; H,7.53. Found: C, 64.88; H, 7.50.

4-((benzyloxy)carbonyl)phenyl 2-fluoro-4-(heptyloxy)benzoate, 1-6

C₇H₁₅O H HO DCC / DMAP / DCM C₇H₁₅O C₇H₁₅O

將化合物 <u>1-5</u>(10.7 g, 42 mmol)、benzyl 4-hydroxybenzoate (8 g, 35 mmol)、催化劑 DMAP(0.65 g, 5.3 mmol)同置於 250 mL 雙頸瓶內, 預先抽真空約一小時,在氮氣系統下,進行抽灌動作至少三次;再加 入 100 mL dry CH₂Cl₂ 混合攪拌溶解,隨後加入 DCC(14.5 g, 70 mmol) 攪拌均勻,於室溫下反應約 16 小時;運用 TLC 片,點片 追蹤確定反應完全。產生 dicyclohexylurea (DCU) 白色沉澱,過濾並 以 CH₂Cl₂ 洗滌,再利用 H₂O 和 CH₂Cl₂ 萃取,取有機層加入 MgSO4 除水,真空旋轉濃縮移除溶劑,濃縮乾燥;最後藉由 silica gel 管柱層析純化,用 EtOAc 當沖提液,得到白色固體,產率 79%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.11 (d, *J* = 8.7 Hz, 2H, Ar-<u>H</u>), 8.01 (t, *J* = 8.7 Hz, 1H, Ar-<u>H</u>), 7.44-7.34 (m, 4H, Ar-<u>H</u>), 7.32-7.22 (m, 2H, Ar-<u>H</u>), 6.74 (dd, *J* = 8.7 Hz, 1H, Ar-<u>H</u>), 6.70 (dd, *J* = 8.7 Hz, 2H, Ar-<u>H</u>), 5.35 (s, 2H, -C<u>H₂</u>Ph), 4.01 (t, *J* = 4.5 Hz, 2H, -OC<u>H₂-), 1.77 (q, 2H, -C<u>H₂-), 1.50-1.31 (m, 8H, -C<u>H₂-), 1.02 (t, *J* = 6.0 Hz, 3H, -C<u>H₃).</u></u></u></u>

4-((2-fluoro-4-(heptyloxy)benzoyl)oxy)benzoic acid, 1-7

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.17 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.04 (t, J = 8.7 Hz, 1H, Ar-<u>H</u>), 7.33 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 6.77 (dd, J = 8.7 Hz, 1H, Ar-<u>H</u>), 6.68 (dd, J = 8.7 Hz, 1H, Ar-<u>H</u>), 4.03 (t, J = 6.3 Hz, 2H, -OC<u>H₂</u>-), 1.86 (t, 2H, -C<u>H₂</u>-), 1.47-1.27 (m, 8H, -C<u>H₂</u>-), 0.86 (t, 3H, -C<u>H₃</u>). Anal. Calcd for C₂₁H₂₃FO₅: C, 67.37; H, 6.19. Found: C, 67.25; H,

4-((4-((benzyloxy)carbonyl)phenoxy)carbonyl)phenyl2-fluoro-4-(hept yloxy)benzoate, 1-8

6.39.

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.29 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.12 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.09 (d, J = 9.0 Hz, 1H, Ar-<u>H</u>), 7.52 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 7.48 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 7.44-7.38 (m, 5H, Ar-<u>H</u>), 7.29 (d, J = 9.0 Hz, 1H, Ar-<u>H</u>), 6,91 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 5.26 (s, 2H, -C<u>H</u>₂Ph), 4.06 (t, J = 6.0 Hz, 2H, -OC<u>H</u>₂-), 1.79 (m, 2H, -C<u>H</u>₂-), 1.43-1.29 (m, 8H, -C<u>H</u>₂-), 0.88 (t, J = 6.0 Hz, 2H, -C<u>H</u>₃).

4-((4-((2-fluoro-4-(heptyloxy)benzoyl)oxy)benzoyl)oxy)benzoic acid,

<u>1-9</u>

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.30 (d, *J* = 9.0 Hz, 2H, Ar-<u>H</u>), 8.20 (d, *J* = 8.7 Hz, 2H, Ar-<u>H</u>), 8.05 (t, *J* = 9.0 Hz, 1H, Ar-<u>H</u>), 7.40 (d, *J* = 8.7 Hz, 2H, Ar-<u>H</u>), 7.35 (d, *J* = 8.7 Hz, 2H, Ar-<u>H</u>), 6.80 (d, *J* = 8.7 Hz, 1H, Ar-<u>H</u>), 6.65 (d, *J* = 8.7 Hz, 1H, Ar-<u>H</u>), 4.05 (t, *J* = 6.6 Hz, 2H, -OC<u>H₂-), 1.8 (m, 2H, -CH₂-), 1.50-1.20 (m, 8H, -CH₂-), 0.90 (t, *J* = 6.3 Hz, 3H, -C<u>H₃</u>). Anal. Calcd for C₂₈H₂₇FO₇: C, 68.01; H, 5.50. Found: C, 67.55; H, 5.88.</u> methyl 4-(heptyloxy)benzoate, 2-1

將Methyl 4-hydroxybenzoate (5 g, 32.9 mmol)、PPh3 (12.9 g,

49.3mmol) 加入 500 mL 雙頸瓶內,預先抽真空約一小時,在氮氣 系統下,進行抽灌動作至少三次;加入適量溶劑 THF,並於 10 分 鐘後打 (S)-2-octanol (4.7 g, 36.2 mmol),攪拌 15 分鐘後打入 DIAD (9.97 g, 49.3 mmol),點片追蹤確定反應完全。待反應完全,先將溶 劑真空旋轉濃縮乾燥;最後藉由 silica gel 管柱層析純化,用 *n*-hexane/CH₂Cl₂ 當沖提液,得到淡黃色液體,產率 85%。 ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.10 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 6.8 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 4.06 (m, 1H, -OC<u>H</u>₂-), 3.89 (s, 3H, -OC<u>H</u>-), 1.76 (m, 2H, -C<u>H</u>₂-), 1.42-1.25 (m, 11H, -C<u>H</u>₂C<u>H</u>₃), 0.83 (t, J = 6.0 Hz, 3H, -C<u>H</u>₃).

4-(heptyloxy)benzoic acid, <u>2-2</u>

合成方法與 <u>1-5</u> 類似。取化合物 <u>2-1</u>(5g, 19 mmol)、KOH(3.2g, 57 mmol)、以及適量溶劑 MeOH 置於 500 mL 圓底燒瓶,產物為白色 固體,產率 92%。

¹H NMR (300 MHz, d-DMSO) δ (ppm) : 8.05 (d, J = 8.4 Hz, 2H, Ar-<u>H</u>), 6.95 (d, J = 8.0 Hz, 2H, Ar-<u>H</u>), 4.05 (m, 1H, -OC<u>H₂</u>-), 1.80 (m, 2H, -C<u>H₂</u>-), 1.45-1.22 (m, 11H, -C<u>H₂CH₃</u>), 0.90 (t, J = 6.0 Hz, 3H, -C<u>H₃</u>). Anal. Calcd for C₁₅H₂₂O₃: C, 71.97; H, 8.86. Found: C, 71.34; H, 8.87.

合成方法與 <u>1-7</u> 類似。將化合物 <u>2-3</u>(5g, 10.8 mmol) 置於 500 mL 雙頸瓶內,以 150 mL 的 THF 溶解,加入 15 % Pd/C(0.75g) 催化 劑,反應 overnight,得白色固體,產率 88%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.25 (d, *J* = 8.0 Hz, 2H, Ar-<u>H</u>), 8.15 (d, *J* = 8.4 Hz, 2H, Ar-<u>H</u>), 7.35(d, *J* = 8.4 Hz, 2H, Ar-<u>H</u>), 7.00 (d, *J* = 8.4 Hz, 2H, Ar-<u>H</u>), 4.10 (m, 1H, -OC<u>H</u>-), 1.85 (m, 2H, -C<u>H₂</u>-), 1.50-1.20 (m, 11H, -C<u>H₂</u>-), 0.90 (t, *J* = 5.7 Hz, 3H, -C<u>H₃</u>). Anal. Calcd for C₂₂H₂₆O₅: C, 71.33; H, 7.07. Found: C, 70.96; H, 7.11.

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 7.92 (d, J = 9.0Hz, 1H, Ar-<u>H</u>), 7.25

(d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 6.87 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 4.30 (m, 1H, -OCH-), 3.84 (s, 3H, -OC<u>H₃</u>), 1.71-1.57 (m, 2H, -C<u>H₂-), 1.42-1.25 (m, 11H, -C<u>H₂CH₃</u>), 0.83 (t, J = 6.0 Hz, 3H, -C<u>H₃</u>).</u>

4-((R)-octan-2-yloxy)-2-fluorobenzoic acid, 3-2

(R)-4-((benzyloxy)carbonyl)phenyl 2-fluoro-4-(octan-2-yloxy) benzoate, <u>3-3</u>

合成方法與 <u>1-6</u> 類似。將化合物 <u>3-2</u>(11.25 g, 42 mmol)、benzyl
4-hydroxybenzoate (8 g, 35 mmol)、催化劑 DMAP(0.65 g, 53 mmol),

以及 DCC (14.5 g, 70 mmol) 同置於 500 mL 雙頸瓶內,溶劑為 dry CH_2Cl_2 ,於室溫下反應約 16 小時,得到白黃色固體,產率 87%。¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.13 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.02 (t, J = 9.0 Hz, 1H, Ar-<u>H</u>), 7.45-7.30 (m, 5H, Ar-<u>H</u>), 7.29-7.25 (m, 2H, Ar-<u>H</u>), 6.74 (dd, J = 8.7 Hz, 1H, Ar-<u>H</u>), 6.66 (dd, J = 8.7 Hz, 1H, Ar-<u>H</u>), 5.37 (s, 1H, -O<u>CH₂</u>Ph), 4.40 (m, 1H, -OC<u>H</u>-), 1.70-1.61 (m, 2H, -C<u>H₂-), 1.41-1.26 (m, 11H, -C<u>H₂CH₃</u>), 0.86 (t, J = 6.0 Hz, 3H, -C<u>H₃</u>).</u>

(R)-4-((2-fluoro-4-(octan-2-yloxy)benzoyl)oxy)benzoic acid, 3-4

Pd/CH₂

OBn

合成方法與 <u>1-7</u> 類似。將化合物 <u>3-3</u>(10g, 20 mmol) 置於 1000 mL 雙頸瓶內,以 300 mL 的 THF 溶解,加入 15% Pd/C(1.5g) 催化 劑,反應 overnight,得白色固體,產率 92%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.20 (d, *J* = 8.7 Hz, 2H, Ar-<u>H</u>), 8.00 (t, *J* = 8.0 Hz, 1H, Ar-<u>H</u>), 7.30 (m, 2H, Ar-<u>H</u>), 6.70 (dd, *J* = 9.0 Hz, 1H, Ar-<u>H</u>), 6.60 (dd, *J* = 11.7 Hz,, 1H, Ar-<u>H</u>), 4.40 (m, 1H, -OC<u>H</u>-), 1.80-1.51 (m, 2H, -C<u>H₂</u>-), 1.40-1.20 (m, 11H, -C<u>H₂CH₃</u>), 0.80 (t, *J* = 6.3 Hz,3H, -C<u>H₃</u>). Anal. Calcd for C₂₂H₂₅FO₅: C, 68. 03; H, 6.49. Found: C, 67.78; H, 6.44.

(R)-4-((4-((benzyloxy)carbonyl)phenoxy)carbonyl)phenyl 2-fluoro-4-(octan-2-yloxy)benzoate, <u>3-5</u>

合成方法與 <u>1-6</u> 類似。將化合物 <u>3-4</u>(6g, 15.4 mmol)、benzyl 4-hydroxybenzoate (2.9g, 12.8 mmol)、催化劑 DMAP(0016g, 1.3 mmol),以及 DCC(7.9g, 38.4 mmol) 置於 500 mL 雙頸瓶內,溶 劑為 dry CH₂Cl₂,於室溫下反應約 16 小時,得到白色固體,產率 85 %。

¹H NMR (300 MHz, CDCl₃) δ (ppm) ÷ 8.25 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.10 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.00 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 7.50 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 7.42 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 7.40-7.32 (m, 5H, Ar-<u>H</u>), 7.25 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 7.00 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 5.28 (s, 2H, -C<u>H</u>₂Ph), 3.86 (m, 1H, -OC<u>H</u>₂-), 1.67 (m, 2H, -C<u>H</u>₂-), 1.40 (m, 3H, -C<u>H</u>₃), 1.31-1.25 (m, 8H, -C<u>H</u>₂-), 0.85 (t, J = 6.0 Hz, 2H, -C<u>H</u>₃).

(R)-4-((4-((2-fluoro-4-(octan-2-yloxy)benzoyl)oxy)benzoyl)oxy) benzoic acid, <u>3-6</u>

合成方法與 1-7 類似。將化合物 3-5(5g, 8.35 mmol) 置於 1000

mL 雙頸瓶內,以 300 mL 的 THF 溶解,加入 15 % Pd/C(1.5 g) 催
 化劑,反應 overnight,得白色固體,產率 92 %。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.30 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.20 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 8.02 (t, J = 9.0 Hz, 1H, Ar-<u>H</u>), 7.40 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 7.30 (d, J = 8.7 Hz, 2H, Ar-<u>H</u>), 6.75 (dd, J = 7.8 Hz, 1H, Ar-<u>H</u>), 6.65 (dd, J = 8.1 Hz, 1H, Ar-<u>H</u>), 4.40 (m, 1H, -OC<u>H</u>-), 1.60 (m, 2H, -C<u>H₂</u>-), 1.30-1.25 (m, 8H, -C<u>H₂</u>-), 0.89 (t, J = 6.6 Hz, 3H, -C<u>H₃</u>). Anal. Calcd for C₃₉H₂₉FO₇: C, 68.49; H, 5.75. Found: C, 68.31; H, 5.78.

OH

CBr₄ / PPh₃

DCM

將化合物 (S)-(-)-β-Citronellol (5 g, 32 mmol)、CBr₄ (11.5 g, 35.2 mmol) 在冰浴 0°C 下加入至 250 mL 雙頸瓶內,再加入適量溶劑 dry CH₂Cl₂,將 PPh₃ 溶於適量溶劑 dry CH₂Cl₂中,並使用滴液漏斗將 PPh₃ 溶液慢慢滴入反應瓶中,點片追蹤確定反應完全。待反應完全,先將溶劑真空旋轉濃縮乾燥;最後藉由 silica gel 管桂層析純化,用 *n*-hexane 當沖提液,得到透明無色液體,產率 80%。
¹H NMR (300 MHz, CDCl₃) δ (ppm): 5.22 (t, J=2.4Hz, 1H, =C<u>H</u>), 3.43 (t, J=4.5Hz, 2H, -C<u>H₂</u>Br), 2.3-1.52 (m, 9H, -C<u>H₂</u>, -C<u>H</u>), 1.02 (t, J=6.0 Hz, 3H, -C<u>H₃</u>).

Br

將化合物 <u>4-1</u> (5 g, 22.93 mmol) 置於 250mL 圓底燒瓶中,加入 100 mL MeOH 溶解,溫度維持在 -15 °C 通入 O₃,反應約 30 分鐘,溶液由 透明轉淡黃,以 TLC 片點片確認反應。加入 NaBH₄ (0.88 g, 22.93 mmol)此時溶液變為透明,靜置室溫攪拌 2 小時。加入 40 g 冰塊與 3mL H₂SO₄,以 H₂O 和 chloroform 萃取,取有機層加入 MgSO₄ 除 水。最後用 silica gel 管柱層析純化,以 *n*-hexene/EA 沖提,得透明液 體。產率 73 %。 ¹H NMR (300 MHz, CDCl₃) δ (ppm) : 3.82 (t, J=3.9 Hz, 2H, -OC<u>H₂</u>), 3.42 (t, J=4.8Hz, 2H, -C<u>H₂</u>Br), 1.82-1.41 (m, 7H, -C<u>H₂</u>), 1.00 (t, J=6.0 Hz, 3H, -C<u>H₃</u>).

(S)-4'-((6-hydroxy-3-methylhexyl)oxy)-[1,1'-biphenyl]-4-carbonitrile, $\underbrace{4-3}_{HO \underbrace{I}_{HO} \underbrace{$

合成方法與 <u>1-4</u> 類似。將化合物 4-Cyano-4'-hydroxybiphenyl (5 g,
25.6 mmol) 置於 500 mL 圓底燒瓶內, 加入 250 mL 的 acetone 混
合攪拌溶解,再加入 K₂CO₃ (10.64 g, 76.8 mmol) 和 KI (3.25 g, 12.8

mmol),攪拌打散,然後慢慢滴入<u>4-2</u>(6.42g, 30.72 mmol)加熱至 60 ℃ 迴流,得到純白色固體,產率 95%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 7.82 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.61 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.20 (t, *J*=6.3 Hz, 2H, -OC<u>H₂-</u>), 4.00 (t, *J*=6.6, 2H, -OC<u>H₂-</u>), 1.82-1.22 (m, 7H, -C<u>H₂-</u>), 1.00 (t, *J*=6.0, 3H, -C<u>H₃</u>).

Ю

0 ∥

`OMe

OMe

NC
DIAD / PPh₃/THF
NC
合成方法與 2-1 類似。將化合物 4-3 (5 g, 16.2 mmol)、Methyl
4-hydroxybenzoate (2.95 g, 19 mmol)、PPh₃ (6.39 g, 24.3 mmol) 加入
500 mL 雙頸瓶內,在氦氣系統下,加入適量溶劑 THF,而後打入
DIAD (4.9 g, 24.3 mmol),得到淡黃色液體,產率 80%。
¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.88 (q, J=9.3 Hz, 4H, Ar-<u>H</u>), 7.68 (d, J=8.7 Hz, 2H, Ar-<u>H</u>), 7.10 (d, J=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, J=8.7 Hz, 2H, Ar-H), 6.80 (d, J=8.7 Hz, 2H, Ar-H), 4.05 (m, 4H, -OCH₂-), 3.89

(s, 3H, $-OC\underline{H}_2$ -), 1.75-1.60 (m, 5H, $-C\underline{H}_2$ -), 1.21 (m, 2H, $-C\underline{H}_2$ -), 0.96 (d, J=6.3Hz, 3H, $-C\underline{H}_3$).

(S)-4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)-4-methylhexyl)oxy)benz

oic acid, <u>4-5</u>

NC

合成方法與 <u>1-5</u> 類似。取化合物 <u>4-4</u>(5g, 11.3 mmol)、KOH(1.9g, 33.9 mmol) 以及適量溶劑 MeOH 置於 500 mL 圓底燒瓶,產物為 白色固體,產率 92%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.10 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.85 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.70 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.25 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.03 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.00 (m, 4H, -OC<u>H₂-), 1.71-1.65 (m, 5H, -C<u>H₂-), 1.25 (m, 2H, -C<u>H₂-), 1.00 (d, *J*=6.3 Hz, 3H, -C<u>H₃).</u></u></u></u>

(S)-pyridin-3-yl 4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)-4-methyl hexyl)oxy)benzoate, <u>4-6</u>

將化合物 <u>4-5</u>(2g, 3.81 mmol)、pyridin-3-ol(043g, 4.6 mmol)、以 及催化劑 DMAP(0.05g, 0.381 mmol),同置於 250 mL 雙頸瓶內, 加入 100 mL dry CH₂Cl₂ 混合攪拌溶解,隨後加入 DCC(2.38g, 11.43 mmol) 攪拌均勻,產物為白色固體,產率 60%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.60 (s, 1H, Ar-<u>H</u>), 8.50 (d, *J*=4.5 Hz, 1H, Ar-<u>H</u>), 8.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.88 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.75 (d, *J*=4.5 Hz,2H, Ar-<u>H</u>), 7.70 (d, *J*=7.8 Hz, 1H, Ar-<u>H</u>), 7.50 (m, 1H, Ar-<u>H</u>), 7.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.12 (m, 4H, -OC<u>H₂-), 1.90-1.70 (m, 5H, -CH₂-), 1.43-1.75 (m, 2H, -C<u>H₂-), 1.00 (d, *J*=6.0 Hz, 3H, -C<u>H₃</u>). Anal. Calcd for C₃₂H₃₀ N₂O₄: C, 75.87; H, 5.97. Found: C, 74.63; H, 6.43.</u></u>

(S)-benzyl 4-((4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)-4-methyl hexyl)oxy)benzoyl)oxy)benzoate, <u>4-7</u>

合成方法與 <u>1-6</u> 類似。將化合物 <u>4-6</u>(5g, 11.6 mmol)、benzyl
4-hydroxybenzoate (3.2g, 14 mmol)、催化劑 DMAP(0.145g, 1.16 mmol)、以及 DCC(7.2g, 34.8 mmol),同置於 500 mL 雙頸瓶內,
溶劑為得 dry CH₂Cl₂,得到純白色固體,產率 85%。
¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.20 (d, J=9.0 Hz, 2H, Ar-<u>H</u>), 8.10

(d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.82 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.65 (d, *J*=4.5 Hz, 2H, Ar-<u>H</u>), 7.50 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.45-7.35 (m, 5H, Ar-<u>H</u>), 7.12 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.01 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 5.20 (s, 2H, -O<u>CH₂</u>Ph), 4.10 (m, 4H, -OC<u>H₂</u>-), 1.70-1.55 (m, 5H, -C<u>H₂</u>-), 1.23 (m, 2H, -C<u>H₂</u>-), 1.00 (d, *J*=6.3 Hz, 3H, -C<u>H₃</u>).

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.30 (d, *J*=9.0 Hz, 2H, Ar-<u>H</u>), 8.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.85 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.70 (d, *J*=4.5 Hz, 2H, Ar-<u>H</u>), 7.60 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.14 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.07 (m, 4H, -OC<u>H₂-), 1.71-1.65 (m, 5H, -CH₂-), 1.21 (m, 2H, -CH₂-), 0.99 (d, *J*=6.3 Hz, 3H, -C<u>H₃).</u></u>

(S)-pyridin-3-yl 4-((4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)

-4-methyl hexyl)oxy)benzoyl)oxy)benzoate, <u>4-9</u>

合成方法與 <u>1-4</u> 類似。將化合物 <u>4-8</u>(2g, 3.1 mmol)、pyridin-3-ol (0.345g, 3.72 mmol)、以及催化劑 DMAP(0.04g, 0.31 mmol),同置 於 250 mL 雙頸瓶內,加入 100 mL dry CH₂Cl₂ 混合攪拌溶解,隨後 加入 DCC(1.9g, 9.3 mmol) 攪拌均勻,物為白色固體,產率 60%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.60 (s, 1H, Ar-<u>H</u>), 8.55 (d, *J*=4.5 Hz, 1H, Ar-<u>H</u>), 8.25 (d, *J*=9.0 Hz, 2H, Ar-<u>H</u>), 8.10 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.83 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.75 (d, *J*=7.8 Hz, 1H, Ar-<u>H</u>), 7.70 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.55 (d, *J*=7.8 Hz, 1H, Ar-<u>H</u>), 7.50 (d, *J*=4.5 Hz, 2H, Ar-<u>H</u>) 7.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.12 (m, 4H, -OC<u>H</u>₂-), 1.90-1.70 (m, 5H, -C<u>H</u>₂-), 1.45-1.70 (m, 2H, -C<u>H</u>₂-), 1.00 (d, *J*=6.3 Hz, 3H, -C<u>H</u>₃). Anal. Calcd for C₃₉H₃₄N₂O₆: C, 74.74; H, 5.47. Found: C, 74.01; H, 5.93.

70

6-bromohexan-1-ol, <u>5-2</u> HO______OH HBr / toluene HO_____Br

將化合物 hexane-1,6-diol (10 g, 85 mmol)和適量toluene置於 500 mL 單頸瓶中,升溫至迴流後,使用滴液漏斗將HBr (7.2 g, 89 mmol)緩 慢滴入,反應overnight,運用 TLC 片,點片追蹤直到反應完全為止。 先將溶劑旋轉濃縮抽乾,最後藉由 silica gel 管柱層析純化,用Hexane 當沖提液,得得到淡黃色液體,產率 90%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 3.70 (t, *J*=3.9 Hz, 2H, -OC<u>H₂</u>-), 3.50 (t, *J*=4.8Hz, 2H, -OC<u>H₂</u>-), 1.80-1.40 (m, 8H, -C<u>H₂</u>-).

4'-((6-hydroxyhexyl)oxy)-[1,1'-biphenyl]-4-carbonitrile, <u>5-3</u>

HO Br $K_2CO_3 / KI / Acetone$ NC OH

合成方法與 <u>1-4</u> 類似。將化合物 4-Cyano-4'-hydroxybiphenyl(5g, 25.6 mmol) 置於 500 mL 圓底燒瓶內, 加入 250 mL 的 acetone 混 合攪拌溶解,再加入 K₂CO₃(10.64 g, 76.8 mmol) 和 KI(3.25 g, 12.8 mmol), 攪拌打散, 然後慢慢滴入 <u>5-2</u>(6.0 g, 30.72 mmol) 加熱 至 60 ℃ 迴流,得到純白色固體, 產率 95%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 7.82 (q, *J*=9.3 Hz, 4H, Ar-H), 7.61 (d, *J*=8.7 Hz, 2H, Ar-H), 7.10 (d, *J*=8.7 Hz, 2H, Ar-H), 4.12 (t, *J*=6.3

Hz, 2H, -OCH₂), 3.63 (t, *J*=6.6, 2H, -OCH₂), 1.82-1.41 (m, 8H, -CH₂).

methyl 4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)hexyl)oxy)benzoate, 5-4

4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)hexyl)oxy)benzoic acid, 5-5

合成方法與 <u>1-5</u> 類似。取化合物 <u>5-4</u>(5g, 11.6 mmol)、KOH(1.96g, 34.9 mmol) 以及適量溶劑 MeOH 置於 500 mL 圓底燒瓶,產物為

白色固體,產率 92%。

NC

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.83 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.67 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.20 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.02 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.11 (m, 4H, -OC<u>H₂-), 1.71 (m, 4H, -C<u>H₂-), 1.35 (m, 4H, -C<u>H₂-).</u></u></u>

pyridin-3-yl 4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)hexyl)oxy) benzoate, 5-6

DCC / DMAP /DCM

合成方法與 **4-6** 類似。將化合物 **5-5** (2g, 3.9 mmol)、pyridin-3-ol (0.44 g, 4.7 mmol)、以及催化劑 DMAP (0.05 g, 0.39 mmol),同置於 250 mL 雙頸瓶內,加入 100 mL dry CH₂Cl₂ 混合搅拌溶解,隨後加 入 DCC (2.4 g, 11.7 mmol) 搅拌均匀,物為白色固體,產率 60%。 ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.60 (s, 1H, Ar-<u>H</u>), 8.50 (d, J=4.5 Hz,1H, Ar-<u>H</u>), 8.05 (d, J=8.7 Hz, 2H, Ar-<u>H</u>), 7.85 (q, J=9.3 Hz, 4H, Ar-<u>H</u>), 7.75 (d, J=4.5 Hz, 2H, Ar-<u>H</u>), 7.70 (d, J=7.8 Hz, 1H, Ar-<u>H</u>), 7.50 (m, 1H, Ar-<u>H</u>), 7.15 (d, J=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, J=8.7 Hz, 2H, Ar -<u>H</u>), 4.11 (m, 4H, -OC<u>H₂-), 1.90-1.65 (m, 4H, -C<u>H₂-), 1.40-1.65 (m, 4H, -C<u>H₂-</u>). Anal. Calcd for C₃₁H₂₈ N₂O₄: C, 75.59; H, 5.73. Found: C, 74.71; H, 6.02.</u></u> benzyl 4-((4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)hexyl)oxy)benzoyl)

4-((4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)hexyl)oxy)benzoyl)oxy) benzoic acid, <u>5-8</u>

合成方法與 <u>1-7</u> 類似。將化合物 <u>5-7</u>(5g, 8 mmol) 置於 500 mL 雙 頸瓶內,以 200 mL 的 THF 溶解,加入 15 % Pd/C (0.75g) 催化劑, 反應 overnight,得自色固體,產率 88%。 ¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.30 (d, *J*=9.0 Hz, 2H, Ar-<u>H</u>), 8.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.85 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.65 (d, *J*=4.5 Hz, 2H, Ar-<u>H</u>), 7.54 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.00 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.10 (m, 4H, -OC<u>H</u>₂-), 1.73 (m, 4H, -C<u>H</u>₂-), 1.21 (m, 4H, -C<u>H</u>₂-).

(S)-pyridin-3-yl 4-((4-((6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy) -4-methylhexyl)oxy)benzoyl)oxy)benzoate, <u>5-9</u>

合成方法與 <u>4-6</u> 類似。將化合物 <u>5-8(2g, 3.7 mmol)、pyridin-3-ol</u>
(0.415g, 4.48 mmol)、及催化劑 DMAP(0.048g, 0.37 mmol),同置
於 250 mL 雙頸瓶內,加入 100 mL dry CH₂Cl₂ 混合攪拌溶解,隨後
加入 DCC(2.27g, 11.1 mmol) 攪拌均匀,得白色固體,產率 60%。

¹H NMR (300 MHz, CDCl₃) δ (ppm) : 8.60 (s, 1H, Ar-<u>H</u>), 8.50 (d, *J*=4.5 Hz, 1H, Ar-<u>H</u>), 8.15 (d, *J*=9.0 Hz, 2H, Ar-<u>H</u>), 8.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.88 (q, *J*=9.3 Hz, 4H, Ar-<u>H</u>), 7.75 (d, *J*=7.8 Hz, 1H, Ar-<u>H</u>), 7.70 (d, *J*=4.5 Hz, 2H, Ar-<u>H</u>), 7.55 (m, 1H, Ar-<u>H</u>), 7. 50 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.15 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 7.05 (d, *J*=8.7 Hz, 2H, Ar-<u>H</u>), 4.12 (m,\4H, -OCH₂-), 1.90-1.70 (m, 4H, -CH₂-), 1.45-1.70(m, 4H, -CH₂-).

本論文研究成功合成出多種超分子液晶化合物,在本章節將完整 地探討含不同硬段數量、側邊氟基團(F)的導入與否,與末端軟鏈段 上是否含有旋光中心的羧酸基分子,以氫鍵的模式與不同硬段數量和 軟段上是否含有旋光中心的棒狀棒狀雙分子(dimer)吡啶基作鍵結而 對於液晶相行為有何影響,並利用傳立葉轉換紅外線光譜儀(FT-IR)、 偏光顯微鏡(POM)、示差掃描熱量計(DSC)、電性量測探討其性質。

3-1 紅外線光譜分析 (IR)

紅外線光譜儀是分子振動能譜,依據振動光譜獲得官能基 (functional group)及指紋區(fingerprint)資訊來鑑定結構與官能基的 重要工具,FT-IR 是利用干涉光譜作傅立葉轉換,得到化合物振動光 譜,因此FT-IR 是最常用在鑑定有機及無機化合物的分析技術,當有 機分子的振動頻率與紅外光頻率相同時會被吸收,而在光譜上產生一 吸收峰,利用此特徵吸收峰就能鑑定官能基是否存在。

在本論文中所合成的化合物可分作兩大類:一、末端具有砒啶基 當作 H-Bond acceptor;二、末端具有羧酸基當作 H-Bond donor,將兩 者混和得到棒狀及彎曲氫鍵型液晶雙分子結構。

從 Fig.3-1.1 中可證明砒啶基與苯酸基間之氫鍵的形成。從(b)可 看出含有苯酸基的圖譜在 2500 cm⁻¹ 到 2700 cm⁻¹ 具有 O-H 的費米共振 (Fermi Resonance)譜峰,其來自於兩個苯酸之間形成二聚體(dimer) 所致,而當形成超分子氫鍵化合物,此費米共振的譜峰會因為苯酸與 吡啶之間形成而產生變化,從(a)可看出 2700~2400 cm⁻¹ 以及 2000~ 1800 cm⁻¹ 出現兩寬廣之譜峰此為氫鍵形成之貢獻。另外原本羧基中 C=O 的 streetching 在 1683 cm⁻¹ 會因為氫鍵形成之後而位移到較大的 波數(wavenumber),在圖中可看見其已經合併至酯基中 C=O 的 streetching 的位置。而從本實驗室先前研究之例子^[31]可知這些特徵峰 會隨著溫度上升而變的較寬廣且位置會往長波數的範圍移動,代表溫 度上升的確會減弱此氫鍵作用力,但在液晶溫度範圍內仍具有氫鍵的 作用力。

Fig. 3-1.1 FT-IR spectra of (a) H-bonded complex III*/A1F, (b) benzoic acid A1F, (c) pyridyl tail III*

3-2 II 吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較

Table 3-2.1 II 吡啶基與不同羧酸基的氫鍵作用力形成超分子型液晶

	temperature range
II/A1F	118.1 - N(21.1) - 97
II/A2F	181.3 - N(87.8) - 93.5
II/A3F	250 - N(189.1) - 60.9
II/A1*	no LC phase
II/A2*	138.8 - N*(52.2) - 86.6
II/A2*=1/3	154.4 - N*(74.4) -80
II/A1F*	no LC phase
II/A2F*	136.5 - N*(36.3) -100.2
II/A2*F=1/3	147 - BP(2.8) - 144.2 - BP/N*(6) - 138.2 -N*(53.2) - 85
II/A3F*	194.2 - N*(138.9) - 55.3

Table 3-2.2II 吡啶基與不同羧酸基的氫鍵作用力形成超分子液晶溫寬

Fig.3-2-1.1 吡啶基與含 F 不同硬段數量羧酸基分子液晶溫寬圖

可明顯的由上圖看出,當側向含F羧酸基分子的硬段數量增加時, 液晶相的溫度範圍也會增加,而當硬段數量增加至三時,雖然有寬裕 的 nematic phase,但因為分子結構過大,由於溫度需要高於 250℃才 會進入 isotropic phase,會有一些熱裂解的現象,但依然可觀察到明 顯的向列相紋理圖。

Fig.3-2.2 吡啶基與含旋光中心羧酸基側向導入F與否液晶溫寬圖

(1).羧酸基環數為1:無論是否在側向導入F與否都無法得到液晶相。

(2).羧酸基環數為2:在側向導入F後,有小量的降低液晶相的溫度, 但是可以明顯的觀察到,在沒有導入F時,液晶相的溫寬較為寬裕, 相對寬裕了15℃左右,而得到的都為膽固醇液晶相。並且在觀察導 入F的分子時,發現當一出現液晶相時,會有一層層片狀像層列相 的紋理圖,但當拿鑷子輕壓後,會出現明顯的油狀膽固醇相紋理圖, 即推斷原本的類似片狀的紋理圖亦為膽固醇相。

Fig.3-2-2.1 II/A2F* 134.5°C N* phase (A)壓前(B)壓後

61

(3).羧酸基環數為3:雖然液晶相的溫寬變得更為寬裕,但相對來看, 進入 isotropic phase 需要的溫度也會越高,所以只針對的有側向導入 F的分子作探討。即在 194.2℃至 55.3℃ 觀察到膽固醇相,溫寬大 約有 140℃ 左右。

3-2-3 含旋光中心羧酸基分子比例之影響

在本實驗中羧酸基相對吡啶基的比例增加至3,一方面多出兩倍

的羧酸基可以以自身氫鍵作鍵結,和羧酸基與吡啶基的氫鍵聯結以 1:1的方式混合,一方面可以以相似結構混摻的角度增加旋光性欲誘 導出藍相。此實驗只針對在比例為1時有液晶相及溫度寬裕且液晶溫 度不會太高的羧酸基環數為2作探討。

(1).H-donor 羧酸基分子側向導入下與吡啶基Ⅱ比例為3時,即為 Fig.3-2-3.1的示意圖,在POM 輔以加熱控溫系統的觀察中(ramp 0.5 °C/min from 150 °C to 140 °C),在降溫過程中觀察到藍相的紋理圖 產生,純的藍相是從147 °C 至 144.2 °C,溫寬大約近3 °C 左右,藍 相與 N*混相也約有6 °C 左右,而 N* 的溫寬也明顯的寬於當羧酸 基對吡啶基的比例為1時,表示當比例增加為3時,是可以穩定液 晶相的。

NC

Fig.3-2-3.1 羧酸基對吡啶基的比例為3的示意圖

Fig.3-2-3.2 Blue Phase I / Blue Phase II 紋理圖

step1.ramp 10°C /min \rightarrow 170 °C , step 2.isotherm 1 min , step 3.ramp 2°C

/min \rightarrow 50 °C , step 4.isotherm 1 min , step 5.ramp 2°C /min \rightarrow 170 °C .

Fig.3-2-3.4 Blue Phase DSC 圖

在1st cooling 時,無法得到進結晶相的 peak,但在 2nd heating 時,可以明顯看出有兩個峰。在升溫時,當溫度升至 63.79℃ 出現 N* 相,熱焓值為 2.14 J/g。再繼續升溫至 129.67 ℃ 進入 isotropic phase,熱焓值為 10.09 J/g,所觀測到的溫度為 79 ℃ ~137 ℃,約近 60 ℃ 的 N*相,與在 POM 下觀察時的溫度範圍有點落差,但總體 來說液晶溫寬是大至相同的,而在 DSC 中無法觀察到 blue phase 的 peak。

(2). H-donor 羧酸基分子側向無導入下的分子與吡啶基比例為3時, 在 POM 輔以加熱控溫系統的觀察中,雖然無法觀察到藍相,但也 可以明顯的發現當比例增加至3,相對於比例為1時,N*的溫寬也 有增加,同樣證實當比例增加至3時,可穩定其液晶相。
(3).在羧酸基與吡啶基比例為3下,羧酸基側向不導入下時,雖然沒 有得到藍相,但相對於液晶溫度範圍來說較為導入下的分子寬裕, 對照羧酸基與吡啶基比例為1時,亦是不導入下的分子液晶溫寬較 導入下的分子寬裕。

3-3 III 吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較

Table 3-3.1 III 吡啶基與不同羧基的氫鍵作用力形成超分子型液晶

benzoic acid	temperature range
III/A1*	no LC phase
III/A2*	124.6 - N*(67.8) - 56.8
III/A1F*	no LC phase
III/A2F*	no LC phase
III/A2F*=1/3	154.4 - N*(74.4) - 80
III/A3F*	153.6 - N*(47.6) - 106

Table 3-3.2III 吡啶基與不同羧酸基的氫鍵作用力液晶溫寬

Fig.3-3.1 III 吡啶基與不同羧酸基的氫鍵作用力液晶溫寬

3-3-1 含旋光中心羧酸基侧向導入 F 與否之影響

(1).羧酸基環數為1:無論是否在側向導入F與否都無法得到液晶相。
(2).羧酸基環數為2:若在側向導入F,沒有觀察到液晶相,而在沒有導入F的情況時,則有寬裕的液晶溫度範圍,為膽固醇相。

(3).羧酸基環數為3:羧酸基環數增加至三個時,在側向有導入F的 羧酸基分子可觀察到液晶相,但溫寬不像Ⅱ系列有寬廣的溫域。

3-3-2 含旋光中心之羧酸基分子比例之影響

含旋光中心羧酸基分子側向導入F與吡啶基比例為3,可以明顯 的觀察到相對於比例為1時,由無液晶相轉變為有液晶相,有溫寬 75℃的膽固醇相,再次證明當比例增為3而多出的兩倍羧酸基分子 形成自身氫鍵與原本的吡啶基和羧酸基聯接成的分子,以1:1的混摻 是有助於穩定液晶相的。

3-4 II*吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較

Table 3-4.1 II*吡啶基與不同羧基的氫鍵作用力形成超分子型液晶

Table 3-4.2II*吡啶基與不同羧酸基的氫鍵作用力超分子液晶溫寬

3-4-1 含旋光中心羧酸基侧向導入 F 與否之影響

Fig.3-4-1.1 吡啶基與含旋光中心羧酸基導入 F 與否分子液晶溫寬圖

(1).羧酸基環數為1:在側向導入F後,誘導出液晶相,而沒有導入F
時,沒有觀察到液晶相。
(2).羧酸基環數為2:在側向導入F後,相對於沒有導入F的分子,
有明顯降低液晶相的溫度,並且在導入F的分子相對於沒有導入F
的分子,液晶相相對寬裕了3℃左右。

(3).羧酸基環數為3:同理因為當羧酸基環數增加3,進入 isotropic phase 的溫度會大幅的提升,所以只針對有側向導入F的分子作探討, 溫寬大約有 140℃ 左右。

Fig.3-4-1.2 (A)II*/A2F* 55°C N* phase,(B)II*/A3F*114.6°C N* phase

chiral nematic 210 200 crystal 190 180 170 160 150 õ 140 130 temperature(120 110 100 90 80 70 60 50 40 30 A1F A1F* A3F* A2F A2F* A3F sample name

3-4-2 羧酸基側向含 F 分子軟段旋光中心導入與否之影響

Fig.3-4-2.1 II*吡啶基與含F羧酸基分子軟段旋光中心與否溫寬圖

(1)羧酸基環數為1:旋光中心的引入可誘導出液晶相,而沒有引入旋光中心時,沒有觀察到液晶相。

(2).羧酸基環數為 2:引入旋光中心相對於沒引入旋光中心時的分子, 明顯降低液晶相的溫度並且溫寬變窄,液晶相相對窄了 13℃ 左右。 (3).羧酸基環數為3:引入旋光中心相對於沒有引入旋光中心時的分子,明顯降低液晶相的溫度並且溫寬變窄,液晶相相對窄了70℃左右。同樣的當羧酸基環數增加至三個時,進 isotropic phase 的溫度也相對升高需多。

Fig.3-4-2.2 (A)II*/A3F 140°C N* phase, (B) II*/A3F* 153°C N* phase

Fig.3-4-3.1 II*吡啶基和含F與否羧酸基分子比例液晶溫寬圖
(1).含旋光中心的羧酸基分子無論側向是否有導入F與吡啶基比例為 3時,都相較於羧酸基對吡啶基的比例為1時的液晶溫寬較為寬裕, 即表示多加兩倍的羧酸基分子可以穩定液晶相。

(2).含旋光中心的羧酸基分子側向導入F與吡啶基比例為3的分子, 相較於沒有導入F的分子的液晶溫度範圍較寬裕許多。就算是比例為 1的實驗中,導入F可以穩定液晶相,使溫度範圍拉寬。而導入F的 分子的液晶溫度也相較於沒有導入F的分子低了許多。

Fig.3-4-3.2(A) II*:A2F*=1:3 92.2°C N* phase

(B) II*:A2F*=1:3 130.6°C N* phase

3-5 III*吡啶基與不同羧基的氫鍵作用力形成超分子型液晶比較

Table 3-5.1 III*吡啶基與不同羧基的氫鍵作用力形成超分子型液晶

	temperature range
III*/A1F	154 - N*(86.7) - 67.3
III*/A2F	165.2 - N*(120.3) - 44.9
III*/A3F	266.6 - N*(201.8) - 64.8
III*/A1*	122.1 - N*(33.9) - 88.2
III*/A2*	151.2 - BP(6.9) - 144.3 - BP/N*(6.8) - 137.5 - N*(69.3) - 68.2
III*/A2*=1/3	156.2 - N*(83.8) - 72.4
III*/A1F*	122.8 - N*(47.7) - 75.1
III*/A2F*	148.3 - N*(87.7) - 60.6
III*/A2F*=1/3	142.3 - N*(72.6) - 69.7
III*/A3F*	209.6 - N*(134.7) - 74.9

Table 3-5.2III*吡啶基與不同羧酸基的氫鍵作用力超分子液晶溫寬

3-5-1 含旋光中心羧酸基側向導入 F 與否之影響

- Fig.3-5-1.1 III*吡啶基與含旋光中心羧酸基導入 F 與否液晶溫寬圖 (1).羧酸基環數為1:在側向導入 F 後相對於沒有導入 F 的分子,雖 然有沒有明顯的降低液晶相的溫度,但在溫度範圍的部分有些微增 加膽固醇液晶相溫寬。
- (2).羧酸基環數為2:在側向導入F後,相對於沒有導入F的分子, 有些微降低液晶相的溫度,並且液晶相溫寬也有些微的增加。但值 得注意的是,在POM 輔以加熱控溫系統的觀察中(ramp 0.5 ℃/min from 155 ℃ to 140 ℃),在側邊無導入F且軟段上含有旋光中心的 羧酸基分子時,可以誘導出藍相液晶,實際的結構可由 Fig.3-5-1.2 表示,並且純的藍相是從 151.2 ℃至 144.3 ℃,溫寬大約近7 ℃左 右,與N* 混相也約有7 ℃左右。而側邊導入F且軟段上含有旋光

中心的羧酸基分子時,可以明顯看出顏色非常藍,並且N*的溫寬有 90℃,所以針對此結構我們嘗試加入 ISO-60BA 的 chiral dopant 至 6 mol%, 欲引導出藍相,但結果皆無法得到 Blue phase,推論應該 是因為側向加入F的分子,影響液晶的排列或者 dipole 方向改變, 影響結構排列。

Fig.3-5-1.3 (A) BPI / BPII 紋理圖 145°C,(B)BP 與 N*混相 143°C

Fig.3-5-1.4 (A) BPI / BPII 紋理圖 148°C,(B) N* phase 紋理圖 130°C

step1.ramp 10°C /min \rightarrow 170 °C , step 2.isotherm 1 min , step 3.ramp 2°C

Fig.3-5-1.5 III*/A2*DSC 圖

1st cooling 時,可以明顯看出有兩個峰。在降溫時,當溫度降至 150.68 ℃ 出現 N*相,熱焓值為 2.279 J/g,再繼續降溫至 64.18 ℃ 進 入結晶相,熱焓值為 25.19 J/g,所觀測到的溫度為 150~59℃,約近 90℃ 的 N*相。而在 DSC 中無法觀察到 Blue Phase 的 peak。

Fig.3-5-1.6 III*/A2F*(A) 145 °C N* phase,(B) 77 °C N* phase

(3).羧酸基環數為3:只針對的有側向導入F的分子作探討,溫寬大約有135℃左右。但相對來說,進入isotropic 時的溫度也升高許多。

3-5-2 羧酸基侧向含F分子之軟段旋光中心導入與否對液晶相之影響

Fig.3-5-2.1 III*吡啶基與是否含旋光中心羧酸基液晶溫寬圖

直接由上方圖表可以明顯的看出,無論在幾個環數的系統中,當 旋光中心的引入時,會降低液晶相的溫度,並且降低了液晶溫度範 圍,即表示溫寬變窄了。在液晶的影響中,當吡啶基分子本身含旋 光中心時,與其鍵結的羧酸基分子以沒有含有旋光中心的分子較佳, 液晶的溫寬較寬。 3-6 含藍相分子結構之比較

3-6-1 不同吡啶基與導入F且含旋光中心羧酸基比例為1:3 之對液晶 影響

Fig.3-6-1.1 不同吡啶基與含旋光中心且含 F 羧酸基 1:3 液晶溫寬圖

由上方圖表可得知在液晶相觀察上,不含旋光中心吡啶基與含F 含旋光中心羧酸基1:3 鍵結時,相較含旋光中心吡啶基與羧酸基鍵結 時,液晶的溫度較高且溫度的範圍也較窄,但在結構上,不含旋光中 心吡啶基II 與含F含旋光中心羧酸基1:3 鍵結時,卻可以成功的誘導 出藍相。

- (1).本實驗成功合成出不同硬段數且有無旋光中心在軟段上的 CN 聯 苯 dimer 吡啶基四個結構。也成功的合成出不同硬段數且有無旋光 中心在軟段上和側向 F 的導入與否的羧酸基分子八個。結構以氫鍵 的模式作鍵結,成功得到棒狀及含氫鍵彎曲雙分子。
- (2).在棒狀及含氫鍵彎曲雙分子中,成功以吡啶基Ⅱ與有旋光中心且 側向含下的羧酸基分子A2F*以1:3的鍵結模式,得到藍相液晶,而 溫寬為3℃。另外也成功的以吡啶基Ⅲ*與有旋光中心且側向不含F 的羧酸基分子A2*以1:1的鍵結方式,也得到藍相液晶,且得到的 藍相溫寬約為7℃。
- (3).在一系列液晶的性質探討中,以II、III 軟段上不含旋光中心吡啶 基分子以氢鍵模式與不同的羧酸基分子鍵結時,不含下的羧酸基分 子相較於含下的羧酸基分子性質來的好,且當羧酸基分子的比例增 加至3時,更穩定了液晶相。
- (4).另外,以 II*、III*軟段上不含旋光中心吡啶基分子以氫鍵模式與 不同的羧酸基分子鍵結時,有相反的結論,含下的羧酸基分子相較 於不含下的羧酸基分子性質來的好,但當羧酸基分子的比例增加至 3時,也同樣可以更穩定了液晶相。
- (5).在其他的鍵結分子中,也可以得到寬廣溫寬(最寬~200°C)的膽固

醇相。

3-8 未來展望

- (1).明確的鑑定出本論文所得到的藍相為 BPI or BPII。
- (2).將本論文合成出的氫鍵結構,改作成共價鍵的分子,探討氫鍵與

共價鍵對於藍相液晶相的影響。

(3).共價鍵的分子,更改末端棒狀的分子結構,探討對於液晶相的影

參考文獻

[1] F. Reinitzer, Monatsh, Chem., 1888, 9, 421; Ann Physik., 1908, 27, 213.

[2] O. Lehmann, Z. Physik. Chem., 1889, 4, 462; Ann Physik., 1908, 25, 852.

[3] S. Kumar, *Liquid crystals: experimental study of physical properties and phase transitions*, New York, 2001, p.49.

[4] N. Gimeno, M. B. Ros, J. L. Serrano, Chem. Mater., 2008, 20, 1262.

[5] T. Niori, F. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, *J. Mater. Chem.*, 1996, 6, 1231; T. Niori, F. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, *Mol. Cryst. Liq. Cryst.*, 1997, 301, 337; F.Sekine, Y. Takanashi, T. Niori, J. Watanabe, H. Takezoe, *Jpn. J. Appl. Phys.*, 1997, 36, L1201.

[6] T. Kato, J. M. J. Frechet, J. Am. Chem. Soc., 1989, 111, 8533.

[7] T. Kato, Structure & Bonding, 96; Berlin :Springer2 Verlag, 2000, 85.

[8] A. Blumstein, S. B. Clough, L. Patel, *Macromolecules*, 1989, 111, 243.

[9] T. Kato, J. Frechet, Macromolecules, 1989, 22, 3818.

[10] C. Fouqueny, J. M. Lehn, A. M. Levelut, Adv. Mater., 1990, 2, 254.

[11] H. Bernhardt, W. Weissflog, H. Kresse, *Angew. Chem. Int. Ed.*, 1996, 35, 874.

[12] T. Kajitani, S. Kohmoto, M. Yamamoto, K. Kishikawa, *J. Mater. Chem.*, 2004, **14**, 3449.

[13] D. Armitage, F. P. Price, Appl. Phys., 1976, 47, 2735.

[14] Z. Kutnjak, C. W. Garland, J. L. Passmore, P. J. Collings, *Phys. Rev. Lett.*, 1995, **74**, 4859.

[15] I. Dierking, Texture of Liquid Crystals, Weinheim, WILEYVGHVerlag GMBH & Co. KGaA, 2003.

[16] M. Nakata, Y. Takanishi, J. Watanabe, H. Takezoe, *Phys. Rev. E*.2003, 68, 41710.

[17] Z. Zheng, D. Shen, P. Huang, New J. Phys., 2010, 12, 113018.

[18] M. Lee, S.T. Hur, H. Higuchi, K. Song, S.W. Choi, H. Kikuchi, J. Mater. Chem., 2010, 21, 5813.

[19] W. L. He, G. H. Pan, Z. Yang, D. Y. Zhao, G. G. Niu, W. Huang, X.

T. Yuan, J. B. Guo, H. Cao, H. Yang, Adv. Mater., 2009, 21, 2050.

[20] H. J. Coles and M. N. Pivnenko, Nature, 2005, 436, 997.

[21] C. V. Yelamaggad, J. Mater. Chem., 2009, 19, 2906.

[22] Atsushi Yoshizawa, J. Mater. Chem., 2005, 15, 3285.

[23] A. Yoshizawa, H. Iwamochi, S. Segawa, M. Sato, *Liq. Cryst.*, 2007, 34, 1039.

[24] H. Iwamochi, A. Yoshizawa, Appl. Phy. E., 2008, 1,111801.

[25] M. Sato, A.Yoshizawa, Adv. Mater. , 2007, 19, 4145.

[26] J. Rokunohe, A. Yoshizawa, J. Mater. Chem., 2005, 15, 275.

[27] A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, J.

Yamamoto, J. Mater. Chem., 2009, 19, 5759.

[28] H. S. Kitzerow, H. Schmid, A. Ranft, G. Heppke, R. A. M. Hikmet,

Lub J. Liq. Cryst., 1993, 14, 911.

[29] H. Kikuchi, M. Yokota, Y. Hisaakado, H. Yang, T. Kajiyama, *Nat. Mater.*, 2002, 1, 64.

[30] 曾德仁、蔡協和、黃振球,高分子網狀結構於強誘電性液晶中 對藍相溫度範圍擴張影響之研究。 [31] W. H. Chen, W. T. Chuang, U. S. Jeng, H. S. Sheu, H. C. Lin, *J. Am. Chem. Soc.*, 20011, **133**, 15674.

附錄

附錄A DSC 圖譜

II/A2F* (Ramp10°C /min)

II/A2F* 1:3 (Ramp2°C /min) 2nd Heating

附錄B FT-IR 圖譜

一個苯環的羧酸基 A1F&A1F*→1690cm⁻¹ 為 acid 的 C=O peak

^{cm-1} 113

1400

1200

II*/A3F 160°C 47°C N*

II*/A2F 147.8°C N*

附錄 C POM 圖

III*/A1* 109.4°C N*

III*/A1F* 112.4°C N*

III*/A3F* 201.3°C N*

III*/A2F 140.3°C N*

III*/A2F 105.1°C N*

III*/A3F 105.1°C N*

III*:A2F*=1:3 138.0°C N*

III*:A2*=1:3

III*/A2* Blue Phase

A1F*

A3F*

A1*

II*

II

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名:楊季涵 中心編號:1010713 服務單位:交大材料 林宏淵實驗室 樣品名稱或代號:A1F*-1 收件日期: 101 年 7 月 23 日完成日期: 101 年 7 月 24 日 分析結果: 實驗值: N% 1. - 66.97 7.88 2. - 67.06 7.89 3. - 4. - 推測値: - 67.14 7.89 本日所使用之 Standard: A (A)Acetanilide (B)Atropin 10.36 71.09 項出值: 10.35 71.17 6.66 備註: - 費用核算:NCH: 800元 - 報告日期: 101年 7 月 30 日				-					
服務單位: 交大材料 林宏洲實驗室 様品名稱或代號: A1F*-1 收件日期: 101 年 7 月 23 日完成日期: 101 年 7 月 24 日 分析結果: 實驗值: N% C% H% 1 66.97 7.88 2 67.06 7.89 3. 4. 推測值: 67.14 7.89 本日所使用之 Standard : A (A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論值: 10.36 71.09 6.71 測出值: 10.35 71.17 6.66 備註: 費用核算: NCH: 800元 報告日期: 101 年 7 月 30 日	使用者姓名	:楊李涵		中心編號:1	01071	3			
收件日期: 101 年 7 月 23 日完成日期: 101 年 7 月 24 日 分析結果: 實驗値: N% C% H% 1. - 66.97 7.88 2. - 67.06 7.89 3. - - - 4. - - - - 推測値: - 67.14 7.89 - 本日所使用之 Standard: A - - - - (A)Acetanilide (B)Atropin (C)N-Anilin - - 測出値: 10.36 71.09 6.71 - 測出値: 10.35 71.17 6.66 - 備註: - - - - - 費用核算: NCH: 800元 - - - 報告日期: 101 年 7 月 30 日 - - - - -	服務單位:	交大材料 林宏》	州實驗	室 様品名稱或(代 號:	A1F*-1	l		
分析結果: 實驗値: N% C% H% 1. - 66.97 7.88 2. - 67.06 7.89 3. - - 7.89 3. - - - 4. - - - - 本日所使用之 Standard: A - - - - (A)Acetanilide (B)Atropin (C)N-Anilin - - N% C% H% - - - 理論値: 10.36 71.09 6.71 - 測出値: 10.35 71.17 6.66 - 備註: - - - - - 費用核算: NCH: 800元 - - - - - 報告日期: 101年 7 月 30 - - -	收件日期:	101 年 7 月	23	日 完成日期:	101	年 7	月	24	B
實驗値: N% C% H% 1. - 66.97 7.88 2. - 67.06 7.89 3. - - 7.89 4. - - - 推測値: - 67.14 7.89 本日所使用之 Standard : A - - - (A)Acetanilide (B)Atropin (C)N-Anilin - 10.36 71.09 6.71 - 測出値 : 10.35 71.17 6.66 備註 : - - - - 費用核算 : NCH : 800 元 - - - -	分析結果:								
1. 一 66.97 7.88 2. 一 67.06 7.89 3. . . 4. . . 推測値: 一 67.14 7.89 本日所使用之 Standard : A . . (A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論値: 10.36 71.09 6.71 測出値: 10.35 71.17 6.66 備註: . . . 費用核算: NCH: 800元 . . . 費用核算: NCH: 800元 . . .	實驗值:	N%		C%		1	H%		
2. — 67.06 7.89 3. 4. 推測值: — 67.14 7.89 本日所使用之 Standard : A (A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論值: 10.36 71.09 6.71 測出值: 10.35 71.17 6.66 備註: 費用核算: NCH: 800 元 報告日期: 101 年 7 月	1.	_		66.97		1	.88		
3. 4. 推測値: 一 67.14 7.89 本日所使用之 Standard : A	2.	_		67.06		1	.89		
4. 推測値: - 67.14 7.89 本日所使用之 Standard : A (A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論値: 10.36 71.09 6.71 測出値: 10.35 71.17 6.66 備註: 費用核算: NCH: 800元 報告日期: 101年 7 月 30	3.								
推測値: - 67.14 7.89 本日所使用之 Standard : A (A)Acetanilide (B)Atropin (C)N-Anilin (A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論値: 10.36 71.09 6.71 測出値: 10.35 71.17 6.66 備註: 費用核算: NCH: 800元 報告日期: 101年 7 月 30 日	4.								
本日所使用之 Standard : A (A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論值 : 10.36 71.09 6.71 測出值 : 10.35 71.17 6.66 備註 : 費用核算 : NCH : 800 元 報告日期 : 101 年 7 月 30 日	推測值:	_		67.14		1	.89		
(A)Acetanilide (B)Atropin (C)N-Anilin N% C% H% 理論值: 10.36 71.09 6.71 測出值: 10.35 71.17 6.66 備註: 費用核算: NCH: 800元 報告日期: 101年 7 月 30 日	本日所使用;	之 Standard:A							
N% C% H% 理論值: 10.36 71.09 6.71 測出值: 10.35 71.17 6.66 備註: 費用核算: NCH: 800元 報告日期: 101年 7 月	(A)Acetanilio	de (B)Atropin	ı	(C)N-Anilin					
理論值: 10.36 71.09 6.71 測出值: 10.35 71.17 6.66 備註: 費用核算:NCH:800元 報告日期:101年 7 月 30 日		N%		C%		1	I%		
測出值: 10.35 71.17 6.66 備註: 費用核算:NCH:800元 報告日期:101年 7 月 30 日	理論值:	10.36		71.09			5.71		
備註: 費用核算:NCH:800元 報告日期:101年 7 月 30 日	測出值:	10.35		71.17			5.66		
費用核算:NCH:800元 報告日期:101年 7 月 30 日	備註:				·				
報告日期: 101 年 7 月 30 日	費用核算:1	NCH: 800元							
	報告日期∶	101年7月	30	В					

儀器負責人簽章: ^掛 宥 容 技術員簽章: ^{截 士李 越}明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名	: 楊李涵			中心編號:	101061	97				
服務單位:	交大材料	林宏洲	實驗	室 様品名稱詞	3代號:	A2F	*			
收件日期:	101 年	6 月	25	日 完成日期:	101	年	6	月	27	B
分析結果:										
實驗值:	N	1%		C%			Н	%		
1.	-	_		67.78			6.	44		
2.	-	_		67.71			6.	29		
3.										
4.										
推測值:	-	_		68.03			6.	49		
本日所使用;	之 Standar	d : A								
(A)Acetanili	de (B)A	tropin		(C)N-Anilin						
	N	1%		C%			Н	[%		
理論値:	10).36		71.09			6.	71		
測出値:	10).37		71.18			6.	62		
備註:										
費用核算:]	NCH : 800	0元								
報告日期:	101 年	6月	29	в						
				• •						

儀器負責人簽章: 渤 有 容 技術員簽章: 截士李菰明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名:	楊李涵		中心編號:]	01061	92				
服務單位:交	大材料 林宏	洲實驗	室 樣品名稱或(代號:	A3F	ŧ			
收件日期:	101 年 6	月 25	日 完成日期:	101	年	6	月	27	B
分析結果:									
實驗值:	N%		C%			Н	%		
1.	_		68.15			5.	80		
2.	_		68.31			5.1	78		
3.									
4.									
推測值:			68.49			5.1	75		
本日所使用之	Standard : A								
(A)Acetanilid	e (B)Atropi	'n	(C)N-Anilin						
	N%		C%			Н	%		
理論値:	10.36		71.09			6.1	71		
測出值:	10.37		71.18			6.0	62		
備註:									
費用核算:N	CH: 800 元								
報告日期: 1	01年6	∃ 29	B						

儀器負責人簽章: 渤 有 容 技術員簽章: 截士李韮明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名	:周予強			中心編號:	101061	28				
服務單位:3	交大材料	林宏	州實驗	室 樣品名稱或	祝號:	Al*				
收件日期:	101 年	6 月	25	日 完成日期:	101	年	6	月	26	B
分析結果:										
實驗值:	1	V%		C%			H	%		
1.				71.34			8.	87		
2.		_		70.94			8.	80		
3.										
4.										
推測值:		_		71.97			8.	86		
本日所使用;	之 Standar	rd : A								
(A)Acetanilio	le (B)A	Atropin	L	(C)N-Anilin						
	1	V%		C%			Н	%		
理論値:	10	0.36		71.09			6.	71		
測出値:	10	0.36		71.14			6.	66		
備註:										
費用核算:1	NCH : 80	0 元								
報告日期:	101 年	6月	28	B						

儀器負責人簽章: 渤 有 容 技術員簽章: 截 士李 基明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名	:周予引	1			中心離	翩號:]	101061	33				
服務單位:3	交大材料	∮林	宏洲	實驗	室 様品名	名稱或	代號:	A2*				
收件日期:	101 年	ē 6	月	25	日 完成日]期:	101	年	6	月	26	B
分析結果:												
實驗值:		N%			C	%			H	1%		
1.		_			70.	90			7.	.11		
2.		—			70.	96			7.	12		
3.												
4.												
推測值:		—			71.	33			7.	.07		
本日所使用。	と Stand	ard :	A									
(A)Acetanilio	le (B))Atroj	pin		(C)N-Ani	lin						
		N%			C	%			Н	[%		
理論値:		10.36			71.	09			6.	71		
測出値:		10.36			71.	14			6.	66		
備註:												
費用核算:1	VCH : 8	00元										
報告日期:	101年	6	月	28	Β							
••			•••		• •							

儀器負責人簽章: 劫 有 容 技術員簽章: ^{載 士 李 越}明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

								_
使用者姓名	:楊李涵		中心編號:]	1010715	5			
服務單位:	交大材料 林宏	洲實驗	室 樣品名稱或(代 號: /	AlF			
收件日期:	101 年 7 月	月 23	日 完成日期:	101	年 7	月	24	B
分析結果:								
實驗值:	N%		C%		ł	I%		
1.	_		64.88		7	.47		
2.	_		64.30		7	.50		
3.								
4.								
推測值:	_		66.12		7	.53		
本日所使用	之 Standard:A			-				
(A)Acetanili	de (B)Atropi	n	(C)N-Anilin					
	N%		C%		ŀ	I%		
理論值:	10.36		71.09		6	.71		
測出值:	10.35		71.17		6	.66		
備註:				·				
費用核算:]	NCH: 800元							
報告日期:	101年7月	∃ 30	B					
·	••••							

儀器負責人簽章: ^掛 宥 容 技術員簽章: 截士李基明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名	:楊李涵		中心編號:1	01073	9			
服務單位:3	交大材料 林宏洲	實驗	室 樣品名稱或作	t 號:	A2F			
收件日期:	101 年 7 月	23	日 完成日期:	101	年 7	月	25	B
分析結果:								
實驗值:	N%		C%		I	I%		
1.	_		66.92		6	5.39		
2.	_		67.25		6	5.54		
3.								
4.								
推測值:	—		67.37		6	5.19		
本日所使用。	と Standard : A			-				
(A)Acetanilio	le (B)Atropin		(C)N-Anilin					
	N%		C%		I	I%		
理論値:	10.36		71.09		6	5.71		
測出值:	10.14		71.05		6	5.62		
備註:								
費用核算:1	NCH: 800元							
報告日期:	101年 7 月	30	В					

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名:	使用者姓名:楊李涵 中心編號:1010722									
服務單位:交	大材料 林宏洲	實驗	室 樣品名稱或作	代號:	A3F					
收件日期:	101 年 7 月	23	日 完成日期:	101	年	7	月	24	Β	
分析結果:										
實驗值:	N%		C%			H	[%			
1.	—		67.55			5.	97			
2.			67.30			5.	88			
3.										
4.										
推測値:			68.01			5.	50			
本日 所使用之	Standard : A									
(A)Acetanilide	e (B)Atropin		(C)N-Anilin							
	N%		C%			Н	[%			
理論値:	10.36		71.09			6.	71			
測出值:	10.39		71.32			6.	54			
備註:										
費用核算:N	CH: 800 元									
報告日期:1	01年7月	30	B							
			• •							

儀器負責人簽章: 謝 有 容 技術員簽章: ^{載 士 李 蘊}明

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名	:楊李涵			中心編號:	101073	6				
服務單位:3	交大材料	林宏洲	實驗	室 樣品名稱或	:代號:	Π				
收件日期:	101 年	7月	23	日 完成日期:	101	年	7	月	25	Β
分析結果:										
實驗值:	N	%		C%			H	%		
1.	4.	.75		74.71		6.02				
2.	4.	.76		74.22			6.	13		
3.										
4.										
推測値:	5.	.69		75.59			5.	73		
本日 所使用。	≿ Standar	d : A								
(A)Acetanilid	le (B)A	tropin		(C)N-Anilin						
	N	%		C%			H	%		
理論値:	10	.36		71.09			6.	71		
測出値:	10	.14		71.05			6.	62		
備註:										
費用核算:	VCH : 800)元								
報告日期:	101 年	7月	30	В						

儀器負責人簽章: 游 有 容 技術員簽章: 基士李蕴明
國立交通大學應用化學系

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名:	楊李涵	中心編號:10	中心編號: 1010737				
服務單位:交大材料 林宏洲實驗室 樣品名稱或代號:Ⅱ*							
收件日期:	101 年 7 月	23 日 完成日期:	101 年 7 月 25	5 8			
分析結果:							
實驗值:	N%	C%	H%				
1.	5.54	73.67	6.59				
2.	5.68	74.63	6.72				
3.	5.80	74.18	6.43				
4.							
推測值:	5.53	75.87	5.97				
本日所使用之 Standard: A							
(A)Acetanilid	e (B)Atropin	(C)N-Anilin					
	N%	C%	H%				
理論値:	10.36	71.09	6.71				
測出値:	10.40	70.90	6.62				
備註:							
費用核算:NCH: 800 元							
報告日期: 101 年 7 月 30 日							

儀器負責人簽章: 謝 有 容 技術員簽章: 截士李蕴明

國立交通大學應用化學系

元素分析儀 Heraeus CHN-O Rapid 服務報告書

使用者姓名:楊李涵 中心編號:1010738						
服務單位:交大材料 林宏洲實驗室 樣品名稱或代號:Ⅲ*						
收件日期: 1	01 年 7 月	23 日 完成日期: 1	01 年 7 月 26 日			
分析結果:						
實驗値:	N%	C%	H%			
1.	4.02	73.94	6.16			
2.	4.12	74.01	5.93			
3.	4.15	73.57	5.93			
4.						
推測值:	4.47	74.74	5.47			
本日所使用之 Standard:A						
(A)Acetanilide	(B)Atropin	(C)N-Anilin				
	N%	C%	H%			
理論値:	10.36	71.09	6.71			
測出值:	10.40	70.90	6.62			
備註:						
費用核算:NCH:800 元						
報告日期: 101 年 7 月 30 日						

儀器負責人簽章: 謝 有 容 技術員簽章: 截士李蘊明